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Abstract

Normally, search engines do not allow users to query a versioned collection of documents,

since as soon as a new document version is indexed, the older one is lost. This prevents

us from accessing useful information in a wide range of applications. For instance, within

prior art search, it is important to establish if an idea is actually new or if it has been already

patented as well as if there exist any older document versions concerning that idea. Thus, we

need to time travel across document versions in order to find all possible instances of an idea

or a piece of evidence.

Hence, in this work we develop a system for letting users search versioned documents – i.e.,

collections containing multiple versions for the same document – specifying their validity

range by means of time intervals. To this end, we decide to enhance the widely-used Terrier

open-source IR system by means of two strategies for index versioning: (i) the Baseline

Approach (BA) and, (ii) the Mapping Approach (MA). The BA strategy filters out data related

to documents whose time intervals do not satisfy a given temporal predicate. Whereas, the

MA strategy speeds up query evaluation by taking advantege of additional data structures

maintaining the positions of document versions in the index.

We evaluate these approaches on two test collections: the CLEF Adhoc monolingual

collection for the Italian language and a temporlly versioned subset of the English Wikipedia.

The evaluation process shows the correctness of the proposed BA and the MA approaches and

that MA is more efficient than BA, even though it requires more central memory.
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1
Introduction

Over the last two decades, the research community began debating the importance of

preserving the human generated content, which is in part available on the web. This content,

which is evolving at increasing rate, is not captured by the actual search engines, because

they focus on enabling users to access the latest information available. This implies that as

soon as we index a newer version of a document, this version replaces the previous one, thus

involving a loss of potentially useful data. In recent years there has been a growing awareness

that search limited to the latest snap-shot of evolving data, results in losing access to content

which could be important in a wide range of different applications. However, it is important

to remark that over the last decades, there have been several efforts to preserve the born digital

contents available on the web. In particular, the Internet Archive [1] in an attempt to preserve

such data, for future generations, has collected more than 150 billion of web pages since 1996.

While in web archiving there have been several advances, the same is not true with regard to

the access to the collected information. In fact, current web archives focus on the preservation

of content, rather than on enabling users to inspect it. For instance, the Internet Archive lets

us only look at the version history of a document, once we have submitted its URL, without

allowing us to consult the content of the document versions. Current web archives are far

from providing a feature which permits users to answer queries by evaluating them only over

the document versions satisfying a specified temporal constraint. Such a functionality would

allow us not only to exploit the data contained in the document versions retrieved for a query,

but also to get useful information about the evolution of the documents over time, which

ultimately lead us to think about the causes bringing about such changes.
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2 Chapter 1. Introduction

1.1 Purpose and structure of this work

Motivated by these ideas, we examine several existing proposals in the literature, concerned

with time-travel text search. Time-travel text search is an extension of the standard text search

which enables users to bound the scope of a search only to documents which match a temporal

predicate. Therefore, users can couple a classical text query with a time constraint to locate

only the document versions that are relevant with respect to the specified keywords and the

temporal constraint of interest. A topic enriched with a time constraint is referred to as time-

travel query. In order to evaluate a time travel query on a set of documents, we have to provide

such documents with temporal data, thus obtaining a temporally versioned collection. The

goal of the existing strategies is to allow users to carry out search over temporally versioned

collections, by organizing the data collected during the indexing process so that the retrieval

procedure is as efficient as possible. The idea underlying all the approaches we analyze

is to exploit the temporal data of the collection documents to speed up query evaluation.

Such strategies propose different organization schemes for the Inverted index, which, is the

most efficient index structure for query evaluation. We can organize the existing solutions

in four categories. The first group aims at speeding up the retrieval process by slicing the

Inverted index along the time axis, while the second group deals with slicing such structure

along the temporal dimension. The third group involves performing query evaluation by

exploiting the similarities between adjacent versions of the same document. Finally, the

four group trades off some speed in the retrieval process with the exactness of the results.

After analyzing the ideas proposed in the literature so far, we aim at enhancing Terrier,

an open source information retrieval system, with a functionality which lets us to search

temporally versioned collections. Among the available open source platforms letting users

conduct information retrieval tasks, we focus on Terrier because of the increasing interest of

the information retrieval community towards such system and because it allow us to carry out

the indexing and the retrieval processes incrementally, thus letting us perform the indexing

procedure on some documents after answering some given queries. Moreover, we select

such system because of the growing community of users collaborating to the support and the

development of the project, with the ideal goal of implementing a functionality which can be

used by the maximum number of people. On the minus side, Terrier limits the boundaries

within which to implement the described feature, thus preventing us from exploiting any

of the ideas proposed in the literature, concerned with time-travel text search. This is due

to the fact that implementing one of such strategies would require us to completely change
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how the indexing and retrieval processes are carried out in Terrier, thus compromising the

possibility of allowing other users to adopt the developed strategies. To accomplish the goal

specified above we devise two strategies, the Baseline Approach and Mapping Approach

for index versioning, which will be referred to as BA and MA strategies, respectively. The

Basic Approach for index versioning consists of a baseline approach for index versioning

which enables search over temporally versioned collections by ignoring the data related to

documents whose time intervals do not satisfy the one we provide the query of interest with.

On the other hand, the MA approach deals with exploiting the positions assigned to the data

of the document versions in the inverted index stream of bytes, for speeding up the retrieval

process. With the dual objective of verifying the correctness of the implemented strategies

and assessing the time we need to evaluate a given query, we test the BA and MA strategies

on two collections. The first one is the Adhoc monolingual test collection for the Italian

language, while the second collection is obtained by putting together some web pages about

cooking we download from the Wikimedia Foundation Project.

This work is organized as follows: in Chapter 2 we give a background on Information

Retrieval, particularly focusing on the indexing and retrieval processes. In Chapter 2

we present Experimental Evaluation and the fundamental concepts of relevance and test

collection. Moreover, we describe the inverted index, the most efficient index structure

proposed so far for text retrieval purposes. We will come back to the model we report for

the inverted index throughout this work, with the aim of illustrating how we have to change

the reference model to implement the BA and MA approaches. We conclude the chapter by

giving some details on three open source systems, commonly used in conducting information

retrieval tasks. In Chapter 3 we illustrate some strategies which have been designed to allow

users to search temporally versioned collection, underlining for each of them their strengths

and weaknesses. In Chapter 4 we present how the real-time indexing and retrieval processes

are carried out in Terrier. In Chapter 5 we delineate the BA and MA strategies, the strategies

we have developed as of Terrier real-time indexing and retrieval processes, for handling time-

travel text search. In Chapter 6 we provide the results we have obtained by testing the BA

and MA strategies on two collections, namely the CLEF Adhoc monolingual test collection

for the Italian language and one we have generated starting from the English Wikipedia. In

Chapter 7, after summarizing the results of our experimental evaluation, we provide some

final remarks and some future works.





2
Information Retrieval

2.1 Information Retrieval

“Information retrieval is a field concerned with the structure, analysis, organization, storage,

searching, and retrieval of information” [2]. This definition was proposed by Gerald Salton,

one of the leading researchers of Information Retrieval from the 1960s to the 1990s. We start

our discussion by analyzing the elements of this definition. Firstly, we take the “information

retrieval” statement into account. As indicated in the textbook Readings in Information

Retrieval [5], written by Spark Jones and Willett, the term was proposed by Mooers in 1952.

Broadly speaking, it refers to the possibility for a user to obtain some information, which he

should consider useful, in relation to a query, which, can be thought of as an actualization of

an information need. The type of information that a user can obtain mostly depends from the

type of documents comprising the collection in which the research is carried out. Since 1950s

the Information Retrieval researchers has focused on text collections, but the technological

advancement of the last decades, above all by increasing data storage capability of various

orders of magnitude, led to a new interest towards other types of documents: audio, video,

images. A discussion on how such documents are managed during the indexing and retrieval

processes is beyond the scope of this thesis, in which we exclusively take into account text

collections. Some examples of text collection documents are web pages, books, scholarly

papers, company reports. Turning to the main topic, it is worth saying that, as suggested

by Lancaster, the term “information retrieval” is somewhat erroneous. In fact, the retrieval

process does not directly provide new knowledge to a user who issues a query, but it merely

informs him about the existence of some documents, which should be about the topic the

examined query is related to. In order to respond to some queries, the collection documents

5



6 Chapter 2. Information Retrieval

must go through some processing phases. For each document in the collection, we carry out

the following operations:

• Extraction of the document content.

• Analysis of the document content to obtain a document representation.

• Storage of the document representation into some data structures that make the

subsequent search of useful data as efficient as possible.

Lastly, we consider the topic of “structure of information”. The documents in a corpus can

have a certain amount of structure, for instance the title of a scientific paper, the author,

a section which provides a summary of the document content, but most of the document

information is in the form of text, which is mostly unstructured. This feature of text collection

documents has a great impact on the retrieval phase. Differently from responding a query in

Data Retrieval, in which only matching items are searched for, in Information Retrieval we

would like to get back all, but only the documents which have an high probability of being

relevant with respect to a given query. Note that a document could be relevant in regard

to a query even if it does not contain any of the query terms, namely the terms composing

the query. Furthermore, since the relevance of a document is strictly dependent on the user

issuing the query, it also depends on some aspects which are completely independent from

the query. Some examples are the user capability of expressing his information need, the

user awareness about the content of the documents, the query is matched with. We conclude

this part by proposing an historical remark. As stated by van Rijsbergen in [4], when high

speed computers began to be used to carry out information retrieval tasks, many researchers

thought that computers would have been able to partially solve the problem of detecting

all the relevant documents with respect to a given query, due to their calculating capacity.

Soon, Information Retrieval researchers realized that the only way to exploit the new available

computing capability was to represent the concept of being relevant in mathematical terms.

They started to conceive what will be known as information retrieval models.

The remainder of this section is organized as follows. In 2.1.1 we give a background on

the indexing process, placing particular emphasis on its meaning. In particular, we briefly

present the different processing phases it generally consists of. Additionally, we provide a

brief description of the inverted index, the most common index structure used for carrying

out the indexing and retrieval processes. In Section 2.2 we analyze on the retrieval process,
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particularly focusing on the concept of relevance which is crucial in Information Retrieval.

All the topics we address in this section present some key concepts on which we will come

back in the following parts of this work.

2.1.1 Indexing process

The purpose of the indexing process is to represent the content of a document in such

a way that the information in the document is efficiently retrieved. After the indexing

process, we obtain a representation of the documents we took into account. These documents

are processed during the indexing procedure by means of techniques of different flavors,

depending on the type of queries the information system, we look at, aims at satisfying.

During the retrieval phase, an user query goes through the same indexing processing as the

documents. Then the representation of the query is matched with the representation of the

indexed set of documents, to detect the documents which more likely satisfy the user need.

At this stage, it is important to remark that the procedures the indexing process consists

of greatly influence the set of documents which are considered as relevant with respect to

a query. The indexing process can be performed manually, automatically, or in any way

between the extremes. In this work we focused only on automatic indexing process. For the

indexing process, we can adopt a linguistic approach or a statistical one. Adopting a linguistic

approach means representing a document content by using both some information taken from

the document itself, and some others which are external to the document. We only mention

some reasons, detailed by Van Rijsbergen in [4], which have led many researchers to focus

on the statistical approach.

• Linguistic approach is quite difficult to put in practice because it is very expensive to

implement.

• There were little improvements in the field over the past years, and to date, it is not

clear what are the benefits provided by the adoption of such an approach.

• The statistical approach, whose theoretical underpinnings were Luhn’s studies, has

been studied for some decades and proved itself moderately successful.

The statistical approach is based on Luhn’s teaching which can be summarized by proposing

his own words: “It is here proposed that the frequency of word occurrence in an article

furnishes a useful measurement of word significance. It is further proposed that the relative



8 Chapter 2. Information Retrieval

position within a sentence of words having given values of significance furnish a useful

measurement for determining the significance of sentences” [7]. The mode of operation

of all the modern search engines is based on this principle. In fact, according to Luhn’s

lesson, much of the meaning of a text is captured by counting the words occurrence and co-

occurrence. Taking english text documents into account, Luhn also noted that the distribution

of words within a text is skew: there are some words which occur frequently, whereas there

are others which occur rarely. In particular, he noted that the words “the” and “of” account

for 10% of all word occurrences, while the six most frequent words account for 20% of all

occurrences. These observations were expressed in mathematical terms by George Zipf, a

linguistic researcher who formulated and proved many empirical laws. His law
(
formula

2.1
)

relates the frequency with which a word occurs in a text with its meaning and structure.

r ∗ f = k (2.1)

The formula above states that the rank of a word times its frequency is approximately equal

to a constant. An equivalent formulation of Zipf’s law is given below.

r ∗ Pr = c (2.2)

In 2.2, the frequency with which a word occurs in a text is replaced by its occurrence

probability. This is simply obtained by dividing the word frequency by the overall count

of word occurrences. For the English language c ≈ 0.1.

In Figure 2.1, we depict the relation between the rank and the probability of occurence of a

word, for the English language.

Although Zip’s law turned out to be quite trustworthy, some discrepancies between the

predicted and computed values have been detected for high and low ranks. Some

modifications of the Zipf’s law were proposed so far. The most significant one is reviewed

in [8]. Luhn has futher extended Zipf’s contribution by defining two thresholds, in terms of

rank values, which determine the words that can be considered as useful for the representation

of the informative content of a set of documents. These thresholds were respectively referred

to as upper cutoff and lower cutoff. The terms with a rank greater than the upper cutoff

are common; they do not help us to discriminate one document from another; they occur in

most of the documents we take into account. Some examples of these words are articles and

prepositions. On the contrary, the terms with a rank lower than the lower cutoff occur rarely,

hence they do not contribute to describe the informative content of the whole collection of
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Figure 2.1. Occurrence probability of a word as a function of its rank. In this figure we assume
that constant c is equal to 0.1. The depicted trend for the occurrence probability is obtained from
the formula 2.2. This figure has been proposed by Croft and al. in [6].

documents. The capability of a term of being both descriptive and discriminating has been

defined as resolving power. Looking at the frequency trend as a function of rank values,

illustrated in Figure 2.2, the resolving power has its peak at a rank half way between the

upper cutoff and lower cutoff, while it is almost equal to 0 at the cutoffs values. According to

Luhn, words have to be considered as significant in relation to their resolving power: all the

words with a rank between the two cutoffs are significant. The upper cutoff and lower cutoff

thresholds must be determined by using a trial and error strategy.

So far, we have defined the single elements composing the documents of interest as words.

Although this nomenclature is valid in case we consider textual documents, since we could

examine documents of various type, the basic elements conveying information could not be

words. Hereafter, instead of “word” we will use the term token, aiming at the maximum

generality. A token could be a date, a number, a phrase, an image, a musical note. Turning

to the purpose of the indexing process, we can redefine it more precisely. Looking at textual

documents, the goal of the indexing process is to represent the tokens
(
words in case of

textual documents
)

occurring in the collection documents by means of more consistent index

terms. The index terms constitute the effective representation of the content of the corpus

documents which is actually used during the retrieval phase. As mentioned above, the index

terms are obtained by processing the documents of interest through a set of procedures. The

procedures, documents go through, depend both on their type and the queries we want to
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Figure 2.2. Representation of the resolving power trend as a function of the rank values. In this
figure we can also observe how the lower cutoff and the upper cutoff can be graphically used
to select all, but only the significant words. This figure has been created by Van Rijsbergen and
inserted in [4].

respond.

The processing phases the documents generally go through are:

• Tokenization
(
Lexical analysis

)
• Removal of the stopwords.

• Stemming.

• Term composition.

In Section 2.2 we place particular emphasis on the first three processing phases, since we

actually perform them on the documents we consider during the experimental phase. It is

worth noting that we do not have to apply all the presented procedures to the documents of a

corpus. In fact, we believe that many commercial search engines do not actually do it.

2.1.2 Indexing process phases

In this section we provide an overview of the procedures which are commonly applied to

textual documents, during the indexing process.
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2.1.2.1 Lexical Analysis

The lexical analysis aims at converting a stream of characters into a stream of tokens. A text

can be easily divided in a set of tokens, by exploiting the separating characters, as spaces and

punctuation marks. The actual implementation of this processing phase strongly depends on

the language of the documents. In fact, the language actually determines the set of characters

we can use to separate the words composing the textual documents of interest. Carrying the

lexical analysis out requires us to deal with some practical issues, including:

• Choosing an encoding to encrypt the characters.

• Deciding if to process the text either as a stream of characters or as a stream of bytes.

• Deciding if to use some buffers to speed up the reading operation.

Addressing these issues is of paramount importance, since we must execute these processing

phases on several tens of thousands of documents.

2.1.2.2 The stopwords removal

The stopwords are words which have no meaning without being paired with other words.

These words not only do not contribute to describe the content of the documents in which

they are contained, but also generally occur in most of the documents we look at, hence they

do not help us to discriminate one document from another. Looking at Figure 2.2, once the

lower cutoff and the upper cutoff have been fixed, on the basis of the occurrence of the words

within the examined documents, the stopwords are likely to have a rank greater than the upper

cutoff. Aiming at not including the stopwords into the representation of the documents, we

could use some lists containing these words during the indexing process. These lists are

referred to as stop lists. After finding a word in a document, in case a stop list is adopted,

we search for the word in the stop list. If it occurs there, we simply discard it. As for the

previous phase, removing the stopwords involves tackling some practical issues. The main

drawback consists of having to compile a stop list for each language we are faced with. On

the plus side, using a stoplist greatly reduce the index size. At this stage, the index can be

simply thought of as the collection of all the data related to the documents of interest.
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2.1.2.3 Stemming

Stemming, also called conflation, is the indexing process phase which aims at capturing the

relationships between different forms of the same word. Stemming allows the vocabulary

mismatch between queries and documents issue to be solved, by reducing variant word forms

to a common root. This processing phase is underpinned by the fact that, in many languages,

group of words which share a substring are very often semantically related. The algorithm

which actually performs the stemming of the words contained in the examined documents is

called stemmer. In order to design a stemmer, two different approaches can be followed:

• Algorithmic approach: the matches between words and their stems is accomplished by

an algorithm, which may use some statistics and data evaluated on the given corpus.

• Dictionary based approach: the matches between words and their stems, which are

kept in some dictionaries, are prepared manually by some experts, on the basis of some

etymological studies.

In this work, the emphasis is placed on the algorithmic approach. For what regards the

dictionary based approach, we limit ourself to saying that it requires some experts to update

the dictionaries over time. Additionally, we need to develop a different list of matches

between words and their stems for each language we deal with. With respect to the

algorithmic approach, stemmers can mainly be subdivided into two categories: rule-based

and statistical ones. The first family adopts language-specific rules to group morphologically

related words, while the latter transforms word variant forms into their stems, on the basis

of a given corpus. In addition, there is a third stemmer group, namely hybrid stemmers,

which combines some rule-based and statistical stemmer features in order to improve the

performance of the stemming procedure. For a more detailed description of the various

aforementioned stemmer families, refer to [9]. However, irrespective of the family a stemmer

belongs to, its usage generally entails two benefits:

• Improving the retrieval performance.

• Reducing the number of words being used for representing the corpus documents,

because of the stemming process.
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2.1.2.4 Term composition

The term composition procedure originated from the wish of increasing the score of

documents which exactly contain the query terms. From a theoretical perspective,

considering some adjacent words as a phrase accounts for the fact that a phrase is much

more precise in describing a topic than the single words comprising it. From a practical point

of view, term composition involves dealing with some issues, including the following:

• Specifying the meaning of “phrase”.

• Deciding if to identify phrases during the indexing process or to take them into account

at a later time.

For what concerns the latter issue, it is worth stating that the second choice could be

much expensive from a computational perspective, since we could consider many different

definitions of “phrase”. The way in which we handle the phrases during the indexing and

retrieval processes could significantly affect the retrieval performance, since most of the

queries submitted by users are made up of two or three words.

2.1.3 Inverted index

In the following parts of this thesis work, we will refer to the model we describe here, which

is therefore taken as reference, to illustrate how the functionalities we have developed during

the experimental phase are actually implemented. In particular, we place emphasis on the

change we need to bring about in the way in which data are organized in the typical inverted

index implementation to develop the added features. Query evaluation is carried out through

an index, which informally can be thought of as a data structure that simply maps terms to

the documents they occur in.

Over the years, the most efficient index structure for textual query evaluation has been found

to be the inverted index. It consists of two main components:

• The vocabulary.

• The inverted lists associated with the vocabulary entries.

The vocabulary, for each token gathered during the indexing process, includes the following

data:
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Figure 2.3. Set of inverted lists making up the inverted index. For each token, we maintain ft,
namely the total count of documents in which the token occurs in and the corresponding inverted
list. Each inverted list is composed of a list of pairs, each of which consisting of a document
identifier d and the count of the occurrences of the token of interest in d.

• ft: the count of the documents the token t occurs in.

• pt: a pointer which points to the inverted list associated with the token t.

The latter component of the index is a set of inverted lists, one for each token composing the

vocabulary. An inverted list is a list containing the identifiers of the documents in which the

corresponding token occurs in. Formally, an inverted list is a sequence of pairs of the type(
d, fd,t

)
. The first element d is simply a document identifier, whereas fd,t is the count of

the occurrences of the term t in the document d. The inverted list is also denoted as posting

list, in that each entry forming it is denoted as posting. In the remainder, we assume that

the inverted lists composing the inverted index are stored in contiguous locations, instead

of being stored as a set of different blocks. As suggested by Zobel et al. in [12], this
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assumption has a range of implications. Firstly, a list can be written or read in a single

operation. Secondly, no additional space is required to store pointers to the first position of

each block that would compose the index structure. Additionally, by arranging the inverted

lists into blocks, the index update procedures would manage variable-length fragments that

would vary enormously in size, from tiny to vast. This could involves some inefficiencies.

The last topic we address in this section is related to the efficiency issue. Instead of storing

the identifiers of documents as they are, we store them by using d-gaps. For instance, the

sequence:

11, 15, 18, 20, 25, 30 (2.3)

is represented by

11, 4, 3, 2, 5, 5 (2.4)

It is useful to remark that although this strategy does not reduce the magnitude of the stored

values, it significantly decreases the mean value, thus significantly reducing the amount of

space we need to maintain the index structure on disk.

2.2 Retrieval process

An information need is a lack of information that an user wants to fill. An user expresses

an information need by means of a query, which, in the context we took into account, is

made up of words, but it can generally consist of musical notes, drawings or data of any

kind. Therefore, in the following, we refer to the single elements composing a query as

terms. The type of terms strongly depends on the type of documents the user is interested

in. A document satisfies an information need of a user if he perceives it as relevant. It is

worthwhile to note that a document can be considered as relevant although it does not contain

any of the query terms. Conversely, an user may evaluate a document as not relevant even if

it contains all the query terms. This is an important difference between Information Retrieval

and Data Retrieval. In Data Retrieval, we consider as relevat all the records matching a

defined pattern, while in Information Retrieval, the relevance of a document strictly depends

on the user submitting the query, as we mentioned above. Worth saying that when it comes

to relevance, we distinguish between topical relevance and user relevance. A document is

said to be topically relevant with respect to a query if it is about the same topic the query
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is. Instead, the user relevance deals with factors which are more dependent on the user

assessment, including:

• The language of a document. A document which is intended for a specialized audience

could be evaluated as not relevant by a casual user.

• The novelty of a document. A document proposing new ideas on a topic could be

perceived as more relevant than one addressing well-known matters.

• The level of detail of a document.

Since the success of the retrieval process also relies on some aspects a user can not be

completely aware of, it may require several cycles before finishing, during which the initial

formulation of the information need may be refined, due to the results returned by the

information system. Additionally, the user can also specify more accurately his information

need by using some advanced functionalities, as the possibility of restricting the search

domain only to documents containing all the query terms. For information system we

mean the totality of software and hardware components whereby the indexing and retrieval

processes are carried out. The result of the retrieval process consists of a sorted list,

containing the identifiers of the documents which are more likely to be considered as relevant

by the user. The sorted list is denoted as ranked list. In the ranked list, the identifiers are

listed in decreasing order with respect to the scores assigned by the information system,

reflecting the similarity between the query and the documents. Informally, an information

system is said to be effective if many of the identifiers on the top of the ranked list are

related to documents which turn out to be relevant. Since the beginning of the Information

Retrieval, researchers made a significant effort trying to establish quantitative methods for

evaluating the effectiveness of an information system on the basis of the relevant documents

being retrieved. The two commonest measures which have been adopted with this purpose are

respectively precision and recall. Precision is the fraction of retrieved documents which are

relevant, whereas recall is the fraction of relevant documents which are retrieved. Although

recall and precision have been proposed in the 1970s, they are currently in use and form the

building blocks on which many more complex measures rely on. Precision and recall were

defined by Cyril Cleverdon, one of the leading figures of the field in the 1960s and 1970s.

His experiments, known respectively as Cranfield1 and Cranfield2 constitute a milestone

in Information Retrieval and significantly contributed to the development of the evaluation
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topic. The goal of Cranfield1, which was carried out between 1958 and 1962, was to

analyze four manual indexing techniques in order to establish which of the methods were

the most efficient. The results of Cranfield1 constituted the bases on which Cranfield2 was

designed. It was carried out between 1962 and 1966. In Cranfield2, Cleverdon aimed at

studying various manual indexing methods more accurately than it was done previously, with

a particular emphasis on the retrieval and evaluation phases. The best results, in term of

retrieval performance, were obtained by taking single words into account during the indexing

process and by using as query terms the words actually occurring in the corpus documents.

These results, together with Luhn’s lesson, proving that the most effective retrieval techniques

are those which rely on the actual content of the corpus documents, which in turn can be

adequately represented by the words occurring in them, paved the way for the evolution

of Information Retrieval towards approaches and methodologies which are typical of the

computer science. We conclude this section by giving a brief overview of two well-known

information retrieval models with the purpose of addressing some issues arising during the

retrieval process. A significant effort has been made over the past decades to comprehend

and formalize the process through which an user perceives a document as relevant in regard

to an information need. Although accomplishing this task is a tall order and would require

developing a complete understanding of how human brain works, some steps in the right

direction have been taken through the information retrieval models. Formally, an information

retrieval model is a mathematical model which is designed to allow the representation of the

content of documents and the queries to be carried out consistently. Over the decades, many

information retrieval models of different flavors were defined. One of the first information

retrieval model being devised was the Boolean model. This model gives back a document

only if it exactly matches the query specification, which is defined by using operators from

the Boolean logic. Since a document can be only retrieved or discarded, during the retrieval

process, there are only two relevance grades. The binary nature of relevance which is enforced

by the Boolean model implies that identifiers given back to the user posing the query are not

ordered. Actually, later contributions, introduced some criteria which allow the similarity

between queries and documents to be computed, thus allowing the identifiers returned to the

user to be listed in some order. One of the main benefits of the Boolean model, in comparison

with other retrieval models, is the efficiency of the retrieval procedure which accounts for the

fact that is it still used, despite its simplicity. Another information retrieval model was the

vector space model, which was proposed in 1975 by Gerald Salton. The details are omitted
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here, but can be found in [11]. By using this model, we assume that documents and queries

belong to a vectorial space consisting of t dimensions, where t is the count of the unique terms

comprising the corpus documents. Both a corpus document and a query can be represented

in the following way:

Di =
(
di1, di2, ....., dij, ..., dit

)
(2.5)

Q =
(
q1, q2, ....., qj, ..., qt

)
(2.6)

The score being assigned to each document, in regard to an issued query, can be conceived as

a distance between that document and the query of interest. In fact, the score is evaluated on

the basis of a similarity measure, which actually measures the similarity grade between the

document and the query. One of the commonly used similarity measure is known as cosine

correlation:

Cosine
(
Di, Q

)
=

∑
j

(
dijqj

)
2

√∑
j d

2
ij

∑
j q

2
j

(2.7)

Given a document and a query, the cosine correlation similarity measure is equal to the cosine

of the angle between the vectors associated with them. Supposing that the computed vectors

have the same number of elements, the cosine correlation is equal to 1 if the two vectors

coincide, while it equals 0 if the two vectors have not got any element in common. Looking

at cosine, we can note that dij has not been specified yet. This term accounts for the relevance

of the document Di on the grounds that it contains the query term qj . Over the past years,

many different weighting schemes have been proposed. Most of these are variations of the

tf-idf weighting scheme. The term frequency component, which is generally indicated as tf,

reflects the importance of a term in a document
(
Di

)
. It is generally computed as:

tfik =
fik∑t
j=1 fij

(2.8)

where Di is the examined document, fik is the number of occurrences of the term k in

the document Di and tfik is the term frequency weight associated with the couple
(
q,Di

)
.

Instead, the idf term accounts for the importance of a term in relation to the whole corpus.

The more documents a term occurs in, the less discriminating the term is between documents,

and consequently the less useful it will turn out to be, during the retrieval phase. The idf form

which is commonly used is:
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idfk = log
N

nk
(2.9)

where N is the total number of corpus documents, nk is equal to the number of documents

containing the term qk, while idfk is the inverse document frequency of the term k. As

suggested by Robertson in [20], the idf of a term can be thought of as the actual amount

of information carried by that term. Finally, putting all the pieces together, we can compute

dik as:

dik = log
(
fik + 1

)
log
(N
nk

)
(2.10)

The last topic we discuss in this section is text collection. Firstly, we define text collection C

of Information Retrieval the set

C =
{
D,T,RJ

}
(2.11)

where D is a corpus of documents, T is a set of topics, while RJ is a set of relevance

judgements, namely a list specifying the documents which are relevant for each topic t in

T . As we mentioned above, a topic can be thought of as the actualization of an information

need of a user, who ultimately submits the query to an information retrieval system to satisfy

his need. From an historical point of view, as indicated by Harman in [30], the concept of

test collection derives from a research work culminated in the Cranfield 2 experiment. In

Cranfield 2, Cleverdon and his staff developed a paradigm for evaluation that constitutes one

of the cornerstones on which Information Retrieval relies on. This paradigm, in particular, is

grounded in two key concepts, that we briefly give below:

• The text collection must model a concrete research task of a specific class of users.

This involves a range of implications. Before creating the text collection, we need to

clearly point out the users for which the text collection is intended. In other words,

we must indicate the class of users who can be really interested in the documents that

will compose the corpus of the text collection. Note that specifying the class of users

automatically means fixing some properties of the corpus documents, such as the level

of detail and the language used to present the topics covered in the documents. Then,

we must formulate a set of queries. These topics must reflect the information needs of

the indicated users. In fact, they must be such that they could be actually formulated

by the users taken into account in designing the text collection.

• The text collection must be prepared before carrying out the experimentation phase,
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following the criteria specified above. This allows Information Retrieval researchers

to reuse the text collection for performing their experiments at a later time than that at

which we have actually developed the text collection.

It is worth stating that generating a test collection, following the Cranfield paradigm, is very

expensive, because of the need of grouping together some experts, which must formulate

the topics, according to the defined class of users. Moreover, they have to point out the

relevance judgements, on the basis of the purpose for which we intend to create the text

collection. In the experimental phase, for experimenting with the developed strategies, we

have considered the CLEF Adhoc monolingual test collection for the Italian language, which

has been developed in 2003. Such test collection has been generated within the CLEF

evaluation campaign. Before going on to illustrate the different experiments we have carried

out, we give a brief background on the evaluation campaigns. For evaluation campaign we

mean an international initiative intended for putting together human and economic resources

of research and industrial groups, with the purpose of allowing the assessment of information

retrieval systems to be carried out in a trasparent and reproducible way. In particular, the

CLEF evaluation campaign, which was instituted in 2000, in the footstep of the TREC

evaluation campaign, is an european evaluation campaign. For what concerns the text

collections, it is focused on analyzing multi-language collections. In the latest years, great

emphasis was placed on collections containing multimedia documents.

2.3 Open source information retrieval systems

In this section we provide an overview of three well-known information retrieval systems,

which are Terrier, Lucene and Indri. In particular, we focus on the first one, which

we have used during the experimental phase. Open source information retrieval systems

are of paramount importance for the information retrieval research community, as they

provide state-of-art technologies which enable researchers to carry out their tasks without

“reinventing the wheel”. This is particularly important in a experimental field such as

Information Retrieval, where the size of the test corpora has grown 500-fold over the last

decade and where research goals are constantly evolving. Furthermore, the open source

nature of these tools makes them act as corner-stones, upon which both the academic

community and casual users may develop their own functionalities. The information retrieval

systems we take into account in this section share some features. All of them allow us to
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carry out the indexing and retrieval processes on the basis of some user-defined parameters.

Furthermore, each of them let us specify the information retrieval model which is used for

computing the scores of the documents in the collection of interest. Terrier, Indri and Lucene

are being developed by tackling issues related to:

• Effectiveness: the system should be effective in the sense that it should enable

researchers to access state-of-art technologies, while requiring minimal effort.

• Efficiency: the system should be designed to ensure that the indexing and retrieval

processes are performed efficiently, regardless the examined data collection and the

available resources.

• Scalability: over the last decade there was a shift in the scale of the information retrieval

tasks researchers are required to perform. Therefore the system should provide the

means through which these tasks can be conducted.

• Adaptability: user needs have evolved at increasing speed over the past years. The

system should allow users to customize its functionalities as much as possible to let

them tackle the new challenges they are faced with.

Below, we provide a brief description of the aforementioned information retrieval systems.

• Terrier: it stands for Terabyte RetrIEveR and it is a project being currently developed

by the Department of Computing Science of the University of Glasgow. It is being

developed in java. The project started in 2000 and the first version of the code has been

available to the general public since November 2004. Initially, the project purpose was

to provide a common framework for students to use for their research, but over the

years its goal became more ambitious. Currently, its purpose consists of implementing

a flexible and extensible platform which can be used for carrying out experiments in the

information retrieval field, in a transparent, robust and reproducible way. With the aim

of being as extensible as possible, Terrier adopts a modular design. This entails that

many procedures, making up the indexing and retrieval processes, can be customized

according to the user needs. For instance, Terrier provides implementation of several

information retrieval models, including BM25 [20] and TF-IDF [15] as well as others

from the divergence from randomness framework. Moreover, aiming at efficiency both

in terms of the disk space used during the indexing process and in terms of the time we
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need to answer a query, Terrier implements several compression techniques, such as the

codings of the JavaFastPFOR package. This feature makes Terrier particularly suitable

for being used to manage large-scale collections. Over the last years, the interest of

the research community towards the new challenges of real-time search tasks has led to

the implementation of the real-time indexing process. This feature which is available

in Terrier since version 4.0 allow users to resume the indexing process at later time

points, after we have responded some queries.

• Indri: this platform has been developed since 2004 with the purpose of creating a

system capable of evaluating complex queries on large data collections. Initially, it

has been released as a small modification of a bigger project, the Lemur project,

which has arisen from a collaboration between the University of Massachusetts and

the Carnagie Mellon University. The issues which emerged in the attempt of meeting

the aforementioned requirements of flexibility and extensibility made the development

team build almost an entirely new project. From the start, the Indri project was

developed placing a particular emphasis on the distributed mode of operation, making

the platform particularly suitable for performing information retrieval tasks on large

data collections. As Terrier, for adaptability sake, Indri let users customize many

components of the platform. The Indri project is mainly used for carrying out research

experiments. The code is entirely written in C++.

• Lucene: Apache Lucene is an open-source java based library providing interfaces for

performing tasks such as indexing, querying, language analysis. It is supported by a

group of contributors of the Apache Software Foundation. Lucene functionalities are

principally divided in four packages, which are about

– The analysis of documents content.

– The indexing and storage procedures.

– The searching functionality.

– The ancillary modules.

The first three packages form the core of the library, while the last one provides

additional functionalities used to perform search-related tasks. Lucene architecture has

evolved over the years, reflecting the change in the project extent. Lucene is designed
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to ensure that users can benefit from the maximum efficiency, while making use of one

of its functionality.

In the experimental phase, among the aforementioned information retrieval systems, we have

chosen Terrier. This choice is justified by the fact that it implements the indexing process in

a real-time context, thus letting us resume the indexing process at later time points, without

restarting the process from the scratch each time we take into consideration a new document.

This functionality has enabled us to enrich the documents being part of the collection of

interest with temporal data, and with them to keep up with the change in their content as

they evolved over time. In fact, during the experimental phase we have indexed several

versions of the same document, each of them enriched with a temporal interval, defining

the time range in which it effectively represented the content of the document it belonged

to. During the retrieval process, we have used the added information to narrow the research

scope only to the versions whose temporal data satisfied the time predicate of the query of

interest. Additionally, our choice has also been encouraged by the growing user community

collaborating to support the development of this project as well as by the growing interest

of the information retrieval research community towards Terrier, which ultimately aims at

becoming the European Search Engine.
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Related works

In this chapter, we briefly analyze some strategies which have been devised for addressing

text search over temporally versioned document collections. We start this section by reporting

some nomenclature. A versioned document collection is a collection in which each document

occurs in multiple versions, which overall represent the evolution of the document over time.

Searching such collections means to match a query, enriched with a temporal predicate,

against the collection documents, and to retrieve all, and only the documents whose time

interval overlaps with the query interval. In the following, we refer to the queries, composed

of a bags of words and a temporal predicate, as time-travel queries. Note that in the simplest

case, the time intervals of the time-travel queries reduce to single time points. As reported

in [23], temporally versioned document collections are often much larger than standard

ones, because of the multiple versions for each document occurring in the collection. It is

worthwhile to note that consecutive versions of the same document are often very similar to

each other. We can exploit this similarity for reducing the index size, by taking advantage of

suitable compression techniques. So far there has been some work on indexing and searching

of versioned document collections. We can broadly divide the strategies proposed so far in

three groups, each of them referring to a specific layer of the search architecture for such

collections.

• The first set is about index compression techniques which, by exploiting the similarity

between adjacent versions of the same document, lead to a reduction of the index size,

while speeding up query evaluation. This derives from the fact that we can maintain

some inverted lists in the main memory, because of the decrease of the amount of space

required for their storage.

25
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• The second group deals with index organization and index traversal schemes. The

proposals falling into this category, delineate some strategies for organizing the index

data efficiently, with the purpose of skipping the postings whose validity time interval

does not adhere to the time constraint of a given time-travel query.

• The third group is concerned with the development of higher-level temporal operators,

such as the Stable top-k [25]. The idea underlying these works is that we can be

interested in retrieving all the documents being relevant throughout the query time

interval.

In this section, we focus on the middle layer, thus analyzing some index architectures, which

are intended for achieving the highest query evaluation performance. The approaches we

take into account principally attempt to achieve this goal in three different ways: (i) by

partitioning the inverted lists along the time-axis (ii) by partitioning the inverted lists along

the document dimension (iii) by relaxing the constraint of getting exact results. We explore

these matters in greater detail in the remainder of the section, after presenting the model we

refer to throughout this section.

We represent each document d ∈ D of a temporally versioned collection through a sequence

of its versions:

d =
{
dt1 , dt2 , dth ˙...

}
(3.1)

Each document version dti comes with a time interval [ti, ti+1

)
, specifying when we must

consider the version as the actual version of d. In the remainder, we hypothesize that the

timestamps tj are non-negative integers assuming increasing values starting from 1. We point

out that we use the value 1 for representing the actual time in which a search is carried out.

Therefore, we denote a version dti as the current version of a document d, if its validity time

interval is

[ti, 1
)

(3.2)

where ti is a non negative integer value. The active version of a document turns into an

archive version as soon as a new version of the same document go through the indexing

process. Note that in the framework we describe here, the removal of a document from the

collection consists of the insertion of a new version of the same document, which does not

contain any term. The time-travel queries consist of bags of words Q =
{
q1, ˙..., qn

}
provided

with time-intervals [b, e], where both b and e are integer values, with b ≥ 1 and e ≥ b. We
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recall that, if b and e coincide, the time interval reduces to a single time point. During query

evaluation, we analyze all the document versions that exist at any time during the examined

time interval. With the aim of performing time-travel text search over a temporally versioned

collection, we have also to extend the posting lists, the inverted index consists of, by adding

temporal data to each posting. In detail, a time range is included into each posting, indicating

when the payload information is valid. Therefore, each posting is composed of a set of three

elements, outlined below: (
d, f, [ti, ti+1]

)
(3.3)

where d is a document identifier, f is the count of the occurrences of the examined term in d,

whereas [ti, ti+1] is a time validity interval.

3.1 Sublist materialization

The first approach we analyze in this chapter is known as sublist materialization. This

strategy, devised by Berberich et al., is reviewed in [24]. Firstly, we point out that the baseline

strategy for carrying out query evaluation involves scanning all the the posting lists of the

inverted index and filtering out entries which do not satisfy the query temporal predicate.

Note that this strategy entails some postings are taken out from the on-disk data structures

and they are moved to the main memory, before being first decoded and then analyzed,

even if their validity time interval does not adhere to the query time constraint. Berberich

et al. address this problem by presenting the idea of materialized sublists. We obtain the

materialized sublists by slicing the inverted index along the time-axis. Each materialized list

is provided with a time-interval and contains all the postings whose validity time interval

partly overlap with it. Performing the evaluation of a time-travel query reduces to scanning

any materialized list, whose time interval spans across the temporal boundaries of the query

time range. We use the toy example in Figure 3.1 to better explain the general idea behind

this approach. The posting lists shown in Figure 3.1 contain 10 postings, belonging to three

documents which are d1, d2 and d3. We assume the depicted postings are identified through

the integer values they are labeled with. We further suppose that we are given with a query

q with temporal constraint [t1, t2]. We assume of posing the given time-travel query q to an

information retrieval system, whose inverted index implements the strategy described here.

Moreover, we suppose that the time-axis is split in such a way that the first three postings
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(whose labels are 1, 5 and 8) belong to a materialized sublist, whereas the remaining postings

lie in an other one.

Figure 3.1. Application of the sublist materialization approach to the postings of an inverted index,
whose entries come from three documents, which are respectively d1, d2 and d3. In this figure we
can observe the validity temporal interval associated with each posting, identified by means of an
integer value. This figure has been created by Berberich et al. and has been inserted in [24].

In this case, processing the time-travel query q only requires us to read those postings which

are part of the first materialized list, since it is the only materialized sublist whose validity

interval overlap the one of the query. Choosing the number of materialized sublists, we

must divide the inverted index in, results from a trade-off between performance and space.

One approach to address the issue is to create a materialized sublist for each elementary

time interval, thus achieving the best possible performance, but at the cost of significantly

increasing the amount of space required for maintaining the inverted index on disk. In

contrast to this strategy, we can generate an unique materialized sublist, into which we include

all the postings. This approach would require minimal space, since each posting would occur

exactly once in the inverted index.

The approach outlined here has some drawbacks which we present below:

• A posting whose validity time-interval partially span the one of a sublist is added to

that sublist. This involves inserting the same posting in several materialized sublists,

ultimately resulting in blowing up the index size.

• Although the outlined strategy permit to significantly reduce the number of invalid

postings, analyzed during the retrieval process, inefficiencies may arise in query

evaluation if the time range of the time-travel query is very long.

3.2 Performing query evaluation by using KMV synopses

To work around the drawbacks outlined above, Berberich et al. conceived an other strategy,

which aims to trade some result quality off for improved retrieval time. Firstly, we start this
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section by proposing the definition of partition. For a term v, we define the partition ρv,j as

the set of postings, associated with v, which occur in the materialized sublist with time range

[j, j + 1). Therefore, each term is associated with a set of such partitions, which is denoted

as ρv. The principle underlying this approach is that if we knew that a partition is mainly

composed of postings, occurring in partitions already analyzed, we could avoid taking into

account the partition at hand without significantly compromising the final result quality. The

goal of Berberich et al. was to delineate an algorithm whereby selecting a set of partitions,

which can generate the best approximation of query result, without exceeding a given cost.

This can be expressed either in terms of the number of partitions opened for reading or

the number of postings which can be analyzed during the query evaluation process. The

algorithm presented in [27] heavily rely on obtaining high quality estimates of the cardinality

of the intersection or the union of two sets, which are composed of document identifiers.

With the purpose of getting these estimates, KMV synopses are used. A dissertation on this

mathematical tool can be found in [26].

The main limit of this approach is that it allows query evaluation performance to be improved

by degrading the quality of the result. Relaxing the constraint of result exactness is not

feasible in most of the application contexts. This argument as well as the high computational

cost of the algorithm for selecting the optimal set of partitions to evaluate a query, discouraged

us from using this strategy in the experimental phase.

3.3 Temporal index sharding

Another proposal which attempts to speed up time-travel search over temporally versioned

collections by dividing the inverted index in several components is reviewed in [28]. This

approach has been devised by the same researchers who conceived the strategies described

above and it can be actually considered as an improvement over the solutions which has been

previously presented. This strategy involves dividing the index in shards, so that any time-

travel query can be evaluated without sequentially reading the postings which do not qualify

for the query time range. Indeed, the division of the inverted index in shards is performed

by taking into account the different computational costs of sequential and casual accesses we

incur onto during the query evaluation process. Temporal index sharding aims at addressing

the problem we are faced with in the materialized sublists approach. In detail, instead of

partitioning the posting lists along the time-axis, it involves slicing them along the document
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identifier dimension. The index resulting from this operation is referred to as sharded index,

in that the different components in which the postings are arranged in are denoted as shards.

Figure 3.2. Comparison on the way in which the entries of an inverted list are handled in the
sublist materialization approach and in the temporal index sharding strategy. In the first image of
the figure, the entries are subdivided into different sets in regard to their validity temporal interval,
while in the latter image they are distributed among the depicted partitions with respect to their
identifiers. This figure has been drawn from [28].

In Figure 3.2 we can see a comparison between sublist materialization approach and temporal

index sharding strategy. Looking at the entry e1, we can note that sublist materialization

approach implies it is replicated in all the depicted materialized sublists, since its time interval

overlap with the ones the depicted materialized lists are attached with. Conversely, the
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temporal index sharding strategy, entailing the inverted index is sliced over the document

identifier dimension, involves including e1 into a unique shard.

Each shard is provided with a data structure, defined impact list. For every possible begin

boundary of a query interval bq, it keeps the position, within the corresponding shard, of

the first entry whose time interval contains bq. The impact lists are maintained in the main

memory. The postings of a shard are ordered by the begin boundary of the time interval

they are attached with. Given a time predicate, after matching its begin boundary against

the impact lists, we only need to analyze each shard composing the index, starting from

the position the corresponding impact list points to. Therefore, for each involved shard,

processing a time-travel query implies carrying out the following operations:

• Opening the examined shard.

• Matching the left boundary of the query interval against the impact list of the shard.

• Seeking the position detected at the previous point.

• Accomplishing sequential reads of the postings in the shard until all the entries with a

valid time interval have not been read. Note that as the elements composing the shard

are arranged in begin-time order, this stage ends as soon as we encounter a posting

whose begin-time exceeds the query end-time.

Therefore, by using impact lists we can avoid reading postings whose time interval is before

the one attached with an issued query. Nevertheless, wasted reads can still occur. Suppose

that we are given with two postings, which are indicated below as A and B, whose time

intervals are respectively [Abegin, Aend] and [Bbegin, Bend]. We further suppose that:

Abegin ≤ Bbegin ∧ Aend ≥ Bend (3.4)

Note that responding a time-travel query q, with time interval [qbegin, qend], involves reading

the posting A even if its time interval does not qualify for the query time range. Formally,

reading a posting corresponds to a wasted read if it is accessed during query evaluation even

if its time interval does not span the query time interval. Let us introduce the definition of

staircase property.

Given a shard S

∀A,B ∈ S : A = [Abegin, Aend] B = [Bbegin, Bend]
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Abegin ≤ Bbegin =⇒ Aend < Bend (3.5)

we say that S has the staircase property. In this case, S is denoted as idealized shard.

If we subdivided each posting list into one or more idealized shards, processing a time-

travel query would not involve any wasted read. Since query evaluation basically consists

of carrying out an open and several skip operations for all the shards of a query term, we

would like to minimize the number of idealized shards composing the inverted index. In [28],

Berberich et al. propose a greedy algorithm for solving the problem at hand, given the set

of time intervals of the inverted index entries. As we argued above, given that this strategy

entails all the shards have the staircase property, it might involve many idealized shards being

generated, ultimately degrading query processing performance. If the cost of a casual access

is very high, some benefits might derive from loosening the idealized sharding approach,

thus allowing some wasted reads. For idealized sharding approach we mean the strategy

delineated above, which aims at improving query evaluation performance, by subdividing

the inverted index into a certain number of idealized shards. To ensure the highest query

evaluation performance is achieved, the problem of finding the smallest set of idealized shards

can be further bounded by adding a constraint related to the costs of random and of sequential

reads. A greedy algorithm for solving the problem of interest has been proposed by Berberich

et al. in [28].

Although the strategy delineated above proved itself quite successful when it has been tested

on standard text collections, it can not be adopted for dealing with temporally versioned

collections. If new versions of the documents are inserted, then the shards must be computed

from scratch for later time points.

3.4 Incremental sharding

In the literature there exists a variant of the temporal index sharding approach, which supports

time travel search over temporally versioned collections. This solution is referred to as

incremental sharding. This strategy involves using a sharded index, which is actually divided

in an active index and an archive one. The former only deals with active versions, while the

latter only handles archive versions of the documents in the collection. The archive index is

in turn subdivided into a in-memory and an on-disk index, both organized in shards. Each

shard of the in-memory index is associated with both a buffer of size η and an impact list. η
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Figure 3.3. Representation of the buffers and the in-memory shards, associated with the in-
memory archive index. The size of each buffer is equal to the maximum number of postings we
accept them being read during the query evaluation process for a specific query term, even if they
do not qualify for the query time interval. As soon as one the depicted buffer fills up with postings,
the one with the earliest time interval left boundary is taken out and inserted in the corresponding
shard. We have drawn this image from [28].

corresponds to the maximum number of wasted reads that are allowed per shard, during the

evaluation of a single query term. If during the indexing process, we chance upon a document

for which a version exists in the active index, it turns into an archive version and its data are

moved to the in-memory data structure of the archive index. In detail, its postings, enriched

with the temporal intervals, are included into the buffers associated with the in-memory index

shards.

As depicted in Figure 3.3, as soon as the η+1−th posting is included into a buffer, the element

of that buffer with the smallest begin time is popped out and it is added to the corresponding

shard of the in-memory archive index. When these shards are full, their data are merged

together and included into the shards of the disk-based archive index.

It is worthwhile to note that this strategy, by using only append operations, has the benefit

of building the up-to-date archive index incrementally, from the data used for building the

previous versions of the same archive index, thus avoiding recomputation. Additionally, this
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strategy ensures the query evaluation process is efficient, since the set of inverted index shards

is evaluated taking into account the input-output characteristics of the storage infrastructure

housing the index.

3.5 Approximate temporal coalescing

Approximate temporal coalescing technique strives to tackle the blow-up in the size of

the inverted lists, by merging sequence of postings together, if the error incurred in such

an operation is below a defined threshold. This strategy comes from the fact that in

highly dynamic versioned document collections, frequent terms are associated with very

long posting lists, each of them maintaining a posting for each document version, the

corresponding term occurs in. This ultimately results in significantly degrading query

evaluation performance. Moreover, successive versions of the same document are often very

similar to one another, hence, only some of their postings differ, while the remaining ones

are the same. Approximate temporal coalescing approach tackles the mentioned issue, thus

reducing the number of postings in a inverted list, by merging sequences of postings which

have almost the same payload. We apply this strategy to each inverted list, singularly taken.

Let us introduce some nomenclature. Below we assume to take into account an index term v

and its posting list, which will be denoted as Lv.

Lv =
{(
d, fi, [ti, ti+1

)
, ˙...,

(
d, fn−1, [tn−1, tn

)
]]
)}

(3.6)

where d is a document identifier, fi is the count of the occurrences of v in each version

of d and [ti, ti+1

)
] is a time interval. Note that, in 3.6 we have only considered the postings

related to a single document, whose identifier is d. By carrying out the Approximate temporal

coalescing approach on Lv we obtain the minimal length output sequence of postings Ov:

Ov =
{(
d, fj, [tj, tj+1

)
, ˙...,

(
d, fm−1, [tm−1, tm

))}
(3.7)

where d, fj and [tj, tj+1

)
] have the same meaning as in the formula 3.6. Ov is evaluated from

Lv by enforcing the following constraints:

• Lv and Ov must cover the same time-range, hence ti = tj and tn = tm.
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• A sequence of postings of Lv can be turned into a single posting of Ov only if the error

incurred in such transformation is below a given threshold ε.

For coalescing a sequence of postings of Lv into a single posting ofOv several error functions

could be adopted. Looking at
(
d, fj, [tj, tj+1

)
and

(
d, fj, [tj, tj+1

)
, generic postings of Lv and

Ov respectively, we could employ as error function the relative error between their payloads,

namely:

err
(
pi, pj

)
=
‖pi − pj‖
‖pi‖

(3.8)

Given an input posting list, evaluating an optimal solution for the problem at hand takes

O
(
n2
)

time, but an approximation can be computed by using a linear time algorithm, which

is based on the sliding window algorithm, given in [29]. In the experimental phase we haven’t

considered this strategy, because we are only interested in approaches allowing exact results

to be computed.

3.6 A two-level index organization scheme

The alternative we look at here is focused on improving time-travel search performance

by means of an index organization scheme ensuring the effectiveness of the low-level

compression techniques is preserved. The idea underlying the proposed scheme is that

techniques which enable time travel search over temporally versioned collections by

partitioning the index, without taking into account the effects of partitioning on the

effectiveness of the low-level compression techniques, can lead to significant increases of

the index size. This ultimately may result in slowing down query evaluation process, in both

memory and disk-based index architectures. The index organization scheme we take into

account has been outlined in [23]. It involves using a two-level inverted index. The first

level contains a posting list for each token composing the index Lexicon. Such a posting list

maintains a posting for a document d if and only if exists at least a version of d in which

the term t actually occurs in. Instead, the second level of the inverted index consists of two

components:

• a bit vector: its size corresponds to the number of versions of d. It specifies which

versions of d actually maintain t.

• a frequency vector: it keeps the number of occurrences of t within each version of d.
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We remark that, with the aim of minimizing the amount of space required for storing index

data structures, all the bit and frequency vectors are compressed by using suitable up-to-date

compression techniques, such as the PForDelta [32] compression methods. As highlighted

in [23], this index organization scheme permits time-travel query evalutation to be carried

out very efficiently. Indeed, we first match the query against the first-level index, ruling out

all the documents which do not contain any query term, then we traverse the second-level

index, thus fetching and decompressing any necessary bit and frequency vectors. Moreover,

with the goal of further improving query evaluation performance, in [23], He et al. propose

to extend the inverted index with a memory-based table, containing the time ranges of the

different collection document versions. By inspecting this table, after traversing the first-

level of the inverted index, we can verify if the documents retrieved actually overlap the query

time interval. This allows us to rule out documents which do not satisfy the query temporal

constraint, without fetching the corresponding second-level data. Furthermore, in [23] He et

al. delineate some methods which could be used for alleviating the disk-access costs, in case

a disk-based index is used for performing the indexing process. These index organization

schemes aim at improving query evaluation performance by placing the index postings so

that those intersecting a given query range are located in one part of the inverted list. A

description of these proposals is beyond the scope of this work. A comprehensive discussion

of these matters is given in [23].

Although the outlined approach has several advantages and presents us with many

opportunities for improving text search over temporally versioned collections, we have not

taken it into account in the experimental phase. This decision is underpinned by the fact

that, in order to implement it, we should have completely modified how the Terrier real-

time indexing and retrieval processes are carried out. Moreover, if we had put the approach

at hand into effect, by changing entirely the way in which real-time indexing and retrieval

processes are actually performed in Terrier, we would have made a pointless effort, since the

functionality we would have developed in that case could not been used by the information

retrieval research comunity. In fact, in such case, in order to use the implemented feature,

researchers should have adopted our system.
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Terrier real-time indexing and retrieval processes

In this section we give an overview of how the indexing and retrieval processes are carried

out in an actual information retrieval system. In particular, we will take into account the open

source system called Terrier. Terrier implements a flexible open source search engine which

allows us to use state-of-art indexing and retrieval functionalities.

This section is divided in two parts. In the first one, we report a background on the indexing

and retrieval processes, as they are provided in Terrier
(
since version 4.0

)
, focusing on their

mode of operation, while in the second one we report some implementation details.

4.1 Terrier real-time indexing and retrieval processes:

mode of operation

4.1.1 Real-time indexing process

Along with traditional on-disk indices, Terrier allows us to carry out the indexing and retrieval

processes by using either memory-only or hybrid memory and disk index structures. In fact,

we can adopt the first approach only if the examined collection of documents is small, due to

the limited amount of available central memory, but has the advantage of being very efficient.

The second strategy involves moving data from the central memory to disk structures at

regular intervals. In contrast with the first approach, the second strategy enables us to consider

bigger document collections. Using this strategy requires us to point out how we want the data

mantained on disk to be managed. In fact, for what concerns the disk-based data structures,

Terrier presents two choices:

37
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• Merging the data structures progressively getting a unique on-disk data structure which,

in conjunction with the one kept in-memory, reflect the actual state of the index over

time.

• Keeping the data structures separate. In this case, the index is made up of an in-memory

data structure and several ones maintained on disk.

Note that what is generally denoted as index, is actually a wrapper of many indices, one

of them is kept in-memory, while the others are maintained on-disk. In the remainder, we

assume that the second strategy is adopted as well as that the data moved on disk at regular

intervals are merged together resulting in a unique on-disk index. Therefore, in our context,

a real-time index consists of one in-memory data structure and one data structure on disk.

Before carrying out the indexing process, we have also to specify the document collection.

In fact, documents could be divided in more than one collection. Since from a computational

point of view, there is no significant difference between using only one or more collections,

in the following, we assume that only one is used, to which all documents belong to. During

the indexing process, each document is handled separately. Terrier let us specify which

operations are applied to each document term. By default, these processing procedures are

the removal of the stopwords and the stemming. The first step of the indexing process is

the creation of the index structures which are designed to store the data collected from the

documents. In Terrier, an index generally consists of a Lexicon, an Inverted index, a Direct

index, a Document index, a Meta index. The Direct index basically associates each document

in the collection with the terms composing it and their frequencies in that document. The

Direct index is principally used for query expansion and since we do not take into account

such functionality, in the remainder, we do not consider it. However it is worthwhile to note

that the Direct index is not generated by default during the Terrier indexing process. Below,

we give some background on the aforementioned data structures. They are:

• Lexicon: for each token occurring in the indexed documents, it contains an identifier,

which is an unique integer value and some general statistics as the term and document

frequency. If the Lexicon belongs to a disk-based index, it also maintains a reference

to the initial position in which its postings are stored in the Inverted index. In Terrier,

it basically consists of a sorted map which associates every token in the corpus with an

entry containing the described fields.
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Figure 4.1. In-memory data structures created during the indexing process.

• Inverted index: it essentially corresponds to the set of posting lists described in Section

2.1.1. It is worth stating that despite the expression “Inverted index” is commonly used

to refer to an index structure consisting of both a vocabulary and a set of posting lists,

in the remainder, it will be used only to refer to a set of posting lists. In Terrier, the

Inverted index is implemented by means of a map which connects each token with its

posting list.

• Document index: for each document it stores the count of its tokens. It basically

consists of a list, in which each position corresponds to a document identifier.

• Meta index: it includes some data for each document going through the indexing

procedure. In our context, it maintains only the filenames of the indexed documents.
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• Collection statistics: it is essentially a wrapper of a set of statistics about the indexed

documents. They are the overall number of indexed documents, the number of unique

terms in those documents, the overall number of pointers, which corresponds to the

overall number of postings the Inverted index consists of, and the count of the tokens

we analyze during the indexing procedure.

In Figure 4.1 we llustrate the memory-based index structures used for collecting the data

taken out from the collection documents going through the indexing process. For each index

structure, we provide the data structure it is essentially composed of.

In addition to these structures, the indexing process involves the DocumentPostingList, which

stores token occurrences in a particular document before that it go through the indexing

procedure. In Terrier, it consists of a map which connects each term occurring in a document

to the count of its occurrences in that document. Each time we index a new document, a new

map is initialized. In Terrier, the real-time indexing process is entirely carried out in memory.

For each document going through the indexing procedure, we repeat these processing phases:

• Generation of the document representation: depending on the last part of the filename,

which determines the extension of the file, we generate a different object. This element

is responsible for representing the examined document during the indexing process.

The type of the object is used to successfully decode the raw text composing the

document and to convert the obtained stream of characters into a stream of terms.

The generated object contains a map which keeps some properties about the examined

document, which we include into the Meta index.

• Extraction of the document terms: this phase deals with the extraction of the terms

composing the document. In this process, we perform different operations depending

on the lexicon of the document. These are usually concerned with removing the

punctuation marks as well as converting all the upper-case letters to lower-case ones.

• Application of the procedures composing the indexing process to each token: the

procedures forming the indexing process compose a pipeline whereby we process each

token of the document of interest. By default, this pipeline consists of two stages, the

removal of the stopwords and the stemming process. The result of this stage, together

with the term frequency of the token are inserted in the DocumentPostingList.

• Insertion of the document properties in the Meta index: we include all the document

properties into the Meta index.
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• Inclusion of the document length into the Document index: we add the count of the

tokens occurring in the document of interest to the Document index.

For each token in the DocumentPostingList, we carry out the following operations:

• Creation of a Lexicon entry and its insertion in the Lexicon: first of all we generate a

Lexicon entry related to the token. Its identifier is set to the value of a counter which is

increased by one at each insertion in the Lexicon; its term frequency field is set to the

the corresponding value of the considered token, kept into the DocumentPostingList,

whereas its document field is set to one. For convenience sake, here we have supposed

that the entry associated with the token has not been added to the Lexicon yet . If it is

not the case, the corresponding entry is accordingly updated.

• Generation of a posting and its insertion in the Inverted index: we initialize a new

posting regardless a new Lexicon entry has been created or not. In particular, its

document identifier field is set to the number of documents indexed so far. The posting

is then added to the posting list of the Inverted index associated with the identifier of

the examined token. Note that, for each term, there is a posting for each collection

document in which it occurs.

Finally, after taking into account all the tokens of a document, we accordingly update the

index statistics.

In Figure 4.2 we schematically depict the different phases composing the indexing process.

After performing the indexing process for a document, two possibilities may occur depending

on the strategy we have established for handling the data transfer from in-memory to disk-

based index structures.

In the remainder, this policy will be denoted as flush policy. Setting this property means

establishing the number of indexed documents, after which the data transfer to disk is carried

out. Therefore, after carrying out the indexing process on a document, if we have not reached

the threshold value of the flush policy, we go on applying the indexing procedure to the next

document in the collection. Otherwise we initialize a new on-disk index and we move the

data kept in memory to its disk-based structures. Despite on-disk index structures differ from

those maintained in memory in the way in which they are actually implemented, their purpose

and mode of operation are the same.



42 Chapter 4. Terrier real-time indexing and retrieval processes

Figure 4.2. Graphical representation of the indexing process. After a collection document has
been taken into account, all its terms go through the pipeline procedures defined for the indexing
procedure. Finally, the resulting data are stored into the in-memory data structures which have
been depicted in Figure 4.1.

For description sake, we will distinguish between the case in which we refer to the on-disk

structures and the one in which we refer to the in-memory structures, by using the prefix

“disk” for the first ones and the prefix “memory” for the second ones.

In what follows, we assume that the threshold associated with the flush policy has been

reached, hence we need the data maintained in memory to be moved to disk-based data

structures. To carry out the data transfer to the disk-based data structures, we carry out the

following operations:

• Generation of temporary in-memory Document index entries and their insertion in

the disk-based Document index: we generate an entry for each element occurring

in the in-memory Document index. It specifies the number of tokens composing the

corresponding collection document. Then we add this entry to the on-disk Document

index.

• Storage of the properties of each indexed document in the on-disk Meta index: we add

the filename of each collection document to the on-disk Meta index.

Then, for every token for which an entry exists in the in-memory Lexicon, we perform the

following operations:
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• Taking out the token posting list: we use the token as key for retrieving the Lexicon

entry, the token is associated with. Then, we pull out its posting list from the identifier

of the retrieved Lexicon entry.

• Insertion of the postings comprising the posting list in the on-disk Inverted index.

• Generation of an entry for the disk-based Lexicon and its insertion in such data

structure: we initialize a new Lexicon entry from the one occuring in the in-memory

index Lexicon. Specifically, this entry contains a pointer to the position of the posting

list of the token of interest in the disk-based Inverted index.

Note that we take out the in-memory Lexicon entries according to the lexicographical order

defined over the set of tokens, the Lexicon entries are associated with.

Once, the data are moved from in-memory to the on-disk data structures, we merge them

with the ones already maintained in the on-disk data structures, with the aim of having a

more compact index.

For completeness sake, we point out that the policy establishing how we want the data moved

to disk to be managed is denoted as merge policy. After carrying out the data transfer from in-

memory data structures to the corresponding disk-based ones, we generate another disk-based

index. It will contain the data belonging to the two latest on-disk indexes. It is worthwhile to

note that the latest on-disk index which was created, corresponds to the one initialized after

the number of indexed documents has exceeded the threshold associated with the flush policy.

Merging together the disk-based data structures, after generating a new on-disk index has the

benefit of allowing us to access all the data maintained on-disk by inquiring an only disk-

based index. Below, we review how the data included into two on-disk indexes are merged

together. In what follows, we refer to the source indexes as “index1” and “index2”, while we

denote as “destination” index, the disk-based index to which we will add the incoming data.

The merging procedure consists of two phases:

• Merging the source Lexicon and Inverted index structures: this phase deals with

cyclically executing a sequence of operations, until we have inserted all the elements in

index1 and index2 Lexicon data structures in the Lexicon of the destination index. The

first step is concerned with picking up the first Lexicon entry of each source Lexicon.

We remark that we pull out Lexicon entries according to the lexicographical order

defined over the tokens associated with them. Then we compare the retrieved entries,
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to establish which of them is the first that we must take into account. The second step

involves storing the posting list associated with the examined Lexicon entry into the

Inverted index of the destination index. Finally, we generate a new Lexicon entry from

the one selected at the first step.

• Merging the source Document and Meta index structures: we sequentially include the

Document index entries into the corresponding data structure of the destination index,

before repeating the same procedure for the entries of the source Meta index structures.

4.1.2 Retrieval Process

In what follows, we suppose we are provided with a query, consisting of different terms,

along with an index, obtained by applying the indexing process to a corpus of documents.

The retrieval process can be divided in three phases, which are:

• Extracting the index data associated with the query terms.

• Computing the scores of the collection documents.

• Generating the ranking list from the scores assigned to the documents.

In Figure 4.3, we can see a graphically representation of the retrieval process. Taking into

account a query q, we match such query against the content of the index structures, to locate

the documents which are likely to be regarded as relevant with respect to the given query

q. Then, we generate a ranking list on the basis of the scores assigned to the collection

documents.

In the remainder, we consider a document as “relevant”, in regard to a query, if its score is

greater than 0.

Firstly, with the aim of fullfilling the retrieval procedure, we have to specify which

information retrieval model we must use for the score computation. In fact, more than one

model can be indicated. At this stage, we only mention that they represent the mathematical

framework whereby the mental process trough which a user decides whether a document is

to be regarded as relevant or not has been conceived. Secondly, we process each term in the

query by the pipeline defined for the indexing process. Then, the retrieval procedure go on

using the resulting terms for retrieving the corresponding data from the index. The structures

which are involved in this process are the Lexicon, the Inverted index, the Document index
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Figure 4.3. Scheme of the retrieval process. The query terms are matched against the data stored
into on-disk and in-memory data structures. From this comparison, a ranked list of the documents
which are more likely to be regarded as relevant is obtained. The documents in the ranked list are
sorted in descending order of their scores.

and the CollectionStatistics. More specifically, we use each query term as key to pick up

the Lexicon entry it is coupled with. We remark that for an index term the corresponding

Lexicon entry specifies its identifier, the number of documents in which it occurs in, denoted

as document frequency, the count of the occurrences of that term we refer to as term frequency

and a pointer to the position of the first posting belonging to its posting list in the Inverted

index. We remind that the index term is simply the result of the application of the indexing

process to a token. Thirdly, we use the data associated with the retrieved Lexicon entries

to pull out the posting lists associated with the query terms. Then, we evaluate a score for

each posting occurring in one of the retrieved posting lists, accounting for the relevance of

the document, the identifier of the posting refers to. For computing the score of a posting,

in addition to the count of the occurrences of the query term in the document of interest, we

also take into account some statistics about the examined collection as well as others about the

considered document. They are: i) the document frequency of the query term ii)the number of

indexed documents iii) the number of tokens comprising the examined document. In case, we

specify more than one information retrieval model, we compute the overall score of a posting

by adding up the values computed for each of the specified information retrieval models.

The score of a document is given by the sum of the scores associated with the query terms



46 Chapter 4. Terrier real-time indexing and retrieval processes

occurring in that document. For the score computation, Terrier provides implementations of

many information retrieval models, including: i) BM25, the BM25 probabilistic model [20],

ii) IFB2, the Inverse Term Frequency model for randomness, iii)TF-IDF, the tf-idf weighting

function, where tf is given by Robertson’s tf [21] and idf is given by the standard Sparck

Jones’ idf [22]. We point out that most of the implementations of the information retrieval

models, available in Terrier, contain some parameters we can adjust according to our needs.

In the experimental phase, we have adopted the TF-IDF information retrieval model.

Computing the score with this model involves multiplying two components. The former deals

with the relevance of a query term for the document of interest, while the latter accounts for

the query term capability of discriminating the analyzed document from the others in the

collection.

4.2 Indexing and retrieval processes: some implementation

details

This purpose of this section is to give some information on how the real-time indexing and

retrieval processes are implemented in Terrier. Since we reported a general description

of these topics in Section 4.1.1, below we only provide some details on the main phases

comprising the examined processes. Additionally, to better explain how the indexing and

retrieval processes are actually carried out in Terrier, we give a complete example of the issues

presented in Section 4.1.1 and 4.1.2, highlighting the key ideas underlying the described

processes. In the example we take into account throughout this section, the documents in

the collection are pdf ones. It is useful to remark that for what concerns the indexing and

the retrieval processes nothing would have changed if we had considered documents of a

different type.

4.2.1 Real-time indexing process

The first thing we need to do in order to index some documents is to initialize an

IncrementalIndex. This object is responsible for performing the indexing procedure. Using

such an object means especially specifying the flush policy and the merge policy. It is useful

here to remind their meaning.
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• flush policy: it defines the number of documents which are indexed before the data

maintained in-memory are moved to disk-based data structures.

• merge policy: it establishes how the disk-based indexes, generated during the indexing

process, are handled.

The first phase deals with the creation of a document as well as the insertion of its terms

in a DocumentPostingList. The several stages, this phase consists of, are shown in Figure

4.4. Firstly, the filenames of the documents in the collection, we are interested in, are added

to a SimpleFileCollection. This object basically implements the concept of collection of

documents, in which each document is stored in a different file. Note that the documents

of a SimpleFileCollection may be of different types. Futhermore, the SimpleFileCollection

associates each filename with a class which will be used for parsing the corresponding

document. Specifically, it allows us to encapsulate the document content in an object of

a specific type. In our context, the SimpleFileCollection basically let us iterate over the

filenames of the collection documents and for each of them we create an instance of a

class extending the Document one, through the getDocument method. Note that this class

represents the concept of generic document, whereas all the classes extending it provide

the object representing a collection document with features related to a specific class of

documents. Then, for each Document we sequentially take out its terms through the

getNextTerm method, before processing them through the pipeline defined for the indexing

process, we reviewed in Section 2.2. We specify that each stage of the pipeline is actually

implemented by a TermPipeline, an object being responsible for performing the operations

of a specific processing stage on each term. The processing steps generally involved in

the indexing process are: i) lexical analysis, ii) stopwords removal, iii) stemming process,

iv) term composition. We provide the result of each pipeline stage as input to the next

one. Note that, if a term does not constitute a valid input for a pipeline procedure, we

discard it. The last step of the pipeline deals with including all the resulting terms into a

DocumentPostingList. We remind that such an object basically consists of an map which

associates the terms resulting from the application of the pipeline to the document words

with their frequencies in that document. In Figure 4.5 we illustrate the implementation of the

indexing process on a document composed of the statement “Hello World! I am Andrea and

I am twenty-three years old”. The numbers, the rectangles are labeled with, specify the order

with which the memory-based structures presented in Figure 4.1 are involved in the indexing

process. The entry [hello, 1] occurs in the rectangle occurrences. The content of such shape
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reflects the state of the DocumentPostingList after all the tokens of the document go through

the procedures of the pipeline, established for the indexing process. Looking at the entry

[hello, 1], it is linked with the element whose token is equal to hello in the rectangle map.

Such shape corresponds to the memory-based Lexicon. We can observe that its df variable

is equal to 1, since the term “hello” exists in the only document of the collection. The value

of the field tf equals the value of the corresponding field of [hello, 1], whereas the termId

variable is equal to 0, since the [hello, 1] is the first element of the DocumentPostingList

analyzed. Note that the values of the termId and tf fields, along with the number of indexed

documents, define the fields of the posting associated with the examined Lexicon entry.

Figure 4.4. Interaction between the main components taking part in the indexing process.

Below, we present how the Lexicon and Inverted index entries are moved from the in-memory

to the disk-based index structures, because of the implementation of the flush policy. It is

useful to remind that after the number of indexed documents has exceeded the threshold

defined by the flush policy, we initialize a new disk-based index, into which we include all

the data mantained in the central memory at that time. First of all, we point out that we handle

the in-memory and on-disk data structures through instances of two classes, which are named

MemoryIndex and IndexOnDisk. They actually implement the concept of index maintained

in the central memory and on disk, respectively. For each entry in the MemoryIndex Lexicon,

we perform the following operations:
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Figure 4.5. Representation of the operations composing the first phase of the Terrier real-time
indexing process, which is concerned with the insertion of the data of the collection documents
in the in-memory data structures. In this figure, a simple example is analyzed. It consists of
the execution of the indexing process on a document which actually contains a single statement:
“Hello World! I am Andrea and I am twenty-three years old”.
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• Taking out the posting list related to the entry: we use the entry identifier as key to pull

out the posting list of the entry from the in-memory Inverted index. This data structure

essentially consists of an map of posting lists, each of them coupled with an index term.

• Storage of the elements of the posting list in the disk-based Inverted index: we

sequentially add the data of the postings contained in the posting list to the stream of

bytes the disk-based Inverted index basically consists of. Specifically, the document

identifiers are encoded by using the Elias Gamma coding [16], while the term

frequencies are encrypted by using the Unary coding [18]. With the aim of decreasing

as much as possible the amount of disk space we need to maintain the whole posting list

on disk, we save the identifiers of the postings by storing d-gaps instead of the straight

document identifiers. We point out that a d-gap is simply the difference between the

identifiers of the documents to which two adjacent postings refer to. Note that to put

this strategy into practice, we need the postings of a posting list to be arranged in

ascending order with respect to their identifiers. In fact, during the indexing process

we assign increasing integer values to the collection documents, thus ensuring that the

above property is retained.

• Generation of a new Lexicon entry and its insertion in the IndexOnDisk Lexicon

data structure: we generate a new Lexicon entry. We set its identifier, tf
(
the

term frequency
)

and n t
(
the document frequency

)
fields to the corresponding values

of the fields of the analyzed MemoryIndex Lexicon entry. Futhermore, we enrich it

with a pointer referring to the position in the disk-based Inverted index, in which the

first posting associated with the examined entry is stored. The pointer is implemented

by means of a long and a byte fields.

The way in which we handle the Document index and Meta index entries can be easily

deduced from the overview of the indexing process we have provided in Section 3.1.

In Figure 4.6, the data which in Figure 4.5 have been stored in the memory-based index

structures are moved to the corresponding on-disk ones. As in Figure 4.2.1, the numbers the

shapes are labeled with indicate the order with which the index structures are involved in

the flushing operation. Looking at the in-memory Lexicon entry, whose token is am, which

appears on the left side of the figure, we can note that its data are used for extracting the

postings included into the in-memory Inverted index, associated with the term am. The data
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Figure 4.6. Transfer from the in-memory data structures to the disk-based ones of the data
collected by applying the indexing procedure to a couple of documents, both composed of an only
statement. The first one consists of the statement “Hello World! I am Andrea and I am twenty-three
years old”, while the second one is “I was bitten by a dog”.
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comprising such postings are encoded by means of the Unary [18] and Gamma [16] encoding,

before being added to the disk-based Inverted index.

Here, we proceed to illustrate how the data of two IndexOnDisk are merged together into a

new one. Hereafter, the same nomenclature which we used in the previous section is adopted:

we refer to the former IndexOnDisk as “index1”, while to the latter as “index2”. Finally, we

indicate the IndexOnDisk which is intended for storing the data coming from the first ones,

as “destination” index.

The merging procedure of two disk-based indexes is principally composed of two phases.

The former deals with merging the source IndexOnDisk Lexicon and Inverted index data

structures, while the latter is concerned with putting together the data coming from the

source Document index and Meta index structures. Here, we give some details of the first

phase. Since many operations performed during this stage are very similar to those we

have described above, we focus on the elements which have not been presented yet, by only

mentioning the issues we have already taken into account. Therefore, to merge together the

“index1” and “index2” Lexicon and Inverted index structures, we carry out the following

operations:

• Extraction of the first entry from each of the source IndexOnDisk Lexicon data

structures.

• Comparison of the Lexicon entries to establish which is the first entry we must insert

in the destination IndexOnDisk Lexicon. We carry out the comparison by using the

lexicographical criterion over the terms the examined entries are related to.

• Taking out the posting list, associated with the Lexicon entry, selected at the previous

step. We load the inverted list in the central memory, before encapsulating it by means

of a BasicIterablePosting. This object is responsible for letting us access the postings

forming the analyzed posting list. In particular, the BasicIterablePosting consists of

a buffer, storing the raw data associated with the posting list and an integer variable,

whose value is set to the corresponding value of the n t field of the Lexicon entry. Note

that this field specifies the number of postings comprising the analyzed inverted list.

We use this variable to read all, but only the postings associated with the examined

Lexicon entry.

• Storage of the inverted list postings in the Inverted index data structure of the

destination IndexOnDisk. We sequentially add the postings composing the inverted list
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Figure 4.7. Merging process of the data structures of two on-disk indexes. Both the examined
indexes have been obtained by carrying out the operations depicted first in Figure 4.5, and then in
Figure 4.6. The index structures of the IndexOnDisk of interest are distinguished from each other
through a numerical identifier.
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of interest to the byte stream the destination IndexOnDisk Inverted index consists of.

We point out that, before being stored in the byte stream, the identifiers in the postings

are adjusted to avoid that more than one posting have the same identifier. To achieve

this goal, we increase the identifiers of the postings maintained in the index2 Inverted

index by the number of documents whose data are stored in the index1 IndexOnDisk.

• Generation of a new Lexicon entry and its insertion in the corresponding data structure

of the destination IndexOnDisk.

In Figure 4.7, we show how the merging operation of two disk-based indexes is performed.

We remind that such process results in generating a new on-disk index, to which we add all

the data retrieved from the indexes involved in the merging procedure. In the upper part of

the figure, we can note that the first entry of the index1 and index2 Lexicon structures are

compared with respect to the lexicographical order, to establish which is the first entry whose

data must be included in the newly created disk-based index. Since the term am precedes the

term cat in the lexicographical order, we take into consideration the corresponding Lexicon

entry. Specifically, its data are used for pulling out the postings associated with the term

am from the index1 Inverted index. These data are loaded in the central memory and then

encoded again before being stored in the Inverted index of the generated disk-based index.

4.2.2 Retrieval process

This section presents some details on how the retrieval process is actually implemented in

Terrier. In what follows, we will suppose that a query consisting of different terms as well

as an IncrementalIndex storing data associated with some documents have been provided.

Firstly, a Manager object is initialized. It is responsible for carrying out all the operations

which are somehow related to the processing of the examined query. In particular, the

Manager specifies the procedures which are to be executed on the query terms. After an

initialization phase, the same pipeline which was used for processing the tokens, during

the indexing process, is taken into account. The only difference is in the last stage: in the

indexing process it consists of the insertion of the resulting term in a DocumentPostingList,

while in the retrieval procedure, it deals with assigning the result of the performed operations

to a Query object. It represents the single query term a query is composed of. Therefore,

a query is implemented by means of a set of Query objects, which is encapsulated in a

MultiTermQueryObject. A MultiTermQueryObject is basically an iterator over the Query
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Figure 4.8. Representation of how the retrieval process is performed in Terrier, assuming that
a query, consisting of the statement “am dog bitten”, is provided. The Lexicon, Inverted index,
Document index structures as well as the CollectionStatistics have been obtained by applying the
operations which has been graphically presented in Figures 4.5, 4.6, 4.7. This figure depics the
score computation for the posting

(
0 1

)T associated with the index term am.
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objects it is made up of. Before the given query is evaluated, a Request object is generated.

It contains the controls which determines the operations which have to be performed on the

given query as well as a ResultSet object. It will include the ranking list of the collection

documents, once the examined query has been evaluated. The retrieval process is performed

by the aforementioned Manager object. It is made up of four procedures which are listed

below in the same order with which they are actually carried out.

• Pre-processing

• Matching

• Post-processing

• Post-filtering

The pre-processing stage is concerned with the application of the procedures which are

determined by the Request object. In particular, this phase deals with the application of

the pipeline, defined for the indexing process, to each of the query terms. As we pointed out

beforehand, for each resulting term a Query is generated. The entire query is represented

by means of a MultiTermQuery. Additionally, this phase involves the initialization of a

MatchingQueryTerms object, which keep for each query term, its number of occurrences

within the given query, its weight
(
unless otherwise specified it coincides with its number

of occurrences within the query
)

as well as the information retrieval model which must be

adopted to evaluate the contribution to a document score provided by the examined term. The

matching phase is the most important stage of the retrieval process. In it, the computation of

each collection document score in regard to the query, we took into account, is actually carried

out. In fact, the score is evaluated only for the documents which contain at least one of the

query terms. First of all, a PostingListManager is generated. It is responsible for gathering

the data coming from the InvertedIndex and MatchingQueryTerms together. In detail, for

each query term it keeps its weight, its statistics data, made up of the Lexicon entry belonging

to the Lexicon data structure and finally its posting list. Since, we took real-time indexing

and retrieval processes into account, it is worth noting that the data, PostingListManager data

structures are composed of, may derive both from on-disk data structures and in-memory

ones. It is useful to specify that the inverted lists are managed in such a way that at each step of

the score evaluation procedure, the posting list, whose next posting has the lowest identifier is

taken into account. Note that if the next postings of two posting lists have the same identifier,
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is analyzed the one whose query term comes first in the query. The way in which score

evaluation process is carried out involves that the scores are computed sequentially, avoiding

that the same document is considered more than one time during its execution. The process

ends when all the postings of all the posting lists have been considered. At this point, all

the scores and the identifiers of the documents they are associated with are maintained in

the ResultSet, related to the Request object. Post-processing phase goes on to process the

ResultSet, obtained in the previous phase, by sorting the identifiers of the relevant documents

in descending order with respect to their scores. Instead, the post-filtering phase is responsible

for filtering out the obtained results. A detailed description of these stages is beyond the scope

of this section. However, further information on this topic can be found in [14].

In Figure 4.8, we can observe how query evaluation is carried out. As shown in Figure 4.8, for

each of the terms composing the query, we generate a SingleTermQuery, an object responsible

for mantaining all the information related to the score evaluation for that term, as the number

of occurrences of such term in the query and the model we have to take into consideration

in computing the scores of the documents in which that term occurs in. The information

associated with all the query terms are then gathered together in the MatchingQueryTerms.

Looking at the entry [am
(
0
1

)
] in the terms rectangle, we can note it is linked with the

disk-based Lexicon entry related to the index term am. The fields of such Lexicon entry are

used to extract the posting list of the index term am from the Inverted index, which in Figure

4.8 corresponds to the rectangle out. We include such inverted list into TermPostings, in the

position corresponding to the one of the term am within the query “am dog bitten”. Note

that the postings composing the inverted list are added to the TermPostings as raw data. The

data contained in the MatchingQueryTerms, are moved to the termKeyFreqs, termStrings and

termModels structures of the PostingListManager, represented by the green, blue and light

blue shapes, depicted in the center of the figure. At each stage of the retrieval process, after

decoding the raw data associated with the posting of the inverted list taken into account, the

data maintained in the PostingListManager structures related to the query term of interest are

used for computing the score of the examined posting. In fact, we point out that to evaluate

the score of a posting we also take into account the collection statistics and the length of the

document the posting refers to, which is included into the Document index, depicted in the

figure 4.8 by the rectangle docOut.





5
BA and MA strategies

5.1 Basic Approach and Mapping Approach: mode of

operation

5.1.1 Indexing process

This section outlines the changes we needed to make to the Terrier real-time indexing process

in order to handle versioned collections. Terrier does not allow us to take into account

different versions of the same document. In fact, during the indexing process these are

managed as if they were completely different collection documents. Another problem which

arises by considering temporally versioned collections is how to deal with temporal data,

we enrich collection documents with. Moreover, to support search over such a collection,

we need to establish a policy for computing and storing statistics data about the collection,

which are used for score computation. First of all we explain the ideas underlying the

strategies we have conceived. The Basic Approach (BA) for index versioning consists of

a baseline approach for index versioning which enables search over temporally versioned

collections by filtering out postings which do not adhere to a certain temporal constraint.

This strategy implies that during the retrieval process we scan the postings lists related to the

query terms, searching for valid postings. A posting is considered as valid if the temporal

range attached with it satisfy the query temporal predicate. In the case a posting is not

valid, it is ruled out and its payload does not contribute to the score of the corresponding

document. MA stands for Mapping Approach for index versioning. Compared to the BA

strategy, it deals with exploiting the position assigned to each document within the stream

59
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of bytes of the inverted index, for speeding up the retrieval process. Note that, in order to

carry out this approach, we need to store the postings related to different versions of the

same document in contiguous positions within the inverted index. Before explaining how we

countered the aforementioned issues, we proceed to describe the context we took into account

for implementing our strategies. We remind that in Terrier, the real-time indexing process is

divided in three different phases:

• Indexing phase: it deals with indexing the collection documents. The data collected

during this phase are temporary stored into in-memory data-structures.

• Flushing phase: after the number of indexed documents exceeds a defined threshold,

which is referred to as flush policy, data within the in-memory data structures are

transferred to the corresponding disk-based data structures.

• Merging phase: once the Flushing phase has been carried out, on-disk data structures

are merged together to maintain an only index, through which to access all the data of

the collection documents. This operation is actually performed according to a policy

which is denoted as merge policy.

It is worth noting that the data transfer from in-memory to on-disk data structures and the

subsequent merging of the on-disk data structures are unavoidable operations, since we need

to perform them for practical needs. In fact, for each collection document, the indexing

process deals with generating the representation of its content, which is used during the

retrieval process for computing the document score. This generally results in the generation

of a huge volume of data which can not be maintained in the central memory. This

holds true especially for temporally versioned collections, since we take into account the

evolution of the collection documents over time, thus generating an even larger amount of

data. Carrying out the indexing process by using in-memory data structures allow users

to extend the collection taken into consideration after some queries have been evaluated.

This functionality lets us analyze a new version of a document occurring in a collection

of interest, thus keeping up with the evolution of such document over time. Formally,

the goal of the implemented approaches, in regard to the indexing process, is to organize

the data collected during the indexing process in such a way that they can be retrieved

efficiently during the retrieval phase. Since in the experimental phase we have looked at

temporally versioned collections, we exploited the temporal data of the documents to better

organize the index data, with the purpose of speeding-up query evaluation. The first issue
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we have addressed was to allow different versions of the same document to be recognized

as successive versions of such document. To achieve this goal, we have assigned two

values to each document version, which we have referred to as realId and tempId. The

former consists of the identifier assigned to the document, the examined version belongs to,

while the latter indicates the number of document versions indexed before the analyzed one.

With the purpose of assigning these values to each document version, we have defined two

objects: MemoryMetaName and MemoryVersionDocId. The MemoryMetaName essentially

consists of a map which associates each document name with an integer identifier, while the

MemoryVersionDocId is responsible for connecting each tempId with the identifier of the

corresponding document. Therefore, as a version of a document goes through the indexing

process, both the BA and MA approaches involve inserting its name, namely the last part

of its filename in MemoryMetaName, obtaining the identifier related to the corresponding

document. Then we include the retrieved value into MemoryVersionDocId, getting the actual

identifier of the version of interest.

The second issue we have tackled was about with the evolution of the collection statistics data

over time. We remind that during the execution of the Terrier real-time indexing process we

compute some statistics about the collection of interest, which we use during query evaluation

for computing the scores of the collection documents. These statistics are: (i) the number of

indexed documents, (ii) the number of postings in the inverted index, (iii) the sum of the

number of terms comprising each collection document, (iv) the overall number of different

terms comprising the lexicon. During the Terrier real-time indexing process, we adjust the

values of these variables as soon as a new document is indexed. In particular, while we

update the first three statistics during the indexing phase, by analyzing the statistics singularly

computed for each document, adjusting the count of the different terms in the collection

requires us to regularly evaluate the number of entries comprising the index Lexicon. In

the case we take into consideration a temporally versioned collection, keeping the collection

statistics updated, as the documents in the collection evolve over time, is more challenging.

During the experimental phase, we have provided each document version with an integer

value reflecting the time point in which we took into account such version to index it. In fact,

we expect to have different values for the collection statistics for each of the following cases:

• Indexing a new collection document: this case requires us to update all the collection

statistics, incrementing them by the values computed for the new document.

• Indexing a new version of a previously examined document: we must adjust the
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collection statistics by taking into account the differences between the statistics

evaluated for the current and the previous version of the document.

• Removing a document from the collection: this case actually reduces to the previous

one. It requires us to adjust the collection statistics, by decreasing them by the values

computed for the previous version of the document.

Note that, for what regards the update of the collection statistics, both performing the indexing

process on a new version of a collection document and removing an existing document from

the collection involves maintaining the statistics computed for the previous versions of the

collection documents over time. In detail, both the BA and MA strategies involve including

the statistics computed for the actual versions of the documents into a list. In the remainder of

this section, it will be referred to as CSList. Therefore, adjusting the collection statistics, after

a new version of a collection document goes through the indexing process, firstly requires us

to pick up the values related to the previous version of the document from the CSList. Then

we match these data against the ones associated with the new version of the document, before

updating the collection statistics. Finally, we insert the new data in CSList, thus replacing the

ones associated with the previous version of the examined document. It is interesting to note

that by using this incremental strategy, we can not index out-of-order document versions. In

other words, to correctly save the collection statistics, while the collection documents evolve

over time, we can not take into account a document version after indexing a more recent

version of the same document. Although at a first glance this constraint can be thought of

as rather restrictive, it is not. Indeed, the indexing process should represent the evolution of

the collection documents as they change over time. Therefore, it is quite plausible to analyze

the versions of the collection documents on date basis. At this stage, we consider useful to

propose two observations. The former is about the time interval each document version is

attached with. The duration of the time interval of a document in a temporally versioned

collection strongly depend on the collection we are interested in. Specifically, it depends on

the frequency with which newer versions of the documents in the collection go through the

indexing process. Therefore, two consecutive versions of the same document could represent

the change of that document occurring in a time range of an year, a month, a day, of only few

hours, depending on the goal for which the collection is maintained. The latter observation is

about the meaning of “collection statistics”. In fact, even if in Chapter 4, we have supposed

all the documents of a corpus belong to the same collection, it is not the general case: we

could handle the documents coming from more than one collection. We remark that the term
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“collection statistics” actually does not refer to the stastics computed for the documents of

a specific collection, as the term would seem to suggest us, but it refers to the statistics data

evaluated taking into consideration all the documents we have indexed, regardless the number

of collections we have adopted during the indexing process.

The last issue we have to deal with in this section is the managing of the postings composing

the inverted lists. Firstly, it is useful to propose again the theoretical model we refer to in

explaining how postings are handled in the BA and MA strategies. It entails each posting is

represented by means of a set of three elements. They are:

(
d, f, [ti, ti+1]

)
(5.1)

where d is the integer value associated with a document version, f is the count of the

occurrences of the term, the examined posting is associated with, in d, whereas [ti, ti+1] is a

time validity interval. After a new version of a collection document undergoes the revised

indexing process, the BA and MA strategies are constituted of, the right boundary of the time

intervals of their postings is set to 1. We remind that in our context the usage of the value

1 is twofold. It constitutes the lowest value we can assign to a document version, but as

right boundary of a time interval, it indicates that the posting the examined time interval is

attached with, refers to the latest version of a collection document. This means that before

these postings are matched against the ones, we have previously generated, their validity

interval ranges from ti to∞. The BA and MA approaches significantly differ in the way in

which postings are managed during the Indexing phase as well as the Flushing and Merging

ones. We first illustrate how we handle postings in the BA strategy, before moving on to

the MA strategy. The BA approach involves that postings, collected during the Indexing

phase, are stored into a memory-based list, according to their arrival time. Then, during

the Flushing phase, we add them to the on-disk inverted index, which we have generated

after the number of indexed documents has exceeded the threshold related to the flush policy.

Instead of storing the identifiers of the document versions as they are, we adopt the d-gap

technique. Specifically, instead of encrypting the identifiers of the document versions as they

are, we prefer encoding the differences between identifiers of adjacent versions. This results

in significantly reducing the amount of space required for storing the disk-based inverted

index. We point out that the identifiers of the document versions are encrypted by using the

Elias Gamma coding [16]. The same encoding is used for storing the two boundaries of the

time interval, the postings are associated with. It is worth noting that before being encoded,
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the time interval right boundary is checked for verifying if a newer version of the document

of interest exists in the collection. If this case occurs, the right boundary is set to the value

of the left boundary of the interval associated with the version we have found. In fact, this

check is performed also in the Merging phase and during the retrieval process. This ensures

that regardless the time point of a query, issued to information retrieval system implementing

the BA approach, all the postings analyzed during the retrieval process are valid. Note that

the time interval spanned by the union of the time ranges associated with all the versions of a

document ranges from 1 and∞]. The frequency value f is encoded by using the Unary [18]

encoding. In the BA strategy, with the exception of the time interval boundaries, the data

comprising the posting are stored by exploiting the same techniques used in the real-time

Terrier indexing process. The Figure 5.1 shows how the postings data are first encoded and

the inserted in the inverted index, with reference to the BA approach.

Figure 5.1. Representation of how the postings data are encrypted and stored in the inverted
index, with respect to the BA strategy. The letter “U”, stands for Unary coding, while the letter
“G” stands for Gamma coding.

Now we turn our attention to the MA approach. We recall that the purpose of the MA strategy

is to speed-up query evaluation by using a map which would enable to efficiently access the

data stored in the inverted index stream of bytes. In detail, for an index term it should allow
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us to access the first posting of each document in which the examined term occurs in. To

implement this approach we have modified how the postings are arranged in the on-disk

inverted index, so that the postings related to successive versions of the same document are

stored in adjacent positions in the inverded index. In this way, if a query term occurs in

a specific document, we can use the map to seek the first posting related to the examined

document. Therefore, we could scan the inverted index stream of bytes starting from the

position indicated by the map, thus ignoring some postings which certainly do not contain the

examined query term. To implement this strategy, before being flushed to disk, the postings

of an inverted list are sorted by taking into account two elements: i) the realId identifier, ii)

the left boundary of the time interval. Carrying out the sorting operation ensures that the

postings associated with different versions of the same document occupy adjacent positions

in the on-disk inverted index. Although from a computational perspective performing this

sorting operation is expensive, we actually need it only if we take into account more than one

version of the same document between two consecutive executions of the flushing procedure.

Furthermore, a single document version often contains an extremely reduced number of the

terms composing the index Lexicon, hence such operation actually involves only a restricted

number of posting lists. For what concerns the Merging phase, ensuring that the posting

lists deriving from the actualization of the merging operations on the data maintained on-

disk, show the aforementioned property, requires us to make a significant effort. We look at

the case in which the merging procedure is applied to two inverted lists, related to the same

index term. To achieve the goal we can exploit the fact that the examined inverted lists are

singularly ordered in the right way with respect to the aforementioned property. Therefore,

we can accomplish the objective by comparing the elements which time after time constitute

the first entries of the two posting lists. At each stage, we add the posting, which from

the comparison turns out to be the lesser, to the resulting stream of bytes. To compare the

postings composing the inverted lists, we take into consideration their identifiers and their

time intervals. It is worth stating that as for the BA approach, the MA strategy involves

updating the time intervals of the postings after newer versions of the collection documents go

through the indexing process. We perform the update operation both during the the indexing

process and during the retrieval process. This ensures that in computing the scores of the

collection documents, we only consider valid postings. In the remainder, the map which is

responsible for maintaining the positions of the documents in which an index term occurs

in, which constitutes the cornerstone, on which the MA strategy relies on, will be denoted
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as mapTermDocuments. We create it for the first time after the first activation of the flush

policy and then we reinitialize it each time we enter the Merging phase. This ensures that

the mapTermDocuments keep up with the evolution of the inverted index over time. Now we

proceed to illustrate how the data composing a posting are encrypted in the MA approach.

The identifiers of the document versions are stored by using the d-gap technique, which was

outlined in Chapter 4. Note that differently from the BA approach, in the MA strategy, the

difference between the identifiers of two adjacent postings of a posting list is generally quite

large. This is due to the fact that adjacent postings contain data related to two consecutive

versions of the same document, rather than data of versions which go through the indexing

process one after the other, as occurs in the BA strategy. It is useful to recall that the fact that

two versions are indexed one after the other entails that their identifiers only differ by a unit.

We encrypt the frequency field by using the Unary [18] coding, while for the the boundaries

of the time interval the postings are attached with, we use the Gamma [16] encoding. At

this stage, it is useful to specify that we do not apply the d-gap technique, which is used

for encoding both the identifiers and the boundaries of the time intervals, to all the entries

of an inverted list, considered as a whole, but we singularly implement it on the postings

related to the single documents, occurring in the posting list, individually analyzed. In other

words, after encoding all the data of the postings of a document, we encrypt the fields of

the first version of the next document as they are, before again taking into account the d-gap

technique for storing the data related to the following versions of the same document.

5.1.2 Retrieval process

In this section we detail how the BA and MA strategies allow us to carry out query evaluation,

once we are given with a time-travel query. As in the previous section, we only mention

the differences between the developed approaches and Terrier real-time retrieval process,

without explaining how the process is performed in its entirety. Firstly, looking at the

theoretical model we gave in Section 5.1.1, we point out that in the experimental phase

we have only focused on time-travel queries enriched with a time point rather than a time

interval. Therefore, in this work, a time-travel query q can be thought of as a bags of words

q =
{
q1, ˙..., qn

}
, provided with a time-point tq. We consider a posting p, associated with one

of the query terms, as valid if its validity time interval contains tq. Formally, given a posting

p (
d, f, [ti, ti+1]

)
(5.2)
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it is valid if ti ≤ tq < ti+1 or ti ≤ tq and ti+1 = 1, since 1 is adopted to indicate that the

posting is related to the latest version of the corresponding document. We recall that d is

the identifier of a document version, f the number of occurrences of the examined term in

d, [ti, ti+1] is a time validity interval. Below, we briefly report how the retrieval process is

carried out in Terrier, before proposing the main differences between it and the developed

approaches. Given a query, the Terrier retrieval process involves taking out the inverted lists,

associated with the query terms, from the inverted index. We pull out each posting list by

using the information about its position within the stream of bytes, the inverted index consists

of. These information are obtained by matching the corresponding query term against the

terms of the index Lexicon and retrieving the data associated with it, which include the

position of its posting list in the inverted index as well as the number of postings associated

with the examined term. We have denoted this value as document frequency in Chapter 3.

Then we scan the retrieved posting lists computing at each stage the contribute of a query

term to the score of a document. The score is basically evaluated from three components: i)

the statistics of the Lexicon entry related to the query term Lexicon entry, ii) the collection

statistics, iii) the number of occurrences of the query term in the document of interest. It is

worthwhile to mention that the documents in which the query terms occur in, are sequentially

analyzed during the retrieval process. This means that after we have assigned the score to a

document, we do not consider it anymore, during the retrieval process. We state that both in

the BA and in the MA strategy, we can not give a score to a document version, before entirely

analyzing all the posting lists of the query terms. This results from the fact that to compute the

contribute of a query term to the score of a document, we must know the document frequency

of that term with respect to the time point of the query q of interest. Roughly speaking, we

must know the number of documents for which exists a version containing the query term

whose time interval includes tq. We divide the retrieval process in two phases:

• Retrieving phase: it deals with scanning the posting lists searching for valid postings.

As soon as we encounter a valid posting, we increment the document frequency of the

corresponding query term by a unit. Then we insert the posting in a list associated with

the examined query term. Specifically, we carry out this phase by cyclically performing

a sequence of operations. In each step, as in the Terrier retrieval process, we take into

consideration a single query term. Both for the BA and the MA strategy, a step ends

when either we have found a valid posting or we have visited all the postings of the

inverted list of the analyzed query term.
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• Scoring phase: it is concerned with evaluating the scores of the document versions,

from the values we have computed for each valid posting, which we have encountered

in the Retrieving phase. In detail, we scan the list associated with each query term,

assigning a value to each posting occurring in such a list. We evaluate the score of each

version by summing up the values computed for the postings referring to that version.

Below, we focus on the Retrieving phase, since the Scoring phase simply involves giving

a score to each posting retrieved during the first phase and obtaining the final scores of the

versions in the collection of interest. We firstly concentrate on the BA strategy, before turning

our attention to the MA approach. In the BA strategy, each step of the Retrieving phase

involves analyzing all the postings of an inverted list. For each posting, we execute the

following operations:

• Taking out the posting from the disk-based inverted index and loading its data into the

main memory.

• Decoding the posting fields.

• Verifying if the posting is valid. If it is valid, the stage of the Retrieving phase ends.

Otherwise the Retrieving phase goes on repeating the same operations on the next

posting of the posting list.

It is useful to highlight that before checking if a posting is valid, we must verify if a newer

version of the document, the posting refers to, has been indexed, after we have stored the

posting into the disk-based inverted index. Actually, we do not need to perform this check

for each posting, but only for those related to the latest versions of the collection documents.

In the MA strategy, we speed up the research of valid postings by skipping some of them,

which certainly do not contribute to the final score of a document version. To do so, we use

a map, which we have previously referred to as mapTermDocuments. It essentially connects

each index term with the positions in the inverted index of the first postings of the documents

in which the term actually occurs in. Additionally, for each term, we keep track of the position

of the last posting of its posting list. Here, we proceed to explain how the Retrieving phase

is actually performed in the MA approach. In the following, for simplicity sake, we suppose

that the posting list of the index term we look at, is entirely maintained on disk. The general

case, which entails some postings are maintained in the in-memory inverted index, can be

simply inferred from the proposed one. Furthermore, we assume that we are given with a
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time-travel query q, enriched with a time point tq. Looking at an iteration of the Retrieving

phase, after selecting the posting list related to the examined query term, it involves searching

for the position of the next document containing the term. We seek that position in the stream

of byte of the inverted index and we resume searching for valid postings from there. As

soon as we encounter a posting, whose time interval boundaries are later than tq, we jump to

the following document containing the term. Therefore, by exploiting the information kept

in mapTermDocuments, for a given document, we avoid analyzing all the postings whose

time interval left boundary is later than tq. We conclude this section by proposing two final

remarks.

• Firstly, it is worth stating that although the outlined strategy significantly reduce the

number of not valid postings, which we take into account, it does not nullify it. In fact,

during the Retrieving phase, for each document containing the query term of interest,

we load in the main memory each posting whose time-interval boundaries are earlier

than tq, before decoding the raw data composing its fields. We perform these operations

also for the documents that although they contain the query term, they have not got a

valid version for it. This results from the fact that in developing the MA strategy we

have chosen to keep track of the documents containing a given index term, rather than

the single versions in which it occurs in.

• Secondly, the MA strategy allow us to take advantage more of the benefits delineated

above, when the time-point of the query of interest is closer to the time instant

associated with the first version of the collection documents. Indeed, in this case,

by exploiting the information kept in mapTermDocuments, we can skip most of the

postings composing the inverted lists for the examined query terms.

5.2 BA and MA strategies: implementation details

In this section we give some details on how we have implemented the BA and MA strategies.

We first provide some details on the indexing process, before focusing on the retrieval

process. In doing so, we take into account both the developed strategies and we underline both

the differences between them and those between the implemented approaches, individually

considered, and the Terrier real-time indexing and retrieval processes.
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5.2.1 Indexing process

The first challenge we have faced taking into account a temporally versioned collection was

to allow different versions of the same document to be recognized as successive versions of

the same document. To accomplish this goal, before carrying out the indexing procedure on

a document version, we assign to it the name of the document, it belongs to. We specify

that for “name”, we mean the last part of a document filename. Therefore, we associate

each document with an unique alphanumeric identifier, which we use for identifying all its

versions. As we mentioned above, Terrier by default index different versions of the same

document as if they were different documents. We have addressed this shortcoming by

providing each document version with two identifiers:

• realId: an integer value which determines the real identifier of the document, the

version belongs to.

• tempId: an integer value specifying the number of versions we have indexed before the

examined one.

Note that tempId corresponds to the identifier we assign to each document going through

the Terrier real-time indexing process. In the developed approaches, in order to assign the

realId and tempId identifiers to each document version, we use two objects, which we have

denoted as MemoryMetaName and MemoryVersionDocId. These basically encapsulate two

data structures, which are a map and a list, respectively. In particular, for each document

version we perform the following operations:

• Assigning the realId identifier: we use the last part of the filename of the document

version as key to verify if we have already indexed a previous version of the

corresponding document. If this case occurs, the representation of the document

version, obtained by parsing the file it is included into, is provided with the

integer identifier associated with the detected entry. Otherwise, we insert in

MemoryMetaName a couple consisting of the name of the document version and the

number of elements contained in such object at this time.

• Assigning the tempId identifier: we associate the representation of the document

version with the number of documents we have indexed so far, which constitutes the

tempId identifier. Finally, we add an entry composed of the two identifiers of the

document version to the MemoryVersionDocId.
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Here, we describe how we have addressed the issue of adjusting the time interval of a

posting referring to the current version of a document, when we analyze a newer version

of the same document. In detail, given a posting which is related to the current version of

a document, we must ensure that its time interval is properly updated as soon as a more

recent version of the same document goes through the indexing process. This ensures

that the retrieval process is properly carried out, regardless the time a query is issued to

the information retrieval system implementing one of the described strategies. To address

this issue, in the experimental phase, we have defined an object which we have referred

to as MemoryDocVersions. For each collection document, such object is responsible for

maintaining the right boundary of the time interval its versions are enriched with, while the

collection evolves over time. It basically consists of a wrapper of a variable-size matrix.

The y-axis is the document dimension. Looking at a document, going along the x-axis

involves finding the time interval right boundary of the versions which we have indexed

for that document. Given a document, we use the values included into the instance of

MemoryDocVersions to update the validity interval of the postings referring to the version

that time after time constitutes the latest version of the examined document. We perform the

check operation, which deals with verifying if a time interval of a posting must be adjusted,

both during the indexing process and the retrieval procedure. We point out that we actually

need to check only the postings whose time interval right boundary equals 1, namely the

postings which refer to the latest versions of the corresponding documents. We remind that

the usage of the value 1 in the time intervals, the postings are enriched with, is two-fold. If

the left boundary of a time interval is equal to 1, it means that the related posting refer to

the first version of the corresponding document. Instead, if the right boundary of a validity

interval equals 1, it means the corresponding posting is associated with the latest version of

the document, that posting refers to. Below, with the purpose of explaining how we perform

the check operation, we suppose we are provided with a posting, whose time interval right

boundary is equal to 1. For such a posting, verifying if we have indexed a newer version of

the corresponding document corresponds to searching for the first value greater than its time

interval left boundary in MemoryDocVersions, in regard to the document of interest. If we

find such a value, we update the right boundary of the posting by setting it to the detected

value. It should be noted that, looking for the latest version of a document could involve

scanning all the values stored in the MemoryDocVersions for that document. To reduce the

computational cost of such operation, after carrying out the Merging phase, we reinitialize
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the MemoryDocVersions used during the indexing process. In fact, we point out that after the

execution of the Merging phase, all the postings of the inverted index are properly updated,

regardless the fact that they are maintained on-disk or in the in-memory inverted index.

Another problem we have faced during the experimental phase was to manage the update

of the collection statistics. Since, we have given a background on this matter in Section

5.1.1, below we only provide some details of the implemented solution, without giving any

further explanation. With the aim of keeping the collection statistics, as the documents in

the collection evolve over time, we have defined an object, referred to as collectionCS. It is

basically a list of CollectionStatistics. We recall that a CollectionStatistics is a wrapper of

four statistics, which we have been presented in Chapter 3. Below, we briefly repeat them.

• numberOfDocuments: the number of documents indexed so far.

• numberOfTokens: the count of the terms composing the documents occurring in the

collection.

• numberOfTerms: the number of postings forming the inverted index.

• numberOfUniqueTerms: the number of distinct elements comprising the Lexicon.

Note that after indexing a document version, we expect a new CollectionStatistics is

initialized, reflecting the change in the collection statistics due to the execution of the

indexing process on the examined version. In the experimental phase, we have assigned a

CollectionStatistics to each document, responsible for maintaining the values of the proposed

variables for the version that time after time is the latest version of the document. We include

these objects into collectionCS, at the positions corresponding to the realId identifiers of

the associated documents. In addition to them, we generate an other CollectionStatistics,

which in the following will be denoted as summaryCS. summaryCS accounts for the actual

values of the collection statistics as the index evolves over time. Therefore, while each

CollectionStatistics mantained in collectionCS, keeps up with the evolution of the of a single

collection document, summaryCS specifies the values of the aforementioned statistics for

different time-points, taking into account all the documents comprising the corpus of interest.

In fact, we evaluate the summaryCS fields from the corresponding ones of the collectionCS

elements. Below, we explain how we keep the collection statistics updated, after a document

version goes through the indexing process. Firstly, we must check if a CollectionStatistics

exists in collectionCS at the index corresponding to the realId identifier of the document. If
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this case does not occur, we generate a new CollectionStatistics, whose fields are evaluated

on the basis of the content of the document version. Then, we add the newly generated object

to collectionCS. Finally, we update the summaryCS fields by summing up the corresponding

values of the collectionCS entries. Instead, if the condition presented above arises, two cases

can occur depending on the content of the document version. If it is blank, after setting

to 0 all the fields of the CollectionStatistics associated with the document, we adjust the

summaryCS statistics. In detail, we decrement its variables by the difference between the

current and the previous version of the document. Additionally, we further decrement the

numberOfDocuments variable by 1. This accounts for the fact that inserting a blank version

of a document means eliminating that document from the collection. Instead, if the document

version is not blank, with the exception of the update of the numberOfDocuments field, we

perform the same operations delineated above. For what concerns the numberOfDocuments

variable, we increment it by 1 if the previous version of the document was blank, otherwise

we do not change its value.

Figure 5.2. Representation of how the postings data are encrypted and stored in the inverted
index, with respect to the MA strategy. The letter “U”, stands for Unary coding, while the letter
“G” stands for Gamma coding.

After giving some implementation details on elements which are common to both the

developed strategies, we conclude this section by providing some details of the MA strategy.



74 Chapter 5. BA and MA strategies

Specifically, we focus on the way in which postings data are stored during the indexing

process, after briefly repeating some key points underlying the considered strategy. We

recall that in order to implement the MA strategy we must arrange the postings of a posting

list so that the ones related to successive versions of the same document occupy adjacent

positions in the inverted list. In Section 5.1.1 we have also noted that in order to reduce

the size of the inverted index as much as possible, we encrypt the identifiers and the time

interval data of the postings by using the d-gap technique. We remark that the usage of this

approach is restricted to all the postings related to the versions of the same document. In

other words, the identifier and the temporal interval left boundary of the first posting related

to a document are stored as they are. At this stage, we turn our attention to the manner in

which we have actually carried out this strategy, thus giving some particulars on how we

must interpret the data related to a posting, after pulling it out and loading its raw data in the

central memory. Precisely, with the purpose of putting this approach into effects, we have

adopted some flag variables. In detail, each time we take into consideration a new document,

we precede the identifier of the examined version with the value 1. It is worth mentioning that

this value actually constitutes the lowest value that we can encrypt by using the Gamma [16]

coding, the technique we have basically adopted for storing the identifiers and the temporal

interval boundaries of the postings in the stream of byte composing the inverted index. This

implies that, for two postings related to the same document, we can not directly include the

difference between their identifiers into the stream of bytes, in that it could be equal to 1. In

such a situation, the following value in the stream would be interpreted as the identifier of

a new document. To tackle this issue, before storing the difference between the identifiers

associated with successive document versions, we increase it by 1. Therefore, by using the

described approach, 2 becomes the lowest value we can encrypt in the disk-based inverted

index, for representing the difference between identifiers of successive versions. It is useful

to note that although by using the Gamma coding, we need 3 bits to represent the value 2,

compared to the 1 required to store the value 1, implementing the described approach does

not result in significantly increasing the inverted index size. This derives from the fact that

by employing the Gamma coding for representing a value x, we need 2blog2 xc + 1 bits.

Therefore, incrementing the difference by 1, results in increasing the number of bits required

for storing the computed value only if the difference is equal to 2m − 1, with m ∈ N0. Note

that going along with the value ofm, the probability that such case occurs rapidly goes down.

With respect to this issue, we remark that in the MA approach, the difference between the
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identifiers of two adjacent postings of a posting list is generally quite large, because they are

generally related to versions which do not go through the indexing process one after the other.

A procedure similar to the one described above is used for storing the time interval boundaries

in the inverted index stream of bytes. For a generic version of a document, with the exception

of the first one, we store into the stream of bytes the difference between the two extremes,

incremented by 2. Note that we need to pay particular attention to handling the postings

which refer to the latest version of a document, because their time interval right boundary is

equal to 1, hence the difference between the extremes of their time interval is negative. We

have addressed this issue by using an other flag variable. In detail, for the postings related to

the current versions of the documents in the collection, instead of encrypting the difference

between the two boundaries of their time interval, we include the value 2 into the stream.

We ends the storage of the data related of a posting by adding the value 1 to the inverted

index, again encrypted by using the Gamma coding. It is worth stating that we use this

value to handle correctly also the case in which both the boundaries of the time interval are

set to 1. The ideas we have presented above are illustrated in Figure 5.2. Specifically, the

Figure 5.2 depicts the way in which posting fields are encrypted and their data are included

into the inverted index, in regard to the MA strategy. Looking at the figure 5.2, to better

explain how the different data composing a posting are encoded, we use different colours for

different types of information. In detail, we use the black for the data related to the document

identifiers, the red for the ones associated with the frequency field, whereas the blue is used

for the data related to the time intervals the postings are associated with. Finally, the violet

bits do not convey any information. They are used as flag variables for correctly interpreting

the useful data included into the inverted index.

5.2.2 Retrieval process

In this section we provide some implementation details on how we have carried out the

retrieval process in the MA approach. In particular, we focus on the change we have brought

about to the Matching phase of the Terrier retrieval process, to allow us to respond a time-

travel query. Firstly, we have extended the PostingListManager class. We remind that an

instance of that class is used in the Matching phase of the Terrier retrieval process for

maintaining all the data related to the query terms. We have enhanced this class in such a

way that the object used during the retrieval process keep also the CollectionStatistics related

to the time instant attached with the given query. Below, we assume that a query is submitted
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to the information retrieval system, implementing the strategy taken into account, right after

the Merging phase has been carried out. In such a situation all the CollectionStatistics which

we have generated during the indexing process are stored in a disk-based list, which will

be referred to as CSList. During the retrieval process, we access the entries of theCSList,

by means of a map, entirely maintained in memory, which associates each time-point

considered during the indexing process with an index of such list. Secondly, the MA retrieval

process involves instantiating two objects, which we have denoted as postingScore and

documentFrequency. The former basically is responsible for maintaining the valid postings

which we find by scanning the posting lists related to the query terms. It is useful to specify

that each postingScore entry is actually made up of two elements: i) a valid posting we

have encountered by scanning the inverted lists of the query terms, ii) the realId identifier

associated with the version the corresponding posting refers to. The documentFrequency is

an array which keeps the document frequency of each query term. In the following, as we

have done in Section 5.1.2, for description sake, we suppose to divide the retrieval process in

two different phases, which we have referred to as Retrieving phase and Scoring phase. The

former deals with analyzing the posting lists associated with the query terms searching for

valid postings. The latter is concerned with the actual computation of the document scores.

In each iteration of the Retrieving phase we carry out the following operations:

• Selecting the posting list whose first posting has the lowest identifier. In order to decide

which posting list we must take into consideration, we compare the realId identifiers

associated with the first posting of the posting lists of interest.

• Searching for the next valid posting in the inverted list, selected at the previous pointè.

In this section, we do not give any detail about how this stage actually takes place,

since we have already delved into this matter in Section 5.1.2.

• Inserting the detected posting and the corresponding realId identifier in postingScore.

• Increasing by one the document frequency of the query term whose inverted list has

been taken into consideration at the previous point.

In the Scoring phase, we attribute a score to each posting composing a PostingScore entry.

In particular, for each list the postingScore is made up of, we compute the scores of the

corresponding postings by taking into account i) the collection statistics related to the time-

point of the given query, ii) the document frequency of the query term associated with the
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examined list, iii) the data composing the analyzed postings. During the Scoring phase, we

use the realId identifiers to associate the scores computed for each valid posting occurring in

PostingScore with the corresponding documents.





6
Experimental results

This chapter presents the results obtained in the experimental phase, where we tested the

presented approaches on two collections: the CLEF Adhoc monolingual test collection for

the Italian language and one we have generated from the English Wikipedia. After describing

the collections we have used in the experimental phase, we accurately present the different

experiments we have carried out on such collections, before presenting the obtained results.

6.1 Test collection

In the experimental phase we have actually tested the BA and MA strategies on two

collections. The first one is the CLEF Adhoc monolingual test collection for the Italian

language, while the second one is composed of web pages of the English Wikipedia we

have downloaded from the Wikimedia Foundation project. Below, we give some details

on these collections before going on to describe the experiments we have conducted. In

the following, the CLEF Adhoc monolingual test collection for the Italian language will be

referred to as AH-MONO-IT. The documents forming the corpus of such collection are of two

different types. The former group, LASTAMPA94, contains articles from the LASTAMPA

newspaper, published in 1994. The latter group AGZ-94, AGZ-95 includes news from the

Swiss news agency, related to the years 1994 - 1995, translated in Italian. The overall number

of documents in the corpus is 157558. The topics of the AH-MONO-IT test collection

follow the TREC structure, including three fieds which are title, description and narrative,

respectively. The title field presents the argument the query is about, while description and

narrative extend such field, by providing contextual information. In the experimental phase,

we have only taken into account the title and description fields, thus ignoring the others. The

79
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AH-MONO-IT test collection includes 51 topics. Below, in Table 6.1, we summarize the

specifications of the examined test collection.

AH-MONO-IT

Number of documents 157558
Numer of topics 51

Table 6.1. Features of the CLEF Adhoc monolingual test collection for the Italian language.

Here, we take into account the second collection we have actually used in the experimental

phase. In the remainder, it will be referred to as COOKING-MONO-EN, since it is made up

of English web pages about cooking. Some of the topics covered by these pages are chefs,

typical dishes, cooking techniques, cooking utensils, cookbooks, cooking competitions.

Hereafter, we describe how we have actually generated the COOKING-MONO-EN corpus

of documents, starting from the pages we have downloaded from the English Wikipedia.

These pages, offered by the Wikimedia Foundation project, are multi-licensed under the

Creative Commons Attribution-ShareAlike 3.0 License (CC-BY-SA) and the GNU Free

Documentation License (GFDL). For each of the downloaded pages, we have stored part

of its hystory into an xml file, up to a maximum of 1000 versions. The versions are enriched

with a date indicating when they have been made available on the web. In order to ensure that

the collection of documents we wanted to create had a large number of versions per page, we

have selected the 1000 files with the highest size, thus ignoring the others. Starting from the

selected files, we have generated the temporally versioned collection used in the experimental

phase, by carrying out the following operations:

• Extracting the first 300 versions of each page.

• Assigning each version with an integer identifier indicating the position of that version

with respect to all the versions of that page, we have actually taken into account.

• Inserting the versions associated with the same numerical identifier in the same xml

file.

By performing the procedure given above, we have generated a temporally versioned

collection containing up to a maximum of 300 versions for the 1000 web pages we have

selected. Note that in carrying out the operations given above, we have ignored the temporal

information related to the versions comprising the web pages. The topics we have generated
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Figure 6.1. Topics of the COOKING-MONO-EN collection.

for the COOKING-MONO-EN collection follow the TREC structure, as the AH-MONO-

IT test collection. Specifically each query is made up of two fields, which are title and

description, respectively. The title defines the topic of the query, while the description extend

this field by giving additional information. The COOKING-MONO-EN collection includes

5 topics, which are presented in Figure 6.1. The Table 6.2 displays some summary data about

the COOKING-MONO-EN, we have discussed above.

COOKING-MONO-EN

Number of web pages 1000.00
Number of topics 5.00

Maximum number of versions per page 300.00
Overall number of versions 179386.00

Average number of versions per page 179.39

Table 6.2. Features of the COOKING-MONO-EN collection
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6.2 Evaluation framework

In the experimental phase we have compared the BA and MA strategies to the Terrier real-

time indexing and retrieval processes. The experiments we have carried out on the AH-

MONO-IT and the COOKING-MONO-EN text collections fall into two different categories:

i) correctness tests, ii) performance evaluation. The former group of tests aims at ensuring

that the developed strategies allow us to obtain the same results we would have obtained by

using the Terrier real-time indexing and retrieval processes with no time queries. The latter

group of tests is concerned with computing the time we needed to evaluate a time-travel query

as well as the amount of memory that each of the developed strategies requires to temporally

store the data collected during the indexing and retrieval processes.

In Sections 6.2.1 and 6.2.2 we report the results we have obtained by testing the BA and MA

strategies on the collections we presented in Section 6.1. Although we have performed the

same tests on both the examined collections, for description sake, we report the results of the

correctness test only for the AH-MONO-IT test collection.

6.2.1 Experimental results: AH-MONO-IT

Before experimenting with the BA and MA strategies, we have divided the corpus documents

in four groups, each of them containing about the same number of documents. In detail, we

have included the files corresponding to the collection documents into a single folder, before

arranging them according to the lexicographical order. In Table 6.3, with the aim of making

our tests reproducible, we specify the set of documents composing each of the groups.

Corpus documents

Group 1 AGZ.940101.0001 - AGZ.940925.009
Group 2 AGZ.940925.0010 - AGZ.950715.0075
Group 3 AGZ.950715.0076 - LASTAMPA94-017451
Group 4 LASTAMPA94-017452 - LASTAMPA94-058051

Table 6.3. Groups of documents in which we have actually divided the AH-MONO-IT test
collection.

During the experimental phase, we have handled the four groups of documents indipendently

from one another, as if they constituted different set of documents that we have taken into

account for the indexing process at different time-points. Below, we present the different tests

we have conducted on the AH-MONO-IT test collection.
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Figure 6.2. Topics of the AH-MONO-IT test collection.

• Correctness tests related to the insertion of the documents of the aforementioned groups

in the collection we have used for carrying out the indexing process, at successive time

instants.

• Correctness tests related to the removal from the collection of the documents of the

groups described above, at successive time points.

Note that performing the tests above has involved associating each group with a time point

specifying the time instant in which we have applied the indexing process to each document

of that group. It is worthwhile to note that we have supposed that documents belonging to the

same group went through the indexing process at the same time.

For the first test set, we have provided the groups of documents with successive integer values,

starting from 1. In giving such values, we have sequentially taken into account all the groups

in ascending order with respect to their identifiers. Hence, we have assigned the time-point

1 to the first group, the time-point 2 to the second group and so on. Then we have applied
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Rank Terrier BA MA Terrier BA MA

1 8242 8242 8242 23.9064 23.9064 23.9064
2 18958 18958 18958 15.6858 15.6858 15.6858
3 689 689 689 12.0537 12.0537 12.0537
4 28831 28831 28831 11.9604 11.9604 11.9604
5 1623 1623 1623 11.7723 11.7723 11.7723
6 4740 4740 4740 11.7216 11.7216 11.7216
7 24209 24209 24209 11.5932 11.5932 11.5932
8 26068 26089 26068 11.4307 11.4307 11.4307
9 8953 8953 8953 11.3431 11.3431 11.3431
10 18969 18969 18969 11.2440 11.2440 11.2440
11 34670 34670 34670 11.2170 11.2170 11.2170
12 16239 16239 16239 11.1094 11.1094 11.1094
13 28417 28417 28417 10.7622 10.7622 10.7622
14 33096 33096 33096 10.5554 10.5554 10.5554
15 32989 32989 32989 10.3686 10.3686 10.3686
16 34332 34332 34332 10.3077 10.3077 10.3077

Table 6.4. Results obtained for the time-travel query 142, enriched with the time-point 1.

the BA and MA strategies to all the groups, taken into account in the order given by the

time-points their documents were enriched with.

Rank Terrier BA MA Terrier BA MA

1 75038 75038 75038 30.9096 30.9096 30.9096
2 76666 76666 76666 27.6471 27.6471 27.6471
3 74664 74664 74664 27.1126 27.1126 27.1126
4 76536 76536 76536 24.4940 24.4940 24.4940
5 54290 54290 54290 24.0311 24.0311 24.0311
6 46514 46514 46514 23.5022 23.5022 23.5022
7 8242 8242 8242 23.3289 23.3289 23.3289
8 75519 75519 75519 23.3205 23.3205 23.3205
9 73779 73779 73779 22.8103 22.8103 22.8103
10 73852 73852 73852 22.4341 22.4341 22.4341
11 74055 74055 74055 22.2322 22.2322 22.2322
12 73924 73924 73924 20.2291 20.2291 20.2291
13 74082 74082 74082 19.0127 19.0127 19.0127
14 76784 76784 76784 18.9759 18.9759 18.9759
15 18958 18958 18958 15.4837 15.4837 15.4837
16 62064 62064 62064 12.0416 12.0416 12.0416

Table 6.5. Results obtained for the time-travel query 142, enriched with the time-point 2.

To check the correctness of the BA and MA strategies, we have evaluated all the queries of

the AH-MONO-IT text collection, after performing the indexing process on each group of

documents. It is useful to point out that at each iteration of the retrieval process, we have

provided the time-travel queries with the time-point associated with the latest group we have

taken into account before carrying out the evaluation of such queries. This allowed us to

obtain a ranked list per topic for each of the four time-points we have actually enriched the

corpus documents with. Finally, we have compared the obtained results with the ones we have
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Rank Terrier BA MA Terrier BA MA

1 75038 75038 75038 32.5173 32.5173 32.5173
2 76666 76666 76666 29.8480 29.8480 29.8480
3 74664 74664 74664 28.7344 28.7344 28.7344
4 75536 75536 75536 26.1637 26.1637 26.1637
5 54290 54290 54290 25.1273 25.1273 25.1273
6 46514 46514 46514 24.7787 24.7787 24.7787
7 8242 8242 8242 24.5534 24.5534 24.5534
8 75519 75519 75519 24.4014 24.4014 24.4014
9 73779 73779 73779 24.3351 24.3351 24.3351
10 74055 74055 74055 24.0261 24.0261 24.0261
11 73852 73852 73852 23.7364 23.7364 23.7364
12 73924 73924 73924 21.7132 21.7132 21.7132
13 76784 76784 76784 20.2709 20.2709 20.2709
14 74082 74082 74082 20.0410 20.0410 20.0410
15 18958 18958 18958 16.7846 16.7846 16.7846
16 79017 79017 79017 16.4970 16.4970 16.4970

Table 6.6. Results obtained for the time-travel query 142, enriched with the time-point 3.

gotten by applying the Terrier real-time indexing and the retrieval processes to the collection

documents, we have considered in testing our approaches.

In Figure 6.2, we propose an overview of some of the topics composing the AH-MONO-IT

test collection. We remind that in the experimental phase, we have only considered the title

and description fields . Note that in Figure 6.2 the queries are enriched with an identifier. In

the remainder, we employ such identifiers to refer to the queries such identifiers are associated

with.

Rank Terrier BA MA Terrier BA MA

1 75038 75038 75038 33.9806 33.9806 33.9806
2 76666 76666 76666 31.8366 31.8366 31.8366
3 74664 74664 74664 30.2113 30.2113 30.2113
4 76536 76536 76536 27.7675 27.7675 27.7675
5 54290 54290 54290 26.0280 26.0280 26.0280
6 46514 46514 46514 25.9204 25.9204 25.9204
7 74055 74055 74055 25.8370 25.8370 25.8370
8 73779 73779 73779 25.7723 25.7723 25.7723
9 8242 8242 8242 25.6406 25.6406 25.6406
10 75519 75519 75519 25.2870 25.2870 25.2870
11 73852 73852 73852 24.8936 24.8936 24.8936
12 152094 152094 152094 24.8323 24.8323 24.8323
13 73924 73924 73924 23.1376 23.1376 23.1376
14 76784 76784 76784 21.4062 21.4062 21.4062
15 74082 74082 74082 20.9427 20.9427 20.9427
16 18958 18958 18958 17.8518 17.8518 17.8518

Table 6.7. Results obtained for the time-travel query 142, enriched with the time-point 4.

In Tables 6.4, 6.5, 6.6, 6.7, we propose excerpts of the ranking lists we have obtained by

responding the time-travel query 142, time after time enriched with one of the time-instants

we have provided with the documents in the collection. For each of the documents occurring
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in the proposed ranking lists, we also report the corresponding score. We remind that each

ranking list at most contained 1000 identifiers. This means that given a time-travel query,

we consider as relevant only the first 1000 documents with the highest score. Looking at the

Tables 6.4, 6.5, 6.6, 6.7, we can observe how the scores of the documents changed as soon as

we have applied the developed strategies to a new group of documents. This is due both to

the added information and the fact that at each stage of the retrieval process, we compute the

scores of the documents from scratch, by taking into consideration the statistics related to the

indexed documents at the time corresponding to the time predicate of the query of interest.

Rank Terrier BA MA Terrier BA MA

40 34597 34597 34597 6.6722 6.6722 6.6722
41 24838 24838 24838 6.6451 6.6451 6.6451
42 10445 10445 10445 6.6210 6.6210 6.6210
43 23999 23999 23999 6.5481 6.5481 6.5481
44 31442 31442 31442 6.5445 6.5445 6.5445
45 24414 24414 24414 6.5291 6.5291 6.5291
46 34661 34661 34661 6.5064 6.5064 6.5064
47 17152 17152 17152 6.5037 6.5037 6.5037
48 13605 13605 13605 6.4947 6.4947 6.4947
49 34313 34313 34313 6.4942 6.4942 6.4942
50 36982 36982 36982 6.4757 6.4757 6.4757
51 13167 13166 13166 6.4716 6.4716 6.4716
52 13166 13167 13167 6.4716 6.4716 6.4716
53 3472 3472 3472 6.4643 6.4643 6.4643
54 9772 9772 9772 6.4480 6.4480 6.4480
55 20270 20270 20270 6.4469 6.4469 6.4469

Table 6.8. Results obtained for the time-travel query 143, enriched with the time-point 1. We can
observe that the documents with identifiers 13166 and 131667, despite the fact that they have the
same scores, they are placed in reverse order in the ranked lists associated with the developed
strategies, compared to the one obtained by applying the Terrier retrieval process.

Note that in Table 6.8 althought the documents, whose indentifiers are 13166 and 13167, have

the same score, they appear in reverse order in the ranking lists associated with the developed

approaches, compared to the one obtained for the Terrier retrieval process. This results from

the fact that in the Terrier retrieval process, the algorithm we have actually adopted for sorting

the documents identifiers, with respect to their scores, is not stable.

In order to make sure the ranked lists obtained by using our strategies were the same as those

acquired by using the Terrier real-time indexing and retrieval processes, we have indirectly
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compared them by means of the Kendall rank correlation coefficient [31], a statistic measure

proposed by Kendall, in 1938. The Kendall rank coefficient is also denoted as Kendall’s Tau.

It is a non parametric measure reflecting the relationships between columns of ranked data.

It assumes values ranging from −1 and 1. 1 indicates that the two column are perfectly the

same, 0 that the rankings are indipendent, while −1 denotes a negative correlation, namely

one ranking is the inverse of the other. Given two sequences of data, we associate each

element of the second sequence with the position of that element in the first sequence, which

we suppose to take as reference. At this stage we take into account the positions of the

elements in the two sequences. In particular, in the following, we denote the first list of

positions as X , while we refer to the second list as Y . Let
(
xi, yi

)
a generic couple, where xi

is the i-th element of X , whereas yi is the i-th element of Y . Looking at the couples
(
xi, yi

)
and

(
xj, yj

)
, with i 6= j, we define them concordant if either xi > xj and yi > yj or xi ≤ xj

and yi ≤ yj . On the contrary, we denote them as discordant if either xi > xj and yi < yj

or xi < xj and yi > yj . We compute the Kendall rank coefficient through the formula given

below:

τ =
nc− nd

n
(
n− 1

)
/2

(6.1)

where n is the actual lenght of X , nc is the number of concordant pairs, while nd is the

number of discordant pairs.

In the experimental phase, we have matched each of the ranking lists, resulting from the

application of the BA and MA strategies, against the corresponding ranking list, acquired

by performing the Terrier real-time indexing and retrieval processes. The results we have

obtained for the time-point 1 and all the queries of the test collection are proposed in Table

6.9. In that table we can observe that all the values we have computed for the Kendall’s

Tau coefficient are very close to 1, indicating that the ranking lists we have obtained for the

developed strategies are very similar to the one acquired by employing the Terrier indexing

and retrieval processes. Although the results depicted in Table 6.9 are very encouraging,

we can note that there are many values different from 1. In fact, these values are justified

by the occurrence of the situation we have outlined above. It entails that two documents

can be placed in reverse order in the ranking lists obtained for the developed approaches

in comparison with the one related to the application of the Terrier real-time indexing and

retrieval processes even if they have the same score. To make sure that the values of the

Kendall’s Tau coefficient different from 1 were a consequence of the presented circumstance,
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Query BA MA Query BA MA

141 1.0000 1.0000 174 0.9999 0.9999
142 1.0000 1.0000 176 0.9999959 0.9999
143 0.9999 0.9999 177 0.9999 0.9999
145 1.0000 1.0000 178 0.9999 0.9999
147 1.0000 1.0000 179 1.0000 1.0000
148 1.0000 1.0000 180 1.0000 1.0000
149 1.0000 1.0000 181 0.9999 0.9999
150 1.0000 1.0000 182 1.0000 1.0000
151 1.0000 1.0000 183 1.0000 1.0000
152 0.9999 0.9999 184 0.9999 0.9999
153 1.0000 1.0000 185 0.9999 0.9999
154 1.0000 1.0000 186 0.9999 0.9999
155 0.9999 0.9999 187 1.0000 1.0000
156 0.9999 0.9999 188 1.0000 1.0000
157 0.9999 0.9999 189 0.9999 0.9999
159 0.9999 0.9999 190 1.0000 1.0000
161 0.9999 0.9999 192 0.9999 0.9999
162 1.0000 1.0000 193 0.9999 0.9999
163 1.0000 1.0000 194 1.0000 1.0000
164 1.0000 1.0000 195 0.9999 0.9999
165 0.9999 0.9999 196 1.0000 1.0000
166 0.9999 0.9999 197 0.9999 0.9999
167 0.9999 0.9999 198 1.0000 1.0000
168 0.9999 0.9999 199 0.9999 0.9999
171 0.9999 0.9999 200 0.9999 0.9999
173 0.9999 0.9999

Table 6.9. Kendall’s Tau coefficient values computed for the ranked lists obtained by applying the
BA and MA strategies to the first group of documents in which we have divided the AH-MONO-IT
corpus of documents.

we have compared the scores of the documents for which we have found a mismatch in the

positions of the corresponding ranking lists. This has confirmed the hypothesis presented

above.

Now, we focus on the second group of tests we have conducted. As we mentioned above, they

are designed to check that the developed strategies correctly work, even when we modify the

documents in the corpus, by including newer versions of them into the collection used for

carrying out the indexing process. Specifically, with the aim of comparing the results with

those we have obtained for the Terrier indexing and retrieval processes, we have tested the
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BA and MA strategies on a set of documents obtained from the AH-MONO-IT corpus of

documents by removing time after time one of the groups of documents, given above. Note

that, to let the results be matched against the ones we have gotten for the Terrier processes,

we have removed the groups of documents from the collection in reverse order to the one we

have adopted for the first set of tests. We remind that removing a document from a collection,

in our context, means including into it a blank version of the document we want to eliminate.

Therefore, to carry out the second set of tests, we have performed the following operations:

• Applying the BA and MA strategies in the same way as we have done for the first set

of tests. This required us to provide each of the four groups presented above with an

integer value starting from 1. Then we have performed the MA and BA strategies on the

different groups of documents, in the order given by the time-points, we have enriched

them with.

• Creating a set of blank documents for each of the groups of documents taken into

account during the indexing process. For each group of documents that went through

the indexing process, we have generated a new one containing empty versions of the

documents occurring in it. To ensure that each version were recognized as a newer

version of the corresponding document, we have assigned it with the same name of the

related document.

• Performing the BA and MA strategies on the new groups of documents. Before carrying

out one of the developed strategies on each of the newly-created group of documents,

we have enriched them with time-points, starting from 5. We state that we have taken

into account the newly generated groups of documents in reverse order to the one we

have considered at the first point. After performing the indexing process on a group of

documents, we have evaluated all the queries of the AH-MONO-IT test collection with

regard to the time point associated with the examined group.

In Tables 6.10, 6.11, 6.12, we provide the results we have obtained for the time-travel query

142, enriched with the time-points 5, 6, 7, 8, respectively. Note that we do not show the

results we have gotten by responding the examined query in regard to the time-point 8, since

at that time the collection used for performing the indexing process did not contain any valid

version of the documents composing the corpus of the AH-MONO-IT test collection.

Below, before reporting some information related to the time we needed to carry out the

indexing process on the entire corpus of documents, as well as to the memory usage during
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Rank Terrier BA MA Terrier BA MA

1 75038 75038 75038 32.5173 32.5173 32.5173
2 76666 76666 76666 29.8480 29.8480 29.8480
3 74664 74664 74664 28.7344 28.7344 28.7344
4 75536 75536 75536 26.1637 26.1637 26.1637
5 54290 54290 54290 25.1273 25.1273 25.1273
6 46514 46514 46514 24.7787 24.7787 24.7787
7 8242 8242 8242 24.5534 24.5534 24.5534
8 75519 75519 75519 24.4014 24.4014 24.4014
9 73779 73779 73779 24.3351 24.3351 24.3351
10 74055 74055 74055 24.0261 24.0261 24.0261
11 73852 73852 73852 23.7364 23.7364 23.7364
12 73924 73924 73924 21.7132 21.7132 21.7132
13 76784 76784 76784 20.2709 20.2709 20.2709
14 74082 74082 74082 20.0410 20.0410 20.0410
15 18958 18958 18958 16.7846 16.7846 16.7846
16 79017 79017 79017 16.4970 16.4970 16.4970

Table 6.10. Results obtained for the time-travel query 142, enriched with the time-point 5.

Rank Terrier BA MA Terrier BA MA

1 75038 75038 75038 30.9096 30.9096 30.9096
2 76666 76666 76666 27.6471 27.6471 27.6471
3 74664 74664 74664 27.1126 27.1126 27.1126
4 76536 76536 76536 24.4940 24.4940 24.4940
5 54290 54290 54290 24.0311 24.0311 24.0311
6 46514 46514 46514 23.5022 23.5022 23.5022
7 8242 8242 8242 23.3289 23.3289 23.3289
8 75519 75519 75519 23.3205 23.3205 23.3205
9 73779 73779 73779 22.8103 22.8103 22.8103
10 73852 73852 73852 22.4341 22.4341 22.4341
11 74055 74055 74055 22.2322 22.2322 22.2322
12 73924 73924 73924 20.2291 20.2291 20.2291
13 74082 74082 74082 19.0127 19.0127 19.0127
14 76784 76784 76784 18.9759 18.9759 18.9759
15 18958 18958 18958 15.4837 15.4837 15.4837
16 62064 62064 62064 12.0416 12.0416 12.0416

Table 6.11. Results obtained for the time-travel query 142, enriched with the time-point 6.

the application of such process, we give some details of the hardware whereby we have

actually performed the tests, outlined above. These data are reported in Table 6.13.

In Figure 6.3 there are two histograms representing the execution time and the memory

consumption of the developed strategies along with the Terrier real-time indexing process on

the AH-MONO-IT test collection. Comparing the data riported in Figure 6.3 and in particular

the ones related to the memory consumption, we can conclude that the greatest contribution

to the memory consumption is given by the mapTermDocuments, the map the MA strategy is

based on. Looking at the matter from another perspective, we can state that maintaining the

name of the documents and their identifiers in the central memory only marginally contributes

to the memory usage.

The last topic we address in this section is about the time required to answer the topics of
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Rank Terrier BA MA Terrier BA MA

1 8242 8242 8242 23.9064 23.9064 23.9064
2 18958 18958 18958 15.6858 15.6858 15.6858
3 689 689 689 12.0537 12.0537 12.0537
4 28831 28831 28831 11.9604 11.9604 11.9604
5 1623 1623 1623 11.7723 11.7723 11.7723
6 4740 4740 4740 11.7216 11.7216 11.7216
7 24209 24209 24209 11.5932 11.5932 11.5932
8 26068 26089 26068 11.4307 11.4307 11.4307
9 8953 8953 8953 11.3431 11.3431 11.3431
10 18969 18969 18969 11.2440 11.2440 11.2440
11 34670 34670 34670 11.2170 11.2170 11.2170
12 16239 16239 16239 11.1094 11.1094 11.1094
13 28417 28417 28417 10.7622 10.7622 10.7622
14 33096 33096 33096 10.5554 10.5554 10.5554
15 32989 32989 32989 10.3686 10.3686 10.3686
16 34332 34332 34332 10.3077 10.3077 10.3077

Table 6.12. Results obtained for the time-travel query 142, enriched with the time-point 7.

the AH-MONO-IT test collection. In the Tables 6.14 and 6.16 we report the times we have

obtainined for the BA and MA strategies, during the experimental phase. Specifically, they

are the times needed for performing the retrieval process for the BA and MA strategies, in

regard to all the time points we have actually enriched with the documents of the AH-MONO-

IT corpus.

Looking at the values in Tables 6.14 and 6.16, it should be noted that those presented in 6.16

are greater than those occurring in 6.14. As we remarked above, the MA strategy generally

requires us to analyze a lower number of postings than the BA strategy, thus decreasing the

time we need to evaluate a query. This case mostly occurs when we match a time- travel query

against a versioned collection containing several versions for each document. In fact, the

advantages brought by the MA strategy compared to the BA approach, in terms of the number

of postings analyzed during the retrieval process, are more significant when the time-point of

interest refers to the first versions of the documents in the collection. Note that, this case does

not occur here. Actually, even if we have divided the AH-MONO-IT corpus of documents

Component Name Characteristics

CPU Intel(R) Core(TM) i7 CPU 2600 @ 3.40GHz, 4 core
CACHE L1: 128 KB

CACHE L2: 1024 KB
CACHE L3: 8192 KB

Ram 2x MT16JSF51264HZ-1G4D1 Total: 8,00GB Ram
DDR3 1333 Mhz

Drive WDC WD20EARX-00PASB0 Capacity: 1863 GB

Table 6.13. Hardware components description.
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(a) (b)

Figure 6.3. On the left we give the execution time of the indexing process for the strategies we
have discussed in this work as well as for the Terrier real-time indexing process. On the right, we
indicate the maximum amount of memory we need for carrying out the indexing process for the
examined approaches.

in 4 groups and we have managed these groups as if they formed indipendent document

sets, going through the indexing procedure at different times, these groups actually do not

contain multiple versions of the same documents. For this reason, the collection we have

created from the AH-MONO-IT corpus of documents can be only considered a particular

case of versioned collection. Turning our attention to the data reported in Tables 6.14 and

6.16, the argument given above accounts for the fact that indipendently for the time point

we consider, the execution times given for the BA strategy are lower than the corresponding

values reported for the MA approach. Specifically, we justify the results proposed in Tables

6.14 and 6.16 by considering the fact that differently from the BA strategy, in the MA strategy

the difference between the identifiers related to consecutive versions of the same document is

very large. In our context such difference equals the number of the corpus documents, which

is 157558. This entails that decoding the data corresponding to a posting in the MA strategy

takes more time than that we need to perform the same operation for the BA strategy.

Additionally, in carrying out the MA approach we must also interpret the values we have

included into the inverted index stream of bytes to allow the postings fields to be correctly

decoded.

Tables 6.15 and 6.17 display the mean and standard deviation values for the execution times

we have outlined in Tables 6.14 and 6.16, respectively.

In Tables 6.18 and 6.20 we outline the execution times required to evaluate the queries of the

AH-MONO-IT test collection, evaluated after indexing all the groups of documents we have
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Query 1 2 3 4 Query 1 2 3 4
(id) (ms) (id) (ms)

141 42.47 74.33 112.80 154.83 174 26.03 52.30 79.10 108.23
142 44.10 85.10 128.33 179.43 176 38.27 75.17 117.67 162.53
143 57.57 118.97 175.27 238.93 177 22.23 44.63 71.20 101.60
145 39.13 77.30 119.33 163.50 178 33.70 65.80 100.07 134.67
147 41.40 79.13 119.70 160.63 179 59.03 120.20 181.70 245.60
148 47.20 93.90 144.83 199.40 180 27.67 55.27 85.67 117.77
149 72.30 139.93 220.60 315.37 181 35.20 69.53 107.20 146.67
150 37.60 74.63 114.93 158.13 182 72.43 142.53 223.63 305.23
151 53.20 106.97 162.60 219.80 183 30.10 61.87 93.90 127.07
152 23.17 45.83 69.67 94.33 184 26.77 52.80 83.70 102.23
153 38.20 76.33 117.43 162.00 185 62.50 125.33 190.80 256.87
154 31.73 62.63 96.83 132.50 186 50.33 101.60 160.57 222.57
155 30.57 60.57 94.60 132.10 187 45.30 90.13 138.17 185.17
156 35.83 70.73 114.37 165.13 188 44.20 87.83 133.17 179.33
157 41.83 83.03 127.60 174.70 189 36.53 73.40 113.07 156.70
159 57.53 116.07 177.63 239.60 190 54.23 109.97 166.97 228.03
161 28.03 54.97 84.00 113.63 192 63.00 127.57 202.30 284.13
162 39.67 78.23 123.60 174.87 193 36.60 70.47 111.97 154.63
163 35.00 69.53 107.37 148.67 194 36.13 71.60 115.23 163.37
164 32.27 64.30 100.77 142.23 195 23.03 44.50 71.40 101.47
165 37.50 75.83 122.47 177.67 196 63.00 126.73 194.30 262.77
166 65.43 132.93 201.43 266.87 197 43.90 88.07 133.30 177.23
167 42.97 85.93 132.83 180.77 198 41.70 83.30 128.73 178.63
168 23.77 47.17 73.13 96.00 199 38.67 77.87 118.17 160.07
171 37.77 76.57 123.00 178.50 200 22.73 45.53 70.40 95.27
173 63.47 126.73 194.67 266.70

Table 6.14. Execution times of the retrieval process for the BA strategy, with respect to all the
queries composing the AH-MONO-IT test collection. Note that the queries are evaluated taking
into account each of the time-points we have provided the corpus documents with. The execution
times are expressed in milliseconds. The values we have reported in this table have been obtained
by repeating each test for 50 times and then averaging the computed execution times.

1 2 3 4

µ 41.82 83.15 128.47 176.71
σ 13.21 26.66 40.79 55.64

Table 6.15. Mean value and standard deviation for the execution times referring to each of the
time points we have taken into account in Table 6.14.

divided the AH-MONO-IT corpus in. Specifically, in Table 6.18 we focus on the BA strategy,

while in Table 6.20 we take into account the results obtained for the MA strategy. Looking
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Query 1 2 3 4 Query 1 2 3 4
(id) (ms) (id) (ms)

141 47.43 94.40 138.54 193.37 174 30.90 64.81 97.80 133.16
142 52.69 107.43 161.53 220.00 176 46.48 94.98 144.26 204.64
143 73.42 146.45 225.15 308.48 177 26.61 55.43 85.21 123.86
145 47.49 97.89 149.59 202.88 178 40.16 84.65 123.93 170.09
147 51.38 99.10 151.78 201.20 179 74.46 155.80 234.63 319.97
148 56.97 117.86 180.76 253.90 180 32.86 70.14 105.55 145.03
149 93.24 179.94 280.98 392.04 181 42.31 88.44 132.58 184.58
150 45.53 96.06 144.42 196.57 182 96.58 186.74 289.46 394.72
151 66.74 136.27 206.34 282.66 183 36.67 77.36 114.80 157.09
152 27.01 57.18 85.34 116.69 184 31.74 65.96 102.53 148.97
153 46.17 96.79 146.13 207.05 185 82.68 165.36 247.49 337.16
154 38.03 79.82 119.16 163.17 186 65.63 130.84 206.22 290.24
155 43.35 75.72 115.99 165.11 187 56.22 115.81 173.31 234.61
156 42.98 90.59 141.53 211.44 188 53.40 111.67 166.88 227.60
157 51.25 109.79 158.89 221.49 189 44.90 96.08 140.38 194.83
159 75.61 150.39 228.91 313.05 190 69.05 139.11 214.77 296.40
161 34.15 70.11 103.58 140.68 192 84.45 167.43 262.11 364.11
162 51.81 99.36 157.34 224.68 193 45.81 89.20 140.40 195.27
163 42.13 87.58 132.45 185.55 194 43.89 90.51 142.57 206.22
164 39.22 82.23 124.74 178.72 195 27.09 55.97 86.15 123.64
165 46.62 97.10 151.47 226.01 196 83.66 165.38 250.48 343.71
166 85.77 174.95 261.88 347.85 197 53.89 112.08 168.46 225.03
167 52.94 108.73 167.80 228.85 198 52.96 105.63 161.18 226.23
168 27.97 59.11 87.83 117.98 199 47.37 97.79 149.56 202.03
171 45.53 96.94 151.99 27.63 200 26.50 56.81 85.47 116.19
173 84.54 165.76 254.05 349.42

Table 6.16. Execution times of the retrieval process for the MA strategy in regard to all the queries
of the AH-MONO-IT test collection. The queries have been evaluated by adopting the approach
we have actually described in Section 6.2.The values we have reported in this table have been
obtained by repeating each test for 50 times and then averaging the computed execution times.

at the Table 6.18, we can observe that the execution time increases as we take into account

increasing values for the time-points reported in that table. At a first glance, this could seem a

1 2 3 4

µ 52.28 106.30 161.85 224.35
σ 18.41 35.39 54.73 74.20

Table 6.17. Mean value and standard deviation for the execution times referring to each of the
time points we have taken into account in Table 6.16.
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Query 1 2 3 4 Query 1 2 3 4
(id) (ms) (id) (ms)

141 74.34 100.72 124.27 155.32 174 48.70 67.82 88.15 110.28
142 82.68 111.44 143.99 175.27 176 74.23 101.98 131.56 165.50
143 109.83 149.66 196.01 239.84 177 44.91 62.64 80.07 102.84
145 76.10 103.36 135.13 162.76 178 65.00 90.23 111.43 138.73
147 79.63 104.32 135.76 162.76 179 108.52 157.02 200.92 247.41
148 89.42 124.59 160.79 201.71 180 52.18 73.77 94.10 119.35
149 134.87 181.75 240.27 303.05 181 68.01 93.75 118.04 148.13
150 74.18 101.53 130.94 158.74 182 137.98 186.02 245.45 302.85
151 102.02 139.64 180.90 222.15 183 58.11 80.88 103.29 127.95
152 42.91 60.47 77.88 96.13 184 54.70 72.93 95.85 121.73
153 73.05 102.99 129.89 164.96 185 118.79 163.15 210.36 263.82
154 61.07 84.89 107.40 133.89 186 103.03 135.58 181.83 226.21
155 58.00 80.90 105.22 133.66 187 88.67 120.29 156.18 188.84
156 70.53 98.81 126.99 167.45 188 83.08 116.16 148.92 180.24
157 80.87 112.43 141.43 176.41 189 69.41 97.81 126.16 157.44
159 111.04 151.25 197.94 241.98 190 107.19 143.65 188.99 231.22
161 53.80 73.29 94.31 115.14 192 126.83 168.25 225.23 282.16
162 81.82 106.47 142.05 176.80 193 74.19 96.12 126.59 156.99
163 69.00 93.98 120.64 149.73 194 72.71 98.55 129.30 166.65
164 66.36 89.82 113.50 143.97 195 47.54 62.77 80.94 103.32
165 76.28 105.58 137.73 180.04 196 121.29 166.24 213.99 264.59
166 125.65 170.71 222.53 269.18 197 84.90 114.91 149.15 179.03
167 85.49 114.29 151.54 183.91 198 82.55 111.68 144.25 179.82
168 44.58 63.05 79.65 97.63 199 76.75 103.14 133.51 162.45
171 77.02 106.45 137.72 181.34 200 42.98 60.96 77.52 96.21
173 122.49 166.33 218.76 268.56

Table 6.18. Execution times of the retrieval process for the BA strategy with respect to all the
queries of the AH-MONO-IT test collection. The queries have been evaluated after the four groups
of documents given in Table 6.3 have gone trough the indexing procedure. The values we have
reported in this table have been obtained by repeating each test for 50 times and then averaging
the computed execution times.

1 2 3 4

µ 68.57 110.69 143.43 178.18
σ 13.70 33.65 44.92 54.96

Table 6.19. Mean value and standard deviation for the execution times referring to each of the
time points we have taken into account in Table 6.18.

bit strange, since answering a time-travel query by using the BA strategy involves analyzing

all the postings related to the query terms, indipendently from their time intervals. In fact,

even if evaluating a time-travel query requires us to take into consideration all the postings

composing the inverted index, regardless the time-point of the query of interest, as shown in

Table 6.22, taking into account a lower time point allows us to avoid executing a large amount

of operations, such as the selection of the posting lists, we have to consider in each step of

the Scoring phase. An argument supporting this reasoning is that the values reported for

the time-point 4 in Table 6.20 are very similar to the ones provided in Table 6.16 for the

same time-point. For what concerns the Table 6.20, we can note that, with the exception
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Query 1 2 3 4 Query 1 2 3 4
(id) (ms) (id) (ms)

141 103.97 135.25 162.46 200.11 174 68.51 90.92 111.64 134.52
142 117.68 154.38 190.64 226.94 176 105.43 139.98 171.12 212.41
143 158.16 208.53 262.77 313.15 177 61.80 82.35 100.42 126.33
145 108.83 142.58 175.53 209.01 178 90.72 119.53 144.16 175.87
147 110.93 142.10 176.94 206.97 179 159.28 215.99 270.37 326.43
148 129.92 174.33 215.80 263.32 180 73.89 98.29 120.85 147.41
149 192.05 250.35 319.54 396.14 181 95.45 126.41 156.23 192.09
150 104.85 137.03 169.63 202.87 182 198.74 260.56 328.60 398.17
151 147.85 195.85 244.22 289.74 183 81.79 107.80 131.70 159.53
152 59.43 79.99 96.99 117.34 184 75.98 98.78 123.21 154.43
153 105.57 142.11 173.55 217.20 185 169.80 225.48 280.83 343.30
154 86.44 113.45 137.36 165.77 186 147.85 190.73 243.05 294.97
155 82.39 109.85 135.68 169.80 187 125.58 164.87 205.62 241.86
156 102.38 137.47 171.17 219.60 188 121.19 160.48 197.08 234.52
157 115.81 153.02 186.69 226.95 189 99.81 134.11 163.60 200.96
159 159.06 210.27 265.47 316.31 190 154.45 200.99 252.93 302.93
161 74.84 99.07 119.24 141.44 192 180.34 233.51 298.74 366.18
162 115.88 153.02 186.69 226.95 193 103.86 130.59 166.73 200.22
163 96.56 127.85 157.18 191.75 194 103.12 134.57 169.53 213.71
164 93.98 124.43 148.54 180.79 195 63.28 82.14 101.31 126.38
165 111.45 147.64 184.11 236.30 196 174.69 229.95 288.08 350.12
166 179.67 238.25 299.32 353.78 197 121.76 159.68 198.12 231.08
167 121.14 157.37 199.25 236.28 198 118.38 156.82 193.60 234.54
168 61.39 82.71 99.67 118.56 199 107.50 141.24 175.05 207.69
171 109.92 146.90 182.99 236.39 200 59.08 80.10 97.37 118.76
173 178.08 233.15 293.94 353.00

Table 6.20. Execution times of the retrieval process for the MA strategy with respect to all the
queries of the AH-MONO-IT test collection. The queries have been evaluated after the four groups
of documents given in Table 6.3 have gone trough the indexing procedure. The values we have
reported in this table have been obtained by repeating each test for 50 times and then averaging
the computed execution times.

1 2 3 4

µ 115.50 152.10 189.15 229.72
σ 36.89 48.26 62.31 74.81

Table 6.21. Mean value and standard deviation for the execution times referring to each of the
time points we have taken into account in Table 6.20.

of the time-point 4, the execution times are significantly greater than those given in Table

6.16. This is due to the fact that evaluating a query after indexing all the group of documents,

we have outlined above, requires us to analyze a greater number of postings than those we

have to consider by adopting the strategy we have described in this section. We recall that it

involves evaluating all the queries of the examined test collection after incrementally indexing

the group of documents we have divided the corpus of the AH-MONO-IT test collection. In

order to support this argument, in Table 6.23 we report the number of postings analyzed

during the evaluation of some of the queries of the examined test collection, for both the

cases we have considered above. Note that the values presented in Tables 6.16 and 6.20 for
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Query 1 2 3 4 Query 1 2 3 4
(id) (number of postings) (id) (number of postings)

141 552446 552446 552446 552446 141 552446 552446 552446 552446
145 597110 597110 597110 597110 145 597110 597110 597110 597110
152 316778 316778 316778 316778 152 316778 316778 316778 316778
163 521871 521871 521871 521871 163 521871 521871 521871 521871
174 376769 376769 376769 376769 174 376769 376769 376769 376769
183 451460 451460 451460 451460 183 451460 451460 451460 451460
192 927569 927569 927569 927569 192 927569 927569 927569 927569
200 306751 306751 306751 306751 200 306751 306751 306751 306751

Table 6.22. Number of postings analyzed during the retrieval process for the BA and MA
strategies, respectively. The queries, whose identifiers are reported in the first column of the table
have been evaluated after indexing all the documents of the AH-MONO-IT corpus, On the left we
propose the results for the BA approach, while the ones related to the MA strategy are reported on
the right.

the time-point 4 are very similar with one another, since the evaluation of the AH-MONO-IT

queries for such time-point involves analyzing all the postings of the inverted index for both

the cases we have considered in such tables.

Query 1 2 3 4 Query 1 2 3 4
(id) (number of postings) (id) (number of postings)

141 552446 552446 552446 552446 141 123520 258905 398441 552446
145 133736 280283 430504 597110 145 597110 597110 597110 597110
152 316778 316778 316778 316778 152 70798 148350 227995 316778
163 521871 521871 521871 521871 163 113890 238404 370296 521871
174 376769 376769 376769 376769 174 82270 172344 267960 376769
183 451460 451460 451460 451460 183 103634 216587 329535 451460
192 927569 927569 927569 927569 192 203773 426266 660915 927569
200 306751 306751 306751 306751 200 64881 138215 216583 306751

Table 6.23. Number of postings examined during the retrieval procedure for the MA strategy. On
the left we propose the values we have obtained by answering the queries, whose identifiers are
given in the first column, after we have indexed all the documents of the AH-MONO-IT corpus.
On the right we show the execution times we have obtained by adopting the incremental strategy
described in Section 6.2

.

6.2.2 Experimental results: COOKING-MONO-EN

The Table 6.24 reports the execution times we have obtained by evaluating the five topics

presented in Figure 6.1 after indexing all the documents of the COOKING-MONO-EN

corpus. Looking at the values reported in Table 6.24, we can observe that the MA

strategy outperforms the BA approach with respect to almost all the examined time-points.

Specifically, for low values of the time-points we have provided with the queries of the

COOKING-MONO-EN collection, the MA approach allows us to perform the retrieval
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Query 1 2 3 4 5 1 2 3 4 5

(time-points) (ms) (ms)

1 55.36 44.13 29.76 49.96 24.73 14.67 12.18 8.31 12.28 7.11
12 48.36 40.93 28.90 49.10 24.30 14.70 14.38 7.70 13.11 7.64
24 47.56 39.73 28.46 47.4 25.1 14.96 14.48 4.80 16.74 5.31
36 49.73 39.73 28.80 47.56 24.33 20.16 13.90 9.61 17.63 5.69
48 47.83 39.73 29.16 47.6 24.13 19.21 17.73 12.64 18.59 9.41
60 47.43 39.60 29.43 48.26 24.13 19.81 24.80 16.74 15.69 16.32
72 48.86 39.83 28.26 47.83 25.33 20.51 23.17 18.66 22.04 14.67
84 47.43 38.06 28.60 49.63 24.46 23.99 22.18 18.51 22.81 14.58
96 47.43 38.60 29.86 48.78 24.33 28.07 22.31 18.47 30.80 15.95
108 48.60 40.43 28.53 48.30 24.46 30.18 22.70 21.01 31.08 17.10
120 47.60 38.36 28.33 49.20 24.50 31.75 23.01 19.75 33.70 16.80
132 47.33 39.13 28.86 49.40 24.60 33.41 29.17 19.34 36.10 17.40
144 47.50 40.83 28.93 48.93 24.53 36.80 30.00 18.18 37.41 18.42
156 47.76 40.03 28.9 48.16 24.40 37.63 33.27 19.82 38.50 18.63
168 48.33 39.66 28.73 48.10 24.60 39.96 30.56 24.17 40.61 18.92
180 48.93 40.00 28.63 48.16 24.36 40.97 32.17 26.28 39.40 21.51
192 48.4 40.0 28.63 48.16 24.36 42.93 32.85 26.23 43 21.81
204 47.76 39.03 28.70 49.66 25.06 45.70 33.77 23.84 46.11 21.60
216 47.33 41.5 28.46 48.36 24.53 46.20 36.04 26.04 45.98 24.04
228 47.73 39.63 28.90 49.76 24.73 47.72 35.96 29.44 46.55 23.87
240 48.30 40.46 28.93 48.70 25.13 50.35 38.77 28.28 52.10 22.10
252 49.10 39.43 28.73 48.11 25.10 50.96 37.65 33.38 47.30 23.03
264 48.43 40.16 28.93 48.30 25.40 50.48 37.05 31.60 51.51 29.41
276 48.43 40.73 28.80 48.23 24.86 53.08 39.48 32.98 53.89 24.91
288 48.3 39.93 29.03 48.23 26.03 53.98 38.02 33.42 55.55 25.51
300 47.36 40.43 29.43 48.16 24.36 54.18 43.57 32.40 54.61 30.11

Table 6.24. On the left we propose the execution times for the retrieval process with respect to the
BA strategy, while on the right we give the execution times in regard to the MA approach. We point
out that the results reported in this table have been obtainined by repeating each measure 50 times
and then averaging the computed values.

process in much less time than that required for the BA strategy. This results from the fact

that the MA strategy, as we stated several times throughout this section, speeds up query

evaluation by skipping some postings which do not match for the query time-predicate. As

shown in Figure 6.4, once we have established the bag-of-words composing the query, the

number of postings analyzed during the retrieval

process rapidly grows as we take into account increasing values for the time-point we enrich

the query with. In fact, answering the first query (blu curve in Figure 6.4), requires us to

analyze 5167 postings with respect to the time-point 1 and 601969 in regard to the time-point
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Figure 6.4. Representation of the number of postings examined during the retrieval process as a
function of the time-points associated with the COOKING-MONO-EN queries. Here, we assume
that the topics are evaluated after performing the indexing process on all the documents of the
COOKING-MONO-EN corpus.

300. It is worthwhile to note that the fact that the trend of the curves depicted in Figure6.4 is

nearly linear exclusively depend on the documents of the corpus and the queries of interest. It

indicates that the query terms occur uniformly in the versions of the COOKING-MONO-EN

corpus. Finally, turning again our attention to the Table 6.24, we observe that going along

with the time-points, the difference between the execution times reported for the BA and MA

strategies decreases, until the BA approach outperforms the MA approach. This derives from

the fact that, considered the same number of postings, carrying out the retrieval procedure

for the BA strategy takes less time than performing the same process for the MA strategy,

because of the different techniques we adopt for encoding the posting data. Therefore, taking

into account the retrieval process, as soon as the number of postings analyzed for the MA

strategy gets closer to the number of postings examined for the BA strategy, the difference in

the execution times between the implemented strategies approaches tends to 0.





7
Conclusions

7.1 Conclusions

The objective of this work was to develop a functionality which supported time-travel

text search over temporally versioned collections. In the experimental phase, we have

implemented such feature on Terrier, an information retrieval system being currently

developed by the Department of Computing Science of the University of Glasgow. First

of all, we have throughly examined some ideas proposed in the literature, intended for

letting users match standard queries enriched with time predicates against documents we

have provided with temporal data. Such queries have been referred to as time-travel queries.

In the experimental phase, we have considered collections made up of multiple versions of

the same document, each of them enriched with a time interval specifying when it actually

represents the related document. Throughout this work such collections of documents have

been referred to as temporally versioned collections. The strategies we have examined aim

at speeding up the retrieval process by arranging the data in the inverted index in such a way

to take advantage of the temporal data related to the documents in the collection. The most

promising approaches involved slicing the inverted index either along the time-axis or along

the temporal dimension, to minimize the number of postings analyzed during the retrieval

process, by ignoring the postings which certainly do not contribute to define the final scores

of the document versions occurring in the collection. Although the ideas underlying the

examined approaches were promising, in the experimental phase we could not exploit such

ideas, because implementing such strategies would have required us to completely change

how the real-time indexing and retrieval processes are performed in Terrier. Therefore, we

have devised two strategies, referred to as the BA and the MA strategies. In designing such

101
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approaches we have exclusively focused on queries enriched with time points rather than time

intervals. BA stands for Basic Approach for index versioning. It carries out the evaluation

of a time-travel query by ruling out all the postings whose time interval does not satisfy

the time predicate of the query. In fact, we point out that this strategy corresponds to the

baseline approach, since using this strategy for query evaluation requires us to analyze all

the postings of the posting lists related to the query terms, regardless the time point of the

query. MA stands for Mapping approach for index versioning and it allows us to speed up

the retrieval process, by exploiting a map associating each index term with the first posting

of a document in which that term occurs in. In order to take advantage of this map, we

have to ensure that the postings associated with successive versions of the same document,

occupy adjacent positions in each of the inverted lists composing the inverted index. It is

worthwhile to point out that in designing the BA and MA approaches, we had to satisfy all the

requirements related to the Terrier real-time indexing and retrieval processes, such as the need

of flushing the data collected during the indexing process at regular intervals or the managing

of the update of the collection statistics as the documents of the collection evolved over

time. These aspects have significantly limited the range of possibilities we could consider

in implementing the BA and MA strategies. To verify the correctness of the BA and MA

strategies as well as to evaluate the retrieval efficiency, we have experimented with them on

two collections. The former was the CLEF Adhoc monolingual text collection for the Italian

language, referred to as AH-MONO-IT. The second collection has been generated starting

from the English Wikipedia. In the experimental phase we have denoted such collection as

COOKING-MONO-EN. Both the corpora of the collections we have taken into consideration

have been divided in several groups of documents in order to generate temporally versioned

collections. Therefore, the AH-MONO-IT test collection contains 4 document sets, each

of them containing almost the same number of documents. The COOKING-MONO-EN

collection consists of 1000 documents, each of them occurring in multiple versions, up to a

maximum of 300 versions. It is worth remarking that the AH-MONO-IT test collection is

a special case of versioned collection, since the collection contains an only version for each

document occurring in it. The tests we have performed on the examined collections fall into

two categories. The former group of tests aims at evaluating if the developed strategies give

back the same raking lists we would have obtained by evaluating the queries of interest by

adopting the Terrier real-time indexing and retrieval processes. The latter group deals with

evaluating the time we actually need for query evaluation as well as the amount of memory
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which is required to perform the indexing process for both the developed strategies. We

conclude that the MA strategy achieves a better time performance than the BA approach when

the number of postings analyzed during the retrieval process for the MA strategy is lower than

the one taken into accout for the BA strategy. As the difference between the number of such

postings decreases, the execution times obtained for the BA and MA strategies get closer.

We remind that for the MA strategy the number of postings we encounter during the retrieval

process strictly depends on the time point we enrich with the query of interest. In fact,

given a time-point, evaluating a query for the MA approach involves decoding not only the

postings whose time interval contains the time point of interest, but also the ones whose time

interval boundaries are earlier than the examined time-point. Moreover, the results proposed

in Chapter 6 demonstrate that taking into account the same number of postings, the BA

strategy outperforms the MA approach, because of the longer time required for decoding

the posting data for the MA strategy, compared to the BA approach. This is due to the fact

that, both for the BA and the MA strategies, we store document identifiers by adopting the

d-gap technique. This involves including in the inverted index the difference between the

identifiers of adjacent postings rather than storing their identifiers as they are. At this stage,

we remind that while for the BA strategy the difference between the identifiers of adjacent

postings in an inverted list is always 1, the same does not hold true for the MA strategy,

where the difference between the identifiers of adjacent postings is large. As future works we

envision the possibility to analyze the change in the performance of the described strategies

we could obtain by modifying the compression techniques used for encrypting the data of

the postings in the inverted index. Indeed, implementing the BA and MA strategies, we have

learnt that in order to significantly improve the execution time we need to answer a given

query, by conceiving a new index organization scheme, we can not ignore how this scheme

actually would affect the efficiency of the compression techniques used for storing the data

of the collection documents.
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