
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione
Corso di Laurea Magistrale in Ingegneria

Informatica

Algorithms for identifying statistically
significant progression patterns in

cancer genomes

Student:
Federico Alberton

Advisor:
Prof. Fabio Vandin

Academic Year 2015/2016

Padua, 12/12/2016



ii



Abstract

Recent advances in DNA sequencing methods now allow the collection of mutation
information from large number of patients affected from a given cancer type. The
identification of patterns of mutations in these patients has been previously shown to
identify mutations that are important for the development of the disease. However,
such patterns usually ignore information regarding the progression status of mutations
in patients.
This work formalizes the problem of the identification of significant progression pat-
terns from cancer genomics data and proposes algorithms to find such patterns. The
proposed algorithms are based on Monte Carlo methods to find statistically relevant
patterns using a probabilistic model that use tail distribution bounds, like the Cher-
noff bound and the Azuma-Hoeffding bound, to focus the computation on the most
promising patterns. The proposed approach has been tested on real cancer data from
The Cancer Genome Atlas project.
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Chapter 1

Introduction

Cancer is an highly adaptable process that takes the advantages of the Darwinian
evolution in order to resist to therapy and propagate in other sites of the afflicted
organism. Nowell [14] provided the interpretation of such defining what nowadays is
know as the Clonal Theory of cancer development where each cancer cell can be viewed
as coming from a common ancestor cell where the first driver mutation happened then
by a Darwinian like process multiple population of cancer cell, called subclones, are
created and compete between them in order to take the control of the future cancer
development.
Classifying mutations according to their clonal status can provides information about
the time line of the cancer evolution giving indications on the timing of the mutational
process. The presence of subclonal mutations can interfere with the drug therapy used
as certain subclonal driver mutations lead to an increased resistance to specific drugs.
Subclonal mutations can also be targets for a sort of immunotherapy. Hence the needs
to also adjust the drug therapy properly.

Starting from a criterion used to classify one genetic mutation as clonal or subclonal
[11] we have developed a greedy algorithm based on Monte Carlo methods that is used
to find statistically significative cancer progression patterns including clonal informa-
tion of multiple genes starting from cancer genomic reads.
Firstly we defined a way to summarize the information of such reads using a mutation
matrix. After that we provided a way to find statistically significative couple of mu-
tated genes that are classified as clonal and subclonal respectively using a statistical
algorithm. Then we generalized such method in order to be applicable to couple of
sets of mutated genes where the first set is classified as clonal and the second and
subclonal proposing different efficient approaches. The first approach try to reduce
the computation time applying interval logic considerations in order to avoid useless
computations while also introducing a methodological framework to better characterize
the computational problem. The second approach use the previous framework while
using a probabilistic model that use tail distribution bounds like the Chernoff bounds
and the notion of martingales and hence the Azuma-Hoeffding bound.
We then tested the derived approaches on a dataset of patients afflicted by a brain
tumor called Glioblastoma Multiforme (GBM) extracted from The Cancer Genome
Atlas project [2].
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2 CHAPTER 1. INTRODUCTION

1.1 Structure of the thesis
The work follows the following structure:

• In Chapter 2 we give an introduction to certain basic molecular biology notion.
We illustrate some important structure of a cell that are involved in the synthesize
of protein, we then see how a cell know what components are need in order to
create a protein and how it is actually created. After that we introduce what is a
genetic mutation while introducing some genomic’s terminology that is commonly
used in bioinformatics. We then distinguish passenger and driver mutations while
introducing the Clonal Theory. We also briefly introduce how from a set of cancer
genomic reads information about somatic mutations are extracted.

• In Chapter 3 the mathematical instrument used in Chapter 4 are briefly intro-
duced. We start introducing the concept of statistical significance relative to
the hypothesis test, then we see how randomness is exploited to solve problems
that are otherwise not trivially solvable with a deterministic approach and finally
some important probability results that are at the base of randomized algorithms
analysis are presented.

• In Chapter 4 we try to respond to the necessity of finding significative mutation
patterns according to the Clonal Theory providing a statistical algorithm based
on Monte Carlo methods that try address the exponential complexity in the
number of gene that are taken in consideration by adopting a greedy approach.

• Finally in Chapter 5 we are going to provide and comment the results gathered
from the application of the approaches previously illustrated.



Chapter 2

A biology primer

In this section we are going to give a very brief introduction to molecular biology in
order to understand genomics based of the work of [7, 6].

Human’s life depend on three types of molecules: DNA, RNA and proteins. The
DNA holds information regard how such cell works while RNA is used to transfer part
of such information in other cell places where they are used to synthesize proteins.
After years of biological experiments is now known that DNA, RNA, proteins are en-
coded by particular alphabets: the DNA is coded by a four letter alphabet (A,C, T,G)
where each letter represents a small molecule called nucleotide, the RNA share the
same alphabet of DNA except the fact that the nucleotide thyamine that represents
the symbol T is substituted by the nucleotide uracil symbolized as U , finally proteins
are encoded by a twenty letters alphabet representing amino acids.

2.1 Structure of a cell

Cells of Eukaryotes (organisms where each cell has a Nucleus) are constituted by various
parts, the most interesting ones for our purposes are briefly introduced.

Ribosomes

Ribosomes are cell structures where proteins are assembled starting from more elemen-
tal molecules called amino acids and they are composed by proteins and nuclei acids.
They synthesize protein starting from the a set of instruction (the list of amino acids
that form the protein) given by the the mRNA by linking specific amino acids.
They are composed by two parts, the first one’s role is the translation of the instruction
contained in the mRNA while the second one gather the required amino acids and link
them together.
Is interesting to notes that the difference between the ribosomes of Bacterials and
Eukaryotes are exploited to make antibiotics such as Streptomycin that prevent the
synthesize of proteins in Bacterial’s ribosomes while not affecting the Human’s ones.

3



4 CHAPTER 2. A BIOLOGY PRIMER

Nuclei acids

All the genetic information of any individual are stored in nuclei acids, the DNA and
the RNA, which are polymers of four different acid units called nucleotides.

Each nuclei acid consist of a three parts: the first part is a sugar, the second part
is made off a purine or a pyrimidine, and the last one by a phosphate group which
contains the element phosphorus.
In the DNA the purine nucleotides, (adenine, cytosine, guanine, thymine), are the ele-
ments that characterize every DNA molecule. For such fact nucleotides are called bases
and are abbreviated in letters: A,C,G,T.
The RNA differs from the DNA by having a little different bases A,C,G,U and by the
type of sugar, ribose in RNA and deoxyribose in DNA.
The length of a sequence of DNA is measured in its number of bases, usually the length
is measured in thousand of bases abbreviated as kb.

Nowadays we know that the DNA forms a double helix constituted by two helical
strands of polypeptide that runs in opposite direction. Is fundamental to note that the
information that are in one strand are duplicated in the second strand. This property
is given by the fact that adenines can bond only with thyamines and guanines can bond
exclusively with cytosines. This fact is also fundamental in the protein synthesis as it
is used to copy the part of the genetic information that are used to make the specific
protein.

DNA molecules can also vary their shape for example from the classic double helix
they can reverse the direction of its twist. Such shapes can have a role in turning on
and off genes.

Proteins

Proteins are molecules that do a multitude of function in a cell: they give structural
support in order to hold a creature together, the are used as enzymes in chemical re-
action controlling it, they can be used to turn on or off a particular gene, and many
more. They make up between the 15% and 20% of the cell [6].

Proteins are all constituted by amino acids small molecules constituted by a central
atom of carbon (C), an amino group (NH3) and a carboxyl group (COOH) and variable
region. Chains of amino acids are created by a particular chemical reaction. In the
DNA we can find which particular sequence of amino acids composes such protein, this
sort of amino acid signature is called primary structure. This can be done because the
nucleotides that form a DNA molecule identify unambiguously a specific amino acid.
For each amino acid we know its chemical properties and such information are com-
monly used to predict the structure of protein. Is interesting to note that in all eu-
caryotic proteins that were synthesized in a ribosome they start synthesizing with the
amino acid methionine.

Generally a protein contains a number of amino acids that can vary, most part of
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proteins are composed by more than 100 amino acids. After looking the structural
contribute given by the amino acids to a protein we can look at the secondary struc-
ture of a protein as the three dimensional form of a few amino acid sequence. Given
this an interesting open problem is to predict the structure and the function of a pro-
tein starting from its primary structure as there was investigated that the amino acids
in the primary structure of a protein determine the protein final role.

In computational biology an interesting problem is the protein folding problem. As
we said that in the DNA we can only find information about the primary structure
nothing we know about the shape that a protein is going to assume after being syn-
thesized by a ribosome. Usually after being synthesized a protein takes a few seconds
to folds up into a specific shape that influences its biochemical function and when the
protein take the particular shape that permit the accomplishment of its native function
the protein is said to be in an active conformation while being in another shape the
protein is said to be denatured. The protein folding problem can then summarized as
finding a way to map the primary structure of a protein to a tertiary structure that
represents the location of the atoms that constitute such protein.
This is also complicated by the fact that not all proteins can fold themselves without
any help, some proteins need the help of other molecules called chaper-ones in order to
be folded up correctly. Also some proteins in order to become active they need to bind
with copy of themselves or with other molecules called prosthetic groups, for example
the protein hemoglobin needs the prosthetic group heme in order to binds the oxygen
that is in the blood. Such additions are refereed as the quaternary structure of the
protein.

An interesting fact is that a protein assumes a form that minimize the total free energy.
Given the position of the atoms is possible to compute the free energy. We can then
solve the protein folding problem as an equivalent optimization problem where given
the atoms of the protein we wold like to find the disposition that yields the minim free
energy, than this solution can be used as the predicted tertiary structure of the protein.
Unfortunately the input size of this optimization problem is very large and calculating
the free energy of a disposition is a computationally demanding task.

2.2 The Central Dogma

Francis Crick in the 1958 coined the term Central Dogma in order to refer to the flow
of genetic information and more specifically to the fact that the flow of information
start from the DNA then pass to the RNA and finally from RNA to proteins. With
the term genome we are referring to all such information.

2.2.1 The code of life

In this section we will illustrate how the information contained in the DNA is encoded.

The genetic information of an individual are stored in DNA molecules called chro-
mosome. In humans and other organism called diploids each chromosome contains two
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similar DNA molecules one for each parent while in other called haploid each chromo-
some contains a single DNA molecules. Humans have 23 pairs of linear chromosome.
Each triplet of DNA string is called codon, such triplet is used as a map to one of the
twenty amino acids. Given this we have that with a 3 sequence of nucleotides we have
43 = 64 different triplets but we have only 20 amino acids to map, this fact translates
that we have some redundancy as for example the amino acid arginine is coded by four
different codons (CGU, CGC, CGA and CGG) that differs only by the last letter of
the triplet, this property is know as the degeneracy of the code. Also the triplets UAA,
UAG and UGA do not represent any amino acid, they are know as stop codons because
they are used to represent the end of a protein sequence. In eucaryotes all proteins
that are synthesized in a ribosomes start with the amino acid methionine whose coding
triplet is AUG and it is called start codons because we can interpreter AUG as the
starting code of a protein. The figure 2.1 contains the DNA to amino acid map.

Figure 2.1: The genetic map from a triplet of nucleotides to an amino acid. Source:
le.ac.uk

In most eucaryotes the DNA sequences for a specific protein have some noncoding sub-
sequence called introns, the coding ones are called exons. While most of the eucaryotes
have introns most bacteria do not have any.

2.2.2 Transcription and Translation

In this section we illustrate how the information that comes from DNA are transferred
to ribosomes and how ribosomes collect and "fuse" the required amino acids for a given
protein.
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After having decoded how the DNA map a triplet of nucleotides to an amino acid
we need a way to copy the sequence of triplets for a given protein in order to give such
instruction to the ribosome. This part is called transcription and a specific portion of
DNA is copied into a messenger RNA molecule called m-RNA (messenger-RNA). This
process start with a molecule called RNA polymerase that bind to the DNA where it
catalyzes a reaction where the DNA is used as a template in order to create a com-
plementary strain of RNA called primary transcript that contains exons and as well
introns. In the next step called splicing introns are removed from the primary transcript
and exons are spliced together in order to form what is called mature RNA. Finally
the mature RNA is transported out of the nucleus in order to bind to a ribosome.

The next step takes place in the ribosomes and is called translation, the mature mRNA
is used as a fingerprint in order to synthesize proteins. In order to assembly a given pro-
tein we need to collect the required amino acids encoded by the codons in the mRNA,
this part is done by other molecules called transfer-RNA or tRNA. A tRNA molecule
is constituted by two parts: the first part called anti-codon attach to a specific codon
of the mRNA and the second part bring the corresponding amino acid into physical
proximity. After that the required amino acid form a peptide bond with an another
of the required ones. How the tRNA find the correct amino acid depends on the three
dimensional structure of the RNA. And finally we obtain the required protein which
will folds up on its own or requiring the help of other molecules, the folded protein may
need to bind with other molecules in order to become active as seen before when speak-
ing about the quaternary structure. After being activated the protein it is transported
in the parts of the cell where its function is needed.

Figure 2.2: How a protein is assembled in a ribosome starting from the mRNA. Source:
news-medical.net
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2.3 Genetic mutations

In the previous sections we have seen that most of the important function of an indi-
vidual are performed by proteins and the connection that there is between the coded
DNA and them. We now investigate what happens when during the process of cell re-
production the DNA of the daughter cell differs from the one of its progenitor. Clearly
sometimes this can comport to alterations in important function while other times
there are not important consequences.

A genetic mutation is a permanent alteration of the DNA of a cell. Mutations are
one of the main cause of diversity among organisms [13].
Such alteration can alter the structure of the DNA in various method for example given
a sequence of DNA: a single nucleotide can be substituted with an another one (substi-
tution mutations), one or more nucleotides can be added to the sequence (insertions),
one or more nucleotides can be removed from the sequence (deletions).This alteration
are called single-nucleotide variants (SNVs) Other more more complex mutations lead
to genome rearrangements and are called structural variants (SVs) while other called
copy-number aberrations (CNAs) can lead the genome to be constituted by repeated
parts.
Generally mutations can be classified in two types:

Germline mutations are mutations that are genetically acquired from parents. They
are called germline mutations because they are present in the germ cells of parents
(egg or sperm cells). If the fertilized egg has a mutation all the cell of the resulting
individual carry such mutation.

Somatic mutations are mutations that do not involve all the cell of the individual
and only if a germ cell is affected they can be passed to the offspring. This type
of mutations arise during the individual’s life.

Given a mutation we can also give a classification based on the effect that the mutated
gene has on its encoded protein [25]:

Frameshift mutation is caused by an insertion or a deletion of a number of nu-
cleotides that is not a multiple of three. This can completely change the sequence
of codons (given a sequence of nucleotides imagine to start reading the codons
from the second nucleotides instead of the first one of the sequence) arising the
synthesize of a different protein. If the number of insertion or deletions is a
multiple of three the mutation is called in-frame mutation.

Nonsense mutation is the results of mutation that cause the appearance of a pre-
mature stop codon in the sequence giving life to a truncated protein.

Missense mutation are single nucleotide variations where a mutated codon codes a
completely different amino acid giving the synthesize of not functional protein.

Neutral mutation is like a missense mutation but the mutated codon codes a chem-
ically similar amino acid and such similarity does not disrupt the protein’s func-
tionality.
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Silent mutation do not changes the primary structure of the protein, they can occur
in non coding zones like introns or they do not alter any amino acid in exons.

Germline mutations can be the cause of certain inherited diseases for example Cystic
fibrosis but somatic mutations can give birth to cancer phenomenons. The source of
somatic mutations are multiple as they can arise from environmental source or from
the chemical instability of the DNA: due to oxidative stress or due to error in the DNA
repairing process. Environmental source are for example tobacco smoke, UV light and
ionizing radiation.
Most somatic mutations that arise during a person’s life are innocuous or even benign,
single nucleotide substitution for example occur at a rate of 10−9 [21].
Somatic mutations are important as according to the Knudson hypothesis1 cancer is
interpreted as the results of an accumulated number somatic events.

2.3.1 From reads to mutations

In practice [17] we start from a set of reads extracted from a cancer genome, a sequence
of a certain number nucleotides (that can be as little as 50 to tens of thousands of
nucleotides in based to the sequencing technology used, usually reads small is size are
used), then such reads are aligned to the human reference genome and difference from
the reference genome are identified. In order to distinguish a mutation from being
somatic or germline in parallel a normal sample is also analyzed.
Usually a tumor sample contains both normal cells and different type of cancerous cells.
The tumor purity of a sample gives an indication about the composition of the tumor
sample as it is defined to be the fraction of cells in the sample that are cancerous.
Now a problem can rise in identifying somatic mutations as lowering the sample’s
tumor purity (equivalently increasing the sample’s number of normal cells) reflects in
a reduced number of reads that come from the cancer cells and hence a reduction in
the efficacy to identify a somatic mutation.

2.4 Driver mutations and the Clonal Theory

Given a generic cancer genome we can find hundreds to thousands of somatic genetic
alterations, most of them are just passenger mutations while only a small part of them
called driver mutations are important for the development of a cancer mass. Generally
a number ranging from 10 to 20 mutations per tumor can be considered as driver.

One of the most significative work in the cancer research is the article[14] published by
Peter Nowell in the 1976 that create the clonal evolution theory of the cancer develop-
ment where cancer can be viewed as an evolutionary process similar to the Darwinian
selection where somatic mutations create a pool of cancer subclones competing for their
evolution and where the fittest subclone can have an advantage over other subclone

1Firstly proposed by Carl O. Nordling in 1953 and later formulated by Alfred G. Knudson in 1971.
This was inferred from the fact that there is a correlation between the cancer frequency f and the age
a raised to a certain power x, mathematically ln(f) = ln(ax) + c with c a fitting constant.
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predominating in the tumor mass development.
The evolution of such subclones is driven by selectively advantageous driver events and
passenger mutation. Also cancer development takes place in a limited resource envi-
ronment and this fact explain why the cancer cell doubling time is order of magnitude
faster than the tumor doubling time as probably the resource limited environment limit
the survival of the cancer cell, resource are used in a competitively way between various
subclones. Such enviroment is not static it responds to the cancer evolution like a sort
of a feedback system and can reduce or augment the advantage of certain subclones
respect to other ones, for example protecting some subclones against therapy. This
sort of cancer ecosystem can be altered by chemotherapy or by radiotherapy and this
give to possibility for some cancer cells that were on a selective disadvantage to emerge.

McGranahan et. all. [11] defined a way to classify a gene mutation as clonal or sub-
clonal and then studied the evolution of cancer on nine different types of tumors based
on data from The Cancer Genome Atlas. We are using this classification criterion in
Chapter 4.

2.5 Further topics
There are other important topics that need to be addressed such as: how a cell pass
its DNA to the offspring, how a cell know the quantity of protein that is needed, how
proteins accomplish their roles (which is the role of an enzymes in chemical reactions),
how multiple protein can collaborate in order to perform important functions in organ-
isms (pathway).
For further reading we remand to [6] and [7] for the computational aspect of biology
and to [3] for a college level book on biology. We conclude with figure 2.3 giving a
summary of the first two sections.
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Figure 2.3: Concept map giving a summary of the first two sections of this Chapter.
Source: coursera.org
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Chapter 3

Mathematical tools

In this chapter we are going to introduce some mathematical concept that are used in
Chapter 4 in order to develop our algorithmic methodology: the hypothesis testing, the
Monte Carlo methods, the Chernoff bound and Martingales.

3.1 Statistical testing

In this section we introduce a method that uses data in our possession in order to refuse
an hypothesis in the case the data induces us to think that probably such hypothesis is
false. The statistical testing is a common used tool in a vast range of disciplines from
medicine to psychology.

A statistical test provide a way to asses the significativity (in a statistical meaning) of
a given starting hypothesis usually called null hypothesis and permits to refuse such
hypothesis in order to accept an alternative one called alternative hypothesis [19].

Generally this type of test involve the following steps:

1. Make an initial claim.

2. Collect evidence from the set of data.

3. From the previous collected evidence decide, if it is legit, to refuse the initial
claim.

Going a little more in depth we conduct a hypothesis testing following the follow
procedure[8]:

1. We start conjecturing a fact that can be either true or false.

2. Next we setup the null hypothesis and the alternative hypothesis. This part must
be done with care as misstating such hypothesis can invalid the entire process.

3. After that we can make statistical assumption about the sample like statistical
independence or about the form of the distribution of the samples.

13
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4. At this point we can choose an appropriate test and choose a test statistic T which
is a value derived from the sample that can be viewed as a numerical summary
of the information expressed by the observed data.

5. Now under the null hypothesis stated in the point 2 we derive the distribution of
the test statistic T , "some times" the distribution of T follows a normal distri-
bution or a t-distribution or others well know distributions.

6. We then select a threshold α generally called significance level that represents the
probability level where below we would like to reject the null hypothesis. Usually
in literature a value of α = 0.05 or α = 0.01 is chosen.

7. Now after choosing α and under the null hypothesis we have that the distribution
of the values of T can be partitioned in two parts: the first part is constituted
by the set values such that we accept the null hypothesis, the second part usually
called critical region consists in the values for which we are going to reject the null
hypothesis and accept the alternative one. This value partition is a function of α
and represents the probability that for a given value we reject the null hypothesis
and accept the null hypothesis. Lowering the parameter α restrict the critical
region.

8. We then calculate the observed value t of the test static T .

9. And finally we can now decide if we can refuse our null hypothesis and accept the
alternative one. We decide to reject the null hypothesis if the observed value t
falls into the critical region otherwise we can conclude that there are not sufficient
evidence for reject null hypothesis.

This approach is usually labeled as the critical value approach and is usually favored
in old texts when only the tables of test statistic distribution at common probability
threshold were usable.

Usually in journals, in statistical software or more generally in research an alterna-
tive methods is preferred, such method introduces the notion of p-value.
The p-value approach can be resumed in the following steps:

1. Given again a test statistic T we find out the observed value t from the observa-
tions.

2. We then setup a significance level α similarly as done before.

3. For the next point we need to calculate the p-value which is the probability of
obtaining a value equal or more extreme than the observed value when the null
hypothesis is assumed to be true.

4. If the p-value is not higher than the significance level α we then can reject the
null hypothesis and accept the alternative one otherwise there are not sufficient
information that induce us to think that the null hypothesis is false.
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This latter approach has the advantage to give us more information rich results but
usually requires a computational support.
Generally is common to valuate the data respect to the obtained p-value in an empirical
way, more specifically:

if p-value ≥ 0.05 than data are claimed to be not significant,

if p-value ≤ 0.05 than data are claimed to be significant,

if p-value ≤ 0.01 than data are claimed to be highly significant.

Usually the null hypothesis correspond to the not interesting event and the alterna-
tive hypothesis correspond to the interesting one. For example if given a coin we are
interested in investigating if the coin is biased toward head we then setup the null
hypothesis to be "the coin is not biased toward head" and the alternative hypothesis to
be the complementary event "the coin is biased toward head". In such way the lower
the p-value the more we are inclined to refuse the fact that the coin is fair and accept
the fact that instead it is biased.
Generalizing we have that the smaller is the p-value and larger is the significance as
the data induce us to contradict our null hypothesis.
Is important to note that the significance level α is not derived from the data and does
not depend on the hypothesis chosen as such value is derived from the consensus of the
researcher in the specific research area.

Previously we omitted to define when "a value is equal or more extreme then the
observed value". Based on how we interpreter such propriety we have different cases.
Let t to be observed value and let X the random variable associated to the test statistic
than this is related to the following events: {X ≤ t} called left-tail event or {X ≥ t}
called right-tail event or we are referring to the smaller event among {X ≤ t} and
{X ≥ t} called double tail event.

Let H0 to be the null hypothesis and p to be the p-value then we have that this
latter can be defined for each of the previous events as:

• p = P [{X ≤ t}|H0],

• p = P [{X ≥ t}|H0],

• p = 2×min(P [{X ≥ t}|H0], P [{X ≥ t}|H0]).

Figure 3.1 illustrate the relation between the p-value and the observed value t.
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Figure 3.1: How the p-value is calculated.

On the x-axis we have the possible outcomes where in the y-axis we have probability
density of an outcome when the null hypothesis is true. Source: wikipedia.org

Following such procedures we have not proved that the null hypothesis is true or either
that the alternative hypothesis is true as we make our decisions based on the evidence
instead of certain guarantied proof. In other terms if we reject the null hypothesis we
do not prove that the alternative hypothesis is true and if we do not reject the null
hypothesis we do not prove that the alternative hypothesis is false. From the above
considerations we can see that there is always a chance that the conclusion we draw is
erroneous, the table 3.1 illustrate the decision landscape involved.

H0 is true H1 is false
Do not reject H0 OK Type II error

Reject H0 Type I error OK

Table 3.1: Types of error in a statistical test.

With H0 and H1 we are referring to the null hypothesis and respectively to the alter-
native hypothesis as in literature those nomenclature is often used.

As we can see from the table 3.1 we can commit two different errors, in statistics
they are know as:

Type I error: the null hypothesis is rejected when it is true.

Type II error: the null hypothesis is not rejected when it is false.

We then conclude this section providing an example on where the statistical test is
used.
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Coffee aroma tasting

In 2014 a team of researchers composed by members from the University of Oxford and
from the Federation University of Australia published an article where they investigated
if the aroma of a cup of coffee was influenced by the color of the coffee cup used to
drink [20, 18]. The coffee’s aroma was rated on a hundred point scale. 12 people were
randomly selected to drink a cup of coffee from a cup with a white sleeve and other
randomly selected 12 people drunk the coffee from a cup with a blue one. The first
group rated the coffee 57.33 on average with a standard deviation of 16.27 points while
the average rating from the second group was 35.57 with a standard deviation of 25.34.
We would like to see if the color of the cup influences the perceived aroma of the coffee.
Firstly we setup our null hypothesis H0 and alternative hypothesis H1:

H0 The color of the cup does not influence the average aroma rating (the two means
are the same).

H1 The color of the cup influences the average aroma rating (the two means are not
the same).

Now we choose an appropriate test statistic T , we need to compare two means and we
do not know nothing about the variance so in this case we use a t-test. Let w and b to
be the average from the samples and let s to be standard error of the difference between
the two means under the hypothesis that samples are independent and distributed like
a normal distribution we can choose T :

T =
w − b
s

. (3.1)

T follows a t-student distribution which is a well know probability distribution. Now
we calculate the observed statistic t. We can calculate s as s = 2

√
w2
e + b2e were we and

be are the standard error of the mean calculated as the standard deviation divided by
the square root of the number of samples, more specifically we = 16.27

2√12 and we = 25.34
2√12

which give s = 8.7 and then t = 57.33−35.57
8.7

= 21.76
8.7

= 2.5.
Now we decide to use α = 0.05 as significance level and we consider a double tail event
as the difference of means can vary with in two different direction. Let p to be our
p-value we have that:

p = 2×min(P [T ≤ 2.5] +P [T ≥ 2.5]) = 2×min(0.01, 0.01) = 0.02 ≤ a = 0.05. (3.2)

We then decide to reject H0 and accept H1 as the data do not sufficiently support H0.
Then we can conclude that from the given data emerges an association between the
color of the cup used and the perceived aroma coffee.

3.2 Monte Carlo methods
Monte Carlo methods 1 [12, 10, 15] refers to a class of computational algorithms that
rely of repeated random sampling in order to solve computational problems that in a

1The Monte Carlo method was developed in the ’40 in the context of the atomic bomb at the Los
Alamos National Laboratory and had a critical importance in the Manhattan Project.
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deterministic way are not easy to approach as finding a numeric or an analytical solution
is difficult or impossible. They are used in vast range of scientific and engineering
problems due to their flexibility and ease of implementation.
They are commonly used in optimization problem where they can permit to avoid
to get local optimum solution by random exiting from the local optimum in order to
find the global one. They are used in solving numerical analysis problems such in the
numeric integration were random points are used to approximate the integral of a given
function in a specific interval. We can also use them when we need to get sample from
a given probability distribution.
Generally to apply a Monte Carlo method for statistical analysis following these steps:

1. We determinate the statistical properties of the possible inputs.

2. Then generate many sets of possible inputs that follow the previous statistical
properties.

3. We then can performs some deterministic computation on those data.

4. And at the end we aggregate the previous results usually performing a statistical
analysis.

A classical example in the numeric integration usage is the estimation of the value of
π using a Monte Carlo method.

Let X and Y two uniform random variable in the interval [−1, 1] we then represents a
point that belong to a 2× 2 grid center in the origin (0, 0) as (X, Y ). We now consider
a circle with radius r = 1 centered in (0, 0), we have that this circle is inside the 2× 2
square and has a total area of π. Now we can define an indicator random variable Z
associated to the point (X, Y ) that indicates if (X, Y ) is inside the circle or not:

Z =

{
1 if

√
X2 + Y 2 ≤ 1,

0 otherwise .
(3.3)

Now we have that if (X, Y ) is chosen uniformly at random we that:

P [Z = 1] =
πr2

(2r)2
=
πr2

4r2
=
π

4
(3.4)

which is the ratio of the area of the circle to the area of the square. After choosing n
random points (Xi, Yi) and defining Zi as the indicator random variable Z relative to
(Xi, Yi) we have that:

E[
n∑
i=1

Zi] =
n∑
i=1

E[Zi] =
nπ

4
. (3.5)

Then we can conclude that we can obtain an estimation of pi using the following
formula supposing we know z =

∑n
i=1 zi, where zi is the value of Zi:

π = 4
z

n
. (3.6)
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Is important to note that the simulation relies on a large number of sample and on
uniformly distributed random numbers, whose generation is not a trivial task, in order
to be reliable. Is interesting to note that we can obtain a more precise approximation
of π as more sample we use, this fact can be analytically proved using the Chernoff
bound [12] presented in the next section.

3.3 Tail distribution bounds

Given a set of random variables X0, ..., Xn we are sometimes interested in a random
variable that is a function of the previous value X̄ = f(X0, ..., Xn).
In the next subsection we firstly introduces a classic bound on the probability of X̄
where X̄ = X0 + ...+Xn with Xi an indicator random variable and assuming that such
variables are independent. We then introduce the notion of martingales where trough
the Azuma-Hoeffding inequality we can give a more general bound that do not require
the independence of the random variables that are involved.
Analytic bounds on the tail distribution are fundamentals in the analysis of randomized
algorithms.

3.3.1 Chernoff bound

This family of bounds [5, 12] on the tail probability is derived from using the Markov’s
inequality on the moment generating function of a random variable. For a random
variable X the associated moment generating function is MX(t) = E[etX ]. Such func-
tion have some interesting qualities that are exploited in order to derive such bound for
example under specific conditions the nth derivate of MX(t) evaluated at 0 is equal to
the nth momentum of the random variable X, E[Xn]. A Chernoff bound give exponen-
tially decreasing bounds on the tail distribution. We used the term family as there are
different bounds all derived from using the moment generating function under specific
hypothesis.

We define a Poisson trials to be a series of independent experiments where each exper-
iment has a probability of success that can be different from the other experiments.
Under such definition a Binomial random variable can be seen as a Poisson trials where
each experiment has the same probability to success.

Let X1, ..., Xn be independent Poisson trials such that P [Xi] = pi. Let X =
∑n

i=1Xi
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and µ = E[X]. Than the following Chernoff bound hold:

P [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
for any δ > 0. (3.7)

P [X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
for any 0 < δ < 1. (3.8)

P [X ≥ (1 + δ)µ] ≤ e
−

2δ2µ2

n(b− a)2 for any δ > 0, if a ≤ Xi ≤ b. ∀i = 1, ..., n.
(3.9)

P [X ≤ (1− δ)µ] ≤ e
−

δ2µ2

n(b− a)2 for any δ > 0 if a ≤ Xi ≤ b. ∀i = 1, ..., n.
(3.10)

For example referring to the Monte Carlo Methods section where we have calculated
an approximation of π to we can now apply a Chernoff bound in order to obtain an
upper bound on the probability that the approximated value found differs from the
true value of π by some amount.

3.3.2 Martingales

The term martingale [12, 16] derives from a set of strategies used by a group of french
gamblers during the 1700s [24]. One of those strategies applies to a game where if a
coin shows up an head the gambler win an amount of money otherwise he loose its bet.
The strategy consist in whenever the gambler loose a game to double his bet so when
the first victory approaches he can repay back all the money lost in the previous game
and win an amount of money equal to his initial bet. Apparently this strategies seems
to work as in the long run the probability of scoring a victory approaches to 1, but if
the gambler doubles the initial bet every time eventually he will reach a point where
the gambler cannot play anymore because the bet will be greater than the his gaming
budget. Much of the work on martingales was done in order to prove that there aren’t
advantageous betting strategies.

A sequence of random variables Z0, Z1, ... is a martingale with respect to a sequence
X0, X1, ... if, for all n ≥ 0 we have that:

• Zn is a function of X0, ..., Xn;

• E[|Zn|] <∞;

• E[Zn+1|X0, ..., Xn] = Zn.

Note that the sequence X0, X1, ... can be equal to Z0, Z1, ... in such case Z0, Z1, ... is a
martingale respect itself and the following conditions must apply:

• E[|Zn|] <∞;

• E[Zn+1|Z0, ..., Zn] = Zn.

Sometimes we need to create a martingale from a given sequence of random variables
let X0, ..., Xn such sequence. We can use a general procedure to create a martingale
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Z0, ..., Zn respect to X0, ..., Xn such martingale is called a Doob martingale 2 .
We start choosing a random variable Y which can depend on X0, ..., Xn such that
E[|Y |] <∞, we then define the martingale Z0, ..., Zn for i=0,1,...,n as:

Zi = E[Y |X0, ..., Xi]. (3.11)

The created sequence is a martingale respect to X0, ..., Xn as:

E[Zi+1|X0, ..., Xi] = E[E[Y |X0, ..., Xi+1]|X0, ..., Xi] = E[Y |X0, ..., Xi] = Zi. (3.12)

In the large part of the applications Z0 is set in order to be equal to the expected
value of Y , note that this requires X0 to be independent of Y . Generally this defined
martingale can be used when we want to predict the value of Y and such value is
a function of X1, ..., Xn, Y = f(X1, ..., Xn). We have that the martingale Z0, ..., Zn
can be viewed as a sequence of estimates on the value of Y by adding step by step
more information on the value of X0, ..., Xn. Then we have that according to (3.11)
Z0 = E[Y ], Zi for 1 ≤ i ≤ n Zi is equal to the expected value of Y when we know the
value of X1, ..., Xi, then accordingly Zn = Y . Having a martingale can be useful as it
is possible to apply inequality that are similar to a Chernoff bound, but in the case of
martingale no hypothesis on the dependence of the random variables is made.

If X0, ..., Xn is a martingale where the values between two consecutive Xk are bounded
by a value ck, more formally such that for k ≥ 1:

|Xk −Xk−1| ≤ ck. (3.13)

Then for any λ > 0 and for t ≥ 0 we have that:

P [|Xt −Xo| ≤ λ] ≤ 2e−λ
2/(2

∑t
i=1 c

2
i ). (3.14)

For any λ > 0, for t ≥ 1 and if ci = c for 0 ≤ i ≤ n:

P [|Xt −Xo| ≤ λc
√
t] ≤ 2e

−
λ2

2 . (3.15)

A more strict bound can be obtained when for the martingaleX0, ..., Xn exists a random
variable Bk = f(X0, ..., Xk−1) and a constant dk such that Bk ≤ Xk −Xk−1 ≤ Bk + dk
then for t ≥ 0 e for any λ > 0:

P [|Xt −X0| ≥ λ] ≤ 2e−λ
2/

∑t
k=1 d

2
k . (3.16)

The set of such inequalities are called Azuma–Hoeffding inequalities, is interesting the
fact that a prof can be done using the Chernoff bound. Also note that the term 2 in
the above inequalities is due to the symmetry of |Xt −X0|.

2Named after the american matematician Joseph Leo Doob considered the father of martingale’s
theory.
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Chapter 4

Identifying progression patterns in
cancer

In this section we propose a way to find statistically significative clonal and subclonal
mutation patterns, using the work of [11] for the clonal and subclonal classification of
single genes.
We introduce a way to summarize information from cancer reads using a mutation
matrix, then we apply an approach to classify genes according to their clonal status
[11] and from this we construct statistically significative couple of genes where one
gene is classified as clonal and the other as subclonal. Successively we generalize such
approach in order to find couple of stastically significative sets of genes where the
genes in one set are classified as clonal and the others as subclonal respectively. We
then put effort in finding an efficient approach in order to do that providing firstly a
deterministic approach and then a probabilistic one that rely on the usage of bounds
on the tail distribution.

4.1 The mutation matrix

A way to summarize cancer information that come from a dataset of genomic reads is
to use a mutation matrix. This mutation matrix M uses as row the set of patients that
are involved in the study while mapping in the columns the set of genes used. The
matrix’s role is to store if a given patient has a mutation in a specific gene.
More formally from a mutation matrix M where a single row represents the generic
patient i while a column stands for the gene j we have that the position Mi,j of the
matrix stores the value relative to the gene j of the patient i that is going to be a 0 if
gene j is not involved in a mutation or 1 otherwise. Let P to be the set of patients and
let G to be set of genes than we have that the number of elements that are in the matrix
is equal to |P ||G|, we also expect to see a rather sparse matrix as from the biological
point of view the number of mutated genes in a cancer patient is much smaller than
|G|. This form of binary mutation matrix is used in the algorithm HotNet2[9]

We are going to introduce a generalized mutation matrix as this matrix use real values
in the range [0, 1]. This variation is needed in order to provide a more realistic model
of the biological problem. We would like to model the fact that not all the cancer cells

23
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for a given patient carry a mutation in a specific gene as we can find families of cancer
cells that involve mutations in different genes creating a rich mutational landscape,
such aspect is ignored when we hypothesize that all the tumor cells in a patient share
a mutation in the same set of genes.
We then have that Mi,j represents for the patient i the fraction of cancer cells that
carry a mutation in the gene j. An example of generalized mutation matrix can be
found in table 4.1.

Genes

Patients

0 0 0.7 0 0 0 0 0 0 0 0 0.2 0 0 0
0.3 0 0 0 0.8 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.9 0 0 0 0 0 0 0 0.6 0
0 0 0 1 0 0 0 0.1 0 0 0 0 0 0 0
0.7 0 0 0 0 0 0 0 0.4 0 0 0 0.5 0 0
0 0 0 0 0.5 0 0 0 0 0.3 0 0 0 0 1
0 0.2 0 0 0 0 0.4 0 0 0 0 0 0 0 0

Table 4.1: An example of generalized mutation matrix used in our work.

4.2 Datasets
In this section we are going to define how we can create a generalized mutation matrix
from a dataset that consist of cancer genomics data and then we are going to propose
a further generalization based on the notion of confidence interval.

Each dataset consists of genomic information regarding a set of patients that are af-
fected by a specific cancer. The datasets consist of different records and every record
is relative to a specific read, there are multiple reads for each patient. There are also
several headers but we are interested in only a subset of them in order to create the real
matrix discussed in the previous section, we consider the following list of headers in
the LGG dataset: CASE.ID, HUGO_SYMBOL, n_alt_count, n_ref_count, VARIANT
CLASSIFICATION.
The CASE.ID header identifies the specific patient involved in the study, the HUBO_SYMBOL
represents the gene name following the standard HUGO nomenclature1, n_alt_count
and n_ref_count indicate the number of the reads extracted from the cancer biopsy
that are different and equal to the reference in the read mapping process and VARIANT
CLASSIFICATION classifies the effects produced by the involved mutation.

After extracting the value of only those needed headers for every record we calculate a
score, let sr to be the score of the record r:

sr = r[n_alt_count]
r[n_alt_count]+r[n_ref_count] (4.1)

where with r[n_alt_count] and r[n_ref_count] we are referring to the value of the
record r at the header n_alt_count and at the header n_ref_count respectively.

1HUGO stands for Human Genome Organization and has different committees one of them the
HGNC (HUGOGene Nomenclature Committee) aims to assign to every different human gene a specific
and unique name and symbol.
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The score sr is going to be a real number in the range [0,1] so using the features
CASE.ID and HUBO_SYMBOL as record identifiers and the definition of sr for the generic
record r we can map into a matrix, where the rows represent the set of patients and
the columns represent the set of genes, the score obtained for every record in a specific
dataset. If some records are related to the same patient and the same gene we use the
maximum score obtained from these records and if the patient or the gene in a record
are unknown (value NA) we decided to exclude that record from the tests. In this way
we have obtained our real mutation matrix.

4.2.1 Binomial Proportion Confidence Interval

Referring to (4.1) if we see the event "the read is different from the reference" (we
have a mutation) as a success and the complementary event "the read is equal to the
reference" (we not have any mutation) as an unsuccess than sr is equal to the point
estimate of the parameter p of a binomial variable B(p, n) that counts the number of
reads that differ from the reference where n is the number of trials and is equal to the
sum of the two events.

Instead of using a point estimate we can use a binomial proportion confidence interval
[23, 1], an interval of values such that the probability that the real parameter p of the
binomial variable fall in to this interval is equal to 1− α.
There are numerous way to calculate such value, the normal approximation interval
gives the simplest formula. After estimating p̄ as described above the interval is:

p̄± z
√
p̄(1− p̄)

n
(4.2)

where z is the 1− α
2
quantile value of the standard normal distribution, α is the error

threshold and n is the number of experiments.

Unfortunately this approximation applies poorly when the sample size is less than
30 and when p̄ is near to 0 or 1.
In order to provide a more precise approximation in the above cases and in general
is preferable to use the more sophisticated approximation such as the Wilson score
interval:

1

1 + 1
n
z2

[
p̂+

1

2n
z2 ± z

√
1

n
p̂ (1− p̂) +

1

4n2
z2

]
(4.3)

where z is the 1− α
2
quantile value of the standard normal distribution.

In the case of α = 0.05 the Wilson score interval is equal to the binomial proportion
interval (4.2) using p̄ = 2+k

4+n
where k is the number of successes among n trials. Also

note that both intervals are centered around p̄.

This can be a useful alternative score, as in the next section we are going to use a
1 − α confidence interval real matrix for characterizing the clonal and subclonal clas-
sification, in particular we are going to use the Clopper-Pearson interval [1] that use
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the Beta distribution B(x; y, z) [22]:[
B
(α

2
;x, n− x+ 1

)
, B
(

1− α

2
;x+ 1, n− x

)]
(4.4)

where x are the number of success and n the number of trials. There are also other
formulas that used different considerations, refer to [23].

4.3 Clonality and progression patterns

We use the clonal and subclonal classification criteria discussed in [11].
After estimating the cancer cell fraction (CCF) defined as the fraction of tumor cells
with a specific mutation, a mutation is classified as clonal if the upper band of the 95%
CCF confidence interval overlaps 1. This classification rule was introduced in order to
not overestimate the number of subclonal mutations. In the supplementary material
of [11] a new definition of clonal is provided in order to not force the classification of a
gene to be clonal or subclonal introducing the fact that some mutations can be labeled
as unclassified, under this new assumption their results remained consistent with the
previous one. We have then decided to use the classification version that forces every
gene to be either clonal or subclonal.
We use the terms early and late referring to the clonal and subclonal classes.

It is possible to define an approximative version of the CCF starting from our defi-
nition of the score sr. Given the fact that for every gene we have two equal copies
(humans are diploid organisms) and usually if a gene is mutated only one of this copy
is mutated (is not common to find a somatic mutation that target both copy of the
gene) then we have that only half of the reads are mutated. So we can relate the score
sr for a specif gene-patient tuple to CCF as the CCF being 2sr.
Starting from the real score matrix created at the beginning we can create a new matrix
in order to obtain the point estimate of CCF for every patient-gene couple, let Q a
real score matrix where in each cell we have the 1− α binomial proportion confidence
interval of sr we can find a 1 − α binomial proportion confidence interval matrix for
the CCF by multiplying each element of the matrix Q by 2, as we are diploid organisms.

After creating a new confidence interval matrix I let Ii,j to be the 1 − α confidence
interval for the score sr relative to gene j and the patient i we create for every patient
two sets Ep and Lp in order to classify as Early or Late every mutated gene for that
patient. Let S to be the sample set and G the gene set, E and L two arrays of sets
than algorithm 1 classify the entire dataset.
Note that when the 1-α confidence interval matrix I is relative to the score sr then the
input parameter u used a classification criterion is equal to 1

2
as we have previously

said that the CCF is defined to be 2sr.

We decided to use the Clopper-Pearson interval as it’s more conservative than other
binomial proportion confidence interval approximation formula [1]. Given the fact that
is more conservative the interval itself is larger than other formulas and so some genes
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input : A 1-a confidence interval matrix I for sr of size |S| × |G|, u ∈ R.
output: Two vectors E and L of sets.

for i ∈ S do
for j ∈ G do

if the gene j is mutated in the patient i then
if upper bound of Ii,j > u then

Ei ← Ei ∪ j
else

Li ← Li ∪ j
end

end
end

end
return E, L;

Algorithm 1: Pseudocode for classify for every patient in the sample set their
mutated genes according to the Early-Late definition.

that with the other formula are going to be classified as Late using the Clopper-Pearson
formula are instead classified as Early. Generally the upper bound given by other for-
mulas is smaller than the one given using Clopper-Pearson.

After obtaining the sets E and L for all possible genes, given a couple of two genes
(a, b) we can find in how many patient the gene a is classified as Late and the gene b
is classified as Early. What we obtain is a statistic about the relationship between two
specific genes in the real data.
Given a couple of genes and a patient a relation between two genes in such patient is a
function f : G×G→ D where D is a set that consist in the different types of relation
considered, for example if given (a, b) we find that in a specific patient the gene a is
classified as Early and the gene b as Late then the couple (a, b) is in an Early-Late
relationship in this patient. Then for every different couple of genes and for every
different relation we obtain the number of patients with that specific couple of genes
in that specific relation.

We consider interesting studying the relation between a couple of genes while both
genes are mutated. Let (a, b) to be a couple of genes where a, b ∈ Gt under the previ-
ous assumption we consider the following 4 cases representing 4 different relations:

Early-Late a is classified as Early and b as Late.

Late-Early a is classified as Late and b as Early.

Early-Early a is classified as Early and b as Early.

Late-Late a is classified as Late and b as Late.

We only consider these 4 relations but there are others possible types of relations, for
example considering the couple of gene (a, b) the cases where one gene in classified as
Early or Late but the other one is not mutated in a given patient or even when the
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genes a and b are not mutated in the given patient.

Now we are interested in seeking statistically significant relations so we created a Monte
Carlo simulation, we are going to use this simulation in order to apply a statistical test
using the p-value approach. Let S to be the sample set and Gt the subset of genes con-
sidered, E and L two arrays of sets than we can create an initial random distribution
following Algorithm 2 using as initial domain the non simulated dataset and then we
can defined a metric for the p-value that aggregate the results from the different Monte
Carlo experiments.

After running Algorithm 1 and Algorithm 2 we obtain a simulated dataset with the

input : R stores the number of patients where a specific gene g appears as
Early or Late.

output: Two vectors E and L of sets representing the sets Ep and Lp for
every patient.

for g ∈ Gt do
Let Rg,e the number of patients in which the gene g appear as Early and
Rg,l as Late.
SIM ← Rg,e +Rg,l patients uniformly at random from S
SIMe ← Rg,e patients uniformly at random from SIM
SIMl ← SIM \ SIMe

for p ∈ SIMe do
Ep ← Ep ∪ {g}

end
for p ∈ SIMl do

Ll ← Ll ∪ {g}
end

end
return E, L;

Algorithm 2: Pseudocode for generating the initial random distribution for one
Monte Carlo simulation instance.

same number of patients of the real dataset and two new sets E and L for every patient
that permit for a given couple of genes (a, b) to find out the number of patients where
the couple of genes is in a specific relation, for example where a is classified as Early
and b is classified as Late for the relation Early-Late.
For a given relation R and given couple of genes we can define a permutational p-value:
let n the number of experiments done and t the number of datasets where c appear in
the relation R in more or the same number of patients that the real dataset:

pval(c, R) = t+1
n+1

(4.5)

A pseudocode that describe how the Monte Carlo simulation is structured is given by
Algorithm 3.
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input : n the number of simulation to run, a 1− α confidence interval matrix I
for sr of size |S| × |G|, u ∈ R, a matrix R which stores the number of
patients where a specific gene g appears as Early or Late.

output: U a matrix storing the p-value for every couple of genes for different
relations, Uc,R stores pval(c, R).

U ← 0
/* Let Cc,R to be the number of simulated datasets where for the couple of genes
c and in the relation R where the number of occurrence in the simulated
dataset is not less that the number of occurrences in the real dataset. */
Cc,R ← 0 for every distinct couple of genes and for every different relation
E,L ← Algorithm 1(I, 1

2
)

for i :=1 to n do
Es, Ls ← Algorithm 2(R)
for every distinct couple of genes (a, b) from Gt do

for every different relation R do
Let u and q to be the number of patients where the couple (a,b)
appears in the relation R in the sets E,L and respectively in Es, Ls.
if u<=q then

Cc,R ← Cc,R + 1
end

end
end

end
for every distinct couple of genes c = (a, b) and for every different relation R do

Uc,R ← Cc,R+1

n+1

end
return U ;

Algorithm 3: Pseudocode for running the Monte Carlo experiment.
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4.4 Aggregating the results
Starting from the output of the Algorithm 3 we are interested in aggregating and ex-
ploiting the knowledge given by the Early and Late classification.
Until this point we have information only about statistically significative couples of
genes. We are interested in generalizing and finding statistically significative couple of
sets of genes that are large in size.

We could try to provide a statistical test in order to find statistically significant couple
of sets but we must first define a method to calculate the p-value between two gene
sets.
In a way that is similar to the how we assign the p-value for a couple of genes we can
use a Monte Carlo experiment with a similar initial random distribution as we done
previously.
Given two gene sets A and B we define a patient p to be interesting if |Ep ∩ A| ≥ 1
and |Lp ∩ B| ≥ 1 where Ep, Lp are the sets of mutated genes classified as Early and
respectively as Late in the patient p. Another way to see the previous definition is that
the patient p is interesting if and only if at least one gene of Ep ∈ A and at least one
gene of Lp ∈ B. Given A and B we define cA,B(T ) the number of interesting patients
in the patient set T in relation to the gene sets A and B. The definition of the p-value
for a given couple of genes A and B follows. Let T to be a simulated sample set, let
S to be the real sample set we define T to be countable if cA,B(T ) ≥ cA,B(S) than t is
the number of the countable simulated sample sets in the Monte Carlo simulation:

pval(A,B) = t+1
n+1

(4.6)

where n is the number of experiments done.
Algorithm 4 for generating the p-value of two sets of genes follows.

Giving two sets of genes then we can provide a test in order to verify if those sets
are statistically significant, given A and B two sets of genes they are statistically sig-
nificant if pval(A,B) ≤ α where α is the test parameter, we commonly use α = 0.05.

We could try to create all the different couples of statistically significative sets in a
naive-enumerative way following for example this approach. Firstly we create all the
different couples of sets of genes from the gene set Gt. This first part can be done in the
following way, we imagine to create one couple of sets using a systematic approach let
Ag and Bg the generic couple of gene sets: initially from the gene set Gt we can choose
k = |Ag ∪Bg| genes from the Gt, from those k genes we choose kA genes to part of the
set A while the remaining k−kA genes are part of the set B. According to the previous
method the number of different couples of set of genes is:

∑|Gt|
k=1

(|Gt|
k

)
(
∑k−1

u=1

(
k
u

)
). This

number is Ω(3|Gt|) as for every gene in Gt we can decide if the considered gene belongs
to A, B or if it does not belong to the solution. Then for every generated couple we
can test if the couple is statistically significative using directly the definition given.

Clearly the computational complexity of the enumerative approach for finding the
set of the couple of statistically significative sets is too high as it is exponential in the
number of the genes considered hence we must consider a different approach.
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input : n the number of simulation to run, A and B two gene sets, S the real
patient set.

output: The estimated p-value for the couple of gene sets A and B.

r ← cA,B(S)
t ← 0
for k := 1 to n do

For every patient p ∈ S let Ep = ∅ and Lp = ∅ the set of genes classified as
Early and as Late respectively.
for every gene g in A ∪B do

Let e and l the number of patients ∈ S where the gene g is classified as
Early and as Late respectively.
Ps ← select e+ l random patients from S
Es ← select e random patients from Ps
Ls ← Ps \ Es
for every patient p ∈ Es do

Ep ← Ep ∪ {g}
end
for every patient p ∈ Ls do

Lp ← Lp ∪ {g}
end

end
/* Let T to be the above simulated dataset */
if cA,B(T ) ≥ r then

t← t+ 1
end

end
return t+1

n+1
;

Algorithm 4: Pseudocode for calculating pval(A,B).
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Now that we have a method to calculate the p-value for a couple of sets of genes
we can create an algorithm to find statistically significant couple of sets starting from
the previous calculated couple of genes.
We can try to create two statistically significant sets A, B in a greedy way. We start
from a couple of statistically significative genes (a, b) assuming the gene a classified
as Early and the gene b classified as Late we then initialize A = a and B = b. Let
(A,B) to be the current solution we obtain a candidate solution (Ac, Bc) by adding
to A or to B a gene g such that g /∈ A and g /∈ B from those candidate solutions we
then select the solution with the smaller p-value. The solution at the (i+1)-iteration
differs from the solution at the previous state only by the gene g that is chosen to be
inserted into A or into B, consequently for any candidate solution (Ac, Bc) we have
that |A ∪B| < |Ac ∪Bc|. We continue then expanding the solution adding genes until
we can find a gene that decrements or maintains the p-value of the solution. So for ev-
ery iteration the cardinality of the solution is expanded and its p-value is decremented
at most by an amount d. The convergence of the solution into a final solution is given
by the fact the set of genes Gt is finite. Furthermore we can limit the cardinality of
the two genes sets in the solution by upper bounding the size of their union by an
integer parameter smax, this limit can be view also as an alternative stopping criterion.
Algorithm 5 apply this greedy approach in creating a solution it also use the p-value
calculated by Algorithm 4. We have omitted what we should do when we find more
than one candidate solution that can be promoted as the new current solution by us-
ing the term "apply a Choice". Given a set of "eligible" candidate solutions we can
consider the following Choices:

• LAST: We choose the last added one.

• RANDOM: We select one uniformly at random.

• BALANCE: Given a solution (A,B) we try to keep the size of the set of genes
A similar to the size of the set B, promoting as current solution a solution that
increments the size of the set of genes (A or B) with the lowest size. If more than
one solution accomplish this we select one uniformly at random. If |A| = |B| we
select one uniformly at random.

If we take two sets of genes A and B is possible to observe that if we start from a couple
of statistically significant sets of genes if we add a generic gene to one set obviously
the resulting couple of sets is not always statistically significative.
Given a current solution (A,B) with |A| = n and |B| = m and |Gt| = k the pool
of genes considerated then if from a current solution a single gene is inserted in
one set we have that the resulting number of different candidate solution generate
is 2(k − n−m) = O(k) but if instead a current solution is enriched adding couples of
genes than the number of candidate solution rise to (k − n−m)2 = O(k2).
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input : U the set of different couples of genes and their p-value relatives to different
relations, Gt the set of genes considered.

output: A and B sets of genes.

Let (a, b) to be the couple of genes with the minimum p-value looking at the relations
Early-Late and Late-Early such that a is classified as Early and b as Late.
A← a
B ← b
pv ← pval(A,B)
f ← true
while f is true do

f ← false
candidates← ∅
for every gene g ∈ Gt r (A ∪B) do

u← pval(A ∪ {g}, B)
t← pval(A,B ∪ {g})
if u ≤ pv then

candidates← candidates ∪ {(A ∪ {g}, B), u}
end
if t ≤ pv then

candidates← candidates ∪ {(A,B ∪ {g}), t}
end

end
if |candidates| > 0 then

f ← true
From the candidate solutions in candidates find the ones that yield the
minimum p-value, if there is more than one apply a "Choice"
Let (A∗, B∗) such candidate solution
A← A∗

B ← B∗

pv ← pval(A
∗, B∗)

end
end
return A,B;

Algorithm 5: Pseudocode for the greedy algorithm.
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4.4.1 A deterministic bound on the p-value

In the previous pages we have created an algorithm that find the p-value first for two
couples of genes and then for two sets of genes using a Monte Carlo algorithm. In all
cases we have generated a set of random data starting from the real data using dif-
ferent approaches. The first approach is used in Algorithm 3 and generate a complete
simulated dataset involving all the genes of Gt and then for every couple of genes it
does some computation, this task is repeated n number of times, where n is the number
of Monte Carlo experiments to run. If the first approach generate an entire simulated
dataset the second approach generate simulated input information considering only a
subset of genes. For example in Algorithm 4 we generate the Es and Ls only looking
at the genes that are in A ∪ B as only this set of genes is involved for calculating the
p-value, we then generate those two simulated sets n times. If the sets A and B change
then we need to recalculate or expand Es and Ls in order to reflect the change.
We could have used also the first approach in Algorithm 4 : firstly we can create n
full simulated dataset involving all the genes in the pool Gt, then for two sets A and
B we check for each one of the n datasets the number of interesting patients and com-
pare this number with number of interesting of the real dataset, finally we calculate
the p-value following the definition provided. In this way we can use those simulated
datasets regardless of the genes that are in A∪B instead of expanding o recalculating
the sets of the simulated datasets wherever A∪B changes. Using this approach we can
pre-initialize n different random simulated datasets and then start finding cA,B(T ) for
each simulated dataset T and then calculate the p-value of (A,B), in the next iteration
we just reuse those datasets again this permits to give some particular observations.

On the example of Algorithm 5 we are now interested in finding a way to exclude
a gene from being added to the current solution, this can reduce the number of candi-
date solutions to be considered. Providing a lower bound to the p-value of a candidate
solution can be used as a pruning criterion on the set of genes that can be added.
For the following considerations we assume to be in the case of pre-initialized random
simulated datasets.
For a given dataset the number of interesting patient increase or remain the same iter-
ation by iteration because a patient that is interesting remain interesting by definition
while a patient can become interesting if while adding a set of genes Ga to the current
solution (A,B) we can find at least two genes (v, t) such that v is classified as Early
in that patient and t is classified as Late respectively. Clearly this consideration ap-
ply both to the real dataset and to the simulated ones. On the top of this observation
is possible to provide an upper and a lower bound to the p-value of a candidate solution.

Remember that a patient p with Ep and LP , the sets of genes classified as Early
and as Late in p, is interesting if for a given solution (A,B) we have that |Ep ∩A| ≥ 1
and |Lp ∩B| ≥ 1. Let (A,B) be the current solution and let (A∗, B∗) be the candidate
solution obtained by adding one gene to A or to B.
We indicate with ki the number of interesting patient in the real dataset and with
ki1, ..., k

i
n the number of interesting patient in the simulated datasets at the i-iteration.

We define the indicator function 1(kix) relative to a simulated dataset x, 1 ≤ x ≤ n, as
follows:
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1(kix) =

{
1 if kix ≥ ki,

0 otherwise .
(4.7)

A simulated dataset x is countable if 1(kix) = 1. Then rewriting the definition of the
p-value for two sets of genes (A,B) using the new terminology we have that:

pval(A,B) =

∑n
x=1 1(kix) + 1

n+ 1
=

1

n+ 1
+

∑n
x=1 1(kix)

n+ 1
. (4.8)

Clearly a very simple lower bound for the p-value is given by 1
n+1

. The p-value increase
as the number of countable datasets rise while it decrements otherwise, is then directly
proportional in the number of countable datasets.
Also if the p-value of a solution decrements or remains the same iteration by iteration
we have that for two consecutive iteration i and i+ 1 the follow relation apply:

n∑
x=1

1(ki+1
x ) ≤

n∑
x=1

1(kix). (4.9)

Now supposing to extend the current solution (A,B) adding the gene g that is classi-
fied as Early in gE patients and as Late in gL. For a given solution (A,B) a patient p
can be interesting or not, but among the not interesting patients we can find a patient
where |Ep ∩A| ≥ 1 or where |Lp ∩A| ≥ 1 those particular sets of patients can become
interesting adding a particular gene.
A patient p is E-almost interesting if |Ep ∩ A| ≥ 1 and |Lp ∩B| = 0.
A patient p is L-almost interesting if |Ep ∩ A| = 0 and |Lp ∩B| ≥ 1.
Then for example an E-almost interesting patient pe can become interesting if we add a
gene g ∈ Lpe to B archiving that |Lpe ∩B| ≥ 1 then such patient becomes by definition
interesting.
Let:
qE the number of E-almost interesting patients in the real dataset given the solution
(A,B);
qL the number of L-almost interesting patients in the real dataset given the solution
(A,B);
qEx the number of E-almost interesting patients in the simulated dataset x given the
solution (A,B);
qLx the number of L-almost interesting patients in the simulated dataset x given the
solution (A,B).

Now adding the gene g to the solution we define 4ki+1 = |ki+1 − ki| and 4ki+1
x =

|ki+1
x − kix| indicate the number of patient that become interesting in the real dataset

and in the x-simulated dataset respectively, if we add the gene g to the solution. Such
values are bounded by the following quantities:
if g ∈ A∗ (if g is added to setA): 4ki+1≤min(qL, gE) = 4∗ki+1 and4ki+1

x ≤min(qLx, gE) =
4∗ki+1

x for every simulated dataset x,
if g ∈ B∗ (if g is added to setB): 4ki+1≤min(qE, gL) = 4∗ki+1 and4ki+1

x ≤min(qEx, gL) =
4∗ki+1

x for every simulated dataset x.
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After adding a gene g the number of simulated dataset that were countable can vary
and the number of interesting patient can varies also in the real dataset. In figure 4.1
we can see an example on the range of values taken by ki+1

x and ki+1 in the case of not
countable dataset x. We now define formally when a dataset can vary or maintain its
interestingness after expanding the solution.

for a generic dataset x:
kix

4ki+1
x + kix

for the real dataset:
ki

4ki+1 + ki

Figure 4.1: Interval for the number of interesting patient in the (i+1)-iteration given
the number in the i-iteration.

A generic dataset x can be either countable or not, then:
x can become not countable if: ki ≤ kix but 4ki+1

x + ki+1
x < 4ki+1 + ki+1;

x can become countable if: ki > kix but 4ki+1
x + ki+1

x ≥ 4ki+1 + ki+1.
Then aggregating the inequalities we have that a simulated dataset x is at risk :{

if x is not countable: 4ki+1
x + kix ≥ ki,

otherwise: kix < 4ki+1 + ki.
(4.10)

The set of datasets that are at risk for two different genes g1 and g2 are generally
different as we take in consideration gE and gL for a particular gene.
Now it is possible to use datasets that are at risk in order to obtain a bound to the
p-value of (A∗, B∗).
Let rnc and rc to be the set of the not countable datasets that are at risk and the set
of the countable datasets that are at risk, then the p-value of (A∗, B∗) is bounded by:

pval(A
∗, B∗) = [

1

n+ 1
(1 +

n∑
j=1

1(kij)− rc),
1

n+ 1
(1 +

n∑
j=1

1(kij) + rnc)]. (4.11)

This bound is obtained assuming the fact that all the rc datasets will become not
countable while the status of the rnc ones remains unchanged if we then expand the
solution (A,B) by adding the gene g obtaining the candidate solution (A∗, B∗) this give
a lower-bound for the p-value of the candidate solution, when we assume that all the
rnc datasets will become countable leaving the other rc that are at risk countable we
obtain respectively an upper bound. With such hypotheses the above bound is based
on a worst-case analysis.

The considerations used to derive this bound can also be used to provide an alter-
native way to calculate the p-value of a candidate solution given the set of the datasets
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that are at at risk in relation to gene g. Supposing that we start from a current solution
(A,B) while adding the gene g to (A,B) to obtain the candidate solution (A∗, B∗), we
have that:

pval(A
∗, B∗) =

1

n+ 1
(1 +

n∑
j=1

1(kij) + rNC − rCN) =

=pval(A,B) +
1

n+ 1
(rNC − rCN),

(4.12)

where rNC are the dataset at risk that from being not countable become countable and
rCN are the dataset at risk that become not countable from being countable. Clearly
we have that rNC ≤ rnc and rCN ≤ rc and if we do again the worst case analysis done
before we obtain obviously the previous results. Also if we look at the first two terms
of the sum we can recognize that they are exactly the p-value of the current solution
(A,B). So we can find the p-value of a candidate solution starting from the value
obtained from the current solution considering only the set of dataset that are at risk
at that time.

If we look at the set of patients relative to a generic dataset D we have that the
number kiD of interesting patient at the iteration i is less or equal than the number of
interesting patient at the successive iteration so kiD ≤ ki+1

D as a patient that is interest-
ing remain interesting over the future iterations. This can be useful while we need to
update kiD to become ki+1

D because we just need to look at the subset of the patients
of D that were not interesting, reducing the computational cost.

Also if we suppose to know the value ki+1 for the real dataset we have that for a
subset of the simulated datasets that are at risk it may be possible to note directly
that their status is going to change, specifically let x to be a simulated dataset then
we have that:

1)If x is at risk, not countable and ki+1 > kix +4∗ki+1
x =⇒ x remains not countable.

2)If x is at risk, countable and ki+1 > kix +4∗ki+1
x =⇒ x become not countable.

3)If x is at risk, countable and ki+1 ≤ kix +4∗ki+1
x =⇒ x remains countable.

(4.13)
Note the asymmetry of the conditions, a third condition like is applicable only if x is
not at risk and in this case x maintains its status by definition.
We can use (4.13) directly in order to speed up the p-value calculations, as we in-
crease the number of simulations to do calculating ki+1 can be advantageous in term
of computations avoided.

4.5 A probabilistic approach

4.5.1 Approach based on Chernoff bounds

In the previous section while calculating the bound we defined 4∗ki+1
x and we used

this value to provide a deterministic bound. Generally not all the mutations relative to
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a gene g are going to affect a specific subset of patients, in our case the set of the pa-
tients that are E-almost interesting or L-almost interesting, since mutations are placed
randomly in a simulated dataset.
Given (A,B) the current solution at the iteration i we then consider the candidate so-
lution (A∗, B∗) obtained by adding, for example, to the gene set A the gene g obtaining
then A∗ = A∪{g} and B∗ = B, we indicate gE and gL the number of patients with the
gene g classified as Early and as Late. Now considering a generic simulated dataset x
we have that respect to the current solution x has kix interesting patients while we have
that some patients are E-almost interesting and L-almost interesting, let Eqx and Lqx
to be the sets of those patients. A patient p that is L-almost interesting can become
interesting if while considering the candidate solution the gene g is classified as Early
in such patient. Considering that while creating a simulated dataset for each gene we
select uniformly at random a pool of patients from the patients set, we can now define a
new model. Now considering gE mutations to be distributed among |x| patients where
m of them are L-almost interesting we are interested in the number of patients that
become interesting. Let Xi the indicator random variable defined is this way:

Xi =

{
1 if the mutation gEi involve a patient that is L-almost interesting ,
0 otherwise.

(4.14)

ClearlyXi is Bernoulli random variable and P [Xi = 1] = pi is a function of (X1, ..., XgE)
more specifically pi+1 = f(Xi) for any 1 < i ≤ gE. Now let ni to be the number of
patients that after assigning the first i-mutations do not have a mutation in the gene
g and let mi to be the number of patients that are also L-almost interesting. Now
assuming ni ≥ mi and if mi > 0 and ni > 0 we have that:

pi+1 =


mi − 1

ni − 1
if Xi = 1 and mi > 1,

0 if Xi = 1 and mi ≤ 1,
mi

ni − 1
if Xi = 0,

(4.15)

This dependency between the various Xi is given by the fact that a patient cannot have
"more mutations" involving the same gene, this constraint represents an extraction
without replacement model. Let n to be the number of patients that before assigning
any mutation do not have a mutation in the gene g and let m to be the number of
patients that are also L-almost interesting, we decided to set the probability p = m

n

for each indicator random variable Xi, as mutation are assigned one after the other
and given this the random variables are now independent. This can be viewed as an
approximation of the sampling without replacement model.
Now let X to be the random variable that count the number of L-almost interesting
patients that are affected by a mutation in the gene g while g is classified as Early.
Now we have that X =

∑gE
i=1Xi from which we can compute the expected value of X

as:

E[X] = E[

gE∑
i=1

Xi] =

gE∑
i=1

E[Xi] = gE
m

n
= µ. (4.16)

We have that µ = 0, according to the (4.16), when gE = 0 or when m
n

= 0, more
specifically when m = 0. This can happen when we cannot find any patient in the real
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dataset where g is classified as Early, respectively as Late, or when for the simulated
dataset in question we cannot find any L-almost interesting patients, respectively E-
almost interesting patients. In such cases the number of interesting patients for such
simulated dataset respect to candidate solution remains the same as respect to the
current solution, we can then immediately find if the dataset x change its status or
not.
Now assuming to know the number ki of interesting patients according to the current
solution in the real dataset and the number 4ki+1 of patients that were L-almost
interesting but according to the candidate solution are now interesting in the real data
set. Assuming now that the dataset x is not countable we would like to find out the
probability that such dataset become countable under the candidate solution. If x is
not countable then x become countable if:

kix +X ≥ ki +4ki+1 = ki+1 (4.17)

from which it follows that:

P [x become countable] = P [X ≥ ki+1 − kix]. (4.18)

Now we can provide an upper bound to this probability using a Chernoff bound.
Given that X1, ..., XgE are independent we can apply the Chernoff bound choosing a
specific δ such that X ≥ ki+1− kix = (1 + δ)µ, now solving in respect to δ we have that

δ =
ki+1 − kix

µ
− 1 (4.19)

which is applicable to Chernoff if:

ki+1 > kix + µ (4.20)

and now using the δ defined as in (4.19), applying the relation (4.16) and reordering
the inequality:

P [X ≥ ki+1 − kix] ≤


e

ki+1 − kix
gE
m

n

−1

(
ki+1 − kix
gE
m

n

)

ki+1 − kix
gE
m

n



gE
m

n

(4.21)

This bound is applicable only to the set of simulated dataset where (4.20) is satisfied.
This condition tend to afflict more the datasets with ki+1

x ≥ ki: such subset of datasets
is the set of the countable ones which iteration by iteration, if the p-value lowers, is
going to lowers in size. For all the dataset where the Chernoff bound is not applicable
we then compute ki+1

x simulating the expansion of the current solution with the addition
of the gene g. We then know exactly if such datasets become or remain countable.
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In the datasets where (4.20) is satisfied (4.21) give us an upper bound on the probability
that a set that is not countable turn out to be countable if we consider the candidate
solution instead of the current one. In the same way if we consider a dataset x that is
countable and considering when it remains countable upon the new candidate solution
than the probability that x maintain its status is the same as in (4.21) and hence
Chernoff provide again an upper bound to for such probability.
Clearly if the dataset x is not at risk then the probability that such dataset become or
remains countable is:

P [x become or remains countable | x not at risk ] =

{
1 if x is countable,
0 otherwise.

(4.22)

We can interpreter such probability as a score that indicates for every simulated dataset
x how likely the dataset contribute to the p-value of the current solution. We then define
for every simulated dataset x the score s(x):

s(x) = P [x become or remains countable]. (4.23)

If x is not at risk then s(x) is equal to (4.22) if the otherwise is equal to the upper
bound provided by Chernoff in (4.21) if applicable. Otherwise for the datasets where
(4.20) is not satisfied we consider the candidate solution as current we then find out
ki+1
x and if the dataset stays or become countable then s(x) = 1 otherwise s(x) = 0.

Now let D to be the set of the simulated datasets, we can now definite two different
types of random variables. The first one is relative to the datasets that are countable
while the second one involve only the not countable ones, their role is to indicate if the
dataset stay or become countable if we consider the candidate solution instead of the
current one. Let Xx the random variable associated to the simulated dataset x, then:

if x is countable than Xx =

{
1 if x remains countable,
0 otherwise.

if x is not countable than Xx =

{
1 if x become countable,
0 otherwise.

(4.24)

Clearly Xx is an another Bernoulli random variable Be(p) such that the P [Xx = 1] =
s(x) then we have that p = s(x).
Now we define a new random variable X̄ that count the number of datasets that become
or stay countable, we have than that:

X̄ =
∑
x∈D

Xx and E[X̄] = E[
∑
x∈D

Xx] =
∑
x∈D

E[Xx] =
∑
x∈D

s(x) = s (4.25)

If a dataset x is not at risk or if we cannot apply the Chernoff bound (4.21) due to
(4.20) not holding we then know the value ki+1

x as we are forced to calculate it in order
to find the p-value of the candidate solution. We can separate the contribute that
such datasets give to X̄ as we can note that X̄ is constituted by a deterministic part
given by such datasets and a probabilistic part given by the remaining datasets. Let d
the deterministic contribute and let X̂ the random variable that count the number of
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datasets that are at risk and where 4.20 holds that stay or become countable respect
to the candidate solution:

X̄ = d+ X̂. (4.26)

Now we have that for the candidate solution (A∗, B∗) its p-value is:

pval(A
∗, B∗) =

1 + X̄

|D|+ 1
=

1 + d+ X̂

|D|+ 1
. (4.27)

Let pval(A,B) to be the p-value of the current solution and let k the number of datasets
that are countable in the current solution, we are now interested in the probability that
the p-value of the candidate solution (A∗, B∗) is not greater than the p-value of the
current solution:

P [pval(A
∗, B∗) ≤ pval(A,B)] = P

[
1 + d+ X̂

|D|+ 1
≤ 1 + k

|D|+ 1

]
= P [X̂ ≤ k − d], (4.28)

where given the fact that X̂ ≥ 0 we must have that:

k ≥ d. (4.29)

If k < d we have that:

1 + k

|D|+ 1
≤ 1 + d+ X̂

|D|+ 1
=⇒ pval(A,B) < pval(A

∗, B∗) (4.30)

we then can conclude immediately that whenever we see k < d the p-value of such
candidate solution can only increase as X̂ ≥ 0, we can then discard such solution
directly.
Now assuming E[X̂] = ŝ > 0 we have that applying a Chernoff bound again and using:

δ = 1− k − d
ŝ

(4.31)

which is applicable to Chernoff if:

d < k < ŝ+ d (4.32)

we obtain that:

P [X̂ ≤ k − d] ≤

 e

k − d
ŝ

−1

(
k − d
ŝ

)
(
k − d
ŝ

)


ŝ

. (4.33)

According to the (4.32) we have that p-value of the actual solution need to be between
the lower bound that the p-value can reach and between the p-value calculated consid-
ering a solution with s countable datasets.
Given the equation 4.8 we have that the p-value of two set of genes assume value that
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are multiple of the lower bound 1
|D|+1

hence the p-value of a solution is a discrete value
that ranges from 1

|D|+1
to 1, the value that can be taken in this interval can be seen as

a finite succession of value:

a0, a1, ..., ai, ..., a|D|−1, a|D| with ai =
i+ 1

|D|+ 1
. (4.34)

Then we can see that using:

ε =
1

a

1

|D|+ 1
with a > 1 (4.35)

and defining V as a random variable that assume a value that is the succession 4.34
we have that for such succession:

P [V ≤ ai + ε] = P [V ≤ ai]. (4.36)

This observations can be used in order to generalize the use of the Chernoff bound
when we are in the case k = d, this arises when the p-value of the current solution is
equal to the lower bound 1

|D|+1
and we found a candidate solution that maintains the

p-value to such value.
Assuming the general case:

P [pval(A
∗, B∗) ≤ pval(A,B) + ε] =P [

1 + d+ X̂

|D|+ 1
≤ 1 + k

|D|+ 1
+

1

a

1

|D|+ 1
] =

=P [X̂ ≤ k − d+
1

a
].

(4.37)

again we must have that:

k ≥ d− 1

a
. (4.38)

Now if ŝ > 0 we can use a Chernoff bound with:

δ = 1−
k − d+

1

a
ŝ

(4.39)

which is applicable to Chernoff if:

d− 1

a
< k < ŝ+ d− 1

a
. (4.40)

Now we can see that for k = d we have that:

δ = 1− 1

aŝ
(4.41)

and the 4.40 translates to:
ŝ >

1

a
. (4.42)

And finally we obtain that:

P [X̂ ≤ 1

a
] ≤

 e

1

aŝ
−1

(
1

aŝ
)
(

1

aŝ
)


ŝ

. (4.43)
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When applicable we can then use 4.43 when k = d instead of calculate the p-value of
the candidate solution.
When ŝ = 0 we have that we cannot apply the previous Chernoff bounds but again
we can note that ŝ = 0 only if there is no probabilistic contribute to s then we known
directly the p-value of the candidate solution as it only depends on the amount d which
is already available.

Now we have obtained an upper bound to the probability that the p-value of the
candidate solution is less or equal that the p-value of the current solution.
We can use such bound to define a new greedy method to expand a valid solution.
We could start with the couple of genes that provide a valid solution with the lowest
p-value and then add to this initial solution the gene g with the highest upper bound
(we decided also to not considerate any gene g were the bound given by (4.21) is less
than a certain threshold), obtained as in (4.21), to P [pval(A,B) ≥ pval(A

∗, B∗)]. After
this we need to calculate the p-value of solution created by expanding (A,B) with g,
if the calculated p-value is greater than the current p-value we then consider the gene
with the second highest upper bound, we can then reiterate such considerations until
we found a valid gene. The previous consideration is valid only when for all the genes
considered the condition (4.32) is applicable otherwise we first start looking at the sub-
set of genes where due to the not applicability of (4.32) we need to find out the p-value
of the candidate solution respect to such genes and then only when we cannot find a
valid candidate solution constructed upon such genes we start looking the remaining
genes.
If we found a valid gene we will promote the candidate solution, created starting from
the current solution by adding such gene, to be the new current solution and then we
then start seeking a new valid gene. We can then reiterate such approach until we
cannot find any valid gene or until we have expanded the solution in order to reach a
specific maximum size.

4.5.2 Approach based on martingales

We can model how a gene affect the patients in a simulated dataset using the notion
of martingale.
We have a prefixed amount of gene mutations to assign uniformly to a set of patients
and where we would like to find the number of mutations of a gene in respect to a
specific subset patients, the almost interesting ones.
Supposing again that the candidate solution is obtained by adding the gene g to A in
the current solution (A,B), let Y the random variable that count the number of L-
almost interesting patients affected by a mutation in the gene g classified as Early. Let
again Xi to be the indicator random variable relative to the gene mutations as defined
in (4.14). Note that Y = f(X0, ..., Xn) =

∑n
i=0Xi, when X0 = 0. Now we have that

applying the Doob’s procedure as described in (3.11) we obtain the martingale Z0, ..., Zn
where we set Z0 = 0. Now, as already generally mentioned, Zi represents the expected
number of L-almost interesting patients when we know the value of X0, ..., Xi−1 then
supposing tho know the outcome of Xi we have that adding such information to Zi we
obtain that:

Zi+1 = Zi − E[Xi] +Xi (4.44)
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from where it follows that:
|Zi+1 − Zi| ≤ 1. (4.45)

We have then that ck = c = 1. Now assuming to know 4ki+1, ki and kix where x
is a simulated dataset, note that 4ki+1 + ki = ki+1. Supposing now x to be an not
countable dataset we are interested in the probability that such dataset turn out to be
countable respect to the candidate solution:

P [kix +4ki+1
x ≥ ki +4ki+1] = P [4ki+1

x ≥ ki +4ki+1 − kix] =

= P [Y ≥ ki +4ki+1 − kix] = P [Y − µ ≥ ki +4ki+1 − kix − µ] =

= P [Zn − Z0 ≥ ki +4ki+1 − kix − µ] = P [Zn − Z0 ≥ ki+1 − kix − µ]

(4.46)

We used the fact that Y is positive random variable, then is possible to apply the
Azuma-Hoeffding bound by taking:

λ = ki+1 − kix − µ (4.47)

when:
ki+1 > ki+1

x + µ. (4.48)

we obtain that:

P [Zn − Z0 ≥ ki+1 − kix − µ] =P [Y − µ ≥ ki+1 − kix − µ] ≤
≤ e−(k

i+1−kix−µ)2/2n.
(4.49)

A stronger bound is given using (3.16), recalling how Zi is defined we have that:

Zi = E[Y |X0, ..., Xi] = E[
n∑
i=0

Xi|X0 = a0, ..., Xi = ai] =
i∑

k=0

ak + E[
n∑

k=i+1

Xk] =

=
i∑

k=0

ak +
n∑

k=i+1

E[Xk],

(4.50)
we have that Zk − Zk−1 is bounded by:

0− E[Xk] ≤ Zk − Zk−1 ≤ 1− E[Xk], (4.51)

which is obtained conditioning on the value of Xk, we can then derive the following
relation:

P [Zn − Z0 ≥ ki +4ki+1 − kix − µ] =≤ e−2(k
i+1−kix−µ)2/n, (4.52)

clearly the upper bound obtained by this approach is more strict.
Note that according to the condition (4.48) and according to the condition (4.21)
the subset of datasets where either the Azuma-Hoeffding or the Chernoff bound is
applicable is the same as the two condition are mathematically identical.
Then similarly as we done previously we can define a score s(x) for any simulated
dataset x equal to the probability that x remains or becomes countable respect to the
current solution. On the dataset at risk where the condition (4.48) is satisfied we use
the upper bound in (4.49) as the score of s(x), otherwise we calculate ki+1

x and the we
set s(x) = 1 if kix ≤ ki otherwise we set s(x) = 1. For any dataset not at risk s(x) = 1
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if x is countable while for the not countable ones s(x) = 0.
We can then define Xx the indicator random variable associated to the dataset x that
indicate if the dataset x becomes or remains countable or if it turns out to be not
countable. We have that P [Xx = 1] = s(x), and Xx is a Bernoulli random variable.
Supposing nowX to be the random variable that count the number of countable dataset
respect to the candidate solution. Again we would like to find the probability that the p-
value of the current solution is lower or equal to the p-value of the current solution. We
can then applying the same consideration done in the previous section use a Chernoff
bound where with δ as in (4.31) when the condition (4.32) is valid we obtain again:

P [X̂ ≤ k − d] ≤

 e

k − d
ŝ

−1

(
k − d
ŝ

)
(
k − d
ŝ

)


ŝ

. (4.53)

Even that such bound is the mathematically the same as in (4.33) the way on how the
value ŝ is derived is different as we used a completely different approach in order to
derive it.
We can now use the same greedy approach described as in the previous section in order
to create and expand a valid solution to our problem.
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Chapter 5

Results

In this section we describe the preprocessing part done on data and some characteristics
of the dataset used.
Then we illustrate some of the results obtained running an implementation of the
algorithms described in Chapter 4 and provide an interpretation of them.

5.1 Datasets

We have considered two different datasets extracted from the Cancer Genome Atlas.

The first dataset comes from [4] and is relative to a set of patients that has a spe-
cific type of brain tumor abbreviated as LGG (Low Grade Glioma) the second dataset
comes from the same study but is relative to a set of patients that has another type of
brain tumor abbreviated as GBM (Glioblastoma Multiforme).

We decided to exclude from the study every record of the datasets where the value
of VARIANT CLASSIFICATION is equal to Silent as the effects produced by those mu-
tation are clinically irrelevant.
A script was created in order to filter only a set of specific headers, exclude invalid
records and filter only clinically significant VARIANT CLASSIFICATION classes.

The GBM dataset consists of 36467 different records with 139 headers and involves
276 patients and a set of 11382 genes while the LGG one has 11533 records and 108
headers and the number of patients and genes are respectively 504 and 5554.
The VARIANT CLASSIFICATION classes are not standard, each experiment use its own
nomenclature, in the GBM dataset classes are more specific respect to the LGG dataset.

In the tables 5.1 and 5.2 are summarized the different VARIANT CLASSIFICATION
classes, the number of records that fall in a specific class and the number of records
with a score sr greater than 0. We see that the resulting matrix from the LGG dataset
is very sparse as there are only 562 record whose score are greater than 0 instead in
the GBM every entry has a significant score. So we decided to exclude from our next
tests the LGG dataset because it is not sufficiently rich in data.

47
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Looking at figure 5.1 that shows how many patients have a given number of muta-
tions, we can see that from the GBM dataset the number of mutated genes in a patient
range from about 7000 to about 5 and the most part of patients have a number of
mutated genes in the range from 20 to 100. Figure 5.2 shows an histogram for the
the cumulative score of a patient, the sums of the scores relative to all the genes in a
specific patient, in the number of patients where we can see that the cumulative score
is concentrated in the range from 0 to 100. Tables 5.3 and 5.4 show the 10 patients
with the most number of mutated genes and with the least number of mutated genes
respectively, with their number of mutated genes and their cumulative score. Is possi-
ble to note that the number of mutated genes for a GBM afflicted patient range from
as little as 5 genes to thousands of mutated genes.

The number of genes with at least a mutation in the GBM dataset consists of 9859
genes and given the fact that we can choose from

(|G|
2

)
different couples we considered

only the genes that are mutated in at least in the 2% of patients let Gt to be this subset
of G, this subset is 747 in size and consequently we considered 278631 different couples.

For the clonal and subclonal classification part we have that figure 5.3 shows for every
gene the fraction of patients where such gene is classified as Early and as Late respec-
tively. We see that there is a rather low correlation between the fraction of patients
where a gene is classified as Early and as Late. In table 5.5 we can see for various
relation the number of statistically significative couple of genes, their average p-value,
and the standard deviation on the p-value. Referring to the Early-Late and Late-Early
relations the average p-value is generally high as, also the standard deviation, we ex-
pect that most of the p-values to be high as the number of true relations tends to be
rather small. Figure 5.4 shows the distribution of the p-values for some relations.

Finally if we consider the full set of genes we have that in the average patient about
53 genes are classified as Early and about 35 as Late.
In the full set of genes on average for a generic couple of genes (a, b) the 98.635% of
patients are missing the mutation in both genes and 1.2226% of patients do not have
a mutation in the gene a or in the gene b while in the remaining 0.1424% of patients
both genes are mutated.
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VARIANT CLASSIFICATION class #records #records with sr > 0

De_novo_Start_InFrame 6 6
De_novo_Start_OutOfFrame 10 10

Frame_Shift_Del 814 814
Frame_Shift_Ins 363 363
In_Frame_Del 329 329
In_Frame_Ins 38 38

Indel 1 1
Missense 6 6

Missense_Mutation 23565 23565
Nonsense_Mutation 1747 1747
Nonstop_Mutation 17 17

Silent 8955 8955
Splice_Site_DNP 11 11
Splice_Site_Del 102 102
Splice_Site_Ins 28 28
Splice_Site_ONP 1 1
Splice_Site_SNP 469 469
Start_Codon_Del 2 2
Start_Codon_Ins 1 1
Stop_Codon_Del 2 2

Total 36467 36467

Table 5.1: Variant Classification classes statistics for the GBM dataset.

VARIANT CLASSIFICATION class #records #records with sr > 0

Frame_Shift_Del 467 15
Frame_Shift_Ins 122 4
In_Frame_Del 164 6
In_Frame_Ins 7 0

Missense_Mutation 7149 359
Nonsense_Mutation 529 36
Nonstop_Mutation 6 0

Silent 2622 124
Splice_Site 467 18

Total 11533 562

Table 5.2: Variant Classification classes statistics for the LGG dataset.
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Patient ID Number of mutation Cumulative score

’TCGA-06-5416-01’ 6969 2415.38
’TCGA-32-2616-01’ 817 295.80
’TCGA-06-1802-01’ 569 313.04
’TCGA-19-1787-01’ 503 290.46
’TCGA-16-0848-01’ 246 86.00
’TCGA-12-0829-01’ 228 111.38
’TCGA-19-1389-01’ 223 90.91
’TCGA-28-1760-01’ 203 85.17
’TCGA-14-0866-01’ 176 63.03
’TCGA-06-2566-01’ 163 59.77

Table 5.3: Top-k patient in mutation numbers terms, k = 10.

Patient ID Number of mutation Cumulative score

’TCGA-06-0139-01’ 5 1.89
’TCGA-32-1980-01’ 6 1.90
’TCGA-06-0240-01’ 8 2.83
’TCGA-06-0178-01’ 9 3.18
’TCGA-06-0189-01’ 15 2.81
’TCGA-06-0881-01’ 16 4.55
’TCGA-14-1821-01’ 19 9.58
’TCGA-06-0132-01’ 20 3.93
’TCGA-28-2510-01’ 21 4.57
’TCGA-06-0151-01’ 22 8.13

Table 5.4: Min-k patient in mutation numbers terms, k = 10.
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Figure 5.1: Histogram for the number of mutations in the number of patients.

Figure 5.2: Histogram for the cumulative score in the number of patients.
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Figure 5.3: Scatter for the percentage of patient with a specific gene classified as Early
or Late, Pearson correlation of 0.2297.
Each point represents a gene involved in the study, the coordinates of a point are the fraction of
patients where such gene is classified as Early, on the x-axis, and respectively the fraction patients
where it is classified as Late, on the y-axis.

Relation Stat.sign.couples Average p-value p-value std.dev.

Early-Late 26577 0.8338 0.3585
Late-Early 32649 0.8027 0.3840
Early-Early 24392 0.8708 0.3255
Late-Late 41622 0.6996 0.4373

Table 5.5: Statistics for the different relations using n=1000 and α=0.05.
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(a) Early-Late (b) Late-Early

(c) Early-Early (d) Late-Late

Figure 5.4: Histogram for the p-value of the statistically significant couples in various
relations, α = 0.05, n = 1000.

5.2 Description of the experiments

We have different implementations that differs by small variations that yield particular
improvements.

The different implementations of the algorithm following the consideration that are
presented in the previous chapter are:

• Greedy: This implementation initialize a random simulated pool of dataset in
order to perform a Monte Carlo simulation every time we need to calculate the
p-value of a candidate solution. Each simulated dataset only contains the genes
that are in the candidate solution. As the pool of simulated dataset is recreated
continuously the optimizations that are discussed in the subsection 4.4.1 are not
applicable.
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• Fixed: In this implementation the pool of random datasets used in order to
calculate the p-value are initialized at the start of the program and are keep
the same for every needed computation, we refer to such fact using the fixed
datasets terminology. Hence such pool of datasets contains all the considered
genes regards of any candidate solution. In this implementation we can also skip
to check patients that were already interesting in a previous iteration’s solution.

• Bound: Like the previous implementation we use fixed datasets but this time
we also apply the optimizations discussed in the section 4.4.1 while ignoring the
observation given by the equations in 4.13.

• Bound*: This implementation is like Bound implementation except for the fact
the we decided to remove from the considered genes every genes that form a couple
of genes with a p-value equal to the lower bound 1

n+1
, where n is the number of

simulated datasets. Every algorithm with an * after its name implements this
decision/option.

• Imp. B.*: In this implementation fixed datasets are used and the optimizations
discussed in the section 4.4.1 are fully applied.

• Chernoff*: From this implementation we start using the probabilistic approach
described in section 4.5 while also using the optimization of 4.4.1. In particular
we apply the method described in 4.5.1.

• Azuma*: Like the Chernoff* implementation but this time we are going to use
the martingale’s approach as described in the subsection 4.5.2.

• Hybrid*: Take the advantages given by both of the previous implementations
by using the tail distribution bound that gives more information (takes the lowest
one) between the Chernoff bound and the Azuma-Hoeffding one.

For every implementation we also provide two alternative starting options:

• Min: The implementation start from a couple of genes that yields the minimum
and statistically significative p-value (α ≤ 0.05) while taking in consideration all
the distinct couple of genes from the considered ones (if * option is also chosen
it also exclude the genes that form a couple with a p-value of 1

n+1
).

• Max: Like the Min option but starting from the couple with the maximum but
still statistically significative p-value (α ≤ 0.05) (while also being compatible
with the * option).

Every time we have more than one candidate solution with the lowest p-value we must
decide which one is going to be promoted as the new current solution. We have 3
different choices:

• L: We decide to choose among the candidate solutions that provide the lowest
p-value the last one (as every gene is tested following a specific order).

• R: We choose one solution uniformly at random.
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• B: Given a solution (A,B) we try to keep the size of the set of genes A similar to
the size of the set B, promoting as current solution a solution that increments the
size of the set of genes (A or B) with the lowest size. If more than one solution
accomplish this we select one uniformly at random. If |A| = |B| we apply the
criterion defined by R.

A more interesting choice is discussed in the conclusions.

In all the following tests we used the same simulation parameters:

• we consider the GBM dataset

• n = 250000 (the number of simulated random datasets used)

• α ≤ 0.05 (the significance level used)

• maximum solution size (|A ∪B|) = 10

• the set of the considered genes Gt is equal to the set of genes that appear in at
least the 4% of the patients (|Gt| = 57, if * is chosen then |Gt| = 55)

We also excluded from the benchmarks the time needed in order to initialize fixed
dataset (generally for n = 250000 is less than 30 minutes).

5.3 Discussion of the results
A first fact that can be noted is that not all the experiments end reaching the maximum
size limit, some solution are lower in size. On this fact we have that all the experiments
that start with the MAX couple according to table 5.7 reach the maximum size limit
while some of the experiments that start from the MIN couple according to table 5.6
end with smaller solution in size.
An explanation could be in the observation that starting from the MIN couple that
usually has a much lower p-value than the MAX couple restrict the size of the possible
candidate solution as we have less possible genes (a candidate solution is constructed
starting from the current solution by adding a candidate gene) that can be used to
improved a p-value that is already rather small resulting in the fact that we have less
chance to find admissible candidate solutions.

The use of the Choice B used in order to provide solutions that are balanced in size
yields the desired result in all the implementations that do not use the probabilistic
approach of section 4.5 that start from the MAX couple and in most part of the ones
that start with the MIN couple. Again the previous observation could be the expla-
nation regards to the fact that some of the deterministic implementations that start
from the MIN couple and use the Choice B are not balanced.

We note that the Choice B do not have the desired effect on most part of the probabilis-
tic implementation experiments. This could be an effect of the fact that when we have
a set of candidate solutions where the Chernoff bound is applicable we use such upper
bound as ulterior greedy choice criterion that permits to avoid the explicit computation
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of the p-values of the solution that are in such set by choosing the "most promising"
one and then verifying if such promising solution is admissible (has a p-value that is
actually not greater than the current solution), otherwise we skip to the one with the
second lowest upper bound reiterating the approach. Considering only one candidate
solution at time and taking the "most promising" and admissible one can be viewed as
a sort of "a priori" choice before the application of the Choice B (only if we find more
than one candidate that "is promising" we can apply the Choice B) and hence we have
that the choices of balancing solutions are less (there can be a more balanced in size
candidate solution that is not very "promising" while actually yielding a p-value that
can be lower or equal than the "most promising" ones). This can also explain why
some solution of the experiments that use the probabilistic approach do not reach the
lower bound of the p-value, which in the case of n = 250000 is equal to 3.999e− 06.

Looking at 5.5 we see that generating a set of random datasets at each p-value compu-
tation raise consistently the average iteration respect to the fixed datasets approach.
We also see that using the observations of section 4.4.1 provide a tangible computa-
tion time advantage respect to not using them. Referring to figure 5.9 that shows the
percentage of skipped p-value computation of the bound given by the equation 4.11 we
see that the bound tends to be not very strict providing only a minor computational
advantage that is completely nullified after the first iterations. Generally we note that
more we reach the lower bound of the p-value more the bound 4.11 is useless. For the
the previous observation ("a priori" choice) we have that the probabilistic approach is
order of magnitude more rapid than the deterministic one.
These observation remains consisted also in the case of L and R as choices. If the add
to the experiments that use the fixed datasets approach the time needed for generate
such datasets divided by the number of iteration than: the difference between using
and not using fixed datasets remains tangible, the implementations that have less it-
erations see an increment of their average iteration time that is much higher than the
implementations with a higher number of iterations (see A-H* and Hybrid* from table
5.6).

For each experiment after deriving a final solution we have recalculated the p-value
of such solution using a set of random datasets that is different from the one used
during the experiment. Given this fact the recalculated value can differ from the one
calculated during the execution of one implementation. In tables 5.6 and 5.7 we can
find such value under the column "p#". In figure 5.6 we can see that the difference from
the p-value of the starting solution and the p − value of the final solution calculated
during one experiment (p-START - p-END) and the difference between the p-value of
the starting solution and the p-value of the final solution recalculated on a different
set of random datasets (p-START - p#) are most of times similar (using B as choice),
as generally p-START >> p-END and p-START >> p#. The only exceptions involve
the solutions of the experiments that start from the MIN couple, in particular from the
implementations: Hybrid*, Imp. B* and Bound. In figure 5.7 we have mapped with a
scatter plot the above discussed quantities.

In figure 5.8 we can see how the p-value of the current solution iteration by iteration
stabilize rapidly at the p-value’s lower bound except for the solution of the experiment
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that use the configuration (MIN, Hybrid*, B) where we have a size that is well less
than the maximum threshold (the size of such solution is 4, the maximum threshold is
10). Generally for all deterministic implementations we a have a rapid stabilization of
the p-value on its lower bound. For the probabilistic implementations the stabilization
is more slow and sometimes the small size of the final solution do not permits to reach
the p-value’s lower bound.

In figure 5.10 we can see for how many candidate solution, iteration by iteration, the
Chernoff bound can be used and for how many candidate solutions we need to explicit
calculate the p-value due the not applicability of the Chernoff bound. If we focus on
the MAX couple case, that is more representative than MIN couple one (we have data
about only 3 iteration), we can see that after some iteration the number of candidate
solution where we can use Chernoff as metric rise rapidly to slowly decrements in the
next iterations. This was generally observed also in the A-H* and Chernoff* imple-
mentations when enough iterations are granted.

Finally we note that the set of random dataset from where we have calculated the
statistic that are used in order to choose the starting couple and hence the starting
solution differs from the one used in every implementation, this reflect into the fact
that p-value of such starting solution can vary and particularly in the case of starting
solutions that yields a p-value that is near to significance level α we have that respect
to a different set of random dataset such starting solution can not be significative any-
more (see table 5.7).
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Implementation Choice |SetA| |SetB| p-START p-END p#

Greedy
L 6 1 1.679e-04 3.999e-06 1.199e-05
R 7 2 2.319e-04 3.999e-06 1.199e-05
B 5 3 1.719e-04 3.999e-06 7.999e-06

Fixed
L 8 2 1.639e-04 3.999e-06 3.999e-06
R 6 4 1.639e-04 3.999e-06 2.399e-05
B 7 3 1.639e-04 3.999e-06 3.999e-06

Bound
L 5 3 1.919e-04 3.999e-06 1.999e-05
R 8 1 1.719e-04 3.999e-06 1.999e-05
B 5 5 2.159e-04 3.999e-06 2.799e-05

Bound*
L 7 1 1.959e-04 3.999e-06 7.999e-06
R 8 2 1.919e-04 3.999e-06 1.999e-05
B 5 5 1.679e-04 3.999e-06 3.999e-06

Imp. B.*
L 8 1 1.439e-04 3.999e-06 2.399e-05
R 2 8 1.919e-04 3.999e-06 1.199e-05
B 5 5 1.839e-04 3.999e-06 3.199e-05

Chernoff*
L 2 2 2.079e-04 7.999e-06 3.599e-05
R 9 1 1.879e-04 3.999e-06 5.199e-05
B 8 1 2.359e-04 7.999e-06 7.999e-06

A-H*
L 8 2 2.079e-04 3.999e-06 1.599e-05
R 7 3 1.879e-04 3.999e-06 3.199e-05
B 2 1 1.839e-04 1.319e-04 1.319e-04

Hybrid*
L 8 2 2.039e-04 3.999e-06 2.399e-05
R 2 2 2.239e-04 1.999e-05 2.399e-05
B 2 2 1.919e-04 1.199e-04 3.199e-05

Table 5.6: Results from different implementations starting from MIN couple.
We have listed in order: the implementation used (Implementation), the choice used (Choice), the size
of the final solution (|setA| and |setB|), the p-value of the starting solution (p-START), the calculated
p-value of the final solution by a given experiment configuration (p-END), the recalculated p-value of
the final solution under a different set of random datasets (p#).
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Implementation Choice |SetA| |SetB| p-START p-END p#

Greedy
L 7 3 5.013e-02 3.999e-06 3.999e-06
R 6 4 5.049e-02 3.999e-06 3.999e-06
B 5 5 4.985e-02 3.999e-06 1.199e-05

Fixed
L 8 2 4.977e-02 3.999e-06 3.999e-06
R 6 4 4.985e-02 3.999e-06 2.799e-05
B 5 5 4.985e-02 3.999e-06 1.199e-05

Bound
L 6 4 5.009e-02 3.999e-06 7.999e-06
R 8 2 5.027e-02 3.999e-06 1.199e-05
B 5 5 5.028e-02 3.999e-06 3.999e-06

Bound*
L 8 2 5.019e-02 3.999e-06 2.399e-05
R 8 2 5.085e-02 3.999e-06 7.999e-06
B 5 5 4.964e-02 3.999e-06 7.999e-06

Imp. B.*
L 6 4 5.024e-02 3.999e-06 1.199e-05
R 7 3 4.997e-02 3.999e-06 1.599e-05
B 5 5 4.944e-02 3.999e-06 3.999e-06

Chernoff*
L 7 3 5.039e-02 3.999e-06 1.599e-05
R 7 3 5.023e-02 3.999e-06 3.999e-06
B 7 3 5.089e-02 3.999e-06 6.399e-05

A-H*
L 8 2 5.072e-02 3.999e-06 6.799e-05
R 7 3 5.026e-02 3.999e-06 7.999e-06
B 7 3 5.107e-02 3.999e-06 5.599e-05

Hybrid*
L 7 3 5.024e-02 3.999e-06 6.399e-05
R 7 3 5.027e-02 3.999e-06 7.999e-06
B 7 3 5.019e-02 3.999e-06 5.199e-05

Table 5.7: Results from different implementations starting from MAX couple.
We have listed in order: the implementation used (Implementation), the choice used (Choice), the size
of the final solution (|setA| and |setB|), the p-value of the starting solution (p-START), the calculated
p-value of the final solution by a given experiment configuration (p-END), the recalculated p-value of
the final solution under a different set of random datasets (p#).
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(a) Starting from MIN couple.

(b) Starting from MAX couple.

Figure 5.5: Average iteration time for different implementations. Choice = B.
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(a) MIN, p-START - p-END (b) MAX, p-START - p-END

(c) MIN, p-START - p# (d) MAX, p-START - p#

Figure 5.6: Histograms for the difference of the starting solution p-value from the final
solution p-value and for the difference of the starting solution p-value from the p-value
of the final solution recalculated using a different set of random dataset. Choice = B.
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(a) Starting from MIN couple. (b) Starting from MAX couple.

Figure 5.7: Scatter for the p-value of each final solution (p-END) and for the recalcu-
lated p-value of each final solution (p#). Choice = B.

(a) Starting from MIN couple. (b) Starting from MAX couple.

Figure 5.8: p-value of the current solution iteration by iteration for Imp.B* and Hy-
brid*. Choice = B.
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Figure 5.9: Deterministic bound usage in percentage of skipped p-value computations
iteration by iteration using Imp. B.* method. Choice = B.

(a) Starting from MIN couple. (b) Starting from MAX couple.

Figure 5.10: Applicability and not applicability of (4.33) or of (4.43) using the Hybrid*
method. Choice = B.
Starting from a current solution (A,B) we obtain a candidate solution by adding a gene that is not in
the current solution to A or to B. For each of such candidate solutions we can have a "score" based
on the Chernoff bound only if it is applicable.
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Chapter 6

Conclusions

In this work we have proposed an algorithmic methodology used to find statistically
significative progression patterns on cancer development firstly classifying genes ac-
cording to their clonal status and then expanding such classification to couple of sets
of genes. Then we focused on improving the computational performance of the pro-
posed algorithm by observing that if the Monte Carlo simulation is based on the usage
of fixed datasets is possible to derive an alternative way to calculate the p-value of
two sets of genes skipping computations on datasets that are not at risk while also
providing an upper and lower bound on the p-value of a candidate solution constructed
from a given one. From experimental results the time performance gained by using
fixed datasets approach is very high, then refining such approach introducing the alter-
native p-value computation method and using the discussed bound an ulterior gain in
computation time performance is obtained. After that we concentrated in providing an
ulterior enhancement to the algorithm providing a probabilistic model on the dynamic
of the Monte Carlo simulation while using fixed datasets from where we defined a new
greedy choice based on tail distribution bounds as an indicator of the presumed quality
of a candidate solution that permits to avoid a large part of the p-value computations
for the possible candidate solutions. This new algorithm provide an ulterior high gain
in computation time over the deterministic approach while not significantly impacting
the quality of the computed solution.

Future work is needed in order to provide a more suitable greedy choice for the deter-
ministic approach. In particular we can try to promote as current solution the solution
that maximize the variability of the status off the datasets that are countable while
maintaining the status of the datasets that are not countable, in order to not increment
the p-value of the next solution. Clearly this new greedy choice can also be formalized
in a way to boost the predictive power of the probabilistic approach.
Looking at the results gathered we can also note that, except for the B choice, given a
final solution (setA, setB) the size of the set the setA is usually greater than the setB.
More research is needed in order to see if the modern methods of detecting cancer genes
are biased in identifying clonal mutations instead of subclonal ones.
More work can be concentrated in studying how much the proposed approach is sus-
ceptible to over fitting dynamics.
Then is possible to add to our approaches the biological information that come from
known Protein-Protein Interaction networks (PPI) and validate if such information
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provide a tangible advantage over the non usage.
Finally we can test our algorithms in datasets relative to different tumor types provid-
ing a sort of Pan-Cancer study.



Appendix A

Floating point limit

In order to calculate the bound provided by 4.21 we need to be aware that float and
double number follows an encoding based on the IEE 754 standard that is able to repre-
sent only a subset of the infinite real number. Under such encoding is then impossible
to represent certain number, for example trying to represent a number that is greater
than the maximum number that can be encoded raise an overflow error.
Even that the bound provided by 4.21 appertains to the real interval (0, 1) the numera-
tor or especially the denominator of such formula can exceeds the maximum encodable
number raising an overflow error. One trick to avoid this problem follows.
Let:

b =
ki+1 − kix
gE
m

n

, t = gE
m

n
(A.1)

now we have that 4.21 is equal to:

P [X ≥ ki+1 − kix] ≤
(
eb−1

bb

)t
= w (A.2)

Now when w is more than 0 we can apply the logarithmic function:

log(w) = log

(
eb−1

bb

)t
= t(log(

eb

bb
) + log(

1

e
)) = t(log(eb)− log(bb)− 1) =

= t(b(1− log(b))− 1).

(A.3)

Now we again obtain w by exponentiation:

w = elog(w) = et(b(1−log(b))−1). (A.4)

This new definition permits to avoid the exponentiation of bb at the denominator that
can potentially cause an overflow error.
Same considerations can be applied to 4.33 and 4.43.
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