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Abstract

Weak Gravity Conjecture (WGC) arguments suggest that higher order derivative correc-
tions to the black hole horizon can make the extremal black hole configurations violate
the naive extremality bound of charge-to-mass ratio. These corrections could change black
holes mechanics allowing them to decay through a splitting process. We analyze such a
possibility considering the effects of higher derivative corrections to the entropy law.
We also show in the framework of 4 derivative Einstein–Maxwell theory that the mild form
of the WGC together with the Electric–Magnetic duality implies the same conditions as
unitarity, locality and positivity of the scattering amplitudes of the same theory.
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Introduction

Quantum field theory (QFT) is up to now the best framework we have to describe the
fundamental interactions. It is capable to provide predictions which are in astonishing
agreement with experimental data. For instance, the measure of the electron g-factor1

matches perfectly the prediction of quantum electrodynamics (QED) obtained considering
O(α4) contributions which involve 891 eight-order Feynman diagrams (see [1]). Exploiting
such formalism it has been possible to develop a unified and consistent description of all
the known fundamental forces except gravity. The attempts to quantize General relativity,
i.e. our classical macroscopic theory of gravity, have failed so far because it turns out to
be a non renormalizable theory. Although the theory is one-loop finite, Goroff and Sag-
notti proved for the first time that it is two-loop divergent (see [2]). However, this is not
enough to conclude that QFT formalism cannot be used to provide a unified and coherent
description of gravity. We can still hope that such issue affects only the IR regime and
that there exists a consistent UV uplift. Exploiting what we learned with the Standard
Model construction, we can guess that the divergent behavior is the consequence of an
incorrect identification of the fundamental degrees of freedom (DOFs) of the theory. An-
other possibility is instead that finiteness arises once we couple gravity to other particles.

So far, string theory is the best example we have of a quantum theory of gravity, though
we are not yet able to pinpoint specific phenomenological signatures that would test its
validity. This problem arises because of the richness of the theory. For instance, the way
we take the theory IR limit is not unique. String theory is indeed a special theory, highly
constrained, whose consistency conditions fix the number of spacetime dimensions (see [3]).
However, its vacuum structure is not fixed and in order to connect with experiments we
need to integrate out extra dimensions, producing as many different IR limits as possible
vacuum geometries. The collection of all the effective field theories (EFTs) which arise as
an IR limit of string theory is called the string landscape. This concept can be extended
to any general theory of quantum gravity: we call landscape the collection of all the
EFTs which admit a consistent UV completion that includes gravity. Despite the string
landscape is huge on its own, there are a lot of EFTs that cannot be derived from string
theory. The collection of such theories is called the string swampland. The swampland is
then the collection of all the theories which do not admit a generic UV completion.

In this framework takes place the swampland program which aims to clarify the criteria
that allow to identify which EFT cannot be part of the landscape. Due to their heuristic

1It is the proportionality constant that relates (in suitable units) the observed magnetic moment of the
electron to its spin times the Bohr magneton.
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x 0. Introduction

nature, swampland’s criteria are often formulated as conjectures, supported by a wide
collection of arguments and examples but without a rigorous proof. As one could expect,
it turns out that the more rigorous the arguments, the less the conjecture constrains the
EFTs. Among all the criteria, the Weak Gravity Conjecture (WGC) has a special role.
It is the conjecture which started the swampland program (see [4]) and it is probably
the best established one. The thesis work consists then in the study of some constraints
produced by such criterion.

The WGC has different formulations (see [5]). However, we will focus on a particular one:
the so called Electric Weak Gravity Conjecture (EWGC). The EWGC applies whenever
we couple a gauge theory which admits a U(1) gauge charge to gravity. It corresponds
to the requirement that there exist a state in the theory spectrum whose charge-to-mass
ratio is greater than one (in suitable units). Depending on the type of state we require
to satisfy the inequality, we can have a stronger or weaker criterion. If the inequality can
be satisfied by an extended state such as a black hole (BH), we do not have necessarily a
constraint on the microscopic physics. We talk therefore of the mild EWGC.

The interpretation and the derivation of the EWGC inequality is clear in Einstein–
Maxwell theory. It is nothing but the condition which allows Reissner–Nordström (RN)
black holes to discharge. Indeed, the charge-to-mass ratio of RN black holes is constrained
by the cosmic censorship principle2 to be smaller than one (in suitable units) and a decay
process which respects energy and electric charge conservation can occur only if among
the decay products there is a state whose charge-to-mass ratio is greater than the charge-
to-mass ratio of the decaying object (see section 1.1.1). The EWGC is therefore strictly
related to the structure of extremal BH solutions.

A natural question is then whether an extension of Einstein–Maxwell theory could
provide modifications of such structure. It is indeed possible that introducing corrections
which depend on the curvature of the black hole horizon, the cosmic censorship bound
on charge-to-mass ratio is modified. Such computations have been performed in the 4
derivative extension of the Einstein–Maxwell theory first by Kats, Motl and Padi (see [6]).
They obtained that the bound is shifted by a quantity whose modulus decreases with the
black hole mass and whose sign depends on the higher order terms coefficients. Later
works tried to fix the correction sign with different approaches. In particular, there is a
wide production which exploits positivity bounds obtained from crossing symmetries, S-
matrix analicity and unitarity (see [7],[8],[9]). They eventually found a positive correction.
The direct consequence of such result is that the EWGC holds trivially in its mild form.
Indeed, every BH can discharge decaying in a smaller quasi-extremal BH with greater
charge-to-mass ratio fulfilling charge and energy conservation constraints.

The first question we address is then whether the discharge of an extremal black hole could
happen through a splitting process or not. If the EWGC inequality was not satisfied by
extended states then discharge could happen only through the Hawking evaporation and
the Schwinger process (see [10]). The former is dominant when the black hole is small
and its hawking temperature is big enough to allow the thermal production of charged
particles. The latter is dominant when the black hole is cold and large enough to assume
the uniformity of the electric field near the horizon and the activation of pair production
processes. In both cases the discharge occurs because the external gauge field attracts

2The principle in its weak form asserts that can be no naked singularities.
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the particles with opposite charge and repels those with the same charge of the black
hole. However, being the EWGC inequality satisfied by extremal BHs, there is no reason
to exclude a process where a black hole splits in two smaller black holes one of which is
extremal with charge-to-mass ratio higher than that of the decaying BH.

In order to evaluate if such process is dynamically allowed we compute the classical
black hole entropy using Wald’s formalism. Iyer and Wald have been able to derive a
formula for the black hole entropy which holds in a general theory of gravity with higher
order derivate terms and to show that it satisfies the first law of thermodynamic (see
[11],[12],[13]). Although the determination of the entropy in 4 derivative Einstein–Maxwell
theory has been already performed in previous works (see [14]), such computations display
some problems in the extremal limit. Therefore, as far as we know, the computation of the
entropy correction in the extremal case is an original result of this thesis work. Exploiting
such result, we have been able to produce an original discussion about the possibility of
extremal black hole splitting, concluding that the process can not occur as long as we limit
all the ingredients to the regime of validity of our work. The black hole that should be
emitted together with the extremal one corresponds indeed to a so called small black hole,
which violates the perturbative regime.

The second issue we address in the thesis is the understating of the EWGC constraints
when duality transformations are taken into account. Duality transformations are symme-
tries of the equations of motion which do not leave necessarily the Lagrangian invariant.
They had an important role in recent development of string theory and they seems to be
more fundamental than Lorentz invariance itself (see [15],[16],[17],[18]). Assuming that
duality is a symmetry of the UV theory it must hold at all orders in perturbative ex-
pansion and it can be completely characterized through leading order terms invariance.
Following the idea of the works [19] and [20] it is possible to constrain the generic higher
order corrections identified with a bottom-up approach imposing that they do not break
the duality group.

The positivity bounds obtained exploiting S-matrix analiticity, crossing symmetries
and unitarity imply that the inequality of the EWGC is always satisfied by an extremal
BH, but the reverse is not true. We wonder therefore if duality constraints together
with the assumption that EWGC is trivialized allow us to derive the former conditions.
The reason for why we are interested in having such equivalence is to establish a deeper
interpretation of WGC: it would be no more the condition which allows charged black
holes to discharge but it would became the condition that must be imposed to guarantee
unitarity and microcausality. 3

The duality group of the Einstein–Maxwell theory is U(1) and can be easily obtained
considering a generic GL(2,R) rotation of equations of motion (EOMs) and the Bianchi
identity and requiring the invariance of stress energy tensor (see [22],[23]). Imposing that
the 4 derivative Einstein–Maxwell theory operators preserve such duality group we have
been able to derive constraints on their coefficients. Most of the higher order corrections
we considered have been already studied in the literature (see [24]), however such compu-
tations have been performed with an original approach which generalizes and systematized
the ideas of [23]. Exploiting such constraints we finally verify the claimed equivalence.

The thesis work is organized as follows. In the first chapter we review the swampland

3S-matrix analicity and crossing symmetries are both implied by microcausality, see [21].
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program. We give a detailed analysis of the WGC and its relation with other swampland
conjectures. In the second chapter we discuss the structure of leading order corrections to
the Einstein–Maxwell theory, focusing on the ambiguity associated with field redefinitions,
and the issue of defining quantities in higher order derivative theories. In particular,
we will present Wald’s entropy formula and we will show that it satisfies the first law
of thermodynamics. In the third chapter we will solve perturbatively the fourth order
Einstein–Maxwell theory paying attention to the presence of small black hole solutions
which breaks perturbative regime. We conclude discussing the possibility of black holes
splitting. In the fourth chapter we analyze positivity bounds and we show how to derive
them from S-matrix properties. In the fifth chapter we discuss the duality constraints and
we present our generalized approach. In the sixth chapter we conclude with the summary
of the thesis work and we present further developments.



CHAPTER 1

The Swampland Program

Due to their heuristic nature, swampland’s criteria are often formulated as conjectures,
supported by a wide collection of arguments and examples but lacking a rigorous proof.
Such arguments are usually of three kinds: conditions derived from microscopic models
(such as the constraints due to the presence of monopoles, see section 1.1.2), common
characteristics expressed by string theory vacua (such as infinite towers of states, see
section 1.2.1) and constraints derived from EFTs (such as black hole based arguments, see
section 1.1.1). Moreover, it turns out that the more rigorous the arguments, the less the
conjectures constrain EFTs. Looking at the criteria individually it is therefore difficult
to believe that the swampland program is a reliable approach to study quantum gravity.
However, its relevance becomes evident once the conjectures are considered all together.
They are often strictly related and point in a common direction. A single conjecture should
be therefore regarded as a node of a web which is constantly expanding and collecting more
and more arguments.

In this chapter we start presenting two different formulations of the Weak Gravity
Conjecture (WGC): the Electric Weak Gravity Conjecture (EWGC) and the Magnetic
Weak Gravity Conjecture (MWGC). We review their black hole based arguments showing
that they are dual relations. After that, we present other swampland’s conjectures show-
ing that there is an asymmetry between the two formulations. The MWGC can be indeed
interpreted as a consequence of the No Global Symmetry Conjecture (NGSC) and can be
related with the Species Scale Conjecture (SSC) and the Swampland Distance Conjecture
(SDC). EWGC has instead no well established theoretical interpretation. We finally dis-
cuss how the the EWGC arguments suggest that higher order derivative corrections to
black hole horizon can strengthen or weaken the conjecture constraints.

1.1 The Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC) is the swampland’s criterion that was established
first. Although there are a lot of refinements (considering for instance central charges
associated with scalar fields) and extensions (defining the conjecture for multiple U(1)
in higher dimensions) of the WGC (see [5]), the minimal formulation in 4 dimension is

1



2 1. The Swampland Program

enough for the thesis’ purposes. It states:

Weak Gravity Conjecture (D = 4)
Given a theory coupled to gravity with a U(1) gauge symmetry, let g be the gauge
coupling. Then:

❼ (Electric WGC) There exist a state with mass M and charge q satisfying

M ≤
√
2gqMP . (1.1)

❼ (Magnetic WGC) Exist a cutoff scale Λ such that

Λ ≲ gMp . (1.2)

It is important to observe that the original formulation (see [4]) does not specify which
state should satisfy the relation (1.1) and different cases are considered. It could be:

1. the state of minimal charge;

2. the lightest charged state;

3. the state with highest charge-to-mass ratio.

The various formulations of the WGC conjecture have different strength. (3) is associated
with the weakest one (notice that (1) and (2) both imply it), but it is the only statement
which is truly supported by black hole based arguments. (1) could be ruled out by string
theory based counterexamples (see [4]).

We highlight that extended states (e.g. black holes) are not excluded, but then the
WGC would provide a weaker constraint on microscopic physics. In such a case, we talk
of the mild version of the WGC.

1.1.1 Electric WGC

The Electric Weak Gravity Conjecture (EWGC) has a natural interpretation within clas-
sical 3 + 1 Einstein–Maxwell theory. In such a framework, it is equivalent to require that
Reissner–Nordström black holes are able to discharge themselves.

Given the action

S =

∫︂

d4x e

ï

M2
P

2
R− 1

4
FµνFµν

ò

, e =
»

|g| , (1.3)

Einstein’s equations are

⎧

⎨

⎩

Rµν − 1
2gµνR = 1

M2
P

Tµν ,

Tµν = − 2√
|g|

δ
δgµν

Ä

√︁

|g|LEM
ä

= FµρF
ρ

ν − 1
4gµνFρσF

ρσ .
(1.4)

Imposing spherical symmetry, staticity and the presence of a point-like U(1) charge, we
obtain the Reissner–Nordström (RN) black hole solution (see [25])

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + r2dΩ2
S2
, (1.5)
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F =
Q

4πr2
dr ∧ dt , (1.6)

e2U(r) = 1− 2MG

r
+
Q2G

4πr2
. (1.7)

Making explicit the dependencies on the gauge coupling constant Q = gq and on the
planck mass M2

P = (8πG)−1, the condition to avoid the r = 0 singularity is

M ≥
√
2QMP =

√
2qgMP . (1.8)

In particular, extremal black holes satisfy M =
√
2QMP .

The discharge condition of a generic charged state can be instead derived in a com-
pletely general setting just exploiting charge and energy conservation. Let (M0, Q0) and
{(Mi, Qi)} be the masses and charges of the initial state and the decay products. Then
energy and charge conservation imply

{︄

M0 ≥
∑︁

iMi ,

Q0 =
∑︁

iQi .
(1.9)

Exploiting equations (1.9) we get

M0

Q0
≥ 1

Q0

∑︂

i

Mi

Qi
Qi ≥

Å

Mi

Qi

ã
⃓

⃓

⃓

⃓

min

∑︂

i

Qi
Q0

=

Å

Mi

Qi

ã
⃓

⃓

⃓

⃓

min

. (1.10)

Combining equations (1.8) and (1.10) and requiring that extremal black holes are able
to discharge themselves, we finally get that should exist a state with parameters M and
Q such that √

2MP =
Mext

Qext
≥ M

Q
⇒M ≤

√
2gqMP . (1.11)

Relation (1.11) is nothing but the EWGC.

1.1.2 Magnetic WGC

The Magnetic Weak Gravity Conjecture (MWGC) can be derived as the dual of the
EWGC, but we will see that there are some subtleties. If we extend Maxwell theory
introducing magnetic charge as the dual of the electric charge we get the classical equations

®

d ⋆ F = ⋆ Je ,

dF = ⋆ Jm .
(1.12)

Modifying equation (1.6) it is possible to produce dyonic black holes. We have indeed
⎧

⎨

⎩

Qe =
∫︁

Σ ⋆Je =
∫︁

∂Σ ⋆F = Q ,

Qm =
∫︁

Σ ⋆Jm =
∫︁

∂Σ F = P ,
(1.13)

so that

F =
Q

4πr2
dr ∧ dt+ P

4π
sin(θ) dθ ∧ dϕ , (1.14)

e2U(r) = 1− 2MG

r
+
G(Q2

e +Q2
m)M

2
P

4πr2
. (1.15)
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Repeating the computations of the previous section and assuming that the black hole is
able to lose its magnetic charge we get the analogous of (1.1):

M ≤
√
2PMP =

√
2pgmMP . (1.16)

Recalling that whenever we add magnetic charges the Bianchi identity is no longer
vanishing, we get that F = dA holds only locally. It follows that A is not globally defined.
In particular, the maximum extension of A over a flat space with a magnetic monopole
is R3/{Dirac String} (see [26]). Because different strings can be mapped into each other
adding a closed form to A, i.e. through a gauge transformation, their position cannot be
detected by any physical observable. Considering complex phases associated with Wilson
loops, we get by consistency that they have to reduce to 1 whenever loops are shrunk to
a point. This induces a quantization of magnetic and electric charge, the so called Dirac
quantization. Considering for instance a magnetic monopole with magnetic charge Qm, a
Dirac string oriented towards positive z and a particle with charge Qe whose trajectory is
a circumference C with axis on positive z direction, we have:

At = Ar = Aθ = 0 , Aϕ =
Qm
4π

(cos(θ) + 1) , (1.17)

W [C] = Tr

ï

P exp

Å

iQe

∮︂

C
dxµAµ

ãò

= exp

ï

i

2
QeQm(cos(θ) + 1)

ò

, (1.18)

W [C]
rC→0−−−→ 1 ⇐⇒ QeQm ∈ 2πZ ⇐⇒ ge =

2π

gm
. (1.19)

So far, we have considered symmetric magnetic and electric charges which are mapped
into each other through the ⋆ operator. However, monopoles are typically introduced
through topological solitons and they are related to a symmetry breaking process. It
follows that the duality is no more exact but holds only under a certain scale Λ (the
monopoles themselves exist only in the IR regime). In this framework the Λ scale of
MWGC can be actually interpreted as the scale associated with the SSB process which
produces monopoles. To derive equation (1.2) we consider then a simple example, the
Georgi–Glashow model. It is a SU(2) gauge model with gauge field Aµ and scalar field ϕ
transforming in the adjoint representation. The Lagrangian is

LGG = −1

4
tr
[︁

F 2
]︁

+
1

2
tr [DµϕD

µϕ]− λ

4
(tr

[︁

ϕ2
]︁

− v2)2 , (1.20)

Dµϕ
a = ∂µϕ

a + gϵabcAbµϕ
c , (1.21)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gϵabcAbµA

c
ν . (1.22)

The scalar fields moduli space is given by the constraint

tr[ϕ2] = ϕ21 + ϕ22 + ϕ23 = v2 . (1.23)

Fixing the unitary gauge ϕ1 = ϕ2 = 0, ϕ3 = h+v we have that SU(2) breaks to U(1). The
system is therefore suitable to produce monopoles, indeed the second homotopy group is
non trivial

π2 (SU(2)/U(1)) = π1(U(1)) = Z . (1.24)
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Moving to fields mass basis we get

Aµ = A3
µ , mA = 0 , (1.25)

W±
µ =

1√
2

(︁

A1
µ ±A2

µ

)︁

, mW = gv , (1.26)

h = ϕ3 − v , mh =
√
2λv . (1.27)

We are interested now in deriving mass parametric dependence of a static monopole. Such
configuration has no kinetic energy, therefore the mass M equals the energy E. It holds
(see [27])

M = E =

∫︂

d3x

ï

1

4
tr[FijFij ] +

1

2
tr[DiϕDiϕ] +

λ

4
(tr[ϕ2]− v2)2

ò

. (1.28)

In order to avoid the computation of the integral we have to guarantee that it is a O(1)
factor in the parameters. We introduce therefore the following rescaling of the fields and
the spacetime coordinates:

⎧

⎪

⎨

⎪

⎩

yi = gvxi ,

ϕa(x) = vfa(y) ,

Aai (x) = vBai(y) .

(1.29)

The energy takes then the form

E =
v

g

∫︂

d3y

ï

1

4
tr[BijBij +

1

2
tr[DifDif ] +

λ

4g2
(tr[f2]− 1)2

ò

. (1.30)

Assuming that m2
H ∼ m2

W ∼ ΛSSB we get that λ
4g2

=
m2

H

8m2
W

∼ O(1). So, without other

efforts, we can guess the parametric scaling E ∼ v
g
. Recalling that we are in the static

case and exploiting equation (1.26) we finally get

M ∼ E ∼ Λ

g2
. (1.31)

Equation (1.31) has been derived for Georgi-Glashow model, however such parametric
dependence is typical for all the models with monopoles. Combining equations (1.16),
(1.19) and (1.31) together we finally get

Λ

g2
∼M ≤ 2π

g
pMp =⇒ Λ ≲ gMp . (1.32)

Equation (1.32) is nothing but the MWGC.
Notice that in this framework the MWGC can be intepreted as the condition that at

least one monopole in not a black hole. Indeed, relation (1.32) can be derived requiring
that the minimally charged monopole satisfy equation (1.8).

1.2 Other Swampland Conjectures

So far, we proved in a simple model the equivalence of (1.1) and the possibility that black
holes can discharge. Moreover, we proved (1.2) exploiting the dual relation (1.16) and
treating magnetic monopoles as solitons produced after a SSB process. However, we did
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not provide any argument supporting the necessity of black holes discharge. According
to [5] it is still an open question whether the presence of stable remnants would provide
inconsistencies or not. However, it is clear that the presence of a fundamental inconsistency
associated with the existence of stable black holes would provide a proof of the WGC.

Although the whole conjecture is not proven, there are arguments supporting the
MWGC which are independent of the EWGC validity. Such asymmetry between the
two conjectures is due to the fact that the core of the MWGC is the existence of an EFT
lowered cutoff scale Λ and not the introduction of a bound on magnetic charges. Therefore,
despite (1.2) is related to (1.1), it should not be intended simply as its dual relation (unlike
(1.16)).

The existence of a cutoff scale lower that Planck scale MP is central in a lot of swamp-
land conjectures. In order to explicit the web they form we review some of them: the
Species Scale Conjecture (SSC), the Swampland Distance Conjecture (SDC) and the No
Global Symmetry Conjecture (NGSC). All the arguments we present in this section sup-
ports therefore indirectly the MWGC.

1.2.1 Species Scale Conjecture

The Species Scale Conjecture (SSC) states:

Species Scale Conjecture
Consider a theory of gravity in d-dimensions with Planck mass Md

P which admits
NS particle species under a cutoff scale Λ. Then, in the weakly coupled regime it
holds:

Λ < ΛS =
Md
P

N
1

d−2

S

. (1.33)

The main argument which inspired the conjecture exploits a particular class of particles,
those associated with the Kaluza–Klein (KK) modes. KK modes arise from compact
dimensions integration, thus they are a clear signature that the UV uplift of the theory
should be described in a higher dimensional spacetime. Therefore, the presence of KK
modes implies the existence of compact extra dimensions and provides a lowering of the
Planck mass scale.

Let us consider for instance a flat metric in d+1 dimensions with a S1 compact dimen-
sion normalized in order to have τ ∼ τ + 1:

ds2 = gMNdx
MdxN = ηµνdx

µdxν + (2πR)2(dτ)2 . (1.34)

The action which describes a free massless real (d + 1)-dimensional scalar field on such
background is then

S =
Ä

M
(d+1)
P

äd−1
∫︂

d d+1x
e

2
∂MΦ ∂MΦ , e =

»

|det (gMN )| , (1.35)

Exploiting τ periodicity, we can express Φ through the periodic expansion

Φ =
+∞
∑︂

n=−∞
ϕn(x

µ)e2πinτ , ϕ∗n = ϕ−n , (1.36)
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and the action yields

S =
Ä

M
(d+1)
P

äd−1
∫︂

ddx dτ (2πR e)
∑︂

m,n

ß

−1

2
e2πi(n+m)τϕm

ï

□+
(︂ n

R

)︂2
ò

ϕn

™

. (1.37)

where e =
√︁

|det (gµν)|. Equation (1.37) is nothing but the action of an infinite tower of

scalar fields in d-dimensions with increasing masses given by M2
n =

(︁

n
R

)︁2
. We get then

S =
Ä

M
(d)
P

äd−2∑︂

n

∫︂

ddx e

ß

−1

2
ϕ∗n

[︁

□+m2
n

]︁

ϕn

™

, e =
»

|det (gµν)| , (1.38)

where we introduced the d-dimensional Planck mass M
(d)
P which satisfies

Ä

M
(d)
P

äd−2
= 2πR

Ä

M
(d+1)
P

äd−1
. (1.39)

Equation (1.39) implies that the reduced d-dimensional Planck mass is higher than the
(d+1)-dimensional Planck mass. It follows that the presence of extra compact dimensions
lowers the cutoff scale of the EFT. It is possible then to relate such lowered scale with
the maximum number NS of particle species contained in the theory spectrum. We have
just to impose that the theory breaks at MNS

, i.e at the mass scale of the NS-th mode.
Above such scale the theory spectrum should contain indeed a number of KK modes that
is greater than the maximum number of species contained, providing an inconsistency. We
impose therefore

MNS
=M

(d+1)
P . (1.40)

Exploiting equation (1.39) and the definition of Mn we get

NS

R
=M

(d+1)
P =

ï

1

2πR

Ä

M
(d)
P

äd−2
ò

1
d−1

= NS

Å

1

2π

ã
1

d−2

N
1−d
d−2

S M
(d)
P , (1.41)

where the last equivalence is obtained replacing R expression computed from the equiva-
lence of the first and third term. The lowered cutoff scale then becomes

M
(d)
P

N
1

d−2

S

=M
(d+1)
P (2π)

1
d−2 = ΛS . (1.42)

Equation (1.42) is nothing but the SSC.
We verify now that considering 3+1 Einstein–Maxwell theory the SSC cutoff scale can

be bounded through the gauge coupling constant. Choosing g in order to have minimum
charge equal to 1, the number of BHs species with different charge is given by the maximum
charge that a black hole can assume. Such charge is nothing but the charge of an extremal
black hole whose mass is at the cutoff scale Λ. We have therefore

NS ∼ qmax =
Mmax√
2gM

(4)
P

∼ Λ

gM
(4)
P

, (1.43)

Applying (1.33) we get

Λ ≲ ΛS =
M

(4)
P

…

Λ

gM
(4)
P

=⇒ Λ ≲ g
1
3M

(4)
P . (1.44)
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Equation (1.44) presents a suppression factor driven by g coupling constant as (1.2), but
the power scaling is different.

In order to understand the correct link between the MWGC and the SSC, it is impor-
tant to notice that despite the argument proposed to present the SSC exploits the presence
of extra dimensions, they are not strictly necessary to derive (1.33). The conjecture can
indeed be related to an entropy bound (see [28]) which locally constrains the number of
particle species of the theory. Moreover, the bound can be consistently applied to ex-
tended states (e.g. black holes) assuming that their internal structure do not produce any
not trivial effect. It follows that the SSC can be intended as an extension of the MWGC
because it is able to provide bounds on the lowered cutoff scale exploiting a wider class of
particle species. However, the bound obtained applying the SSC to black hole species is
weaker than the MWGC one.

1.2.2 Swampland Distance Conjecture

In the previous section we introduced KK modes and we used their typical mass scale
MKK ∼ 1

R
to evaluate the number NS of particles species that have mass lower than

the reduced Planck mass and verify the SSC. Although we observed that an alternative
derivation can be provided through entropy bounds, it is worth taking a closer look to the
infinite tower of states structure because it is strictly related to the Swampland Distance
Conjecture (SDC).

Let us consider a bosonic free string which lives on a spacetime with only one compact
dimension. It is possible to show (see [5]) that integrating over S1 we will produce a
spectrum of particles which contains all the KK modes previously found and some new
modes associated with the not trivial topology of the string warping around S1. The mass
of such states can be computed to be:

M2
n,w =

(︂ n

R

)︂2
+

Å

Rw

α′

ã2

, m, ω ∈ Z . (1.45)

Moreover, turning on gravity, the radius R becomes dynamical (it is proportional to the
dilaton exponential) and we have

R = e−βϕ , Mn,0 ∼ e2βϕ , M0,w ∼ e−2βϕ , β > 0 . (1.46)

Equations (1.46) imply that whenever ϕ takes big values there is at least one infinite
tower of states whose mass scale is exponentially suppressed. The SDC is nothing but
the assumption that this property holds in every theory of the landscape and for every
direction taken in the moduli space.

Swampland Distance Conjecture
Consider a theory of gravity with moduli space M which is parameterized by the
expectation value of some free field ϕi. Then

❼ ∀ P ∈ M, s > 0 ∃ Qs ∈ M such that d(P,Qs) > s, i.e. every configurations
admits a boundary at infinite geodesic distance.

❼ There exist an infinite tower of states with mass scale M(Q∞) such that

M(Q∞) ∼M(P )e−βd(P,Q∞) , β > 0 . (1.47)
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We see that the SDC on its own does not imply a bound on the cutoff scale of the EFTs.
However, it guarantees that approaching the boundary of the moduli space there is at
least a tower of states which becomes exponentially massless. It follows that applying
the SSC at such tower we are able to provide a constraint on the cutoff scale that grows
exponentially with the parametrization of the moduli space. Therefore, the SDC and the
SSC together provide a stronger version of the latter. It follows that the arguments which
support the SDC and the SSC can be consider as strengthening the MWGC.

1.2.3 No Global Symmetry Conjecture

We finally consider the swampland conjecture which is at the same time the one with
strongest arguments and the one with the most qualitative statement.

No Global Symmetry Conjecture
A theory coupled to gravity with a finite number of states cannot admit global
symmetries.

Before reviewing the arguments that support this conjecture, we observe that the No
Global Symmetry Conjecture (NGSC) implies that the coupling constants of the gauge

interactions g(i) must be bounded from below, i.e. there exist g
(i)
min such that

g
(i)
min < g(i) . (1.48)

Indeed, if the coupling constants of the gauge interactions did not have a lower bound,
nothing would prevent them to flow smoothly to zero. Thus, a bound on the cutoff scale
of the form

Λ < f(g)MP , |f(g)| < 1, f(g)
g→0−−−→ 0 , (1.49)

would guarantee us that whenever the gauge symmetry approaches the global symmetry
regime the cutoff scale Λ drops to zero.

Evidences of the NGSC are derived with different and independent approaches (pertur-
bative string theory, AdS/CFT and black holes physics). The black hole based arguments
rely on the possibility of preparing black hole configurations with fixed mass and arbi-
trarily large global charge. A black hole cannot lose its global charge1 through Hawking
radiation or through the Schwinger process because the global charge does not produce a
field outside the black hole. It is therefore not possible to distinguish among the particles
produced near the horizon and repel those with the same charge of the black hole. Because
a black hole cannot lose its global charge it is possible then to produce a configuration
with arbitrary large global charge and fixed mass. We can indeed prepare such system
throwing inside the black hole particles charged under the global symmetry of interest and
letting it radiate the extra mass. Then

❼ Because the black hole structure does not depend on global charges (no hair theorem,
see [25]), increasing its global charge is possible to violate thermodynamic entropy
bounds (see [4]).

1At least in semiclassical regime.
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❼ It is possible to approach planck mass regime with arbitrary large charge. In partic-
ular such an object can be prepared having a charge to mass ratio greater than any
other particle of the theory. The configuration is therefore stable independently of
quantum gravity effects. It follows that it is possible to produce an infinite number
of remnants.

Thus in both cases inconsistencies arise.

1.3 Extremal Black Holes Instability

An interesting scenario to investigate is the possibility that extremal black holes are able
to decay, i.e. that the product of the discharge process which satisfy equation (1.1) is a
black hole itself. Proving that black holes are able to decay emitting a smaller black hole
one would provide a proof of the mild version of the WGC because equation (1.1) would
be trivially satisfied by extended states. Conversely, one proving that black holes cannot
decay would rule out the possibility that the EWGC trivializes, but would not provide
any inconsistency associated with the existence of a stable remnants.

Exploiting equation (1.10) we get that extremal black holes decay requires a correction
on extremality bound of the form:

z =

√
2MPQ

M
= 1 + ϵ(M) , (1.50)

ϵ(M) > 0 , ϵ(M1) < ϵ(M2) iff M1 > M2 . (1.51)

The natural guess for corrections that could provide such scale-dependent behavior is a
theory with higher order derivative operators. Notice that equations (1.50) and (1.51)
suggest that a decay process through a splitting process is possible.

Since the possibility of black hole instability has been suggested by the WGC presen-
tation (see [4]) several models have been studied. In the next chapter we will study the
simple example of the Einstein–Maxwell theory.



CHAPTER 2

Einstein–Maxwell Theory

We concluded the previous chapter highlighting that higher order derivative corrections
could modify the charge-to-mass ratio of the extremal black hole configurations. Such fact
has been verified in several models such as Einstein–Maxwell theory (see [14]), Einstein–
Maxwell–dilaton theory (see [20]) and heterotic string theory (see [29]). However, in order
to verify whether the WGC trivializes or not it is not enough to determine the charge-to-
mass ratio correction. We have indeed to fix its sign. This has been usually accomplished
fixing the coefficients of the higher order derivative corrections imposing the matching with
IR expansion of string theory (see [20]). In the case of Einstein–Maxwell theory is instead
possible to avoid string theory matching and fix the correction sign exploiting positivity
bounds due to S-matrix analicity, unitarity and crossing symmetries (see [7]). In order to
discuss the possibility of black holes splitting we concentrate then on the simple case of
Einstein–Maxwell theory.

In this chapter we identify the lowest order correction of Einstein–Maxwell theory.
Exploiting suitable identities and field redefinitions we remove redundant terms reducing
the action to a form easy to handle. We discuss then the correctness of the field redefinition
itself and the effective equivalence of theories mapped by such transformation. We finally
introduce Wald’s formalism which allows to compute the Noether charges and the entropy
in theories with higher order derivative terms.

2.1 Lowest Order Corrections

Let’s consider the action

S =

∫︂

d4x e (L2 +∆L) , L2 =
M2
P

2
R− 1

4
FµνFµν , e =

»

|g| . (2.1)

We want to derive the lowest order correction ∆L to Einstein–Maxwell theory. We notice
that gauge invariance imposes the use of Fµν instead of Aµ, thus we can built ∆L using
only tensors with an even number of indices. It follows that a scalar Lagrangian with
no free indices requires an even number of covariant derivatives. We have therefore that
higher order corrections are dominated by fourth order terms, i.e. ∆L = L4 ∼ O(D4).

11
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Finally, CP invariance implies that an even number of Fµν operators is required. We have
indeed

Dµ
P−→ (−)µDµ

C−→ (−)µDµ , (2.2)

Aµ
P−→ (−)µAµ

C−→ −(−)µAµ , (2.3)

Fµν
P−→ Fµν

C−→ −Fµν , (2.4)

where we introduced (−)µ = −δ0µ+δiµ. Thus, the general fourth order term takes the form

O4 = (R)p(Rµν)
q(Rµνρσ)

r(∇µ)
2s(Fµν)

2t, p+ q + r + s+ t = 2 , (2.5)

where the constraint (2.5) fixes the derivative order. Neglecting total derivatives, the
maximum extension of Einstein–Maxwell theory involves the terms

dim = 4 : R2, (Rµν)
2, (Rµνρσ)

2, RFµνF
µν , RµνF

µρF νρ ,

RµνρσF
µνF ρσ.

dim = 6 : (DµF
µν)2, (DµFνρ)

2, (DµFνρ)(D
νFµρ).

dim = 8 : (FµνF
µν)2 , (FµνF̃

µν
)2, FµνF

νρFρσF
σµ.

where we have introduced the dual field strength tensor F̃µν =

√
|g|
2 ϵµνρσF

ρσ, with ϵµνρσ
the Levi Civita symbol.1 However, not all of them are independent. Through the relations

(FµνF̃
µν
)2 = − 2 (FµνF

µν)2 + 4 (FµνF
νρFρσF

σµ) , (2.6)

(DµFνρ)
2 = 2(DµFνρ)(D

νFµρ) , (2.7)

(DµFνρ)
2 = − 2RµνF

µρF νρ +RµνρσF
µνF ρσ + 2(DµF

µν)2 + 2DµΛ
µ , (2.8)

Λµ = FνρD
νFµρ − FµρDνF

ν
ρ , (2.9)

we see that the last 8-dim operator and the last two 6-dim operators are redundant.
Moreover, (Rµνρσ)

2 cancels thanks to Gauss–Bonnet term G which is a total derivative
(see [30]):

G = R2 − 4(Rµν)
2 + (Rµνρσ)

2 , (2.10)

⋆ G = RAB ∧RCDϵABCD =

dD
ïÅ

ωAB ∧RCD − 1

3
ωAB ∧ ωCF ∧ ωFD

ã

ϵABCD

ò

. (2.11)

Considering variations of gµν and Aµ of order O(D2) we can perform a field redefinition
which is equivalent to replace the tree level equations of motion

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g′µν = gµν + δgµν ,

A′
µ = Aµ + δAµ ,
Ä

√︁

|g|L
ä′

=
√︁

|g|L+ δ
Ä

√︁

|g|L
ä

,

(2.12)

1Notice that ϵµνρσ takes a minus sign under CP transformation, therefore in a single term is admitted
only an even number of Levi Civita tensors.
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where

δ
(︂
»

|g|L
)︂

= δ
(︂
»

|g|L2 +
»

|g|L4 +O(D6)
)︂

= δ
(︂
»

|g|L2

)︂

+ O(D6) =

=
»

|g|
ß

M2
P

2
δgµν

Å

Rµν −
1

2
Rgµν −

1

M2
Tµν

ã™

+
»

|g|
ß

δAρ(DσF
σρ)

™

+O(D6) .

(2.13)

Fixing properly field redefinition parameters it is possible to cancel R2, (Rµν)
2, RF 2,

Rµν(F
µρF νρ ) and (DµF

µν)2 terms. We have indeed:

⎧

⎨

⎩

δgµν = c1
M4

P

gµνF 2 + c2
M4

P

FµρF νρ + c3
M2

P

gµνR+ c4
M2

P

Rµν ,

δAµ = b
M2

P

DνFνµ ,
(2.14)

and therefore

δ
(︂
»

|g|L
)︂

= − (2c3 + c4)

4
R2 +

c4
2
(Rµν)

2 − (4c1 + 2c2 − c4)

8M2
P

RF 2

+
(c2 − c4)

2M2
P

Rµν(F
µρF νρ ) +

c2
8M4

P

(FµνF
µν)2

+
c2

2M4
P

(FµνF
νρFρσF

σµ) +
b

M2
P

(DµF
µν)2 .

(2.15)

The Einstein–Maxwell Lagrangian at lowest order in higher derivative correction takes the
form

L′ =
M2
P

2
R− 1

4
FµνF

µν +
α1

4M4
P

(FµνF
µν)2

+
α2

4M4
P

(FµνF̃
µν
)2 +

α3

2M2
P

(FµνFρσR
µνρσ) .

(2.16)

We can finally express Rµνρσ in terms of the Weyl tensor Wµνρσ.
2 In 4 dimensions we

have

Wµνρσ = Rµνρσ −
(︁

gµ[ρRσ]ν − gν[ρRσ]µ
)︁

+
1

6
Rgµ[ρgσ]ν , (2.17)

WµνρσF
µνF ρσ = RµνρσF

µνF ρσ − 2RµνF
µρF νρ +

1

3
RF 2 . (2.18)

Applying a proper field redefinition on Lagrangian (2.16) which fixes Rµν(F
µρF νρ ) and

RF 2 coefficients we eventually get the fourth-order Lagrangian

L = L2 + L4

= +
M2
P

2
R− 1

4
FµνF

µν +
α1

4M4
P

(FµνF
µν)2

+
α2

4M4
P

(FµνF̃
µν
)2 +

α3

2M2
P

(FµνFρσW
µνρσ) .

(2.19)

2This choice will be clarified in section 4.3. It is necessary to constrain the αi coefficients through the
positivity bounds found in the literature.
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2.2 Field Redefinitions

In the previous section we selected a particular 4 derivative extension of Einstein–Maxwell
theory performing a field redefinition. However, equation (2.14) mixes photon and gravi-
ton degrees of freedom, therefore the related quantum field theories are not equivalent. A
quantum field theory is indeed invariant under field redefinitions only if the degrees of free-
dom are not mixed (cfr. S-matrix equivalence theorem, see [31]). In general, the theories
are not equivalent classically too. The non linear transformations can indeed change the
number of DOFs that propagate. However, assuming that higher order derivatives terms
are small and considering solutions which do not break the perturbative expansion we
should be able to guarantee the theories equivalence. The typical scale of the phenomena
we are going to study would be indeed smaller than the cutoff scale at which could appear
the new DOFs effects.

The above observations implies that the dynamics of big enough black hole solutions
should not be influenced by a field redefinition. However, we highlight that this is not
a proven fact but just a claim. It is therefore fundamental to verify it. A possible non
trivial test can be obtained through the computation of quantities which influence directly
the theory dynamics. Two theories mapped by a field redefinition are equivalent only
if their dynamics is the same. Therefore, such quantities must be somehow protected.
For instance, being ∆S and ∆z fundamental to determine whether a BH can decay or
not, a necessary requirement of theories equivalence is that the signs of the corrections
are invariant, i.e. that the corrections can not be completely absorbed through a field
redefinition3.

The signs of charge-to-mass ratio and entropy corrections depend on higher order terms
coefficients (we will explicit the result in the next chapter). We are interested therefore
in understanding whether there exist coefficients combinations which are invariant under
fields redefinition. If there were no invariant combinations, there would be no possibility
that the field redefinitions leaves the dynamics of big black holes invariant.

Let us consider the general theory

L = L(2) + L(4)
1 + L(4)

2 ,

L(2) =
M2
P

2
R− 1

4
FµνF

µν ,

L(4)
1 =

α1

4M4
P

(FµνF
µν)2 +

α2

4M4
P

(FµνF̃
µν
)2 +

α3

2M2
P

(FµνFρσW
µνρσ) ,

L(4)
2 =

α4

2M2
P

RµνF
µαF να +

α5

2M2
P

RF 2 + α6R
2 + α7(Rµν)

2 +
α8

2M2
P

(DµFνρ)
2 .

(2.20)

The operators considered constitute a complete basis for the Einstein–Maxwell theory
with 4 derivative corrections4. The non linear field redefinition (2.14) introduces then the
terms

⎧

⎨

⎩

δgµν = c1
M4

P

gµνF 2 + c2
M4

P

FµρF νρ + c3
M2

P

gµνR+ c4
M2

P

Rµν ,

δAµ = b
M2

P

DνFνµ ,
(2.21)

3Notice that we do not expect that the invariance property is a necessary condition of all physical
observable.

4Notice that we chose a basis which is slightly different from that of the previous section
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δ
(︂
»

|g|L
)︂

= − (2c3 + c4)

4
R2 +

c4
2
(Rµν)

2 − (4c1 + 2c2 − c4)

8M2
P

RF 2

+
(c2 − c4)

2M2
P

Rµν(F
µρF νρ ) +

c2
8M4

P

(FµνF
µν)2

+
c2

2M4
P

(FµνF
νρFρσF

σµ) +
b

M2
P

(DµF
µν)2 .

(2.22)

Exploiting equations (2.6),(2.8) and (2.18) it is possible to express the operators introduced
by (2.22) in the basis of Lagrangian (2.20). We have indeed

b

M2
P

(DµF
µν)2 =

b

2M2
P

(DµFνρ)
2 +

b

6M2
P

RF 2 − b

2M2
P

WµνρσF
µνF ρσ , (2.23)

− 2c2
4M2

P

(FµνF
νρFρσF

σµ) = − c2
4M4

P

(FµνF
µν)2 − c2

8M4
P

(FµνF̃
µν
)2 . (2.24)

We obtain therefore the coefficients shifts

α′
1 = α1 −

c2
2
,

α′
2 = α2 −

c2
2
,

α′
3 = α3 − b ,

α′
4 = α4 + c2 − c4 ,

α′
5 = α5 − c1 −

c2
2

+
c4
4

+
b

3
,

α′
6 = α6 −

c3
2

− c4
4
,

α′
7 = α7 +

c4
2
,

α′
8 = α8 + b .

(2.25)

Having 8 coefficients and 5 independent parameters which parameterize the field redefi-
nitions, we expect that it is possible to built 3 invariant quantities. It is simple to verify
that a possible choice for such quantities is:

β1 = α1 +
1

2
α4 + α7 ,

β2 = α2 +
1

2
α4 + α7 ,

β3 = α3 + α8 .

(2.26)

In particular, we observe that α5 and α6 are not involved in βi definitions. This is a direct
consequence of their transformation laws: they are the unique coefficients shifted by c1
and c3 respectively.

A convenient choice of {ci} is that which let vanishing αi coefficients. Exploiting a
proper field redefinition we can set:

α′
i = 0 , i = 4, 5, 6, 7, 8

β′1 = α′
1 ,

β′2 = α′
2 ,

β′3 = α′
3 .

(2.27)
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Therefore, the three invariant quantities equal the coefficients of (2.19). Notice that this
is a necessary condition for the equivalence of the particular theory (2.19) and the general
theory (2.20). However, equation (2.27) is not enough to conclude that the sign of a generic
correction evaluated in (2.19) is invariant under field redefinitions. Although it is driven
by a combination of α1, α2 and α3 which can be expressed through the {βi}, nothing
prevents the turning on of other corrections which are proportional to a vanishing αi. In
particular, all the effects due to α5 or α6 terms of the general theory are loss. However,
we know from the literature that both the charge-to-mass ratio and the entropy5 are not
affected by α5 and α6 (see respectively [6] and [14]). Thus, there is no reason to doubt of
our claim. In the next chapter we will verify that the carge-to-mass ratio and the extremal
black holes entropy are actually invariant.

2.3 Wald Formalism

We present now Wald’s formalism. It applies to theories of gravity whose action involves
higher order derivative terms. In particular, it provides a generalization of Komar’s for-
malism for general relativity.

We start this section describing how to associate a conserved charge to a Killing vector.
After that, we show that black hole masses can be expressed thorough the charge associated
with the asymptotic time translation symmetry. In particular, we verify that Wald’s
definition of mass is a generalization of Komar’s definition. Finally, we show that BH
entropy can be described as a Noether charge and we verify that it satisfies the first law
of thermodynamic.

2.3.1 Noether Charge in Higher Order Derivatives Theories

An important class of coordinate transformations is that of isometries. An isometry is
characterized by a section of the spacetime tangent bundle ζ whose Lie derivative6 satisfies

Lζ gµν = 0 . (2.28)

In general relativity, given a Killing vector ζ it is always possible to define a conserved
current. Exploiting the Bianchi identity for Riemann tensor, the Killing equations and
[Dµ, Dν ]ζρ = R σ

µν ρζσ it is easy to show that

DµDνζ
ρ = R ρ

µσ νζ
σ . (2.29)

Contracting with gµν we obtain

DρD
ρζµ = Rµνζ

ν . (2.30)

Expressing the relation with differential forms and exploiting Einstein equations we finally
get

5The entropy has been successfully computed only in the non extremal case. The approximation
performed breaks before reaching the extremal limit, therefore it is not obvious whether the result still
hold in the extremal case.

6We indicate the Lie derivative with the symbol L. It is the same we use for the Lagrangian density,
however the right interpretation should be clear given the context.
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jµ =
1

8π
Rµνζ

ν = (Tµν −
1

2
gµνT

µ
µ ) , (2.31)

⋆ d ⋆ dζ = 8πj ⇒ d ⋆ j = 0 . (2.32)

The conserved charge related to ζ is then obtained integrating the Komar current over a
space-like hypersurface Σ

Qζ =

∫︂

Σ
⋆j =

1

8π

∫︂

∂Σ
⋆dζ . (2.33)

Qζ is called the Komar’s charge associated with ζ.
In higher order derivative theories it is possible to define a generalization of Komar

charges proving their conservation and their definition without using Einstein equations
of motion. However, such generalization presents some subtleties. Following [11], let
us consider a general theory of gravity L in n dimensions with at most k derivatives.
Exploiting the relation

[Dµ, Dν ]ψ
α
β = R α

µν γψ
γ
α −R γ

µν βψ
α
γ , (2.34)

where ψαβ is a (1, 1) tensor, we can always rewrite L in order to have only totally symmetric

combinations of fields derivatives 7. Varying the action and defining the n-form L = ⋆L
we get

δS =

∫︂

δL =

∫︂

Eδϕ+ dΘ , (2.35)

where ϕ indicates a generic dynamical field of the theory and dΘ is called symplectic
prepotential and it is an exact (n − 1)-form. In particular Θ = Θ(ϕ, δϕ). Equations of
motion read then:

E = 0 . (2.36)

We consider now a generic section of the tangent bundle ζ (we are not assuming that it is
a killing vector) and we define the variation given by the relative Lie derivative:

δ̂ = Lζ . (2.37)

For every ζ can be defined then the n− 1 form

J = Θ̂− ζ · L , Θ̂ = Θ(ϕ, δ̂ϕ) , (2.38)

where the dot is intended as the interior product. Recalling Cartan Identity

Lζψ = ζ · dψ + d(ζ · ψ) , (2.39)

we obtain
δ̂L = Lζ = d(ζ · L) . (2.40)

Exploiting equation (2.40), (2.35) and imposing equations of motion (2.36) the differential
of (2.38) becomes

dJ = dΘ̂− d(ζ · L) = δ̂L− Eδ̂ϕ− δ̂L = −Eδ̂ϕ = 0 . (2.41)

7This step is purely conventional. However, we will show that quantities are affected by ambiguities.
It is therefore important to fix the starting of the computations we perform.
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Therefore there exists a (n − 2)-form Q conserved on-shell such that J = dQ. Obviously
Q is defined up to an exact form dZ, however such ambiguity can be removed integrating
over a suitable (n− 2)-surface

q =

∫︂

Σ
J =

∫︂

Σ
dQ =

∫︂

∂Σ
Q . (2.42)

The (n − 2)-form Q seems to be a good quantity which generalizes the notion of Komar
charge. In particular it seems that exist a conserved charge for every possible tangent
bundle section. However, this quantity has some bad features and it is not well defined.

Let us restart from the definition of Θ. Θ is fixed in order to satisfy the Lagrangian
variation. However, equation (2.35) tell us that the constraint is imposed on dΘ and not
directly on Θ. It follows that Θ is defined up to an exact form dY (ϕ, δϕ). This implies
that J is defined up to dY (ϕ, δ̂ϕ) and that Q is defined up to Y (ϕ, δ̂ϕ). Moreover, the
definition of Θ has another more important problem: it is sensible to total derivative
variations dµ of the Lagrangian. In particular, it is shifted by a quantity δµ. Exploiting
(2.39) we obtain that J is instead shifted by:

J = Θ̂− ζ · L→ J + δ̂µ− ζ · dµ = J + d(ζ · µ) . (2.43)

Finally, Q gets shifted by ζ · µ. To sum up, we have that J , Q and Θ are defined up to
the transformations

Θ → Θ+ δµ+ dY (ϕ, δϕ) , (2.44)

J → J + d(ζ · µ) + dY (ϕ, δ̂ϕ) , (2.45)

Q→ Q+ ζ · µ+ Y (ϕ, δ̂ϕ) + dZ . (2.46)

Let assume now that ζ is a killing vector and that δζ = 0 (this condition in case of time
translations is nothing but the requirement that perturbations are stationary). Being ζ
a killing vector it follows that δ̂ϕ = 0. The charge (2.42) is therefore defined up to the
transformation

q =

∫︂

∂Σ
Q→ q +

∫︂

∂Σ
ζ · µ . (2.47)

We want to find now a quantity whose variation cancels that of q. We consider then
∫︂

∂Σ
ζ ·Θ . (2.48)

which is defined up to the transformation
∫︂

∂Σ
ζ ·Θ →

∫︂

∂Σ
ζ ·Θ+ ζ · δµ+ ζ · dY (ϕ, δϕ) , (2.49)

The term (2.48) can not be used to built an invariant definition of charge. However,
recalling that δζ = 0 we have that ζ · δµ = δ(ζ · µ). Moreover, exploiting (2.39) we get

ζ · dY = LζY − d(ζ · Y ) = Y (ϕ,Lζδϕ) = δY (ϕ,Lζϕ) , (2.50)

where in the second step we dropped the second term (we are integrating on a boundary)
and in the last two steps we exploited the fact that Lζϕ = 0. It follows that introducing
a (n− 1) differential form B such that

δ

∫︂

∂Σ
ζ ·B =

∫︂

∂Σ
ζ ·Θ , (2.51)
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we get

∫︂

∂Σ
ζ ·Θ →

∫︂

∂Σ
ζ ·Θ+ δ(ζ · µ) + δY (ϕ,Lζϕ) , (2.52)

∫︂

∂Σ
ζ ·B →

∫︂

∂Σ
ζ ·B + ζ · µ , (2.53)

where we exploited Y (ϕ,Lζϕ) = 0. Therefore, we can use (2.53) to finally define the
conserved charge

q̃ζ =

∫︂

∂Σ
Q− ζ ·B =

∫︂

Σ
Jζ − d(ζ ·B) , (2.54)

whose definition has no ambiguities. Notice that to build such quantity has been funda-
mental that ζ was a Killing vector.

2.3.2 Noether Charge Explicit Formula

In section 2.3.1 we proved that it is possible to extend the notion of Komar charge in higher
order derivative theories. However, in order to define q̃ we introduced three quantities,
Θ, J and Q, whose definition is ambiguous. Therefore, we can not just impose (2.54) to
determine an explicit expression for q̃. We have to specify an algorithm which guarantees
that Θ, J and Q are computed in a consistent way. We present now the main steps of
the algorithm used by Wald. The procedure involves a huge amount of algebra which we
don’t report. The interested reader can see [11], [12], [32].

Given a theory L, we firstly use equation (2.34) to have only totally symmetric combi-
nations of fields derivatives. Once we get the symmetric lagrangian density LS we have to
fix its boundary terms. Θ, J and Q are indeed sensible to total a derivative shift. Θ can
be computed then through the boundary terms which arise from the action variation (cfr.
equation (2.35)). Applying the algorithm provided by [12] to the symmetric Lagrangian
density L it is possible to show that Θ can be written as

Θ = 2EbcdDdδgbc +Θ′ . (2.55)

Θ′ is a (n − 1) differential form where the variation δ is always on the left of derivatives
operators. It has the structure

Θ′ = Sab(ϕ) δgab +
k

∑︂

l=0

T(l)(ϕ)
a1,...,alδD(a1 . . . Dal)Rabcd

+
∑︂

i∈{ψ}

k
∑︂

l=0

U(i, l)(ϕ)
a1,...,alδD(a1 . . . Dal)ψ ,

(2.56)

where ϕ indicates all the dynamical fields of the theory and ψ indicates all the dynamical
fields except the metric. Ebcd is a (n− 1) differential form given by

Ebcd = Eabcdϵ̄a , ϵ̄a =

√−g
(n− 1)!

ϵaa2...andx
a2 ∧ · · · ∧ dxan , (2.57)
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and Eabcd is a tensor which can be interpret as the equations of motion obtained assuming
that Rabcd was an independent dynamical field, i.e. it holds

δL = EabcdδRabcd =

ï

∂LS
∂Rabcd

−Da1

∂LS
∂Da1Rabcd

+ . . .

. . . (−1)kD(a1 . . . Dak)
∂LS

∂D(a1 . . . Dak)Rabcd

ò

δRabcd .

(2.58)

Given our choice of Θ, the conserved current J associated with the section of the tangent
bundle ζ reads:

J = 2EbcdDdδ̂gbc +Θ′(ϕ, δ̂ϕ)− ζ · L
= 2EbcdDd(Dbζc +Dcζb) + Θ′(ϕ,Lζϕ)− ζ · L .

(2.59)

Q is finally defined by J = dQ. The algorithm described in [32] guarantees that we can
always invert the relation and express Q in terms of the theory fields. However, we are
just interested in determining the structure of Q expansion in terms of ζ field (the reason
will be clear later), therefore it is not necessary to use it to extract the explicit expression
of Q. We start then by looking at the ζ dependency in (2.59). Θ′ is linear in ζ and Dζ
(cfr. equation 2.56). Moreover, recalling that Ebcd is antisymmetric in the last two indexes
and exploiting equation (2.34) we have

EbcdDdDcζb =
1

2
Ebcd [Dd, Dc] ζb = −1

2
EbcdR f

dc b ζf . (2.60)

Therefore, EbcdDdDbζc is the term of highest derivate order of (2.59). Being proportional
to D2ζ, it is the only term which produces contributes in Q proportional to Dζ. It follows
that Q takes the general form (for our conventional choices of Θ and J)

Q = XcdD[cζd] + ζ ·W (ϕ) , (2.61)

where W (ϕ) and Xcd are differential forms locally defined through the dynamical fields of
the theory with dimensions (n − 1) and (n − 2) respectively. According to the previous
observations we can readily determine Xcd relating it with D2ζ term in (2.59). It holds

Xcd = −Eabcdϵ̄ab , ϵ̄ab =

√−g
(n− 2)!

ϵaba3...andx
a3 ∧ · · · ∧ dxan . (2.62)

Equation (2.54) then becomes

q̃ζ =

∫︂

∂Σ
XcdD[cζd] + ζ ·W (ϕ)− ζ ·B , (2.63)

δ

∫︂

∂Σ
ζ ·B =

∫︂

∂Σ
ζ · 2EbcdDdδgbc +Θ′(ϕ, δϕ) . (2.64)

2.3.3 Mass in Higher Order Theories

In Newtonian relativity it is possible to associate a energy density directly to the gravita-
tional field. It holds indeed

E = − 1

8π
|∇⃗ϕ|2 , (2.65)
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where ϕ is the gravitational field. Considering general relativity and taking the Newtonian
limit of the theory it turns out that ϕ corresponds to a metric component (see [33]). We
can guess then that the energy density could be expressed by an operator quadratic in
spacetime metric first derivative. However, it is not possible to built a meaningful operator
of that type. Despite there is no general notion of energy density of the gravitational field,
it is still possible to define the total energy-momentum 4-vector of an isolated system, i.e.
the 4-vector seen by an observer in the asymptotically flat region.

A first definition of the total mass of a asymptotically flat configuration can be given
as the bulk mass seen by a test particle moving at infinity. Assuming for simplicity a
stationary field configuration with spherical symmetry, Newtonian gravity tell us that a
particle which moves in the field ϕ generated by a mass M satisfy:

d2x⃗

dt2
= −∇⃗ϕ , ϕ = −GM

r
, (2.66)

where x⃗ are the space coordinates of the test particle in a particular reference frame and
r is understood. Being the particle in the asymptotically flat region, weak field regime
applies and general relativity implies

d2x⃗

dt2
≈ 1

2
∇⃗h00 , gµν ≈ ηµν + hµν , (2.67)

Requiring by consistency that general relativity has to reproduce Newtonian gravity in
the weak field approximation we get

g00 ≈ (−1 + 2ϕ) = −
Å

1− 2GM

r

ã

. (2.68)

Thus, in general relativity the bulk mass is proportional to a residual of 1/r term of g00.

A second definition of the mass can be formulated in terms of Komar charges. Let us
consider a field configuration which is asymptotically flat. It is always possible to define
a Killing vector t which correspond to a time translation at infinity. Using such Killing
vector it holds

Qt = − 1

8π
lim
r→∞

∫︂

S2
r

⋆ dt =M . (2.69)

The total energy can be therefore characterized as the Komar charge associated with time
translations and equation (2.32) guarantees its conservation.

We consider now the case of a 4 dimensional Schwarzschild black hole. Such configu-
ration is asymptotically flat, therefore it admits ∂0 as Killing vector. We will show that
the charge q̃t with boundary the asymptotic sphere coincides with the Komar mass of the
BH. Applying the prescriptions of the previous section to General Relativity we get

Θ =
1

16π
gdegfh (Dfδgeh −Deδgfh) ϵ̄d , (2.70)

J =
1

8π
De

Ä

D[etd]
ä

ϵ̄d , (2.71)

ϵ̄d =

√−g
(n− 1)!

ϵda2...andx
a2 ∧ · · · ∧ dxan . (2.72)
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Comparing equation (2.70) with (2.55) we read that Θ′ = 0. Moreover, the structure of
the current (2.71) tells us that W (ϕ) = 0. Therefore, equation (2.63) takes the form

q̃ζ =

∫︂

∂Σ
XcdD[cζd] − ζ ·B , (2.73)

δ

∫︂

∂Σ
ζ ·B =

∫︂

∂Σ
ζ ·
Ä

2EbcdDdδgbc
ä

. (2.74)

We compute now the first term of equation (2.73). Xcd can be written as

Xab = 2s ⋆ Eab , Eab = Eabcdgcc′gdd′
dxc

′ ∧ dxd′

2
, (2.75)

therefore we get

E1 =
∫︂

∞
XcdD[ctd] = 2s

∫︂

∞
⋆EcdD[ctd] . (2.76)

Exploiting equation (A.53) we have then

E1 = −
∫︂

∞
EabcdηabD[ctd] e∞ = −AηabD[ctd]E

abcd , (2.77)

where all the quantities are intended as evaluated in the limit r → ∞. Recalling that
tµ = δµ0 , ηab = 2

√︁

|g00g11|δ0,1[a,b] and exploiting symmetry properties of Eabcd indices we get

E1 = 2A∂cg00
»

|g00g11|E010c . (2.78)

Let us assume MP = 1, so that Einstein Lagrangian is just R/2. The Eabcd tensor then
simplifies to

Eabcd =
1

4
(gacgbd − gbcgad) , (2.79)

and g00 = −1/g11 = −(1− rs/r). Equation (2.78) becomes

E1 = −1

2
A∂1g00 = lim

r→∞

ï

1

2
4πr2

2M

8πr2

ò

=
M

2
, (2.80)

where we introduced the Schwarzschild radius rs =M/4π.

Variation of the second term of equation (2.63) reads instead

δE2 = −
∫︂

∞
t · θ =

∫︂

∞
⟨t · Ebcd, ⋆ ηab⟩ 2Ddδgbc = 2A

»

|g00g11|E1bcd(Ddδgbc) , (2.81)

and again all the quantities are intended as evaluated in the limit r → ∞. Exploiting
equation (2.79) we get

δE2 =

∫︂

∞
e∞

1

2
D1δg00 = δ

∫︂

∞
e∞

1

2
∂1δg00 , (2.82)

E2 =

∫︂

∞
e∞

1

2
∂1g00 =

M

2
. (2.83)

It follows that q̃t = E1 + E2 =M . As we claimed q̃t reproduces Komar mass.



2.3. Wald Formalism 23

2.3.4 Entropy Formula

We conclude this section presenting Wald’s entropy formula and showing that it satisfies
the first law of thermodynamics. Let us consider a black hole configuration and let ζ
be the Killing vector associated with its Killing horizon H. Exploiting the fact that ζ
vanishes on H and choosing ∂Σ = H equation (2.63) becomes

q̃ζ =

∫︂

H

XabD[aζb] . (2.84)

Introducing the surface gravity κ and the binormal to the Killing horizon ηab we get

q̃ζ = κ

∫︂

H

Xabηab , (2.85)

where we used that D[aζb] = κ ηab and that κ is constant on H.
Let us consider now a non rotating asymptotically flat stationary black hole with

spherical symmetry. BH horizon is a Killing horizon H with Killing vector ∂t. Integrating
the associated current on an space-like hypersurface Σ with inner boundary H we get

q̃t =

∫︂

Σ
Jt − d(t ·B) = −

∫︂

H

Qt +

∫︂

∞
Qt − t ·B (2.86)

According with the previous section, we can identify the integral on the asymptotic surface
as the mass of the black hole. In the static case it corresponds to the black hole energy.
Exploiting equation (2.85) we can write then

q̃t = −κ
∫︂

H

Xabηab + E (2.87)

Being δt = 0, it holds δκ = 0. Therefore, assuming that δq̃t = 0 (see below), varying
equation (2.87) we get

T δ

ß

2π

∫︂

H

Xabηab

™

= δE , (2.88)

where we introduced the Hawking temperature T = κ
2π . Equation (2.88) is nothing but

the first law of thermodynamics. From equation (2.88) we finally read the entropy

S = 2π

∫︂

SH

ηabX
ab . (2.89)

We conclude verifying8 that δq̃t = 0. Varying equation (2.86) we get

δq̃t =

∫︂

Σ
δJt − δ d(t ·B) =

∫︂

Σ
δ (Θ̂− t · L)− d(t ·Θ) , (2.90)

where in the second step we exploited J and B definition (cfr. equations (2.38), (2.51)).
Recalling that we are considering stationary perturbations which satisfy δt = 0 and ex-
ploiting Cartan identity (2.39) we obtain

δq̃t =

∫︂

Σ
δ Θ̂− t · δL − d(t ·Θ) =

∫︂

Σ
δ Θ̂− δ̂Θ =

∫︂

Σ
ω , (2.91)

8A more general argument which implies that the variation of every Killing charge is null can be found
in [32]
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where we introduced the so called symplectic potential ω. Notice that although LHS is a
well defined quantity, ω presents the same ambiguities of Θ, J and Q. It has the structure

ω(ϕ, δϕ, δ̂ϕ) = δΘ(ϕ, δ̂ϕ)− δ̂Θ(ϕ, δϕ) (2.92)

Considering the second and the fourth term of equation (2.50) we can write ω as

ω = d (t ·Θ) (2.93)

Replacing equation (2.93) in the RHS of equation (2.91) and applying Stokes theorem we
get

δq̃t =

∫︂

Σ
d (t ·Θ) = −

∫︂

H

t ·Θ+

∫︂

∞
t ·Θ (2.94)

Being t the Killing vector of the Killing horizon H, the first term of (2.94) vanishes.
Recalling that asymptotic flatness fixes δϕ(∞) = 0, Θ is null at spatial infinity and the
second term vanishes too. We have therefore δq̃t = 0.



CHAPTER 3

Black Hole Solutions

In the previous chapter we determined lowest order correction to Einstein–Maxwell theory
and Wald’s entropy formula. We have therefore the framework and the formalism suitable
to evaluate whether black holes splitting processes are allowed or not. The literature guar-
antees us that the kinematic constraints provided by the EWGC are trivially satisfied once
positivity bounds due to S-matrix properties are taken into account (see [7]). However, the
dynamics constraints due to the second law of thermodynamics have not been discussed
so far. In this chapter we present our original analysis on the existence of configurations
which satisfy both the kinematic and thermodynamic constraints. It turns out that the
splitting processes are not allowed. They involve indeed small black hole solutions which
break the perturbative regime.

We will start by solving perturbatively 4 derivative Einstein–Maxwell equations of mo-
tion treating higher order terms as small corrections. Once we have the metric expression,
we will determine the corrections to charge-to-mass ratio and to the radius of extremal
BH configurations, verifying that higher order corrections do not change the structure of
the black hole horizon (it is still a Killing horizon and its surface gravity vanishes in the
extremal limit). After that, we will evaluate the correction to the entropy of extremal con-
figurations through Wald’s formula. Such computation provides the first relevant original
result of the thesis work. It extends indeed the computations of [14] where the entropy
diverges in the extremal limit. Exploiting positivity bounds due to S-matrix properties,
we will be able to fix the corrections signs and we will use them to prove the mild ver-
sion of the EWGC and to discuss BH splitting processes. We will finally provide two
highly non trivial consistency checks. The first one tests Wald’s formalism. We will ver-
ify that the thermodynamic temperature computed from Wald’s entropy taking the mass
derivative vanishes in the extremal limit as well as the Hawking temperature. The second
consistency check tests theories equivalence under fields redefinition. We will verify that
the entropy and the charge-to-mass ratio of extremal black holes are invariant under such
transformations, proving the claim of section 2.2. We conclude this chapter by discussing
and analyzing the differences between our result and those of the literature.
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3.1 Perturbative Solution of Einstein–Maxwell Theory

Assuming that the variational principle still holds in higher derivative theories, we can
compute the exact equations of motion (EOM) of the theory (2.19) varying the action
with respect of dynamical fields:

δAνS =

∫︂

d4x
»

|g|Dµ [F
µν −∆Fµν ] δAν , (3.1)

δgµνS =
M2
P

2

∫︂

d4x
»

|g|
ï

Rµν −
1

2
gµνR− 1

M2
P

Tµν

ò

δgµν , (3.2)

EOM :

⎧

⎨

⎩

Gµν = Rµν − 1
2gµνR = 1

M2
P

Tµν ,

DµF
µν = Jν +Dµ∆F

µν ,
(3.3)

where we introduced the quantities

∆Fµν =
2α1

M4
P

F 2Fµν +
2α2

M4
P

FF̃ F̃
µν

+
2α3

M2
P

WµνρσFρσ , (3.4)

Tµν = − 2
√︁

|g|
δ

δgµν

(︂
»

|g|L
)︂

, (3.5)

and Stress-Energy tensor components take the explicit form

T (2)
µν = − 2

√︁

|g|
δ

δgµν

(︂
»

|g|L2

)︂

= FµρF
ρ

ν − 1

4
gµνFρσF

ρσ , (3.6)

T (4)
µν = − 2

√︁

|g|
δ

δgµν

(︂
»

|g|L4

)︂

= gµνL4 − 2δL4

=
α1

4M4
P

ß

gµνF
4 − 8F 2FµρF

ρ
ν

™

+
α2

4M4
P

ß

gµν(FF̃ )
2 − 2gµν(FF̃ )

2

™

+
α3

2M2
P

ß

− 6Fα(ν|F
βγRα|µ)βγ − 4DβDα

Ä

Fα(µ|F
β

|ν)
ä

+ 8R(ν|σF|µ)ρF
σρ + 4RαβFαµFβν + 2gµνDαDβ(F

α
ρF

βρ)

− 4DαD(ν|
Ä

F|µ)βF
αβ
ä

+ 2D2(FµρF
ρ

ν )− 4

3
RF σ

µ Fνσ −
2

3
F 2Rµν

+
2

3
D(µ|D|ν)F

2 − 2

3
gµνD

2F 2 + gµνWαβρσF
αβF ρσ

™

.

(3.7)

Assuming that the αi coefficients are small, we can treat L4 as a perturbation and solve
perturbatively the equations of motion. Denoting with (n) the order of approximation in
the expansion parameters1, we have that for general higher order derivative corrections

1i.e. g(n) is the solution exact up to αn
i terms.
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hold

M2
PGµν

î

g
(n)
αβ

ó

= Tµν
î

g
(n)
αβ , A

(n)
γ

ó

≃ T (2)
µν

î

g
(n)
αβ , A

(n)
γ

ó

+ T (4)
µν

î

g
(n−1)
αβ , A(n−1)

γ

ó

+ . . . ,
(3.8)

DµF
µν
î

g
(n)
αβ , A

(n)
γ

ó

≃ Jν +Dµ∆F
µν
î

g
(n−1)
αβ , A(n−1)

γ

ó

+ . . . , (3.9)

where dots denote corrections with order higher than fourth. Considering only fourth
order corrections and using (3.9) to reduce the order of Aγ dependence in (3.8) we get2

M2
PGµν

î

g
(1)
αβ

ó

≃ T (2)
µν

î

g
(1)
αβ , A

(0)
γ

ó

+

Å

2∆F(µ|ρF
ρ

|ν)

− 1

2
gµν∆FρσF

ρσ + T (4)
µν

ã

î

g
(0)
αβ , A

(0)
γ

ó

.

(3.10)

Notice that even if we were able to solve the exact equations of motion (3.1) and (3.2),
the solution would be meaningless outside the regime of validity of equation (3.10). If
the perturbative expansion breaks L4 is no more a small correction to Einstein–Maxwell
theory and we can not neglect terms with order higher than 4. We would have then to
consider further corrections.

Now, we look for black hole solutions. Considering stationary, charged and spherical
solutions we obtain for the unperturbed case the well known Reissner–Nordström (RN)
solution (see [25]):

ds2 = −f0(r)2 dt2 +
1

f0(r)2
dr2 + r2 dΩ2

S2
, F =

Q

4πr2
dr ∧ dt , (3.11)

f0(r)
2 = 1− M

4πM2
P r

+
Q2

32π2M2
P r

2
. (3.12)

To derive the perturbed solution we require that in the limit αi → 0 we must recover the
RN solution. The most general ansatz for the metric assuming a stationary, charged and
spherical BH is then

ds2 = −N(r)2f1(r) dt
2 +

1

f1(r)
dr2 + r2 dΩ2

S2
, (3.13)

and the asymptotic conditions take the form

g
(1)
tt = −N(r)2f1(r) = −f0(r)2 +∆gtt + o(αi) , ∆gtt

αi→0−−−→ 0 , (3.14)

(g(1)rr )
−1 = f1(r) = f0(r)

2 +∆f + o(αi) , ∆f
αi→0−−−→ 0 . (3.15)

To determine N(r) and f1(r) we replace the ansatz (3.13) in (3.10) and we take proper
combinations of the independent EOM. Let us introduce the more compact notation

Eνµ =M2
PG

ν
µ − T νµ , (3.16)

2Note that keeping g(1) dependence in T
(2)
µν term of equation (3.10) we are considering contributions

that are neglected using the techniques presented in [34].
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where we have dropped explicit dependence on dynamical fields having in mind the de-
composition 3 (3.10). Let us consider the combination:

E1
1 − E0

0 = 0 ⇐⇒ α3 Q
2 f0(r)

2

12π2M4
P r

6
+

2f1(r)N
′(r)

rN(r)
= 0 . (3.17)

Massaging equation (3.17) we get

N(r) = K exp

ï

− α3Q
2

24M4
Pπ

2

∫︂

dr
f0(r)

2

r5f1(r)

ò

≃ K exp

ï

− α3Q
2

24M4
Pπ

2

∫︂

dr
1

r5

ò

≃ K

ï

1− α3Q
2

24M4
Pπ

2

∫︂

dr
1

r5

ò

=

ï

1 +
α3Q

2

96π2M4
P r

4

ò

,

(3.18)

where we have removed f1(r) using eq. (3.15) and neglecting higher order contributions.

The integration constant K is fixed imposing the correct limit g
(1)
tt for vanishing αi. Let

us consider now the relation:

E0
0 + E2

2 = 0 . (3.19)

Replacing equation (3.18) in (3.19) we have:

d

dr

ï

2rf1(r) + r2f ′1(r)
ò

= 2 + α1h1(r) + α3h3(r) , (3.20)

h1(r) = − Q4

64π4M6r6
, (3.21)

h3(r) =
Q2

12π2M4
P r

4

î

1−
(︁

2f0(r)− rf ′0(r)
)︁2 − r2f0(r)f

′′
0 (r)
ó

− Q2f0(r)
2
[︁

α3Q
2f0(r)

2 − 12π2M4
P r

5f ′1(r)
]︁

263π4M8
P r

8 f1(r)
.

(3.22)

Equation (3.20) cannot be solved easily because of the presence of f1(r) in h3(r). However,
we observe that h3(r) is multiplied by an α3 factor. Exploiting (3.15) and neglecting higher
order terms in perturbation parameters, equation (3.22) becomes

h3(r) ≃
Q2

12π2M4
P r

4

î

1−
(︁

2f0(r)− rf ′0(r)
)︁2 − r2f0(r)f

′′
0 (r)
ó

+
24Q2f0(r)f

′
0(r)

263π2M4
P r

3
. (3.23)

Through a simple double integration4 we get then:

f1(r) = 1− d2
r

+
d1
r2

− α1Q
4

1280π4M6
P r

6
+
α3Q

2

M6
P r

6

Å

5M r

384π3
− Q2

640π4
− M2

P r
2

24π2

ã

, (3.24)

3In particular we have raised indexes using perturbed and unperturbed metric according to the correct
field dependence.

4After the first integration we get a standard first order linear differential equation.
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where d1 and d2 are the integration constants. We can fix them imposing (3.15). We have
finally:

d1 =
Q2

32π2M2
P

, d2 =
M

4πM2
P

, (3.25)

gtt = −f0(r)2 +
α1Q

4

1280π4M6
P r

6
− α3Q

2

M6
P r

6

Å

M r

128π3
− 7Q2

7680π4
− M2

P r
2

48π2

ã

, (3.26)

1

grr
= f0(r)

2 − α1Q
4

1280π4M6
P r

6
+
α3Q

2

M6
P r

6

Å

5M r

384π3
− Q2

640π4
− M2

P r
2

24π2

ã

, (3.27)

gtt grr = −1− α3Q
2

48π2M4
P r

4
. (3.28)

3.2 Radius and Charge-to-Mass Ratio of Extremal Black

Holes

In order to study the perturbed BH solution and relate it to WGC we must firstly compute

its corrected horizon radius r
(1)
H in the extremal case, i.e. for the maximum allowed value

of the charge to mass ratio.5 By definition it is given by:

r
(1)
H,ext = max

®

r ∈ R>0 :
1

g
(1)
rr (r)

= 0 , z = z(1)max

´

. (3.29)

The solution cannot be computed exactly because in our case r
(1)
H is the root of a sixth order

polynomial. However, a perturbative approach is still possible. The standard techniques
used in the literature are those of guessing the polynomial roots dependencies on the

perturbative parameters (see [35]) or of considering the expansion r
(1)
H = r

(0)
H +∆r

(0)
H and

assuming that ∆r
(0)
H is small (see [14]). The method we will use mixes both of them. The

unperturbed horizon is given by

r
(0)
H =

M +
»

M2 − 2M2
PQ

2

8πM2
P

=
M

8πM2
P

Ä

1 +
√︁

1− z2
ä

, (3.30)

z =

√
2MPQ

M
, (3.31)

where we introduced the charge-to-mass ratio z. In the unperturbed case z takes values
in [0, 1] (z = 1 extremal charged BH, z = 0 Schwarzschild BH).

We start by evaluating numerically P (r) := r6f1(r), in order to understand which is
the best ansatz to apply the perturbative methods. Setting MP = 1, we observe that
the polynomial roots present 3 different structures6 depending on the sign of the z-axis
intercept:

5The extremal configuration with charge Q can be equivalently defined as that with the minimal mass.
6Here we are assuming M ≫ MP , M ≫ αi. Outside the perturbative regime the solutions structures

are pretty different.
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apply for every allowed value of α1 and α3, but the configurations they describe seem to
be the extremal ones only in the case α1 + 2α3 < 0. However, we will see that the class
of black holes with z ≫ 1 is composed by small black holes which break the perturbative
regime (see section 3.5). Therefore, the results that we will derive in this sections assuming
to be in the case α1 +2α3 < 0 will eventually turn out to describe extremal configuration
for every value of α1 and α3 (within the perturbative regime). Indeed, in this section we
will never exploit the α1 + 2α3 < 0 bound.

Given the results of the numerical simulation we guess (we drop perturbation order
indexes and until the end of this section the quantities are evaluated at the extremal
configuration):

z = 1 +∆z , |∆z| ≪ 1 , rH =
M

8π
+∆r ,

⃓

⃓

⃓

⃓

∆r

(M/8π)

⃓

⃓

⃓

⃓

≪ 1 . (3.32)

The definition (3.29), tells us that rH satisfies P (rH) = 0. Assuming the ansatz (3.32) we
can consistently expand such condition around n =M/8π producing an equation for ∆r.
Dropping higher order terms we have (we assume n≫ |αi| ≳ |∆r|):

0 = n6
Å

∆r6

n6
+

4∆r5

n5
+

∆r4z2

n4
+

5∆r4

n4
+

4∆r3z2

n3
− 4α3∆r

2z2

3n4

+
6∆r2z2

n2
− 5∆r2

n2
+

2α3∆rz
2

3n3
+

4hz2

n
− 4∆r

n
− 4α1z

4

5n2

− 8α3z
4

5n2
+

2α3z
2

n2
+ z2 − 1

ã

≃ n6
Å

6∆r2z2

n2
− 5∆r2

n2
+

2α3∆rz
2

3n3
+

4∆rz2

n
− 4∆r

n
− 4α1z

4

5n2

− 8α3z
4

5n2
+

2α3z
2

n2
+ z2 − 1

ã

.

(3.33)

Solving the equation we get

∆r =
6n2(1− z2)− α3z

2

18nz2 − 15n
±

√
∆

2 (90nz2 − 75n)
, (3.34)

∆ = − 4
(︁

90nz2 − 75n
)︁ (︁

15n3z2 − 15n3 − 12α1nz4 − 24α3nz4 + 30α3nz2
)︁

+
(︁

60n2z2 − 60n2 + 10α3z2
)︁2
.

(3.35)

We impose then the extremality condition requiring that ∆ vanishes. Dropping higher
order terms we can produce a solvable equation for ∆z. We have:

0 = ∆ = n2
ï

−1800n2∆z + 720α1 − 360α3 +O

Å

α2

n2

ãò

, (3.36)

∆z =
64π2

5M2
(2α1 − α3) . (3.37)

We observe that ∆z parametric dependence is in agreement with the order of the per-
turbative expansion (3.36). Replacing equation (3.37) in (3.34) and imposing ∆ = 0 we
get:

∆r = − 8π

15M
(24α1 − 7α3) , (3.38)

which is in agreement with the order of the perturbative expansion (3.33). Equation (3.37)
is in agreement with the results in the literature ([6],[8],[14],[7],[9]).
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3.3 Entropy and Positivity Bounds

We proceed now to compute the entropy of the perturbed BH. For stationary BH solutions
with stationary perturbations we proved that there exists a quantity, called Wald’s entropy,
which is defined in generic higher derivative theories and satisfies a relation which has the
structure of the first law of thermodynamic (see section 2.3). Although it is still an open
problem to understand which is the nature of the microstates associated with BH entropy
and there are some unclear issues related to it (such as the information paradox see [36]),
Wald’s entropy is the most promising formula to compute entropy in the classic regime
(see [13]).

We recall the Entropy formula for a D-dimensional theory with derivative order k (cfr.
equation 2.89)

S = 2π

∫︂

SH

ηabX
ab , (3.39)

Xab = 2s ⋆ Eab , Eab = Eabcdgcc′gdd′
dxc

′ ∧ dxd′

2
. (3.40)

SH is given by the (D−2)-dimensional intersection between a (D−1)-dimensional spacelike
hypersurface and the (D − 1)-dimensional Killing horizon of the BH; s is the sign of the
metric determinant, ⋆ is the D-dimensional Hodge star operator, ηSH

is the binormal to
SH normalized and oriented according to

dDx
»

|g| = ηSH
∧ eSH

, (3.41)

where eSH
is the (D− 2)-dimensional volume element of SH ; E

abcd is the tensor obtained
varyng the symmetric action7 as if Rabcd was and independent dynamical field, i.e. it
holds:

δLS = EabcdδRabcd =

ï

∂LS
∂Rabcd

−Da1

∂LS
∂Da1Rabcd

+ . . .

. . . (−1)kD(a1 . . . Dak)
∂LS

∂D(a1 . . . Dak)Rabcd

ò

δRabcd .

(3.42)

Assuming spherical symmetry, equation (3.39) reduces to

S = 4πs

∫︂

SH

ηab ⋆ E
ab = 2πs

∫︂

SH

Eabcdηabηcd eSH
= −2πAEabcdηabηcd , (3.43)

with
A = 4π(rH)

2 , ηab = 2
»

|g00|
»

|g11| δ0[aδ1b] . (3.44)

We consider now the 4 derivative Einstein–Maxwell theory (2.19). The Lagrangian
density terms are already symmetric in covariant derivative. Applying the definition (3.42)
directly to the Lagrangian (2.19) we get:

Ẽ
abcd

=
M2
P

2
gacgbd +

α3

2M2
P

Å

F abF cd − 2gacF bfF df +
1

3
F 2gacgbd

ã

, (3.45)

7Given a theory L we call the symmetric one that is obtained using equation (2.34) to have only totally
symmetric combinations of fields derivatives.
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where the tilde indicates that the tensor is not correctly symmetrized yet, i.e. does not
respect the indexes structure of δRabcd. We have then:

Eabcd =
1

8
(Ẽ

abcd − Ẽ
bacd − Ẽ

abdc
+ Ẽ

badc
+ Ẽ

cdab − Ẽ
dcab − Ẽ

cdba
+ Ẽ

dcba
) . (3.46)

According with the perturbative expansion performed we can decompose Eabcd as

E
(1)
abcd ≃ δL2

δRabcd

î

g(1)µν

ó

+
δL4

δRabcd

î

g(0)µν , A
(0)
γ

ó

. (3.47)

Exploiting equations (3.28) and (3.47) the perturbed entropy8 at the first order in αi takes
the form:

S1 = −
Å

8π2M2
P r

2
H +

m2z2

12r2H
α3

ã

Ç

m2z2

48π2r4H
α3 −

Å

1 +
m2z2

192π2r4H
α3

ã−2å

. (3.48)

Using the explicit results (3.37),(3.38) we get

zext = 1 +
64π2M2

P

5M2
(2α1 − α3) , (3.49)

rH,ext =
M

8πM2
P

− 8π

15M
(24α1 − 7α3) , (3.50)

Sext =
M2

8M2
P

− 16

5
π2 (8α1 + α3) . (3.51)

Recalling that the entropy function for RN solutions is given by (see [37])

S0 =
M2

8M2
P

Ä

1 +
√︁

1− z2
ä2
, S0,ext =

M2

8M2
P

, (3.52)

the extremal black holes entropy correction takes the form

∆Sext = −16

5
π2 (8α1 + α3) . (3.53)

Notice that the corrections (3.37), (3.38) and (3.53) present the typical parametric scaling
(see [19],[35]).

As far as we know, equation (3.51) is an original result of this thesis work. Indeed, the
most accurate analysis we found of 4 derivative Einstein–Maxwell theory is that pursued
in ([14]). However, the entropy formula they obtained shows a divergent behavior in
the extremal limit, therefore the entropy of the extremal configuration have never been
evaluated explicitly until now.

We conclude this section by analyzing the implications of the positivity bounds due
to S-matrix properties. For the moment, we just assume them without discussing their
nature. A more detailed study will be pursued in the next chapter. Exploiting unitarity,
crossing symmetries and analiticity of the S-matrix it is possible to constrain the values
of α1 and α3. According to [7] we have

⎧

⎪

⎨

⎪

⎩

2α1 − α3 > 0 ,

2α1 + α3 > 0 ,

α2 > 0 .

(3.54)

8Notice that the formula holds for a generic configuration, not only for the extremal ones.



36 3. Black Hole Solutions

The system (3.54) fixes completely the corrections signs (α1 > |α3|/2 implies 8α1+α3 > 0).
Therefore we get:

∆zext > 0 , ∆rext < 0 , ∆Sext < 0 . (3.55)

The positive correction to the charge-to-mass ratio implies that BHs can spontaneously
decay emitting a smaller extremal BH with higher z. EWGC bound is therefore trivially
satisfied and the conjecture is proved in its mild form (for our class of theories). The
negative sign of extremal entropy correction alone does not allow us instead to determine
whether black holes can split or not. We have indeed to evaluate whether the entropy
corrections allows us to produce a couple of BH whose entropy is greater than the entropy
of the decaying BH. However, before proceeding with such analysis we have to better
understand which is the regime of validity of our computations. It is indeed fundamental to
test BH splitting processes avoiding BH configurations which are outside the perturbative
regime. In order to determine whether a BH breaks the perturbative regime we have just
to verify if it satisfy our assumptions. In general, a black hole configuration is reliable if its
mass is greater than the theory cutoff scale and if the higher order terms are subdominant
once they are evaluated for such solution. We have therefore

®

M ≫MP ,

|L2| ≫ |∆L| .
(3.56)

From the constraints (3.56), it is clear that an heavy black hole can not be outside the
perturbative regime. The first condition is indeed trivial. The second one is satisfied
because |∆L| increases with the horizon curvature and the bigger is the mass, the bigger
is the radius and the smaller is the BH curvature. Therefore, only the light BHs can
break perturbative regime. We call such kind of solutions small black holes9. Finally, an
extremal BH together with (3.56) must satisfy

®

|∆z| ≪ 1 ,

|∆r| ≪ (M/8π) .
(3.57)

Before analyzing the splitting processes we proceed then with a detailed discussion of
the computations performed in section 3.2 and of the light black holes which arise for
α1 + 2α3 ≤ 0.

3.4 Black Hole Solutions Detailed Analysis

In section 3.2 we obtained the radius and the charge-to-mass ratio for solutions which are
the perturbations of extremal RN black holes. However, in order to present as clearly as
possible the perturbative computation we did not discussed the details of our assumptions,
results and methods.

In this section we start analyzing the last result we obtained, i.e. the charge-to-mass
ratio formula for extremal BHs. Higher order corrections introduce a quadratic dependence

9Notice that our definition of small black hole differs from that commonly used in the literature. We
define small black hole a BH that is light enough to be outside the perturbative regime. In the literature
a small black hole is instead a BH that becomes singular in the limit of null perturbations. However, all
the BHs we will classify as small black holes in the thesis work satisfy both the definitions.
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on the BH mass, therefore it is not obvious that for every charge Q is identified only one
extremal mass. It is important therefore to understand if there exist more than one
configuration and if such extra configurations break or not the perturbative regime. It
will turn out that every reliable configuration admits a smaller one which is outside the
perturbative regime.

After that, we formalize the perturbative computations performed in the previous
section introducing a more general approach. The new algorithm reproduces exactly the
same results but works independently of the particular structure of the black hole solution
we are considering.

We finally discuss the structure of the black hole horizon in higher order theories.
Firstly, we will verify that the sphere with radius defined by (3.29) has actually the struc-
ture of a Killing horizon. The condition we used to define the radius is therefore the
correct one. Secondly, we will show that whenever the two outermost horizons coincide
the BH surface gravity vanishes. Condition (3.36) encodes therefore in the right way the
extremality condition.

3.4.1 Charge-to-Mass Ratio in Higher Order Theories

Equation (3.37) tells us that the charge-to-mass ratio it is no more constant but depends
on the mass of the BH. However, we notice that now for a fixed charge the bound is not
trivially satisfied by a unique mass value. We have indeed

√
2Q =

Å

M

MP

ã

+
64π2

5
Ä

M
MP

ä(2α1 − α3) . (3.58)

Setting MP = 1 and ϵ = 2α1 − α3 the relation can be written as

M2 −
√
2MQ+

64π2

5
ϵ = 0 . (3.59)

Recalling that Q = |Q| in (3.59) and that ϵ > 0 (cfr. equation (3.54)), we have that the
two M+ and M− should satisfy:

®

M+M− > 0 ,

M+ +M− > 0 .
(3.60)

It follows that whenever the equation (3.59) admits a real solution it admits a couple of
positive solutions M+ ≥ M− > 0. It is important then to understand whether M+ and
M− are reliable solutions. If they were both part of the theory spectrum we could identify
two types of extremal black holes: there would be a class of light stable black holes and a
class of unstable heavy black holes10. Solving equation (3.59) we get:

M± =
Q√
2
±
 

Q2

2
− 64π2ϵ

5
. (3.61)

For large Q values they take the form

10Given a fixed value of the charge Q, the light black hole has lower energy, therefore the heavy black
hole can not be stable
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M+ =
√
2Q− 64π2ϵ

5
√
2Q

, M− =
64π2ϵ

5
√
2Q

. (3.62)

The asymptotic behavior of M− implies that such configurations will surely exit the per-
turbative regime. However, it is possible to show that the M− configurations are never
admitted. We recall that we derived equation (3.58) assuming that the mass M is larger
than the Planck mass MP and that ∆z is a small perturbation. We have therefore that
must hold

®

M > 1 ,

∆z = 64π2

5M ϵ < 1 .
(3.63)

Moreover, it can be easily verified that dM−

dQ
≤ 0 ∀Q. We have then the bound on M−

M− ≤M−
⃓

⃓

⃓

⃓

Qmin

=
Qmin√

2
=

 

64π2ϵ

5
≡M0 . (3.64)

The second relation of (3.63) together with (3.64) implies the mass bound

M >
64π2

5
ϵ =M2

0 . (3.65)

Condition (3.65) together with condition (3.63) takes then the compact form

M > max{1,M2
0 } . (3.66)

Exploiting equation (3.64) it is easy to show that M− configurations are small black holes

completely ruled out by (3.66). We have indeed

M2
0 ≥ 1 → M > M2

0 ≥M0 ≥M− , (3.67)

M2
0 ≤ 1 → M > 1 ≥M0 ≥M− . (3.68)
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Figure 3.4: The purple curve in the graph is the BH charge as a function of the mass in the
extremal configuration with ϵ = 0.1 for the perturbed case. The green curve is the same
quantity for the unperturbed case. The intersections with the lines parallel to the x-axis
define M− and M+ couples. The shadowed region is defined by M < M2

0 and indicates
where the perturbative regime breaks.

3.4.2 A More General Algorithm for z and rH

The computations performed to determine ∆z and ∆r are highly dependent on the struc-
ture of the particular solution we are working with. A possible generalization of the
algorithm is suggested then by the parametric dependence of (3.38). ∆r could be ob-
tained expanding f1(r) ≡ 1/grr(r) around the unperturbed solution and neglecting higher
order terms. Indeed, by definition it holds

0 = f1
Ä

r
(1)
H

ä

= f1
Ä

r
(0)
H

ä

+ ∂rf1
Ä

r
(0)
H

ä

∆r +O
(︁

∆r2
)︁

, (3.69)

therefore we get

∆r = −
f1
Ä

r
(0)
H

ä

∂rf1
Ä

r
(0)
H

ä . (3.70)

Although equation (3.70) should provide the correct result, to compute the correction
∆rext in the extremal case we have to evaluate ∆zext. This can be achieved easily con-
sidering the second order term too in f1(r) expansion and imposing to have a degenerate
solution. In general we have

0 = f1
Ä

r
(1)
H

ä

= f1
Ä

r
(0)
H

ä

+ ∂rf1
Ä

r
(0)
H

ä

∆r +
∂2rf1

Ä

r
(0)
H

ä

2
∆r2 +O(∆r3) , (3.71)

and the radius takes the form

∆r
−∂rf1 ±

√
∆

∂2rf1
. (3.72)
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Thus, in the extremal case the radius and the charge-to-mass ratio are given by

∆ = (∂rf1)
2 − 2f1∂

2
rf1 = 0 , (3.73)

∆rext = −∂rf1
∂2rf1

⃓

⃓

⃓

⃓

∆zext

. (3.74)

It is easy to verify that choosing r
(0)
H = r

(0)
H,ext =

M
8π and f1(r) given by

f1 = 1− M

4πr
+

Q2

32π2r2
− A2Q

2

24π2 r4
+
A1M Q2

384π3 r5
− A0Q

4

1280π4 r6
, (3.75)

equations (3.74) and (3.73) provides exactly (3.37) and (3.38) (for a suitable choice of A0,
A1 and A2). Applying equation (3.73) we get

∆ ∝ 64π2(6A0 − 5A1 + 10A2)− 15M2∆zext +O

Å

1

M2

ã

, (3.76)

which implies

∆zext =
64π2

15M2
(6A0 − 5A1 + 10A2) . (3.77)

Equation (3.74) reads instead

∆rext = −∂rf1
∂2rf1

= − 8π

15M
(24A0 − 15A1 + 20A2) . (3.78)

Comparing equations (3.75) and (3.24) we can fix Ai coefficients. We finally get

A0 = α1 + 2α3 , (3.79)

A1 = 5α3 , (3.80)

A2 = α3 , (3.81)

∆zext =
64π2

5M2
(2α1 − α3) , (3.82)

∆rext = − 8π

15M
(24α1 − 7α3) . (3.83)

It turns out that we found an algorithm which allows us to compute ∆z and ∆r indepen-
dently of the particular structure of f1. However, there are some subtleties. We notice
that we can not expand f1(r) around r(0) = m

8π

√
1− z2 because otherwise the solution

would be defined only for z ≤ 1 and we could not take the extremal limit. It follows that
the range of validity of the solution strictly depends on the expansion point and if we use
f20 roots it is important to check whether they are well defined or not. 11

3.4.3 Killing Horizon Structure in Higher Order Theories

During the study of black hole solutions we defined the black hole horizon as the sphere
with radius the biggest real root of 1/grr (cfr. equation (3.29)). We will show now that for
BH solutions within the perturbative regime this is a good characterization. The surface
has indeed the structure of a killing horizon.

11These are the reasons why a divergence appears in [14] when quantities approach the extremal limit.
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The most general ansatz for the metric of a static, non rotating and spherical black
holes is

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2 (3.84)

Then, the time derivative ζt = ∂0 = ζµt ∂µ with ζµt = δµ0 is a Killing vector of the metric
(cfr. equation (2.28)). A surface Σ is a Killing horizon iff there is a Killing vector which
is null on Σ, i.e.

∃ ζ : 0 = ζ2 = ζµζµ , ∀x ∈ Σ. (3.85)

A Killing horizon Σ for ζt must satisfy then

0 = δµ0 δ
ν
0gµν = g00(x) , ∀x ∈ Σ. (3.86)

It follows that every real positive root of g00 is the radius of a sphere which has the
structure of a killing horizon with killing vector ∂0. In particular, the black hole horizon
is nothing but the lightlike surface associated to the sphere with the biggest radius.

Let us look at the relations between gtt and 1/grr roots. If our solution is such that
A(r)−1 = B(r) then the roots of gtt and 1/grr coincide and the biggest positive root of
1/grr is the black hole radius. If we consider instead the general case (3.84), we have
no guarantees that the roots coincide and definition (2.19) does not apply. Finally, if we
consider the case of a BH obtained perturbing a solution which satisfy A(r)−1 = B(r), we
expect that the metric takes the form

ds2 = −N(r)2A(r)dt2 +A(r)−1dr2 + r2dΩ2 , (3.87)

A(r) = A0(r) + αA1(r) +O(α2) , (3.88)

N(r)2 = 1 + 2αN1(r) +O(α2) , (3.89)

where α is the perturbation parameter and we expanded N2(r) with N(r) = 1+αN1(r).

Let us focus on the third case. Choosing rH such thatA(rH) ∼ O(α2), thenN(rH)
2A(rH) ∼

O(α2). It follows that within the regime of validity of the perturbation theory the vanish-
ing of 1/grr implies the vanishing of gtt up to O(α2) terms

1

grr(rH)
∼ O(α2) ⇒ gtt(rH) ∼ O(α2) , (3.90)

which implies that the roots of 1/grr and gtt correspond and the biggest real positive root
of 1/grr defines the black hole horizon.

Explicit check

We conclude verifying explicitly that the largest positive root of gtt coincide with that of
1/grr. Equation (3.26) can be written as

−gtt = f0(r)
2 − A2Q

2

24π2 r4
+
A1M Q2

384π3 r5
− A0Q

4

1280π4 r6
, (3.91)

f0(r)
2 = 1− M

4πM2
P r

+
Q2

32π2M2
P r

2
. (3.92)
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where we set

A0 = α1 +
7

6
α3 , (3.93)

A1 = 3α3 , (3.94)

A2 =
1

2
α3 . (3.95)

Equation (3.91) has the structure of (3.75), therefore we can easily compute ∆rext an
∆zext exploiting equations (3.77) and (3.78).

∆zext =
64π2

15M2
(6A0 − 5A1 + 10A2) =

64π2

5M2
(2α1 − α3) , (3.96)

∆rext = − 8π

15M
(24A0 − 15A1 + 20A2) = − 8π

15M
(24α1 − 7α3) . (3.97)

The corrections obtained are exactly the same computed through 1/grr (cfr. equations
(3.37) and (3.38))

3.4.4 Extremality Condition in Higher Order Theories

We will show now that imposing the degeneracy of the biggest positive real root r+ of
1/grr we get the vanishing of the surface gravity and of the Hawking temperature. It is
therefore the right extremality condition.

Let Σ be a Killing horizon and ζ its Killing vector. The surface gravity κ can be consider
as a measure of how much the integral curves of ζ fail to be affinely parameterized and is
defined by the relation (see [38]):

ζµDµζ
ν = −κζν . (3.98)

Using Killing equation D(µζν) = 0 and the fact that ζ[µDνζσ] = 0 it is straightforward to
derive

κ2 = −1

2
(Dµζν)(D

µζν) . (3.99)

Let us assume to have a stationary and non rotating black hole with spherical symmetry.
Recalling that ∂0 is the killing vector of the BH horizon we get

κ2 = −1

2
gαβgµν(Dαζ

µ)(Dβζ
ν) = −1

2
gαβgµν(Γ

µ
αρδ

ρ
0)(Γ

ν
βσδ

σ
0 ) . (3.100)

The non vanishing Christoffel symbols of the type Γab0 are

Γ0
10 =

g′tt
2gtt

, Γ1
00 = − g′tt

2grr
. (3.101)

Replacing in equation (3.100) we finally get

κ2 = −1

4

∂rgtt
gttgrr

⇒ κ =
1

2
g′tt

1
√︁

|gttgrr|
, (3.102)
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where we exploit that sign(gttgrr) < 0 outside the BH horizon. Recalling that the surface
gravity has to be evaluated on the the BH horizon we introduce the Hawking temperature

T =
κ

2π
=

1

4π

ï

1√−gttgrr
d

dr
gtt

ò
⃓

⃓

⃓

⃓

r=r+
. (3.103)

Let us consider now the metric structure given by (3.13). The temperature takes the
form

T =
κ

2π
=

1

4π

ï

1

N(r)

d

dr

(︁

N(r)2f1(r)
)︁

ò
⃓

⃓

⃓

⃓

r=r+
, (3.104)

Let now P (r) be the monic12 polynomial associated to f1 defined as P (r) = rnf1, where
n = deg(P ). Calling r− the next biggest positive real root the polynomial decomposes as

P (r) = (r − r+)(r − r−)g(r) , deg(g) = n− 2 , (3.105)

and replacing in (3.104)

T =
1

4π

N(r+)

rn
(r+ − r−)g(r+) . (3.106)

In the limit r− → r+ the temperature T as well as the surface gravity κ vanish.

3.5 Small Black Holes

The numerical study of equation (3.27) tells us that if α1 +2α3 > 0 there exist configura-
tions with fixed mass M > MP and arbitrarily large charge Q ≫ M (see fig. 3.1 (a): at
z ≫ 1 still exists an horizon which encloses r = 0 singularity). However, it is not obvious
if these configuration are reliable or not. If they were out of the theory spectrum (as
they will turn out to be), extremal configurations would be well defined and described by
equations (3.49) and (3.50). If they were instead in the theory spectrum, equations (3.49)
and (3.50) would still apply but they would have a different interpretation: they would
be associated with the transition configuration from a BH with 3 horizons to a black hole
with just 1 horizon (the innermost).

We start by computing the radius of these light BHs. According with the numerical
solution (see fig. 3.1), we guess that the greatest real root of (3.27) in the extremal case
takes the form rH ∼ |z|βm−γ , with 0 < β < 1. To identify the dominant terms, we replace
the ansatz in P (r) = r6f1(r). Replacing z definition and setting MP = 1 we get

P (rH) = m−6(β+γ)
Ä√

2|Q|
ä6β − m−5(β+γ)+1

4π

Ä√
2|Q|
ä5β

+
m−4(β+γ)

64π2

Ä√
2|Q|
ä4β+2 − α3m

−2(β+γ)+1

48π2

Ä√
2|Q|
ä2β+2

+
5α3m

−β−γ+1

768π3

Ä√
2|Q|
äβ+2 − Q4(α1 + 2α3)

1280π4
.

(3.107)

If we take the limit z ≫ 1 assuming that M > MP is fixed we get that 2nd, 4th and 5th

term of equation (3.107) are surely subdominant. Moreover, we notice that if 0 < β < 2
3

the leading order terms in Q of polynomial (3.107) are just

P (zβ) ≃ m−4(β+γ)

64π2

Ä√
2|Q|
ä4β+2 − Q4(α1 + 2α3)

1280π4
. (3.108)

12The coefficient of the highest power anr
n satisfy an = 1.
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Considering the same truncation, P (r) reads

P (r) ≃ Q2r4

32π2
− Q4(α1 + 2α3)

1280π4
, (3.109)

and the root which corresponds to the BH horizon in the extremal case is given by

rH,ext =

 

|Q|
2π

√
10

(α1 + 2α3)
1
4 . (3.110)

It follows that γ = −1
2 = −β, which are in agreement with the range of validity of

approximation (3.108). We observe that the relation is well defined because the arguments
of square roots are always positive. Moreover, it vanishes smoothly in the limit αi → 0,
which confirm that it is associated with a class of light BH solutions not admitted in the
unperturbed case.

In order to evaluate whether light black holes with z ≫ 1 are reliable or not we check
if they violate perturbative regime. Let us firstly fix Q and consider M → 0. The limit
requires to take M < MP , therefore this type of solutions are out of perturbative regime.
Let us now fix M > MP and take the limit Q≫M . We recall that we derived equations
of motions (3.10) assuming that L(4) is a small perturbation of L(2) which implies

− 1

4
F 2 +

α

4M4
P

F 4 = −1

4
F 2

Å

1− α1

M4
P

FµνF
µν

ã

= −1

4
F 2 (1 + ϵ) , ϵ≪ 1 . (3.111)

Replacing equation (3.11) we get

ϵ =
α1Q

2

8π2r4
, (3.112)

and evaluating ϵ at the light BH radius scale it reads

ϵ
⃓

⃓

rH,ext
=

5α1

α1 + 2α3
. (3.113)

We have then
ϵ
⃓

⃓

rH,ext
< 1 ⇐⇒ 2α1 − α3 < 0 , (3.114)

but according to the bound (3.54) 2α1 −α3 > 0. It follows that also this type of solutions
is outside the perturbative regime.

Thus, there is no light BH configuration which does not break the perturbative regime:
in the former case, M gets smaller than MP ; in the latter, Qα becomes big enough that
higher order corrections become more relevant than leading order terms. The light BH
are therefore small black holes.

3.6 Black Holes Splitting

In this section we will finally address the first issue of the thesis work: the study of BH
splitting processes. In general, a process is kinetically allowed only if one of the decay
products has charge-to-mass ratio higher than the charge-to-mass ratio of the decaying
BH. However, exploiting positivity bounds we have been able to prove the mild form
of the EWGC (see section 3.3). A splitting process can therefore satisfy the kinematic
condition through the emission of an extremal (or quasi extremal) BH. We are interested
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then in understanding whether the splitting processes are dynamically allowed too, i.e. if
there exist for every BH a configuration that respects energy and charge conservation and
increases the total entropy.

Let us make explicit the dynamical constraints. A BH with mass and charge (M,Q)
can split in a BH with higher charge-to-mass ratio z̃ and mass and charge (M̃, Q̃) and
n− 1 BHs with masses and charges {(Mi, Qi)}, if and only if the following conditions are
satisfied:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M ≤ M̃ +
∑︁

iMi ,

Q = Q̃+
∑︁

iQi ,

S[M,Q] ≤ S[M̃, Q̃] +
∑︁

i S[Mi, Qi] .

(3.115)

In order to evaluate if there exist a configuration which satisfies the constraints (3.115)
we start fixing the number n of decay products. Let us consider the simple case with
vanishing charges. Assuming MP = 1 the BH entropy is given by (cfr. equation 3.48)

S[M, 0] =
M2

2
, (3.116)

which is a convex function of the mass. It holds therefore the identity

M2

2
≥ γ2

M2

2
+ ρ2

M2

2
, γ, ρ ∈ [0, 1] , γ + ρ ≤ 1 . (3.117)

The relation easily generalizes to the case with an higher number of terms in the RHS. It
follows that the entropy of the decaying BH is greater than the entropy of every possible
configuration of the decay products. Although equation (3.117) seems useless, it is fun-
damental to individuate the configuration that could more likely satisfy the constraints
(3.115). Indeed, in the general case the entropy is still a convex function of the mass,
therefore the products configuration which has the highest entropy is that with only two
BHs: an heavy extremal one (whose charge-to-mass ratio satisfy the kinematic constraint)
and a light black hole.

Let us consider an extremal BH with massM . We have to check if it can decay emitting
an heavy extremal BH with mass M1 = βM and a light BH with mass M2 = (1 − βM),
where β ∈ (1/2, 1). The entropy increasing condition reads

Sext [M , Q ] ≤ Sext [M1 , Q1 ] + S [M2 , Q2 ] , (3.118)

and the charges of the two BHs can be computed exploiting the extremal charge-to-mass
ratio and the charge conservation. They are given by

Q1 =
M1√
2
zext [M1] =

βM√
2

Å

1 +
ϵ

β2M2

ã

, (3.119)

Q2 = Q−Q1 =
M√
2
zext [M ]− βM√

2
zext [M1]

=
(1− β)M√

2

Å

1− ϵ

βM2

ã

,

(3.120)

ϵ =
64π2

5
(2α1 − α3) . (3.121)

The charge-to-mass ratio of the second BH turns out to be smaller then one
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z [M2] = 1− ϵ

βM2
, (3.122)

therefore, the entropy of such configuration can be computed exploiting the formula con-
tained in [14]. Although such formula diverges at z = 1, depending on the value assumed
by β we could still be in its regime of applicability. It is required indeed

ζ =
»

1− z2 [M2] =

 

2ϵ

βM2
+O (ϵ) ≫ O

Å√
αi

M2
2

ã

= O

Å √
αi

(1− β)2M2

ã

. (3.123)

The terms of equation (3.118) are then

Sext [M , Q ] =
M2

8
+ ∆Sext [M ] , (3.124)

Sext [M1 , Q1 ] =
β2M2

8
+ ∆Sext [M1] , (3.125)

S [M2 , Q2 ] = S0 [M2 , Q2 ] + ∆S [M2, Q2]

=
(1− β)2M2

8
(1 + ζ)2 +∆S [M2, Q2] ,

(3.126)

where ∆Sext [M ] = ∆Sext [M1] is given by (3.53) and ∆S [M2, Q2] is given by (see [14])

∆S [M2 , Q2 ] =
ϵ

4ζ
+O (ϵ) . (3.127)

Therefore, equation (3.118) reduces to

M2

8
≤ β2M2

8
+

(1− β)2M2

8
(1 + 2ζ) +

ϵ

4ζ
+O (ϵ) , (3.128)

and massaging it we get

H(β) ≡ 5

32π2
β3(1− β)2

(2 + β − 2β2)2
≤ 2α1 − α3

M2
≡ ϵ̃ . (3.129)

H(β) is positive in (0, 1) and vanishes at the extremal points.
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Figure 3.5: The purple curve in the graph is the function H(β) and the green curve is
the constant function y = ϵ̃. The shadowed region identifies the values of β which cannot
satisfy (3.129) for y = 5 · 10−5. Notice that y axis is rescaled by a factor 104.

From the graph 3.5 it is clear that we have two different cases depending on the mass of
the decaying BH:

❼ 1 ≫ ϵ̃ > 5 · 10−5: values of β such that M2 ∼M are allowed;

❼ 5 · 10−5 ≫ ϵ̃: only values of β such that13 β ∼ 1 and M2 ≪M are allowed .

Let us consider the second case. We define β0 as the biggest solution of

H(β0) = ϵ̃ , β0 ∈ (0, 1) . (3.130)

We have then that H(β) is decreasing in [β0, 1]. It follows

H(β) < H(β0) , ∀β ∈ (β0, 1) . (3.131)

Therefore, the second black hole mass satisfy M2 ≤ (1 − β0)M . In order to determine if
such BH is a small black hole or not we have to compute the maximum mass that it can
assume. Given that ϵ̃ is a small quantity, β0 can be obtained expanding H around 1. We
have therefore

H(1− δ) =
5 δ2

32π2
+O(δ3) , δ = 1− β ≪ 1 , (3.132)

13Recall that we assumed β > 1/2.
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which provides us

δ =

 

32π2

5M2
(2α1 − α3) +O

Ä

α
3
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ä

, (3.133)

M2 =

 

32π2

5
(2α1 − α3) +O

Ä

α
3
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ä

, (3.134)

Q2 =
M2√
2

Å

1− ϵ

βM2

ã

=
M2√
2

+O
Ä

α
3
2

ä

. (3.135)

Thus, the second black hole is necessarily a small black hole.

Let us consider now the other case, i.e. 1 ≫ ϵ̃ > 5 · 10−5. The condition on the mass
of the decaying BH takes the form

√
2α1 − α3 ≪M <

√
2α1 − α3(7 · 102) . (3.136)

It follows that M2 could have the same order of M only for small M values. Without an
estimate of the magnitude order of αi, we can not explicitly show that a BH with mass
M ∼ MP

√
2α1 − α3 10

3 breaks the perturbative regime. However, we can safely assume
that it is small enough to be regarded as a small black hole14. It follows that the splitting
process can not occur within our perturbative regime.

3.7 First Law of Thermodynamic

In the previous section we proved equation (2.88) which has the structure of the first law
of thermodynamics and justify Wald’s proposal to compute BH entropy. Then, an highly
not trivial test of the entropy formula (3.48) can be performed verifying explicitly such
relation. We have already showed that Hawking temperature vanishes in the extremal
limit (cfr. equation (3.106), therefore theory consistency requires that

TS =
dS

dM

ext−−→ 0 . (3.137)

In the following we will verify that (3.137) actually holds.

Let us consider the perturbed entropy formula in the general case (3.48). Neglecting
higher order terms in the expansion parameters αi it reads:

S1 = 8π2r2H − α3Q
2

3r2H
. (3.138)

According to equation (2.88) we define the thermodynamic temperature TS

TS =

ï

dS1
dM

ò−1

=

ï

2Q2α3r
′
H

3r3H
+ 16π2rHr

′
H

ò−1

, (3.139)

which in the extremal limit becomes

14Recall that have been observed black holes with mass up to 1048MP (see [39]). A black holes with
mass within 2 orders of magnitude form MP can therefore be regarded as part of the boundary of the
perturbative region.
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TS,ext = lim
z→zext

TS =

ñ

m2z2extα3r
′
Hext

3 r3H,ext
+ 16π2rH,extr

′
H,ext

ô−1

, (3.140)

where we set

r′H,ext = lim
z→zext

ï

∂

∂m
rH

ò

. (3.141)

In general, derivative and limit operations do not commute, therefore in order to evaluate
(3.140) we have to compute ∆r without assuming to be in the extremal configuration.

We will proceed finding f1 roots exploiting the same perturbative expansion as before
(cfr. equation (3.32). The quantities are no more intended as computed in the extremal
case)

z = 1 +∆z , |∆z| ≪ 1 , rH = r0 +∆r ,

⃓

⃓

⃓

⃓

∆r

r0

⃓

⃓

⃓

⃓

≪ 1 . (3.142)

In order to make expansion (3.142) well defined we slightly modify the radius expansion
point

r0 =
M

8π

(︁

1 +
√
ϵ
)︁

, ϵ = z2ext − z2 , (3.143)

which is defined for every admitted BH configuration. Although the choice of r0 seems to
be completely arbitrarily, we notice that r0 can be interpreted as the unperturbed horizon
with the unperturbed extremality charge-to-mass ratio replaced by the perturbed ones,15

i.e.

r0 ≡ r0,H
[︁

1 = z20,ext → z2ext
]︁

. (3.144)

Moreover, we notice that r0 choice is in agreement with the computations previously done
where we expanded around m/8π. Its asymptotic behavior is indeed:

r0
αi→0−−−→=

m

8π

Ä

1 +
√︁

1− z2
ä

≡ rH,0 , r0
z→zext−−−−→=

m

8π
≡ rH,0,ext . (3.145)

Exploiting the perturbative expansion (3.142) and equation (3.91) we get

r′H =
d

dM
(r0 +∆r) , (3.146)

r′0 =
1

8π

Å

1 +
2ϵ+Mϵ′√

ϵ

ã

, (3.147)

∆r′ =
(︁

∆r+
)︁′
=

Ç

−∂rf1 +
√
∆

∂2rf1

⃓

⃓

r=r0

å′
, (3.148)

ϵ′ =
4Q2

m3
− 256π2

5m3
(2α1 − α3) +O

Å

α2

m5

ã

,

=
2

m

ï

1 + 2 (∆z −∆zext) +O

Å

α2

m4

ãò

.

(3.149)

15Notice that this definition can be used to define a canonical choice of the expansion point used to
compute ∆r and ∆z through the algorithm described in section 3.4.2.
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Taking the extremal limit we obtain

ϵ→ 0 , (3.150)

ϵ′ → ϵ′ext =
2

M
, (3.151)

rH,0 → rH,0,ext =
M

8π
, (3.152)

r′H,0 → r′H,0,ext =
1

8π
√
ϵ
, (3.153)

∆z → ∆zext =
64π2

5M2
(2α1 − α3) , (3.154)

∆r → ∆rext = − 8π

15M
(24α1 − 7α3) , (3.155)

∆r′ → ∆r′ext = − 1

8π
√
ϵ

ñ

1 +
5α3

3
√︁

(46α1 − 3α3) (2α1 − α3)

ô

, (3.156)

T−1
S → T−1

S,ext =
M√
ϵ

ñ

−5α3

12
√︁

(46α1 − 3α3) (2α1 − α3)
+O

Å

1

M2

ã

ô

, (3.157)

and we finally get

TS → TS,ext =

√
ϵ

M

ï

const +O

Å

1

M2

ãò−1

≡ 0 . (3.158)

It follows that the thermodynamic relation (2.88) has been verified in the extremal limit.

3.8 Field Redefinitions Invariance

In the previous chapter we identified a particular 4 derivative Einstein–Maxwell theory
applying a field redefinitions and we claimed that such class of transformations leaves the
dynamics invariant. In this section we will test such a claim verifying that ∆zext and
∆Sext are actually invariant, as we expect from every physical quantity which influences
the theory dynamics (such quantities are indeed both related to BHs decay).

In this section we will repeat the computations of sections 3.1 and 3.2 considering the
most general 4 derivative Einstein–Maxwell theory which can be obtained without applying
a fields redefinition. In particular, we will generalize the previous approach determining
a solutions of perturbed EOMs which is independent of the particular perturbation of
Einstein–Maxwell theory we consider.

3.8.1 Extended Theory Perturbative Solution

Let us solve the extended theory (2.20). Action variation takes the same form as before
(cfr. equation (3.2)):

δAνS =

∫︂

eDµ [F
µν −∆Fµν ] δAν , (3.159)

δgµνS =
M2
P

2

∫︂

e

ï

Rµν −
1

2
gµνR− 1

M2
P

Tµν

ò

δgµν , (3.160)
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Now stress-energy tensor components take the explicit form:16

Tµν = T (2)
µν + T (4)

µν , (3.161)

T (2)
µν = − 2

√︁

|g|
δ

δgµν

(︂
»

|g|L2

)︂

= FµρF
ρ

ν − 1

4
gµνFρσF

ρσ , (3.162)

T (4)
µν = − 2

√︁

|g|
δ

δgµν

(︂
»

|g|L4

)︂

= gµνL4 − 2δL4 = T
(4)
µν,1 + T

(4)
µν,2 , (3.163)

T
(4)
µν,1 =

α1

4M4
P

ß

gµνF
4 − 8F 2FµρF

ρ
ν

™

+
α2

4M4
P

ß

gµν(FF̃ )
2 − 2gµν(FF̃ )

2

™

+
α3

2M2
P

ß

− 6Fα(ν|F
βγRα|µ)βγ − 4DβDα

Ä

Fα(µ|F
β

|ν)
ä

+ 8R(ν|σF|µ)ρF
σρ + 4RαβFαµFβν + 2gµνDαDβ(F

α
ρF

βρ)

− 4DαD(ν|
Ä

F|µ)βF
αβ
ä

+ 2D2(FµρF
ρ

ν )− 4

3
RF σ

µ Fνσ −
2

3
F 2Rµν

+
2

3
D(µ|D|ν)F

2 − 2

3
gµνD

2F 2 + gµνWαβρσF
αβF ρσ

™

,

T
(4)
µν,2 =

α4

2M2
P

ß

gµνR
αβFαγF

γ
β − 4R(ν|σF|µ)ρF

σρ − 2RαβFαµFβν

− gµνDαDβ(F
α
ρF

βρ) + 2DαD(ν|
Ä

F|µ)βF
αβ
ä

−D2(FµρF
ρ

ν )

™

+
α5

2M2
P

ß

gµνRF
2 − 4RF σ

µ Fνσ − 2F 2Rµν + 2D(µ|D|ν)F
2 − 2gµνD

2F 2

™

+ α6

ß

gµνR
2 − 4RRµν + 4D(ν|D|µ)R− 4gµνD

2R

™

+ α7

ß

gµνRαβR
αβ + 4DαD(ν|R

α
|µ) − 2D2Rµν − gµνD

2R− 4RµαR
α
ν

™

+
α8

2M2
P

ß

gµν(DαFβγ)
2 − 2(DµFαβ)(DνF

αβ)− 4(DαFβµ)(D
αF βν )

+ 4Dα

Ä

F(ν|βD
αF β

|µ)
ä

+ 4Dα

Ä

F(ν|βD|µ)F
αβ
ä

− 4Dα

Ä

FαβD(ν|F
β

|µ)
ä

™

.

Corrections to ∆Fµν are instead:

∆Fµν = ∆Fµν1 +∆Fµν2 , (3.164)

∆Fµν1 =
2α1

M4
P

F 2Fµν +
2α2

M4
P

FF̃ F̃
µν

+
2α3

M2
P

WµνρσFρσ , (3.165)

∆Fµν2 =
2α4

M2
P

R[µ|αF |ν]
α +

2α5

M2
P

RFµν − 2α8

M2
P

D2Fµν . (3.166)

16We indicate with indexes 1 and 2 respectively the higher order corrections that we already considered
and the new ones
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Therefore, we get as before the equations of motion:

M2
PGµν

î

g
(1)
αβ

ó

≃ T (2)
µν

î

g
(1)
αβ , A

(0)
γ

ó

+

Å

2∆F(µ|ρF
ρ

|ν)

− 1

2
gµν∆FρσF

ρσ + T (4)
µν

ã

î

g
(0)
αβ , A

(0)
γ

ó

.

(3.167)

To solve EOMs we proceed as before considering stationary, charged and spherical solutions
and requiring that in the limit αi → 0 we must recover RN solution. We use therefore the
ansatz

ds2 = −N(r)2f1(r) dt
2 +

1

f1(r)
dr2 + r2 dΩ2

S2
, (3.168)

and we impose the constraints

g
(1)
tt = −N2f1 = −f20 +∆gtt + o(αi) , ∆gtt

αi→0−−−→ 0 , (3.169)
Ä

g(1)rr

ä−1
= f1 = f20 +∆f + o(αi) , ∆f

αi→0−−−→ 0 , (3.170)

f20 = 1− M

4πM2
P r

+
Q2

32π2M2
P r

2
. (3.171)

The computations performed in section 3.1 to determine the perturbative solution are
highly dependent on the structure of the particular higher order operators we are consid-
ering in our theory. However, such method can be easily generalized. Before computing
the actual solution of the EOMs, we will show that it is possible to express f1(r) and N(r)
in terms of T (4) and f20 (r) integrals. We recall that EOMs can be written as

Eνµ =M2
PG

ν
µ − T νµ = 0 , (3.172)

Evaluating Einstein tensor Gνµ and T
(2) ν
µ for the ansatz (3.168) we get:

G 0
0 =

1

r2
[︁

−1 + f1 + rf ′1
]︁

, (3.173)

G 1
1 =

1

r2
[︁

−1 + f1 + rf ′1
]︁

+
2f1N

′

rN
, (3.174)

G 2
2 = G 3

3 =
3rf ′1N

′ +N (rf ′′1 + 2f ′1) + 2f1 (rN
′′ +N ′)

2rN
, (3.175)

T
(2) 0

0 = T
(2) 1

1 = −T (2) 2
2 = −T (2) 3

3 = − Q2

32π2r4N2
. (3.176)

The combination E 1
1 − E 0

0 = 0 then reads

G 1
1 −G 0

0 =
2f1N

′

rN
= ∆T

(4) 1
1 −∆T

(4) 0
0 , (3.177)

which can be easily integrated providing

N = k exp

ï

1

2

∫︂

dr
r

f1

Ä

T
(4) 1

1 − T
(4) 0

0

ä

ò

, (3.178)
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with k constant of integration. Recalling that

T (4) ν
µ ∼ O(αi) , f1 = f20 +O(αi) , (3.179)

equation (3.168) turns out to be

N = k exp

ï

1

2

∫︂

dr
r

f20

Ä

∆T
(4) 1

1 −∆T
(4) 0

0

ä

+O(α2)

ò

(3.180)

=

ï

1 +
1

2

∫︂

dr
r

f20

Ä

∆T
(4) 1

1 −∆T
(4) 0

0

ä

+O(α2)

ò

, (3.181)

where we fixed k exploiting the constraint on asymptotic behavior.

N
αi→0−−−→ 1 . (3.182)

Let us consider now the combination E 2
2 + E 0

0 = 0. It reads

G 2
2 −G 0

0 = ∆T
(4) 2

2 +∆T
(4) 0

0 . (3.183)

Setting N = exp[Y ], LHS becomes

1

2r2
[︁

−2 + rf ′1(4 + 3rY ′) + r2f ′′1 + 2f1(1 + r(Y ′ + rY ′2 + rY ′′))
]︁

, (3.184)

and neglecting higher order terms in the perturbative expansion parameter it reduces to

1

2r2

î

−2 + 4rf ′1 + 3r2Y ′ (︁f20
)︁′
+ r2f ′′1 + 2f1 + 2f20 r(Y

′ + rY ′2 + rY ′′)
ó

. (3.185)

Massaging equation (3.183) we get the differential equation

d2

dr2
[︁

r2f1(r)
]︁

= 2 + h1(r) + h2(r) , (3.186)

which is solved by

f1 = 1 +
C1

r
+
C2

r2
+
H1

r2
+
H2

r2
+O

(︁

α2
)︁

, (3.187)

H1 =

∫︂∫︂

dr h1 =

∫︂∫︂

dr
î

−3r2Y ′ (︁f20
)︁′ − 2f20 rY

′ − 2r2f20Y
′′
ó

, (3.188)

H2 =

∫︂∫︂

dr h2 =

∫︂∫︂

dr 2r2
î

∆T
(4) 2

2 +∆T
(4) 0

0

ó

, (3.189)

where C1 and C2 are integration constants that can be fixed exploiting the constraint on
the asymptotic behavior

f1
αi→0−−−→ f20 . (3.190)

We have therefore obtained the general solutions we claimed before. Evaluating equations
(3.181) and (3.187) for the extended theory (2.20) we finally get

C2 =
Q2

32π2
, C1 = −M

4π
, (3.191)
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N(r) = 1 +
Q2

96π2r4
(α3 + 9α4 + 30α5 + 6α7 − 9α8) , (3.192)

f1 = 1− M

4πr
+

Q2

32π2r2
− Q2 (2α3 + 9α4 + 24α5 + 12α7 − 6α8)

48π2 r4

+
M Q2 (5α3 + 15α4 + 42α5 + 18α7 − 9α8)

384π3 r5

− Q4 (2α1 + 4α3 + 11α4 + 30α5 + 12α7 − 6α8)

2560π4 r6
.

(3.193)

3.8.2 Extended Theory Observables

Given the expressions (3.192) and (3.193), the metric becomes

1

grr
= f1 = 1− M

4πr
+

Q2

32π2r2
− Arr2 Q2

24π2 r4
+
Arr1 M Q2

384π3 r5
− Arr0 Q4

1280π4 r6
, (3.194)

gtt =−N2f1 = −1 +
M

4πr
− Q2

32π2r2
+

Att2 Q
2

24π2 r4
− Att1M Q2

384π3 r5
+

Att0 Q
4

1280π4 r6
, (3.195)

grrgtt = −N2 = −1− Q2

48π2r4
(α3 + 9α4 + 30α5 + 6α7 − 9α8) , (3.196)

where we introduced the parameters

Arr0 = α1 + 2α3 +
11

2
α4 + 15α5 + 6α7 − 3α8 , (3.197)

Arr1 = 5α3 + 15α4 + 42α5 + 18α7 − 9α8 , (3.198)

Arr2 = α3 +
9

2
α4 + 12α5 + 6α7 − 3α8 , (3.199)

Att0 =
1

6
(6α1 + 7α3 − 12α4 − 60α5 + 6α7 + 27α8) , (3.200)

Att1 =
1

3
(α3 − α4 − 6α5 + 2α7 + 3α8) , (3.201)

Att2 =
1

2
(α3 − 6α5 + 6α7 + 3α8) . (3.202)

Exploiting equations (3.77) and (3.78), it is easy to check that ∆z and ∆r coincide for gtt
and 1/grr and take the form

∆zext =
64π2

15M2
(6A0 − 5A1 + 10A2) =

64π2

5M2
(2α1 − α3 + α4 + 2α7 − α8) , (3.203)

∆rext = − 8π

15M
(24A0 − 15A1 + 20A2)

= − 8π

15M
(24α1 − 7α3 − 3α4 + 30α5 + 6α7 − 3α8) .

(3.204)

We have therefore

zext = 1 +
64π2

5M2
(2α1 − α3 + α4 + 2α7 − α8) , (3.205)

rH,ext =
m

8π
− 8π

15M
(24α1 − 7α3 − 3α4 + 30α5 + 6α7 − 3α8) . (3.206)
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In order to compute entropy corrections we have to evaluate Eabcd tensor for the extended
theory. Recalling its definition (3.42) we get

Ẽ
abcd

=
1

2
gacgbd +

α3

2

Å

F abF cd − 2gacF bfF df +
1

3
F 2gacgbd

ã

+
α4

2
F aαF cα g

bd +
α5

2
FµνF

µνgacgbd + 2α6Rg
acgbd

+ 2α7R
acgbd ,

(3.207)

where the tilde indicates that the tensor is not correctly symmetrized yet. We have then:

Eabcd =
1

8
(Ẽ

abcd − Ẽ
bacd − Ẽ

abdc
+ Ẽ

badc
+ Ẽ

cdab − Ẽ
dcab − Ẽ

cdba
+ Ẽ

dcba
) . (3.208)

Neglecting higher order correction the perturbed entropy of the extended theory takes the
form

S = −2πAEabcdηabηcd = 8π2r2H − m2z2

12r2H
(2α3 + 3α4 + 6α5 + 6α7) , (3.209)

and replacing equations (3.205) and (3.206) we obtain the entropy of extremal BH config-
urations

S =
m2

8
− 16

5
π2(8α1 + α3 + 4α4 + 8α7 + α8) . (3.210)

Exploiting equation (2.26), we notice that charge-to-mass ratio and entropy corrections
are proportional to invariant combinations of αi coefficients. We have indeed

∆zext =
64π2

5M2
(2β1 − β3) , (3.211)

∆Sext = −16

5
π2 (8β1 + β3) . (3.212)

In the previous chapter we claimed that the corrections have to be protected in order to
not be absorbed by a fields redefinition. Equations (3.211) and (3.212) imply that a much
stronger condition holds : they are invariant. It follows that we can determine ∆zext and
∆Sext as well as βi coefficients in the general case evaluating them in a particular theory.
Setting α4 = α5 = α6 = α7 = α8 = 0 we move to the theory 2.19 and recalling the
positivity bounds of section 3.3 we get

⎧

⎪

⎨

⎪

⎩

2β1 − β3 > 0 ,

2β1 + β3 > 0 ,

β2 > 0 .

(3.213)

It follows that in all the possible 4 derivative extensions of Einstein–Maxwell gravity hold

∆zext > 0 , ∆Sext < 0 . (3.214)
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3.9 Entropy Correction Sign

We conclude this chapter discussing a possible tension between our work and the literature.
Cheung et al. [14] claim that for BH configurations in extended Einstein–Maxwell theory
∆S > 0. Moreover, they explicitly check the result in the case of highly charged black
holes with z < 1. This seems to be in contradiction with our result ∆Sext < 0, but we
will show that this is not the case. The crucial point is that they computed the entropy
variation considering configurations with the same mass M and charge Q. However, the
values of the charge Q and the mass M which identify an extremal configuration in the
unperturbed theory do not identify an extremal configuration in the perturbed theory.

We briefly sketch their argument. They consider extended Einstein–Maxwell theory
as an effective field theory which describes a graviton g and a photon A obtained by
integrating out the heavy fields ϕ. We have therefore that the corresponding euclidean
path integral is

Z =

∫︂

DgDADϕ e−IUV[g,A,ϕ] =

∫︂

DgDAe−I[g,A] . (3.215)

They assume then that higher dimension operators are dominated by heavy fields, therefore

IUV[g,A, 0] = Ĩ[g,A] , (3.216)

where Ĩ is the euclidean action of the unperturbed Einstein–Maxwell theory. Choosing
boundary conditions properly to have finite temperature β they conclude that

− logZ(β) ≈ IUV[gcl, Acl, ϕcl] < IUV[g̃cl, Ãcl, 0] = Ĩ[g̃cl, Ãcl] = − log Z̃(β) , (3.217)

where gcl, Acl and ϕcl are the classical solution of the UV theory, g̃cl, Ãcl are the classical
solution of the Einstein–Maxwell theory, Z is the partition function of the extended the-
ory and Z̃ is the partition function of the Einstein–Maxwell theory. The first equivalence
holds because of the saddle point approximation as well as the last one. The inequality is
a consequence of the assumption that the action is in a local minimum. The central equal-
ity is finally a consequence of (3.216). Using equation (3.217) and the thermodynamics
relations

logZ(β) = S − βM , (3.218)

β = ∂MS , (3.219)

it is possible to constrain the entropy variation. In order to compare black holes with the
same masses and charges we have to shift β through

β = β̃ +∆β = β̃ + ∂M∆S . (3.220)

β and β̃ are, respectively, the inverse of the temperature of a perturbed and an unperturbed
BH, both with mass M and charge Q. It follows

log Z̃(β) = log Z̃(β̃)−M∂M∆S . (3.221)

Combining (3.217), (3.218) and (3.221) we finally get

logZ(β) = S − βM > S̃ − β̃M −∆βM = log Z̃(β) , (3.222)
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which yields
S[M,Q]− S̃[M,Q] = ∆S[M,Q] > 0 . (3.223)

As we anticipated at the beginning of this section, the result of Cheung et al. does not
disagree with ours. Once we explicit mass and charge dependencies, we see that equation
(3.223) relates configurations with the same M and Q; equation (3.53) relates instead
extremal configurations with the same mass but with different charge.





CHAPTER 4

Positivity Bounds

In the previous chapter we assumed the positivity bounds of [7] in order to constrain the
coefficients of higher order corrections to the Einstein–Maxwell theory. In this chapter
we will discuss the nature of such bounds and we will briefly present the ideas behind
the techniques to compute them (see [21], [40], [41]) together with the problems that arise
turning on gravity (see [7]). We conclude justifying the choice of the particular 4 derivative
Einstein–Maxwell theory we used as our starting point.

4.1 Origin of Positivity Bounds

The reason why such bounds exist is simple (see [40]): the set of conditions one has to
impose to obtain a reliable theory1 cannot be reduced to the request of having a local
and Lorentz-invariant Lagrangian (LLI Lagrangian). A LLI Lagrangian guarantees that
applying a Lorentz transformation to a solution of the EOMs we obtain another solution
of the EOMs. However, it does not guarantee some fundamental features of every physical
theory, such as causality. Admitting superluminal signals it is indeed possible to build
not reliable theories where there is no Lorentz-invariant notion of time-ordering or such
that the time evolution on macroscopic scales can not be described by a local Hamiltonian
flow. The bounds on coefficients are therefore the constraints obtained imposing conditions
which are not already accounted by the LLI structure.

4.1.1 Example: Scalar Theory

The effects of superluminal signals and the constraints to avoid them can easily understood
in the simple case of a massless scalar field π with shift symmetry π → π+const. The IR
Lagrangian is given by

L = ∂µπ∂
µπ +

d

Λ4
(∂µπ∂

µπ)2 , (4.1)

1A theory to be reliable must be consistent and does not have to contradict experimental observations.
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where d is a dimensionless real constant. Expanding around the background π0, the
perturbation ϕ = π − π0 satisfies the equations of motion

(︁

∂2t − v2∂2i
)︁

ϕ = 0 , v ≈ 1− 4d

Λ4
(∂µπ0)

2 . (4.2)

Being (∂µπ0)
2 a kinetic term it holds (∂µπ0)

2 ≥ 0. Equation (4.2) implies then that the
perturbations can be superluminal. If (∂µπ0)

2 is not vanishing, we have indeed

d < 0 ⇐⇒ v2 > 1 . (4.3)

It follows that the existence of superluminal signals is strictly related to the sign of the d
coefficient.

We proceed now to analyze the consequences of causality violation. We assume d < 0
and we consider a sources configuration which allows to have a ball B with not vanishing
constant background inside a spacetime with vanishing background. The signals emitted
from a point A inside B travel faster than light. Outside B their speed slows down
and they travel at the speed of light. A signal properly oriented can therefore cross the
boundary of B in a point B in the elsewhere of A. Let us consider a point C outside B

reached by a signal which passed through B. If there was a Lorentz-invariant notion of
time-ordering it would be possible to fix uniquely the orientation of every worldline. But
the worldline which connects A, B and C does not have a fixed orientation. C is in the
future light cone of B but the position of A, being in B elsewhere, depends on the reference
frame. Different observers can see therefore a different orientation of the worldline around
B. It follows that the time-ordering is not Lorentz-invariant.

We consider now the boosted EOMs. Applying a Lorentz transformation to (4.2) with
β in the x̂ direction we get

[︁(︁

1− v2β2
)︁

∂2t + 2β
(︁

1− v2
)︁

∂t∂x −
(︁

v2 − β2
)︁

∂2x − v2∂2⊥
]︁

ϕ . (4.4)

Inside B it holds v > 1. Moreover, we can choose β > 1
v
such that the coefficient of ∂2t

is negative in A. Therefore, the ∂2t coefficient has to vanish along the worldlines of the
signals which exit from B. It follows that there exists a class of reference frames which
admits a region of the spacetime where the EOMs become not dynamical constraints: in
such regions the time evolution can not be described by a Hamiltonian flow.

4.2 Computation of Positivity Bounds

So far, we have established that to produce a reliable theory we have to constrain properly
the LLI Lagrangian. Moreover, we showed through an explicit example the important
role of causality constraints. However, the general approach is much more sophisticated
than our computations and exploits S-matrix formalism. The conditions to impose are
encoded as properties of the S-matrix2. In particular, causality is replaced by the stronger
condition of microcausality3.

We proceed now by presenting the general algorithm used to produce positivity bounds
and we apply it to the simple case of Euler–Heisenberg theory. After that, we briefly review
the problems which arise with gravity.

2Notice that the S-matrix formalism can be used to study theories without an off-shell formulation too.
3Bosonic (fermionic) operators evaluated at spacelike intervals commute (anticommute)



4.2. Computation of Positivity Bounds 61

4.2.1 Positivity Bounds Without Gravity

The standard algorithm is based on three assumptions: microcausality, relativistic invari-
ance and unitarity. Microcausality is implemented assuming that the amplitudes which
enter in the S-matrix are real boundary values of analytical functions (in the kinematics
invariant quantities) with cuts (see [21], [40]). Relativistic invariance is used to derive
crossing symmetries (see below). Unitarity of S-matrix is finally exploited to apply the
optical theorem (see [41]).

The three ingredients are combined as follows. We consider a forward elastic scattering
and we extract its amplitude. Being the amplitude a tensor with indexes which runs
over the possible particles polarizations, we use the crossing symmetries to identify the
independent entries. We exploit then analicity to express amplitudes derivative in terms
of their imaginary part. We conclude applying the optical theorem to produce a positivity
bound.

4.2.2 Example: Elastic Scattering of Photons

We apply now the algorithm to a theory which contains 4 photons interactions (see [42]).
Let us consider the Euler–Heisenberg theory

L = −1

4
F 2 +

a1
4m4

(F 2)2 +
a2
4m4

(FF̃ )2 , (4.5)

where m is a cutoff scale. The forward elastic elastic scattering of photons with fixed
polarization γγ → γγ has feymann diagram

k2

λ2

k1

λ1

k4

λ4

k3

λ3

and satisfy t = 0, u = −s. It follows that the amplitude has the structure

Mλ1,λ2,λ3,λ4 = ϵ∗α4
λ4

(k4) ϵ
∗α3
λ3

(k3) ϵ
α2
λ2
(k2) ϵ

α1
λ1
(k1)Mα1,α2,α3,α4 , (4.6)

Mα1,α2,α3,α4 = A(s) ηα1α3 ηα2α4 +B(s) ηα1α4 ηα2α3 + C(s) ηα1α2 ηα3α4 , (4.7)

where η = diag(1,−1,−1,−1). We assume then that the photons are linearly polarized
along ẑ axis and we choose the real basis

ϵx(k1) = (0, 1, 0, 0) , (4.8)

ϵy(k1) = (0, 0, 1, 0) , (4.9)

ϵx(k2) = (0,−1, 0, 0) , (4.10)

ϵy(k2) = (0, 0, 1, 0) . (4.11)

Eventually there are 8 not vanishing amplitudes

Mxxxx =Myyyy = A(s) +B(s) + c(s) , (4.12)

Mxyxy =Myxyx = A(s) , (4.13)

Mxyyx =Myxxy = B(s) , (4.14)

Mxxyy =Myyxx = C(s) . (4.15)
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Now we introduce crossing symmetries requiring M to be invariant under legs swap-
ping. Considering for instance the swap of γ1 and γ3 we get

Mλ1,λ2,λ3,λ4(s) →Mλ3,λ2,λ1,λ4(−s) . (4.16)

Exploiting crossing symmetries we eventually obtain

A(−s) = A(s) C(s) = B(−s) . (4.17)

It follows that we have only two independent amplitudes

Mxx(s) ≡Mxxxx(s) , (4.18)

Mxy(s) ≡Mxyxy(s) , (4.19)

and it holds

Mλ1,λ2(s) =Mλ1,λ2(−s) . (4.20)

Now we use the analicity of the S-matrix to write amplitudes derivatives trough the
Cauchy relation

dnf

dzn
=

n!

2πi

∮︂

dζ
f(ζ)

(ζ − z)n−1 , (4.21)

where f is a generic analytic function and ζ, z ∈ C. In particular, Mλ1,λ2(s) is analytical
in s ∈ C with the two branch cuts (see [40])

Γ1 =
{︁

z ∈ C |Re(z) ≥ 2m2 , Im(z) = 0
}︁

, (4.22)

Γ2 =
{︁

z ∈ C |Re(z) ≤ 2m2 , Im(z) = 0
}︁

. (4.23)

Integrating along the curve γR given by

γR

−2m2 2m2

we obtain

d2Mλ1,λ2

ds2
(0) =

1

πi

∮︂

γR

dζ
Mλ1,λ2(ζ)

ζ3
. (4.24)

Taking the limit R→ ∞ the RHS of equation (4.24) reduces to
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1

πi

{︄

∫︂ +∞

2m2

dσ

(σ + iϵ)3
Mλ1,λ2(σ + iϵ)−

∫︂ +∞

2m2

dσ

(σ − iϵ)3
Mλ1,λ2(σ − iϵ)

+

∫︂ −2m2

−∞

dσ

(σ + iϵ)3
Mλ1,λ2(σ + iϵ)−

∫︂ −2m2

−∞

dσ

(σ − iϵ)3
Mλ1,λ2(σ − iϵ)

}︄

.

(4.25)

Exploiting Schwarz reflection principle M(s∗) =M(s)∗ and the identity

M(σ) = lim
ϵ→0

M(σ + iϵ) , (4.26)

the RHS further simplifies

RHS :
2

π

{︄

∫︂ +∞

2m2

dσ

σ3
Im [Mλ1,λ2(σ) +Mλ1,λ2(−σ)]

}︄

. (4.27)

Combing equations (4.20) and (4.27), equation (4.24) yieldes the dispersion relation

d2Mλ1,λ2

ds2
(0) =

4

π

∫︂ ∞

2m2

dσ

σ
Im [Mλ1,λ2(σ)] . (4.28)

We exploit now S-matrix unitarity SS† = I to constrain the RHS of equation (4.28).
Introducing the transfer matrix T given by the expansion S = I+ iT we get

I = SS† ⇐⇒ i(T − T †) + TT † = 0 . (4.29)

Evaluating (4.29) with elastic the scattering process we obtain then

2Im [Mλ1,λ2 ] = ⟨λ, λ2| (TT †) |λ, λ2⟩ . (4.30)

Introducing the identity obtained summing over the projectors on the Hilbert space we
get

2Im [Mλ1,λ2 ] = ⟨λ, λ2| (TT †) |λ, λ2⟩ =
∑︂

ϕ

∫︂

dΠϕ |M |2λ1λ2→ϕ , (4.31)

where ϕ labels a generic state of the Hilbert space. Equation (4.2.2) is nothing but the
optical theorem and combined with the dispersion relation (4.28) provides the positivity
bounds

d2Mλ1,λ2

ds2
(0) > 0 , (4.32)

The amplitudes for the theory (4.5) take the form

Mxxxx(s) = A(s) +B(s) +B(−s) ∝ a1s
2 , (4.33)

Mxyxy(s) = A(s) ∝ a2s
2 , (4.34)

and we finally get the constraints

a1 > 0 , a2 > 0 . (4.35)
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4.2.3 Positivity Bounds With Gravity

The production of positivity bounds through S-matrix properties in theories of gravity is
not completely understood. However, exploiting sophisticated tricks it has been possible
to produce some results. An example are the bounds we used to constrain 4 derivative
Einstein–Maxwell theory obtained by Bellazzini et al. in [7]. We proceed now reviewing
the problems which arises with gravity and the technique used by Bellazzini et al.

Let’s start looking at the consequences of turning on gravity. The S-matrix properties
we assumed to obtain positivity bounds are consistent with a general theory of gravity
and the theorems still hold. However, the algorithm we described previously becomes
useless. Implementing gravitons contribution in forward elastic scattering the Cauchy
formula turns out to relate divergent quantities. The amplitudes are now dominated by
the Coulomb universal singularity

M(s, t→ 0) = − s2

M2
P t

+O(s2) , (4.36)

which is caused by the soft emission of on-shell massless gravitons. Thus, in order to
produce any meaningful results it is necessary to remove the divergence.

The fundamental observation of [7] is that the divergence is due to the infinity flat-
space volume. It can be therefore regularized considering a cylindrical space-time4, i.e.
integrating a spatial component on a circle. Applying the dimensional reduction we obtain
indeed a theory with a non dynamical 3-dimensional graviton which does not produce the
Coulomb singularity. However, the DOFs of the 4-dimensional graviton do not disappear.
The dimensional reduction produces a massless dilaton, a massless graviphoton and an
infinite tower of Kaluza Klein (KK) modes. Such new fields contributes to the scattering
amplitude. In particular, the KK modes introduce a logarithmic divergence and zero
modes dominate over the finite IR contributions. Therefore, getting rid of the Coulomb
singularity is not enough. In order to produce a positivity bound it is necessary to subtract
zero an KK modes contributions. Equation (4.28) is therefore replaced by

d2Mλ1,λ2

ds2
(0)− d2Mλ1,λ2

ds2
(0)

⃓

⃓

⃓

⃓

KK,IR

=
4

π

∫︂ ∞

2m2

dσ

σ
Im
î

M̃λ1,λ2(σ)
ó

. (4.37)

Thanks to the optical theorem the LHS is positive. It is possible therefore to use the
subtracted amplitude to produce meaningful positivity bounds.

4.3 Positivity Bounds and Field Redefintions

We conclude this section explaining the reasons why we selected the Lagrangian (2.19)
with the Weyl tensor instead of the easier-to-handle Lagrangian (2.16).

A fundamental ingredient of the analysis presented in chapter 3 is the set of bounds

⎧

⎪

⎨

⎪

⎩

2α1 − α3 > 0 ,

2α1 + α3 > 0 ,

α2 > 0 .

(4.38)

4Notice that we can regularize considering just spacetime with finite volume. However in such case we
spoil the theory of Lorentz invariance.
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Such bounds have been derived by Bellazzini et al. in [7] applying the algorithm we
described in the previous section to (2.19). They are therefore implied by the S-matrix
structure of (2.19). Thanks to S-matrix equivalence theorem, we know that theories iden-
tified by a fields redefinition which does not mixes the DOFs are equivalent. However, we
have no guarantees that a general fields redefinition leaves the dynamics invariant. It is
evident then that we can not discuss the sings of charge-to-mass ratio and entropy cor-
rections of (2.16) exploiting (4.38) before having at least explicitly verified the corrections
invariance. A first reason to consider (2.19) is therefore that a different theory would have
needed a more complicated discussion.

Moreover, notice that we do not have a rigorous proof of dynamics invariance. The
verification of corrections invariance is indeed only a consistency check. Therefore, the
theory (2.19) is the only case where is proved that the dynamics discussion is correct. A
second reason is given then by the fact that a different theory would have weakened our
analysis.





CHAPTER 5

Duality and the WGC

In the previous chapter we showed that a local and Lorentz-invariant Lagrangian does
not necessarily produce a reliable theory. We have indeed to impose causality in order
to remove superluminar signals which can break the Lorentz-invariance of time-ordering
and the local Hamiltonian description. Moreover, we described a general algorithm which
allows to relate the causality and unitarity conditions to a set of bounds on the theory
coefficients.

Among the bounds produced for the 4 derivative Einstein–Maxwell theory (2.19) there
is one which coincides with the request that the correction to the charge-to-mass ratio of
the extremal BHs has a positive sign. It follows that for such class of theories the assump-
tions of unitarity, locality and positivity of the scattering amplitudes implies the mild
form of the EWGC. An interesting question is then whether there are other consistency
conditions. If there were further constraints on the theory coefficients it would be possible
that EWGC and S-matrix properties provide the same bounds.

In recent works (see [19] and [20]) it has been suggested that a non trivial bound can
be obtained by considering duality transformations. Assuming that duality is a symmetry
of the UV theory it must hold at all orders in the perturbative expansion and it can
be completely characterized through leading order terms invariance. It is possible then
to constrain the generic higher order corrections identified with a bottom-up approach
imposing that they do not break the duality group.

In this chapter we start representing the action of duality transformations and we de-
rive the duality groups of Maxwell and Einstein–Maxwell theories. We move then to 4
derivative Einstein–Maxwell theory and we study which are the constraints necessary to
guarantee the stress-energy tensor invariance. We discuss then our results and the conse-
quences for the EWGC interpretation. After that, we generalize the duality constraints
computations exploiting Legendre transformations. Such technique extends that of [23]
and constitute the second relevant result of this thesis work.

67



68 5. Duality and the WGC

5.1 Electric–Magnetic Duality

In this section we start defining the Electric–Magnetic (EM) duality transformations fol-
lowing [22]. We derive then the duality group of the free Maxwell theory introducing the
notation we will use to present the general techniques based on Legendre transformations.
Finally, we compute the duality group of Einstein–Maxwell theory.

5.1.1 Duality Group

Let’s consider a Lagrangian of the type

d4x
»

|g| L = L[Aµ, gµν ] , (5.1)

such that L does not depend on Fµν derivatives. Varying the action with respect to Aµ
we get

0 = δS =

∫︂

δL =

∫︂

d4x
»

|g|δL =

∫︂

d4x
»

|g|δFµν
∂L
∂Fµν

, (5.2)

and equations of motion in differential form are given by

Dµ
∂L
∂Fµν

≡ 1

2
DµG̃

µν
= 0 ⇐⇒ dG = 0 . (5.3)

We recall now that Fµν is the field strength of the dynamical field Aµ, thus it satisfy the
Bianchi identity

DµF̃
µν

= 0 ⇐⇒ dF = 0 , (5.4)

where we introduced F̃µν =

√
|g|
2 ϵµνρσF

ρσ. It follows that the Bianchi identity and the
EOMs have the same structure and can be rotated through a global GL(2,R) transforma-
tion. We have indeed

dG = d

Å

Fµν
Gµν

ã

= 0 ⇐⇒ dG′ =
Å

A B
C D

ãÅ

dFµν
dGµν

ã

= 0 , (5.5)

which induces the transformation

Å

F ′

G′

ã

=

Å

A B
C D

ãÅ

F
G

ã

(5.6)

.

The duality group is then defined as the biggest subgroup of GL(2,R) which preserves
the theory structure. In order to do so we have to impose that F and G definitions are
preserved

G̃
µν

= 2
∂L
∂Fµν

⇐⇒ G̃
′µν

= 2
∂L′

∂F ′
µν

. (5.7)

Notice that we are requiring that the duality transformations are symmetries of the equa-
tions of motions and not of the Lagrangian.1

1We will see later that in general the Lagrangian is modified.
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5.1.2 Free Maxwell Theory

We determine now the duality group of the free Maxwell theory. The Lagrangian is

L = −1

4
F 2 , (5.8)

therefore equation (5.7) takes the form

G̃µν = −Fµν , (5.9)

It follows that F and G satisfy the equations

G̃ ≡ ⋆G = −F F̃ ≡ ⋆F = G . (5.10)

which can be written in the more compact form

G̃Mµν = C
M
NGMµν , (5.11)

GMµν =

Å

Fµν
Gµν

ã

, G̃Mµν =

Ç

F̃µν
G̃µν

å

, C =

Å

0 1
−1 0

ã

. (5.12)

We notice then that equation (5.7) invariance is equivalent to equation (5.11) invariance.
We proceed therefore imposing the latter. After a rotation M ∈ GL(2,R) we get

G′
µν =MGµν , G̃′

µν =M G̃µν , (5.13)

which implies

M G̃µν = CMGµν , (5.14)

and comparing with equation (5.11) we obtain the constraint

C =M−1
CM ⇐⇒ [M,C] = 0 , (5.15)

which is solved by

A = D , B = −C . (5.16)

We have therefore that the generic element M of the duality group takes the form

Å

A B
−B A

ã

A,B ∈ R . (5.17)

Thus, the duality group of the free theory is GL(1,C) ≡ C. This is explicit in the complex
basis F± = 1√

2
(F ± iG)

GM̄c =

Å

F+

F−

ã

= J
M̄
N GN , J =

1√
2

Å

1 i
1 −i

ã

, (5.18)

(Mc)
M̄
N̄

= J
M̄
NM

N
M J

†M
N̄

=

Å

A− iB 0
0 A+ iB

ã

=

Å

N 0
0 N∗

ã

, N ∈ C . (5.19)
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5.1.3 Einstein–Maxwell Theory

Let us turn on gravity. The Lagrangian is now

L =
M2
P

2
R− 1

4
F 2 . (5.20)

From the previous section we know that Maxwell EOMs are left invariant by GL(1,C).
Assuming that the gravitational field is invariant under duality transformations, Einstein
equations are invariant if and only if the stress energy tensor is invariant, i.e.

T ′
µν [F

′
µν ] = Tµν [Fµν ] . (5.21)

Therefore, the new duality group is the biggest subset of GL(1,C) which satisfy (5.21).
The stress energy tensor is given by

Tµν = FµρF
ρ

ν − 1

4
FαβF

αβ . (5.22)

Therefore, applying a rotation (5.17) and exploiting (5.11)

Fαβ = AFαβ +BGαβ = AFαβ +BF̃αβ , (5.23)

T ′
µν =

î

A2FµρF
ρ

ν +B2F̃µρF̃
ρ

ν + 2AB
Ä

F(µ|ρF̃
ρ

|ν)
äó

− 1

4
gµν

[︂

A2F 2 +B2F̃
2
+ 2ABFF̃

]︂ . (5.24)

Recalling that

F̃
2
= − F 2 , (5.25)

F̃µρF̃
ρ

ν = FµρF
ρ

ν − 1

2
gµνF

2 , (5.26)

equation (5.24) reads

T ′
µν =

(︁

A2 +B2
)︁

Tµν + 2ABQµν , (5.27)

Qµν =

Å

F(µ|ρF̃
ρ

|ν) − 1

4
gµνFαβF̃

αβ
ã

. (5.28)

However, it is easy to show that Qµν ≡ 0. In 4 dimensions it is not possible to completely
anti-symmetrize 5 spacetime indexes. It holds indeed

0 = 5 δ[γµ ϵ
αβρσ] = δγµϵ

αβρσ − δαµϵ
γβρσ − δβµϵ

αγρσ − δρµϵ
αβγσ − δσµϵ

αβργ , (5.29)

and we have

0 = 5
¶

gνγ δ
[γ
µ ϵ

αβρσ] + gµγ δ
[γ
ν ϵ

αβρσ]
©

FαβFρσ

= −16

ß

1

2
F(µ|ρF̃

ρ

|ν) − 1

4
gµνFαβF̃

αβ
™

,
(5.30)

which implies that Qµν vanishes as we claimed. It follows that Tµν is invariant if and only
if

A2 +B2 = 1 . (5.31)
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The duality group reduces therefore to SO(2,R) and the generic elementM takes the form

M =

Å

cos(α) − sin(α)
sin(α) cos(α)

ã

, α ∈ [0, 2π) , (5.32)

which reads in the complex basis (5.18)

Mc =

Å

eiα 0
0 e−iα

ã

, α ∈ [0, 2π) . (5.33)

5.2 Duality Constraints

If the EM duality is an exact symmetry of the UV theory it must hold at every perturbative
order. It is possible therefore to use the U(1) duality group of Eintein–Maxwell theory to
constrain higher order coefficients.

In this section we start generalizing the computations of section 5.1.3 deriving a simple
sufficient condition for stress energy tensor invariance. We specialize then the formulas in
the case of theory 2.19. We conclude discussing the implications of the duality constraints.

5.2.1 Stress Energy Tensor Invariance

We want to determine the stress energy tensor transformation under infinitesimal U(1)
duality rotations. We recall that in a theory coupled to gravity the stress energy tensor
can be defined through the metric variation

Tµν [L] = − 2
√︁

|g|
δ

δgµν

(︂
»

|g|L
)︂

, (5.34)

where L is intended without the Hilbert–Einstein Lagrangian density. Exploiting the
invariance of the metric under duality rotations, the linearity of (5.34) and considering a
general extension of Einstein–Maxwell theory we get

[ δF , δg ] = 0 , (5.35)

δFTµν [L ] = Tµν [ δFL ] = Tµν [ δFL(2) ] + Tµν [ δF∆L ] . (5.36)

The first term the RHS of (5.36) is nothing but the variation of the free Maxwell theory
stress energy tensor and we have already verified that it vanishes if and only if we choose
U(1) as duality group (see section 5.1.3).

We introduce now the dual field Gµν

G̃µν = −Fµν +∆Fµν , Gµν = F̃µν −∆F̃µν , (5.37)

where ∆Fµν and ∆F̃µν are higher order corrections. Choosing the parametrization of the
infinitesimal transformation Λ

Λ =

Å

0 −θ
θ 0

ã

= −θC , Λ ∈ u(1) , (5.38)

δF∆L takes the form

δF∆L = δF
∂∆L
∂F

= −θ
2
G∆F = −θ

2

Ä

F̃ −∆F̃
ä

∆F = −θ
2
F̃∆F +O(α2) . (5.39)
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Exploiting equation (5.39) equation (5.36) reads

δFTµν = −θ
2
gµνF̃∆F + θδg

î

F̃∆F
ó

, (5.40)

and recalling that

δgF̃
αβ

= δg

Å

1

2
ϵ̂αβρσFρσ

ã

=
1

4
gµν ϵ̂

αβρσFρσ =
1

2
gµν F̃

αβ
, (5.41)

it further simplify

δFTµν = −θ
2
gµνF̃∆F + θ

[︂(︂

δgF̃
αβ

)︂

∆Fαβ + F̃
αβ
δg (∆Fαβ)

]︂

= θ F̃
αβ
δg (∆Fαβ) .

(5.42)

It follows that the stress energy tensor is invariant under U(1) duality rotations if and
only if

F̃
αβ
δg (∆Fαβ) = 0 . (5.43)

Notice that massaging (5.43) we can produce a sufficient condition which is easier to
verify

F̃
αβ
δg∆Fαβ = δg

(︂

F̃
αβ

∆Fαβ

)︂

−
(︂

δgF̃
αβ

)︂

∆Fαβ

= δg

(︂

F̃
αβ

∆Fαβ

)︂

− 1

2
gµνδg

µν
(︂

F̃
αβ

∆Fαβ

)︂

=

Å

δg −
1

2
gµνδg

µν

ã

(︂

F̃
αβ

∆Fαβ

)︂

.

(5.44)

We finally get

F̃
αβ

∆Fαβ = 0 ⇒ F̃
αβ
δg (∆Fαβ) ⇐⇒ δFTµν = 0 . (5.45)

5.2.2 4 Derivative Einstein–Maxwell Theory

Let us apply the constraints (5.45) to (2.19). In our case it holds

∆Fαβ = 2α1 F
2Fαβ + 2α2 FF̃ F̃αβ + 2α3Wαβρσ F

ρσ . (5.46)

We start with condition (5.43). Neglecting the α3 term we get

F̃
αβ
δg∆F

1,2
αβ = 2α1 [2FµρF

ρ
ν Fαβ ] F̃

αβ

+ 2α2

î

gµν FF̃ F̃αβ − 2FF̃ F̃α(µ gν)β
ó

F̃
αβ

= 4α1 [FµρF
ρ

ν ]

+ 2α2

î

−2F̃µρF̃
ρ

ν FF̃ − gµνFF̃F
2
ó

,

(5.47)

Recalling equation (5.26)

F̃αρF̃
ρ

β = FαρF
ρ

β − 1

2
gαβ F

2 , (5.48)



5.3. Legendre Duality 73

we obtain

δFTµν = θ
{︂

4 (α1 − α2)
î

FµρF
ρ

ν FF̃
ó

+ 2α3 F̃
αβ
δg [WαβρσF

ρσ]
}︂

, (5.49)

which vanishes if and only if we set

α1 = α2 , α3 = 0 . (5.50)

We apply now the sufficient condition (5.45). We get then

F̃∆F = 2 (α1 − α2) F
2FF̃ + 2α3Wµνρσ F̃

µν
F ρσ = 0 , (5.51)

which provides
α1 = α2 , α3 = 0 . (5.52)

5.2.3 Weak Gravity Conjecture

We discuss now the effects of duality constraints on the interpretation of the mild EWGC.
Without duality constraints the S-matrix properties requires by consistency

⎧

⎪

⎨

⎪

⎩

2α1 − α3 > 0 ,

2α1 + α3 > 0 ,

α2 > 0 .

(5.53)

and the charge-to-mass ratio of extremal BHs takes the form

zext = 1 +
64π2

5M2
(2α1 − α3) . (5.54)

It follows that the microcausality imposed through the analicity of the S-matrix and
exploiting unitarity, locality and positivity of the scattering amplitudes implies the mild
EWGC. It is therefore a condition more general and stronger than the mild EWGC.
However, assuming the duality constraints

α1 = α2 , α3 = 0 , (5.55)

the S-matrix bounds reduce to
α1 > 0 , (5.56)

and the charge-to-mass ratio yields

zext = 1 +
64π2

5M2
(2α1) . (5.57)

Now the two conditions coincides.

5.3 Legendre Duality

In section 5.1.2 we learned that to determine the duality group we have to impose together
F̃ and G̃ invariance. However, the method used is highly dependent on the structure of the
Free Maxwell theory, which is quadratic in Fµν . In this section we present a new general
technique which relies on Legendre transformations and solve such a problem. Moreover,
it can be used used to constrain higher order correction coefficients. The approach we
developed can not be considered completely original. Indeed Legendre transformation
have been already used to discuss EM duality. However, we managed to systematize and
extend the ideas of [22] and [23].
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5.3.1 Legendre Formalism

The key idea of our approach is to identify G̃ with the Legendre dual of F and use it to
define the dual Lagrangian. G̃ is defined by

G̃µν = 2
∂L
∂Fµν

⇐⇒ Gµν = −ϵµνρσ
∂

∂Fρσ

(︁√−gL
)︁

, (5.58)

where L = L[Fµν ]. The dual Lagrangian and the dual fieldstrength obtained applying a
Legendre transformation are instead

LD[FµνD ] = L[Fµν ]− FµνF
µν
D , (5.59)

FµνD =
∂L
∂Fµν

, Fµν = − ∂LD
∂FµνD

. (5.60)

It follows

LD[G̃
µν
] = L[Fµν ]− 1

2
FµνG̃

µν
, (5.61)

G̃µν = 2
∂L
∂Fµν

, Fµν = −2
∂LD
∂G̃

µν . (5.62)

Now, we would like to write a generalized version of equation (5.63). We need then to
express F̃ in terms of F and G. To determine F̃ we can use the second equation of (5.62)

F̃µν =

√︁

|g|
2

ϵµνρσF
ρσ = −ϵ̂µνρσ

∂LD
∂G̃ρσ

, (5.63)

where we introduced ϵ̂µνρσ =
√︁

|g| ϵµνρσ. Recalling that

Gαβ =
s

2
ϵ̂αβµνg

µρgνσG̃ρσ , s =
g

|g| , (5.64)

∂Gαβ

∂G̃γδ
=
s

2
ϵ̂αβµνg

µρgνσδγδ[ρσ] =
s

2
ϵ̂αβµνg

µγgνδ , (5.65)

equation (5.63) reads

F̃µν = −ϵ̂µνρσ
∂Gαβ

∂G̃µν

∂LD
∂Gαβ

= −2
∂LD
∂Gµν

. (5.66)

We have therefore

δF̃µν = − 2δ

Å

∂LD [Gαβ ]

∂Gµν

ã

= −2

Ç

∂2LD [Gαβ ]

∂Gµν∂Gγδ

å

δGγδ , (5.67)

δG̃µν = 2δ

Å

∂L [Fαβ ]

∂Fµν

ã

= 2

Ç

∂2L [Fαβ ]

∂Fµν∂Fγδ

å

δFγδ , (5.68)

which can be written in the compact form

δG̃Mµν =
(︂

Ĉ
αβ

µν

)︂M

N
δGNαβ , (5.69)



5.3. Legendre Duality 75

Ĉ =

Å

0 −Y
X 0

ã

, X αβ
µν = 2

∂2L
∂Fµν∂Fαβ

, Y αβ
µν = 2

∂2LD
∂Gµν∂Gαβ

. (5.70)

We proceed now imposing that the structure of (5.69) is preserved by duality transforma-
tions. Let us consider the infinitesimal rotation:

(︁

G′
µν

)︁M
= (M)MN (Gµν)N , M = I+ Λ , (5.71)

δGMµν = ΛMNGNµν , δG̃Mµν = ΛMN G̃
N

µν . (5.72)

Replacing in equation (5.69) we get

G̃ = Λ−1
1 ĈΛ1G . (5.73)

Acting on equation (5.73) with another independent infinitesimal transformation and ex-
ploiting (5.69) we obtain

δ2G̃ = δ2
î

Λ−1
1 ĈΛ1G

ó

= Ĉ δ2G . (5.74)

Massaging equation (5.74)

Λ1

î

(δ2Λ
−1
1 ) ĈΛ1 + Λ−1

1 (δ2Ĉ) Λ1 + Λ−1
1 Ĉ (δ2Λ1)

ó

G + ĈΛ1 δ2G = Λ1 Ĉ δ2G , (5.75)

î

−(δ2Λ1)Λ
−1
1 Ĉ+ δ2Ĉ+ Ĉ(δ2Λ1)Λ

−1
1

ó

δ1G =
î

Λ1, Ĉ
ó

δ2G , (5.76)

Ä

δ2Ĉ
ä

δ1G =
î

Λ1, Ĉ
ó

δ2G +
î

(δ2Λ1)Λ
−1
1 , Ĉ

ó

δ1G , (5.77)

where we exploited δΛ−1 = −Λ−1(δΛ)Λ−1 and G = Λ−1δG. Choosing δ1 = δ2, i.e.
Λ1 = Λ2 = Λ equation (5.77) reduces to

ß

δĈ−
î

Λ + (δΛ)Λ−1 , Ĉ
ó

™

δG = 0 . (5.78)

We notice now that in order to have δΛ ̸= 0 the matrix entries have to depend on the field
strengths, i.e. Λ = Λ(Fµν). Therefore, considering only linear field transformations2 we
have δΛ = 0 and equation (5.78) takes the form

ß

δĈ−
î

Λ , Ĉ
ó

™

δG = 0 . (5.79)

Recalling equation (5.70) we finally get the constraints

î

Λ , Ĉ
ó

=

Å

Xb+ Y c −Y a+ Y d
−Xa+Xd −Xb− Y c

ã

, δĈ =

Å

0 −δY
δX 0

ã

, (5.80)

®

(−Xb− Y c) δF + (−δY + Y a− Y d) δG = 0 ,

(δX +Xa−Xd) δF + (Xb+ Y c) δG = 0 .
(5.81)

Notice that we implicitly assumed that Λ is an invertible matrix. It follows that constraints
(5.81) do not identify necessarily the full duality group. In general, they identify the
subgroup generated by the algebra elements represented by an invertible matrix. However,
if there are no scalar fields the duality group of a theory with n vector fields is just U(n)
(see [22]). Therefore, the equations (5.81) identify the full duality group and can be used
to constrain the coefficients of Lagrangian higher order terms.

2i.e. those compatible with equation (5.5) which preserve equations of motions and the Bianchi identity.
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5.3.2 Free Maxwell Theory

We verify now if constraints (5.16) and (5.81) coincide for the free Maxwell theory. Re-
calling equations (5.8), (5.9), (5.10) and (5.25), FµνD and LD read

FµνD =
1

2
G̃
µν

= −1

2
F , Gµν = F̃µν , (5.82)

LD = −1

4
F 2 − 1

2
FG̃ = −1

4
G2 . (5.83)

Therefore we have

X αβ
µν =2

∂2L
∂Fµν∂Fγδ

= −δα,β[µ,ν] , δX = 0 , (5.84)

Y αβ
µν =2

∂2LD
∂Gµν∂Gγδ

= −δα,β[µ,ν] , δY = 0 . (5.85)

We notice that constraints (5.81) are solved by

⎧

⎪

⎨

⎪

⎩

Xb+ Y c = 0 ,

δY = Y (a− d) ,

δX = −X(a− d) ,

(5.86)

which in our case read
⎧

⎪

⎨

⎪

⎩

b+ c = 0 ,

(a− d) = 0 ,

(a− d) = 0 .

(5.87)

Constraints (5.87) coincide3 with (5.16).

5.3.3 U(1) Duality Constraints

We showed in the previous section that the constraints (5.81) can be used to determine
the duality group of a theory. However, this is not their most important use. The duality
group can indeed be determined easily without them. They are fundamental instead once
we fix the duality group. They indeed produces highly non trivial constraints on the theory
coefficients. We proceed now evaluating them considering proper duality groups.

Imposing that the duality group is GL(1,C) (i.e. that holds (5.16)) the generic element
of algebra Λ ∈ gl(1,C) takes the form

Λ =

Å

a b
−b a

ã

, (5.88)

and we obtain the constraints

®

−b (X − Y ) δF − (δY ) δG = 0 ,

(δX) δF + b (X − Y ) δG = 0 .
(5.89)

3Notice that (5.81) are constraints on the algebra and (5.16) are constraints on the group elements.
However, G = GL(1,C) = C, therefore it coincide with its algebra. The constraints define therefore the
same group.
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Reducing further the duality group to SO(2,R), the generic element M ∈ SO(2,R) takes
the form in the complex basis (cfr. equation 5.33)

Mc =

Å

eiθ 0
0 e−iθ

ã

, θ ∈ [0, 2π) . (5.90)

Thus, the generic element of the algebra Λc reads

Λc =

Å

iθ 0
0 −iθ

ã

= iθσ3 ⇐⇒ Λ = J
† Λc J =

Å

0 −θ
θ 0

ã

= −θC . (5.91)

It follows that constraints (5.89) must hold with b = −θ, a = 0. We have then

b(X − Y ) δF = (−θ)(X − Y ) (−θG) = (2θ2)(∂2L − ∂2LD) (G) , (5.92)

b(X − Y ) δG = (−θ)(X − Y ) (θF ) = (−2θ2)(∂2L − ∂2LD) (F ) , (5.93)

δY δG = (δY ) (θF ) = (2∂3LD)(δG)(θF ) = (2θ2)(∂3LD)(FF ) , (5.94)

δXδF = (δX) (−θG) = (2∂3L)(δF )(−θG) = (2θ2)(∂3L)(GG) , (5.95)

which provide
®

(2θ2)
[︁

∂3LD(FF ) + ∂2L(G)− ∂2LD(G)
]︁

= 0 ,

(2θ2)
[︁

∂3L(GG)− ∂2L(F ) + ∂2LD(F )
]︁

= 0 .
(5.96)

Imposing that the bounds hold ∀ θ we obtain finally

∂3LD
∂Gµν∂Gαβ∂Gγδ

(FαβF γδ) +
∂2L

∂Fµν∂Fαβ
(Gαβ)− ∂2LD

∂Gµν∂Gαβ
(Gαβ) = 0 , (5.97)

∂3L
∂Fµν∂Fαβ∂F γδ

(GαβGγδ)− ∂2L
∂Fµν∂Fαβ

(Fαβ) +
∂2LD

∂Gµν∂Gαβ
(Fαβ) = 0 . (5.98)

5.3.4 4 Derivative Einstein–Maxwell Theory

We apply now our general method to the theory (2.19). The dual field FµνD is given by

FµνD =
∂L
∂Fµν

= −1

2
(Fµν −∆Fµν) . (5.99)

Comparing with G̃ definition we obtain

G̃
µν

= 2FDµν = −Fµν +∆Fµν . (5.100)

Expressing F in terms of G neglecting terms O(α2) we get

Fµν = −G̃µν +∆Fµν

= −G̃µν +
2α1

M4
P

F 2Fµν +
2α2

M4
P

FF̃ F̃µν +
2α3

M2
P

Wµνρσ F
ρσ

= −G̃µν −
2α1

M4
P

G̃
2
G̃µν −

2α2

M4
P

G̃G̃̃G̃̃µν −
2α3

M2
P

Wµνρσ G̃
ρσ

+O(α2)

= −G̃µν +
2α1

M4
P

G2G̃µν −
2α2

M4
P

G̃GGµν −
2α3

M2
P

Wµνρσ G̃
ρσ

= −G̃µν +∆G̃µν ,

(5.101)
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where we introduced ∆G̃µν which containsO(αi) contributes. The dual Lagrangian density
reads therefore

LD = −1

4
F 2 +

α1

4
F 4 +

α2

4
(FF̃ )2 +

α3

2
Wµνρσ F

µνF ρσ − 1

2
FµνG̃

µν

= −1

4
G̃

2
+

1

2
∆G̃µνG̃

µν
+
α1

4
G̃

4
+
α2

4
(G̃G̃̃)2 +

α3

2
Wµνρσ G̃

µν
G̃
ρσ

+
1

2
G̃

2 − 1

2
∆G̃µνG̃

µν

= −1

4
G2 +

α1

4
G4 +

α2

4
(G̃G)2 +

α3

2
W̃µνρσG

µνGρσ ,

(5.102)

where we defined

W̃µνρσ =
1

4
ϵ̂µναβW

αβγδ ϵ̂γδρσ . (5.103)

The quantities which are involved in constraints (5.97) and (5.98) take then the explicit
form

∂2L
∂Fµν∂Fαβ

= −1

2
δαβ[µν] + α1

î

F 2δαβ[µν] + 2FαβFµν
ó

+ α2

ï

1

2
ϵ̂ αβ
µν FF̃ + 2F̃

αβ
F̃µν

ò

+ α3Wµνρσ g
ραgσβ ,

(5.104)

∂3L
∂FAB∂Fµν∂Fαβ

= α1

[︁

2 gα[µ gν]βFAB + 2 gA[α gβ]BFµν + 2 gµ[A gB]νFαβ
]︁

+ α2

î

ϵ̂µναβF̃AB + ϵ̂αβABF̃µν + ϵ̂ABµνF̃αβ
ó

,

(5.105)

∂2LD
∂Gµν∂Gαβ

= −1

2
δαβ[µν] + α1

î

G2δαβ[µν] + 2GαβGµν
ó

+ α2

ï

1

2
ϵ̂ αβ
µν GG̃+ 2G̃

αβ
G̃µν

ò

+ α3 W̃µνρσ g
ραgσβ ,

(5.106)

∂3LD
∂GAB∂Gµν∂Gαβ

= α1

[︁

2 gα[µ gν]βGAB + 2 gA[α gβ]BGµν + 2 gµ[A gB]νGαβ
]︁

+ α2

î

ϵ̂µναβG̃AB + ϵ̂αβABG̃µν + ϵ̂ABµνG̃αβ
ó

.

(5.107)

Let us impose now constraint (5.98). Recalling that G = F̃ +O(α) we have

∂2L(F )− ∂2LD(F ) = α1

î

4F 2Fµν − 2FF̃ F̃µν
ó

+ α2

î

4FF̃ F̃µν − 2F 2Fµν
ó

+ α3Wµνρσ F
ρσ − α3 W̃µνρσ F

ρσ ,
(5.108)

∂3L(GG) =

ß

α1

î

4 F̃µνFF̃ − 2F 2Fµν
ó

+ α2

î

+4Fµν F
2 − 2F̃µνFF̃

ó

™

,

(5.109)

Which implies

∂3L(GG)− ∂2L(F ) + ∂2LD(F ) = 6(α1 − α2)
î

F̃µνFF̃ − F 2Fµν
ó

− α3

î

Wµνρσ F
ρσ − W̃µνρσ F

ρσ
ó

.
(5.110)
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In general F̃µνFF̃ − F 2Fµν does not vanish, therefore duality provides us the constraint

α1 = α2 . (5.111)

Let us consider now the last term of (5.110).
Evaluating explicitly α3 coefficient we get that it has some not vanishing components

Wµν =
Ä

Wµνρσ − W̃µνρσ

ä

F ρσ , (5.112)

W01 = −W10 = − Q

16π3r6
(︁

Q2 − 4Mπr
)︁

, (5.113)

It follows that we have to require
α3 = 0 . (5.114)

We have therefore again
α1 = α2 , α3 = 0 . (5.115)





CHAPTER 6

Summary and Outlook

We conclude with a brief summary and a review of the possible further developments.
This thesis had two goals. The first one was determining whether higher order derivative
corrections allow black holes to decay through a splitting process. The second one was
understanding the role of duality in the production of constraints on the effective theories
of quantum gravity. Both issues naturally arise as part of a deeper question: investigate
the nature of the Weak Gravity Conjecture (WGC).

In chapter 1 we presented the WGC explaining that it has a special role among all the
swampland’s criteria. It is the first criterion developed and the best established one, thanks
to its huge web of different formulations. However, its original and simplest statement,
the Electric WGC, is still not fully understood. Indeed, the EWGC can be interpreted as
the necessary condition for BHs decay, however it is not clear if there is any inconsistency
related to BHs stability.

Such interpretation implies then that the EWGC trivializes if the BHs can decay by
themselves. This can occur if the charge-to-mass ratio of the extremal BH solutions de-
creases with the mass of the BH.

In chapter 2, 3 and 4 we identified the most general 4 derivative extension of Einstein–
Maxwell theory and we removed via field redefinitions the redundant terms. We solved the
perturbed equations of motion and we computed the radius and the charge-to-mass ratio
of extremal BHs. We verified then that the positivity bounds due to S-matrix properties
(analiticity, unitarity and crossing symmetries) imply the mild form of the EWGC.

In order to study the possibility of BH splitting, we computed the Wald’s entropy in the
extremal case (equation (3.51)). This is the first relevant result of the thesis because the
entropy formula of [14] diverges in the extremal limit. Exploiting such result we presented
our original discussion of splitting processes. In particular, we found that electrically
charged, static BHs can not split within our perturbative regime.

After that, we tested our result with several consistency checks. The individual tests
do not exploit innovative techniques, however as far as we know there is no example in
literature of a more comprehensive analysis. Other results we obtained in chapter 3 are the

81
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general algorithm to determine the entropy of extremal configurations (section 3.4.2) and
the general black hole solution of the perturbed Einstein–Maxwell theory (see equations
(3.181) and (3.187)) which generalize the formula for perturbed Einstein theory of [34].

In chapter 5 we presented Electric–Magnetic (EM) duality. Imposing that the 4 deriva-
tive Einstein–Maxwell theory has the same duality group of the unperturbed theory we
produced constraints on the coefficients of higher order corrections. We showed then that
assuming EM duality, the mild form of the EWGC coincide with the positivity bounds
obtained from microcausality, unitarity and relativistic invariance.

Another original part of the thesis is the exploitation of the interpretation of duality
transformations as the result of a Legendre transformation. Legendre transformations have
been already used to characterize EM duality, therefore the technique we described can
not be considered a completely original result of this thesis work. However, it is definitely
a generalization and systematization of [23], which also allows for a simple application to
the cases of theories with higher derivative interactions. In particular, this brought us
to the sufficient condition (5.45), which extremely simplifies the computations of duality
constraints on higher order terms.

To sum up, we have been able to answer to both our questions in 4 derivative Einstein–
Maxwell theory: we can not have splitting processes and the duality constraints provide
a new theoretical interpretation of the EWGC. Indeed, for what concerns the first ques-
tion, despite the fact that we proved the validity of the mild form of the EWGC and
that our BH configurations satisfy the kinetics constraints, splitting processes are not
thermodynamically allowed within our perturbative regime. For the second question, as-
suming the duality constraints, we proved that the mild form of the EWGC coincides with
the consistency conditions imposed by microcausality, unitarity and relativistic invariance.

A natural question is which of our results are specific to our setup and which can be
extended to more general cases, instead. The thesis work has therefore various possible
continuations.

For the study of splitting processes, it is important to look at a theory that we control
microscopically, i.e. a theory whose UV completion is known to be string theory. A possible
candidate is a N = 2 supergravity model. In such class of theories the extremal black
holes are obtained from a dimensional reduction of D-branes (in type II string theory)
or M-branes (in M-theory) wrapped on a Calabi–Yau manifold (see [37]). Moreover, the
4 derivative corrections are known (see [43]). A starting point would be in particular
the STU model which can be interpreted as a low energy limit of type IIA string theory
compactified on T6/(Z2 × Z2). There are 4 magnetic and 4 electric charges obtained by
wrapping the various T2 with the branes D0, D2, D4, D6 (see [44]). A partial analysis of
the model entropy can be found in [45].

The study of duality constraints and the EWGC interpretation could be done instead
considering generic charged black holes coupled with matter. In particular, it would be
interesting to analyze the relation with positivity bounds in order to understand if it is
necessary to exploit other UV elements to fix WGC.



APPENDIX A

Mathematical Identities

A.1 Definitions

Determinant and determinant sign:

g = det (gµν) , s =
g

|g| . (A.1)

Christoffel symbols:

Γρµν =
1

2
gρα (∂µgνα + ∂νgµα − ∂αgµν) . (A.2)

Riemann tensor, Ricci tensor, Ricci scalar:

R ρ
µν σ = 2

Ä

∂[µΓ
ρ

ν]σ + Γρ[µ|τΓ
τ
|ν]σ
ä

, (A.3)

Rµν = R ρ
ρµ ν , R = Rµνg

µν . (A.4)

Weyl tensor:

Wµνρσ = Rµνρσ −
2

d− 2

(︁

gµ[ρRσ]ν − gν[ρRσ]µ
)︁

+
2

(d− 2)(d− 1)
Rgµ[ρgσ]ν . (A.5)

A.2 Functional Derivatives

A.2.1 gµν Derivatives

Basic relations:

δgµν = −gµα gνβ δgαβ , (A.6)

δ
»

|g| = −
√︁

|g|
2

gµνδg
µν , (A.7)

δ
1

√︁

|g|
=

1

2
√︁

|g|
gµνδg

µν , (A.8)
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δ Γρµν =
1

2
gρα (Dµδgνα +Dνδgµα −Dαδgµν) , (A.9)

δR ρ
µν σ = 2D[µ

Ä

δ Γρ
ν]σ

ä

= Dµ (δ Γ
ρ
νσ)−Dν

(︁

δ Γρµσ
)︁

=
1

2
gρα (DµDνδgσα +DµDσδgνα −DµDαδgνσ)

− 1

2
gρβ (DνDµδgσβ +DνDσδgµβ −DνDβδgµσ) ,

(A.10)

δRµνγσ = δR ρ
µν σgργ +R ρ

µν σδgργ

=
1

2
(DµDνδgσγ +DµDσδgνγ −DµDγδgνσ)

− 1

2
(DνDµδgσγ +DνDσδgµγ −DνDγδgµσ)

+R ρ
µν σδgργ ,

(A.11)

δRνσ = δµρ δR
ρ

µν σ

=
1

2

(︁

DαDνδgσα +DαDσδgνα −D2δgνσ
)︁

− 1

2

Ä

DνD
βδgσβ +DνDσ

Ä

gµβδgµβ
ä

−DνD
βδgβσ

ä

,

(A.12)

δR = Rµνδg
µν + gνσδRνσ =

[︁

−Rµν +DµDν − gµνD2
]︁

δgµν , (A.13)

δFµν = gµαδgνβFαβ + δgµαgνβFαβ , (A.14)

δF̃
µν

=
1

2
gαβ δg

αβ F̃
µν
. (A.15)

Higher derivative terms of Einstein–Maxwell theory (integrated by parts):

δ
[︁

RF 2
]︁

=
[︁

2RF σ
µ Fνσ + F 2Rµν −DµDνF

2 + gµνD
2F 2

]︁

δgµν , (A.16)

δ
[︁

RµνF
µρF νρ

]︁

=
[︂

2RνσFµρF
σρ +RαβFαµFβν +

1

2
gµνDαDβ(F

α
ρF

βρ)

−DαDν(FµβF
αβ) +

1

2
D2(FµρF

ρ
ν )

]︂

δgµν ,

(A.17)

δ [RµνρσF
µνF ρσ] =

î

3FανF
βγRαµβγ + 2DβDα(F

α
µF

β
ν )
ó

δgµν , (A.18)

δ [WµνρσF
µνF ρσ] = δ

ï

RµνρσF
µνF ρσ − 4

d− 2
RµνF

µρF νρ

+
2

(d− 2)(d− 1)
RFµνF

µν

ò

,

(A.19)

δ
[︁

(FF )2
]︁

=
[︁

4F 2FµνF
ν

ρ

]︁

δgµρ , (A.20)

δ
î

(FF̃ )2
ó

=
î

(FF̃ )2gµν
ó

δgµν . (A.21)
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Higher derivative terms of the extended Einstein–Maxwell theory (integrated by parts):

δ
[︁

R2
]︁

=
[︁

2RRµν − 2D(ν|D|µ)R+ 2gµνD
2R

]︁

δgµν , (A.22)

δ
î

(Rµν)
2
ó

=

ï

−2DαD(ν|R
α
|µ) + 2D2Rµν +

1

2
gµνD

2R+ 2RαµRαν

ò

δgµν , (A.23)

δ
î

(DµFνρ)
2
ó

=

ï

(DµFαβ)(DνF
αβ)− 4(DαFβµ)(D

αF βν )

+ 4Dα

Ä

F(ν|βD
αF β

|µ)
ä

+ 4Dα

Ä

F(ν|βD|µ)F
αβ
ä

− 4Dα

Ä

FαβD(ν|F
β

|µ)
ä

ò

δgµν .

(A.24)

A.2.2 Aµ Derivatives

Higher derivative terms of Einstein–Maxwell theory (integrated by parts):

δ [WµνρσF
µνF ρσ] = Dµ [−4WµνρσFρσ] δAν , (A.25)

δ
[︁

(FF )2
]︁

= Dµ

[︁

−8F 2Fµν
]︁

δAν , (A.26)

δ
î

(FF̃ )2
ó

= Dµ

î

−8(FF̃ )F̃
µν
ó

δAν . (A.27)

Higher derivative terms of the extended Einstein–Maxwell theory (integrated by parts):

δ
[︁

RµνF
µρF νρ

]︁

= Dµ

î

−4R[µ|αF |ν]
α

ó

δAν , (A.28)

δ
[︁

RF 2
]︁

= Dµ [−4RFµν ] δAν , (A.29)

δ
î

(DµFνρ)
2
ó

= Dµ

[︁

4D2Fµν
]︁

δAν . (A.30)

A.2.3 Rabcd Derivatives

Basic relations:

δR = gacgbdδRabcd , (A.31)

δRab = gcdδRacbd . (A.32)

Higher derivative terms of Einstein–Maxwell theory:

δ
î

F abF cdWabcd

ó

=

ï

F abF cd − 4

D − 2
gacF bfF df

+
4

2(D − 1)(D − 2)
F 2gacgbd

ò

δRabcd .

(A.33)

Higher derivative terms of the extended Einstein–Maxwell theory (integrated by parts):

δ
[︁

RµνF
µρF νρ

]︁

=
î

F aαF cα g
bd
ó

δRabcd , (A.34)

δ
[︁

RF 2
]︁

=
î

F 2gacgbd
ó

δRabcd , (A.35)

δ
[︁

R2
]︁

=
î

2Rgacgbd
ó

δRabcd , (A.36)

δ
î

(Rµν)
2
ó

=
î

2Racgbd
ó

δRabcd . (A.37)
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A.3 Differential Forms

Levi-Civita tensor definition and products:

ϵ̃µ1...µD =
√
sg ϵµ1...µD , (A.38)

ϵ̃µ1...µD =
s√
sg
ϵµ1...µD , (A.39)

ϵµ1...µpνp+1...νDϵµ1...µpρp+1...ρD = (D − p)! p! δ
νp+1

[ρp+1
. . . δνD

ρD] . (A.40)

Exterior algebra:

ω =
1

k!
ωµ1...µkdx

µ1 ∧ · · · ∧ dxµk , (A.41)

α ∧ β =
(k + q)!

k! q!
A [α⊗ β]

=
1

k!q!
α[µ1...µpβν1...νq ]dx

µ1 ∧ · · · ∧ dxµk ∧ dxν1 ∧ · · · ∧ dxνq ,
(A.42)

dω =
1

k!
D[µωµ1...µpην1...νq ]dx

µ ∧ dxµ1 ∧ · · · ∧ dxµk . (A.43)

Invariant Hodge operator definition and properties:

g = det(gµν) , s =
g

|g| , (A.44)

⋆ω =

√
sg

k!(D − k)!
ωµ1...µkg

µ1α1 . . . gµkαkϵα1...αD
dxαk+1 ∧ · · · ∧ dxαD , (A.45)

α ∧ ⋆ β = ⟨α, β⟩ e =
1

k!
α[µ1...µk] βν1ν2...νk g

µ1ν1 . . . gµkνk e , (A.46)

⋆ 1 = e = Vol , (A.47)

⋆2 [ω] = s(−1)(D−k)k ω dim(ω) = k . (A.48)

Invariant volume element:

eM =
√
sg dx0 ∧ · · · ∧ dxd =

√
sg

D!
ϵµ1...µD dx

µ1 ∧ · · · ∧ dxµD . (A.49)

Interior product properties:

iω ◦ eM = ⋆ ω , (A.50)

iω ◦ η = ⟨ω, η⟩ , if dim(ω) = dim(η) , (A.51)

iω ◦ (α ∧ β) = (iω ◦ α) ∧ β + (−1)dim(α)α ∧ (iω ◦ β) , if dim(ω) = 1 . (A.52)
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Integration of differential forms:

Let M be a D-dimensional manifold, Σ a k-dimensional manifold, j : Σ ↪→ N ⊂ M
an embedding map, ω a k-dimensional differential form, ⋆ the D-dimensional invariant
Hodge operator and eM , ηN and eN the volume element of M , of N and the normal
normal volume element such that eM = ηN ∧ eN .

∫︂

N

⋆ω =

∫︂

j(Σ)
iω ◦ eM =

∫︂

Σ
j∗ [iω ◦ (ηN ∧ eN )] =

∫︂

Σ
j∗ [(iω ◦ ηN ) ∧ eN )]

=

∫︂

N

⟨ω, ηN ⟩ eN ,
(A.53)

∫︂

N

ω = (−1)(D−k)ks
∫︂

N

⋆2 [ω] = (−1)(D−k)ks
∫︂

N

⟨⋆ω, ηN ⟩ eN

= s

∫︂

N

⟨ω, ⋆ ηN ⟩ eN .
(A.54)
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