Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE DII

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA AEROSPAZIALE

Ottimizzazione strutturale di specchi per applicazioni spaziali tramite l'utilizzo di reti neurali

Relatore: Prof. Mirco ZACCARIOTTO *Co-relatore:* Prof. Ugo GALVANETTO *Laureando:* Nicolò FUGGINI 1157205

ANNO ACCADEMICO 2018/2019

alla mia famiglia

ed ai miei amici

Abstract

L'obiettivo di questa tesi è quello di progettare una rete neurale che permetta di trovare i parametri della struttura di sostegno in honeycomb di ottiche per applicazioni spaziali ottimale adatta ad un particolare caso, dati i possibili intervalli dei parametri costruttivi (diametro esterno, diametro interno, spessore ed altezza) e fissati i vincoli in termini di massa e rigidezza.

Sono stati sviluppati i modelli in Solidworks, sui quali sono state effettuate le analisi strutturali con MSC Patran-Nastran ed i risultati sono stati utilizzati per allenare la rete neurale progettata in Matlab; sono state studiate molte configurazioni variando i parametri caratteristici, come il learning rate ed il numero di iterazioni, fino ad ottenere quella più adatta alle ottiche per applicazioni spaziali, ottenendo un errore inferiore a 1,7% per la rigidezza ed a 0,5% per la massa.

Si è dimostrato quindi che è possibile effettuare un'ottimizzazione strutturale su sistemi con una complessa geometria fissa estremamente rapida per ottiche per usi spaziali utilizzando una rete neurale, ottenendo i parametri costruttivi contenuti in intervalli definiti dalla particolare applicazione, che rispettano i vincoli forniti e fissata la tipologia del sistema.

Indice

Introduzione	9
1. Deep learning per applicazioni spaziali	
1.1 Stato dell'arte	
1.2 Ottimizzazione strutturale	
2. Componenti ottici per applicazioni spaziali	19
2.1 I materiali utilizzati	
2.1.1 CFRP	20
2.1.2 Leghe di berillio	
2.1.3 ULE glass	
2.1.4 Carburo di silicio	
2.1.5 Zerodur	
2.2 Le tipologie di telescopi	27
2.2.1 Telescopi riflettori e rifrattori	27
2.2.2 Configurazioni dei telescopi	
2.3 Analisi della struttura in honeycomb	
3. Teoria delle reti neurali artificiali	35
3.1 Il neurone biologico	
3.2 Le reti neurali artificiali	
3.3 Le principali tipologie di reti neurali	40
3.3.1 Reti feedforward multistrato	40
3.3.2 Reti ricorrenti	
3.3.3 Reti convoluzionali	
3.4 Addestramento delle reti neurali	
3.4.1 Backpropagation – discess del gradiente	
3.4.2 Apprendimento hebbiano	
3.4.3 Apprendimento competitivo	47
3.5 Vantaggi e svantaggi delle reti neurali	
4. Modelli CAD	51
4.1 Analisi della configurazione e dei parametri	
4.4.1 Configurazione del telescopio	51
4.1.2 Scelta dei parametri caratteristici	
4.2 Costruzione dei modelli	

4.3 Vantaggi e svantaggi della progettazione CAD	60
5. Analisi strutturali dei modelli	63
5.1 Costruzione della mesh	63
5.2 Scelta dei vincoli	66
5.3 Analisi normal modes	67
5.3.1 Caratteristiche dell'analisi	67
5.3.2 Analisi dei risultati ottenuti	69
5.4 Studio della variazione della massa	75
6. Progettazione della rete neurale	77
6.1 Calcolo dell'errore	77
6.2 Studio dei parametri della rete neurale	78
6.2.1 Training set e validation set	78
6.2.2 Funzione di attivazione	80
6.2.3 Learning rate	
6.2.4 Numero di iterazioni	
6.2.5 Numero di hidden layer	
6.2.6 Numero di neuroni totali	85
6.2.7 Distribuzione dei nodi	
6.2.8 Considerazioni sulla progettazione della rete neurale	
6.3 Rete neurale utilizzata	
7. Applicazione e confronto con altri ottimizzatori	
7.1 Applicazione della rete neurale	91
7.2 Confronto con ottimizzatori strutturali	92
8. Conclusioni	
Appendice A – Tabella dei parametri ottenuti dalle simulazioni	97
Appendice B – Codici Matlab	103
Bibliografia	113

Introduzione

La ricerca di strutture ottimizzate nel settore aerospaziale è di fondamentale importanza per la riduzione del peso, e di conseguenza dei costi a parità degli altri parametri, garantendo ottime prestazioni. Gli ottimizzatori presenti in software strutturali, come MSC Patran-Nastran, si basano sulla struttura di base da ottimizzare, sui vincoli imposti e sui carichi dati in input, per fornire in uscita la struttura ideale in termini di rigidezza e massa; non è però possibile riuscire a trovare una struttura i cui parametri fondamentali variano in range dovuti alla particolare applicazione, che sono una diretta conseguenza dell'utilizzo del sistema, riuscendo ad identificare quale sia quella ottimale per il caso particolare. Lo scopo di questa tesi è quello di effettuare uno studio completo delle possibili configurazioni di uno specchio in Zerodur mediante la progettazione di una rete neurale che, funzionando come un ottimizzatore strutturale, permetta di fornire il setup ideale a partire da intervalli di parametri costruttivi fissati, agevolando il confronto tra configurazioni di specchi diverse molto rapidamente e ricavando le grandezze che più influiscono sulle prestazioni, intese queste ultime come massa, rigidezza e distorsione termica: si ottiene quindi un ottimizzatore di facile utilizzo per strutture complesse con una bassa richiesta di potenza computazionale che consente analisi quasi istantanee.

Nei primi tre capitoli verranno illustrati lo stato dell'arte del deep learning per applicazioni strutturali, si forniranno dei cenni generali sulle ottiche per applicazioni spaziali e si tratteranno le principali caratteristiche delle reti neurali artificiali. A partire dal quarto capitolo si mostrerà il lavoro svolto con il processo di costruzione dei modelli CAD utilizzando Solidworks, giustificando i parametri che sono stati assunti; nel quinto e nel sesto capitolo saranno esposte rispettivamente le analisi strutturali svolte con MSC Patran-Nastran e la progettazione della rete neurale in Matlab. I capitoli terminali contengono le applicazioni ed i possibili sviluppi futuri della rete artificiale progettata. Le tabelle che illustrano i parametri ricavati dalle simulazioni strutturali si trovano in appendice A, mentre gli *script* Matlab fondamentali per la progettazione della rete neurale sono in appendice B.

Capitolo 1

Deep learning per applicazioni strutturali

1.1 Stato dell'arte

Al giorno d'oggi tecniche di machine learning vengono utilizzate in quasi ogni settore, dai moderni smartphone alle diagnosi mediche, sfruttando il loro ridotto tempo computazionale, la grande capacità di generalizzazione e la flessibilità operativa. In ambito strutturale però questo tipo di innovazione non si è ancora largamente espansa, nonostante negli ultimi anni stiano cominciando a diffondersi delle possibili applicazioni volte a semplificare sia le simulazioni strutturali che lo studio del comportamento di molti materiali.

Tante delle tecniche di machine learning si basano sul deep learning, ed in particolare sulle reti neurali artificiali, essendo lo strumento ideale per analisi *data driven* con grandi quantità di elementi, riuscendo a riconoscere caratteristiche implicite e tendenze intrinseche ai dati e quindi a classificarli in diverse categorie. Alcuni studi stanno cercando di applicare queste tecniche alla meccanica computazionale, per riuscire ad estrarre delle leggi caratteristiche all'applicazione strutturale, talvolta troppo complicate per essere ottenute dalle grandi quantità di dati di cui si dispone. Usando questo metodo è stato sviluppato un nuovo procedimento di quadratura per le matrici di rigidezza per FEA (*finite element analysis*) dimostrando il raggiungimento di una precisione superiore rispetto alla quadratura di Guass-Legendre standard ottenuta elemento per elemento con lo stesso numero di punti di integrazione, evidenziando la sua applicabilità in molti campi della meccanica computazionale, non dipendendo direttamente dalla specifica struttura matematica della funzione integranda target [1]; questa capacità di generalizzazione permette quindi ai metodi di deep learning di avere un ampio range di applicazione.

Molte delle leggi costitutive dei materiali sono note in funzione di alcuni parametri, come ad esempio le condizioni ambientali; i metodi agli elementi finiti, fondamentali per l'analisi strutturale, si basano sull'ipotesi che il materiale oggetto di studio approssimi quello ideale, il quale si deforma in accordo con il modello costitutivo noto. Talvolta però, per alcuni di essi, queste leggi non fanno riferimento a dei parametri fisici direttamente misurabili, rendendone impossibile l'utilizzo [2,3], obbligando quindi l'implementazione di nuove tecniche, come le reti neurali: molti studi dimostrano che la sostituzione del modello costitutivo del materiale con una rete artificiale, allenata e validata, inserita nel codice FEM (finite element method) ottenendo degli "elementi finiti intelligenti", permette di raggiungere lo stesso livello di accuratezza per materiali dalle caratteristiche facilmente estrapolabili, facilitando il controllo di processo e l'ottimizzazione di parametri [4], ed eccellenti prestazioni per materiali il cui comportamento meccanico è molto complesso da modellare in maniera accurata, come il terreno [5]; nonostante le reti neurali non permettano di ricavare direttamente delle leggi, conservando tutte le informazioni nei pesi delle connessioni tra i vari nodi, il loro impiego in modelli FE permette di ricavare matrici di rigidezza coerenti [6]. Sfruttando in questo modo le reti neurali, un aspetto da considerare per alcuni materiali è quello delle irreversibilità legate al comportamento plastico del materiali; studi recenti [7] hanno dimostrato che un approccio ibrido, usando esperimenti e risultati dell'omogeneizzazione computazionale per il training di una rete neurale multi-scala (HyMNNA, Hybrid Multi-scale Neural Network Approach), permette di simulare il comportamento anisotropo elastico-plastico delle strutture in schiuma: il grande vantaggio consiste nell'apprendimento automatico di accoppiamenti all'interno delle dipendenze funzionali. Le grandi potenzialità in questo settore sono evidenziate dalla possibilità di modellare materiali il cui comportamento sia variabile in funzione del tempo, di tipo rate-dependent, fornendo un sufficiente numero di dati in input, cioè di risposte meccaniche del materiale a forzanti in funzione del tempo, dipendente direttamente dalla particolare applicazione [8].

Un ambito strutturale in cui l'utilizzo di reti neurali è di recente introduzione è quello dell'analisi di piccole cricche a fatica, essendo una delle cause principali di fine vita per componenti strutturali e quindi un importante argomento di studio; nonostante la considerevole rilevanza però non sono ancora stati sviluppati dei modelli accurati che permettano di identifica-re dei criteri per ottenere informazioni su velocità e direzione di avanzamento della cricca. Studi recenti [9] basati sullo sviluppo di reti bayesiane (BN, *Bayesian Network*) hanno permesso di identificare i parametri che per i materiali policristallini più influenzano questi fenomeni, ottenendo più del 65% delle previsioni in accordo con i risultati sperimentali, dimostrandosi una tecnica più efficiente rispetto ai modelli finora elaborati; in figura 1.1 è illustrato il processo utilizzato per ottenere la BN con un approccio *data driven*.

Figura 1.1. Schema del procedimento svolto per determinare i principali fattori della propagazione di piccole cricche a fatica; $X_1, X_2, ..., X_n$ rappresentano le variabili micromeccaniche e microstrutturali [9].

Altri metodi per lo studio della propagazione di cricche si basano su reti neurali feedforward con sette hidden layer testate su leghe di alluminio 7020 T7 e 2024 T3 [10] e reti RBF (*Radial Basis Function*), che sfruttano le funzioni radiali di base ϕ come attivazione dei neuroni sia degli hidden layer che del livello di output, attraverso una sommatoria pesata riportata in Eq. (1.1):

$$f(x) = \sum_{i=1}^{N} w_i \phi(||x - x_i||)$$
(1.1)

Testata inoltre su alluminio 7055-T7511 [11] si verifica un'ottima correlazione con i dati sperimentali ottenendo con una rete *pre-trained* un MSE (errore quadratico medio) di $1,1315x10^{-9}$. Anche in questo settore la capacità di disaccoppiare e di estrarre caratteristiche intrinseche al problema permette di studiare la dipendenza della propagazione delle cricche in funzione di altri fattori, come il SNR (*Signal to Noise Ratio*) [12].

Nelle applicazioni aeronautiche l'utilizzo di pannelli irrigiditi di compositi laminati in parete sottile risulta fondamentale, essendo le strutture in questo ambito molto sensibili alla massa totale del sistema; per questo motivo si rischia il verificarsi del buckling, un fenomeno che raramente causa danni irreversibili agli aeromobili, ma preferibilmente evitabile viste le possibili conseguenze. Le reti neurali si presentano efficacemente come strumento per il calcolo del carico di buckling di questi pannelli soggetti ad uno sforzo di taglio nel piano, e quindi per la loro progettazione e per l'ottimizzazione [13]; eccellenti risultati vengono raggiunti anche con strutture più complesse rispetto ai compositi laminati, come nel caso di strutture *woven* [14]. Tecniche simili sono applicabili a diversi casi particolari, come cilindri in parete sottile sotto carico di compressione assiale [15], travi alveolari in acciaio con sezione ad I [16] e corpi in metallo ottenuti a freddo sotto compressione [17].

Figura 1.2. *Esempto di buckling di una piastra soggetta ad un carico assiale* N_x [18].

Lo studio di materiali compositi risulta quindi fondamentale per soddisfare requisiti di riduzione del peso e di rigidezza per applicazioni aeronautiche; per valutare le effettive caratteristiche di strutture gerarchiche in composito è possibile utilizzare le teorie di omogeneizzazione esistenti, tante volte quanti sono i livelli dell'analisi multi-scala. Nel caso non lineare però, poiché localmente a livello microscopico possono verificarsi comportamenti diversi, è necessario risolvere ad ogni iterazione e per ogni livello un problema alle condizioni al contorno, aumentando esponenzialmente il tempo computazionale che è una delle variabili da minimizzare. Per ovviare a questo problema si è dimostrato che l'utilizzo di reti neurali feedforward permette di ottenere risultati molto più velocemente, prevedendo i campi di tensione e di deformazione sulle *micro-cell* per ogni livello: le reti si distinguono sia per una grande facilità di allenamento che per un'elevata efficienza [18-20]. Alcuni studi hanno anche dimostrato che l'utilizzo di reti neurali permette di analizzare possibili danni causati da impatti a bassa velocità, in quanto spesso non sono visibili direttamente, ma possono portare a fallimenti catastrofici del sistema [21].

Figura 1.3. *Tre esempi di possibili fratture: a) fallimento interlaminare; b) fallimento intralaminare; c) fallimento translaminare* [22].

Per applicazioni strutturali è possibile sfruttare la capacità delle reti neurali, in particolare convoluzionali (CNN, *Convolutional Neural Networks*), di processare le immagini e di riuscire a riconoscere *feature* particolari, dopo essere state allenate sia con il metodo supervisionato che non. In questo modo è possibile identificare, modellare e prevedere caratteristiche multifattoriali e difficili da analizzare come il deterioramento superficiale dei materiali [23]; anche metodi di ispezione NDI (*nondestructive inspection*) per fusoliere di aerei, opportunamente lavati, vengono sempre più implementati utilizzando droni che inviano immagini a reti allenate in modo da individuare le possibili zone critiche, nelle quali si effettuerà un successivo controllo da parte di operatori specializzati, garantendo risparmio sia in termini di costi che di tempo [24].

1.2 Ottimizzazione strutturale

Approcci tradizionali di ottimizzatori strutturali basati su analisi agli elementi finiti per risolvere numericamente questo tipo di problema, si basano su calcoli effettuati su ogni nodo presente nella mesh del sistema, eseguendo queste operazioni in sequenza, quindi un nodo dopo l'altro: ne risulta un metodo molto dispendioso sia in termini di tempo che di memoria; questo limite può essere superato utilizzando le reti neurali, in grado di eseguire le operazioni sui nodi in parallelo, riducendo tempo computazionale e memoria richiesta all'operazione.

Diversi algoritmi sfruttano reti neurali sia feedforward che ricorrenti, in particolare reti *multi-layer* [25], reti di Hopfield (HN) [26] e reti *Mean-Field Annealing* [27], gruppo dell'insieme dei metodi *Boltzmann machine*. Tra i vari metodi è illustrato [28] un esempio di utilizzo di algoritmi DHN (*Discrete Hopfield Network*) per risolvere il WMP (*Weighted Matching Problem*), problema di ottimizzazione semplice ma esemplificativo che sfrutta una rete neurale di

Hopfield ad un solo strato; è stato dimostrato che metodi di ottimizzazione di questo tipo garantiscono una buona convergenza ad una soluzione ottimale locale ed il tempo computazionale risulta essere indipendente dalle dimensioni del problema di ottimizzazione. L'aspetto negativo dell'algoritmo DHN è che il minimo a cui avviene la convergenza è di tipo locale, mentre gli altri due metodi citati in precedenza riescono a identificare un minimo globale, garantendo la soluzione ottimale con maggiore probabilità.

Figura 1.4. *Tipologie di Boltzmann machine: A) fully connected; B) restricted; C) generalizzazione della tipologia restricted* [29].

Un'altra tipologia di ottimizzazione strutturale basata su reti neurali è possibile utilizzandole, dopo averle opportunamente allenate con dati ricavati dalle simulazioni, *post-processing* per prevedere i risultati delle analisi: in questo modo è possibile riuscire ad ottimizzare una struttura fissando i requisiti, che si traducono negli output, ricavando i parametri progettuali possibili, che solitamente si identificano negli input; in questo caso è possibile limitare determinati parametri entro vincoli costruttivi fissati per la specifica applicazione e trovare quindi la struttura ottimale per il particolare caso, che rispetti tutti i requisiti imposti. Questo metodo garantisce un grande risparmio in termini di costo computazionale, fornendo la possibilità di confrontare molti modelli simili, ottenendo quello ottimale; questo ambito di ricerca risulta essere ancora poco sviluppato in quanto sono stati svolti solo pochi studi su piccole porzioni di strutture, come effettuato in [30] per un frammento di ridotte dimensioni di un equilibratore, elemento che consente di poter variare la portanza dell'aeromobile, usato nei "Bryza" di produzione della PZL Mielec, aerei da trasporto leggero polacchi, mostrato in figura 1.5. Questo metodo di ottimizzazione invece non è ancora stato testato con strutture di dimensioni rilevanti.

In questo progetto di tesi, quindi, verrà studiata una struttura per applicazioni spaziali di grandi dimensioni, per riuscire a fornire i parametri costruttivi che ottimizzano quella tipologia di sistema dati i vincoli in termini di massa, rigidezza e distorsione termica.

Figura 1.5. Porzione di equilibratore considerata per l'ottimizzazione in [30], con evidenziati i punti di applicazione dei carichi.

Capitolo 2

Componenti ottici per applicazioni spaziali

2.1 I materiali utilizzati

Le ottiche utilizzate per telescopi spaziali devono rispettare stringenti vincoli in termini di massa, distorsione termica e rigidezza, al fine di garantire un'affidabilità duratura nel tempo e prestazioni di alto livello, senza la necessità di manutenzione; gli specchi devono anche rispondere a requisiti in termini di riflessione della luce, basandosi su questo parametro il corretto funzionamento del telescopio: le scelte del materiale e della configurazione risultano quindi essenziali nella progettazione dei sistemi ottici. Per applicazioni terresti invece è necessario che la struttura di supporto dello specchio riesca a sorreggere la massa dello specchio stesso per lungo tempo, senza indurre curvature indesiderate dell'ottica, permettendo di garantire strutture di sostegno più rigide rispetto alle ottiche per applicazioni spaziali e specchi di dimensioni ancora maggiori; nel caso di ottiche per applicazioni terresti inoltre la manutenzione è più facile, favorendo lo sviluppo di grandi specchi segmentati.

2.1.1 CFRP

Materiali come i CFRP (*Carbon Fiber Reinforced Polymers*) [31,32], dato l'elevato rapporto tra resistenza e massa, sono degli ottimi candidati dal punto di vista strutturale per applicazioni spaziali, ma la difficoltà per raggiungere i requisiti superficiali richiesti per questo tipo di ottiche e la bassa stabilità in orbita, dovuta ad una dipendenza del coefficiente di dilatazione termica dalla temperatura operativa, ne limitano l'utilizzo [33]; l'aspetto positivo dei materiali compositi laminati è quello di poter variare i rispettivi angoli di ogni *ply* al fine di ottenere la struttura adatta all'applicazione, anche se per esigenze costruttive solitamente si utilizzano a 45° e 60° per garantire proprietà quasi isotrope. Per l'utilizzo di questi materiali sono possibili due diverse strategie: la prima prevede l'utilizzo di CFRP per lo strato superiore ed inferiore ed una struttura in honeycomb intermedia, mentre la seconda si basa sull'utilizzo di materiale in fibra di carbonio anche per lo strato intermedio; la prima soluzione garantirebbe la maggiore rigidezza ma, poiché è necessario l'accoppiamento con un substrato di vetro ULE (*Ultra Low Expansion*) in quanto la lucidatura di materiali CFRP non è possibile per soddisfare i requisiti richiesti, talvolta viene utilizzata la seconda configurazione [34].

Figura 2.1. Sezione di uno specchio in CFRP con struttura in honeycomb; in [34] questa struttura interna è sostituita da laminato il CFRP, per studiare la variazione dei rispettivi angoli tra ogni ply.

2.1.2 Leghe di berillio

Altre tipologie di materiali in grado di fornire ottime prestazioni in termini di ridotta massa, elevata rigidezza, capacità di lucidatura per ottenere una superficie perfettamente *polish* e di dilatazione termica sono le leghe di berillio [35]. In tabella 2.1 è illustrato il confronto tra la lega O-30 Be e delle possibili alternative, come una lega d'alluminio ed il magnesio.

Proprietà	Simbolo	ULE	O-30 Be	6061 Al	Mg
Densità	ρ [g/cm ³]	2,21	1,85	2,70	1,74
Modulo elastico	E [GPa]	68	303	68	45
Rigidezza specifica	E/ρ [m²/s²]	$30x10^{6}$	163x10 ⁶	25x10 ⁶	26x10 ⁶
Coefficiente espansione	α[1/K]	0,03x10 ⁻⁶	11,4x10 ⁻⁶	22,5x10 ⁻⁶	24,8x10 ⁻⁶
termica Conducibilità termica	k [W/m*K]	1,3	208	167	156

Tabella 2.1. Confronto delle caratteristiche fisiche tra vetri con basso coefficiente di espansione termica, lega di berillio O-30, lega di alluminio 6061 e magnesio [36].

Si nota che la lega di berillio è caratterizzata da una rigidezza specifica più di 5 volte superiore rispetto ad ULE *glass*, e quasi 7 volte superiore a quella di alluminio e al magnesio: ciò è dovuto ad una minore densità e ad un modulo di Young estremamente elevato. Per quanto riguarda i coefficienti di espansione e conducibilità termica, il vetro ULE è il materiale più performante, seguiti da O-30 Be e 6061 Al per il primo parametro, e da magnesio e dalla lega di alluminio per il secondo [36]. Una delle applicazioni più famose e recenti delle leghe di berillio è legata alla costruzione dello specchio primario del James Webb Space Telescope (JWST), composto da 18 segmenti esagonali affiancati a nido d'ape; tutto lo specchio è stato poi ricoperto con una lamina in oro e successivamente anche con uno strato di silicio amorfo [37].

2.1.3 ULE glass

Come si vede dalla tabella 2.1 un'altra alternativa possibile è il vetro a bassa espansione termica (ULE), il cui coefficiente di dilatazione termica è molto vicino a zero, tipicamente pari a $0 \pm 30 \times 10^{-9} K^{-1}$ per temperature tra i 5 °C ed i 35 °C [38]; esso trova applicazioni sia in grandi specchi monolitici che in quelli segmentati, per telescopi che operano nel visibile, a raggi UV ed infrarossi [39].

Questo tipo di vetro risulta essere tra i materiali più utilizzati sia per applicazioni spaziali, come lo specchio primario del telescopio Hubble, che per applicazioni terrestri, come il telescopio Gemini [40], ma in termini di rigidezza non risulta essere tra i materiali più performanti; per questo motivo talvolta viene utilizzato solo come substrato, mentre il resto dello specchio viene costruito con altri materiali.

Figura 2.2. Espansione termica per ULE glass (fonte: Corning Data Sheet) [41].

2.1.4 Carburo di silicio

Caratteristiche eccellenti sia dal punto di vista termico che da quello strutturale sono tipiche del carburo di silicio (SiC): presenta una rigidezza specifica (E/ρ) di 133 × 10⁶ m^2/s^2 , quindi molto vicina a quella delle leghe di berillio, mentre il coefficiente di dilatazione termica è solo di un ordine di grandezza superiore a quello dell'ULE glass a 100 K; l'aspetto negativo principale è la sua dipendenza dalla temperatura, soprattutto per gli alti valori, come si vede in tabella 2.2.

Tabella 2.2. Variazione del coefficiente di espansione termica del carburo di silicio (SiC) in funzione della temperatura [42].

Temperatura [K]	Coefficiente di espansione termica [1/K]		
100	$0,6 \times 10^{-6}$		
200	$1,3 \times 10^{-6}$		
293	$2,0 imes 10^{-6}$		
400	$3,2 \times 10^{-6}$		

Il modulo di Young è di 420 *GPa*, molto maggiore rispetto a tutti i materiali già esaminati, ma la sua densità varia tra i $3,10 \ g/cm^3$ ed i $3,19 \ g/cm^3$ in base al livello di sinterizzazione, causando un aumento di massa molto rilevante [42].

2.1.5 Zerodur

Lo Zerodur (ZERODUR[®]) è un materiale vetroceramico inventato da SCHOTT, azienda tedesca specializzata nella produzione di vetroceramiche, nel 1968; nello stesso anno Zerodur divenne un marchio registrato e SCHOTT accettò il primo ordine per undici substrati, dando inizio alla sua rivoluzionaria diffusione nell'ambito astronomico. Il primo materiale della classe dei vetroceramici venne inventato da Stanley Stookey nel 1954 negli USA; l'annuncio venne diffuso nel 1957, anno nel quale la SCHOTT si impegnò nella ricerca nell'ambito di questa nuova classe di materiali per acquisire conoscenza concentrandosi principalmente sui vetroceramici con la composizione basata su LiO₂-Al₂O₃-SiO₂. Negli anni successivi gli scienziati della SCHOTT scoprirono che materiali vetroceramici con basso coefficiente di dilatazione termica potevano essere molto interessanti per specchi di telescopi; il problema principale dell'applicazione nel settore astronomico riguardava l'assenza di investimenti, in Germania, per lo sviluppo di telescopi negli anni precedenti: i due telescopi tedeschi che vantavano i diametri maggiori, 72 centimetri ed 1 metro, erano stati costruiti rispettivamente nel 1906 e nel 1910, mentre negli Stati Uniti il telescopio Hale, nell'osservatorio del monte Palomar, raggiungeva i 5 metri di diametro ed era stato ultimato nel 1948.

Questa situazione si prolungò fino agli anni 60, quando la ricerca scientifica in ambito astronomico si sbloccò ed il direttore dell'osservatorio dell'Università di Heidelberg contattò SCHOTT per la produzione di vetroceramiche con basso coefficiente di dilatazione termica a temperatura ambiente, giungendo così alla produzione di Zerodur [43].

Figura 2.3. Esempio di specchio in Zerodur con sostegno in honeycomb di forma triangolare [46].

Il primo telescopio basato su uno specchio in Zerodur è stato costruito nel 1975 in Spagna, a Calar Alto; nel 1986 si ha un'altra pietra miliare in questo ambito con la prima ottica attiva nel *New Technology Telescope* (NTT) dell'*European Southern Observatory* (ESO) a Cerro la Sila in Cile, con un diametro di 3,6 metri. In questi anni inizia anche lo sviluppo di specchi segmentati per applicazioni terrestri, con 43 dischi esagonali per il telescopio Keck I, per un diametro complessivo di 10 metri.

Per quanto riguarda le applicazioni spaziali dello Zerodur, le prime furono specchi secondari e terziari, oltre che alcuni componenti strutturali, ideali per garantire una grande diminuzione dei costi grazie alla riduzione della massa, mantenendo una grande resistenza ai gravosi carichi del lancio. Una serie di applicazioni abbastanza recenti ha inoltre dimostrato il mantenimento delle performance per lunghi tempi in orbita, nonostante il lento degrado dovuto all'ambiente ostile spaziale [44].

La costellazione di satelliti meteorologici Meteosat ha fatto largo uso di Zerodur, soprattutto per la fine della prima generazione e per i primi satelliti della seconda, come il MSG-1 e il MSG-2 (poi denominati rispettivamente Meteosat-8 e Meteosat-9) tuttora operativi, che termineranno la loro missione tra il 2020 ed il 2024.

Oltre all'osservazione terrestre, come i satelliti SPOT, da SPOT-1 a SPOT-5, lanciati dal 1990 al 2002, anche molte missioni di esplorazione spaziale hanno fatto uso di specchi in Zerodur:

- → lo specchio secondario di Hubble, un iperboloide convesso con raggio di curvatura di 1,36 metri e dal peso di 12,3 kg, con un diametro di 308 mm;
- → telescopio Wolter, ad incidenza radente, di forma conico-cilindrica cava per l'osservazione nella banda dei raggi X, usato sia da ROSAT, lanciato nel 1990, che da CHANDRA, lanciato nel 1999;

 \rightarrow ottica di Giotto, che fotografò e studiò la cometa di Halley [45].

Figura 2.4. Configurazione del telescopio Hubble, con evidenziate alcune componenti, tra cui lo specchio secondario in Zerodur [46].

Lo Zerodur è un materiale vetroceramico inorganico non poroso con coefficiente di dilatazione termico molto basso: a temperatura ambiente tra i 0 °*C* e i 50 °*C* l'espansione termica netta ottenuta con una accuratezza di 0 \pm 20 *ppb/K*, è praticamente nulla; inoltre, grazie al mantenimento della temperatura nel processo di lavorazione e alle fasi di fusione e colata tecnologicamente molto sviluppate, si ha un'estrema omogeneità non solo all'interno del pezzo stesso, ma ottenibile anche con un'elevata riproducibilità.

Grazie alla sua eccellente lucidabilità gli specchi Zerodur, con rugosità superficiale di 0,2 nm rms e una differenza della superficie ottica rispetto a quella ideale (*optical figure*) di circa lambda/100 sono eccellenti per applicazioni spaziali. Lo Zerodur presenta inoltre un'elevata

stabilità chimica, che rende possibile rimuovere ed applicare centinaia di volta il rivestimento di alluminio senza influenzare le caratteristiche ottiche dello specchio [47,48].

La trasparenza, tipica dei materiali vetrosi, permette ispezioni in profondità nel materiale e si manifesta come un vantaggio nella misura della tensione volumetrica interna, che è bassa e distribuita simmetricamente, in quanto essa è la causa della birifrangenza che viene misurata abbastanza facilmente tramite una differenza di percorso ottico, tra quello che dovrebbe essere ottenuto e quello che viene effettivamente eseguito [49].

In tabella 2.3 sono illustrate le caratteristiche fondamentali dello Zerodur, che lo rendono tra i materiali più considerati per le applicazioni spaziali definite *lightweight*, cioè con la minima massa possibile.

Tabella 2.3. *Caratteristiche fisiche dello Zerodur, materiale utilizzato per lo studio delle ottiche per applicazioni spaziali* [47,49].

Parametro	Valore assunto
Modulo di Young (E) [GPa]	90,3
Modulo di Poisson (v)	0,24
Densità (ρ) [g/cm^3]	2,53
Coefficiente di espansione termica tra $0^{\circ}C$ e $50^{\circ}C(\alpha)$ [1/K]	$0 \pm 0,02 \cdot 10^{-6}$
Conducibilità termica a 20 °C (λ) [$W/(m \cdot K)$]	1,43
Calore specifico a 20 °C (c_p) [$J/(g \cdot K)$]	0,8
Temperatura massima (K)	873
Numero di Abbe (<i>v_d</i>)	56,1

2.2 Le tipologie di telescopi

I telescopi possono essere di diverse tipologie ed avere configurazioni dovute alla particolare applicazione alla quale sono destinati, rendendo necessario uno studio particolareggiato per ogni caso analizzato.

2.2.1 Telescopi riflettori e rifrattori

I telescopi possono essere principalmente di due tipologie: riflettori, se si basano solamente sull'utilizzo di specchi, e rifrattori, se invece sfruttano le proprietà delle lenti per concentrare la luce; nel caso vengano sfruttati entrambi questi elementi si parla di telescopi catadiottrici.

Nei telescopi a riflessione lo specchio primario è l'elemento fondamentale che, grazie alla sua curvatura, crea un'immagine sul suo piano focale: la distanza tra lo specchio e questo piano è detto lunghezza focale del primario. Per ricevere l'immagine possono essere utilizzati dei sensori digitali oppure sfruttare un altro specchio, detto specchio secondario, che reindirizza la luce in un'altra direzione, dove sono posizionati degli appositi sensori; questo ultimo tipo di configurazione è quella che viene utilizzata maggiormente per telescopi di grandi dimensioni, sia per applicazioni terrestri che per quelle spaziali. Generalmente lo specchio principale è formato da un cilindro solido vetroso, la cui superficie frontale è stata rettificata a forma sferica, iperbolica o parabolica, ed un sottile strato di alluminio viene depositato sotto vuoto sullo specchio, garantendo una superficie altamente riflettente in grado di concentrare la maggior quantità di luce possibile nella direzione obiettivo [50].

I telescopi rifrattori sono invece caratterizzati da un obiettivo che, sfruttando delle lenti, si comporta come se fosse un prisma, scomponendo e ricomponendo la luce in un punto che viene determinato dalla lunghezza d'onda del sistema. Solitamente questo tipo di telescopio utilizza delle lenti in vetro opportunamente drogate con altri elementi, tra cui il piombo [51].

Per telescopi di diametro superiore ai 2 metri si ha l'uso esclusivo di riflettori perché le lenti per i rifrattori sarebbero troppo costose e pesanti, rendendone impossibile la realizzazione. Telescopi riflettori, così come tutti gli altri sistemi ottici, non producono immagini perfette, anche se non si verifica l'aberrazione cromatica tipica dei telescopi rifrattori, essendo presenti degli effetti che distorcono l'immagine in base alla forma dello specchio. Utilizzando uno specchio sferico infatti non si riescono a concentrare i raggi riflessi in un fuoco comune, effetto definito aberrazione sferica, mentre per specchi parabolici si hanno altre forme di aberrazioni ottiche, come la distorsione, che genera una deviazione dalla proiezione rettilinea.

Quando si parla di aberrazione si intende la differenza tra l'immagine che permette di ottenere il sistema ottico e l'immagine reale, che si vuole ottenere.

Le aberrazioni possono essere di due categorie: assiali e fuori asse (extra-assiali), in base al fatto che si verifichino lungo l'asse o meno. Le principali aberrazioni assiali sono quella cromatica e quella sferica, mentre quello extra-assiali sono il coma, l'astigmatismo, la distorsione e la curvatura di campo. L'aberrazione cromatica è dovuta al legame tra l'indice di rifrazione di una lente ed una determinata lunghezza d'onda: nel caso incida quindi una luce policromatica si ha una dispersione a causa del diverso indice di rifrazione per diverse lunghezze d'onda, quindi questo effetto si verifica solo in telescopi rifrattori; l'aberrazione sferica si verifica nel caso dell'utilizzo di specchi sferici, nei quali i raggi più vicini all'asse ottico vanno a fuoco più lontani rispetto a raggi meno vicini all'asse stesso: questa tipologia di specchi però è di più facile costruzione ed è esente da aberrazioni extra-assiali; il coma, definita anche aberrazione sferica trasversale, è un effetto di difficile correzione per il quale i raggi periferici vengono deviati diversamente, quindi l'intersezione dei raggi ottici riflessi non è simmetrica rispetto all'asse: la larghezza è definita come sagittale, mentre l'altezza è denominata tangenziale; l'astigmatismo si verifica quando uno specchio ha curvature diverse in differenti direzioni: si ottiene quindi una riflessione più vicina di punti sullo stesso piano orizzontale e più lontana di punti sul piano verticale ottenendo un'immagine intrafocale orizzontalmente ed extrafocale verticalmente; la distorsione è una variazione della scala dell'immagine rispetto all'oggetto reale in funzione della distanza: si possono avere distorsioni positive (a cuscino), o negative (a barilotto); la curvatura di campo varia il piano su cui si ha il fuoco migliore per raggi provenienti da distanze diverse da oggetti fuori asse, mettendo a fuoco su una superficie sferica [52].

I principali vantaggi di telescopi riflettori rispetto a quelli rifrattori sono le assenze di aberrazione cromatica e di problematiche legate alle caratteristiche di trasparenza/opacità dei materiali con cui sono costruite le lenti comportando a livello pratico una più facile progettazione e costruzione.

Figura 2.5. Due esempi di aberrazioni extra-assiali, il come e l'astigmatismo, confrontati con un'immagine senza aberrazioni [53].

2.2.2 Configurazioni dei telescopi

Le principali configurazioni di telescopi sono: newtoniana, gregoriana, Cassegrain, Schmidt-Cassegrain e Ritchey-Chretien. Per i telescopi newtoniani lo specchio primario è solitamente parabolico mentre il secondario è inclinato di 45° per raccogliere l'immagine focale su un lato del telescopio [54], a differenza di quelli gregoriani, nei quali il primario parabolico convoglia la luce in un fuoco che si trova davanti al secondario, il quale è ellittico e crea un'immagine perfetta in un secondo fuoco, dove viene posto l'oculare [55].

Figura 2.6. Due configurazioni per telescopi: a) newtoniana [54]; b) gregoriana [55].

Altre due configurazioni molto importanti, da analizzare insieme in quanto una dipende dall'altra, sono quella di Cassegrain e quella di Schmidt-Cassegrain. La prima presenta uno specchio principale a sezione parabolica ed un secondario a sezione iperbolica; un telescopio di questo tipo che inaugurò una nuova era fu il *Multiple Mirror Telescope* (MMT) formato da sei specchi diversi, ma convertito nel 2000 a telescopio monolitico, con un singolo specchio del diametro di 6,5 metri; la seconda configurazione invece è quella di Schmidt-Cassegrain, ottenuta applicando l'idea di Schmidt di utilizzare una lente per correggere l'aberrazione sferica alla configurazione Cassegrain: la luce passa prima dalla lente, le cui caratteristiche dipendono dallo specchio principale, viene riflessa dal primario fino al secondario, dal quale raggiunge l'oculare tramite il foro al centro del primario. In questo caso si parla di configurazione catadiottrica perché vengono usati sia specchi che lenti.

In questo progetto di tesi la configurazione studiata è quella di Ritchey-Chretien, evoluzione di quella di Cassegrain, che sfrutta sia lo specchio primario che quello secondario iperbolici in modo da eliminare le aberrazioni fuori asse; i raggi di curvatura dei due specchi sono calcolabili tramite l'Eq. (2.1) per il principale (R_P) e l'Eq. (2.2) per il secondario (R_s):

$$R_P = -\frac{2DF}{F - B} \tag{2.1}$$

$$R_s = -\frac{2DB}{F - D - B} \tag{2.2}$$

$$F = f1 \frac{(F - B - D)}{f1 + F}$$
(2.3)

dove D è la distanza tra i due specchi, B è la distanza tra il secondario ed il fuoco (*back focal length*), F è la lunghezza focale effettiva (*effective focal length*) del sistema ottico valutata tramite l'Eq. (2.3) e f l è la distanza focale dello specchio primario; le grandezze caratteristiche, dalle quali sono ricavabili tutti gli altri parametri geometrici sono illustrati in figura 2.7, nel quale F_1 e F_2 rappresentano rispettivamente il fuoco dello specchio principale e quello del secondario, nei quali converge la luce.

Questa configurazione è una delle più usate perché, oltre a non soffrire di coma, garantisce un *field of view* maggiore rispetto alle altre tipologie; si ottiene inoltre un piano focale piatto, condizione necessaria per non avere bordi sfocati delle immagini ricavate.

Figura 2.7. Configurazione Ritchey-Chretien, in cui sono evidenziate la lunghezza focale del primario (f1), la distanza tra gli specchi (D) e la back focal length (B); si nota inoltre la somiglianza alla configurazione Cassegrain [56].

2.3 Analisi della struttura in honeycomb

Le strutture a nido d'ape (honeycomb) manifestano eccellenti proprietà strutturali in termini di resistenza, rigidezza e tenacità, garantendo un'elevata riduzione della massa del sistema; vengono utilizzate in strutture *lightweight*, come i nuclei dei pannelli a sandwich, molto importanti sia nel settore automobilistico che in quello aeronautico. Sono molto interessanti anche le caratteristiche che riguardano l'aspetto termico, essendo molto resistenti al calore, funzionando quindi come materiali isolanti. Le forme delle strutture in honeycomb più utilizzate sono quelle che sfruttano i triangoli equilateri o gli esagoni; analizzando la tensione limite a compressione (*ultimate compression stress*) si nota che è la forma circolare a garantire il valore medio maggiore con 6,82 *MPa* contro i 4,54 *MPa* del caso esagonale e 2,52 *MPa* del caso triangolare, evidenziandone l'incremento in funzione dell'aumento dei lati del poligono della base, fino ad arrivare allo sviluppo in una circonferenza. La configurazione a celle triangolari mostra però uno *strain recovery rate* maggiore rispetto alle altre forme: in termini di altezza percentuale recuperata, partendo da un valore di spessore percentuale uguale, si osservano migliori prestazioni per i triangoli, seguiti da esagoni e cerchi (figura 2.8) [57]. La forma triangolare inoltre evidenzia migliori caratteristiche meccaniche (rigidezza e resistenza *in-plane*), ma una peggiore performance per la dissipazione di calore tramite convezione forzata, che trova buone prestazioni con forme quadrate ed esagonali: in questa tesi saranno analizzate ottiche per applicazioni spaziali in Zerodur, quindi quest'ultima caratteristica non è di notevole interesse per lo studio effettuato.

È stato inoltre dimostrato che celle triangolari sono adatte ad applicazioni ad alto modulo a causa dell'elevata connettività nodale, mentre quelle esagonali e quadrate, essendo dominate da fenomeni flessionali, sono funzionali ad applicazioni con strutture flessibili [58].

Figura 2.8. Andamento del recupero % dell'altezza di strutture in honeycomb con forme triangolare, esagonale e circolare [57].

In letteratura molti studi [59-62] basati su strutture in honeycomb sfruttano la forma triangolare per la sua maggiore stabilità ed elevata rigidezza [63]; per questo motivo nella successiva trattazione è stato scelto di utilizzare una struttura di questa forma. La grande applicabilità di celle triangolari è dovuta anche ad una semplificazione progettuale e costruttiva.

Figura 2.9. *Rappresentazione di uno specchio con struttura di supporto in honeycomb con base triangolare non forata* [61].

Nel caso di utilizzo di strutture in honeycomb gerarchiche (MHH, *Multifunctional Hierarchical Structures*), quelle basate sui triangoli si dimostrano essere quelle più performanti: è stato dimostrato [64] che la sostituzione di una struttura classica in honeycomb esagonale (ORHH, *original regular hexagonal honeycomb*) con sistemi isotropi di uguale massa gerarchici dotati di *sub-structures* con celle esagonali, triangolari o di Kagome, permette di ottenere un miglioramento delle prestazioni: per le ultime due configurazioni, si verifica un aumento dei moduli di Young e di taglio da uno a tre ordini di grandezza, mentre nel caso di strutture gerarchiche con celle esagonali il miglioramento è molto inferiore rispetto agli altri due casi studiati, ma comunque rilevante rispetto a quanto si ottiene dalle analisi sulla struttura ORHH. Il problema principale di strutture gerarchiche di questo tipo consiste nelle grandi difficoltà costruttive, data la complessa configurazione geometrica, come si vede in figura 2.10.

Figura 2.10. *Rispettivamente: a) struttura con celle esagonali originale (ORHH); b) struttura gerarchica con micro-celle triangolari; c) sotto-struttura triangolare in evidenza, particolare di b)* [64].

Capitolo 3

Teoria delle reti neurali artificiali

Le reti neurali artificiali (ANN) sono una famiglia di tecniche di apprendimento automatico, appartenenti alla classe del deep learning, e sono composte da strati di neuroni interconnessi tra loro, con un'architettura analoga a quella dei neuroni biologici.

3.1 Il neurone biologico

Lo sviluppo delle reti neurali prende ispirazione dalla biologia, in quanto il funzionamento delle reti artificiali rispecchia quello del cervello, basato su più neuroni interconnessi che lavorano in parallelo, i quali elaborano un input, producendo un output che sarà inviato ai neuroni successivi.

Il neurone biologico è formato da un corpo centrale, detto soma, nel quale si ha il nucleo; ad esso sono collegati i dendriti, che ricevono i segnali da altri neuroni vicini e lo trasportano verso il corpo cellulare, e l'assone, che conduce il segnale di output in direzione delle altre cellule circostanti. Questi due neuriti differiscono, oltre per il compito svolto, nella forma: i dendriti si assottigliano dalla parte iniziale a quella terminale e non sono dei buoni conduttori facendo calare l'intensità dei segnali, mentre l'assone ha sezione costante e, essendo avvolto da mielina, risulta essere un ottimo conduttore. Il neurone è caratterizzato da due possibili stati: uno stato attivo, durante il quale si ha il passaggio di segnali, ed uno di riposo, nel quale i neuroni sono polarizzati e si manifesta una differenza di carica tra l'interno e l'esterno e non si ha passaggio di informazione attraverso i neuriti. In un neurone biologico, quindi, l'input è composto da una combinazione di segnali che vi giungono attraverso i numerosi dendriti collegati; i segnali in input possono essere sia eccitatori che inibitori, comportando un diverso valore da attribuire ad ognuno di esso. La combinazione dei segnali in input, se viene superato il valore di soglia, stabilisce l'attivazione del neurone lasciando fluire attraverso l'assone i segnali elaborati; in caso contrario il neurone non si attiva ed il segnale non viene trasmesso.

Un aspetto molto interessante del funzionamento del cervello è la sua capacità di variare continuamente i pesi delle interconnessioni, rendendo possibile la classificazione e la generalizzazione degli stimoli ricevuti dall'esterno favorendo l'adattamento apprendendo dai segnali passati e di conseguenza allenandosi per agevolare l'apprendimento, permettendo di elaborare più rapidamente e correttamente i nuovi dati [65].

Figura 3.1. Rappresentazione di un neurone biologico, con evidenziati gli elementi fondamentali [66].
3.2 Le reti neurali artificiali

Le reti neurali artificiali, artificial neural network (ANN), si basano sul funzionamento del cervello animale, definendo il corpo centrale come un modello matematico, detto nodo, caratterizzato da una funzione di attivazione, un valore di soglia ed eventualmente un bias. Ogni nodo riceve in input un insieme di segnali (x) dalle unità precedenti; questi segnali raggiungono il neurone dopo essere stati pesati (w) e la loro combinazione (c), dopo aver sommato algebricamente il bias (b) se presente, diventa la variabile della funzione di attivazione (f), determinando l'attivazione, o la mancata attivazione, del neurone. In figura 3.2 è illustrata la serie di operazioni che vengono svolte dal neurone [67]. Una rete neurale è quindi un insieme di nodi ordinati in strati, detti layer, collegati tra loro da pesi. Il primo strato è detto layer di input, l'ultimo è il layer di output, mentre quelli intermedi sono definiti hidden layer, e non sono accessibili dall'esterno in quanto tutte le caratteristiche della rete completa sono conservate nelle matrici che definiscono i pesi; la tipologia della rete determina il tipo di collegamenti che sono presenti tra i nodi di strati diversi e tra quelli dello stesso layer. Per facilità di comprensione per illustrare gli elementi caratteristici delle reti neurali verrà utilizzata la tipica configurazione feedforward, nella quale ogni nodo è collegato a quelli dello strato precedente, dai quali riceve gli input, e a quelli dello strato successivo, ai quali fornisce l'output, come è già stato fatto in figura 3.2.

Figura 3.2. *a)* Rappresentazione del funzionamento di un nodo di una rete neurale; b) Operazioni effettuate da una sequenza di neuroni in una rete artificiale feedforward [67].

La scelta della funzione di attivazione determina la sostanziale differenza con il corrispettivo neurone biologico: in quest'ultimo la somma degli impulsi in ingresso viene trasmessa direttamente agli assoni se la soglia viene superata, comportandosi sostanzialmente come un modello di regressione lineare, approssimando la distribuzione di dati con una retta, mentre l'utilizzo di una funzione non lineare permette, invece, di avere una migliore rappresentazione dei segnali, senza considerare che talvolta una regressione lineare non è utilizzabile (ad esempio per una distribuzione circolare).

Le funzioni di attivazione principali, illustrate in figura 3.3, sono:

→ funzione a gradino: rispecchia il funzionamento delle reti biologiche perché in uscita si ottiene un valore nullo nel caso di ingresso negativo, ed un output pari ad 1 per input positivi:

$$f(x) = \begin{cases} 0 \ se \ x < 0 \\ 1 \ se \ x \ge 0 \end{cases}$$
(3.1)

I problemi principali dell'utilizzo di questa funzione sono la non differenziabilità perché nel punto in cui si ha la variazione del segno non esiste la derivata, fondamentale per il calcolo del gradiente ed il conseguente aggiornamento dei pesi, e la poca stabilità, in quanto la variazione del peso su una funzione potrebbe determinare un miglioramento per un input ed un peggio-ramento per un altro, rendendo molto difficile sia il controllo che la convergenza;

→ funzione sigmoidea: come per la funzione a gradino fornisce in output un valore compreso tra 0 e 1, ma il passaggio è molto più graduale ed ha una forma a S. La convergenza è molto lenta e per input molto alti o molto bassi la derivata tende ad annullarsi, causando problemi di *vanishing gradient*:

$$\sigma(z) = \frac{1}{1 + e^{\sum_j - w_j x_j - b}}$$
(3.2)

→ funzione ReLU (*rectified linear unit*): per valori di input negativi fornisce un'uscita nulla, mentre per valori positivi lascia i parametri invariati. In questo modo il calcolo della derivata è molto semplice, essendo 0 per i valori negativi (e per il punto angoloso dell'origine, per convenzione) ed il valore in ingresso per i parametri in input positivi:

$$f(x) = x^{+} = \max(0, x)$$
(3.3)

 \rightarrow funzione tangente iperbolica:

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
(3.4)

 \rightarrow funzione logistica:

$$f(x) = \frac{1}{1 + e^{-x}} \tag{3.5}$$

Per le reti neurali sono fondamentali sia l'allenamento che la valutazione dell'errore: per questo motivo si suddividono i dati in *training set*, *validation set* ed eventualmente un *testing set*. Il primo gruppo viene utilizzato per l'allenamento della rete neurale e contiene gli input ed i rispettivi output corretti essendo necessario il *training* supervisionato: esso di solito è formato circa del 70-80% dei dati totali. Il secondo viene utilizzato per la validazione, cioè per valutare l'accuratezza della rete neurale tramite il calcolo dell'errore di previsione che viene scelto di utilizzare nel caso particolare (solitamente tra RMSE, NRMSE e MAPE). Il terzo permette di testare la rete, quindi consiste nell'utilizzo reale della rete progettata. In alcune trattazioni, come in questa tesi, il *testing set* viene omesso oppure inglobato nel *validation set*.

Figura 3.3. Tre delle funzioni di attivazione più utilizzate per le reti neurali con grafici prodotti utilizzando degli script Matlab: a) funzione a gradino di Heaviside, Eq. (3.1); b) funzione sigmoidea, Eq. (3.2); c) funzione ReLU, rectified linear unit, Eq. (3.3).

3.3 Le principali tipologie di reti neurali

3.3.1 Reti feedforward multistrato

Le reti feedforward sono quelle con l'architettura più semplice, essendo composte da un layer di input, uno o più hidden layer ed un layer di output; ogni neurone ha in ingresso i parametri in uscita dallo strato precedente e non sono possibili connessioni trasversali tra nodi dello stesso layer o cicli nei quali l'output viene inviato a strati precedenti: il flusso di informazioni quindi procede in una sola direzione e l'output di ogni ciclo è determinato solo dall'input attuale. Essendo una tipologia di rete molto semplice è di gran lunga quella più utilizzata; nel caso i neuroni presenti in questa rete fossero percettroni, si parlerebbe di *Multilayer Perceptron* (MLP), cioè percettrone multistrato [68].

Figura 3.4. *Rappresentazione di una generica rete neurale feedforward con L-1 hidden layer e n_x nodi di input* [69].

3.3.2 Reti ricorrenti

Le reti ricorrenti (*recurrent neural networks*) sono caratterizzate da connessioni di feedback sia verso neuroni dello stesso strato, che in direzione di neuroni degli strati precedenti, come nel caso della figura 3.5, complicando l'addestramento rispetto a reti feedforward. In queste reti si ha un comportamento dinamico, in quanto ogni neurone ricorda le informazioni contenute fino al successivo passaggio temporale, trasformandosi di conseguenza in una piccola cella di memoria: ogni volta che viene utilizzata la rete essa aggiorna le sue previsioni in base ai dati visti in precedenza, quindi l'output non dipende solo dall'input attuale. Queste reti sono sfruttate dai software di auto-previsione utilizzati anche dai moderni smartphone.

Figura 3.5. *Esempio di una rete neurale ricorrente, con due nodi di input ed uno di output, e due hidden layer* [70].

Una delle reti ricorrenti più utilizzate è quella di Hopfield ideata nel 1982, in grado di simulare le capacità del cervello umano di ricordare le cose e di produrre una memoria associativa, adatta a ricostruire immagini distorte ed a recuperare alcune informazioni mancanti; questa tipologia di rete rappresenta un esempio di apprendimento non supervisionato e si basa sulla minimizzazione di una funzione di energia, considerata come una funzione di Lyapunov, che nel caso discreto diventa l'Eq. (3.6) [71]

$$E = -\frac{1}{2} \sum_{i} \sum_{\substack{i \ j \neq i}} v_i w_{ij} v_j - \sum_{i} I_i v_i + \sum_{i} U_i v_i$$
(3.6)

I nodi delle reti di Hopfield sono unità di soglia binarie, quindi possono assumere solo sue stati, tipicamente 1 quando viene superato il valore di attivazione e -1 quando ciò non accade; talvolta viene utilizzato il valore nullo invece di -1, ma solamente in casi rari. Vi sono inoltre due restrizioni fondamentali per i nodi di una rete di questo tipo:

- \rightarrow simmetria: $w_{ij} = w_{ji} \forall i, j;$
- → nessun nodo può essere auto-connesso: $w_{ii} = 0, \forall i [72].$

3.3.3 Reti convoluzionali

Le reti neurali convoluzionali (*convolutional neural networks*) presentano un'architettura ottimale per il rilevamento di *pattern* e per il riconoscimento di immagini, campi definiti di classificazione, in cui sono le reti artificiali più utilizzate; gli hidden layer per questa configurazione sono di tre tipi diversi: convoluzionale, di attivazione (ReLU) e *pooling*, evidenziate in figura 3.6. La convoluzione applica all'input dei filtri, detti filtri convoluzionali, in grado di attivare determinate *feature* delle immagini; l'attivazione, o ReLU (unità lineare rettificata), mappa come valori nulli quelli negativi mantenendo solo valori positivi, facendo transitare quindi solo le caratteristiche attivate in precedenza; il *pooling* riduce i parametri necessari da apprendere per la rete, effettuando un sottocampionamento non lineare.

Figura 3.6. *Rappresentazione di una CNN (convolutional neural network) seguita da un classificatore lineare feedforward per il riconoscimento di un'immagine* [73].

Queste tre operazioni sono ripetute su decine o centinaia di layer in base alla complessità dell'input della rete e, poiché ogni strato contiene una "*feature map*", ognuno di essi permette di caratterizzare una proprietà dell'input: al termine del processo di *feature learning* gli output vengono forniti come ingresso ad una rete *fully connected* che permette la classificazione dell'immagine; solitamente in output si ha un valore percentuale che indica la confidenza con la quale si stabilisce la categoria dell'input: per reti ben progettate ed allenate si avrà un valore molto alto per la categoria corretta, mentre nel caso di reti non adatte si avranno valori vicini tra loro [74].

Si parla di rete convoluzionale in quanto viene effettuata una convoluzionale tra il vettore w, detto filtro, ed il vettore x, che è il vettore contenente gli input in una finestra h; si ottiene così una nuova *feature*; per esempio una caratteristica c_i generata da una finestra $x_{i:i+h-1}$ è data da:

$$c_i = f(w \cdot x_{i:i+h-1} + b)$$
(3.7)

dove f indica la funzione di attivazione non lineare, ad esempio la tangente iperbolica in Eq. (3.4) e b l'eventuale bias [75].

L'applicazione di molteplici filtri permette di determinare la *feature map* introdotta in precedenza, che consiste nel vettore *c* contenente tutte le caratteristiche estratte come visto per c_i in Eq. (3.7).

3.4 Addestramento delle reti neurali

L'addestramento di una rete neurale consiste nel determinare i valori dei pesi delle connessioni tra tutti i nodi e gli eventuali bias, in modo tale da mappare il più accuratamente possibile le relazioni che sussistono tra input e output.

3.4.1 Backpropagation – discesa del gradiente

Il metodo di retropropagazione dell'errore (*backpropagation*) venne utilizzato per la prima volta negli anni Settanta, ma la sua importanza venne riconosciuta solo nel 1986, quando David Rumelhart, Ronald Williams e Geoffrey Hinton pubblicarono un articolo nel quale dimostrarono che la retropropagazione è un metodo molto più rapido degli approcci precedente utilizzati [69]. La *backpropagation* si basa su due fasi: la fase in avanti (*forward*) nella quale si percorre la rete e si valuta l'errore all'uscita come differenza tra l'output corretto e quello da ottenere, e la fase all'indietro (*backward*) cioè la retropropagazione propriamente detta, nella quale si propaga in direzione opposta il segnale e si aggiustano i pesi per ridurre l'errore in uscita. La retropropagazione quindi regola i parametri della rete neurale nella direzione del minor errore e si basa solitamente sull'applicazione del metodo della discesa del gradiente, che garantisce di trovare il minimo locale della funzione di costo, indicando la direzione di variazione dell'errore da seguire; è inoltre possibile trovare un minimo globale effettuando ripetutamente la ricerca dei minimi locali e confrontandoli tra loro. Basandosi sulla minimizzazione

di una funzione costo, la tecnica di addestramento di discesa del gradiente, varia in base al tipo di problema da studiare e all'errore generato, dai quali dipende direttamente la funzione scelta da minimizzare [76]. La funzione di costo, o di perdita, più utilizzata è definita come:

$$E[\vec{w}] = \sum_{i=2}^{M} \frac{1}{2} (d_i - y_i)^2$$
(3.8)

dove $d_i - y_i$ è definito come l'errore e_i dato dalla differenza tra il valore obiettivo d_i e l'output ottenuto y_i , mentre M è il numero di elementi. Si nota che per questo metodo è necessario conoscere gli output esatti della rete, quindi è utilizzabile solo per la classe di apprendimento automatico supervisionato, come le reti neurali.

La minimizzazione dell'errore avviene modificando i pesi in direzione opposta al gradiente, in modo tale da avere la discesa più ripida possibile seguendo la *delta rule* che può essere schematizzata secondo i seguenti passi:

$$\Delta w_{i,i} = \alpha \delta_i x_i \tag{3.9}$$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j} \tag{3.10}$$

con $\delta_i = \varphi'(v_i)e_i$ dove φ' è la derivata della funzione di attivazione, v_i è la somma pesata del nodo di output *i*, mentre α è il learning rate che deve essere compreso tra 0 e 1: un valore basso comporta una convergenza molto lenta ma con la possibile determinazione dei pesi ottimali, mentre alti valori implicano invece un rapido apprendimento, ma un valore non ideale dei pesi: talvolta è possibile che il valore ottimale di questo parametro vari ad ogni iterazione; nel caso non si riesca a raggiungere la convergenza con learning rate basso è necessario aumentarlo (colore blu di figura 3.7), mentre è necessario diminuirlo nel caso l'errore sia molto elevato (colori giallo e verde di figura 3.7).

Figura 3.7. Andamento della discesa del gradiente in base al valore assunto dal learning rate [77].

Per calcolare l'aggiornamento dei pesi è possibile usare altri tre procedimenti: il primo è il metodo di discesa stocastica del gradiente (*stochastic gradient descent*, *SGD*), definito stocastico per il comportamento random del processo di allenamento, che calcola l'errore per ogni dato di *training* e modifica subito i pesi, comportando un elevato costo computazionale; il secondo è il metodo *batch* con il quale vengono calcolati gli aggiornamenti dei pesi per tutti gli errori dei dati di *training*, e viene usato l'update medio del peso per variare i pesi, con un consumo rilevante di tempo a causa del calcolo della media; nel metodo *mini batch* il dataset viene invece suddiviso in piccoli, da cui il nome mini, gruppi detti *batches*: i pesi e i bias vengono aggiornati dopo che ogni *batch* è stato fornito al modello; questo risulta essere il metodo più utilizzando, essendo un buon compromesso tra le due alternative precedenti [72].

Figura 3.8. *Rappresentazione dei metodi di: a) discesa stocastica del gradiente; b) batch; c) mini-batch. Gli elementi evidenziati in grigio rappresentano il numero di elementi che vengono utilizzati in contemporanea per aggiornare i pesi [78].*

Un'altra possibile funzione di costo utilizzabile è la funzione di energia globale, dovuta al prodotto tra un peso e due stati binari, considerando un bias:

$$E = -\sum_{i} S_i b_i - \sum_{i < j} S_i S_j w_{ij}$$
(3.11)

3.4.2 Apprendimento hebbiano

Il metodo di apprendimento hebbiano si basa sul postulato di Donald Hebb del 1949 su come imparano i neuroni biologici: "When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place on one or both cells such that A's efficiency as one of the cells firing B, is increased" [79]; ciò significa che se due neuroni, uno in entrata ed uno in uscita, sono attivati contemporaneamente per un determinato tempo, si ha un aumento della facilità di trasmissione del segnale stesso fra questi due neuroni, cioè si incrementa il valore del peso di connessione in quanto la forza sinaptica aumenta proporzionalmente alla correlazione.

Matematicamente l'apprendimento hebbiano si può descrivere come:

$$\Delta w_{i,j} = \alpha x_i x_j \tag{3.12}$$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j} \tag{3.13}$$

dove α è il learning rate, per il quale valgono le stesse considerazioni della *delta rule*, $x_i e x_j$ sono i livelli di attivazione del rispettivo *i*-esimo e *j*-esimo (che corrisponde all'input dell'*i*-esimo elemento) neurone. Si parla di modifica hebbiana quando si ha un incremento dell'efficacia sinaptica, ed anti-hebbiana quando invece si ha una riduzione dell'efficacia [80]. Per evitare problemi di *over-generalization* ed instabilità della rete neurale è necessario introdurre dei vincoli per regolarizzare la rete; questi vincoli sono di tipo moltiplicativo, in quanto la forza sinaptica, cioè il peso, decresce proporzionalmente al proprio stato attuale (Eq. (3.14)), e sottrattivi, perché la forza sinaptica decade con un valore fissato moltiplicato per la costante di decadimento *k* in Eq. (3.15).

$$\Delta w_{i,j} = \Delta w - \varepsilon w_{i,j} \tag{3.14}$$

$$\Delta w_{i,j} = \Delta w - \varepsilon k \tag{3.15}$$

 $\cos \varepsilon$ detto forgetting ratio.

3.4.3 Apprendimento competitivo

Il metodo di apprendimento competitivo è un metodo di apprendimento non supervisionato che può essere considerato come una variazione del metodo hebbiano illustrato in precedenza. Esso viene sfruttato per le reti neurali più complesse, con nodi interconnessi anche all'indietro e nello stesso livello, come quelle ricorrenti; in questo tipo di modello i neuroni sono in competizione diretta e solo uno di essi può essere attivo in un determinato istante *n*. Solitamente l'algoritmo viene utilizzato soltanto nel layer di output in quanto se venisse utilizzato per ogni strato si potrebbe ottenere, soprattutto per le reti più articolate, una limitazione dell'esplorazione dei possibili percorsi generabili dalle molteplici connessioni della rete neura-le [81].

Figura 3.9. Rappresentazione addestramento competitivo in una struttura gerarchica [82].

L'algoritmo seleziona il miglior percorso possibile a partire dall'output fornito, raggiungendo talvolta al termine del *training* in uscita un valore che non corrisponde a quello massimo ottenibile: questo aspetto può essere visto come una "miopia" dell'algoritmo di apprendimento risolvibile interconnettendo tutti i nodi di uno stesso layer, aumentando però esponenzialmente la complessità della rete e di conseguenza il tempo computazionale per l'addestramento. Gli elementi base di questo modello sono tre: neuroni uguali tra loro, a meno dei pesi generati casualmente, un limite all'influenza di ogni neurone ed un sistema che permetta la competizione tra neuroni. Il neurone che si attiva viene definito neurone *winner-takes-all* ed il suo output viene settato a 1, mentre quello degli altri è nullo. Il nodo che si attiva apprende, spostando i pesi dagli input inattivi a quelli attivi, in quell'istante temporale, secondo la regola:

$$\Delta w_{k,j} = \begin{cases} \eta(x_j - w_{k,j}) \text{ con k neurone vincente} \\ 0 & \text{altrimenti} \end{cases}$$
(3.16)

essendo $w_{k,j}$ i pesi tra input *j*-esimo e neurone *k*-esimo.

3.5 Vantaggi e svantaggi delle reti neurali

L'aspetto fondamentale delle reti neurali è quello di comportare una grande riduzione del costo computazionale e quindi del tempo di elaborazione, grazie alla capacità di lavorare in parallelo visto che in ogni rete artificiale sono contemporaneamente attivi molti neuroni; questa caratteristica unica le rende oggetto di studio per applicazioni che richiedono una risposta immediata con un elevato grado di accuratezza. Sono inoltre in grado di apprendere e modellare relazioni non lineari e molto complesse da descrivere con una soluzione, anche se tutte le informazioni vengono contenute nei nodi e non è possibile esprimerle, ricavando una legge o una regola generale: per questo motivo è necessario affidarsi alle reti neurali, basandosi sull'errore valutato in fase di validazione, senza essere a conoscenza del procedimento eseguito; viene inoltre fornita una soluzione generale ed il loro utilizzo è molto semplice in quanto, dati gli input, vengono automaticamente forniti gli output incogniti, i quali possono essere sia valori che identificano una determinata categoria (parametri categorici) che valori numerici.

L'implementazione risulta quindi facile essendo molto intuitiva e necessitando solo della scelta del tipo di neurone e della funzione di attivazione; il problema principale risulta essere l'identificazione della tipologia e della strutture della rete più adatta allo scopo perché non esistono delle regole definite a priori da seguire ed è necessario un processo di tentativi ed errori (*trial and error*) fino al raggiungimento dei risultati desiderati; non sempre però è possibile ottenere una soluzione al problema utilizzando le reti artificiali.

La quasi totalità delle reti neurali presenta la caratteristica di fornire output corretti anche con informazioni incomplete o con alcuni input errati, grazie alla grande capacità di generalizzazione; per questo motivo molte reti riescono a recuperare delle informazioni andate perse oppure corrotte, caratteristica molto utile per l'elaborazione delle immagini, come visto per la ANN ricorrente di Hopfield. Altri vantaggi che favoriscono l'aumento dell'interesse per questi modelli di calcolo sono la grande stabilità dell'output rispetto a variazioni dei valori in input, e l'evoluzione adattiva, che garantisce l'aggiornamento a seguito di variazioni esterne, riproducendo l'abilità di adattamento evolutivo tipico di esseri umani ed animali.

Tipologie di reti come quelle convoluzionali forniscono anche un'estrapolazione automatica delle caratteristiche dei dati in input, tipicamente immagini, diventando molto utili come classificatori; vi sono invece delle tipologie di problema per le quali le reti artificiali non sono adatte, come nel caso in cui vi sia un input costituito da più variabili categoriche.

Non deve essere sottovalutato l'addestramento delle reti neurali: le prestazioni possono essere influenzate dai dati considerati per il *training*, dai pesi iniziali assunti, dal learning rate (come visto nel capitolo precedente) e dal numero di iterazioni; quest'ultimo parametro influisce molto sulle prestazioni in quanto può portare ad un sovra-allenamento e quindi all'*overfitting*, cioè ad un eccessivo adattamento ai dati forniti in input senza quindi generalizzazione, o ad un sotto-allenamento, con conseguenti errori molto elevati: talvolta è possibile interrompere l'addestramento quando vengono raggiunte prestazioni ritenute soddisfacenti [84-87].

(too simple to explain the variance)

Appropirate-fitting

(forcefitting--too good to be true)

Figura 3.10. *Rappresentazione di underfitting, fit ottimale e overfitting dovuti ad una differenza di training per la stessa distribuzione di dati* [83].

Capitolo 4

Modelli CAD

In questo capitolo verranno spiegate le scelte progettuali per la costruzione dei modelli sui quali sono state effettuate le simulazioni strutturali, necessarie per ricavare i dati che permetteranno la progettazione della rete neurale; sarà inoltre illustrato il procedimento seguito per la realizzazione dei modelli in Solidworks.

4.1 Analisi della configurazione e dei parametri

4.1.1 Configurazione del telescopio

La configurazione del telescopio adottata è quella di Ritchey-Chretien, ovvero di tipo Cassegrain ma con entrambi gli specchi iperbolici, in modo tale da eliminare il coma ed ottenere rapporti focali più elevati garantendo strumenti luminosi e molto compatti, aspetto fondamentale per grandi aperture e per applicazioni spaziali.

I parametri fissati per il calcolo delle grandezze costruttive fondamentali del telescopio sono stati ipotizzati basandosi sulla particolare applicazione; sono stati assunti:

- → lunghezza focale effettiva dell'intero sistema (F), requisito fondamentale che deve essere soddisfatto dalla combinazione dei due specchi, di 96 metri;
- \rightarrow distanza tra lo specchio primario e quello secondario (D) di 8 metri;
- → distanza tra il secondario ed il fuoco (*B*) invece di 10,5 metri, essendo F_2 posto 2,5 metri dietro lo specchio.

Sfruttando le Eq. (2.1), (2.2) e (2.3) è possibile calcolare i raggi di curvatura dei due specchi, rispettivamente R_P e R_s , e la distanza focale di quello primario f1; i valori quindi ottenuti sono:

- $\rightarrow R_P = 17,5$ metri;
- $\rightarrow R_s = 2,15$ metri;
- \rightarrow f1 = 9 metri.

Confrontando questi parametri con quelli del telescopio Hubble, anch'esso basato sulla configurazione Ritchey-Chretien, si nota che risultano essere coerenti, come si vede in tabella 4.1.

Tabella 4.1. *Confronto tra i parametri costruttivi del telescopio progettato, oggetto di studio, e quelli del telescopio spaziale Hubble* [88-90].

Parametri	Caso di studio	Hubble
Diametro specchio primario (D _P) [m]	4 / foro 0,5	2,4 / foro 0,6
Diametro specchio secondario (D _S) [m]	0,75	0,305
Spessore primario [m]	0,13	0,12
Curvatura primario (<i>R_P</i>) [m]	17,5	11,04
Curvatura secondario (<i>R_s</i>) [m]	2,15	1,358
Lunghezza focale sistema (F) [m]	96	57,6
Lunghezza focale primario (f1) [m]	9	5,52
Distanza tra specchi (D) [m]	8	4,906
Back focal length (B) [m]	10,5	6,406

I parametri di Hubble sono stati ricavati dai dati ufficiali forniti da NASA e pubblicamente accessibili [88-90].

Entrambi i telescopi sono della classe f-24, dove il *focal ratio* (N, *f*-*ratio*) è definito dal rapporto tra la lunghezza focale effettiva del sistema ed il diametro, in Eq. (4.1):

$$N = \frac{F}{D_P} \tag{4.1}$$

4.1.2 Scelta dei parametri caratteristici

Le dimensioni dello specchio primario sono state mantenute costanti durante tutta l'analisi, con un diametro esterno di 4 metri ed uno interno di 0,5 metri (tabella 4.1), mentre i parametri variabili che sono stati scelti sono le quattro grandezze fondamentali della struttura in honeycomb del sostegno dello specchio: diametro esterno (D_e) , diametro interno (D_i) , spessore web (t) e altezza struttura (h), come evidenziato in figura 4.1. Questa scelta è stata effettuata in modo tale da avere un numero di parametri variabili non eccessivamente elevato, riducendo il numero di simulazioni da svolgere, ma sufficiente per riuscire a studiare questa configurazione in modo completo; inoltre la variazione delle grandezze dello specchio, cioè raggio di curvatura, diametri e spessore, varierebbe i parametri fondamentali, dovuti alla particolare applicazione, che devono essere mantenuti costanti, come la lunghezza focale del sistema.

I valori scelti come parametri variabili sono quelli più frequentemente analizzati basandosi sulla letteratura disponibile, essendo i telescopi monolitici della classe dei 4 metri tra i più studiati per applicazioni spaziali; per tipologie segmentate invece le analisi sono molto più complicate in quanto sono presenti dei sistemi di ottica attiva ed adattiva, rendendo necessario lo studio di ogni tassello come un caso a parte in modo che le rispettive condizioni al contorno combacino con quelle della porzione di specchio adiacente. I parametri scelti non saranno comunque vincolanti, in quanto la rete neurale fornirà i parametri necessari alla progettazione di specchi anche con valori diversi rispetto a quelli forniti come input per le simulazioni che permettono di ricavare i dati di allenamento e di validazione, facendo assumere quindi caratte-re generale alla struttura di sostegno in honeycomb, caratteristica tra le più allettanti delle reti neurali.

Figura 4.1. Sono evidenziati in rosso i parametri variabili di uno dei modelli Solidworks: a) diametro esterno (D_e) e diametro interno (D_i) ; b) spessore (t) ed altezza (h).

Per ognuno dei quattro parametri sono stati scelti un numero arbitrario di valori in modo tale da riuscire ad ottenere un insieme di dati su modelli vari, ma garantendo al tempo stesso una rapida implementazione; in tabella 4.2 sono illustrati i parametri iniziali e finali ed il numero di valori considerati in quell'intervallo.

Tabella 4.2. I quattro parametri fondamentali del sostegno dello specchio variabili nelle simulazioni; rispettivamente: diametro esterno, diametro interno, altezza e spessore. Sono illustrati il valore minimo, quello massimo e gli incrementi (numero di incrementi / valore dell'incremento).

Grandezza considerate	Valore minimo [mm]	Valore massimo [mm]	Incrementi
Diametro esterno	2500	3500	11/100 mm
Diametro interno	1300	2000	8/100 mm
Altezza	300	600	4/100 mm
Spessore	6	8	3/1 mm

Moltiplicando il numero degli incrementi tra di loro si ottiene il numero totale di modelli:

$11 \cdot 8 \cdot 4 \cdot 3 = 1056$

I modelli sono stati successivamente ridotti a 1051 per alcuni problemi occorsi a 5 modelli per quanto riguarda la costruzione della mesh (Capitolo 5).

Come si nota dalla figura 4.1 la tipologia di cella scelta è quella triangolare, preferita alle forme esagonali, circolari e rettangolari per i motivi illustrati nel Capitolo 2; in questa fase progettuale questa assunzione garantisce delle agevolazioni permettendo di lavorare con triangoli equilateri, che si dimostrano la forma che garantisce la più veloce implementazione. Si nota inoltre che, per possibili sviluppi futuri, utilizzando sei triangoli di questa tipologia è possibile costruire un esagono, essendo note di conseguenza tutte le grandezze caratteristiche, per analizzare delle altre possibili strutture *lightweight*: questi modelli, opportunamente scalati, si potrebbero inoltre utilizzare come punto di partenza di strutture gerarchiche, nelle quali si è mostrata l'efficienza delle micro-celle triangolari.

È stato inoltre assunto uno spessore di alluminio di 75×10^{-9} metri sulle superfici dello specchio primario e di quello secondario, il quale non varia le caratteristiche di rigidezza e distorsione termica e, essendo al di sotto delle possibili tolleranze per i software utilizzati, non sarà modellato [85]; verrà considerato però nel computo della massa, essendo la sua valutazione molto facile, dipendendo solamente da volume e densità. Questo strato (*aluminum coating*), anche non essendo necessario, garantisce un'ottima lucidabilità che permette di ottenere eccellenti prestazione nella riflessione della luce da primario a secondario e da quest'ultimo al sensore, raggiunto passando attraverso il foro di 0,5 metri di diametro. Il materiale scelto per il modello è lo Zerodur (ZERODUR[®]) prodotto da Schott; questa assunzione garantisce una distorsione termica prossima a zero e quindi trascurabile, essendo il coefficiente di dilatazione nullo alle temperature operative [46,47]. I requisiti da soddisfare saranno quindi solo in termini di massa e rigidezza, e non più anche termici, rendendo il caso studiato un esempio particolare; ciò non riduce la generalizzazione del metodo studiato: poiché la distorsione termica dipende soltanto dal coefficiente di dilatazione (α), dal carico (entrambi costanti) e dalle caratteristiche geometriche del modello, ed essendo la rete neurale in grado di estrapolare le relazioni intrinseche tra i parametri geometrici, un ulteriore sviluppo dell'ANN permetterebbe di valutare le prestazioni anche in termini di deformazione dovuta a carichi termici, fornendo in input il coefficiente di dilatazione [92].

Figura 4.2. Esempio di rivestimento con un sottile strato di alluminio, definito aluminum coating, applicato sul telescopio Palomar 60 inch, 1,5 metri, collocato al Oscar G. Mayer Memorial Building [93].

4.2 Costruzione dei modelli

I modelli sono stati costruiti utilizzando Solidworks [94, 95], che permette il salvataggio di file *parasolid*, compatibili per l'importazione nel software di simulazione strutturale MSC Patran-Nastran mantenendo le corrette unità di misura.

La progettazione dei modelli inizia con la determinazione dei parametri che influenzano la dimensione delle celle triangolari; è stato assunto l'utilizzo di 8 triangoli equilateri lungo il diametro esterno [44,62]: in questo modo gli unici parametri che influenzano le caratteristiche dei triangoli che costituiscono la base della struttura di sostegno dello specchio, della quale si vede lo schizzo bidimensionale ricavato da Solidworks in figura 4.3, sono il diametro esterno stesso e lo spessore.

Prima di lavorare con la struttura tridimensionale, si deve innanzitutto creare il reticolo bidimensionale sul piano orizzontale; il primo passaggio fondamentale risulta quindi essere il calcolo dell'altezza dei triangoli equilateri, dalla quale si ricava la lunghezza dei lati, come $l = 2h/\sqrt{3}$, utilizzando la formula in Eq. (4.2):

$$h_{tri} = \frac{D_e - 12t}{8} \tag{4.2}$$

dove h_{tri} indica l'altezza dei triangoli, D_e è il valore del diametro esterno, mentre t è lo spessore. La presenza del coefficiente 12, che viene moltiplicato allo spessore, è dovuta al fatto che per la costruzione di due triangoli successivi si traccia, come in figura 4.4, un esagono il cui lato è il valore dello spessore della struttura, che coincide con il raggio della conferenza circoscritta.

Figura 4.3. Rappresentazione ricavata da Solidworks delle celle di base triangolari con tracciati i diametri esterno ed interno; non si riesce ad apprezzare lo spessore vista la ridotta dimensione, ma si nota la presenza degli 8 triangoli lungo tre diametri esterni.

Figura 4.4. Circonferenza dei fori di alleggerimento (interna) ed esagono per la progettazione del reticolo.

Questa assunzione limita la capacità di generalizzazione della rete neurale, della quale si discuterà nel Capitolo 7, ma è una delle scelte costruttive più utilizzate in quanto facilita sia l'aspetto progettuale che quello costruttivo: il numero di triangoli equilateri fisso permette di utilizzare lo stesso tracciato bidimensionale per diametro interno ed altezza variabili, quando gli altri due parametri sono costanti; ciò comunque comporta un necessario ricalcolo delle dimensioni, seguito da un nuovo tracciato bidimensionale, ogni qualvolta almeno uno dei valori di diametro esterno e spessore varia, sempre sfruttando l'Eq. (4.2).

Per un ulteriore alleggerimento della struttura sono stati effettuati dei fori dal diametro di 4 mm aventi il centro coincidente con quello della circonferenza circoscritta all'esagono che ha i vertici coincidenti con quelli dei triangoli equilateri (la circonferenza interna in figura 4.4); queste scelte progettuali sono tipiche di applicazioni spaziali *lightweight* come le ottiche, ma il diametro del foro limita il valore minimo che può essere assunto dello spessore della struttura che è quindi 5 mm (che sarà imposto anche in fase di progettazione della rete neurale sia per la normalizzazione che per l'inserimento degli input), valore al di sotto del quale si avrebbero comunque una rigidezza ed una resistenza troppo basse perché possa essere applicabile dal punto di vista pratico.

L'utilizzo di un numero minore di triangoli (6) rende la struttura meno rigida in quanto la loro altezza sarebbe troppo grande rispetto agli spessori che garantiscono una massa ridotta; aumentandone il numero invece si avrebbe una maggiore rigidezza, aspetto estremamente positivo, causando un incremento della massa del sistema, con conseguente amplificazione dei costi, cioè la problematica opposta rispetto all'utilizzo di 6 triangoli; in una generalizzazione ulteriore del metodo presentato il numero dei triangoli potrebbe essere considerato come input parametrico, in quanto per strutture con una differenza tra i due diametri ($D_e - D_i$) ridotte potrebbe essere conveniente un numero di triangoli più basso, mentre per alti valori sarebbe preferibile un aumento delle celle triangolari.

La base costituita da questi triangoli sarà estrusa per creare il supporto fino al piano, posto ad altezza variabile in base al valore di h, sul quale è stato costruito lo specchio primario curvo che rispetta i valori evidenziati in tabella 4.1.

In figura 4.5 sono illustrate le operazioni eseguite per la costruzione di tutti i modelli sui quali si basano le simulazioni strutturali.

Figura 4.5. Schema che illustra il procedimento per lo sviluppo dei modelli tridimensionali ottenuti utilizzando Solidworks.

4.3 Vantaggi e svantaggi della progettazione CAD

La tipologia di progettazione presentata in questa tesi nel campo della costruzione dei modelli manifesta sia degli aspetti positivi che negativi. L'aspetto favorevole principale consiste nella possibilità di scegliere i valori tra i quali far variare le caratteristiche di interesse, imponendo sia quanti incrementi effettuare che la loro entità, decidendo direttamente i parametri che sa-ranno gli input della rete neurale. Costruire completamente i modelli permette inoltre di comprendere quali sono i parametri limite, che saranno fondamentali in fase di progettazione della rete neurale per la normalizzazione di tipo minimo-massimo e per definire il range possibile per i parametri forniti in input dall'utilizzatore.

Il principale aspetto negativo invece si manifesta nella necessità di realizzare un elevato numero di strutture, che deve risultare idoneo per ottenere i dati per l'addestramento della rete neurale artificiale, richiedendo un tempo computazionale considerevole, essendo lo stesso utilizzo di Solidworks gravoso sulla memoria.

Oltre alla quantità dei modelli, è fondamentale anche che si riesca a fornire un'immagine esemplificativa del caso da studiare, riuscendo ad evidenziare un numero sufficiente di variazioni dei parametri per permettere di interpretare a quali di essi sono dovute le differenze tra le varie caratteristiche analizzate, dove quest'ultime sono intese come gli output della rete neurale e quindi la massa e la rigidezza (primo modo di vibrare della struttura); quest'ultima necessità si trova in diretto contrasto con l'aspetto positivo evidenziato in precedenza.

Capitolo 5

Analisi strutturali dei modelli

In questo capitolo verranno illustrate le analisi strutturali eseguite sui modelli per ricavare la massa e la rigidezza degli specchi. La massa è ottenuta utilizzando un tool di MSC Patran-Nastran, tramite il calcolo del volume e sfruttando la densità del materiale; per la rigidezza invece si effettuano delle analisi normal modes per trovare la prima frequenza propria, che deve essere disaccoppiata da quella della struttura sulla quale è montato lo specchio per evitare il fenomeno della risonanza, estremamente dannoso per applicazioni spaziali.

5.1 Costruzione della mesh

La mesh è stata costruita in modo tale da avere elementi tetraedrici con 10 nodi (tet10) che riescono a rappresentare in modo molto preciso sia la complessa geometria del corpo che le caratteristiche strutturali, garantendo simulazioni più accurate rispetto all'utilizzo di elementi tetraedrici con 4 nodi (tet4). È stato impostato un *global edge length* di 0,04, valore per il quale verrà diviso il lato più lungo del percorso di mesh, arrotondando all'intero più vicino, al fine di ottenere il numero di elementi totali richiesti.

Figura 5.1. Mesh completa sul modello numero 8, molto complessa date le dimensioni del sistema.

Si nota che un'ulteriore diminuzione di questo parametro non garantisce un aumento dell'accuratezza, ma solo un incremento del tempo computazionale ottenendo un numero maggiore di elementi; se invece si considerano valori maggiori del *global edge length* si perde la precisa rappresentazione della struttura in esame, ottenendo una mesh inadatta alla descrizione del sistema. In figura 5.2 si vede un dettaglio della mesh costruita, dove si nota come il foro venga meshato approssimandolo con una forma esagonale.

Figura 5.2. Dettaglio su uno dei fori della mesh, sempre sul modello 8.

Per ottenere risultati più accurati sarebbe necessario utilizzare una mesh che sfrutti o elementi pentaedrici (*wedge*) oppure quelli esaedirici (*hex*) come si vede in figura 5.3; sono stati effettuati dei test nei quali si è dimostrato però che per una geometria complessa come quella della struttura da analizzare, queste tipologie di elementi non sono in grado di rispecchiare

fedelmente le caratteristiche, quindi il loro utilizzo non è possibile: per questa ragione sono stati utilizzati quelli tetraedrici (compromesso molto comune per questo tipo di analisi).

La costruzione della mesh è fondamentale solo per le analisi normal modes per determinare la rigidezza della struttura, mentre per la massa non è necessaria: essa si basa solo sul calcolo del volume dato direttamente al momento dell'importazione della struttura in MSC Patran-Nastran, e sulla densità fornita insieme agli altri parametri caratteristici del materiale.

Figura 5.3. Elementi tridimensionali: a) tetraedrici lineari a 4 nodi (tet4), testati; b) tetraedrici quadratici a 10 nodi (tet10), testati ed utilizzati; c) pentaedrici lineari a 6 nodi (wegde6); d) pentaedrici quadratici a 15 nodi (wegde15), testati; e) esaedrici lineari a 8 nodi (hex8); f) esaedrici quadratici a 20 nodi (hex20), testati [96].

5.2 Scelta dei vincoli

Per ottenere delle analisi accurate dei modi di vibrare della struttura considerata è necessario vincolare i sei gradi di libertà (degrees of freedom, DOF) corrispondenti ai moti rigidi ottenendo un sistema isostatico, che non sia quindi sottovincolato o sovravincolato: nel caso i vincoli fossero meno di sei si avrebbe una struttura labile, che non garantirebbe il mantenimento della corretta posizione dello specchio, mentre nel caso in cui i vincoli fossero più di sei potrebbero verificarsi delle tensioni interne (delle quali quelle termiche possono essere trascurate) in grado di ridurre l'accuratezza delle superfici (surface shape accuracy) dei modelli analizzati. Per questo motivo i vincoli imposti simulano l'installazione di tre strutture flessibili circonferenzialmente simmetriche poste nella parte posteriore dell'honeycomb a formare un triangolo equilatero di dimensione variabile in base al diametro esterno, che costituiscono il supporto dello specchio che lo mette in collegamento direttamente con il corpo sul quale è montato; ogni struttura flessibile vincola due gradi di libertà traslazionali, lasciando libere le tre rotazioni e la terza traslazione, quest'ultima diversa per ogni posizione di bloccaggio (sarà x per la prima struttura flessibile, y per la seconda e z per la terza). Nel caso in cui vengano variati i gradi di libertà vincolati in una determinata posizione non si ha alcuna influenza sui risultati delle simulazioni: se si invertissero le direzioni bloccate tra i tre vincoli non si ottengono infatti differenze, a patto che le altre strutture flessibili garantiscano il completamento dei vincoli (esempio in tabella 5.1). Non è necessario agire sulle rotazioni (θ_x , θ_y , θ_z) perché esse risultano essere già bloccate dai vincoli che sono stati imposti sulle traslazioni [58, 61].

Configurazione	Posizione 1	Posizione 2	Posizione 3
1	х, у	y, z	X, Z
2	х, у	X, Z	y, z
3	y, z	х, у	X, Z
4	y, z	X, Z	х, у
5	X, Z	х, у	y, z
6	X, Z	y, z	x, y

Tabella 5.1. *Possibili configurazioni ottenute da tutte le combinazioni dei vincoli; in ogni posizione sono bloccati due gradi di libertà traslazionali, in modo tale che lo siano tutti e 6.*

Figura 5.4. Esempio di applicazione dei vincoli sul modello 8, con vincolati rispettivamente:

- \rightarrow in alto 2, 3 (y-z);
- \rightarrow in basso a destra 1, 3 (x-z);
- \rightarrow in basso a sinistra 1, 2 (x-y).

Questa combinazione è quella utilizzata per tutte le successive analisi strutturarli svolte in MSC Patran-Nastran.

5.3 Analisi normal modes

Le analisi normal modes [97] permettono di trovare i modi di vibrare della struttura e, utilizzando il metodo di Lanczos, è possibile scegliere a priori quante frequenze proprie considerare; in questo caso saranno ricavate le prime tre.

5.3.1 Caratteristiche dell'analisi

Affinché un sistema fisico manifesti delle oscillazioni è necessario che esso sia dotato di una massa, che dipende direttamente dalla densità, e di un'elasticità, che è determinata dal modulo di Young, pari a $91x10^3$ *MPa* per lo Zerodur.

In generale l'equazione della dinamica si può scrivere come:

$$[M]\{\ddot{u}(t)\} + [C]\{\dot{u}(t)\} + [k]\{u(t)\} = \{F(t)\}$$
(5.1)

dove [M], [C] e [k] sono rispettivamente la matrice di massa, quella di smorzamento e quella di rigidezza; il vettore $\{u(t)\}$ rappresenta lo spostamento, mentre la sua derivata prima e la sua derivata seconda sono in ordine la velocità e l'accelerazione. Il termine a sinistra dell'equazione è dato dalle forze interne, somma di forze di inerzia, forze viscose e forze elastiche, mentre il termine a destra $\{F(t)\}$ simboleggia le forze esterne al sistema rappresentato. Solitamente si affronta in un primo momento il problema del moto non smorzato in quanto, essendo c il coefficiente di smorzamento tipicamente compreso tra 0,01 e 0,1, e c_{cr} il coefficiente di smorzamento critico, per il quale l'ampiezza del moto si annulla senza alcuna oscillazione, si ottiene:

$$\omega_d = \omega_n \sqrt{1 - \left(\frac{c}{c_{cr}}\right)^2} \tag{5.2}$$

dove ω_d rappresenta le frequenze smorzate e ω_n quelle naturali. Si osserva quindi che le frequenze naturali e quelle smorzate sono molto simili, rendendo in prima analisi trascurabile lo smorzamento, che sarà eventualmente inserito in una fase successiva.

Si dovrà quindi risolvere l'equazione ricavata dall'Eq. (5.1), annullando il termine smorzante:

$$[M]{\ddot{u}(t)} + [k]{u(t)} = {F(t)}$$
(5.3)

Si effettua quindi il calcolo delle frequenze proprie, o naturali, e delle rispettive forme modali che vengono assunte dalla struttura a smorzamento nullo, poiché esse ne caratterizzano il comportamento dinamico; come soluzione dell'equazione del moto si assume una forma armonica del tipo:

$$\{u(t)\} = \{\lambda\}sen(\omega t) \tag{5.4}$$

con { λ } = autovettore o forma modale e ω = autovalore o frequenza naturale (propria); sostituendo nell'equazione del moto semplificata (Eq. 5.3) si ottiene l'equazione caratteristica:

$$[k] - \omega^2[M] = 0 \tag{5.5}$$

dalla quale, note le matrici di rigidezza e di massa è possibile determinare ω e di conseguenza { λ }; ogni autovalore ed autovettore calcolati definiscono un modo di vibrare della struttura considerata; la combinazione lineare dei modi propri di vibrare definisce la generica deformata strutturale. L'analisi normal modes è quindi ridotta alla ricerca degli autovalori che determinano l'annullamento del determinante dell'equazione caratteristica Eq. (5.5); il metodo utilizzato è quello di Lanczos che si basa sulla *sparse decomposition* che permette di scegliere a priori il numero di valori da calcolare.

Si nota quindi che le frequenze proprie dalla struttura dipendono dalla massa totale, dalla sua distribuzione e dai vincoli imposti (posizione e gradi di libertà vincolati). In questo caso è di interesse la prima frequenza caratteristica dello specchio, che deve essere disaccoppiata dalla struttura sulla quale è montato: tipicamente si accettano frequenze al di sopra di 70 – 80 Hz, ma per strutture della tipologia analizzata i valori caratteristici risultano essere inferiori.

In un sistema semplice molla-massa si osserva che la pulsazione propria (ω_n) è definita come:

$$\omega_n = \sqrt{\frac{k}{m}} \tag{5.6}$$

dove k è la costante elastica, in N/m, della molla ed m è la massa, in kg. Questa semplificazione deriva direttamente dal caso generale dell'analisi delle vibrazioni, ma permette di illustrare i parametri che più influenzano le caratteristiche della struttura [98-100].

5.3.2 Analisi dei risultati ottenuti

Per quanto riguarda i risultati ricavati dalle analisi normal modes, la frequenza propria da considerare è la prima ottenuta, cioè quella più bassa. Questo tipo di analisi è indipendente dai carichi a cui è sottoposta la struttura, e nel caso non fossero vincolati esattamente i 6 gradi di libertà si otterrebbero delle frequenze proprie molto basse, quasi nulle o addirittura negative, legate ai moti rigidi lasciati liberi dalle condizioni al contorno.

Ogni modo di vibrare della struttura è legato a spostamenti associati ad un modo rigido o ad una combinazione di alcuni di essi; dalle analisi normal modes svolte sfruttando il metodo di Lanczos sono state estratte le prime tre frequenze, per controllare che fossero distanziate l'una dall'altra, indicando quindi di essere dovute a modi diversi: tra la minor frequenza propria e la seconda estratta, e tra quest'ultima e la terza, sono state verificate delle differenze di almeno 15 *Hz* per tutti i modelli, dimostrandosi tutti modi di vibrare distinti. Con MSC Patran-Nastran si riscontrano anche dei valori degli spostamenti che non sono da considerare poiché il criterio di normalizzazione utilizzato per il calcolo di autovalori ed autovettori introduce un

fattore scala sulla deformata modale che altera quindi l'ampiezza dello spostamento che si ottiene; per questo motivo il software riesce a fornire correttamente solo la forma della deformata ottenuta e le frequenze proprie.

Avendo una struttura non simmetrica, considerando i vincoli, si ottengono anche delle deformate asimmetriche (dalla figura 5.5 alla figura 5.8); la prima forma modale interessa prevalentemente gli spostamenti che si realizzano in direzione *z*, che è quella perpendicolare allo specchio ed al supporto, cioè quella lungo la quale si ha la minima inerzia. Analizzando anche gli altri modi di vibrare fino al terzo, per tutti i 1051 modelli sviluppati, si notano delle deformate complesse: non è quindi possibile identificare dei modi di vibrare semplici, ma risultano essere tutti delle combinazioni.

Variando i vincoli come in tabella 5.1 non si notano differenze apprezzabili nel calcolo delle frequenze proprie delle strutture, evidenziando la correttezza della scelta operata sulle condizioni vincolari imposte alla struttura analizzata.

Figura 5.5. Deformata ottenuta dell'analisi normal modes sul modello 360 con $D_e = 3500$ mm, $D_i = 1300$ mm, h = 600 mm e t = 8 mm; si evidenzia lo spostamento z, essendo rappresentato il piano xz.

Figura 5.6. Deformata ottenuta dell'analisi normal modes sul modello 360 con $D_e = 3500$ mm, $D_i = 1300$ mm, h = 600 mm e t = 8 mm; si evidenziano gli spostamenti sia lungo x che lungo y, essendo rappresentato il piano xy.

Il coefficiente moltiplicativo introdotto in fase di calcolo degli spostamenti legato alla normalizzazione altera i valori da loro assunti, ma non i rispettivi rapporti; per questo motivo, per il modello 360 rappresentato nelle figure 5.5 e 5.6, è possibile osservare che lo spostamento lungo z risulta essere più del doppio rispetto a quello lungo x e quasi il triplo di quello lungo y. Lo spostamento massimo rispetto alla condizione non deformata si ottiene sullo specchio, e non sul supporto, in corrispondenza della posizione vicina all'asse y nel punto equidistante tra il vincolo dei gradi x y e quello dei gradi x z. Il modello 360 è caratterizzato da:

 $D_e = 3500 \text{ mm}, D_i = 1300 \text{ mm}, h = 600 \text{ mm} \text{ e } t = 8 \text{ mm}.$

Si nota inoltre, soprattutto nella figura 5.6, che la visualizzazione di MSC Patran-Nastran altera leggermente la mesh, mostrando delle zone che non sembrano correttamente rappresentate: ciò è dovuto alla sovrapposizione tra elementi tridimensionali, indeformata (cioè la configurazione di riferimento) e deformata discreta, che permette di ottenere in modo chiaro la forma assunta dal corpo per il primo modo di vibrare.

In figura 5.7 e 5.8 viene invece illustrata la deformata che definiscono il primo modo di vibrare del modello numero 356, caratterizzato dagli stessi valori di diametro interno, altezza e spessore, ma con un diametro esterno di 3000 *mm* rispetto ai 3500 *mm* del modello 360, utilizzato per ottenere le figure 5.5 e 5.6; si riesce così ad analizzare l'effetto di quest'ultimo parametro sulle forme modali ottenute.

Figura 5.7. Deformata ottenuta dell'analisi normal modes sul modello 356 con $D_e = 3000$ mm, $D_i = 1300$ mm, h = 600 mm e t = 8 mm; si evidenzia lo spostamento z, essendo rappresentato il piano xz.

Figura 5.8. Deformata ottenuta dell'analisi normal modes sul modello 356 con $D_e = 3000$ mm, $D_i = 1300$ mm, h = 600 mm e t = 8 mm; si evidenziano gli spostamenti sia lungo x che lungo y, essendo rappresentato il piano xy.

Le due deformate (figure 5.5 e 5.6 e figure 5.7 e 5.8) si dimostrano molto differenti: per il modello 360 si nota uno spostamento positivo lungo l'asse z nel punto in cui viene assunto il massimo valore, mentre nel modello 356 lo spostamento maggiore risulta essere negativo. Confrontando invece le due visualizzazioni sul piano xy le caratteristiche generali non risultano essere diverse per i due casi; lo stesso andamento si evidenzia anche con variazioni degli altri tre parametri studiati tra i diversi modelli, ma ciò non si traduce in un problema per la progettazione dei supporti in honeycomb per gli specchi.

Analizzando gli spostamenti lungo la direzione z, si osserva un valore maggiore nel secondo caso, avendo una frequenza di circa 43 *Hz* rispetto ai 47 *Hz* del modello 360; spostamenti maggiori quindi si dimostrano legati a valori più piccoli delle frequenze proprie della struttura presa in considerazione.

Il secondo ed il terzo modo di vibrare sono caratterizzati da una deformata simile ma con diverse componenti prevalenti, rispettivamente lungo x e lungo y quindi il loro studio è analogo a quanto già effettuato per la prima frequenza propria; la loro importanza nella progettazione però è limitata all'interesse della differenza tra le frequenze naturali che individuano questi modi di vibrare e quella che caratterizza il primo.

Molti studi sono già stati effettuati sulle strutture in honeycomb, ed è possibile trovare delle formule analitiche che permettano di calcolare massa e rigidezza, basandosi sulla capacità di modellare un sistema di questo tipo con celle di forme semplici come triangolare o esagonale, definendo un materiale isotropo equivalente, senza creare le diverse nervature; per la tipologia di strutture studiata in questa tesi però ciò non risulta applicabile per due motivi: innanzitutto sono presenti i fori di alleggerimento, che alterano sia le caratteristiche vibratorie della struttura che quelle della massa; inoltre il supporto in honeycomb non può essere considerato di forma cilindrica in quanto nella parte sommitale segue la curvatura dello specchio, con un raggio pari a 17,5 metri. La parte inferiore invece è piana, risultando più facile un eventuale assemblaggio dell'ottica in un sistema al quale possa essere ancorato [101-102]. Utilizzando questo metodo inoltre si otterrebbe un errore maggiore nel calcolo delle proprietà, con una possibile amplificazione dell'incertezza dovuta all'addestramento successivo della rete neurale, arrivando quindi a risultati che potrebbero essere molto lontani da quelli desiderati.

Si nota inoltre che un aumento della massa totale del sistema induce delle frequenze proprie maggiori, evidenziando la contrapposizione tra i due requisiti fondamentali: questo andamento è dovuto alla combinazione dei parametri della struttura, in quanto generalmente l'effetto che si ottiene è quello opposto; un metodo per variare la rigidezza mantenendo la massa costante è quello di variarne la distribuzione: il modello di ottimizzazione proposto in questa tesi permette di ridurre drasticamente i tempi per effettuare questa operazione.

I vincoli sono posti su una circonferenza concentrica allo specchio, passante per il foro più vicino alla superficie esterna: questa scelta permette di avere per ogni modello la rigidezza più elevata. Per ogni caso particolare però la distanza tra di essi cambia, a causa delle variazioni della differenza dei diametri, identificando un altro possibile parametro di input per la rete neurale; tuttavia il suo inserimento non sarà necessario, in quanto la rete si dimostrerà in grado di estrapolare anche questa caratteristica intrinseca a tutti i modelli analizzati (Capitolo 6).

5.4 Studio della variazione della massa

Per quanto riguarda la massa del sistema, come già detto, i dati necessari al suo calcolo sono soltanto il volume della struttura e la densità del materiale; si nota che talvolta una massa più elevata è dovuta ad un maggior volume della struttura nelle zone più vicine alla circonferenza esterna: ciò è dovuto al fatto che in quella porzione del modello, a causa della curvatura dello specchio, si ha un'altezza maggiore.

Il requisito sulla massa è dovuto all'esigenza di ridurre il carico da inserire in orbita, alleggerendo il payload; non è quindi legato ad aspetti propriamente strutturali come visto in precedenza per il calcolo della rigidezza, per la quale è necessario considerare l'accoppiamento con la struttura sulla quale l'ottica è montata, con il fine di evitare il pericoloso fenomeno della risonanza.

In appendice A è presente una tabella che raccoglie i risultati delle simulazioni ed i principali parametri dei modelli; contiene una colonna con il numero del modello, quattro colonne con i valori di input, cioè diametro esterno D_e , diametro interno D_i , spessore t ed altezza h, e le ultime due colonne con i parametri da ottimizzare, che corrispondono agli output in termini di massa e rigidezza.

Capitolo 6

Progettazione della rete neurale

In questo capitolo si illustra la progettazione della rete neurale in grado di prevedere il comportamento strutturale delle ottiche spaziali in Zerodur, specificando tutti i parametri che sono stati considerati ed analizzati.

6.1 Calcolo dell'errore

Per valutare l'accuratezza della rete neurale è necessario calcolare nel processo di validazione, definito talvolta come processo di *testing* (in base all'assunzione per cui il *validation set* ed il *testing set* siano uguali o no), l'errore che viene commesso nella previsione dei risultati. Per questo motivo sono stati considerati due diversi possibili parametri:

→ RMSE (*root mean square error*/radice dell'errore quadratico medio) [104]: se Ŷ è il vettore contenente gli output corretti, mentre Y corrisponde agli output ricavati dalla rete, entrambi con riferimento ad *n* valori, il RMSE può essere calcolato tramite:

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}$$
 (6.1)

→ MAPE (*mean absolute percentage error*/errore medio assoluto percentuale): mette in relazione il valore assoluto dell'errore con il valore osservato, eliminando la dipendenza dall'unità di misura utilizzata, cosa che accade utilizzando indici come MSE, RMSE e MAE; il problema principale si riscontra nel caso in cui i valori misurati siano nulli o molto vicini a zero:

MAPE
$$= \frac{100}{n} \sum_{i=1}^{n} \left| \frac{\hat{Y}_i - Y_i}{\hat{Y}_i} \right|$$
 (6.2)

La scelta ricade quindi sul MAPE in quanto è il parametro più utilizzato per la valutazione dell'accuratezza delle reti neurali, soprattutto per fenomeni tempo-varianti, fornendo un valore percentuale di facile interpretazione; da qui in seguito si farà riferimento al MAPE semplicemente con il termine errore [105,106].

6.2 Studio dei parametri della rete neurale

I parametri noti per la progettazione della rete neurale sono gli input e gli output; per quanto riguarda i dati in ingresso si studierà la configurazione con quattro nodi, avendo come parametri il diametro esterno, quello interno, lo spessore e l'altezza. A priori però non è possibile sapere se questa tipologia di rete permette di avere un errore sufficientemente basso: il valore massimo dell'errore che permette di considerare una rete accettabile può essere stimato intorno a 1,7%-1,5%; se con 4 nodi in input non si raggiungesse questa accuratezza è necessario utilizzare un quinto nodo in ingresso, contenente come dato il lato del triangolo equilatero che congiunge le posizioni vincolate del supporto dello specchio.

I nodi di output invece sono 2 e contengono i valori di massa e rigidezza; per tipologie diverse di materiale è necessario utilizzare un terzo nodo che fornisca il valore della distorsione termica dell'ottica per applicazione spaziale, ma in questo caso sarebbe necessario addestrare nuovamente la rete, in quanto la sua morfologia ottimale è variata.

6.2.1 Training set e validation set

I campioni disponibili per l'addestramento e la validazione della rete neurale sono 1051, con 4 valori di input (diametro esterno D_e , diametro interno D_i , altezza h e spessore t) e 2 di output (massa e rigidezza) per ognuno di esso; per facilitare la convergenza tutti i dati sono stati normalizzati, con il metodo di massimo e minimo fissati (*min-max scaling*) in Eq. (6.3), basandosi sui valori limite che possono essere assunti dai parametri della struttura studiata, come mostrato in tabella 6.1.

Parametro	Massimo	Minimo
Diametro esterno [mm]	4000	500
Diametro interno [mm]	4000	500
Altezza [mm]	1000	100
Spessore [mm]	15	5
Massa [kg]	2000	0
Rigidezza [Hz]	200	20

Tabella 6.1. Definizione dei valori massimi e minimi che possono essere assunti dai 4 parametri di input e dai 2 di output, utilizzati per la normalizzazione.

$$x_norm(i) = \frac{x(i) - x_{min}}{x_{max} - x_{min}}$$
(6.3)

dove $x_norm(i)$ è l'*i*-esimo parametro normalizzato, x(i) è l'*i*-esimo parametro non normalizzato, x_{min} e x_{max} sono rispettivamente il valore minimo e quello massimo che possono essere assunti da x; il codice MATLAB utilizzato per la normalizzazione dei parametri in input si trova in Appendice B, B-1: Normalizzazione. In uscita per ottenere gli output coerenti con le unità di misura utilizzate sarà necessario denormalizzare i parametri utilizzando l'Eq. (6.4) ricavata dall'Eq. (6.3):

$$x(i) = (x_{max} - x_{min})x_{norm(i)} + x_{min}$$
(6.4)

È stato scelto di suddividere i 1051 dati ricavati dalle simulazioni in due diversi insiemi: il *training set*, che servirà per modificare i pesi della rete allenandola, ed il *validation/testing set*, con il quale se ne valuterà l'accuratezza in modo tale da garantire l'addestramento ottimale per la rete neurale; solitamente si utilizza un valore compreso tra il 70% e l'80% dei dati per l'allenamento, ed i restanti sono sfruttati per la valutazione della capacità di generalizzazione: per questo motivo sono quindi sono stati suddivisi i dati in un set di allenamento comprendente 800 modelli, ed in uno di test con i restanti 251 modelli, ottenendo quindi una ripartizione

76%-24%. Poiché le prestazioni della rete neurale dipendono sia dai pesi iniziali dai quali si comincia il *training* che dai parametri che vengono forniti in input (se si utilizzano valori in ingresso molto simili si otterrà una ridotta capacità di generalizzazione), sono stati predisposti un *pre-training*, per avere dei valori iniziali dei pesi favorevoli per l'addestramento, ed un set di allenamento molto vario: per soddisfare quest'ultimo requisito sono state effettuate 300 simulazioni impostando la variazione degli indici dei modelli casualmente in modo tale però che non fossero ripetuti, ed è stato considerato l'insieme che generava il minor errore.

I codici sviluppati in MATLAB per l'addestramento e la validazione sono stati inseriti nell'Appendice B, B-3: Training set e B-4: Validation set: quest'ultimo contiene anche sia il calcolo del RMSE che del MAPE.

Per trovare la rete migliore per questa applicazione è stata studiata l'influenza dei principali parametri che è possibile variare: learning rate, iterazioni (*epoch*), numero di hidden layer, numero di neuroni totali e disposizione dei neuroni negli hidden layer a parità di numero complessivo dei nodi.

In Appendice B, B-2: Rete neurale è presente il codice MATLAB in cui è stata implementata la rete neurale con tre hidden layer; la versione fornita è generale, in quanto il numero di nodi viene deciso nello script del training set. Sono stati utilizzati la sigmoide come funzione di attivazione ed il metodo di discesa stocastica del gradiente (SGD) sfruttando l'utilizzo della *generalized delta rule* per l'aggiornamento dei pesi facendo quindi riferimento, come si vede nel Capitolo 3, all'algoritmo di retropropagazione dell'errore.

6.2.2 Funzione di attivazione

Per valutare la funzione di attivazione ideale per la rete neurale da progettare sono state testate quelle che sono considerate le più comuni come mostrato nel Capitolo 3, cioè la sigmoide, la ReLU e la tangente iperbolica, utilizzando tre diversi valori di learning rate (0,5, 0,05, 0,005) e di iterazioni (10⁴, 10⁵, 10⁶) in modo da riuscire a coprire la maggior parte delle possibili combinazioni.

Dopo aver effettuato queste analisi si è osservato che utilizzando sia la tangente iperbolica che la funzione lineare rettificata non si riesce a descrivere il comportamento della struttura ottenendo errori molto elevati, superiori al 10%, rendendo la rete inutilizzabile per tutti i valori di learning rate ed iterazioni testate; la funzione sigmoidea invece permette di ottenere un'elevata accuratezza e di conseguenza sarà utilizzata quella come attivazione dei neuroni. Sarebbe possibile inoltre utilizzare per i diversi strati della rete delle funzioni differenti, ma dati gli elevati errori rilevati si è deciso di semplificare il sistema e basarsi sulla sigmoide per tutti i layer, compreso quello di output i cui valori saranno denormalizzati in uscita.

6.2.3 Learning rate

Il learning rate, o parametro di apprendimento, incide pesantemente sia sulla convergenza che sul tempo computazionale, come visto nel Capitolo 3: assumere valori molto alti può provocare la non convergenza con oscillazioni pronunciate, e quindi generare errori molto grandi, mentre valori molto bassi richiedono un tempo maggiore per l'allenamento; il learning rate deve essere un numero compreso tra 0 e 1. Dopo varie simulazioni si è osservato che valori vicini o superiori a 0,5 comportano un aumento dell'errore ben oltre allo 1,7%, facendo compiere ai pesi dei salti troppo grandi, spostandosi sempre lontani dal valore corretto; inoltre si è notato anche che la diminuzione del tempo computazionale dovuta a bassi valori del learning rate non è così accentuata da rendere questi valori convenienti. Per questo motivo è stato assunto per le successive simulazioni il valore di 0,05, che non comporta grandi aumenti del tempo computazionale rispetto a valori vicini a 0,2 garantendo un'accuratezza leggermente superiore. La scelta di learning rate ancora più bassi (come 0,005), invece, penalizza la rete neurale, rendendola molto difficile da allenare a causa del tempo necessario e sconveniente da utilizzare nel caso in cui vi fossero molti nodi. In figura 6.1 è presentato un grafico che illustra la relazione tra tempo computazionale ed errore, in base al learning rate adottato, considerando una rete neurale con tre hidden layer da 40 nodi ognuno (le analisi sono state effettuate anche su altre sette configurazioni di reti diverse): per tutte queste simulazioni sono stati utilizzati gli stessi valori dei pesi iniziali e delle iterazioni e gli analoghi insiemi di training set e di validation set, in modo tale da avere dei risultati variabili soltanto in funzione del learning rate imposto.

Figura 6.1. Grafico che mette in relazione l'errore percentuale sulla rigidezza (MAPE) ed il tempo computazionale in funzione dei diversi valori del learning rate in una rete neurale 40x40x40.

L'errore riportato sull'asse *y* del grafico in figura 6.1 è il MAPE sulla rigidezza perché risulta essere percentualmente maggiore rispetto a quello sulla massa e quindi quello che comporta l'incertezza più alta; questa differenza è dovuta alla diversa difficoltà di previsione dei due parametri: la massa dipende solo dalla capacità di valutazione del volume da parte della rete neurale, mentre la frequenza propria della struttura è in funzione di più parametri, come la diversa posizione dei vincoli e la variazione della distribuzione della massa tra i vari modelli.

Lo stesso ragionamento è stato effettuato per il tracciamento del grafico in figura 6.2 per lo studio dell'influenza del numero di iterazioni.

6.2.4 Numero di iterazioni

La scelta del giusto numero di iterazioni è fondamentale per ottimizzare l'efficienza della rete neurale, ottenendo un'elevata accuratezza con un ridotto costo computazionale ed evitando l'*overfitting*; per l'applicazione studiata sono stati valutati quattro diversi valori di iterazioni totali e le caratteristiche sono illustrate in figura 6.2:

- \rightarrow 10⁴ iterazioni non garantiscono un completo allenamento, con errori molto alti ed un tempo computazionale contenuto di circa 320 s;
- → 10^5 iterazioni mostrano il minor errore, con un costo computazionale contenuto vicino ai 3200 s, quindi 10 volte quello del caso precedente;
- → 10⁶ iterazioni necessitano di molto tempo per l'allenamento e, a causa di un leggero overfitting, si ottiene un errore leggermente più elevato rispetto al caso precedente;
- → 10⁷ iterazioni, invece, modellano la rete neurale sui dati del *training set*, generando quindi un alto errore di *overfitting*, senza considerare il tempo computazionale estremamente elevato.

Figura 6.2. Grafico che mette in relazione l'errore percentuale sulla rigidezza (MAPE) ed il tempo computazionale in funzione dei diversi valori del numero di iterazioni in una rete neurale 40x40x40.

6.2.5 Numero di hidden layer

Per la scelta del numero degli strati intermedi di neuroni artificiali si è dimostrato che il numero ottimale di hidden layer è compreso tra i 2 e i 4: per valori superiori aumentano i rischi di *overfitting* ed il tempo computazionale incrementando notevolmente il numero di connessioni, mentre reti con un solo strato intermedio non risultano in grado di rappresentare opportunamente fenomeni complessi; sono state studiate quindi le possibili reti con 2, 3 e 4 hidden layer, trovando nella configurazione intermedia quella che garantisce le migliori performance per il caso studiato. Per diminuire il tempo computazionale con reti con molti hidden layer sarebbe necessario diminuire il numero di connessioni, avendo quindi le matrici dei pesi con meno elementi.

Da questo momento in poi tutte le reti neurali che saranno considerate sono reti a tre strati intermedi (e di conseguenza 4 matrici di pesi), con un learning rate di 0,05 e 10⁵ iterazioni, essendo i valori che si traducono in migliori performance.

Figura 6.3. *Rappresentazione della rete neurale finora progettata, con 4 nodi di input, 2 di output e 3 hidden layer con un numero di neuroni incognito.*

6.2.6 Numero di neuroni totali

L'analisi dell'influenza del numero totale di neuroni, sommando quelli dei tre hidden layer, e quella dell'influenza della distribuzione dei neuroni nei tre strati sono effettuati separatemente per studiare il comportamento di un parametro alla volta; dopo aver identificato i valori ottimali per gli altri parametri, questa analisi permette di definire la rete neurale ottimale per l'applicazione particolare. Per quanto riguarda il numero totale, sono state comparate reti con la stessa quantità di neuroni in ogni strato, valutando gli errori sia sulla massa che sulla rigidezza riportati nello stesso grafico in figura 6.4.

Figura 6.4. Grafico che mette in relazione l'errore percentuale di massa e rigidezza (MAPE) con il numero di neuroni totali. I valori per ogni hidden layer sono rispettivamente: 5-10-15-20-25-30-35-40-45-50-70-100.

Da questo grafico si nota che l'aumento dei neuroni comporta, come prevedibile, un diminuzione degli errori, ottenendo i migliori risultati combinando le prestazioni sia per la rigidezza che per la massa per una rete con 300 neuroni totali $(100 \times 100 \times 100)$; l'altro aspetto fondamentale risulta essere, come visto in precedenza, il tempo computazionale: aumentando il numero totale di neuroni si incrementa esponenzialmente il tempo necessario all'addestramento della rete poiché si ha un grande numero di connessioni.

Essendo tante le connessioni tra i vari strati è probabile che molte di esse abbiano delle componenti quasi nulle nella matrice dei pesi; si potrebbe quindi effettuare un processo detto *pruning*, in grado di eliminare le connessioni che possono essere considerate irrilevanti ai fini del calcolo dei valori di output e che comporterebbero solo un aumento del tempo necessario [107,108].

Bilanciando i due parametri fondamentali è stata quindi scelta la combinazione con in totale 120 nodi; successivamente verrà studiata la distribuzione di questo numero di nodi nei tre hidden layer.

6.2.7 Distribuzione dei nodi

Per vedere come una rete neurale modifichi il comportamento spostando nodi da un layer all'altro mantenendo il numero totale fisso, è stata considerata la combinazione con 120 nodi totali che genera il minor errore combinando sia la massa che la rigidezza e ne è stata modificata la configurazione; le analisi effettuate hanno preso in considerazione tredici reti con numeri di nodi crescente, le rispettive reti neurali speculari e la rete di riferimento con 40 nodi per strato intermedio. Si osserva dal grafico in figura 6.5, dove sono state considerate solo undici delle ventisette ANN, che a reti con numero di nodi crescente corrisponde in generale un errore maggiore ma, anche considerando configurazioni con nodi decrescenti, non si riesce a raggiungere l'accuratezza della rete $40 \times 40 \times 40$. L'addestramento delle reti è stato performato utilizzando gli stessi parametri, in termini di iterazioni, learning rate e dei due set, per tutte le reti neurali testate, in modo da avere dati confrontabili direttamente.

Dal grafico in figura 6.5 si nota che i punti più vicini all'origine corrispondono a reti neurali con accuratezza combinata maggiore, mentre i punti più lontani sono quelli con i maggiori errori (in questo caso le due reti con nodi crescenti $10 \times 40 \times 70$ e $25 \times 40 \times 55$). La tendenza evidenziata in figura 6.5 è stata dimostrata anche con un numero di nodi totali inferiore (75) e con un numero maggiore (300), mostrandosi quindi una caratteristica dovuta al particolare caso applicativo. L'unico parametro che è rimasto costante durante queste analisi è il numero di neuroni presenti nell'hidden layer centrale, fissato a 40 per il primo caso, 25 e 100 rispettivamente per il secondo ed il terzo.

Ulteriori analisi, che confermano i risultati esposti in precedenza, sono state effettuate variando sia il numero di nodi totali che il valore dei neuroni nel layer centrale, ma i risultati ottenuti sono analoghi a quanto mostrato nel grafico: un numero di nodi crescente tende a presentare errori più grandi rispetto ad una configurazione decrescente.

Figura 6.5. *Grafico che mette in relazione gli errori sulla massa e sulla rigidezza con le diverse distribu*zioni dei 120 nodi totali, con numero di nodi crescente (blu), decrescente (marrone) e costante (rosso).

6.2.8 Considerazioni sulla progettazione della rete neurale

La ricerca della rete neurale adatta ad una determinata applicazione, in questo caso la previsione di massa e rigidezza di ottiche per applicazioni spaziali, risulta essere un'operazione estremamente *time consuming*, in quanto si basa su un approccio ad errori e tentativi; ciò è dovuto al fatto che non sono presenti dei modelli da seguire in quanto l'approccio studiato è molto recente. Per quest'ultimo motivo inoltre arrivare a risultati positivi non era sicuro, non avendo altri casi analoghi con cui effettuare confronti.

Anche per casi più studiati non sono presenti in letteratura delle linee guida da seguire perché tutte le diverse applicazioni richiedono particolari configurazioni di reti neurali artificiali.

6.3 Rete neurale utilizzata

La rete neurale ottenuta risulta quindi essere una rete feedforward con 3 hidden layer, learning rate di 0,05 e 10000 iterazioni; sono presenti 4 nodi di input, 40 nodi in ognuno degli strati intermedi e 2 nodi di output. Tutti i parametri sono mostrati sinteticamente in tabella 6.2.

Parametro	Valore assunto								
Nodi input		4							
Nodi output		2							
Hidden layer		3							
Nodi hidden layer	40	40	40						
Learning rate		0,05							
Funzione d'attivazione		Sigmoid	e						
Errore % massa		0,414							
Errore % rigidezza		1,613							

Tabella 6.2. Elenco dei parametri caratteristici e dei rispettivi valori della rete neurale scelta.

La rete progettata si dimostra quindi molto efficiente per la previsione sia della massa che della rigidezza di questa tipologia di struttura: gli errori su rigidezza e massa sono rispettivamente 1,613% e 0,414%.

Un'altra possibilità per la progettazione della rete considerava, come anticipato nel Capitolo 5 e nel paragrafo 6.2, l'utilizzo di un quinto nodo di input per inserire come parametro anche la distanza tra i vincoli, essendo variabile con la differenza tra i due raggi $(D_e - D_i)$ ed influenzando di molto il calcolo delle frequenze proprie con MSC Patran-Nastran: la rigidezza infatti dipende dalle condizioni di vincolo e da come è distribuita la massa all'interno del modello.

Visti gli ottimi risultati ottenuti con una rete con 4 nodi in input non risulta quindi necessario l'inserimento di un quinto nodo che può essere considerato sostanzialmente ininfluente nel calcolo della massa, non offrendo dati sul volume totale del sistema studiato essendo quest'ultima indipendente dalle condizioni di vincolo; si rischierebbe quindi di ottenere una rete più difficile da allenare, avendo delle connessioni molto importanti per un parametro di output ed ininfluenti sul secondo valore in uscita. Inoltre, poiché l'errore sulla rigidezza è inferiore a 1,7%, mentre quello sulla massa è inferiore allo 0,5%, si vede che la rete neurale riesce a identificare autonomamente la posizione dei vincoli dai tre parametri in input (diametro esterno, diametro interno e spessore), poiché non si ha dipendenza dall'altezza.

È necessario sottolineare che il tempo computazionale di cui si è discusso è il tempo necessario all'allenamento infatti per quanto riguarda l'esecuzione, la rete neurale progettata risulta essere quasi istantanea, eseguendo solo delle operazioni tra matrici a partire dagli input; nel caso di grandi variazioni degli ingressi, quindi dovendo eseguire lo stesso numero di operazioni ripetute molte volte, aumentando il numero di neuroni si ottiene un incremento anche del tempo computazionale necessario per ricavare gli output desiderati poiché si accresce il numero delle operazioni che devono essere compiute.

Capitolo 7

Applicazione e confronto con altri ottimizzatori

In questo capitolo verrà mostrato il possibile utilizzo della rete neurale prodotta per l'ottimizzazione strutturale di ottiche per applicazioni spaziali; sarà inoltre effettuato un confronto con l'ottimizzatore strutturale utilizzato da MSC Patran-Nastran.

7.1 Applicazione della rete neurale

L'utilizzo di una rete neurale permette di ottenere i risultati desiderati in modo molto semplice in pochi secondi; inoltre la sua integrazione in codici di calcolo è immediata, permettendo di studiare configurazioni molto diverse dei modelli senza la necessità di effettuare analisi strutturali per ogni particolare caso considerato.

Come mostrato dallo *script* Matlab in appendice B, B-5:Applicazione, fissati i parametri vincolanti di massa, limite superiore per il soddisfacimento dei requisiti economici della missione, e di rigidezza, per ottenere frequenze proprie lontane da quella naturale della struttura su cui l'ottica è montata in modo tale da ottenere un perfetto disaccoppiamento evitando la risonanza, è possibile ricavare tutte le configurazioni che soddisfano questi due requisiti; in questo modo si riesce ad ottimizzare il sistema relativamente ai possibili parametri costruttivi per il caso particolare: dati degli intervalli dei quattro valori di input (diametro esterno, diametro interno, altezza e spessore) la rete neurale fornisce tutte le configurazioni che soddisfano sia i vincoli sugli output che quelli sugli input, permettendo all'utente di selezionare la struttura adatta alla determinata applicazione.

Impostando come vincoli su massa e rigidezza i valori rispettivamente minimo e massimo mostrati in tabella 6.1 è possibile ottenere tutte le configurazioni possibili, scegliendo quella che ottimizza rispettivamente uno dei due o entrambi i parametri, in base al peso che viene associato ai due diversi requisiti.

Lo *script* creato permette di inserire o intervalli di parametri, nel caso sia possibile una loro variazione, o un valore costante, rendendo l'utilizzo della rete neurale generale e quindi adatta a tutti i possibili requisiti per la struttura, purché vengano rispettati i valori minimi e massimi illustrati nella tabella 6.1 che sono fondamentali anche per il processo di normalizzazione dei parametri.

Sono stati effettuati dei test per valutare l'affidabilità previsionale della rete neurale anche in fase di applicazione utilizzando dei modelli le cui caratteristiche geometriche erano molto diverse rispetto a quelle dei test di *training set* e di *validation/testing set*: selezionando 150 diverse configurazioni casuali, ma i cui parametri sono molto vicini ai valori costruttivi agli estremi dell'intervallo di applicabilità, si sono riscontrati degli errori che risultano essere superiori a quelli ricavati in precedenza, ma comunque molto contenuti essendo sempre al di sotto del 2% per la previsione della rigidezza ed allo 0,55% per la massa.

L'aspetto positivo di questa tipologia di ottimizzazione consiste quindi in un confronto quasi istantaneo tra configurazioni molto diverse di ottiche per applicazioni spaziali in Zerodur che rispettano i vincoli imposti; la facilità di utilizzo inoltre permette una rapida integrazione in software sfruttando direttamente le capacità della rete neurale.

7.2 Confronto con ottimizzatori strutturali

Questa tipologia di ottimizzazione completa la concezione sulla quale si basano ottimizzatori strutturali come quello integrato in MSC Patran-Nastran dai quali, fissati parametri come massa, condizioni di vincolo e carichi, si ottiene una struttura che determina il soddisfacimento dei requisiti impostati. La quasi totalità delle volte però quanto viene ottenuto non rispecchia la miglior struttura possibile in quanto, a partire da una mesh già disegnata dall'utilizzatore, l'ottimizzatore elimina degli elementi fino a quando i requisiti non risultano essere rispettati; si nota quindi una grande dipendenza dai parametri da soddisfare, ottenendo tipologie di strutture asimmetriche e di difficile realizzazione pratica.

Per questo motivo quindi si utilizzano delle strutture dalle caratteristiche note come quelle in honeycomb, essendo le più adatte per applicazioni spaziali e garantendo un facile percorso di progettazione e di realizzazione, accoppiandole con il metodo di ottimizzazione sviluppato in questa tesi.

Capitolo 8

Conclusioni

In questo lavoro di tesi si è dimostrato come una rete neurale possa essere un efficace strumento per l'ottimizzazione di ottiche per applicazioni spaziali dalla geometria generale definita, garantendo il soddisfacimento dei requisiti in termini di massa e rigidezza della struttura ottenuta. L'utilizzo di reti neurali permette quindi di confrontare sistemi con parametri costruttivi diversi in tempo reale, identificando i più adeguati alla particolare applicazioni, facilitando la progettazione e garantendo tempi computazionali molto ridotti, riuscendo a contenere gli errori in range accettabili, cioè al di sotto di 0,5% per la massa e 1,7% per la rigidezza: non è quindi necessario effettuare la costruzione dei modelli e svolgere le simulazioni strutturali sui corpi tridimensionali prodotti in fase progettuale, ma solo per ottenere i valori del set d'allenamento e di validazione per la rete neurale.

Le reti neurali artificiali si dimostrano capaci quindi di prevedere il comportamento di sistemi complessi, se opportunamente allenate, ed è possibile generalizzare la loro applicabilità anche a tipologie di strutture diverse rispetto a quelle analizzate in questo lavoro, essendo una delle loro caratteristiche fondamentali.

Per il particolare caso analizzato, cioè ottiche per applicazioni spaziali in Zerodur, la rete neurale ottimale è costituita da 3 hidden layer con 40 nodi in ognuno, un learning rate di 0,5 e 10000 iterazioni per l'allenamento.

Il principale sviluppo futuro per questo studio consiste nell'aumentare la capacità previsionale della rete neurale per permettere di generalizzare la sua applicabilità anche a diversi specchi e

ad altri materiali. Il primo aspetto sarebbe quello di effettuare altre simulazioni e progettare una rete neurale variando il materiale dello specchio e della struttura di supporto, intesa come insieme di diametro esterno, diametro interno, altezza e spessore; nel caso in cui venga variato il materiale però è necessario analizzare il suo coefficiente di dilatazione termica per valutare la distorsione termica dell'ottica: nel caso sia nullo nel range di interesse, come per lo Zerodur, le linee guida sono già state delineate in questa tesi; se invece la dilatazione non è trascurabile essa deve essere un nuovo output della rete neurale, la quale dovrà contare quindi tre nodi di uscita ed il training deve essere effettuato di conseguenza. Nonostante ciò il coefficiente di dilatazione termica viene assunto costante nel range di applicazione per la maggior parte dei materiali, quindi la variazione della distorsione termica tra i vari modelli dipende direttamente dal discostamento dei parametri di input della rete neurale; inoltre per utilizzare delle ottiche per applicazioni spaziali è necessario sfruttare materiali molto simili allo Zerodur, perché un distorsione di 10⁻⁹ metri, seppur molto ridotta, può comunque rendere lo specchio inutilizzabile: il procedimento appena illustrato può quindi essere utilizzato variando la densità del materiale, utilizzandone tre valori diversi, impostandola come input alla rete e riallenando di conseguenza quest'ultima, per riuscire ad ottenere un modello generale per applicazioni spaziali.

Appendice A

Tabella dei parametri ottenuti dalle simulazioni

Nelle tabelle il diametro esterno (D_e) , il diametro interno (D_i) , l'altezza (Alt.) e lo spessore (S.) sono espressi in mm, la rigidezza (Rig.) in Hz e la massa (Massa) in kg.

Nr.	De	Di	Alt.	S	Rig.	Massa	Nr.	De	Di	Alt.	S	Rig.	Massa	Γ	Nr.	De	Di	Alt.	S	Rig.	Massa
1	2500	1300	300	6	41,426	921,63	352	2500	1300	300	8	45,509	978,82		704	2500	1300	300	7	43,759	950,33
2	2500	1300	400	6	45,888	953,62	353	2500	1300	400	8	49,868	1021,18	Ī	705	2500	1300	400	7	48,210	987,52
3	2500	1300	500	6	49,875	985,48	354	2500	1300	500	8	55,141	1063,38		706	2500	1300	500	7	52,828	1024,57
4	2500	1300	600	6	52,747	1017,21	355	2500	1300	600	8	58,359	1105,41		707	2500	1300	600	7	55,865	1061,5
5	3500	1300	300	6	39,376	995,27	356	3500	1300	300	8	42,705	1077,44	Ī	708	3500	1300	300	7	41,366	1036,45
6	3500	1300	400	6	45,710	1061,67	357	3500	1300	400	8	49,774	1165,64		709	3500	1300	400	7	48,053	1113,81
7	3500	1300	500	6	52,315	1127,92	358	3500	1300	500	8	57,079	1253,63		710	3500	1300	500	7	55,078	1190,94
8	3500	1300	600	6	57,348	1194,00	359	3500	1300	600	8	62,554	1341,41		711	3500	1300	600	7	60,312	1267,88
9	3000	1300	300	6	43,097	978,03	360	3000	1300	300	8	47,062	1054,32		712	3000	1300	300	7	45,245	1016,35
10	3000	1300	400	6	51,692	1026,39	361	3000	1300	400	8	56,321	1118,51		713	3000	1300	400	7	54,195	1072,67
11	3000	1300	500	6	54,340	1074,60	362	3000	1300	500	8	59,548	1182,50		714	3000	1300	500	7	57,188	1128,75
12	3000	1300	600	6	58,144	1122,66	363	3000	1300	600	8	63,784	1246,28		715	3000	1300	600	7	61,157	1184,63
13	2600	1300	300	6	42,614	936,42	364	2600	1300	300	8	46,467	998,10		716	2600	1300	300	7	44,619	967,418
14	2600	1300	400	6	48,198	971,87	365	2600	1300	400	8	52,220	1045,02		717	2600	1300	400	7	50,307	1008,67
15	2600	1300	500	6	51,623	1007,18	366	2600	1300	500	8	56,759	1091,76		718	2600	1300	500	7	54,315	1049,70
16	2600	1300	600	6	54,828	1042,36	367	2600	1300	600	8	60,296	1138,33		719	2600	1300	600	7	57,784	1090,66
17	2700	1300	300	6	42,778	949,48	368	2700	1300	300	8	46,715	1016,30		720	2700	1300	300	7	44,868	983,04
18	2700	1300	400	6	49,196	988,32	369	2700	1300	400	8	53,521	1067,82		721	2700	1300	400	7	51,515	1028,34
19	2700	1300	500	6	52,393	1027,02	370	2700	1300	500	8	57,600	1119,16		722	2700	1300	500	7	55,227	1073,36
20	2700	1300	600	6	55,626	1065,58	371	2700	1300	600	8	61,288	1170,31		723	2700	1300	600	7	58,663	1118,28
21	2800	1300	300	6	43,119	958,89	372	2800	1300	300	8	47,014	1028,81		724	2800	1300	300	7	45,082	993,94
22	2800	1300	400	6	50,374	1000,78	373	2800	1300	400	8	54,760	1084,40		725	2800	1300	400	7	52,677	1042,70
23	2800	1300	500	6	53,247	1042,54	374	2800	1300	500	8	58,519	1139,79		726	2800	1300	500	7	55,969	1091,33
24	2800	1300	600	6	56,678	1084,14	375	2800	1300	600	8	62,076	1194,99		727	2800	1300	600	7	59,610	1139,78
25	2900	1300	300	6	43,025	968,41	376	2900	1300	300	8	46,801	1041,53		728	2900	1300	300	7	44,953	1005,16
26	2900	1300	400	6	50,923	1013,49	377	2900	1300	400	8	55,276	1101,35		729	2900	1300	400	7	53,212	1057,60
27	2900	1300	500	6	53,583	1058,41	378	2900	1300	500	8	58,823	1160,97		730	2900	1300	500	7	44,868	1109,89
28	2900	1300	600	6	57,181	1103,19	379	2900	1300	600	8	62,892	1220,39		731	2900	1300	600	7	60,162	1162,16
29	3100	1300	300	6	43,031	987,77	380	3100	1300	300	8	46,561	1067,35		732	3100	1300	300	7	44,807	1027,75
30	3100	1300	400	6	52,195	1039,53	381	3100	1300	400	8	56,281	1136,08		733	3100	1300	400	7	54,251	1088,00
31	3100	1300	500	6	54,717	1091,15	382	3100	1300	500	8	59,594	1204,61		734	3100	1300	500	7	57,163	1148,12
32	3100	1300	600	6	58,616	1142,60	383	3100	1300	600	8	63,792	1272,93		735	3100	1300	600	7	61,196	1208,45
33	3200	1300	300	6	42,494	997,63	384	3200	1300	300	8	46,514	1080,46		736	3200	1300	300	7	44,514	1039,23
34	3200	1300	400	6	51,926	1052,92	385	3200	1300	400	8	56,591	1153,87		737	3200	1300	400	7	54,295	1103,52
35	3200	1300	500	6	54,554	1108,05	386	3200	1300	500	8	59,964	1227,08		738	3200	1300	500	7	57,278	1167,72
36	3200	1300	600	6	58,533	1163,03	387	3200	1300	600	8	64,363	1300,07		739	3200	1300	600	7	61,448	1231,76
37	3300	1300	300	6	42,717	1007,63	388	3300	1300	300	8	46,186	1093,74		740	3300	1300	300	7	44,362	1050,89
38	3300	1300	400	6	52,534	1066,55	389	3300	1300	400	8	56,603	1171,99	Ī	741	3300	1300	400	7	54,569	1119,48

E

39	3300	1300	500	6	55,278	1125,32	390	3300	1300	500	Ø	60,067	1250,05	14Z	3300	1300	500	1	57,679	1187,80
40	3300	1300	600	6	59.399	1183.93	391	3300	1300	600	8	64.630	1327.85	743	3300	1300	600	7	62.053	1256.09
11	3400	1300	300	6	42 277	1017 77	302	3400	1300	300	Q	15 881	1107 32	744	3400	1300	300	7	44 135	1062 75
41	3400	1300	300	0	42,211	1017,77	392	3400	1300	300	0	45,001	1107,32	744	3400	1300	300	/	44,135	1002,75
42	3400	1300	400	6	52,375	1080,45	393	3400	1300	400	8	56,470	1190,57	745	3400	1300	400	7	54,497	1135,73
43	3400	1300	500	6	55.235	1142.98	394	3400	1300	500	8	60.013	1273.62	746	3400	1300	500	7	57.705	1208.53
44	3400	1300	600	6	59,600	1205 34	305	3400	1300	600	8	64 594	1356.45	747	3400	1300	600	7	62 146	1281 10
45	0700	1000	000	0	10,000	1200,04	000	0700	1000	000	0	04,004	1000,40	740	0700	1000	000	7	02,140	1201,15
45	2500	1400	300	6	40,253	912,44	396	2500	1400	300	8	44,210	966,71	748	2500	1400	300	1	42,524	939,67
46	2500	1400	400	6	44,619	943,44	397	2500	1400	400	8	48,582	1007,78	749	2500	1400	400	7	46,974	975,73
47	2500	1400	500	6	48 444	974 33	398	2500	1400	500	8	53 513	1048 70	750	2500	1400	500	7	51 341	1011 71
10	2500	1400	600	6	51 250	1005 10	200	2500	1400	600	0	56 704	1090.45	751	2500	1400	600	7	54,200	1047.42
40	2500	1400	000	0	51,259	1005,10	399	2500	1400	000	0	50,794	1009,40	751	2500	1400	000	/	54,309	1047,43
49	3500	1400	300	6	39,282	992,90	400	3500	1400	300	8	42,647	1074,28	752	3500	1400	300	7	41,253	1033,72
50	3500	1400	400	6	45.592	1059.07	401	3500	1400	400	8	49.682	1162.18	753	3500	1400	400	7	47.958	1110.82
51	3500	1400	500	6	52 169	1125.08	402	3500	1400	500	8	56 910	1249.86	754	3500	1400	500	7	54 912	1187 67
50	0500	1400	000	0	52,103	1123,00	402	0500	1400	000	0	30,910	1249,00	754	0500	1400	000	7	34,912	1001,07
52	3500	1400	600	6	57,187	1190,93	403	3500	1400	600	8	62,353	1337,32	755	3500	1400	600	1	60,116	1264,30
53	3000	1400	300	6	42,885	975,07	404	3000	1400	300	8	46,893	1050,37	756	3000	1400	300	7	45,072	1012,84
54	3000	1400	400	6	51 439	1023 23	405	3000	1400	400	8	56 143	1114 29	757	3000	1400	400	7	53 951	1068.96
55	2000	4 4 0 0	500	°	54,004	1020,20	400	2000	4 4 0 0	500	0	50,110	1171,20	750	2000	4 4 0 0	500	7	57,000	1000,00
55	3000	1400	500	ь	54,061	1071,23	406	3000	1400	500	ð	59,476	1178,01	758	3000	1400	500	1	57,006	1124,89
56	3000	1400	600	6	57,899	1119,09	407	3000	1400	600	8	63,605	1241,53	759	3000	1400	600	7	60,957	1180,50
57	2600	1400	300	6	41.478	924.27	408	2600	1400	300	8	45.100	982.47	760	2600	1400	300	7	43.343	953.49
58	2600	1/00	400	6	46 963	058 37	400	2600	1/00	400	Q	50,820	1027.66	761	2600	1400	400	7	18 964	003 16
50	2000	1400	-00	0	40,000	000,07	440	2000	1400	-00	0	55,020	1027,00	701	2000	1400	500	7	40,004	4000 74
59	2600	1400	500	ъ	50,311	992,36	410	2600	1400	500	ð	55,230	1072,69	762	2600	1400	500	1	52,841	1032,74
60	2600	1400	600	6	53,496	1026,21	411	2600	1400	600	8	58,692	1117,55	763	2600	1400	600	7	56,288	1072,12
61	2700	1400	300	6	42 096	936.96	412	2700	1400	300	8	45 944	999 27	764	2700	1400	300	7	44 141	968 23
62	2700	1400	400	Ē	18 110	074 40	112	2700	1/00	400	8	52 672	1049.99	765	2700	1400	400	7	50 712	1011 01
02	2100	1400	400	0	40,448	314,40	413	2100	1400	400	0	52,013	1040,00	700	2100	1400	400		50,71Z	1011,81
63	2700	1400	500	6	51,659	1011,70	414	2700	1400	500	8	56,665	1098,31	766	2700	1400	500	7	54,402	1055,23
64	2700	1400	600	6	54,914	1048,87	415	2700	1400	600	8	60,376	1147,56	767	2700	1400	600	7	57,849	1098,40
65	2800	1400	300	6	42 871	952.00	416	2800	1400	300	8	46 802	1018 02	769	2800	1400	300	7	44 881	985.63
000	2000	4400	400	0	+2,011	000.00	+10	2000	4400	400	0	+0,002	1010,92	700	2000	4 4 6 6	400	<u>+</u>	-1-1,001	4000 51
66	2800	1400	400	6	50,157	993,29	417	2800	1400	400	8	54,525	1073,47	769	2800	1400	400	7	52,447	1033,51
67	2800	1400	500	6	53,023	1034,35	418	2800	1400	500	8	58,226	1127,84	770	2800	1400	500	7	55,747	1081,33
68	2800	1400	600	6	56 411	1075 27	∆10	2800	1400	600	8	61 008	1182 01	771	2800	1400	600	7	59 387	1128.84
00	2000	1400	000	0	40,045	1073,27	400	2000	1400	000	0	40,300	1102,01	770	2000	1400	000	7	33,307	1120,04
69	2900	1400	300	6	42,945	965,49	420	2900	1400	300	8	46,737	1037,64	112	2900	1400	300	1	44,886	1001,76
70	2900	1400	400	6	50,770	1010,37	421	2900	1400	400	8	55,211	1097,19	773	2900	1400	400	7	53,104	1053,98
71	2900	1400	500	6	53.407	1055.10	422	2900	1400	500	8	58.752	1156.55	774	2900	1400	500	7	56.209	1106.05
72	2000	1400	600	6	57,040	1000.69	122	2000	1400	600	0	62,995	1215 72	775	2000	1400	600	7	60,009	1157.02
12	2900	1400	600	0	57,040	1099,00	423	2900	1400	600	0	02,000	1215,72	115	2900	1400	600	1	60,096	1157,95
73	3100	1400	300	6	42,975	984,76	424	3100	1400	300	8	46,559	1063,34	776	3100	1400	300	7	44,724	1024,22
74	3100	1400	400	6	52,085	1036,32	425	3100	1400	400	8	56,265	1131,80	777	3100	1400	400	7	54,138	1084,20
75	3100	1400	500	6	54 655	1087 72	426	3100	1400	500	8	59 569	1200.05	778	3100	1400	500	7	57 063	1144 12
70	0100	1400	000	0	59,534	1007,72	407	0100	1400	000	0	00,300	1200,00	770	0100	1400	000	7	01,000	1000 75
76	3100	1400	600	6	58,574	1138,97	427	3100	1400	600	8	63,788	1268,09	779	3100	1400	600	1	61,194	1203,75
77	3200	1400	300	6	42,378	994,57	428	3200	1400	300	8	46,419	1076,39	780	3200	1400	300	7	44,388	1035,64
78	3200	1400	400	6	51,778	1049.65	429	3200	1400	400	8	56.467	1149.51	781	3200	1400	400	7	54,150	1099.75
70	2200	1400	500	6	54 452	1104.57	420	2200	1400	500	0	50,940	1222.42	792	2200	1400	500	7	57,150	1162 70
79	3200	1400	500	0	54,452	1104,57	430	3200	1400	500	0	59,649	1222,43	102	3200	1400	500	1	57,150	1103,70
80	3200	1400	600	6	58,404	1159,33	431	3200	1400	600	8	64,235	1295,14	783	3200	1400	600	7	61,298	1227,47
81	3300	1400	300	6	42.504	1004.52	432	3300	1400	300	8	45.974	1089.61	784	3300	1400	300	7	44.174	1047.28
82	3300	1400	400	6	52 320	1063.22	133	3300	1/00	400	Q.	56 406	1167.56	785	3300	1400	400	7	54 342	1115 50
02	3300	1400	400	0	52,520	1003,22	400	3300	1400	400	0	30,400	1107,50	705	3300	1400	400	'	34,342	1113,30
83	3300	1400	500	6	55,052	1121,77	434	3300	1400	500	8	59,890	1245,30	786	3300	1400	500	1	57,446	1183,79
84	3300	1400	600	6	59,176	1180,16	435	3300	1400	600	8	64,447	1322,83	787	3300	1400	600	7	61,822	1251,73
85	3400	1400	300	6	42 142	1014 60	436	3400	1400	300	8	45 692	1103 10	788	3400	1400	300	7	43 958	1059.03
00	0.100	4 4 0 0	400	0	52,142	1077.00	407	0100	4 4 0 0	400	0	TC,002	1100,10	700	0100	1 100	400	7	54.070	1000,00
00	3400	1400	400	0	52,165	1077,06	437	3400	1400	400	0	30,230	1100,05	769	3400	1400	400	1	54,275	1131,70
87	3400	1400	500	6	55,038	1139,36	438	3400	1400	500	8	59,772	1268,79	790	3400	1400	500	7	57,449	1204,31
88	3400	1400	600	6	59,437	1201.49	439	3400	1400	600	8	64.368	1351.32	791	3400	1400	600	7	61,928	1276.65
80	2500	1500	300	6	39 496	905 50	440	2500	1500	300	8	43 240	957.62	702	2500	1500	300	7	41 615	931 64
03	2500	1500	300	0	39,490	303,30	440	2300	1500	300	0	43,243	337,02	7.92	2500	1500	300	-	41,013	331,04
90	2500	1500	400	6	43,816	935,75	441	2500	1500	400	8	47,579	997,70	793	2500	1500	400	7	46,035	966,83
91	2500	1500	500	6	47,640	965,89	442	2500	1500	500	8	52,372	1037,64	794	2500	1500	500	7	50,168	1001,88
92	2500	1500	600	6	50 212	995 92	443	2500	1500	600	8	55 375	1077 42	795	2500	1500	600	7	53 111	1036.80
02	3500	1500	300	Ē	30,002	000.64	111	3500	1500	300	ē	42 400	1071.20	706	3500	1500	300	. 7	41.062	1031.06
33	3000	1500	300	U	39,003	390,04	444	3000	1000	300	0	42,409	10/1,20	190	3300	1000	300	1	+1,003	1031,00
94	3500	1500	400	6	45,442	1056,58	445	3500	1500	400	8	49,502	1158,86	797	3500	1500	400	7	47,769	1107,84
95	3500	1500	500	6	52,017	1122,36	446	3500	1500	500	8	56,726	1246,23	798	3500	1500	500	7	54,756	1184,45
96	3500	1500	600	6	57 041	1187 98	447	3500	1500	600	8	62 213	1333 39	799	3500	1500	600	7	59 954	1260.86
07	2000	1500	200	ē	42 027	076.07	440	2000	1500	200	0	46 605	1040.00	000	2600	1500	200	-	42 600	044.66
51	3000	1500	300	U	+2,031	310,21	440	3000	1000	300	0	40,020	1040,20	000	2000	1000	300	1	+2,000	344,00
98	3000	1500	400	6	51,376	1024,84	449	3000	1500	400	8	55,881	1103,05	801	2600	1500	400	7	48,162	983,36
99	3000	1500	500	6	53,957	1073.25	450	3000	1500	500	8	59,223	1165.63	802	2600	1500	500	7	51,957	1021.92
100	3000	1500	600	6	57 779	1121 52	451	3000	1500	600	8	63 / 21	1228.02	803	2600	1500	600	7	55 22/	1060.34
100	0000	1500	000	0	40,770	1121,02	401	0000	1500	000	0	44.000	1220,02	003	2000	1500	000	<u>'</u>	40.007	1000,34
101	2600	1500	300	6	40,761	916,64	452	2600	1500	300	8	44,300	972,47	804	2700	1500	300	7	42,927	957,34
102	2600	1500	400	6	46,184	949,90	453	2600	1500	400	8	49,901	1016,57	805	2700	1500	400	7	49,369	999,63
103	2600	1500	500	6	49 482	983.05	454	2600	1500	500	8	54 196	1060 50	806	2700	1500	500	7	52 919	1041 77
103	2000	1500	600	6	F0 570	1010.07	404	2000	1500	600	0	57,130	1104.07	000	2700	1500	600	<u>+</u>	56,000	1000 77
104	2000	1500	000	ю	o∠,578	1010,07	455	2000	1500	000	Ø	01,011	1104,27	807	2700	1500	000	1	ob,223	1083,77
105	2700	1500	300	6	40,982	927,57	456	2700	1 <u>5</u> 00	300	8	44,586	986,90	808	2800	1500	300	7	43,603	971,37
106	2700	1500	400	6	47,185	963.92	457	2700	1500	400	8	51,208	1035.08	809	2800	1500	400	7	51,087	1017 58
107	2700	1500	500	é	50,205	1000.15	101	2700	1500	500	0	55 101	1092 10	010	2000	1500	500	-	54 270	1062.62
107	2100	1500	500	0	50,295	1000,15	458	2100	1500	500	Ø	55,101	1003,10	010	2000	1500	500	-	04,318	1003,03
108	2700	1500	600	6	53,439	1036,25	459	2700	1500	600	8	58,674	1130,94	811	2800	1500	600	7	57,999	1109,52
109	2800	1500	300	6	41,763	939,64	460	2800	1500	300	8	45,383	1002.91	812	2900	1500	300	7	44,029	986.52
110	2800	1500	400	6	48 010	970.36	161	2800	1500	400	8	53 065	1055 56	812	2000	1500	400	7	52 105	1036.02
110	2000	1500	400	0	+0,910	313,30	401	2000	1500	400	0	55,005	1000,00	013	2900	1500	400	-	JZ, 193	1030,92
111	2800	1500	500	6	51,801	1018,94	462	2800	1500	500	8	56,701	1108,03	814	2900	1500	500	7	55,320	1087,16
112	2800	1500	600	6	55,191	1058,39	463	2800	1500	600	8	60,432	1160,32	815	2900	1500	600	7	59,246	1137,23
113	2900	1500	300	6	42 106	952.64	464	2900	1500	300	8	45 788	1020 15	816	3100	1500	300	7	44 645	1020 78
113	2300	1500	400	0	+2,100	332,04	404	2300	1500	100	0	+0,100	1020,10	010	0400	1500	100	<u> </u>	-++,040	1020,70
114	2900	1500	400	б	49,978	995,96	465	2900	1500	400	8	54,192	1077,58	817	3100	1500	400	1	54,033	1080,57
		1500	500	6	52 676	1030 14	466	2900	1500	500	0	57 758	113/ 83	010	2100	4500	500	17	=	
115	2900	1500	500	0	02,010	1000,14	100	2000		000	0	51,150	1134,03	010	3100	1500	500	1	56,990	1140,18
115	2900	1500	300	6	42 819	981.85	467	2900	1500	600	8	61 825	1191.89	819	3100	1500	600	7	56,990 61 094	1140,18
115 116	2900 3100	1500	300	6	42,819	981,85	467	2900	1500	600	8	61,825	1191,89	819	3100	1500	600 200	7	56,990 61,094	1140,18 1199,61

118	3100	1500	500	6	54,543	1084.40	469	3100	1500	400	8	56.182	1127.64	821	3200	1500	400	7	54.073	1096.03
110	3100	1500	600	6	58 381	1135 44	470	3100	1500	500	8	59 495	1195 61	822	3200	1500	500	7	57 021	1159 72
100	0000	1500	000	0	10,001	1100,44	474	0100	1500	000	0	00,400	1100,01	022	0200	1500	000	4	01,021	1000,72
120	3200	1500	300	6	42,290	991,63	471	3100	1500	600	8	63,661	1263,38	823	3200	1500	600	1	61,175	1223,23
121	3200	1500	400	6	51,645	1046,49	472	3200	1500	300	8	46,343	1072,47	824	3300	1500	300	7	44,150	1043,67
122	3200	1500	500	6	54 295	1101 19	473	3200	1500	400	8	56 377	1145 31	825	3300	1500	400	7	54 292	1111 76
100	2200	1500	600	c	E9 255	1165,74	474	2200	1500	500	0	50,720	1017.04	020	2200	1500	500	7	57,262	1170.67
123	3200	1500	000	0	38,233	1155,74	474	3200	1500	500	0	39,720	1217,94	020	3300	1500	500	-	57,303	11/9,07
124	3300	1500	300	6	42,488	1001,53	475	3200	1500	600	8	64,087	1290,36	827	3300	1500	600	1	61,710	1247,40
125	3300	1500	400	6	52,310	1060,02	476	3300	1500	300	8	45,954	1085,63	828	3400	1500	300	7	43,850	1055,44
126	3300	1500	500	6	54 980	1118 35	477	3300	1500	400	8	56 339	1163 29	829	3400	1500	400	7	54 191	1127 90
127	2200	1500	600	6	50,120	1176.52	470	2200	1500	500	õ	50,776	1240.74	920	2400	1500	500	. 7	57 422	1200.19
121	0.400	1500	000	0	39,129	1170,52	470	0000	1500	000	0	33,770	1240,74	030	0400	1500	000	7	57,425	1200,10
128	3400	1500	300	6	41,986	1011,57	479	3300	1500	600	8	64,289	1317,97	831	3400	1500	600	1	61,859	1272,28
129	3400	1500	400	6	52,051	1073,80	480	3400	1500	300	8	45,587	1099,07	832	2500	1600	300	7	40,524	923,71
130	3400	1500	500	6	54 986	1135 87	481	3400	1500	400	8	56 167	1181 72	833	2500	1600	400	7	44 664	957 98
131	3400	1500	600	6	59,310	1107 70	482	3400	1500	500	Q	59,667	1264 16	834	2500	1600	500	7	18 660	002.12
131	3400	1000	000	0	59,310	1197,79	402	3400	1500	500	0	59,007	1204,10	034	2500	1000	500	-	40,009	992,12
132	2500	1600	300	6	38,488	898,69	483	3400	1500	600	8	64,301	1346,39	835	2500	1600	600	1	51,310	1026,13
133	2500	1600	400	6	42,471	928,16	484	2500	1600	300	8	42,101	948,57	836	3500	1600	300	7	41,039	1028,51
134	2500	1600	500	6	46 017	957 51	485	2500	1600	400	8	46 187	987 60	837	3500	1600	400	7	47 782	1105.03
125	2500	1600	600	6	10,011	096.76	100	2500	1600	500	õ	50,656	1026.40	020	2500	1600	500	. 7	54 741	1101.26
100	2500	1000	000	0	40,400	300,70	400	2000	1000	300	0	50,050	1020,49	030	3300	1000	300	-	54,741	1101,50
136	3500	1600	300	6	39,078	988,46	487	2500	1600	600	8	53,503	1065,24	839	3500	1600	600	1	59,908	1257,50
137	3500	1600	400	6	45,485	1054,17	488	3500	1600	300	8	42,385	1068,37	840	3000	1600	300	7	43,646	989,75
138	3500	1600	500	6	52.004	1119.71	489	3500	1600	400	8	49.494	1155.64	841	3000	1600	400	7	52.362	1042.99
130	3500	1600	600	6	56 993	1185 10	490	3500	1600	500	8	56 728	1242 70	842	3000	1600	500	7	55 463	1096.07
100	0000	1000	000	0	30,333	1100,10	404	0500	1000	000	0	00,120	1242,70	042	0000	1000	000	7	50,403	1030,07
140	3000	1600	300	6	41,594	957,34	491	3500	1600	600	8	62,137	1329,55	843	3000	1600	600	<u> </u>	59,427	1148,99
141	3000	1600	400	6	49,918	1003,39	492	3000	1600	300	8	45,374	1023,90	844	2600	1600	300	7	41,315	936,31
142	3000	1600	500	6	52,661	1049,31	493	3000	1600	400	8	54,381	1084,58	845	2600	1600	400	7	46,481	974,03
143	3000	1600	600	6	56 479	1095.08	494	3000	1600	500	8	57 805	1145.08	846	2600	1600	500	7	50 153	1011 61
144	2600	1600	200	Ē	20 604	000 46	405	2000	1600	600	õ	61 011	120E 20	047	2600	1600	600	÷	50,100	1040.06
144	2000	0001	300	0 C	39,001	909,46	495	3000	1000	000	ŏ	01,911	1205,39	847	2000	1000	000	4	JJ,∠54	1049,06
145	2600	1600	400	6	44,683	941,89	496	2600	1600	300	8	42,930	962,95	848	2700	1600	300	7	42,092	949,15
146	2600	1600	500	6	47,851	974,20	497	2600	1600	400	8	48,233	1005,92	849	2700	1600	400	7	48,329	990,49
147	2600	1600	600	6	50 773	1006.39	498	2600	1600	500	8	52 331	1048 74	850	2700	1600	500	7	51 909	1031.68
140	2700	1600	200	6	40.247	020.40	400	2600	1600	600	0	5E 424	1010,71	000	2700	1600	600	7	55,000	1072 72
140	2700	1600	300	0	40,247	920,49	499	2000	1600	600	0	55,434	1091,41	100	2700	1600	600	<u>′</u>	55,252	1072,73
149	2700	1600	400	6	46,272	956,02	500	2700	1600	300	8	43,688	977,62	852	2800	1600	300	7	42,626	961,86
150	2700	1600	500	6	49,413	991,43	501	2700	1600	400	8	50,149	1024,72	853	2800	1600	400	7	49,919	1006,92
151	2700	1600	600	6	52 513	1026 72	502	2700	1600	500	8	53 980	1071 66	854	2800	1600	500	7	53 210	1051.83
152	2000	1600	200	6	40,929	021.25	502	2700	1600	600	õ	57 557	1119 14	955	2000	1600	600	7	56 741	1006 50
152	2000	1000	300	0	40,828	931,35	503	2700	1000	000	0	57,557	1110,44	855	2000	1000	000	-	30,741	1090,39
153	2800	1600	400	6	47,768	970,07	504	2800	1600	300	8	44,344	992,23	856	2900	1600	300	1	42,875	975,40
154	2800	1600	500	6	50,682	1008,66	505	2800	1600	400	8	51,775	1043,60	857	2900	1600	400	7	50,804	1024,42
155	2800	1600	600	6	53,985	1047.12	506	2800	1600	500	8	55.432	1094.79	858	2900	1600	500	7	53,944	1073.30
156	2000	1600	300	6	41,030	943.05	507	2800	1600	600	Q	50,120	1145.82	850	2000	1600	600	7	57 777	1122.01
150	2300	1000	300	0	41,030	945,05	507	2000	1000	000	0	33,123	1143,02	000	2300	1000	000	7	37,777	1122,01
157	2900	1600	400	ъ	48,632	985,18	508	2900	1600	300	ð	44,568	1007,52	860	3100	1600	300	1	43,910	1005,24
158	2900	1600	500	6	51,380	1027,19	509	2900	1600	400	8	52,761	1063,39	861	3100	1600	400	7	53,241	1063,01
159	2900	1600	600	6	54.981	1069.06	510	2900	1600	500	8	56.317	1119.09	862	3100	1600	500	7	56.266	1120.61
160	3100	1600	300	6	42 109	968.68	511	2900	1600	600	8	60 195	1174 60	863	3100	1600	600	7	60 323	1178 04
161	2100	1600	400	6	F1 1 47	1019.32	510	2100	1600	200	0	45,600	1041 54	000	2200	1600	200	7	44 407	1022.51
101	3100	1600	400	0	51,147	1010,32	512	3100	1600	300	0	45,602	1041,54	004	3200	1000	300	1	44,107	1023,51
162	3100	1600	500	6	53,789	1067,81	513	3100	1600	400	8	55,220	1107,37	865	3200	1600	400	7	53,818	1086,34
163	3100	1600	600	6	57,699	1117,16	514	3100	1600	500	8	58,546	1173,02	866	3200	1600	500	7	56,833	1148,99
164	3200	1600	300	6	42 139	984 57	515	3100	1600	600	8	62 779	1238 47	867	3200	1600	600	7	60,987	1211 47
165	2200	1600	400	6	51 404	1029 50	516	2200	1600	200	õ	46.070	1062.17	969	2200	1600	200	. 7	44,000	1040.20
105	3200	1000	400	0	51,494	1038,39	510	3200	1000	300	0	40,079	1002,17	000	3300	1000	300	-	44,099	1040,30
166	3200	1600	500	6	54,153	1092,45	517	3200	1600	400	8	56,124	1133,75	869	3300	1600	400	7	54,228	1108,13
167	3200	1600	600	6	58,103	1146,17	518	3200	1600	500	8	59,491	1205,13	870	3300	1600	500	7	57,342	1175,78
168	3300	1600	300	6	42,428	998.64	519	3200	1600	600	8	63,913	1276.32	871	3300	1600	600	7	61.683	1243.25
160	3300	1600	400	Ē	52 222	1056.90	520	3300	1600	300	8	45 006	1081 70	872	3400	1600	300	7	43 765	1052.03
170	2200	1600	-00	C C	54,000	1115.04	520	2200	1600	400	0	-0,000 FC 007	1450 44	072	2400	1600	400	+	F4 007	1104.00
170	3300	1600	500	6	54,928	1115,01	521	3300	1600	400	8	56,287	1159,14	873	3400	1600	400	1	54,027	1124,22
171	3300	1600	600	6	59,059	1172,96	522	3300	1600	500	8	59,665	1236,29	874	3400	1600	500	7	57,296	1196,24
172	3400	1600	300	6	41,890	1008,65	523	3300	1600	600	8	64,264	1313,23	875	3400	1600	600	7	61,738	1268,07
173	3400	1600	400	6	51,882	1070 65	524	3400	1600	300	8	45,534	1095 17	876	2500	1700	300	7	39,819	916.27
174	3400	1600	500	Â	54 822	1132 /0	525	3400	1600	400	é	56,005	1177 51	877	2500	1700	400	7	43,820	949.64
475	0400	1000	000		59,023	1102,49	520	0400	1000	400	6	50,005	4050.05	077	2000	4700	400	⊢ ⊊	47,020	000.00
1/5	3400	1600	000	ø	59,157	1194,18	526	3400	1600	500	ð	59,617	1209,65	8/8	2500	1700	500	Ľ	41,689	J0∠,88
176	2500	1700	300	6	37,928	892,31	527	3400	1600	600	8	64,193	1341,57	879	2500	1700	600	7	50,114	1015,99
177	2500	1700	400	6	41,734	921,00	528	2500	1700	300	8	41,295	940.08	880	3500	1700	300	7	41,000	1026,04
178	2500	1700	500	6	45 175	949 58	520	2500	1700	400	8	45 172	978.08	881	3500	1700	400	7	47 765	1102 28
170	2500	1700	600	Ē	17 125	078.06	520	2500	1700	500	ĕ	10 150	1015.04	807	3500	1700	500	7	54 740	1179 22
1/9	2000	1700	000	0	41,430	310,00	530	2000	1700	000	0	49,400	1015,94	002	3500	1700	500	4	54,740	11/0,33
180	3500	1700	300	6	39,069	986,34	531	2500	1700	600	8	52,050	1053,66	883	3500	1700	600	7	59,922	1254,20
181	3500	1700	400	6	45,525	1051,81	532	3500	1700	300	8	42,341	1065,54	884	3000	1700	300	7	42,700	979,83
182	3500	1700	500	6	52.072	1117.11	533	3500	1700	400	8	49.513	1152.50	885	3000	1700	400	7	51.207	1031.79
183	3500	1700	600	Ĕ	57 077	1182.27	534	3500	1700	500	Ř	56 7/1	1230.24	886	3000	1700	500	.7	54 372	1083.60
103	0000	1700	000	0	31,011	1102,27	534	0500	1700	000	0	00,141	1233,24	000	3000	1700	000	<u> </u>	59,373	1003,00
184	3000	1700	300	6	40,715	946,87	535	3500	1700	600	8	62,181	1325,78	887	3000	1700	600	1	58,292	1135,25
185	3000	1700	400	6	48,877	991,53	536	3000	1700	300	8	44,339	1012,60	888	2600	1700	300	7	40,537	928,59
186	3000	1700	500	6	51.674	1036.06	537	3000	1700	400	8	53.188	1071.82	889	2600	1700	400	7	45.558	965.36
187	3000	1700	600	Â	55 497	1080.45	529	3000	1700	500	Ŕ	56 625	1130.87	800	2600	1700	500	7	40 072	1002.01
107	0000	1700	200	6	20,401	000.40	530	2000	1700	000	0	60 705	1100,07	000	2000	1700	600	4		1002,01
188	2000	1700	300	σ	38,942	90∠,84	539	3000	1700	000	Ø	00,705	1189,73	891	2000	1700	000	Ľ	o∠,028	1038,52
189	2600	1700	400	6	43,826	934,45	540	2600	1700	300	8	42,035	954,14	892	2700	1700	300	7	41,108	941,10
190	2600	1700	500	6	46,943	965,96	541	2600	1700	400	8	47,155	996,03	893	2700	1700	400	7	47,004	981,44
191	2600	1700	600	6	49 768	997 35	542	2600	1700	500	8	51 072	1037 78	894	2700	1700	500	7	50 493	1021 64
102	2700	1700	200	c c	20,200	012 50	542	2000	1700	600	0	E4 400	1070.07	007	2700	1700	600	-	E2 E00	1064 70
192	2/00	1700	300	b	39,386	913,58	543	2000	1700	000	ð	54,139	10/9,3/	895	2/00	1700	000	-	23,580	1061,70
193	2700	1700	400	6	45,123	948,25	544	2700	1700	300	8	42,602	968,43	896	2800	1700	300	7	41,751	953,88
194	2700	1700	500	6	48,208	982,81	545	2700	1700	400	8	48,685	1014,39	897	2800	1700	400	7	48,678	997,95
195	2700	1700	600	6	51 128	1017 25	546	2700	1700	500	8	52 403	1060 20	898	2800	1700	500	7	51 926	1041 88
100	2000	1700	200	6	40.007	004.50	540	2700	1700	600	0	52,403	1105.05	000	2000	1700	600	-	51,320 EE 007	1095.00
			~				1 0/1/					////	CILID XD				101111		/ /	

197	2800	1700	400	6	46,781	962,44	548	2800	1700	300	8	43,369	983,04	900	2900	1700	300	7	42,118	967,05
198	2800	1700	500	6	49,639	1000,19	549	2800	1700	400	8	50,479	1033,26	901	2900	1700	400	7	49,897	1015
199	2800	1700	600	6	52,767	1037,82	550	2800	1700	500	8	54,059	1083,31	902	2900	1700	500	7	53,097	1062,88
200	2900	1700	300	6	40,413	935,84	551	2800	1700	600	8	57,611	1133,21	903	2900	1700	600	7	56,838	1110,56
201	2900	1700	400	6	47,875	977,08	552	2900	1700	300	8	43,757	998,07	904	3100	1700	300	7	42,859	993,90
202	2900	1700	500	6	50,617	1018,19	553	2900	1700	400	8	51,744	1052,76	905	3100	1700	400	7	51,993	1050,17
203	2900	1700	600	6	54,174	1059,17	554	2900	1700	500	8	55,322	1107,28	906	3100	1700	500	7	55,061	1106,28
204	3100	1700	300	6	41,126	958.90	555	2900	1700	600	8	59.228	1161.63	907	3100	1700	600	7	59,135	1162.2
205	3100	1700	400	6	49,961	1007.24	556	3100	1700	300	8	44,461	1028.66	908	3200	1700	300	7	42.889	1008.60
206	3100	1700	500	6	52.675	1055.45	557	3100	1700	400	8	53,868	1092.79	909	3200	1700	400	7	52,391	1069.39
207	3100	1700	600	6	56 499	1103 52	558	3100	1700	500	8	57 065	1156 74	910	3200	1700	500	7	55 548	1130.01
208	3200	1700	300	6	40 976	971 54	559	3100	1700	600	8	61,395	1220 51	911	3200	1700	600	7	59 733	1190.47
200	3200	1700	400	6	50 155	1023 77	560	3200	1700	300	8	44 758	1045.42	912	3300	1700	300	7	43 304	1024.40
210	3200	1700	500	6	52 992	1075.86	561	3200	1700	400	8	54 601	1114 72	012	3300	1700	400	7	53 367	1021,10
211	3200	1700	600	6	56 964	1127.82	562	3200	1700	500	8	58 075	1183.82	914	3300	1700	500	7	56 546	1155.46
211	2200	1700	200	6	41 627	095 15	562	2200	1700	600	0	62 524	1252.74	015	2200	1700	600	7	60.040	1220.74
212	2200	1700	400	6	41,037 51,250	1041 54	503	3200	1700	200	0	45 017	1252,74	915	2400	1700	200	7	42 521	1220,74
213	2200	1700	500	6	54 155	1041,34	565	2200	1700	400	0	45,017	1120 22	017	2400	1700	400	7	43,321 52 950	1114 29
214	3300	1700	500	6	54,100	1097,70	505	3300	1700	400	0	50,275	1010.22	917	3400	1700	400	7	53,009	1114,20
215	3300	1700	000	0	30,330	1155,00	500	3300	1700	500	0	00,091	1212,03	910	3400	1700	500	7	57,131	1105,10
210	3400	1700	300	6	41,710	1001,40	507	3300	1700	200	0	45.263	1207,24	919	3400	1200	200	7	20.264	1200,07
217	3400	1700	400	6	51,700	1002,34	500	3400	1700	300	0	40,207	1064,67	920	2500	1000	300	7	39,204	909,10
218	3400	1700	500	0	54,685	1123,47	569	3400	1700	400	8	50,805	1165,64	921	2500	1800	400	7	43,043	941,62
219	3400	1/00	000	6	59,040	1184,25	5/0	3400	1700	000	۲ ۵	59,422	1246,42	922	2500	1800	000	<u> (</u>	40,803	973,95
220	2500	1800	300	6	37,325	886,20	5/1	3400	1700	600	8 C	64,033	1326,99	923	2500	1800	600	1	49,092	1006,17
221	2500	1800	400	6	40,943	914,12	572	2500	1800	300	8	40,727	931,96	924	3500	1800	300	1	40,356	1013,09
222	2500	1800	500	6	44,280	941,93	573	2500	1800	400	8	44,423	968,92	925	3500	1800	400	7	47,121	1086,93
223	2500	1800	600	6	46,510	969,64	574	2500	1800	500	8	48,624	1005,74	926	3500	1800	500	7	54,095	1160,60
224	3500	1800	300	6	38,492	975,37	575	2500	1800	600	8	51,097	1042,44	927	3500	1800	600	7	59,329	1234,10
225	3500	1800	400	6	44,930	1038,80	576	3500	1800	300	8	41,668	1050,59	928	3000	1800	300	7	41,909	971,94
226	3500	1800	500	6	51,492	1102,10	577	3500	1800	400	8	48,821	1134,77	929	3000	1800	400	7	50,153	1022,86
227	3500	1800	600	6	56,514	1165,24	578	3500	1800	500	8	56,057	1218,76	930	3000	1800	500	7	53,212	1073,63
228	3000	1800	300	6	40,027	940,04	579	3500	1800	600	8	61,544	1302,55	931	3000	1800	600	7	56,980	1124,26
229	3000	1800	400	6	47,951	983,80	580	3000	1800	300	8	43,455	1003,66	932	2600	1800	300	7	39,844	921,28
230	3000	1800	500	6	50,700	1027,44	581	3000	1800	400	8	52,005	1061,70	933	2600	1800	400	7	44,676	957,11
231	3000	1800	600	6	54,377	1070,94	582	3000	1800	500	8	55,361	1119,58	934	2600	1800	500	7	48,209	992,82
232	2600	1800	300	6	38,277	896,57	583	3000	1800	600	8	59,341	1177,28	935	2600	1800	600	7	51,039	1028,40
233	2600	1800	400	6	42,981	927,38	584	2600	1800	300	8	41,341	945,79	936	2700	1800	300	7	40,369	933,55
234	2600	1800	500	6	46,100	958,08	585	2600	1800	400	8	46,254	986,61	937	2700	1800	400	7	46,007	972,91
235	2600	1800	600	6	48,752	988,67	586	2600	1800	500	8	50,140	1027,28	938	2700	1800	500	7	49,417	1012,14
236	2700	1800	300	6	38,694	907,11	587	2600	1800	600	8	52,961	1067,81	939	2700	1800	600	7	52,395	1051,23
237	2700	1800	400	6	44,241	940,94	588	2700	1800	300	8	41,786	959,82	940	2800	1800	300	7	40,923	946,06
238	2700	1800	500	6	47,230	974,66	589	2700	1800	400	8	47,612	1004,66	941	2800	1800	400	7	47,535	989,10
239	2700	1800	600	6	50,027	1008,27	590	2700	1800	500	8	51,228	1049,35	942	2800	1800	500	7	50,663	1032,01
240	2800	1800	300	6	39.322	917.84	591	2700	1800	600	8	54.375	1093.89	943	2800	1800	600	7	53.941	1074.77
241	2800	1800	400	6	45.692	954.84	592	2800	1800	300	8	42,410	974.10	944	2900	1800	300	7	41.232	958.88
242	2800	1800	500	6	48,493	991.72	593	2800	1800	400	8	49,170	1023.15	945	2900	1800	400	7	48.651	1005.78
243	2800	1800	600	6	51.571	1028.47	594	2800	1800	500	8	52.579	1072.05	946	2900	1800	500	7	51,816	1052.54
244	2900	1800	300	6	39,639	928.82	595	2800	1800	600	8	55,911	1120.78	947	2900	1800	600	7	55.346	1099.16
245	2900	1800	400	6	46 756	969 13	596	2900	1800	300	8	42 730	988 74	948	3100	1800	300	7	42 194	985 41
246	2900	1800	500	6	49 547	1009.32	597	2900	1800	400	8	50,357	1042 20	949	3100	1800	400	7	51 131	1040 54
247	2900	1800	600	6	53,016	1049.38	598	2900	1800	500	8	53 844	1095.49	950	3100	1800	500	7	54 164	1095 52
248	3100	1800	300	6	40 584	951 56	599	2000	1800	600	8	57 639	1148.61	951	3100	1800	600	7	58 197	1150 35
240	3100	1800	400	6	49 240	908.03	600	3100	1800	300	8	43,830	1019.04	952	3200	1800	300	7	42 172	998 50
250	3100	1800	500	6	51 968	1046 17	601	3100	1800	400	8	53 046	1081.89	953	3200	1800	400	7	51 534	1057.90
251	3100	1800	600	6	55 768	1093 27	602	3100	1800	500	8	56 373	1144 56	954	3200	1800	500	7	54 562	1117 14
252	3200	1800	300	6	40 332	962.85	602	3100	1800	600	8	60 533	1207.06	955	3200	1800	600	7	58 715	1176.22
253	3200	1800	400	6	49 207	1013 80	604	3200	1800	300	8	43 083	1033.03	956	3300	1800	300	7	42 275	1012.85
254	3200	1800	500	6	52 063	1064 79	605	3200	1800	400	8	53 650	1101 64	957	3300	1800	400	7	52 125	1076.83
255	3200	1800	600	6	56 007	1115 56	606	3200	1800	500	8	57 005	1169 17	958	3300	1800	500	7	55 298	1140.66
256	3300	1800	300	6	40 715	975 10	607	3200	1800	600	8	61 //5	1236 51	950	3300	1800	600	7	59 615	120/ 32
250	3300	1800	400	6	50 271	1020 17	007	3200	1800	300	Q	43 020	1050.01	060	3400	1800	300	7	42 404	1027 00
258	3300	1800	500	6	53 008	1030,17	600	3300	1800	400	8	53 081	1123.26	900	3400	1800	400	7	52 564	1027,33
250	3300	1800	600	6	57 164	1130 72	610	3300	1800	500	0 Q	57 502	1106.02	060	3400	1800	500	7	55 020	1165 50
259	3300	1800	200	6	37,134	1139,72	611	3300	1800	500	0	57,503	1196,02	902	3400	1000	500	7	55,939	100,00
260	3400	1800	300	0	40,658	988,15	611	3300	1800	600	8	61,996	1268,60	963	3400	1800	600	7	60,445	1234,02
201	3400	1000	400	0	50,517	1047,29	640	3400	1000	300	ŏ	44,032	11/6 05	904	2500	1900	300	7	31,588	032,43
262	3400	1800	000	Ø	53,592	1106,29	013	3400	1800	400	ð	54,421	1140,05	965	2500	1900	400		41,292	922,25
263	3400	1000	000	6	57,970	1105,15	614	3400	1800	500	ð S	58,090	1224,35	966	2500	1900	500	1	44,647	951,97
264	2500	1900	300	6	35,975	8/1,91	615	3400	1800	600	8 C	02,727	1302,45	967	2500	1900	600	1	46,720	981,57
265	2500	1900	400	6	39,434	897,58	616	2500	1900	300	8	39,131	912,75	968	3500	1900	300	1	39,674	1003,72
266	2500	1900	500	б	42,553	923,15	617	2500	1900	400	8	42,761	946,68	969	3500	1900	400	<u>/</u>	46,418	10/5,80
267	2500	1900	600	6	44,465	948,63	618	2500	1900	500	8	46,463	980,492	970	3500	1900	500	7	53,257	1147,73
268	3500	1900	300	6	37,910	967,28	619	2500	1900	600	8	48,665	1014,18	971	3500	1900	600	7	58,372	1219,49
269	3500	1900	400	6	44,371	1029,21	620	3500	1900	300	8	40,908	1039,94	972	3000	1900	300	7	41,154	964,00
270	3500	1900	500	6	50,792	1091,00	621	3500	1900	400	8	48,019	1122,13	973	3000	1900	400	7	48,857	1013,82
271	3500	1900	600	6	55,753	1152,64	622	3500	1900	500	8	55,119	1204,14	974	3000	1900	500	7	52,058	1063,49
272	3000	1900	300	6	39,363	933,23	623	3500	1900	600	8	60,501	1285,97	975	3000	1900	600	7	55,733	1113,02
273	3000	1900	400	6	46,780	976,04	624	3000	1900	300	8	42,638	994,60	976	2600	1900	300	7	39,344	914,25
274	3000	1900	500	6	49,686	1018,73	625	3000	1900	400	8	50,765	1051,38	977	2600	1900	400	7	43,947	949,13
275	3000	1900	600	6	53.249	1061.30	626	3000	1900	500	8	54.117	1108.01	978	2600	1900	500	7	47.186	983.90

276	2600	1900	300	6	37,793	890,54	627	3000	1900	600	8	57,935	1164,46	979	2600	1900	600	7	49,738	1018,54
277	2600	1900	400	6	42,270	920,54	628	2600	1900	300	8	40,772	937,765	980	2700	1900	300	7	39,826	926,35
278	2600	1900	500	6	45,141	950,43	629	2600	1900	400	8	45,527	977,497	981	2700	1900	400	7	45,260	964,73
279	2600	1900	200	6	47,559	980,22	630	2600	1900	500	8	49,115	1017,09	982	2700	1900	500	7	48,579	1002,99
281	2700	1900	400	6	43 489	900,93	632	2000	1900	300	8	41 273	951 594	983	2800	1900	300	7	40 338	938.65
282	2700	1900	500	6	46.380	966.81	633	2700	1900	400	8	46.886	995.332	985	2800	1900	400	7	46.633	980.68
283	2700	1900	600	6	49,037	999,59	634	2700	1900	500	8	50,304	1038,9	986	2800	1900	500	7	49,804	1022,58
284	2800	1900	300	6	37,724	911,49	635	2700	1900	600	8	53,261	1082,33	987	2800	1900	600	7	52,966	1064,35
285	2800	1900	400	6	44,821	947,62	636	2800	1900	300	8	41,787	965,65	988	2900	1900	300	7	40,382	951,23
286	2800	1900	500	6	47,601	983,64	637	2800	1900	400	8	48,295	1013,54	989	2900	1900	400	7	47,361	997,08
287	2800	1900	600	6	50,602	1019,54	638	2800	1900	500	8	51,652	1061,28	990	2900	1900	500	7	50,516	1042,79
288	2900	1900	300	6	38,847	922,26	639	2800	1900	600	8	54,914	1108,87	991	2900	1900	600	7	53,790	1088,36
289	2900	1900	400	6	45,589	901,00	640	2900	1900	300	8 0	41,859	980,01	992	3100	1900	300	7	41,322	977,11
200	2900	1900	600	6	51 429	1000,33	642	2900	1900	500	8	52 490	1084 35	993	3100	1900	500	7	53 041	1031,00
292	3100	1900	300	6	39,761	944.44	643	2900	1900	600	8	56.031	1136.29	995	3100	1900	600	7	56,981	1138.57
293	3100	1900	400	6	48,025	990,81	644	3100	1900	300	8	42,825	1009,57	996	3200	1900	300	7	41,344	990,48
294	3100	1900	500	6	51,011	1037,05	645	3100	1900	400	8	51,643	1071,09	997	3200	1900	400	7	50,343	1048,75
295	3100	1900	600	6	54,689	1083,16	646	3100	1900	500	8	55,147	1132,44	998	3200	1900	500	7	53,468	1106,88
296	3200	1900	300	6	39,576	955,92	647	3100	1900	600	8	59,170	1193,62	999	3200	1900	600	7	57,522	1164,85
297	3200	1900	400	6	48,262	1005,99	648	3200	1900	300	8	43,078	1024,84	1000	3300	1900	300	7	41,712	1004,19
298	3200	1900	500	6	51,088	1055,93	649	3200	1900	400	8	52,475	1091,27	1001	3300	1900	400	7	51,344	1066,95
299	3200	1900	200	6	54,919	1105,74	650	3200	1900	500	8	55,824	1157,54	1002	3300	1900	500	7	54,566	1129,56
301	3300	1900	400	6	40,003	1021.61	652	3200	1900	300	8	43 303	1040 5	1003	3400	1900	300	7	41 579	1017 72
302	3300	1900	500	6	52,144	1075.40	653	3300	1900	400	8	53,186	1112.06	1005	3400	1900	400	7	51,447	1085.05
303	3300	1900	600	6	56,275	1129,06	654	3300	1900	500	8	56,777	1183,45	1006	3400	1900	500	7	54,880	1152,24
304	3400	1900	300	6	39,920	979,31	655	3300	1900	600	8	61,250	1254,65	1007	3400	1900	600	7	59,361	1219,26
305	3400	1900	400	6	49,484	1037,16	656	3400	1900	300	8	43,159	1055,88	1008	2500	2000	300	7	36,124	875,91
306	3400	1900	500	6	52,591	1094,88	657	3400	1900	400	8	53,226	1132,65	1009	2500	2000	400	7	38,875	903,01
307	3400	1900	600	6	56,943	1152,45	658	3400	1900	500	8	56,945	1209,24	1010	2500	2000	500	7	42,072	930,02
308	2500	2000	300	6	34,640	857,75	659	3400	1900	600	8	61,574	1285,65	1011	2500	2000	600	7	43,752	956,93
310	2500	2000	400 500	6	40 146	001,09 004 35	661	2500	2000	400	0 8	40 116	093,007	1012	3500	2000	400	7	45 820	1066.81
311	2500	2000	600	6	41 801	927 53	662	2500	2000	500	8	43 481	955 443	1013	3500	2000	500	7	52 533	1137.31
312	3500	2000	300	6	37,415	960,75	663	2500	2000	600	8	45,221	986,06	1015	3500	2000	600	7	57,591	1207,66
313	3500	2000	400	6	43,827	1021,43	664	3500	2000	300	8	40,326	1031,42	1016	3000	2000	300	7	40,531	956,50
314	3500	2000	500	6	50,105	1081,99	665	3500	2000	400	8	47,429	1112	1017	3000	2000	400	7	48,032	1005,23
315	3500	2000	600	6	55,005	1142,41	666	3500	2000	500	8	54,390	1192,4	1018	3000	2000	500	7	51,139	1053,83
316	3000	2000	300	6	38,775	926,79	667	3500	2000	600	8	59,706	1272,62	1019	3000	2000	600	7	54,595	1102,28
318	3000	2000	500	6	40,030	1010 44	669	3000	2000	400	8	41,911	1041 58	1020	2600	2000	400	7	42 463	925.96
319	3000	2000	600	6	52.200	1052.08	670	3000	2000	500	8	53.064	1096.96	1021	2600	2000	500	7	45.571	957.41
320	2600	2000	300	6	36,452	873,66	671	3000	2000	600	8	56,663	1152,18	1023	2600	2000	600	7	47,714	988,76
321	2600	2000	400	6	40,778	900,83	672	2600	2000	300	8	39,300	914,942	1024	2700	2000	300	7	39,384	919,40
322	2600	2000	500	6	43,586	927,90	673	2600	2000	400	8	43,883	950,844	1025	2700	2000	400	7	44,517	956,79
323	2600	2000	600	6	45,592	954,89	674	2600	2000	500	8	47,278	986,626	1026	2700	2000	500	7	47,751	994,06
324	2700	2000	300	6	37,733	894,97	675	2600	2000	600	8	49,588	1022,29	1027	2700	2000	600	7	50,398	1031,21
325	2700	2000	400 500	6	42,082	927,12	670	2700	2000	300	8 8	40,815	943,053	1028	2800	2000	300	7	39,932 45.028	931,55
327	2700	2000	600	6	48,050	991 10	678	2700	2000	500	8	49 569	1028 7	1023	2800	2000	500	7	48 976	1013 45
328	2800	2000	300	6	38.413	905.39	679	2700	2000	600	8	52.400	1071.02	1031	2800	2000	600	7	51.953	1054.20
329	2800	2000	400	6	44,118	940,65	680	2800	2000	300	8	41,396	957,531	1032	2900	2000	300	7	39,973	943,94
330	2800	2000	500	6	46,914	975,80	681	2800	2000	400	8	47,613	1004,26	1033	2900	2000	400	7	46,706	988,74
331	2800	2000	600	6	49,646	1010,84	682	2800	2000	500	8	50,882	1050,84	1034	2900	2000	500	7	49,753	1033,40
332	2900	2000	300	6	38,435	916,01	683	2800	2000	600	8	53,894	1097,28	1035	2900	2000	600	7	52,839	1077,94
333	2900	2000	400	ю Б	44,913	954,51	684	2900	2000	300	б р	41,441	9/1,684	1036	3100	2000	300	7	40,456	969,36
335	2900	2000	600	6	50 500	392,90 1031 18	686	2900	2000	500	8	40,332 51 700	1022,73	1037	3100	2000	400 500	7	51 721	1022,20
336	3100	2000	300	6	38,998	937,79	687	2900	2000	600	8	55.017	1124.38	1039	3100	2000	600	7	55,165	1127.44
337	3100	2000	400	6	46,972	983,19	688	3100	2000	300	8	41,970	1000,72	1040	3200	2000	300	7	40,573	982,43
338	3100	2000	500	6	49,798	1028,46	689	3100	2000	400	8	50,359	1060,95	1041	3200	2000	400	7	49,149	1039,5
339	3100	2000	600	6	53,065	1073,61	690	3100	2000	500	8	53,696	1121,01	1042	3200	2000	500	7	52,329	1096,47
340	3200	2000	300	6	38,921	949,02	691	3100	2000	600	8	57,291	1180,91	1043	3200	2000	600	7	56,175	1153,26
341	3200	2000	400	6	47,179	998,07	692	3200	2000	300	8	42,241	1015,65	1044	3300	2000	300	7	40,952	995,79
342	3200 3200	2000	000	0 6	53 702	1047,00	693	3200	2000	400	ð R	54 535	1080,74	1045	3300	2000	400	7	53 520	1057,31
343	3300	2000	300	6	39,512	960.50	695	3200	2000	600	8	58,565	1210 40	1040	3300	2000	600	7	57,698	1179.89
345	3300	2000	400	6	48,584	1013,35	696	3300	2000	300	8	42,492	1030,92	1048	3400	2000	300	7	41,045	1009.56
346	3300	2000	500	6	51,460	1066,08	697	3300	2000	400	8	52,032	1101,05	1049	3400	2000	400	7	50,744	1075,69
347	3300	2000	600	6	55,486	1118,68	698	3300	2000	500	8	55,562	1171,02	1050	3400	2000	500	7	54,134	1141,67
348	3400	2000	300	6	35,395	972,27	699	3300	2000	600	8	59,923	1240,81	1051	3400	2000	600	7	58,512	1207,50
349	3400	2000	400	6	48,800	1029,08	700	3400	2000	300	8	42,505	1046,64							
350	3400	2000	500	6	51,968	1085,76	701	3400	2000	400	8	52,436	1122,04							
351	3400	2000	000	0	50,194	1142,30	702	3400	2000	500	0	50,174	1070.00							
							103	5400	2000	000	0	00,017	1212,00							

Appendice B

Codici Matlab

B-1: Normalizzazione

```
%normalizzazione con min e max fissati
n=length(alt);
%diametro esterno D_est -> D_est_norm
d_est_max=4000; d_est_min=500; d_est_norm=zeros(n,1);
for i=1:n
    d_est_norm(i,1)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
end
%diametro interno D_int -> D_int_norm
d_int_max=4000; d_int_min=500; d_int_norm=zeros(n,1);
for i=1:n
    d_int_norm(i,1)=(d_int(i)-d_int_min)/(d_int_max-d_int_min);
end
%altezza Altezza -> Altezza_norm
alt_max=1000; alt_min=100; alt_norm=zeros(n,1);
for i=1:n
    alt_norm(i,1)=(alt(i)-alt_min)/(alt_max-alt_min);
end
%spessore Spessore -> Spessore_norm
spess_max=15; spess_min=4;
spess_norm=zeros(n,1);
for i=1:n
    spess_norm(i,1)=(spess(i)-spess_min)/(spess_max-spess_min);
end
%massa Massa -> Massa_norm
massa_max=2000; massa_min=0; massa_norm=zeros(n,1);
for i=1:n
    massa_norm(i,1)=(massa(i)-massa_min)/(massa_max-massa_min);
end
%rigidezza Rigidezza -> Rigidezza_norm
rig_max=200; rig_min=20; rig_norm=zeros(n,1);
for i=1:n
    rig_norm(i,1)=(rig(i)-rig_min)/(rig_max-rig_min);
end
```

B-2: Rete neurale

```
%rete neurale con 3 hidden layer, input layer da 4 ed output
%layer da 2; sigmoide come funzione di attivazione e generalized delta rule
%W1, W2, W3, W4 matrici dei pesi, X input e D output corretti
function [W1, W2, W3, W4] = Rete_neurale(W1, W2, W3, W4, X_training, D_training)
alpha=0.05;
            %learning rate
N=800; %numero di input e output corretti
for k=1:N
    x=X_training(k, [2:5])';
    d=D_training(k,[2:3])';
    v1=W1*x;
    y1=sigmoid(v1);
    v2=W2*y1;
    y2=sigmoid(v2);
   v3=W3*y2;
    y3=sigmoid(v3);
    v=W4*y3;
    y=sigmoid(v);
    %calcolo errori e delta per le due connessioni (input-hidden e
    %hidden-output)
    %backpropagation
    e=d-y;
    delta= y.*(1-y).*e;
    e3=W4'*delta;
    delta1=y3.*(1-y3).*e3;
    e2=W3'*delta1;
    delta2= y2.*(1-y2).*e2;
    e1=W2'*delta2;
    delta3=y1.*(1-y1).*e1;
    %calcolo incrementi e aggiornamento dei pesi
    dW1=alpha*delta3*x';
    W1=W1+dW1;
    dW2=alpha*delta2*y1';
    W2=W2+dW2;
    dW3=alpha*delta1*y2';
    W3=W3+dW3;
    dW4=alpha*delta*y3';
    W4 = W4 + dW4;
end
end
```

B-3: Training set

```
%generazione numeri random ed inserimento in un vettore num_rand
num_rand=randsample(1051,800);
num_rand_ord=sort(num_rand);
%ciclo for per la creazione della matrice
N=1051;
M=length(num_rand_ord);
contatore=1;
for i=1:N
    for k=1:M
        if i==num_rand_ord(k)
            mat_input_training(contatore,:)=[num_rand_ord(k), d_est_norm(i),
d_int_norm(i), alt_norm(i), spess_norm(i)];
            mat_output_training(contatore,:)=[num_rand_ord(k), massa_norm(i),
rig_norm(i)];
            contatore=contatore+1;
        end
    end
end
%matrice 800x5 che contiene nella prima colonna il numero del modello
%(casuale) e nelle altre gli input normalizzati del training set
X_training=mat_input_training;
D_training=mat_output_training;
n1=40; n2=40; n3=40;
%inizializzazione pesi random
W1 = 2*rand(n1, 4) - 1;
W2 = 2*rand(n2, n1) - 1;
W3 = 2*rand(n3, n2) - 1;
W4 = 2*rand(2, n3) - 1;
%training
for epoch=1:100000
    [W1, W2, W3, W4] = Rete_neurale(W1, W2, W3, W4, X_training, D_training);
    epoch
end
N=length(X_training);
for k=1:N
   x=X_training(k,[2:5])';
   v1=W1*x;
   y1=sigmoid(v1);
   v2=W2*y1;
   y2=sigmoid(v2);
    v3=W3*y2;
    y3=sigmoid(v3);
    v=W4*y3;
    X_training(k,1);
    y=sigmoid(v);
end
%utilizzo pesi rete pre-trained in alternativa ai pesi random
W1 = W1_saved;
W2 = W2_saved;
W3 = W3_saved;
W4 = W4_saved;
```

B-4: Validation set

```
vettore_da_1_a_N=zeros(1051,1);
contatore=1;
T = 1051;
for i=1:T
    vettore_da_1_a_N(i)=i;
    for k=1:M
        if i==num_rand_ord(k)
            vettore_da_1_a_N(i)=0;
            break
        end
    end
end
vettore_da_1_a_N(vettore_da_1_a_N==0)=[];
% matrice di validazione
mat_input_validation=zeros(length(vettore_da_1_a_N),5);
mat_output_validation=zeros(length(vettore_da_1_a_N),3);
for j=1:length(vettore_da_1_a_N)
    mat_input_validation(j,:)=[vettore_da_1_a_N(j), d_est_norm(vettore_da_1_a_N(j)),
d_int_norm(vettore_da_1_a_N(j)), alt_norm(vettore_da_1_a_N(j)),
spess_norm(vettore_da_1_a_N(j))];
    mat_output_validation(j,:)=[vettore_da_1_a_N(j), mas-
sa_norm(vettore_da_1_a_N(j)), rig_norm(vettore_da_1_a_N(j))];
end
dimens=size(mat_input_validation);
X_validation=mat_input_validation;
D_validation=mat_output_validation;
%calcolo RMSE
sc_massa=zeros(length(X_validation));
sc_rig=zeros(length(X_validation));
for i=1:length(X_validation)
    xv=X_validation(i,[2:5])';
    vv1=W1*xv;
    yv1=sigmoid(vv1);
    vv2=W2*yv1;
    yv2=sigmoid(vv2);
    vv3=W3*yv2;
    yv3=sigmoid(vv3);
    vv=W4*yv3;
    yv=sigmoid(vv);
    %calcolo degli scarti
    sc_massa(i)=yv(1)-D_validation(i,2);
    vett_sc_massa_MAPE(i)=abs(sc_massa(i)/D_validation(i,2));
    sc_rig(i)=yv(2)-D_validation(i,3);
    vett_sc_rig_MAPE(i)=abs(sc_rig(i)/D_validation(i,3));
end
RMSE_massa=0; sum_massa=0; sum_MAPE_massa=0;
RMSE_rig=0; sum_rig=0; sum_MAPE_rig=0;
for r=1:length(X_validation)
    quad_massa(r) = (sc_massa(r)^2);
    quad_rig(r)=(sc_rig(r)^2);
    sum_massa=sum_massa+quad_massa(r);
    sum_rig=sum_rig+quad_rig(r);
    sum_MAPE_massa=sum_MAPE_massa+vett_sc_massa_MAPE(r);
    sum_MAPE_rig=sum_MAPE_rig+vett_sc_rig_MAPE(r);
end
RMSE_massa=sqrt(sum_massa/length(X_validation));
RMSE_rig=sqrt(sum_rig/length(X_validation));
MAPE_massa=100*sum_MAPE_massa/length(X_validation);
MAPE_rig=100*sum_MAPE_rig/length(X_validation);
```

B-5: Applicazione

Non sono inserite le richieste di input (che contengono anche il contatore per il numero di parametri variabili in_d_est, in_d_int, in_alt e in_spess) e le richieste dei requisiti di massa e di rigidezza.

```
tot_param=in_d_est+in_d_int+in_alt+in_spess;
%un parametro variabile
if tot_param==3
    contat=1;
    if in d est==0
        matrice_input=zeros(N,5);
        for i=1:N
            d_est(i)=d_est_minimo+i-1;
            d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
            matrice_input(contat, :)= [contat, d_est_norm(i), d_int_cost_norm,
alt_cost_norm, spess_cost_norm];
            contat=contat+1;
        end
    else if in_d_int==0
            matrice_input=zeros(M,5);
        for i=1:M
            d_int(i)=d_int_minimo+i-1;
            d_int_norm(i)=(d_int(i)-d_int_min)/(d_int_max-d_int_min);
            matrice_input(contat, :)= [contat, d_est_cost_norm, d_int_norm(i),
alt_cost_norm, spess_cost_norm];
            contat=contat+1;
        end
        else if in_alt==0
                matrice_input=zeros(R,5);
                 for i=1:R
                     alt(i)=alt_minimo+i-1;
                     alt_norm(i)=(alt(i)-alt_min)/(alt_max-alt_min);
                     matrice_input(contat, :) = [contat, d_est_cost_norm,
d_int_cost_norm, alt_norm(i), spess_cost_norm];
                     contat=contat+1;
                 end
            else matrice_input=zeros(P,5);
                for i=1:P
                    spess(i)=spess_minimo+i-1;
                    spess_norm(i)=(spess(i)-spess_min)/(spess_max-spess_min);
                    matrice_input(contat, :)= [contat, d_est_cost_norm,
d_int_cost_norm, alt_cost_norm, spess_norm(i)];
                    contat=contat+1;
                 end end end end
%applicazione rete neurale
contat=contat-1;
tot=contat;
matrice output=zeros(tot,3);
for i=1:tot
    x_app_lp=matrice_input(i,[2:5])';
    v_app_lp=Wl*x_app_lp;
    y_app_lp=sigmoid(v_app_lp);
    v_app_2p=W2*y_app_1p;
    y_app_2p=sigmoid(v_app_2p);
    v_app_3p=W3*y_app_2p;
```

y_app_3p=sigmoid(v_app_3p);

v_app_p=W4*y_app_3p;

```
y_app_p=sigmoid(v_app_p);
   matrice_output(i,:)=[i, y_app_p(1), y_app_p(2)];
end
%due parametri variabili
else if tot_param==2
contat=1;
if N*M~=0 %d_est e d_int variabili
   tot=N*M; matrice_input=zeros(tot,5);
    for i=1:N
        d_est(i)=d_est_minimo+i-1;
        d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
        for j=1:M
            d_int(j)=d_int_minimo+j-1;
            d_int_norm(j)=(d_int(j)-d_int_min)/(d_int_max-d_int_min);
            matrice_input(contat, :)= [contat, d_est_norm(i), d_int_norm(j),
alt_cost_norm, spess_cost_norm];
            contat=contat+1;
        end end
else if N*P~=0 %d_est e spess variabili
        tot=N*P; matrice_input=zeros(tot,5);
        for i=1:N
            d_est(i)=d_est_minimo+i-1;
            d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
            for j=1:P
                spess(j)=spess_minimo+j-1;
                spess_norm(j)=(spess(j)-spess_min)/(spess_max-spess_min);
                matrice_input(contat, :)= [contat, d_est_norm(i), d_int_cost_norm,
alt_cost_norm, spess_norm(j)];
                contat=contat+1;
            end end
   else if N*R~=0 %d_est e alt variabili
            tot=N*R; matrice_input=zeros(tot,5);
            for i=1:N
                d_est(i)=d_est_minimo+i-1;
                d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
                for j=1:R
                    alt(j)=alt_minimo+j-1;
                    alt_norm(j)=(alt(j)-alt_min)/(alt_max-alt_min);
                    matrice_input(contat, :)= [contat, d_est_norm(i),
d_int_cost_norm, alt_norm(j), spess_cost_norm];
                    contat=contat+1;
                end end
        else if M*P~=0 %d_int e spess variabili
            tot=M*P; matrice_input=zeros(tot,5);
            for i=1:M
                d_int(i)=d_int_minimo+i-1;
                d_int_norm(i)=(d_int(i)-d_int_min)/(d_int_max-d_int_min);
                for j=1:P
                    spess(j)=spess_minimo+j-1;
                    spess_norm(j)=(spess(j)-spess_min)/(spess_max-spess_min);
                    matrice_input(contat, :) = [contat, d_est_cost_norm,
d_int_norm(i), alt_cost_norm, spess_norm(j)];
                    contat=contat+1;
                end end
            else if M*R~=0 %d_int e alt variabili
            tot=M*R; matrice_input=zeros(tot,5);
            for i=1:M
                d_int(i)=d_int_minimo+i-1;
                d_int_norm(i)=(d_int(i)-d_int_min)/(d_int_max-d_int_min);
                for j=1:R
```
```
alt(j)=alt_minimo+j-1;
                    alt_norm(j)=(alt(j)-alt_min)/(alt_max-alt_min);
                    matrice_input(contat, :)= [contat, d_est_cost_norm,
d_int_norm(i), alt_norm(j), spess_cost_norm];
                    contat=contat+1;
                end end
                else if P*R~=0 %spess e alt variabili
                        tot=P*R; matrice_input=zeros(tot,5);
                        for i=1:P
                            spess(i)=spess_minimo+i-1;
                            spess_norm(i)=(spess(i)-spess_min)/(spess_max-
spess_min);
                            for j=1:R
                                alt(j)=alt_minimo+j-1;
                                alt_norm(j)=(alt(j)-alt_min)/(alt_max-alt_min);
                                matrice_input(contat, :)= [contat, d_est_cost_norm,
d_int_cost_norm, alt_norm(j), spess_norm(i)];
                                contat=contat+1;
                            end end end end end end end
%applicazione rete neurale
matrice_output=zeros(tot,3);
for i=1:tot
   x_app=matrice_input(i,[2:5])';
    v_app1=W1*x_app;
    y_app1=sigmoid(v_app1);
    v_app2=W2*y_app1;
    y_app2=sigmoid(v_app2);
    v_app3=W3*y_app2;
    y_app3=sigmoid(v_app3);
    v_app=W4*y_app3;
    y_app=sigmoid(v_app);
    matrice_output(i,:)=[i, y_app(1), y_app(2)];
end
%tre parametri variabili
else if tot_param==1
            contat=1;
if in_d_est==1
    tot=M*R*P; matrice_input=zeros(tot,5);
    for i=1:M
        d_int(i)=d_int_minimo+i-1;
        d_int_norm(i)=(d_int(i)-d_int_min)/(d_int_max-d_int_min);
        for j=1:R
            alt(j)=alt_minimo+j-1;
            alt_norm(j)=(alt(j)-alt_min)/(alt_max-alt_min);
            for k=1:P
                spess(k)=spess_minimo+k-1;
                spess_norm(k)=(spess(k)-spess_min)/(spess_max-spess_min);
                matrice_input(contat,:)=[contat, d_est_cost_norm, d_int_norm(i),
alt_norm(j), spess_norm(k)];
                contat=contat+1;
            end end end
else if in_d_int==1
        tot=N*R*P; matrice_input=zeros(tot,5);
        for i=1:N
            d_est(i)=d_est_minimo+i-1;
            d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
            for j=1:R
                alt(j)=alt_minimo+j-1;
                alt_norm(j)=(alt(j)-alt_min)/(alt_max-alt_min);
                for k=1:P
```

```
spess(k)=spess_minimo+k-1;
                    spess_norm(k)=(spess(k)-spess_min)/(spess_max-spess_min);
                    matrice_input(contat,:)=[contat, d_est_norm(i), d_int_cost_norm,
alt_norm(j), spess_norm(k)];
                    contat=contat+1;
                end end end
   else if in_alt==1
            tot=N*M*P; matrice_input=zeros(tot,5);
            for i=1:N
                d_est(i)=d_est_minimo+i-1;
                d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
                for j=1:M
                    d_int(j)=d_int_minimo+j-1;
                    d_int_norm(j)=(d_int(j)-d_int_min)/(d_int_max-d_int_min);
                    for k=1:P
                        spess(k)=spess_minimo+k-1;
                        spess_norm(k)=(spess(k)-spess_min)/(spess_max-spess_min);
                        matrice_input(contat,:)=[contat, d_est_norm(i),
d_int_norm(j), alt_cost_norm, spess_norm(k)];
                        contat=contat+1;
                    end end end
        else tot=N*M*R; matrice_input=zeros(tot,5);
            for i=1:N
                d_est(i)=d_est_minimo+i-1;
                d est norm(i)=(d est(i)-d est min)/(d est max-d est min);
                for j=1:M
                    d_int(j)=d_int_minimo+j-1;
                    d_int_norm(j)=(d_int(j)-d_int_min)/(d_int_max-d_int_min);
                    for k=1:R
                        alt(k)=alt minimo+k-1;
                        alt norm(k)=(alt(k)-alt min)/(alt max-alt min);
                        matrice_input(contat,:)=[contat, d_est_norm(i),
d_int_norm(j), alt_norm(k), spess_cost_norm];
                        contat=contat+1;
                    end end end end end
%applicazione rete neurale
matrice_output=zeros(tot,3);
for i=1:tot
   x_app=matrice_input(i,[2:5])';
   v_app1=W1*x_app;
   y_app1=sigmoid(v_app1);
   v_app2=W2*y_app1;
   y_app2=sigmoid(v_app2);
   v_app3=W3*y_app2;
   y_app3=sigmoid(v_app3);
   v_app=W4*y_app3;
   y_app=sigmoid(v_app);
   matrice_output(i,:)=[i, y_app(1), y_app(2)];
end
%quattro parametri variabili
   else if tot_param==0
   tot=N*M*P*R; matrice_input=zeros(tot,5); contat=1;
for i=1:N
   d_est(i)=d_est_minimo+i-1
   d_est_norm(i)=(d_est(i)-d_est_min)/(d_est_max-d_est_min);
    for j=1:M
       d_int(j)=d_int_minimo+j-1;
        d_int_norm(j)=(d_int(j)-d_int_min)/(d_int_max-d_int_min);
        for k=1:P
            spess(k)=spess_minimo+k-1;
```

```
spess_norm(k)=(spess(k)-spess_min)/(spess_max-spess_min);
            for h=1:R
                alt(h)=alt_minimo+h-1;
                alt_norm(h)=(alt(h)-alt_min)/(alt_max-alt_min);
                matrice_input(contat,:)=[contat, d_est_norm(i), d_int_norm(j),
alt_norm(h), spess_norm(k)];
                contat=contat+1;
            end end end end
%applicazione rete neurale
matrice_output=zeros(tot,3);
for i=1:tot
    x_app=matrice_input(i,[2:5])';
    v_app1=W1*x_app;
    y_app1=sigmoid(v_app1);
   v_app2=W2*y_app1;
   y_app2=sigmoid(v_app2);
   v_app3=W3*y_app2;
   y_app3=sigmoid(v_app3);
   v_app=W4*y_app3;
   y_app=sigmoid(v_app);
    matrice_output(i,:)=[i, y_app(1), y_app(2)];
end end end end end
%matrice di output
for i=1:tot
    if matrice_output(i,2)<vinc_massa_norm && matrice_output(i,3)>vinc_rig_norm
        in_out_conv(i,:)=[((matrice_input(i,2))*(d_est_max-d_est_min)+d_est_min),
((matrice_input(i,3))*(d_int_max-d_int_min)+d_int_min),...
            ((matrice_input(i,4))*(alt_max-alt_min)+alt_min), ((ma-
trice_input(i,5))*(spess_max-spess_min)+spess_min),...
            ((matrice_output(i,2))*(massa_max-massa_min)+massa_min), ((ma-
trice_output(i,3))*(rig_max-rig_min)+rig_min)];
    end
end
in_out_conv(~any(in_out_conv,2),:)=[];
```

Bibliografia

- [1] Oishi A. e Yagawa G. (2017). Computational mechanics enhanced by deep learning. *Comput. Methods Appl. Mech. Engrg*, **327**, 327-351; DOI: 10.1016/j.cma.2017.08.040.
- [2] Shin H. S. e Pande G. (2000). On self-learning finite element codes based on response of structures. Computers and Geotechnics, 27, 161-178; DOI: 10.1016/S0266-352X(00)00016-1.
- [3] Javadi A.A., Tan T.P. e Zhang M. (2003). An intelligent finite element method for analysis of geotechnical problems. Computational Fluid and Solid Mechanics; DOI: 10.1016/B978-008044046-0/50086-5.
- [4] Sen S., Twomey J.M. e Ahmad J.Y.S. (2002). Development of an Artificial Neural Network Constitutive Model for Aluminum 7075 Alloy. *Proceedings of IERC Conference*, 19 May 2002.
- [5] Javadi A.A., Tan T.P. e Zhang M. (2003). Neural network for constitutive modeling in finite element analysis. *Computer Assisted Mechanics and Engineering Science*, 10, 375-381.
- [6] Hashash Y.M.A., Jung S. e Ghaboussi J. (2004). Numerical implementation of a neural network based material model infinite element analysis. *International Journal for Numerical Methods in Engineering*, **59**, 989-1005; DOI: 10.1002/nme.905.
- [7] Settgast C., Hutter G., Kuna M., Abendroth M. (2019). A hybrid approach to simulate the homogenized irreversible elastic-plastic deformations and damage of foams by neural networks; arXiv:1910.13887.
- [8] Jung S., Ghaboussi J. (2006). Neural network constitutive model for rate-dependent materials. *Computers & Structures*, 84, 955-963; DOI: 10.1016/j.compstruc.2006.02.015.

- [9] Rovinelli A., Sangid M., Proudhon H., e Ludwig W. (2018). Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. Computational materials, 4; DOI: 10.1038/s41524-018-0094-7.
- [10] Mohanty J.R., Verma B.B., Dayal P. e Prabal R. (2009). Application of artificial neural network for predicting fatigue crack propagation life of aluminum alloys. *Computational Materials Science and Surface Engineering*, 1.
- [11] Younis H.B., Kamal K., Sheikh M.F., Hamza A., Zafar T. (2018). Prediction of fatigue crack growth rate in aircraft aluminum alloys using radial basis function neural network. *Tenth International Conference on Advanced Computational Intelligence (ICACI)*, Xiamen, 825-830; DOI: 10.1109/ICACI.2018.8377568.
- [12] Kang J. e Song J. (1998). Neural network applications in determining the fatigue crack opening load. *International Journal of Fatigue*, 20, 57-69; DOI: 10.1016/S0142-1123(97)00119-9.
- [13] Mallela U.K., Upadhyay A. (2016). Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. *Thin-Walled Structures*, **102**, 158-164; DOI: 10.1016/j.tws.2016.01.025.
- [14] Fu X., Ricci S., Bisagni C. (2015). Minimum-weight design for three dimensional woven composite stiffened panels using neural networks and genetic algorithms. *Composite Structures*, **134**, 708-715; DOI: 10.1016/j.compstruct.2015.08.077.
- [15] Thair Z.R., Mandal P. (2017). Artificial neural network prediction of buckling load of thin cylindrical shell under axial compression. *Engineering Structures*, **152**, 843-855; DOI: 10.1016/j.engstruct.2017.09.016.
- [16] Abarbres M., Rajana K., Tsavdaridis K. e Ribeiro T. (2018). Neural Network-Based Formula for the Buckling Load Prediction of I-Section Cellular Steel Beams. SSRN Electric Journal; DOI: 10.2139/ssrn.3368671.
- [17] Lu W. (2000). Neural Network Model for Distortional Buckling Behaviour of Cold-Formed Steel Compression Members. *Helsinki University of Technology Laboratory of Steel Structures Publications*, 76.

- [18] Maraveas C., Gernay T. e Franssen J. (2017). Buckling of steel plates at elevated temperatures: Theory of perfect plates vs Finite Element Analysis. CONFAB 2017 - 2nd International Conference on Structural Safety Under Fire and Blast Loading.
- [19] Lefik M., Boso D.P., Schrefler B.A. (2009). Artificial Neural Networks in numerical modelling of composites. *Computer Methods in Applied Mechanics and Engineering*, 198, 1785-1804; DOI: 10.1016/j.cma.2008.12.036.
- [20] Ciupan E., Ciupan M. e Jucan D.C. (2019). Determining the Mechanical Properties of a New Composite Material using Artificial Neural Networks. *International Journal of En*gineering Trends and Technology, 66; DOI: 10.14445/22315381/IJETT-V66P218.
- [21] Brown D.A., Murthy P.L.N. e Berke L. (1991). Application of Artificial Neural Networks to Composite Ply Micromechanics. *Engineering Mechanics Conference 1991*.
- [22] Sarego G., Zaccariotto M. e Galvanetto U. (2018). Artificial neural networks for impact force reconstruction on composite plates and relevant uncertainty propagation. *IEEE Aerospace and Electronic Systems Magazine*, **33**, 38-47; DOI: 10.1109/MAES.2018.170157.
- [23] Jollivet T., Peyrac C. e Lefebvre F. (2013). Damage of composite materials. *Procedia Engineering*, 66, 746-758; DOI: 10.1016/j.proeng.2013.12.128.
- [24] Nash W., Drummond T. e Birbilis N. (2018). A review of deep learning in the study of material degradation. *Materials Degradation*, 2; DOI: 10.1038/s41529-018-0058-x.
- [25] Malekzadeh T., Abdollahzadeh M., Nejati H. e Cheung N.M. (2017). Aircraft fuselage defect detection using deep neural networks; arXiv:1712.09213.
- [26] Werbos P.J. (1990). Backpropagation through time: what it does and how to do it.
- [27] Neural computations of decisions in optimization problems. *Proceedings of the IEEE*, 78, 1550-1560; DOI: 10.1109/5.58337.
- [28] Peterson C. e Anderson J.R. (1987). A mean field learning algorithm for neural networks
- [29] Recurrent Neural Networks for Structural Optimization. Complex Systems, 1, 995-1019.
- [30] Deep learning in Data mining (book)
- [31] Gajeewski J., Golewski P. e Sadowski T. (2017). Geometry optimization of a thin-walled element for an air structure using hybrid system integration artificial neural network and finite element method. *Composite Structures*, **159**, 589-599; DOI: 10.1016/j.compstruct.2016.10.007.

- [32] Romero R. e Martin R. (2006). Progress in 1m-class lightweight CFRP composite mirrors for the ULTRA telescope. *Proceedings of SPIE*, 6273; DOI: 10.1117/12.672221
- [33] Martin R. e Romeo R. (2008). Lightweight optical telescope structures built from plastic composites. SPIE Newsroom; DOI: 10.1117/2.1200802.1056
- [34] Utsunomiya S., Kamiya T. e Shimizu R. (2013). Development of CFRP mirrors for space telescopes. *Proceedings of SPIE*, 8837, 206-212; DOI: 10.1117/12.672221.
- [35] Wei L., Zhang L. e Gong X. (2017). Design and Optimization of the CFRP Mirror Components. *Photonic Sensors*, 7, 270-277; DOI: 10.1007/s13320-017-0388-2.
- [36] Greger R., Rugi E., Hausner T., Jahnen W., Frei S., Pellaton D., Mueller P., Hollenbach I.
 (2017) Development of technology for lightweight Beryllium Cassegrain Telescope for space applications and lessons learnt. *Proceedings of SPIE*, **10564**; DOI: 10.1117/12.2309024.
- [37] Hashiguchi D., Marder J. e Paquin R. (2015). Beryllium optics enable advanced space telescopes. Advanced Materials and Process, 173, 20-27.
- [38] Lightsey P., Atkinson C., Clampin M. e Feinberg L. (2012). James Webb Space Telescope: large deployable cryogenic telescope in space. *Optical Engineering*, 51, 1003; DOI: 10.1117/1.OE.51.1.011003.
- [39] Egerman R., Matthews G., Wynn J., Kirk C. e Havey K. (2009). The Current and Future State-of-the-art Glass Optics for Space-based Astronomical Observatories. *ITT*.
- [40] Eng R., Arnold W.R., Baker M.A., Bevan R.M., Burdick G., Effinger M.R., Gaddy D.E., Goode B.K., Hanson C., Hogue W.D., Kegley J.R., Kirk C., Maffett S.P., Matthews G.W., Siler R.D., Smith W.S., Stahl H.P., Tucker J.M., Wright E.R. (2013). Cryogenic optical performance of a lightweighted mirror assembly for future space astronomical telescopes: correlating optical test results and thermal optical model. *Proceedings of* SPIE, 8837, 66-79; DOI: 10.1117/12.2025393.
- [41] Heckle C., Hrdina K.E., Ackerman B.G. e Navan D.W. (2002). Development of mask materials for EUVL. *Proceedings of the SPIE - 22nd Annual BACUS Symposium on Photomask Technology*, **4889**, 1113-1120; DOI: 10.1117/12.467778.
- [42] (2011). Glass Ceramic Materials What are the Options a Review of ULE, Zerodur and Macor. INSACO Inc. – Machining of Hard Materials.

- [43] Bougoin M. (2017). SIC material and technology for space optics. *Proceedings of SPIE International Conference on Space Optics*, **10569**; DOI: 10.1117/12.2307915.
- [44] Döhring T., Jedamzik R., Westerhoff T. e Hartmann P. (2009). Four decades of ZERO-DUR mirror substrates for astronomy. *Proceedings of SPIE – The International Society for Optical Engineering*, **7281**; DOI: 10.1117/12.831423.
- [45] https://www.nasa.gov/content/goddard/hubble-space-telescope-optics-system
- [46] Hartmann P., Döhring T., Schaefer M e Ag Schott Mainz (2009). Glass Ceramic ZERO-DUR® for Space Application.
- [47] ZERODUR Extremely low thermal expansion glass ceramic.
- [48] Lee D. e Jeong-ick L. (2004). Structural optimization design for large mirror. Optics and Lasers in Engineering, 42, 109-117; DOI: 10.1016/S0143-8166(03)00079-4.
- [49] Döhring T., Jedamzik R., Hartmann P., Thomas A., Lentes F.T. e Ag Schott (2006).
 Properties of Zerodur mirror blanks for extremely large telescopes. *Proceedings of SPIE* 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. 6148; DOI:10.1117/12.674089.
- [50] Nasmyth J. (2003). Description of a new arrangement of reflecting telescope, by which much comfort and convenience is secured to the observer. *Journal of the Franklin Institute*, **51**, 112-114; DOI: 10.1016/0016-0032(51)90665-5
- [51] Onah C.I. e Ogudo C.M. (2014). Design and Construction of a Refracting Telescope. *International Journal of Astrophysics and Space Science*, Vol 2, No 4, 56-65; DOI: 10.11648/j.ijass.20140204.11.
- [52] Lee J. e Yu S. (2009). Analytic Design Procedure of Three-mirror Telescope Corrected for Spherical Aberration, Coma, Astigmatism, and Petzval Field Curvature. *Journal of the Optical Society of Korea*, Vol. 13, No. 2, 184-192.
- [53] www.hyperiontelescopes.com
- [54] Beizaee A.E. (2015). Near Earth Objects Space Observatory. DOI: 10.13140/RG.2.1.1835.2800.
- [55] Young E., Mellon R., Beasley M., Aerodank J., John Inc., Gov., Hibbitts C., Kremic T., Woodruff R.A. e Martin L. (2012). Some Challenges and Design Options for Ultra-Long Duration Balloon-Borne Telescopes. *Big Sky*.

- [56] www.amateur-astronomy-researchers.com
- [57] Yap Y.L. e Yeong W.Y. (2015). Shape recovery effect of 3D printed polymeric honey-comb. *Virtual and Physical Prototyping*, 10(2), 91-99; DOI: 10.1080/17452759.2015.1060350.
- [58] Zhang Q.C., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F. e Lu T. (2015). Bioinspired engineering of honeycomb structure Using nature to inspire human innovation. *Progress in Materials Science*, 74, 332-400; DOI:10.1016/j.pmatsci.2015.05.001.
- [59] Liu X., Tian X., Zhang W., Zhang B., Cheng Z., Fu L. e Wang Z. (2019). Lightweight design of high volume SiC/Al composite mirror for remote camera. *Optik*, 188, 64-70; DOI:10.1016/j.ijleo.2019.05.040.
- [60] Harnisch B., Kunkel B., Deyerler M. Bauereisen S. e Papenburg U. (1998). Ultralightweight C/SiC Mirrors and Structures. ESA.
- [61] Wang Z., Zhang J., Wang J., He X., Fu L., Tian F., Liu X. e Zhao Y. (2019). A method based on exact constraint for supporting space-based large mirror with a diameter of 2.8m. *Optik*, **179**, 499-504; DOI: 10.1016/j.ijleo.2018.09.108.
- [62] Behar-Lafenetre S., Lasic t., Viale R., Mathieu J., Ruch E., Tarreau. e Etcheto P. (2017). Highly light-weighted Zerodur® mirror. *Proceedings of SPIE – International Conference of Space Optics*, **10566**, 163-171; DOI: 10.1117/12.2308286.
- [63] Hull T., Hartmann P., Clarkson A.R., Barentine J.M., Jedamzik R. e Westerhoff T.
 (2010). Lightweight high-performance 1-4 meter class spaceborne mirrors: emerging technology for demanding spaceborne requirements. *Proceedings in SPIE Modern Technologies in Space- and Ground- based telescopes and Instrumentation*, **7739**; DOI: 10.1117/12.857900.
- [64] Sun Y., Qiang C. e Pugno N. (2014). Elastic and transport properties of the tailorable multifunctional hierarchical honeycombs. *Composite Structures*, **107**, 698-710; DOI: 10.1016/j.compstruct.2013.07.012.
- [65] Landin M. e Rowe R. (2013). Artificial neural networks technology to model, understand, and optimize drug formulations. *Formulation Tools for Pharmaceutical Development*, 7-37; DOI: 10.1533/9781908818508.7.

- [66] www.ildolorecronico.it
- [67] Vieira S., Pinaya W.H.L. e Machelli A. (2017). Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. *Neuroscience & Biobehavioral Reviews*, 74, Part A, 58-75.
- [68] Chattopadhyay R. (2011). Artificial neural networks in yarn property modeling. Woodhead Publishing Series in Textiles - Soft Computing in Textile Engineering, 105-125; DOI: 10.1533/9780857090812.2.105.
- [69] Sehgal P., Gupta S. e Kumar D. (2012). Application of neural networks in predictive data mining for insurance. *International Journal of Latest Trends in Engineering and Technology*, 1.
- [70] https://towardsdatascience.com/machine-learning-recurrent-neural-networks-and-longshort-term-memory-lstm-python-keras-example-86001ceaaebc
- [71] Freeman J.A. e Skapura D.M. (1991). Neural Networks Algorithms, Applications, and Programming Techniques. *Computation and neural system series*.
- [72] Pearson D.W. (1995). Hopfield networks and symmetry group. *Neurocomputing*, Vol. 8, No. 3, 305-314; DOI: 10.1016/0925-2312(94)00075-4.
- [73] https://it.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
- [74] Kim Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing; DOI: 10.3115/v1/D14-1181.
- [75] Rumelhart D.E. Hinton G.E. e Williams R.J. (1998). Learning representations by backpropagating errors. *Nature*, **323**, 533-536.
- [76] https://imaddabbura.github.io/post/gradient-descent-algorithm/
- [77] Michelucci U. (2018). Applied Deep Learning. A Case-Based Approach to Understanding Deep Neural Networks.
- [78] Kim P. (2017). MATLAB Deep Learning. With Machine Learning, Neural Networks and Artificial Intelligence.
- [79] Hebb D.O. (2002). The Organization of Behavior. A neuropsychological theory.
- [80] Munakata Y. e Pfaffly J. (2004). Hebbian learning and development. *Developmental Science*, 7(2), 141-8; DOI: 10.1111/j.1467-7687.2004.00331.x.

- [81] Rumelhart D.E. Zipser D. (1985). Feature discovery by competitive learning. *Cognitive* Science, Vol. 9, No. 1, 75-112; DOI: 10.1016/S0364-0213(85)80010-0.
- [82] https://web.stanford.edu/group/pdplab/pdphandbook/handbookch7.html
- [83] https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learningand-how-to-deal-with-it-6803a989c76
- [84] Tu J.V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. *Journal of Clinical Epidemiology*, Vol. 49, No. 11, 1225-1231; DOI: 10.1016/S0895-4356(96)00002-9.
- [85] Livingstone D.J. Manallack D.T. e Tetko I.V. (1997). Data modelling with neural networks: Advantages and limitations. *Journal of Computer-Aided Molecular Design*, Vol. 11, No. 2, 135-142; DOI: 10.1023/A:1008074223811.
- [86] Pagel J.F. e Kirshtein P. (2017). Neural Networks. *Machine Dreaming and Conscious*ness.
- [87] Oja E. (1994). Neural networks advantages and applications. *Machine Intelligence and Pattern Recognition*, 16, 359-365; DOI: 10.1016/B978-0-444-81892-8.50036-5.
- [88] Burrows C. (1990). Hubble Space Telescope: Optical telescope assembly handbook. NASA
- [89] The Hubble Telescope Optical Systems Failure Report (1990). NASA.
- [90] Schroeder D. (1999). Astronomical Optics. 2nd Edition. Academic Press.
- [91] Lewis W.C. (1979). Space Telescope Mirror Substrate. Proceedings of SPIE Space Optics II, 0183, 114-120; DOI: 10.1117/12.957403.
- [92] Banyal R.K. e Ravindra B. (2011). Thermal characteristics of a classical solar telescope primary mirror. *New Astronomy*, Vol. 16, No. 5, 328-336; DOI: 10.1016/j.newast.2011.01.003.
- [93] http://palomarskies.blogspot.com/2008/08/60-inch-aluminizing.html
- [94] https://www.solidworks.com/it
- [95] Introducing Solidworks (2015)
- [96] Afazov S., Becker A.A. e Hyde T.H. (2012). Mathematical Modeling and Implementation of Residual Stress Mapping from Microscale to Macroscale Finite Element Models. *Journal of Manufacturing Science and Engineering*, **134**(2):021001-11.

- [97] MSC Software Corporation (2018). MSC Nastran 2018. Quick Reference Guide. www.mscsfotware.com.
- [98] Avitabile P. (2001). Experimental modal analysis A simple non-mathematical presentation. S V, 35(1), 20-31.
- [99] Peeters M. (2010) Theoretical and Experimental Modal Analysis of Nonlinear Vibrating Structures using Nonlinear Normal Modes. *PhD Thesis Dissertation – University of Liege – Structural Dynamics Research Group*.
- [100] Perconti J. (1992). Practical application of modal analysis techniques. Thesis Dissertation – Rochester Institute of Technology.
- [101] Steenackers G., Jeroen P., Ribbens B. e Vuye C. (2016). Development of an Equivalent Composite Honeycomb Model: A Finite Element Study. *Applied Composite Materials*, Vol. 23, No. 6, 1177-1194; DOI: 10.1007/s10443-016-9507-2.
- [102] Zhang T., Ding Y. e Jin H. (2011). Comparative analysis of equivalent models for honeycomb sandwich plates. *Yingyong Lixue Xuebao/Chinese Journal of Applied Mechanics*, 28, 275-282.
- [103] Rahman H., Jamshed R., Mian H. e Raza S. (2011). Finite Element Analysis (FEA) of Honeycomb Sandwich Panel for Continuum Properties Evaluation and Core Height Influence on the Dynamic Behavior. *Advanced Materials Research*, **326**, 1-10; DOI: 10.4028/www.scientific.net/AMR.326.1.
- [104] Kumar U.A. (2005). Comparison of neural networks and regression analysis: A new insight. *Expert Systems with Applications*, Vol. 29, No. 2, 424-430; DOI: 10.1016/j.eswa.2005.04.034.
- [105] Springer, Boston, MA (2000). Mean Absolute Percentage Error. Encyclopedia of Production and Manufacturing Management; DOI: 10.1007/1-4020-0612-8.
- [106] Mia M. e Dhar N.R. (2016). Response surface and neural network based predictive models of cutting temperature in hard turning. *Journal of Advanced Research*, Vol. 7, No. 6, 1035-1044; DOI: 10.1016/j.jare.2016.05.004.
- [107] Han S., Mao H. e Dally W.J. (2016). Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. *International Conference* on Learning Representation.

[108] Sakar A. e Mammone J. (1993). Growing and pruning neural tree networks. *IEEE Transaction on Computers*, Vol. 42, No. 3, 291-299; DOI: 10.1109/12.210172.