Laurea triennale in Scienze Geologiche (L-34) Anno accademico 2018-2019

The disappearance of pseudotachylytes from the geological record: microstructures and clast size distribution

La scomparsa delle pseudotachiliti dal record geologico: microstrutture e distribuzioni granulometriche.

ALESSIA MODESTI

23.7.2019 Relatore: Prof. Giulio Di Toro Correlatore: Michele Fondriest

Outline of the thesis

1. Motivations

2. Methods

3. Results: artificial pseudotachylyes

3.1 Non-altered pseudotachylytes3.2 Altered pseudotachylytes

4. Discussion

5. Conclusions

1. Motivations

Pseudotachylytes are quite rare in the geological record: but are they rarely generated or are they only rarely preserved?

Alteration of these pseudotachylytes occurred at

T = 250°C Pc = 250 MPa Understand the process of clasts dissolution trough clasts size distribution (CSD)

- How the clast abundance varies with alteration ?
- What does alteration produce on clasts morphology ?

2. Methods

• IMAGEJ

https://imagej.nih.gov/ij/index.html

Steps with Imagej

Original image of start (non-altered) pseudotachylytes

Step 1 - Image preparation

Step 2 - Clast marker (Threshold)

Step 3 - Analyze particles

Output file with selected parameters

	A		в	С	D	E	F	G	н	I	J	К	L	M	N	0	P	Q	R	S	Т	U	٧	V	X	Y	Z
									Area	Raggio	Diametro		Diametro														
	Numero clasto in								cerchio	cerchio	cerchio		cerchio	Numero clasti													
	immagine	Area	A	Perimetro					equivalente	equivalente	equivalente		equivalente	diugual	Somma												
1	018_5000X	(mic	ron^2)	P (micron)	P°2/A	Circularity	Solidity		(micron ²)	(micron)	(micron)		(micron)	diametro	cumulativa												
2	26	6	40.9671	37.5947	34.4999	0.3642	0.9200	Valore medio P^2/A	40.9671	3.6111	7.2223		7.2223	1	1												
3	1	1	30.2907	25.4727	21.4210	0.5866	0.9531	23.1177	30.2907	3.1051	6.2103		6.2103	1	2												
4	30	0	12.7188	17.0412	22.8325	0.5504	0.9201		12.7188	2.0121	4.0242		4.0242	1	3		\sim		1	100							
5	15	5	11.7692	13.7093	15.9692	0.7869	0.9611	Valore medio Circularity	11.7692	1.9355	3.8710		3.8710	1	4	\neg											
6	19	9	10.9452	15.9579	23.2663	0.5401	0.9245	0.5876	10.9452	1.8665	3.7331		3.7331	1	5	1											- 1
7	22	2	10.8108	14.1680	18.5677	0.6768	0.9035		10.8108	1.8550	3.7101		3.7101	1	6	1					V =	37.26	Rx-1.463				
8	11	11	9.5427	15,7493	25.9927	0.4835	0.8514	Valore medio Solidity	9.5427	1,7429	3.4857		3.4857	1	7						y –	0/1200	<i></i>				
9	9	9	9.2681	14.4520	22,5354	0.5576	0.9273	0.8896	9,2681	1,7176	3.4352		3.4352	1	8	_				N	F	₹² = 0.8	858				-
10	12	2	6 6063	12,9964	25,5675	0.4915	0.9030		6 6063	1,4501	2,9002		2,9002	1	9	_					D =	= 1 463					-
11	28	8	6 2381	11 0460	19 5595	0.6425	0.9201		6 2381	1 4091	2 8183	1	2 8183	1	10	_				- * * *		1.405					-
12	29	9	6.0657	11 3409	21 2038	0.5927	0.9389		6.0657	1 3895	2 7790		2 7790	1	11	e/											-
12	13	3	3 4711	7 8244	17 6374	0.0021	0.0000		3 4711	1.0511	2 1023		2 1023	1	12	ti											-
14	25	5	3 3935	8 5/95	21.6031	0.5817	0.0020		3 3835	1.0378	2.1023		2.1023		12	elr					N 1						-
15	20	6	3 2812	8 4731	21,0001	0.501	0.0200		3 2812	1.0310	2.0130	1	2.0130	1	10	Ē					X						
10		7	3 2402	8 0199	19.8496	0.5143	0.0010		3 2402	1.0220	2.0440		2.0440		14	- n				10							H
10	04	4	2,2403	6 9074	16 0500	0.0331	0.3130		0.2403	00100	1 0007		1 0007		10	e e						۲.					
10	29	4 C	2.0313	0.3071	21.2652	0.1400	0.0376		2.0313	0.3433	1,0307		1,0307		10	- 2						\ •					
18	10	2	2.0137	11 2405	46,2092	0.0002	0.0033		2.0137	0.3464	1.0320	1	1.0320	· · · · · · · · · · · · · · · · · · ·	11	- E						X					
19	23	ა ი	2.1010	0.7010	40.3003	0.2714	0.0142		2.1010	0.3410	1.0013		1.0013		10	Sc											-
20	IU IU	0	2.7011	5.7010	16.2667	0.7725	0.3336		2.7611	0.3375	1.8750		1.0750		13	_						• \	< l>				
21	3	3	2.5537	7.8823	24.3297	0.5165	0.8960		2.5537	0.9016	1.8032		1.8032	1	20	_							\mathbf{X}				-
22	18	8	2.3988	7.8059	25.4011	0.4947	0.8451		2.3988	0.8738	1.7476	i	1.7476	1	21	_							\mathbf{X}				-
23	21	(2.1914	9.7256	43.1630	0.2911	0.8179		2.1914	0.8352	1.6704		1.6704	1	22	_							•				-
24	14	4	2.1476	8.5921	34.3752	0.3656	0.7920		2.1476	0.8268	1.6536	i	1.6536	1	23	_											-
25	5	5	2.1359	5.8871	16.2264	0.7744	0.9336		2.1359	0.8245	1.6491		1.6491	1	24	_											_
26	8	8	2.0511	5.5945	15.2593	0.8235	0.9341		2.0511	0.8080	1.6160	1	1.6160	1	25	_											_
27	2	2	1.7356	5.3728	16.6323	0.7555	0.9325		1.7356	0.7433	1.4866	i	1.4866	1	26	_				1			•				
28	21	1	1.3937	4.8137	16.6260	0.7558	0.9129		1.3937	0.6661	1.3321		1.3321	1	27		0			1				10			100
29	17	7	0.7626	3.9018	19,9633	0.6295	0.8847		0.7626	0.4927	0.9854		0.9854	1	28	_ \			Di	iametro	o cerchi	o equiva	lente (m	nicron)			/
30	32	2	0.6048	3.6223	21.6949	0.5793	0.8484		0.6048	0.4388	0.8775		0.8775	1	29							•		'			
31	20	0	0.5844	3.0686	16.1128	0.7798	0.8989		0.5844	0.4313	0.8626	i	0.8626	1	30												
32	4	4	0.5639	3.9674	27.9132	0.4502	0.8008		0.5639	0.4237	0.8473		0.8473	1	31		\sim										
- 33	31	1	0.5376	3.9412	28.8933	0.4349	0.8270		0.5376	0.4137	0.8273		0.8273	1	32												
- 34			1.0																					 K			
35																											
36			0.9																								
37																											
38			0.8		•																				•		
39			~	- 1 ·	• • •		-																				
40		_ /	1.7		•																					C F	
41		1	>			•	-																				
42			E 0.0	•	••	•		•			CL																
43			P				•••																				
44			5 0.9		•	•	•													\							
45		1	5	8																							
46					•																						
47					-				-																		
48			0.5		••																						
49			0.2																								
50			M-0.																								
51			0.1																								
52		-11																									
53		-11	0.0																								
54			0	1	2	3	4	5 6	7	8																	
55		1			Di	iametro ce	rchio equi	valente (micron)																			
56																											

$$N \sim d^{-D}$$

 $d = 2 (A/\pi)^{0.5}$

N : number of clasts larger than *d*. Log frequency, cumulative sum of clast with $d_{real} \ge d_{eq}$

 $d(\mu m)$ = diameter of the area-equivalent circle of a clast of area A

D = fractal dimension or slope of the best fit line in the log N - log d plot

C = pre-esponential factor

R^2 = correlation coefficient

$$\begin{array}{ll} \mbox{Circularity} &= 4\pi \times \frac{[Area]}{[Perimeter]^2} \\ & & & \\ \mbox{O < circularity < 1} \\ & & & \\ \mbox{Very angular} & & & \\ & & & \\ \mbox{Alteration ?} \end{array}$$

3. Results

Qtz CSD: Non-altered pseudotachylyte

Qtz CSD: Altered pseudotachylyte

Qtz CSD (500 x): number of clasts decreases in altered PST (with respect to non-altered PST)

Qtz: Circularity – roundness of clasts increases with alteration

500X

1000X

Feld CSD (500X): number of clasts decreases in altered PST (with respect to non-altered PST)

From 1046 clasts to 839 clasts

Feld: Circularity – roundness of clasts decrease with alteration

4. Discussion

 Number of clasts decreases in altered PST (with respect to nonaltered PST)

• Trend of circularity varies

Circularity evolution with alteration

- Quartz: only dissolution?
- Clays: glass devitrification but also alteration of feldspar?

Rapid and pervasive alteration

Green cataclasites from the Gole Larghe Fault Zone under the scanning electron microscope

Matrix: chlorite + epidote + Kfeldspar

feldspar

Di Toro and Pennacchioni, 2005 Tectonophysics

BSC 15.00 kV 3.00 spot 750.0 x 15.79 wd

30 µm

10 um

Some PST have the same quartz clast distribution of green and whithish cataclasites suggesting that some cataclasites are altered PST.

Di Toro and Pennacchioni, 2005 **Tectonophysics**

5. Conclusions

Pseudotachylytes are easily lost from the geological record because of fluid-rock interaction and alteration. However, altered pseudotachylytes may retain characteristic pristine microstructural features.

Image analysis allowed us to quantify the CSD and morphology of quartz and feldspar clasts in artificially produced fresh and altered PST.

With respect to non-altered PST, altered PST have:

- 1) a larger number of small grains per big grains (= the slope of the CSD distribution increases with alteration);
- 2) more circular Qtz clasts and more angular feldspar clasts.

This suggest different alteration processes affect quartz and feldspar.

In nature, the similar CSD of some cataclasites and pseudotachylytes suggest that cataclasites are altered PST.

References

- Di Toro, G. et al. (2010), From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA), *Rendiconti Lincei.*, 21, 95–114.
- Di Toro, G., Pennacchioni, G., 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, vol. 402/1-4, pp. 54-79.
- Di Toro, G., Pennacchioni G., Nielsen, S., 2009. Pseudotachylytes and Earthquake Source Mechanics. In: "Fault-zone Properties and Earthquake Rupture Dynamics", Ed. Eiichi Fukuyama, published by the International Geophysics Series, Elsevier, pp. 87-133.
- Fondriest M., Mecklenburgh J., Passelegue F.X., Artioli G., Nestola F., Spagnuolo E., Di Toro G., 2019. *Pseudotachylytes alteration and their loss from the geological record*. Abstract EGU2019 European Geoscience Union General Assembly, Vienna April 2019.
- Kirkpatrick, J.D, and C.D Rowe (2013), Disappearing ink: How pseudotachylytes are lost from the rock record, *J. Struct. Geol.*, *52*, 183-198, https://doi.org/10.1016/j.jsg.2013.03.003.
- Sibson, R.H. (1975), Generation of Pseudotachylyte by Ancient Seismic Faulting, Geophys. J. Int., 43(3), 775–794, https://doi.org/10.1111/j.1365-246X.1975.tb06195.x.
- Sibson, R.H., and V.G. Toy (2006), The Habitat of Fault-Generated Pseudotachylyte: Presence vs. Absence of Friction-Melt, *Geoph. Monograph Series*, 170, 153–166, doi:10.1029/170GM16.

Grazie per l'attenzione

NON-ALTERED	500X-Qtz	1000X-Qtz	5000X-Qtz	500X-Feld		
NUMERO CLASTI	272	140	32	1046		
AREA MIN (µm^2)	3.0679	0.4018	0.4137	1.0226		
AREA MAX (µm^2)	3624.9837	1742.1110	3.6111	4291.7481		
ALTERED	500X-Qtz	1000X-Qtz	5000X-Qtz	500X-Feld		
NUMERO CLASTI	78	19	3	839		
AREA MIN (µm^2)	14.6822	11.3338		0.6574		
AREA MAX (µm^2)	1346.3842	487.0823		5155.0767		

Non-altered pseudotachylytes

Qtz clasts distribution

5000X

Altered pseudotachylytes

Qtz clasts distribution

5000X

HV spot det mode mag ⊞ HFW 15.00 kV 3.5 CBS All 5 000 x 41.4 µ

Non-altered pseudotachylytes

Feld clasts distribution

Altered pseudotachylytes

Feld clast distribution

