

Università degli studi di Padova

Dipartimento di Fisica e Astronomia "Galileo Galilei"

Dipartimento di Matematica "Tullio Levi-Civita"

Corso di Laurea Triennale in Fisica

Tesi di Laurea La stabilità dei punti lagrangiani L4 e L5: sviluppi recenti

Laureando: Riccardo Milocco

Relatore: Prof. Giancarlo Benettin

Anno accademico 2016-2017

Ai sognatori.

Abstract

Nel seguente lavoro di tesi si presentano alcuni risultati relativi alla stabilità degli asteroidi troiani nel problema Sole-Giove in prossimità di L4-L5. In particolare come esposto nell'articolo "On the stability of the Troian asteroids" (Giorgilli&Skokos), riportiamo alcuni metodi ricavati dalla *teoria delle perturbazioni* per descrivere il dominio di stabilità per un tempo dell'ordine dell'età dell'universo. Quindi, si confronterà la regione di stabilità teorica con le posizioni riportate nel catalogo degli asteroidi troiani rilevati il 14/12/94, J.D.=2440700.5.

Si è trovato che solo 4 asteroidi rientrano nel dominio di stabilità. Pertanto, la stima della regione di stabilità è insoddisfaciente e va migliorata.

Infine riferendoci alla tesi "New normal form approaches adapted to the Trojan problem" (Paez), illustriamo degli sviluppi recenti con l'individuazione di superfici numeriche per descrivere la dinamica dei suddetti asteroidi. Nel dettaglio, si riuscirà a determinare la dinamica di TK_7 e 1872 Helenos in prossimità di L4-L5 relativamente ai problemi Sole-Terra e Sole-Giove per 500 periodi dei primari.

Indice

1	Introduzione							
2	Metodo Analitico							
3	Con 3.1 3.2 3.3	testo t Proble Punti d Verso l	eorico ma ristretto circolare piano	7 7 7 8				
4	Stu	dio del	la stabilità di L4	12				
	4.1	Costru	zione della forma normale	12				
		4.1.1	Metodo di Birkhoff	12				
		4.1.2	Operatore di Lie	13				
		4.1.3	Applicazione del metodo di Birkhoff	14				
	4.2	Integra	ali del moto: le azioni	16				
	4.3 Dominio e introduzione di una norma							
	4.4 Stima del "tempo di fuga" di un'orbita							
		4.4.1	Massimizzazzione della velocità delle azioni	18				
	4.5 Risultati							
	4.5.1 Risultati generali riguardo il tempo e la regione di stabilità .							
		4.5.2	Risultati per il problema di stabilità di L4	20				
		4.5.3	Confronto con gli asteroidi esistenti	22				
5	Sviluppi recenti							
		5.0.1	Hamiltoniana "mediata" o in forma normale	26				
		5.0.2	Superfici di livello numeriche	27				
6	Conclusioni							
Α	Tria	ngolo	risolutivo della trasformata di Lie	32				
в	Limitatezza delle funzioni in forma normale							

Capitolo 1 Introduzione

In meccanica classica date le equazioni di Newton e il principio di unicità di Cauchy, si può determinare univocamente la dinamica di un sistema. Queste equazioni, in realtà, lasciano definita l'orbita descritta dal sistema tramite delle equazioni differenziali del secondo ordine che, in generale, non sono integrabili. Consideriamo, infatti, un modello elementare di n corpi in interazione attraverso la forza gravitazionale. Ad oggi, solo per n = 2 troviamo un soluzione esplicita del problema. Se passiamo a n = 3 Poincarè e Burns hanno dimostrato, alla fine del XIX secolo, che non esiste alcuna soluzione analitica del problema. Per n = 3, il problema è con evidenza definito *Problema dei tre corpi*. In questo lavoro di tesi, illustreremo i recenti sviluppi relativi allo studio della stabilità degli equilibri di un caso particolare di questo problema: il *Problema dei tre corpi ri*stretto circolare piano. In particolare, analizzeremo in ambito hamiltoniano il modello composto da Sole-Giove (i "primari") e gli asteroidi Troiani.

Si assume, inoltre, che il modello sia "ristretto", in quanto il moto degli asteriodi non influisce sul moto dei primari; "circolare", poichè il moto dei primari, rispetto al baricentro del sistema, è circolare e non ellittico; e "piano", perchè si analizza la dinamica dei Troiani ristretta al piano del moto dei due primari. Ricordiamo che il problema a tre corpi ha cinque punti di equilibrio detti punti lagrangiani: tre stanno sulla direttrice dei due corpi principali anche chiamati "primari"; mentre L4 (risp. L5) giace sul terzo vertice superiore (risp. inferiore) del triangolo equilatero che ha come altri vertici i due primari (vedi 1.1). Per la loro posizione rispetto ai primari, i primi tre sono detti "collineari" e L4,L5 sono chiamati "punti triangolari".

In questa tesi, esporremo dei metodi analitici per determinare il dominio di stabilità per un tempo dell'ordine dell'età dell'universo in prossimità di L4.

Si noti che L5 ha una trattazione del tutto equivalente a quella sviluppata per L4. Pertanto, tratteremo solo il caso di L4.

Per quanto riguarda la stabilità degli equilibri attraverso il teorema spettrale di Lyapunov, si dimostra che i punti "collineari" L1,L2,L3 sono instabili; mentre per L4 e L5 la trattazione è più complessa.

Anche se verrà trattato con più attenzione nelle sezioni seguenti, è bene già rendere evi-

dente qual è il limite principale dello studio della stabilità di L4 e L5.

Preliminarmente come in [3], ci si è posti in coordinate polari in un sistema di riferimento con l'origine su L4. Secondariamente, si espande in serie di Taylor l'hamiltoniana e si applica il già citato teorema di Lyapunov all'hamiltoniana linearizzata. Definito il parametro 1

$$\mu := \frac{m_J}{m_J + M_S}$$

si trova che i punti "triangolari" per il sistema completo sono

- instabili per il sistema completo per $\mu_R \le \mu \le 1 \mu_R$ (con $\mu_R \simeq 0.0038$ "limite di Routh");
- altrimenti, la stabilità non è garantita per ogni orbita.

In particolare, troveremo che l'hamiltoniana completa (identificabile come l'energia totale del sistema) non ha un minimo stretto nell'origine. Pertanto, sarà di vitale importanza valutare la dinamica delle orbite data dai termini successivi dell'espansione dell'hamiltoniana completa².

Ciò nonostante, si osservano sperimentalmente due insiemi di asteroidi, detti "Troiani" e "Greci", che giacciono rispettivamente su L4 e L5. Il problema di stabilità è, dunque, di natura analitica. Difatti, non si possiedo ancora gli opportuni strumenti matematici per dimostrare la stabilità di ogni orbita nell'intorno di L4 (L5) per un tempo arbitrariamente grande.

Figura 1.1: I punti di equilibrio lagrangiani nel problema ristretto a tre corpi

L'obiettivo, dunque, sarà quello di considerare il problema di stabilità di L4, nello spirito della teoria di stabilità di Nekhoroshev, per lunghi intervalli di tempo. Per la precisione,

 $^{{}^{1}}m_{J}, M_{S}$ sono, rispettivamente, la massa di Giove e del Sole

²Ricordiamo che se l'hamiltoniana avesse un punto di minimo stretto nell'origine, grazie al *teorema di* Lagrange-Dirichlet potremo concludere che la stabilità di L4 è garantita anche con l'aggiunta dei termini d'ordine superiore che formano l'hamiltoniana completa.

si stimerà la regione dello spazio dove è assicurata la stabilità delle orbite per ordini di tempo dell'età dell'universo. Ricordiamo in ultima istanza che nonostante i rilevanti successi ottenuti di recente, la stabilità di L4-L5 è ancor oggi oggetto di ricerca scientifica.

Capitolo 2

Metodo Analitico

Per prima cosa trovata l'hamiltoniana del problema, si è offrontato il problema della stabilità del punto L4 in un preciso intorno nel quale il sistema è linearizzabile. Tuttavia passando alle coordinate normali, si nota che il sistema linearizzato è formato da due oscillatori armonici disaccoppiati di cui uno a frequenza negativa. Quest'ultima condizione, di trascurabile significato per il sistema linearizzato, fa sì che l'hamiltoniana del sistema completo non abbia un punto di minimo in L4. Pertanto come vedremo meglio nella sezione 2.3, non si può concludere che l'aggiunta di termini successivi non infici la stabilità del punto. Sarà indispensabile valutare in che modo i termini di ordine superiore agiscano sulla dinamica del sistema.

Come riportato in [3], illustriamo ulteriori metodi per ottenere delle stime di stabilità.

Il primo riguarda l'individuazione di due integrali primi che sono anche costanti del moto: le azioni. In particolare come previsto dal metodo indiretto di Birkhoff, si pone l'hamiltoniana in forma normale. In questo modo, le azioni nelle coordinate normali sono delle costanti del moto (fino all'ordine di normalizzazione r) nel dominio di stabilità.

Il secondo riguarda la definizione di una famiglia di domini di stabilità e una buona norma per stimare la grandezza delle funzioni in gioco (ad. es. la scala di tempo in cui evolvono le azioni \dot{I}).

Nel dettaglio si useranno le coordinate polari per descrivere la regione di stabilità. Infatti, da un'analisi numerica si può notare che la proiezione della suddetta regione sul piano dei primari è, in prima approssimazione, un'ellisse con centro in L4 (vedi Figura 2.1).

Per quanto riguarda l'introduzione della norma, rimandiamo la spiegazione all'apposita sezione.

Il terzo riguarda il calcolo del minimo "tempo di fuga", ovvero il minimo intervallo temporale impiegato da un'orbita per uscire dal dominio di stabilità. Grazie a questa stima si otterrà, inoltre, il miglior ordine di espansione dell'hamiltoniana. Infatti dalla teoria di Nekhoroshev, l' espansione in serie che deriva dalla teoria delle perturbazioni classica ha un carattere asintotico.

Pertanto, esiste un valore ottimale tale che il "resto" sia trascurabile.

Figura 2.1: Proiezione sul piano cartesiano (x, y) del dominio di stabilità di L4 nel modello Sole-Giove senza risonanze[1]

Infine, si confronteranno i risultati ottenuti con l'effettiva regione di stabilità osservata.

Capitolo 3

Contesto teorico

Nella sezione I di questo capitolo si procede con l'introduzione dell'hamiltoniana per il problema a tre corpi circolare piano.

Nella sezione II si troveranno i punti di equilibrio del sistema.

Nella sezione III si analizzerà la natura del punto lagrangiano L4.

3.1 Problema ristretto circolare piano

Consideriamo un sistema di riferimento corotante con i primari $(0, q_1, q_2)$, l'origine situata sul centro di massa del sistema Sole-Giove e l'asse delle ascisse q_1 posto sulla direttrice dei due pianeti orientata verso il Sole. Si assumono, inoltre, unità di misura tali che, denotata

$$\mu = \frac{m}{m+M},$$

la distanza tra i pianeti sia 1, la velocità¹ ω di rotazione di Giove sia unitaria, la massa complessiva del sistema sia 1 e la costante gravitazionale \mathcal{G} sia anch'essa unitaria. Dunque, il Sole avrà massa $1 - \mu$ e giacerà sempre sul punto $(\mu, 0)$; mentre Giove avrà massa μ e si troverà in $(1 - \mu, 0)$.

L'hamiltoniana per un asteroide avrà la forma

$$H = \frac{1}{2}(p_1^2 + p_2^2) + q_2p_1 - q_1p_2 - \frac{1-\mu}{\sqrt{(q_1 - \mu)^2 + q_2^2}} - \frac{\mu}{\sqrt{(q_1 + 1 - \mu)^2 + q_2^2}}$$
(3.1)

3.2 Punti di equilibrio lagrangiani

Ponendo uguale a zero ogni derivata parziale di H si ha

$$p_3 = 0, \quad q_3 = 0, \quad p_1 = -q_2, \quad p_2 = q_1,$$

 $q_2(-1 + \frac{(1-\mu)}{R^3} + \frac{\mu}{r^3})$ (3.2)

¹ $\omega \in \mathbb{R}^3$ t.c. $\omega^2 a^3 = G(M+m)$

$$-q_1 + \frac{(1-\mu)(q_1+\mu)}{R^3} + \frac{\mu(q_1-q+\mu)}{r^3}$$
(3.3)

Risolvendo le 3.2 e 3.3, rispetto a $q_1 e q_2$, si ottengo i punti d'equilibrio o punti "lagrangiani": posto $q_2 = 0$ nella 3.3 otteniamo L_1, L_2, L_3 i punti lagrangiani "collineari"; mentre con $q_2 \neq 0$ e R = r si determinano L4 e L5 i punti lagrangiani "triangolari". Quest'ultimi, infatti, giacciono rispettivamente sul vertice superiore e inferiore dei due triangoli equilateri speculari rispetto alla base comune Sole-Giove. In conclusione come illustrato in Figura 1.1, L4 è individuato da

$$q_1 = \frac{(1-2\mu)}{2}, \quad q_2 = \frac{\sqrt{3}}{2}, \quad p_1 = -q_2, \quad p_2 = q_1$$

3.3 Verso l'hamiltoniana in forma normale

In questa sezione espressa l'hamiltoniana H in coordinati polari con origine in L4, andremo a valutare la stabilità di L4 attraverso il calcolo esplicito degli autovalori della parte lineare di H [3].

Entrando in merito, il cambio di coordinate è stato ottenuto in tre passi successivi:

1) si trasla l'origine sul Sole (modello eliocentrico) grazie alla trasformazione di coordinate \mathcal{T} tale che

$$\mathcal{T} := \begin{cases} Q_1 = q_1 - \mu \\ Q_2 = q_2 \\ P_1 = p_1 \\ P_2 = p_2 - \mu \end{cases}$$

dove Q_1, Q_2, P_1, P_2 sono le nuove coordinate eliocentriche. Osserviamo che la trasformazione \mathcal{T} può essere ottenuta dalla generatrice

$$W_1(p_1, p_2, Q_1, Q_2) = -(Q_1 + \mu)p_1 - Q_2(p_2 - \mu).$$

Infatti si dimostra che, derivando l'opposto della nostra funzione generatrice $(-W_1)$ rispetto alle variabili, ricaviamo la \mathcal{T} a meno di una immediata inversione. Più formalmente si trova che

$$\begin{cases} q_1 = Q_1 + \mu \\ q_2 = Q_2 \\ P_1 = p_1 \\ P_2 = p_2 - \mu; \end{cases}$$

2) si esegue un cambio alle coordinate polari con \mathcal{P} tale che

$$\mathcal{P} := \begin{cases} \rho = \sqrt{Q_1^2 + Q_2^2} \\ \theta = \tan(\frac{Q_2}{Q_1}) & \text{se } Q_1 > 0, \quad Q_2 \ge 0 \\ p_\rho = \frac{P_1 Q_1 + P_2 Q_2}{\sqrt{Q_1^2 + Q_2^2}} \\ p_\theta = P_2 Q_1 - P_1 Q_2 \end{cases}$$

dove $\rho, \theta, p_{\rho}, p_{\theta}$ sono le nuove coordinate polari. Notiamo che p_{ρ} è il momento angolare di un punto che si muove di moto circolare sul piano (x, y). La suddetta trasformazione è stata ricavata, applicando il metodo esposto precedente alla

$$W_2 = -\rho(P_1\cos(\theta) + P_2\sin(\theta)).$$

Quindi,

$$p_{\rho} = P_1 \cos(\theta) + P_2 \sin(\theta)$$
$$p_{\theta} = \rho(P_2 \cos(\theta) - P_1 \sin(\theta))$$
$$Q_1 = \rho \cos(\theta)$$
$$Q_2 = \rho \sin(\theta)$$

3) Considerando θ come una coordinata non periodica, si introduce un sistema di riferimento nell'intorno di L4. Ricordando che in queste coordinate L4 è individuato da $\rho = 1$, $\theta = \frac{\pi}{3}$, $p_{\rho} = 0$, $p_{\theta} = 1$, si trasla l'origine sul punto in questione con \mathcal{T}' tale che

$$\mathcal{T}' := \begin{cases} x = \rho - 1\\ y = \theta - \pi/3\\ p_x = p_\rho\\ p_y = p_\theta - 1 \end{cases}$$

dove (x,y,p_x,p_y) sono le nuove coordinate canoniche. Come nel caso precedente, la \mathcal{T}' si ottiene dalla W_3

$$W_3 = p_x(\rho - 1) + (p_y + 1)\theta - \frac{\pi}{3}p_y$$

Dalla figura sottostante, diventa chiaro perchè abbiamo utilizzato questo complicato procedimento. Infatti, le nuove coordinate si adattano bene alla descrizione dell'orbita percorsa da un asteroide troiano nei pressi di L4. Osserviamo, infine, che le coordinate date da \mathcal{T}' sono coordinate polari. Tuttavia in prossimità di L4, le coordinate polari rappresentate in coordinate cartesiane sono ortogonali. Dunque in un intorno di L4, le coordinate polari sono equivalenti alle cartesiane a meno di una rotazione.

Quindi, gli autovalori e gli autovettori di $H_2(Q_1, Q_2)$ e $H_2(x, y)$ saranno uguali, a meno di una rotazione.

Figura 3.1: Rappresentazione degli spazi delle configurazioni (Q_1, Q_2) ; (ρ, θ) ; (x, y) con particolare attenzione alle coordinate in un "piccolo" intorno di L4.

Date le coordinate x, y, p_x, p_y e rimossa la "~", l'hamiltoniana assumerà la forma

$$H = \frac{1}{2} \left[p_x^2 + \left(\frac{p_y + 1}{x + 1}\right)^2 \right] - p_y - \mu(x + 1)\cos(y + \frac{\pi}{3}) - \frac{1 - \mu}{1 + x} - \frac{\mu}{\sqrt{(x + 1)^2 + 1 + 2(x + 1)\cos(y + \frac{\pi}{3})}}$$

4) Si espande l'hamiltoniana in serie di Taylor in un intorno dell'origine, ottenendo uno sviluppo della forma $H = H_2 + H_3 + H_4 + \dots$ dove

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) - 2xp_y + \left(\frac{1}{2} + \frac{9\mu}{8}\right)x^2 - \frac{9\mu}{8}y^2 + \frac{3\sqrt{3\mu}}{4}xy$$
(3.4)

e H_s per s > 2 è un polinomio omogeneo di grado s nelle variabili canoniche. Avendo trovato la forma della linearizzata H_2 , se ne calcolano gli autovalori per dare una stima della stabilità del punto.

Notando che essendo H_2 reale, si sa che se λ è autovalore di H_2 lo sarà anche $\overline{\lambda}$. In più dato che è simplettica, si trova anche la coppia di autovalori $-\lambda$, $-\overline{\lambda}$.

Dunque se tutti gli autovalori sono immaginari puri, il punto sarà stabile, o anche detto "ellittico"; mentre se almeno un autovalore avrà parte reale negativa, il punto sarà instabile, o "iperbolico". Nel dettaglio, si trova che, definito

$$\mu_R = \frac{1}{2} \left(1 - \sqrt{\frac{23}{27}} \right) \simeq 0.0385 \quad ("limite di Routh"):$$

- se $\mu \leq \mu_R$, $(1-\mu) \leq \mu_R$ allora l'equilibrio è "ellittico";
- altrimenti è "iperbolico".

5) Per la teoria delle piccole oscillazzioni, in un intorno dell'equilibrio ellittico possiamo introdurre delle coordinate normali tali che la H_2 , sia composta da due oscillatori armonici disaccoppiati.

Dunque per $\mu \leq \mu_R$ e applicando le nuove coordinate normali (x_1, y_1, x_2, y_2) , H_2 assumerà la forma diagonale

$$H_2 = \frac{\omega_1(x_1^2 + y_1^2)}{2} + \frac{\omega_2(x_2^2 + y_2^2)}{2} \quad \omega_1 > 0, \quad \omega_2 < 0 \tag{3.5}$$

dove ω_1, ω_2 le frequenze di oscillazione rispetto a L4.

Osserviamo che l'hamiltoniana precedente rappresenta due oscillatori armonici disaccoppiati e, dunque in prima approssimazione, si ritrovano le orbite circolari illustrate in Figura 2.1.

Come riportato in [3], la trasformazione alle coordinate normali è lineare e data dalla matrice simplettica

$$C = (e_1 m_1^{-\frac{1}{2}}, e_2 m_2^{-\frac{1}{2}}, f_1 m_1^{-\frac{1}{2}}, f_2 m_2^{-\frac{1}{2}})$$

dove i vettori colonna reali sono dati dalla

$$e_j + if_j = \begin{pmatrix} \frac{8\omega_j^2 + 4\sqrt{3\alpha} + 9}{8} \\ \frac{16i\omega_j + 4\alpha + 3\sqrt{3}}{8} \\ i\omega_j \frac{8\omega_j^2 + 4\sqrt{3\alpha}}{8} \\ i\omega_j \frac{4\alpha + 3\sqrt{3}}{8} + \frac{4\alpha\sqrt{3} + 9}{4} \end{pmatrix}$$

e costanti $m_j(j=1,2)$ date dalla $m_j = \omega_j D_j$,

$$D_j = \left(\frac{8\omega_j^2 + 4\sqrt{3}\alpha}{8}\right)^2 - 2\left(\sqrt{3}\alpha + \frac{9}{4}\right) + \left(\frac{4\alpha + 3\sqrt{3}}{8}\right)^2$$

e $\omega_1^2, \, \omega_2^2, \, \alpha$ sono definite come

$$\omega_1^2 = \frac{1}{2} + \frac{1}{2}\sqrt{1 - \frac{27}{4} + 4\alpha^2}, \quad \omega_2^2 = \frac{1}{2} - \frac{1}{2}\sqrt{1 - \frac{27}{4} + 4\alpha^2}, \quad \alpha = -\frac{(1 - 2\mu)e\sqrt{3}}{4}$$

Si noti che per avere $m_j > 0$, condizione necessaria affinchè C sia simplettica, basta imporre che $\omega_1 > 0$, $\omega_2 < 0$. Quest' ultima condizione fa sì che l'origine non sia più un punto di minimo assoluto per l'hamiltoniana H del sistema completo: precisamente L4 è punto di sella e non si può applicare il *teorema di Lagrange-Dirichlet* per dimostrare la stabilità. Quindi, a differenza di un sistema con H definita positiva, l'aggiunta di termini di $O(q^3)$ sarà fondamentale per determinare la natura del punto sotto la dinamica di H.

Capitolo 4

Studio della stabilità di L4

In questo capitolo, riportiamo il metodo analitico di [3] per ottenere delle stime di stabilità di L4. Infatti, l'analisi condotta fino ad ora è risultata insoddisfacente.

Nella prima sezione si pone l'hamiltoniana nella forma normale di Birkhoff per trovare due integrali del moto.

Nelle sezioni II, III si studiano, rispettivamente, il dominio di stabilità nonchè l'introduzione di una buona norma; e, "valutando il tempo di fuga", il miglior ordine di espansione dell'hamiltoniana perturbata.

Infine nella sezione IV, si analizzano i risultati ottenuti con i dati sperimentali.

4.1 Costruzione della forma normale

4.1.1 Metodo di Birkhoff

In questa parte, richiameremo i punti salienti della costruzione normale di Birkhoff per poi applicarla al nostro problema. Scopo di questa manipolazione è trovare una forma dell'hamiltoniana che, in condizioni di non risonanza per le frequenze $\omega := (\omega_1, \omega_2)$ di H_2 , permetta di determinare facilmente delle costanti del moto. In particolare, vogliamo risolvere l'equazione

$$\{H, \Phi\} = 0, \tag{4.1}$$

dove Φ sono gli integrali del moto.

In accordo con il "metodo indiretto di Birkhoff", si trasforma l'hamiltoniana di partenza H nella cosiddetta "forma normale di Birkhoff $H^{(r)}$ ".

Precisamente, $H^{(r)}$ è "in forma normale di Birkhoff (all'ordine r)" se assume lo svillupo

$$H^{(r)} = H_2 + Z_3 + Z_4 + \dots + Z_r + \mathcal{R}^{(r+1)}$$

dove H_2 è diagonale, Z_r dipende solo delle azioni I_j con $Z_r = I_j^r = (\frac{x_j^2 + y_j^2}{2})^r$ e $\mathcal{R}^{(r+1)}$ è il "resto": lo sviluppo successivo della serie partendo dall'ordine r+1. Siccome il resto non

è in forma normale, esso sarà formato da una combinazione delle diverse azioni I_j . Dunque otterremo che la 4.1, dopo l'applicazione del "metodo indiretto di Birkhoff", si trasformerà nella $\{H^{(r)}, \tilde{\Phi}\} = 0$.

Ricordando, in aggunta, che $\{I_j, F(I_j)\} = 0$ per ogni F reale, vedremo che le costanti del moto cercate saranno proprio le azioni¹

4.1.2 Operatore di Lie

Identificato l'obbiettivo, introduciamo l'operatore T_{χ} , detto "operatore di Lie", che ci permetterà di trovare la forma normale $H^{(r)}$ fino all'ordine r.

Definizione 4.1. Sia Π lo spazio vettoriale dei polinomi omogenei, definiamo la successione di polinomi omogenei di grado s come $\chi := {\chi_s}_{s\geq 3}$, con $\chi_s \in \Pi$. Definiamo, inoltre, $E \in \Pi$ e $T_{\chi} : \Pi \longrightarrow \Pi$ "operatore di Lie" tale che

$$T_{\chi}E = \sum_{s \ge 0} E_s$$
$$E_0 = 1, \qquad E_s = \sum_{j=1}^s \frac{j}{s} L_{\chi_{j+2}} E_{s-j}$$

dove $L_{\chi} * = {\chi, *}$ è la derivata di Lie di * rispetto a χ detta "hamiltoniana generatrice della forma normale (fino) all'ordine s"

Proposizione 1. Come riportato in [2], l'operatore T_{χ} definito nella 4.1 ha le seguenti proprietà:

- 1. è lineare, ovvero $T_{\chi}(\alpha v + \beta w) = \alpha T_{\chi}v + \beta T_{\chi}w$, dove α , β sono numeri reali e v, w possono essere sia funzioni reali che campi vettoriali;
- 2. conserva il prodotto, ossia $T_{\chi}(f \cdot g) = T_{\chi}f \cdot T_{\chi}g$, ove f,g sono funzioni;
- 3. preserva le parentesi di Poisson tra campi vettoriali: $\{T_{\chi}v, w\} = \{T_{\chi}v, T_{\chi}w\}$ con v,w campi vettoriali;
- 4. invertibile:

$$T_{\chi}^{-1} := \sum_{j=1}^{s} G_s$$
$$G_0 = E_0 \qquad G_s = -\sum_{j=1}^{s} \frac{j}{s} G_{s-j} L_{\chi_j}$$

¹Precisamente indicate con (x, y) e (x', y') le coordinate prima e dopo la costruzione della forma normale, le azioni sono integrali primi per il sistema in forma normale, $\{(H_2 + \cdots + Z_r)(x', y'), I'_j(x', y')\} = 0$.

Osservazione 1. Data la conservazione delle parentesi di Poisson[2], T_{χ} genera una trasformazione alle nuove coordinate canoniche $(x', y') \in \Pi$ della forma

$$x' = T_{\chi^{(r)}}x, \quad y' = T_{\chi^{(r)}}y$$
(4.2)

Osservazione 2. Sia f come sopra e(x, y), (x', y') rispettivamente le nuove e vecchie coordinate, allora

$$f(x,y)|_{(x,y)=T_{\chi}^{-1}(x',y')} = (T_{\chi}^{-1}f)(x',y') \qquad per \ (x',y'), (x,y), f \in \Pi$$
(4.3)

4.1.3 Applicazione del metodo di Birkhoff

Definito T_{χ} , dimostreremo che se $H^{(r)}$ è l'hamiltoniana in forma normale e H l'hamiltoniana di partenza allora, come riportato in [2],

$$T_{\gamma(r)}H^{(r)} = H \tag{4.4}$$

Il problema, quindi, è trovare opportune successioni $\{\chi_s\}_s \in \{Z_s\}_s$ $(s \in [3, r])$ tali che sia soddisfatta la 4.4. Tuttavia per ω non risonanti, $\chi_s \in Z_s$ si determinano contemporaneamente, risolvendo l'equazione 4.4 rispetto alle incognite $\chi_s \in Z_s$. Preliminarmente ricordando la definizione 4.1 e esplicitando la 4.4,

$$\sum_{s\geq 3} E_s(H_2 + Z_3 + \dots + Z_r + \mathcal{R}^{(r)}) = H_2 + H_3 + \dots$$

Osserviamo che E_s contiene la successione $\{\chi_3, \ldots, \chi_{s+2}\}$ e data g di ordine r, allora $E_s g$, tenendo conto dell'azione della parentesi di Poisson, è di ordine s + r.

Uguagliando ora ogni ordine nell'equazione precedente, si riesce a generare una famiglia di equazioni che si risolvono in maniera "gerarchica²". Infatti dall'osservazione precedente e definendo $Z_{s-k}^k := E_k Z_{s-k}$, si ottiene

$$\begin{cases} Z_2 = H_2 \\ Z_s = H_s - \sum_{k=1}^{s-2} Z_{s-k}^k \quad s=3,\dots, n \end{cases}$$

Notiamo che dalle equazioni precedenti si verifica che Z_{s-2} contiene le hamiltoniane generatrici $\{\chi_3, \ldots, \chi_s\}$ ed è l'unico termine con χ_s . Pertanto, il sistema precedente si può scrivere nella forma

$$Z_s - \mathcal{L}_{H_2}\chi_s = H_s + Q_s \qquad s = 2, \dots, r$$

ove $\mathcal{L}_{H_2} * = \{H_2, *\}$ e Q_s è un polinomio di ordine s, dipendente da χ_t e Z_t con $t = 1, \ldots, s-1$.

²Una rappresentazione grafica dello schema risolutivo è riportata in appendice.

Detto, quindi, $P_s^{(s-1)} := H_s + Q_s$ il polinomio di ordine s totalmente determinato dagli s-1 passi precedenti, osserviamo che

$$\mathcal{L}_{H_2}\chi_s = Z_s - P_s^{(s-1)} \tag{4.5}$$

e ora, avendo già ottenuto ai passi precedenti le variabili all'ordine s-1, si riescono a determinare χ_s e Z_s .

A questo punto sviluppando la derivata di Lie della 4.5 nelle variabili (x_1, x_2) e momenti coniugati (y_1, y_2) , notiamo che la 4.5 non è risolvibile. Per ovviare al problema, si applica la trasformazione alle coordinate (da [2]) (ξ_j, η_j) (per j = 1, 2) della forma

$$x_j = \frac{1}{\sqrt{2}}(\xi_j + i\eta_j), \qquad y_j = \frac{1}{\sqrt{2}}(\xi_j - i\eta_j), \qquad \text{per } j = 1,2$$
(4.6)

con inversa

$$\xi_j = \frac{1}{\sqrt{2}}(x_j - iy_j), \qquad \eta_j = \frac{1}{\sqrt{2}}(-ix_j + y_j), \qquad \text{per } j = 1, 2.$$

Osserviamo che nelle nuove coordinate

$$H_2 = i(\omega_1 \xi_1 \eta_1 + \omega_2 \xi_2 \eta_2);$$

mentre le azioni

$$I_j(\xi_j,\eta_j) = i\omega_j\eta_j\xi_j$$
 con $j = 1, 2.$

A questo punto per alleggerire la notazione, chiamiamo $(\xi, \eta) := (\xi_1, \xi_2, \eta_1, \eta_2)$, $k := (k_1, k_2), l = (l_1, l_2)$. Inoltre, $(\xi^k \eta^l) := \xi_1^{k_1} \eta_1^{l_1} \xi_2^{k_2} \eta_2^{l_2}$ e $\omega := (\omega_1, \omega_2)$. Dunque (ξ, η) , costituisce una base per l'operatore \mathcal{L}_{H_2} . Infatti,

$$\mathcal{L}_{H_2}\xi^k\eta^l = i\sum_{k,l}\omega\cdot(k-l)\xi^k\eta^l$$

Successivamente sviluppando il membro di sinistra nelle nuove variabili, la 4.5 diventa

$$\{H_2, \chi_s\} = i[\omega_1(\xi_1 \cdot \frac{\partial}{\partial \xi_1} - \eta_1 \cdot \frac{\partial}{\partial \eta_1}) + \omega_2(\xi_2 \cdot \frac{\partial}{\partial \xi_2} - \eta_2 \cdot \frac{\partial}{\partial \eta_2})]\chi_s = Z_s - P_s^{(s-1)}.$$
 (4.7)

Per capire meglio come procedere nel calcolo della forma normale, prendiamo ora il primo termine significativo della 4.5. Dato che per s = 2 si verifica che $Z_2 = H_2$, scegliamo s = 3 e scomponiamo χ_3 nella base (ξ, η) di \mathcal{L}_{H_2} :

$$\chi_3 = \sum_{|k+l|=3} \mathcal{C}_{k,l} \ \xi^k \eta^l \tag{4.8}$$

ove $\mathcal{C}_{k,l} \in \mathbb{C}$.

Ora, il membro di destra della 4.7 è noto, in quanto $P_3^{(2)}$ per definizione è formato da H_3 e Q_3 ; mentre, Z_3 vogliamo che dipenda solo dalle azioni. Formalmente,

$$\begin{cases} P_s^{(s-1)} = \sum_{|k+l|=s} \mathcal{A}_{k,l} \,\xi^k \eta^l, \qquad k \neq l \\\\ Z_s = \sum_{|k+l|=s} \mathcal{A}_{k,l} \,\xi^k \eta^l, \qquad k = l \end{cases}$$

ove i coefficienti $\mathcal{A}_{k,l} \in \mathbb{C}$ sono determinati dalla trasformazione 4.6. Unendo tutti gli sviluppi ottenuti finora,

$$\mathcal{L}_{H_2\chi_3} = i \sum_{|k+l|=3} \omega \cdot (k-l) \mathcal{C}_{k,l} \ \xi^k \eta^l = \sum_{|k+l|=3} \mathcal{A}_{k,l} \xi^k \eta^l.$$
(4.9)

Dunque dalla 4.9 in condizioni di non risonanza $(k - l) \cdot \omega \neq 0$ si possono ricavare i coefficienti $C_{k,l}$ e, sostituendo nella 4.8, ottenere l'hamiltoniana generatrice

$$\chi_3 = \sum_{|k+l|=3} \frac{\mathcal{A}_{k,l}}{i(k-l) \cdot \omega} \xi^k \eta^l \qquad k \neq l.$$

Notiamo che per k = l il membro di sinistra della 4.7 è identicamente nullo. D'altra parte ricordiamo che la forma dell'hamiltoniana trasformata per j = k è pari alla Z_s . In conclusione abbiamo dimostrato che, applicando l'operatore di Lie all' hamiltoniana in forma normale $H^{(r)}$, riusciamo ad ottenere l'hamiltoniana iniziale H, a patto di rispettare la "gerarchia" definita dall'operatore di Lie.

4.2 Integrali del moto: le azioni

Per quanto visto nelle sezioni precedenti, $H^{(r)}(x',y') = T_{\chi^{(r)}}^{-1}H$ è in forma normale fino all'ordine r. Dunque, $H^{(r)}$ ammette due (quasi) costanti del moto della forma

$$I'_{j}(x',y') = \frac{{x'_{j}}^{2} + {y'_{j}}^{2}}{2} \quad j = 1,2$$

Infatti,

$$\dot{I}'_j = \{I'_j, \mathcal{R}^{(r)}\} \neq 0$$
(4.10)

e dunque le azioni per l'hamiltoniana $H^{(r)}$ sono costanti del moto fino all'ordine r-esimo.

4.3 Dominio e introduzione di una norma

In questa sezione individuato il dominio di stabilità, si introdurrà una norma su di esso [3].

Fissate due costanti positive R_1 e R_2 , consideriamo la famiglia di domini

$$\Delta_{\rho R} := \{ (x, y) \in R^4 : x_j^2 + y_j^2 \le (\rho R_j)^2 \} \quad \text{per } j = 1, 2$$

dove ρ è un parametro positivo.

Inoltre, sia f un polinomio di grado s in (x,y) di cui si vuole trovare il massimo assoluto sul dominio $\Delta_{\rho R}$ per fissati $\rho \in R$.

Siamo interessati, dunque, a trovare

$$|f|_{\rho R} = \sup_{\Delta_{\rho R}} |f(x, y)|.$$

Formalmente, si vuole determinare la sup-norma di f sul dominio $\Delta_{\rho R}$. In più, notiamo che la sup-norma precedente non è perfettamente ottimizzata per dei calcoli numerici. D'altra parte in [3], si riesce a trovare una nuova norma $||f||_{\rho R}$ molto più facile da stimare e tale che $||f||_{\rho R} \ge |f|_{\rho R}$. Pertanto grazie alla $||f||_{\rho R}$, si può ottenere una valida stima di $|f|_{\rho R}$.

Per introdurre la nuova norma $||f||_{\rho R}$, riportiamo i diversi passaggi sviluppati in [3]. In primis per i seguenti calcoli ci si pone nelle coordinate (ξ_j, η_j) (con j = 1, 2) date dalla 4.6.

Il polinomio trasformato $f(\xi, \eta)$ nelle nuove variabili è ancora un polinomio omogeneo³ di grado s che si può sviluppare nella serie formale

$$f(\xi,\eta) = \sum_{j_1+j_2+k_1+k_2=s} \mathcal{C}_{j_1j_2k_1k_2}\xi_1^{j_1}\xi_2^{j_2}\eta_1^{k_1}\eta_2^{k_2}$$

dove $C_{j_1j_2k_1k_2}$ sono coefficienti complessi ottenuti dalla trasformazione di coordinate. Dunque considerando la seguente norma sullo spazio Π

$$||f||_{\rho R} := \sup_{(x,y)\in\Delta_{\rho R}}\sum_{j_1+j_2+k_1+k_2=s} |\mathcal{C}_{j_1j_2k_1k_2}||\xi_1|^{j_1}|\xi_2|^{j_2}|\eta_1|^{k_1}|\eta_2|^{k_2}.$$

notiamo che

$$|f|_{\rho R} \le ||f||_{\rho R},$$
 (4.11)

Osserviamo che nelle coordinate (ξ_j, η_j)

$$(x_j, y_j) \in \Delta_{\rho R}$$
 sec $0 \le |\xi_j| \le \frac{\rho R_j}{\sqrt{2}}, 0 \le |\eta_j| \le \frac{\rho R_j}{\sqrt{2}}$

³il cambio di coordinate 4.6 non cambia il grado delle variabili (x_i, y_i)

Quindi poste $|\xi_1| = \frac{\rho R_1}{\sqrt{2}} = |\eta_1| \in |\xi_2| = \frac{\rho R_2}{\sqrt{2}} = |\eta_2|,$

$$||f||_{\rho R} = \left(\frac{\rho}{\sqrt{2}}\right)^s \sum_{j_1+j_2+k_1+k_2=s} |\mathcal{C}_{j_1j_2k_1k_2}| R_1^{j_1+k_1} R_2^{j_2+k_2}$$
(4.12)

La norma 4.12 risulta così ben definita sia sullo spazio delle vecchie coordinate (x, y) che in quello delle nuove (x', y'). Inoltre come vedremo, ρ, R_1, R_2 saranno dati dal problema; mentre i coefficienti $C_{j_1 j_2 k_1 k_2}$ derivano dal cambiamento di coordinate 4.6. Quindi, la norma $||f||_{\rho R}$ così definita è facile da calcolare.

Ricordiamo, infine, un'importante proprietà che discende direttamente dalla definizione: $||f||_{\rho R} = \rho^s ||f||_R$.

4.4 Stima del "tempo di fuga" di un'orbita

Introdotti il dominio e una buona norma su di esso, si può determinare ([3]) la grandezza di un polinomio omogeneo f che, in questo caso, sarà la scala di tempo in cui evolvono le azioni \dot{I}_j . Di conseguenza massimizzata \dot{I}_j , si vuole trovare una stima del minimo "tempo di fuga", ovvero il minimo intervallo temporale che impiega un'orbita per uscire dal dominio di stabilità.

4.4.1 Massimizzazzione della velocità delle azioni

Per questa trattazione, è utile porsi in coordinate normali.

Consideriamo che $(x', y') \in \Delta'_{\rho R}$ sse $I'_j \leq (\rho R_j)^2/2$ ove $I'_j = \frac{(x'_j{}^2 + y'_j)^2}{2}$. Si supponga, per cominciare, che per un certo dato inziale l'orbita stia nel dominio $\Delta_{\rho_0 R}$ con ρ_0 parametro fissato. Nello spirito della definizione di stabilità secondo Lyapunov, si sceglie un dominio più grande $\Delta_{\rho R}$ con $\rho > \rho_0$ dove si valuterà il "tempo di fuga". Dunque omettendo l'apice ' per comodità di notazione e ricordando che

$$|I_j(t) - I_j(0)| \le \sup_{\Delta_{\rho R}} |\dot{I}_j| |t|$$

si vuole determinare la quantità

$$\tau_r(\rho_0, \rho) = \min_{j=1,2} \frac{R_j^2(\rho^2 - \rho_0^2)}{2\sup_{\Delta_{\rho_R}} |\dot{I}_j|}$$
(4.13)

dove $\tau_r(\rho_0, \rho)$ è il minimo "tempo di fuga".

In particolare avendo già scelto i parametri $\rho \in \rho_0$, dobbiamo calcolare il denominatore della 4.13.

Da quanto visto nella sezione 3.2, le azioni sono costanti del moto fino all'ordine r-esimo.

In particolare dalla 4.10, le azioni sono mosse solo dal "resto" della costruzione in forma normale.

Pertanto, si sviluppa in serie il "resto":

$$\mathcal{R}^{(r)} = H_{r+1}^{(r)} + H_{r+2}^{(r)} + \dots$$

Un calcolo completo del "resto" è chiaramente impraticabile, dato che non esiste un limite superiore all'espansione di $\mathcal{R}^{(r)}$. Tuttavia come mostrato in [1], se $\rho \leq R^*/2$ dove $R^* > 1$ è il raggio di convergenza della serie a ρ fissato, allora

$$\sup_{\Delta_{\rho R}} |\dot{I}_j| < 2||\{I_j, H_{r+1}^{(r)})\}||_{\rho R}$$
(4.14)

Infatti dalla Proposizione 2 (riportata in appendice), si osserva che per un'hamiltoniana limitata H, il resto $\mathcal{R}_s^{(r)}$ è una funzione decrescente rispetto al grado s. In dettaglio, dalla 2 si ha che

$$||H_s||_R < (R^*)^{r+1-s} ||H_{r+1}||_R.$$

Ricordando le proprietà della norma,

$$||H_s||_{\rho R} = \rho^s ||H_s||_R < \rho^s (R^*)^{r+1-s} ||H_{r+1}||_R.$$

In più scelto $\rho \leq \frac{R^*}{2}$, otteniamo che

$$||H_s||_{\rho R} < \rho^{s-(r+1)}(R^*)^{r+1-s}||H_{r+1}||_{\rho R} = (\frac{1}{2})^{s-(r+1)}||H_{r+1}||_{\rho R}.$$

Infine sommando tutti i termini $||H_s||_R$ e osservando che per $s \ge r+1$ il membro di destra è una successione geometrica,

$$\sum_{s>r} ||H_s||_R < 2||H_{r+1}||_{\rho R}$$

Dunque abbiamo dimostrato che

$$\sup_{\Delta_{\rho R}} |\dot{I}_j| < 2 || \{I_j, H_{r+1}^{(r)}) \} ||_{\rho R}.$$

Inserendo ora la 4.14 nella 4.13, il "tempo di fuga" è

$$\tau_r(\rho_0, \rho) = \min_{j=1,2} \frac{R_j^2(\rho^2 - \rho_0^2)}{4\rho^{r+1} ||\{I_j, H_{r+1}^{(r)}\}||_R}$$
(4.15)

Tuttavia, osserviamo facilmente che questa stima dipende dall'ordine di normalizzazione, dal raggio ρ del dominio finale e da ρ_0 di quello iniziale. Intuitivamente, il tempo di fuga

dovrà dipendere solo dal dato iniziale. Pertanto in [3], si ottimizza il suddetto intervallo temporale rispettivamente per ρ e r:

i) si cerca il massimo valore del tempo per r fissato e lo inseriamo nella precedente espressione di $\tau_r(\rho_0, \rho)$. Dai calcoli svolti si trova che tale valore è

$$\rho = \rho_0 \sqrt{\frac{r+1}{r-1}}$$

ii) rimosso il vincolo su r, si massimizza il tempo per r che va da 3 a \tilde{r}_{opt} .

In questo modo come in [3], si ottiene la seguente stima del "tempo di fuga" che dipende con evidenza solo da ρ_0 :

$$T(\rho_0) := \max_{3 \le r \le \tilde{r}} \sup_{\rho_0 > \rho} \tau_r(\rho_0, \rho)$$

4.5 Risultati

4.5.1 Risultati generali riguardo il tempo e la regione di stabilità

In questa parte, analizzeremo i risultati generali per il nostro problema, in modo capire quale sia il comportamento del "tempo di fuga" e dell'ordine ottimale \tilde{r}_{opt} al variare dei parametri. Per il caso Sole-Giove si trova $\mu = 9.5387536 \cdot 10^{-4}$, $\omega_1 = 9.9675752552 \cdot 10^{-1}$, $\omega_2 = -8.0463875837 \cdot 10^{-2}$.

Notando che la 4.12 dipende da R_1, R_2 per una trattazzione generale (vedi [3]), si pone $R_1 = 1 = R_2$. In definitiva, il problema ora ha come unica variabile il parametro ρ_0 corrispondente al dominio iniziale.

La figura Figura 4.1 illustra l'andamento del "tempo di fuga" e di \tilde{r}_{opt} in funzione del raggio ρ_0 del dominio iniziale. Notiamo che il primo grafico è composto da segmenti rettilinei che diminuiscono la loro pendenza al diminuire di \tilde{r}_{opt} . Infatti dalla 4.15,

$$LogT(\rho_0) \sim -mLog(\rho_0) + q$$

dove $m = \frac{1}{2\rho^{r+1}||\{I_j, H_{r+1}^{(r)}\}||_R}$ e q = cost. L'andamento decrescente del "tempo di fuga" è consistente con quanto ci si aspetta. Infatti per un dato inziale più vicino a L4, il tempo impiegato dall'orbita per uscire dal dominio $\Delta_{\rho R}$ sarà maggiore di un dato iniziale localizzato in una zona più esterna. Per la precisione, notiamo che l'andamento di T va come $\rho_0^{-r_{opt}}$. Infatti se ρ_0 decresce, ma aumenta r_{opt} il "tempo di fuga" cresce esponenzialmente.

4.5.2 Risultati per il problema di stabilità di L4

In questa sezione determinato ρ_0 , riportiamo come si è determinato il dominio di stabilità di L4 per tempi dell'ordine dell'età dell'universo in [3].

Dalla scelta delle unità di misura, $\omega = 1$, la nostra unità di tempo è $\mathcal{T} = \frac{T_{Jup}}{2\pi}$ dove T_{Jup} indica il periodo di rivoluzione di Giove attorno al Sole.

Figura 4.1: Andamento del "tempo di fuga" e dell'ordine ottimale \tilde{r}_{opt} in funzione di ρ_0 ([3])

In questa scala di tempo, discende che l'età dell'universo $(14 \cdot 10^9 \text{ anni})$ è $10^{10}\mathcal{T}$ a cui corrisponde, come è illustrato in 4.1, $Log(\rho_0) = -1.536$ e di conseguenza $\rho_0 = 2.911 \cdot 10^{-2}$. Osserviamo che ρ_0 è stato stimato attraverso l'analisi del problema in coordinate normali (x', y'). Pertanto, per darne un significato fisico dovremo riportare il problema in coordinate polari. Utilizzando l'inversa della 4.2, si può valutare la grandezza del dominio

$$\Delta_{\rho_0 R} = T_{\chi^{(r)}}^{-1} \Delta_{\rho_0 R}'$$

dove ' indica il dominio nelle coordinate normali.

Notiamo che per definizione $\Delta'_{\rho_0 R}$ è un disco multidimensionale e, dato che l'opertaore di Lie è ben definito su tutto il dominio e vale la 4.3, la regione $\Delta_{\rho_0 R}$ sarà prossima ad

un disco multidimensionale [3]. Infatti,

$$T_{\chi^{(r)}}^{-1} \varDelta_{\rho_0 R}' = T_{\chi^{(r)}}^{-1} (\frac{x_j'^2 + y_j'^2}{2}) = \frac{x_j^2 + y_j^2}{2}$$

Dunque, il raggio ρ nelle coordinate polari avrà la forma

$$\rho = \sqrt{(\rho_0^2 - 2|I_j - I_j'|)} \tag{4.16}$$

ove I_j è l'azione in coordinate polari; mentre I'_j e ρ_0 sono espressi in coordinate normali. Ricordando che $I_j = \frac{(x_j^2 + y_j^2)}{2}$, $I'_j = \frac{(x'_j^2 + y'_j)^2}{2}$, sappiamo dalla 4.3 che

$$I_j(x,y)|_{x=T_{\chi}^{-1}(x'_j,y'_j)} = (T_{\chi}^{-1}I_j)(x',y').$$

In più, il termine di destra della precedente equazione si può espandere in serie con al primo termine proprio l'azione I'_j .

Quindi ricordando la 4.11,

$$|I_j - I'_j|_{\rho_0 R} \le ||I_j - I'_j||_{\rho_0 R} = \rho_0^3 ||\Phi_j^{(3)}||_R + \dots + \rho_0^{\tilde{r}} ||\Phi_j^{(\tilde{r})}||_R < 2 ||\Phi_j^{(3)}||_{\rho_0 R}$$

Ancora una volta grazie alla Proposizione 2 e seguendo lo stesso procedimento della 4.10, l' ultima disguaglianza è verificata con $\rho_0 \leq \frac{R^*}{2}$. In più dati gli operatori E_k e il valore precedente di ρ_0 si è trovato in [3] che

$$|I_1 - I_1'|_{\rho_0 R} \simeq 5.032 \cdot 10^{-5} < 0.110 I_1'$$

е

$$|I_2 - I_2'|_{\rho_0 R} \simeq 1.834 \cdot 10^{-4} < 0.217 I_2'.$$

Dalla 4.16, concludiamo che il minimo dominio di stabilità si ha per

$$\rho = \sqrt{(\rho_0^2 - 2|I_2 - I_2'|)} \simeq 2.192 \cdot 10^{-2}.$$

Dato inoltre $\rho_{Jup} = 1.718342 \cdot 10^{-1}$ (la distanza L4-Giove), osserviamo che il dominio di stabilità è circa 0.127 volte la distanza ρ_{Jup} .

4.5.3 Confronto con gli asteroidi esistenti

Riportiamo da [3], il confronto dei risultati ottenuti analiticamente con gli asteroidi classificati nel catalogo degli asteroidi del 14/12/94, J.D.=2440700.5. A questo punto si adattano i raggi R_j per il calcolo della norma 4.12 rispetto al dato iniziale di ogni asteroide, ponendo $R_j = \sqrt{(x_j^2 + y_j^2)}$ j = 1, 2.

Il confronto sviluppato è riportato in tabella (Figura 4.2 e Figura 4.3). Notiamo, dalla definizione del dominio, che un determinato asteroide appartiene alla regione di stabilità sse $\rho_0 \geq 1$. Dunque, solo quattro asteroidi stanno nel dominio stimato; mentre la gran parte di essi si trova al di fuori da esso. Il risultato ottenuto è, in ultima istanza, insoddisfacente e va migliorato.

88181612	3.13023010^{-2}	2.10125010^{-3}	1.487790	33	4348	1.26520010^{-1}	7.45012010^{-2}	2.97780010^{-1}	34
89211605	3.31496010^{-2}	1.95937010^{-2}	1.135130	34	4827	5.76019010^{-2}	1.21310010^{-1}	2.86840010^{-1}	34
41790004	1.65166010^{-2}	3.10631010^{-2}	1.100990	34	4722	1.35410010^{-1}	8.20477010^{-2}	2.75560010^{-1}	34
1870	3.87141010^{-2}	1.71761010^{-2}	1.048060	33	1173	1.60090010^{-1}	4.98362010^{-2}	2.72180010^{-1}	32
2357	4.23462010^{-2}	$2.850950 10^{-2}$	8.47020010^{-1}	34	10240002	8.41222010^{-2}	1.36820010^{-1}	2.43450010^{-1}	34
5257	3.18361010^{-2}	4.24241010^{-2}	7.50450010^{-1}	34	2594	9.10954010^{-2}	1.39350010^{-1}	2.36010010^{-1}	34
88181912	7.08326010^{-2}	6.68710010^{-3}	6.59720010^{-1}	33	4829	6.67966010^{-2}	1.48650010^{-1}	2.35850010^{-1}	34
5233	4.16330010^{-2}	4.66295010^{-2}	6.49500010^{-1}	34	88180812	1.67190010^{-1}	9.92753010^{-2}	2.24720010^{-1}	34
4708	7.09919010^{-2}	1.89485010^{-2}	6.27530010^{-1}	32	4754	4.80664010^{-2}	1.67730010^{-1}	2.15760010^{-1}	34
88181311	3.91450010^{-2}	5.26212010^{-2}	6.06380010^{-1}	34	4707	1.47000010^{-1}	1.29450010^{-1}	2.13880010^{-1}	34
1871	5.12139010^{-2}	4.69157010^{-2}	6.00070010^{-1}	34	43170004	1.34590010^{-1}	1.40340010^{-1}	2.10690010^{-1}	34
31080004	7.00289010^{-2}	2.74510010^{-2}	5.95660010^{-1}	32	89210305	1.88130010^{-1}	1.05730010^{-1}	2.03220010^{-1}	34
94031908	1.44378010^{-2}	6.12350010^{-2}	5.92860010^{-1}	34	88182012	1.91040010^{-1}	1.09440010^{-1}	1.98950010^{-1}	34
2674	6.52750010^{-2}	3.59217010^{-2}	5.89420010^{-1}	34	4805	1.22180010^{-1}	1.60670010^{-1}	1.97460010^{-1}	34
88180412	7.82961010^{-2}	1.45112010^{-2}	5.87620010^{-1}	32	5511	1.32810010^{-1}	1.63180010^{-1}	1.90860010^{-1}	34
88180710	5.42036010^{-2}	5.33874010^{-2}	5.42560010^{-1}	34	89211505	1.13940010^{-1}	1.73920010^{-1}	1.89010010^{-1}	34
88191102	9.32002010^{-2}	1.31637010^{-2}	4.97970010^{-1}	33	20350004	1.75420010^{-1}	1.47510010^{-1}	1.83890010^{-1}	34
88182510	8.85967010^{-2}	3.63849010^{-2}	4.65850010^{-1}	32	884	1.44110010^{-1}	1.68670010^{-1}	1.82030010^{-1}	34
2207	1.74715010^{-2}	8.09347010^{-2}	4.48790010^{-1}	34	2893	1.21920010^{-1}	1.87130010^{-1}	1.75880010^{-1}	34
89201902	7.24777010^{-2}	6.84455010^{-2}	4.16390010^{-1}	34	1872	8.98327010^{-2}	$2.039900 10^{-1}$	1.72310010^{-1}	34
94031500	4.55255010^{-2}	8.35832010^{-2}	4.07530010^{-1}	34	90202212	2.07840010^{-1}	6.03210010^{-1}	5.96315010^{-2}	34
89212405	3.00884010^{-2}	8.99236010^{-2}	4.00500010^{-1}	34	2895	1.84370010^{-1}	6.29460010^{-1}	5.74653010^{-2}	34
89211705	6.36957010^{-2}	8.26166010^{-2}	3.82640010^{-1}	34	5120	2.53360010^{-1}	6.21010010^{-1}	5.71358010^{-2}	34
5907	9.75957010^{-2}	6.06286010^{-2}	3.79010010^{-1}	34	3451	2.28580010^{-1}	6.28890010^{-1}	5.70522010^{-2}	34
88181411	9.44278010^{-2}	6.52350010^{-2}	3.75790010^{-1}	34	4791	1.29890010^{-1}	6.81160010^{-1}	5.33269010^{-2}	34
4792	$1.091900 10^{-1}$	5.44857010^{-2}	3.61770010^{-1}	34	4709	1.73710010^{-1}	6.85190010^{-1}	5.29408010^{-2}	34
88180811	1.16010010^{-1}	5.00157010^{-2}	3.51990010^{-1}	33	3317	3.08500010^{-1}	7.05100010^{-1}	4.98959010^{-2}	34
3240	$1.362500 10^{-1}$	$2.751300 10^{-2}$	3.35920010^{-1}	32	4867	2.33120010^{-1}	7.36260010^{-1}	$4.901550 10^{-2}$	34
5638	1.07990010^{-1}	8.12458010^{-2}	3.16200010^{-1}	34	1867	2.16920010^{-1}	7.58250010^{-1}	4.77326010^{-2}	34
43690004	1.01830010^{-1}	9.10143010^{-2}	3.06160010^{-1}	34	88172500	2.42970010^{-1}	9.02080010^{-1}	4.01731010^{-2}	34
31630002	1.43030010^{-1}	4.44949010^{-2}	3.04670010^{-1}	32	1208	3.61920010^{-1}	9.97570010^{-1}	3.59704010^{-2}	34
		-	-		2363	2.93730010^{-1}	1.012520	$3.573360 10^{-2}$	34

Figura 4.2: Tabella riassuntiva dei risultati analitici ottenuti(1). Nella prima colonna si trova il numero dell'asteroide; nella seconda e nella terza rispettivamente i valori di R_1 e R_2 ; nella terza il valore di ρ_0 ; mentre nell'ultima l'ordine ottimale dell'espansione in serie

88181213	1.13010010^{-1}	2.02660010^{-1}	1.67390010^{-1}	34
51910004	1.82310010^{-1}	1.74030010^{-1}	1.64450010^{-1}	34
4828	5.29349010^{-2}	2.21660010^{-1}	1.63750010^{-1}	34
5130	5.49118010^{-2}	2.22720010^{-1}	1.62920010^{-1}	34
5476	9.82454010^{-2}	2.38930010^{-1}	1.48360010^{-1}	34
88181410	7.30778010^{-2}	2.65960010^{-1}	1.36200010^{-1}	34
88191602	2.17460010^{-1}	2.18990010^{-1}	1.33350010^{-1}	34
2223	7.39325010^{-2}	2.83590010^{-1}	1.27850010^{-1}	34
40350004	5.55171010^{-2}	2.85360010^{-1}	1.27290010^{-1}	34
88180813	1.35300010^{-1}	2.75980010^{-1}	1.25500010^{-1}	34
2241	6.33160010^{-2}	2.92970010^{-1}	1.23970010^{-1}	34
6002	1.72450010^{-1}	2.68360010^{-1}	1.23000010^{-1}	34
88192301	8.33146010^{-2}	2.98160010^{-1}	$1.214500 10^{-1}$	34
3708	2.17410010^{-1}	2.65470010^{-1}	1.17110010^{-1}	34
88190103	1.38390010^{-1}	3.00620010^{-1}	1.16240010^{-1}	34
88181810	1.24820010^{-1}	3.10420010^{-1}	1.14490010^{-1}	34
87171400	1.66160010^{-1}	3.08400010^{-1}	$1.106500 10^{-1}$	34
88191003	1.18430010^{-1}	3.29610010^{-1}	1.08910010^{-1}	34
5119	1.93570010^{-1}	3.04420010^{-1}	1.08670010^{-1}	34
88180512	2.17160010^{-1}	2.96860010^{-1}	1.07930010^{-1}	34
88190703	1.32530010^{-1}	3.29410010^{-1}	1.07880010^{-1}	34
1172	1.17810010^{-1}	3.43640010^{-1}	1.04690010^{-1}	34
31040004	1.00780010^{-1}	3.76980010^{-1}	9.61422010^{-2}	34
4715	1.57210010^{-1}	3.73990010^{-1}	9.45391010^{-2}	34
4832	2.34790010^{-1}	3.47320010^{-1}	9.39991010^{-2}	34
90221206	2.37290010^{-1}	4.00480010^{-1}	8.37769010^{-2}	34
1873	6.30373010^{-2}	4.41610010^{-1}	8.20551010^{-2}	34
88180701	2.25690010^{-1}	4.69820010^{-1}	7.39411010^{-2}	34
41010004	1.73650010^{-1}	4.89890010^{-1}	7.33302010^{-2}	34
617	2.61340010^{-1}	4.61970010^{-1}	7.32483010^{-2}	34
88181510	1.87970010^{-1}	5.02170010^{-1}	7.13277010^{-2}	34
88182511	2.22850010^{-1}	5.15150010^{-1}	6.83915010^{-2}	34
	-	-	-	

Figura 4.3: Tabella riassuntiva dei risultati analitici ottenuti(2).

Capitolo 5

Sviluppi recenti

Fino a questo punto, abbiamo affrontato il problema di stabilità facendo riferimento ad articoli precedenti al 2000. In questo capitolo senza alcuna pretesa di completezza formale, vogliamo esporre alcuni risultati più moderni riportati in [4].

Nel dettaglio, illustriamo delle stime numeriche per la descrizione delle orbite dei suddetti asteroidi.

Osserviamo preliminarmente che nel sistema di riferimento sinodico corotante con i primari, l'energia e il momento angolare totali non sono delle costanti del moto, in quanto i termini dipendenti dalla velocità nella forza di Coriolis non sono contenuti nell'hamiltoniana del sistema.

Tuttavia attraverso una semplice manipolazione delle equazioni del moto, si può trovare l'unico integrale primo del problema C_J , detto *integrale di Jacobi*.

Esplicitamente, $C_J = 2U - v_2^2$ ove v_2 è la velocità dell'asteroide.

Dato che $v_2^2 \ge 0$, le orbite descritte dalle equazioni del moto, di cui sopra, saranno sempre vincolate a rimanere al di fuori alla "superficie di velocità zero" $C_{J_0} := 2U$ con velocità $v_2^2 = 0$. Quindi, si è trovata una preliminare limitazione nello spazio delle configurazioni delle orbite.

In secondo luogo dal calcolo degli autovalori λ_i , $(i = 1, \dots, 4)$ del sistema linearizzato, si ha che, per il parametro di massa μ piccolo, $\lambda_{1,2} := \pm i \sqrt{\frac{27}{4}\mu} = \pm i\omega_s \propto \mu$; mentre $\lambda_{3,4} := \pm i (1 - \frac{27}{8}\mu) = \pm i\omega_f \sim \pm i$ ove "f" sta per "fast" e "s" sta per "sinodico".

Dalle approssimazioni ottenute piccolo degli autovalori λ_i per μ , notiamo che $\omega_f \sim 1$ è la frequenza dell'angolo veloce; mentre $\omega_s \propto \mu$ identifica l'angolo lento.

Dunque, il moto dell'asteroide si può descrivere come due oscillatori armoni disaccoppiati con frequenze diverse: il primo con frequenza ω_s (lenta) individua il moto di un punto (il "centro di guida") attorno a L4; invece il secondo, identificato da ω_f (veloce), rappresenta l'oscillazione dell' asteroide attorno al "centro di guida".

Per una comprensione più immediata di quanto detto finora, facciamo riferimento alle figure 5.1.

(a) "curve di velocità zero" al variare di C_J .

(b) Moto di un asteroide nei pressi di L4.

Figura 5.1: In Fig.(a) sono rappresentate le "curve di velocità zero" per $\mu = 0.25$: con $C_{J_i} = 2.85$ troviamo nell'orbita più vicina a L4; mentre quella più esterna è identificata da $C_{J_e} = 4.80$. Osserviamo che per C_J "piccolo" ("curve di velocità zero" in blu, viola e rosa) le orbite, con velocità non nulla, sono vincolate all'esterno della regione racchiusa dalle curve di velocità zero. Al crescere di C_J ("curve di velocità zero" in verde e azzurro), si nota la formazione di una regioni interna, nei pressi dei primari, e di una esterna che circonda i corpi di massa maggiore. Il moto, per quanto detto, è vincolato ad una delle due regioni non comunicanti.

Fig.(b): esempi di orbite per $\mu = 0.001$ nel sistema sinodico. L'orbita in blue (orbita "a ferro di cavallo") è relativa alle condizioni iniziali $(x_2, y_2, \dot{x}_2, \dot{y}_2) = (-0.97668, 0, 0, -0.06118)$. In rosa è illustrato un esempio della caratteristica orbita "a larva" con condizioni iniziali $(x_2, y_2, \dot{x}_2, \dot{y}_2) = (0.507, 0.87402, 0, 0)$.

5.0.1 Hamiltoniana "mediata" o in forma normale

Avendo ora una buona comprensione del moto di un asteroide vicino a L4, nello spirito del "principio della media" vogliamo osservare in che misura si può eliminare l'angolo veloce relativo a ω_f , ottenendo così un'hamiltoniana integrabile a un grado di libertà¹. Più in dettaglio come ampiamente esposto in [4], si applicano diverse manipolazioni algebriche per ottenere un'hamiltoniana indipendente dal tempo e espressa in coordinate simili alle coordinate di Poincarè. Ricordiamo che in queste coordinate, ρ rappresenta il momento angolare dell'asteroide coniugato all'angolo di rotazione τ e che il momento angolare di L4 è $\rho_{L4} = 0$.

¹Questo progetto, in realtà, è una vecchia conoscenza. Infatti riaccordandoci con la parte precedente della tesi, si sta trasformando l'hamiltoniana di partenza nella forma normale di Birkhoff.

L'hamiltoniana, quindi, assume la forma

$$H(\rho,\xi,\tau,\eta) = -\frac{1}{2[1+\rho+\frac{1}{2}(\xi^2+\eta^2)]^2} - 1 - \rho - \mu R(\rho,\xi,\tau,\eta)$$

ove R è una funzione nota delle variabili di Poincarè.

Con evidenza, assumendo che $\mu, \rho, \Gamma := \frac{1}{2}(\xi^2 + \eta^2)$ siano piccole in un intorno di L4, ritroviamo che $\dot{\tau} \simeq 0 + \cdots$, $\dot{M} = \frac{\partial H}{\partial \Gamma} \simeq 1 + \cdots$.

A questo punto per porre in forma normale H fino al grado $R_1 + R_2$, applichiamo la trasformazione di [4]

$$H^{(R_1,R_2)} = \exp(\mathcal{L}_{\mu^{R_1}\chi^{(R_2)}_{R_2}})H^{(R_1,R_2-1)}$$
(5.1)

e quindi partendo da $H^{(1,0)}$ troviamo attraverso delle iterazioni successive $H^{(R_1,R_2)}$. Dunque, l'hamiltoniana in forma normale sarà

$$H^{(R_1,R_2)} = \mathcal{Z}^{(R_1,R_2)}(\rho,\frac{\eta^2+\xi^2}{2},\tau) + \mathcal{R}^{(R_1,R_2)}(\rho,\xi,\tau,\eta)$$

dove $\mathcal{Z}^{(R_1,R_2)}$ è la parte normale; mentre $\mathcal{R}^{(R_1,R_2)}$ è il resto.

Infine come visto nella 4.2, ricordiamo che l'operatore exp usato nella 5.1 genera un trasformazione canonica alle coordinate normalizzate prossima all'identità (per maggiori dettagli si veda [4]).

5.0.2 Superfici di livello numeriche

Dato che le due hamiltoniane $H \in \mathbb{Z}$ hanno rispettivamente 2 e 1 grado di libertà, si sono confrontate $H \in \mathbb{Z}$ grazie ad una sezione dei moti con una superficie di livello trasversale alle traiettorie (*"sezione di Poincarè"*).

In primis come esposto in [4], si sono individuate le coordinate di un corpo troiano arbitrario (detto "corpo generatore") dal catalogo degli asteroidi. Successivamente, si sono trasformate nelle coordinate normali ottenendo il set ($\rho_{cg}, \xi_{cg}, \tau_{cg}, \eta_{cg}$). In più ottenuto dal catalogo $C_{J_{cb}}$ e fissati (ρ_{cg}, η_{cg}), si sono ottenuti i valori di (τ, ξ) tale che sia $C_J = C_{J_{cg}}$. A questo punto, queste orbite sono state integrate per un breve intervallo di tempo fino a raggiungere la condizione di livello $\eta = 0$. Questa condizione è di vitale importanza per poter applicare il confronto tra le due hamiltoniane in questione. Infatti $\eta = 0$ corrisponde esattamente ad un periodo dell'angolo veloce e, dunque, il ritratto in fase di H, vincolato a $\eta = 0$, rappresenta la dinamica del grado di libertà sinodico che è esattamente quello descritto da \mathcal{Z} . Il confronto grafico è, pertanto, un buon metodo per valutare l'accordo delle due hamiltoniane. Osserviamo per $\eta = 0$, la coordinata τ diventa la distanza angolare tra la direttrice dei primari e il percentro dell'ellisse del corpo troiano; mentre le altre coordinate rimangono invariate.

Per calcolare la superficie di livello (vedi [4]) di H fissati $\eta = 0$ e μ (dato dal problema), si calcola l'energia H_{L4} di L4, ricordando che $\tau = \pi/3$, $\rho = \eta = \xi = 0$. Ora posta la condizione di livello $\eta = 0$, si variano τ, ξ per trovare tutti i punti, nell'intorno di L4,

tali che $H = H_{L4}$. Osserviamo, inoltre, che in queste coordinate H è integrale del moto. In seguito espressa H nelle vecchie coordinate baricentriche, si integrano le sue equazioni di Hamilton con integratore Runge-Kutta, in un tempo pari a 500 periodi dei primari $(6 \cdot 10^3 \text{ anni})$. Infine durante questa integrazione, si selezionano solo i punti contenuti nella superficie di livello con $\eta = 0$.

Per quanto riguarda la superficie numerica di \mathcal{Z} riportiamo il seguente metodo analitico approfondito in [4].

Considerato il set delle condizioni iniziali in forma normale $(\rho_{cg}^{(3,5)}, \xi_{cg}^{(3,5)}, \tau_{cg}^{(3,5)}, \eta_{cg}^{(3,5)})$, si sono ottenute le equazioni di hamilton² derivate dall'hamiltoniana normalizzata fino all'ordine $R_1 = 3, R_2 = 5$:

$$\dot{\rho} = -\frac{\partial \mathcal{Z}^{(3,5)}}{\partial \tau}, \qquad \dot{\tau} = -\frac{\partial \mathcal{Z}^{(3,5)}}{\partial \rho}.$$

Dunque integrando le equazioni precedenti fino ad ottenere 2000 punti, è stato possibile determinare le orbite dell'hamiltoniana normalizzata. In particolare, queste ultime giacciono sulle curve di livello date dalle condizioni iniziali normalizzate corrispondenti a $\frac{\eta^{(3,5)} + \xi^{(3,5)}}{2} =: C$. Imponendo ora il vincolo $\eta = 0$, si ridefinisce $\xi^{(3,5)} = \sqrt{2C}$. Infine riportando le orbite nelle coordinate iniziali (ρ, ξ, τ, η) grazie alla trasformazione canonica derivata dalla 5.1, è stato possibile applicare il confronto tra le due hamiltoniane che descrivono il problema.

²Abbiamo rimosso l'apice per semplicità di notazione

Figura 5.2: Confronti tra le curve di livello prodotto dall'hamiltoniana mediata $Z^{(3,5)}$ (in azzurro) di quella completa H (in rosa) per il problema Sole-Terra (a sinistra) e Sole-Giove nei pressi di L5 (a destra). Nel caso Sole-Terra ($\mu = 0.3 \cdot 10^{-5}$), il "corpo generatore" è l'asteroide terrestre 2010 TK_7 con ($\rho_{cg} = -1.840144710^{-2}, \xi_{cg} =$ $-0.1530054, \tau_{cg} = 3.5736334, \eta_{cg} = -0.1152511$); invece per Sole-Giove ($\mu = 0.95 \cdot 10^{-3}$) il "corpo generatore" è l'asteroide troiano 1872 Helenos con ($\rho_{cg} = -0.383673510^{-2}, \xi_{cg} =$ $-0.1104177, \tau_{cg} = 5.6716748, \eta_{cg} = -0.0154226$). Le immagini palesano il fatto che minore è il valore del parametro di massa μ maggiore sarà l'accordo delle due hamiltoniane. Inoltre osservando che nei due problemi ρ non è centrato in zero, troviamo che nel caso Sole-Terra si riescono a descrivere le orbite "a larva" e "a ferro di cavallo"; invece, nel caso Sole-Giove ritroviamo le librazioni (orbite rosa) della figura 5.1.

Capitolo 6 Conclusioni

In questo lavoro di tesi abbiamo analizzato il problema della stabilità di L4/L5 nel "problema ristretto a tre corpi circolare piano". In particolare, nel Capitolo 2 abbiamo presentato, con riferimento a [3], il contesto teorico del problema esprimendo l'hamiltoniana 3.1 nel un sistema di coordinate adattato al problema (x, y, p_x, p_y) . In seguito determinati gli autovalori della linearizzata 3.4, abbiamo osservato che l'equilibrio presentava una duplice natura a seconda del valore del parametro di massa μ . Infatti, si trova che, definito

$$\mu_R = \frac{1}{2} \left(1 - \sqrt{\frac{23}{27}} \right) \simeq 0.0385 \quad ("limite di Routh"):$$

- se $\mu \leq \mu_R$, $(1-\mu) \leq \mu_R$ allora l'equilibrio è "ellittico";
- altrimenti è "iperbolico".

Tuttavia se la natura "iperbolica" è sufficiente per definire l'instabilità del sistema completo, il fatto che l'equilibrio sia "ellittico", per la 3.4, non si può estendere all'hamiltoniana H comprendente i termini di ordine superiore. In dettaglio, osserviamo che la 3.5 non presenta un minimo stretto nell'origine (L4). Dunque, non si può concludere che l'aggiunta di termini di ordine maggiore non infici la stabilità del punto per l'hamiltoniana completa. Nel Capitolo 3, abbiamo illustrato alcuni passi successivi per ottenere delle stime di stabilità per un tempo dell'ordine dell'età dell'universo (14 · 10⁹ anni). Citando sia [3] che [1], si è trasformata l'hamiltoniana di partenza H nella "forma normale di Birkhoff" $H^{(r)} = H_2 + \cdots + Z_r + \mathcal{R}^{(r+1)}$ in modo da ottenere che per la parte hamiltoniana di ordine (strettamente) inferiore a r + 1 le azioni fossero esattamente integrali del moto. Dunque notato che le azioni sono mosse solo dalla parte del resto $\mathcal{R}^{(r+1)}$ nello spirito della stabilità secondo Lyapunov, si è determinato il minimo "tempo di fuga" di un'orbita nell'intorno di L4:

$$T(\rho_0) := \max_{3 \le r \le \tilde{r}} \sup_{\rho_0 > \rho} \tau_r(\rho_0, \rho)$$

ove ρ_0 è il raggio del dominio inziale.

Ottenuto nelle coordinate "fisiche" il dominio di stabilità con $T(\rho) = 14 \cdot 10^9$, si è adattato il metodo analitico sviluppato per un confronto diretto con la regione di stabilità dei troiani determinata sperimentalmente dal catalogo degli asteroidi rilevati il 14/12/94, J.D.=2440700.5.

Notiamo che solo 4 asteroidi del catalogo rientrano pienamente nella regione di stabilità trovata. Gli altri sono solo empiricamente stabili, in quanto la regione di stabilità determinata analiticamente non li comprende. Il risultato di stabilità, dunque, non è ottimale e va perfezionato.

Infine nel Capitolo 4, abbiamo illustrato alcuni sviluppi più recenti (2015) per lo studio delle orbite in prossimità di L4 (vedi [4]). Nel dettaglio, si sono passati in rassegna alcuni risultati per ottenere un'analisi numerica delle traiettorie seguite da un asteroide troiano. I metodi analitici utilizzati comprendono l'individuazione della "supercifie di velocità zero"; la scomposizione del moto in due oscillatori armonici con frequenze ω_s (lenta) e ω_f (veloce) e il confronto grafico tra l'hamiltoniana mediata $\mathcal{Z}^{(R_1,R_2)}$ e quella completa H per un tempo di integrazione pari a 500 periodi dei primari ($6 \cdot 10^3$ anni). L'ultimo confronto analitico è stato applicato al problema Sole-Giove e Sole-Terra, partendo dalle condizioni iniziali dettate, rispettivamente, dagli asteroidi troiani TK_7 e 1872 Helenos. In più grazie alla già citata integrazione delle equazioni del moto, abbiamo ottenuto la dinamica TK_7 e 1872 Helenos in prossimità di L4-L5 dei corrispondenti problemi.

Appendice A

Triangolo risolutivo della trasformata di Lie

g_0	f_0					
	\downarrow					
g_1	$E_1 f_0 \downarrow$	$\stackrel{f_1}{\downarrow}$				
g_2	$E_2 f_0$	$E_1 f_1$	f_2			
	\downarrow	\downarrow	\downarrow			
g_3	$E_3 f_0$	$E_2 f_1$	$E_1 f_2$	f_3		
	\downarrow	\downarrow	\downarrow	\downarrow		
g_4	$E_4 f_0$	E_3f_1	$E_2 f_2$	$E_1 f_3$	f_4	
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
:	:	:	:	÷	:	14. 1

Figura A.1: Schema del processo risolutivo del sistema $g = T_{\chi} f$.

In dettaglio, f, g sono funzioni reali e il loro ordine k-esimo è identificato da f_k , g_k . In più, osserviamo che nelle "righe" si sono allineati i termini con dello stesso ordine; mentre in "colonna" si trovano i termini generati da $T_{\chi} f_k$. Pertanto, la risoluzione del sistema di equazioni $g_k = T_{\chi} f_k$ avviene dalla prima riga, dalla quale si ricavano i termini k-1-esimi, per poi procedere verso il basso.

Appendice B

Limitatezza delle funzioni in forma normale

In questa parte, riportiamo un importante risultato per una particolare forma dell'hamiltoniana iniziale H.

Infatti se la suddetta hamiltonina è limitata, si riesce a dare una stima della grandezza del "resto" nel dominio di convergenza di H (vedi [1]):

Proposizione 2. Sia $H = \sum_{k\geq 2} H_k$ un'hamiltoniana con n gradi di libertà e H_2 dipendente dalle sole azioni I_j j = 1, 2. Si supponga, inoltre, che $||H_k|| \leq c^{k-2}d$, $k \geq 3$. Dato il modulo \mathcal{M} contenente il modulo di risonanza \mathcal{M}_{ω} di H_2 , e assumiamo che le frequenze ω_j , j = 1, 2 di H_2 rispettino la "condizione diofantea", ossia siano tali che

$$|k \cdot \omega_j| \ge \alpha_r > 0, \ j = 1, 2$$

dove $\alpha_r > 0$ e per ogni $k \in \mathbb{Z}^n \setminus \mathcal{M}$ e $|k| \leq r$ per un fissato intero positivo r.

Si consideri, in più, l'hamiltoniana trasformata $Z_r + \mathcal{R}^{(r)} = T_{\chi^{(r)}}^{-1}H$ in forma normale fino all'ordine r e convergente in ogni disco multidimensionale D_R di raggio $R < R_r^*$ con

$$R_r^* := \left[(9 + \frac{32}{5}r)\frac{d}{\alpha_r} + (1 + \frac{32}{5}r) \right]^{-1} c^{-1}.$$

Dunque, per s > r,

$$||\mathcal{R}_{s}^{(r)}|| \le (\frac{d}{c})(R_{r}^{*})^{1-s},$$

e quindi il "resto" complessivo $\mathcal{R}^{(r)}$ ristretto a D_R si ha che

$$|\mathcal{R}^{(r)}| < \frac{d}{c} (\frac{R}{R^*})^r R(\frac{R}{R^*})^{-1}.$$

Bibliografia

- [1] Fontich Galgani Simò Giorgilli, Delshams. Eff. stability for a hamiltonian system near an elliptic equilibrium point, with an application to the rtbp. J. Of Differential Equations, 1989.
- [2] Galgani Giorgilli. Formal integral for an autonomous hamiltonian system near an equilibrium point. *Cel. Mechanics*, 1977.
- [3] Skokos C. Giorgilli A. On the stability of the troian asteroids. Astron. and astrophysics, 1997.
- [4] Rocío Isabel Páez. New normal form approaches adapted to the trojan problem (2015).