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Abstract

Quantum field theories usually depend on a set of parameters that are related to physical
observables, such as particle masses or coupling constants measured at some given energy.
The parameters take value in a certain parameter space, and one can “deform” the theory
by varying the parameters continuously within this space. A more complicated kind of
“deformation” is the one induced by the renormalization group (RG) flow, which connects
a quantum field theory describing a physical system at very high energies (UV) with
the one describing it at very low energies (IR). In general, it can be very difficult to
determine whether two QFT’s are related via a deformation of parameters or an RG flow
- for example, the relevant degrees of freedom in the IR might be completely different
from the ones in the UV. A general strategy to attack this problem would be to provide a
complete set of invariants, i.e. quantities that can be computed in any QFT (possibly
satisfying some conditions), and that do not change under (suitably defined) “continuous
deformation”. There has been recent progress in implementing this program in certain
simple classes of QFT’s. In particular, it has been proposed that one- and two-dimensional
minimally supersymmetric quantum field theories can be classified, up to deformations,
by generalized cohomology theories known as K-theory and topological modular forms,
respectively. The goal of this thesis is to describe these proposals and apply them to some
simple examples of QFT’s.
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Introduction

One of the crucial problems in the study of quantum field theories of the last decades
consists in understanding how these theories transform under continuous deformations
at fixed energy or along the Renormalization Group (RG) flow. Indeed, quantum field
theories can assume different forms at different energy levels, and it can be very difficult
to figure out whether two of them can be deformed into one another. Let us consider,
for instance, the description of strong interaction. It can be described at high energy,
in the so-called UV regime, by QCD, a weakly-coupled theory which has as degrees of
freedom quarks and gluons. However, moving down the RG flow and reaching the IR
regime, QCD becomes strongly coupled and we need an apparently different theory with
degrees of freedom given by mesons and baryons. This example allows us to understand
how much the description of the same interaction can change at different energies. A
useful approach to this problem consists in finding and computing some quantities, usually
called topological invariants, that are invariant under continuous deformations.

One of the first and most important of these invariant was introduced by Edward
Witten in [Wit82], and is defined as the regularized trace of the fermion number operator
for a supersymmetric theory. As argued by Witten, as we will see later on, this quantity
is a topological invariant for a particular class of theories, and allows us to figure out if
the theory does not break supersymmetry. Other invariant quantities are, for instance,
the elliptic genus for supersymmetric field theories or gravitational anomaly for theories
in 2 dimensions. The problem that arises for all these invariants is that they are not
complete, that is, the fact they are equal for two theories is a necessary condition for them
to be deformable one on the other, but it is not also a sufficient condition in general. For
this reason great efforts were done in order to refine these topological invariants and to
obtain a complete one.

In the special case of 2 dimensional theories, Stephan Stolz and Peter Teichner in two
works [ST04] [ST11], conjectured the existence of a one-to-one correspondence between two
sets, which implies the existence of complete invariants. The sets considered by Stolz and
Teichner was the set of 2-dimensional minimally supersymmetric Euclidean field theories
SQFT up to deformation on one side, and the set of classes of a generalized cohomology
theory known as topological modular forms TMF ( [Hop95], [Hop02], [Goe09], [Dou+14])
on the other side. This last set was first introduced in order to describe the “universal
elliptic cohomology theory”, and it owes its name to the fact that the direct sum of all
its homotopy groups is rationally isomorphic to the ring of weakly holomorphic integral
modular forms. This last property, gives us the possibility to define a more refined version
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of the Witten index. Indeed, we will see that the index introduced by Witten can be
regarded as a map from the set of SQFT to the ring of holomorphic modular forms,
and so can be promoted to a topological version, describing it as a map from SQFT to
TMF. In this way, if the Stolz and Teichner conjecture is assumed to be true, we obtain
a complete set of invariants for supersymmetric field theories in 2 dimensions. However,
the map that goes from TMF to the ring of weakly holomorphic modular forms, as we
will see, is not an isomorphism on the integer numbers. In particular, the kernel of this
map is the ideal generated by all the torsion classes in TMF. Hence, besides the Witten
genus, which is the first invariant we can obtain from the conjecture, we have also other
torsion invariants. Unfortunately, the physical interpretation of all these invariants is not
known yet.

From a mathematical point of view, Stolz and Teichner proposal, even if there are a
lot of evidence in favor of it, still lacks a precise and satisfactory formulation. The first
problem comes from the construction of the set SQFT. Indeed, while the spectrum TMF
is mathematically well-defined, we are not able to define properly, from a mathematical
point of view, what an element in SQFT is. Also, we cannot completely identify what type
of deformations we can consider, or, in other words, we are not able to properly topologize
the set SQFT. In order to overcome these problems, we rely on the physical intuition of
what a supersymmetric quantum field theory is, and we consider as deformations allowed
the composition of small deformations at fixed energy and the motion along the RG flow.

In this framework, following some works by Davide Gaiotto, Theo Johnson-Freyd and
Edward Witten ( [GJW19], [GJ19], [Joh20]), we study the case of a particular model, the
N = (0, 1) supersymmetric sigma model with target S3 and Wess-Zumino (WZ) coupling
k, trying to understand in which cases it spontaneously breaks supersymmetry. This will
bring us to study its behavior at low energies, and to describe how the previous authors
have introduced an invariant, whose construction is motivated by the consequences of the
works by Stolz and Teichner. We will see that this particular model breaks supersymmetry
if and only if the WZ coupling has strength k ≡ 0 mod 24, justifying this result in terms
of the properties of TMF.

This work is organized as follows. In chapter 1 we introduce some of the basic tools
needed to study the theories we are interested in. In particular, we deal with some of
the properties of conformal field theories, which will be crucial for us since they can be
obtained as IR fixed points for non-conformal theories.

In chapter 2, we describe the supersymmetric sigma model with target S3 and WZ
coupling k, which is the main example of the entire thesis. In describing it, we also
introduce the Witten index, and in particular we show its crucial properties, some of
which are encoded in the so-called Atiyah-Singer index theorem, that we state in 2.3.3.

Then, in chapter 3 we study the conjecture due to Stolz and Teichner, describing
some aspects of the construction of TMF, and then focusing on the set SQFT, explaining
some of the attempts that were done in order to give a proper mathematical definition of
its elements, and also describing the properties that it has to inherit from TMF.

In the last two chapters, 4 and 5, we construct the invariant introduced by Gaiotto
and Johnson-Freyd (mostly following [GJ19]) and then we compute it for the sigma
model we started with. In doing this, we will introduce a way to enlarge the set of
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supersymmetric quantum field theories that admit elliptic genus, describing what we call
mildly non-compact theories, and in particular we will focus on studying the way in which
the properties of the elliptic genus change for this type of theories. This will allow us to
compute the invariant for the sigma model with target S3 and WZ coupling k, confirming
the hypothesis that it spontaneously breaks supersymmetry if and only if k ≡ 0 mod 24.



Chapter 1

Conformal field theories

Our main interest will be the study of field theories in (1+1)-dimensions, and in particular,
considering their limit in the IR regime. In this situation, a special type of field theories
acquires great importance. These are called conformal field theories (CFT’s). Not all the
theories we will encounter will be conformal, however some of the tools we will develop
in studying CFT’s will be crucial in the construction of the invariant we are looking for,
since they appear as IR fixed points under the RG flow.

In this chapter, we will start in section 1.1 giving some information about the general
d-dimensional case, but then we will focus on 2-dimensional conformal field theories, in
which conformal symmetry will be the crucial constraint in order to obtain the information
we need. In this first part we will use the formalism of fields. Then, in section 1.2 we will
state some of the properties that arise using the operator formalism. In both case we will
present some simple examples, which will reveal as the building blocks of more refined
theories.

1.1 Conformal field theories

CFT in d dimensions

Let us start focusing on the general case of a d-dimensional space-time. Conformal
field theories (CFT’s) are theories invariant under the so-called conformal transfor-
mations, that is, roughly speaking, transformations that preserve the angles between
any two lines. More precisely, let us consider two d-dimensional manifolds M and M ′

with metric tensors g and g′ respectively, and a differentiable map

φ : U V

between two open subsets U ⊂M and V ⊂M ′. Then φ is said to be conformal if

φ∗g′ = Λg . (1.1)

Given a coordinate system xµ ∈ U , and denoting x′ = φ(x), we have that the condi-
tion (1.1) reads

g′ρσ(x
′)
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν(x) , (1.2)
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with Λ(x) a scale factor. For us, the most interesting situation will be the one in which
M =M ′, namely we have the same d-dimensional space-time, and with constant metric
tensor gµν . This implies that (1.2) becomes

gρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν . (1.3)

If we focus on infinitesimal transformations which, up to first order in a small parameter
ϵ(x)≪ 1, read

x′µ = xµ + ϵµ(x) + o(ϵ2) ,

we obtain that the condition for the parameter ϵ in order the transformation to be
conformal is (we avoid to write down the computation being an easy expansion of the
condition (1.3) in the parameter ϵ)

∂µϵν + ∂νϵµ =
2

d
(∂ · ϵ)gµν . (1.4)

CFT in 2 dimensions

Conformal invariance in 2 dimensions require special attention, since, as we will see in a
moment, in this case there is an infinite dimensional group of coordinates transformations
that are locally conformal. The fact that these transformations are infinite, gives us the
possibility to have exact solutions of 2-dimensional CFT’s.

Studying the condition on the parameter of infinitesimal transformation in the Eu-
clidean case, that is when the metric is

gµν = δµν ,

we find, from the relation (1.4)

∂0ϵ0 = ∂1ϵ1 , ∂0ϵ1 = −∂1ϵ0 ,

where we can recognize the Cauchy-Riemann conditions. This motivates the definition of
complex coordinates

z := x0 + ix1 , z := x0 − ix1 . (1.5)

Before going on studying infinitesimal conformal transformation, let us comment on this
change of coordinates. We started from a two dimensional space-time parametrized by
the coordinates x0 and x1, and then, introducing z and z, we have identified the real
plane with the complex one, that is R2 ≃ C. This is done using the fact that z and z are
related one another by complex conjugation. However it will be useful to consider them
as independent, hence identifying

R2 C2 .

Nevertheless, it should be kept in mind that the physical space is the 2-dimensional
submanifold of C2 identified by z∗ = z, called real surface.
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Now let us go back to the conformal transformation and notice that, if we define the
complex function

ϵ(z) := ϵ0 + iϵ1 ,

we have that ϵ(z), in order to describe a conformal transformation, has to be holomorphic.
So a two dimensional conformal transformation is of the form

z f(z) ,

with f(z) := z + ϵ(z) an holomorphic function. Being this function holomorphic and, of
course, the conjugate one anti-holomorphic, we can expand them in Laurent series around
z = 0, getting

z′ := f(z) = z +
∑︂
n∈Z

ϵnz
n+1 , z′ := f(z) = z +

∑︂
n∈Z

ϵnz
n+1 ,

with ϵn and ϵn constant infinitesimal parameters. From here it follows that the generators
of a conformal transformation, for a given n ∈ Z, are

ln := −zn+1∂z , ln := −zn+1∂z , (1.6)

and is trivial to verify that they satisfy the Witt algebra

[lm, ln] = (m− n)lm+n ,

[lm, ln] = (m− n)lm+n , (1.7)

[lm, ln] = 0 .

Let us notice that the generators that preserve the real surface, i.e. the physical ones, are
the linear combinations

ln + ln , i(ln − ln) ,

and, in paritcular, l0 + l0 generates dilations, while i(l0 − l0) generates rotations.
Now let us give an important definition in order to describe the behavior of fields

under conformal transformations.

Definition 1.1.1. A field φ(z, z) is said to have conformal dimension (h, h) if, under
the scaling z λz, it transforms as

φ(z, z) φ′(z, z) = λhλ
h
φ(λz, λz) .

Definition 1.1.2. A field is said to be a primary field of conformal dimension
(h, h) if, under the conformal transformation z f(z), it transforms as

φ(z, z) φ′(z, z) =
(︂
∂f
∂z

)︂h(︂
∂f
∂z

)︂h
φ
(︁
f(z), f(z)

)︁
.
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As we have said, the fact that the algebra of infinitesimal conformal transformations
in 2 dimensions is infinite dimensional puts strong constraints on the field theory, and
gives us the possibility to study the theory only knowing the behavior under conformal
transformation, which are encoded in the energy-momentum tensor. Indeed, given a CFT,
from Noether’s theorem follows that there exist infinitely many conserved currents related
to the conformal symmetry. These currents can be written in terms of the coordinates
(x0, x1) as

jµ = Tµνϵ
ν ,

where Tµν is the symmetric energy-momentum tensor and ϵν is an holomorphic
function. From the conservation of the current ∂µjµ = 0, it follows that the energy-
momentum tensor has to be traceless, i.e.

T µ
µ = 0 .

If we apply the change of coordinates (x0, x1) ↦→ (z, z), we easily find that

Tzz =
1

2
(T00 − iT10) , Tzz =

1

2
(T00 + iT10) , Tzz = Tzz = 0 .

In particular, again from the conservation of the current in these new coordinates, we
have that the non-vanishing components of the energy-momentum tensor split in an
holomorphic and an anti-holomorphic part

Tzz(z, z) ≡ T (z) , Tzz(z, z) ≡ T (z) .

Going on in introducing useful tools for the study of CFT’s, let us notice that, typically,
correlation functions have singularities when the position of some of the fields coincide. In
order to figure out how these singularities arise, we use the so-called operator product
expansion (OPE). This means that we represent a product of operators by a sum of
single operator terms, well-defined as the positions of the operators approach one to the
other, and a function of the difference of the positions, which eventually diverges when
they approach. In particular, a primary field φ of conformal dimensions (h, h) has a
peculiar OPE with the energy-momentum tensor, i.e.

T (z)φ(w,w) ∼ h

(z − w)2
φ(w,w) +

1

z − w
∂wφ(w,w) ,

T (z)φ(w,w) ∼ h

(z − w)2
φ(w,w) +

1

z − w
∂wφ(w,w) .

In these expressions, as we will always do in the OPE’s, we use the symbol ∼ which
indicates that we have neglected the regular terms as w → z.

1.1.1 Free field theories

Now we want to study some theories that will be useful for the next sections. The
theories we are going to introduce are actually CFT’s, however we will also focus on some
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properties which are completely general. The aim of studying free field theories relies
on the fact that they will be the building blocks for more complicated theories, and also
some of the crucial properties that characterize QFT’s in 2-dimensions are present in the
free case yet.

Free bosonic field theory

Let us give the action of a theory of a scalar field φ in the space-time Ξ = R2 with
Lorentzian metric, given by

ηµν =

(︃
1 0
0 −1

)︃
The action for this field theory is given by

Sφ =
1

4π

∫︂
Ξ
dx0 dx1 Lφ(φ, ∂φ) =

=
1

8π

∫︂
Ξ
dx0 dx1

(︂(︁
∂0φ(x

0, x1)
)︁2 − (︁∂1φ(x0, x1))︁2)︂ ,

where, as usual

∂0 :=
∂

∂x0
, ∂1 :=

∂

∂x1
.

From the action, we can derive the Euler-Lagrange equations which describe the dynamics
of the field. They are (︁

(∂0)
2 − (∂1)

2
)︁
φ(x0, x1) = 0 ,

which is solved by
φ(x0, x1) = f(x0 − x1) + g(x0 + x1) , (1.8)

with f and g arbitrary functions. Let us now define the light-cone coordinates

u := x0 − x1 , v := x0 + x1 , (1.9)

and let us call right-moving configurations the ones depending only on u and left-
moving configurations the ones depending only on v. From (1.8) it is clear how the
general solution is given by the sum of a left- and a right-moving configurations, both at
the speed of light and that do not interfere with each other. This is a general property of
massless fields in (1 + 1)-dimensions, and it means that, in this case, there is a decoupling
of left- and right-moving modes. Moreover, in these new coordinates, we can rewrite the
action as follows. Since

∂0 = ∂v + ∂u , ∂1 = ∂v − ∂u ,

we have that
(∂0φ)

2 − (∂1φ)
2 = 4∂vφ∂uφ ,

hence
Sφ =

1

4π

∫︂
Ξ
dudv ∂vφ∂uφ .
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Up to now we have described this theory as a general QFT. However it is clear that
it is invariant under conformal transformations, and so we can study it using the tools
we have developed in the case of CFT’s. First of all we have to reformulate the theory
defining it on an Euclidean space-time. This is achieved thanks to the Wick rotation.
This transformation is performed substituting the time coordinate as1

x0L ↦−→ −ix0E .

This implies that the action transforms as

S −→ iSE ,

with SE the Euclidean action. In this way the Euclidean action for the scalar field reads

Sφ =
1

8π

∫︂
Ξ
dx0 dx1

(︂(︁
∂0φ

)︁2
+
(︁
∂1φ

)︁2)︂
.

Furthermore, we have seen how the natural framework to study CFT’s is C2, obtained
from the change of coordinates (1.5). In this way we have that(︁

∂0φ
)︁2

+
(︁
∂1φ

)︁2
= 4∂zφ∂zφ ,

hence the action becomes
Sφ =

1

4π

∫︂
dz dz ∂zφ∂zφ .

As we can see comparing these with the previous results, we have that, after the Wick
rotation, light-cone coordinates are mapped into the complex coordinates z and z, in
particular

u ↦−→ −iz , v ↦−→ −iz .
Without performing explicitly the computations, we have that the quantum energy-

momentum tensor for this theory is

T (z) = −1

2
:∂zφ∂zφ: ,

where we have used the normal ordering since it is a composite field. Explicitly we mean

T (z) = −1

2
lim
w→z

(︁
∂zφ(z)∂wφ(w)− ⟨∂zφ(z)∂wφ(w)⟩

)︁
.

The relevant OPE’s are

∂zφ(z)∂wφ(w) ∼ −
1

(z − w)2
, T (z)∂wφ(w) ∼

∂wφ(w)

(z − w)2
+
∂2wφ(w)

(z − w)
,

while
T (z)T (w) ∼ 1

2

1

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
, (1.10)

and analogous results hold for the anti-holomorphic part.
1In general we will omit the subscripts L (Lorentzian) and E (Euclidean) since the signature to which

the coordinates are referred will always be clear from the context.
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Free fermionic field theory

The other free theory we are interested in is the one of free Majorana fermions, which
are anti-commuting real spinor fields. Another possibility consists in describing complex
spinors, called Dirac fermions. In the (1 + 1)-dimensional space-time with Lorentzian
metric, we need first to introduce the Clifford algebra and its generators. The algebra is
generated by two elements γ0 and γ1 which satisfy

{γi, γj} = 2ηij .

A possible representation for these generators is given by the 2× 2 matrices

γ0 =

(︃
0 1
1 0

)︃
, γ1 =

(︃
0 −1
1 0

)︃
.

Let us remember how a Clifford algebra is defined in a general framework. Let V be a
vector space on a field k and q a symmetric bilinear form on V with values in k

q : V × V k .

The Clifford algebra Cliff(V, q) is the k-algebra generated by V and defined by the
relation

{v1, v2} = 2q(v1, v2) · 1 ∀ v1, v2 ∈ V ,

where 1 is the unit in Cliff(V, q). In particular, we will mostly use to deal with the
algebra associated to the usual Euclidean form on R or C. In this case we will indicate
with Cliff(±n,R) the real Clifford algebra generated by n elements γ1, . . . , γn, such that
γ2i = ±1. In the same way we can define the complex Clifford algebra Cliff(±n,C).

Going on studying the free fermion theory, we have that its action in Minkowski
(1 + 1)-dimensional space-time is

Sψ =
1

2π

∫︂
Ξ
dx0 dx1 Lψ(Ψ, ∂Ψ) =

=
1

4π

∫︂
Ξ
dx0 dx1 iΨ†γ0γµ∂µΨ . (1.11)

A spinor field like the fermion can be written as a two-components column vector

Ψ =

(︃
ψ+

ψ−

)︃
,

where ψ+ is said to be chiral (or with positive chirality), while ψ− is said to be anti-
chiral (or to have negative chirality). Indeed from the Clifford algebra’s generators in
generic dimension d, we can built a chirality matrix 2

γ5 := (−1)
d
4
−1γ1 · · · γd .

2The notation γ5 is the one common in physics, where it was built first in the 4-dimensional case. We
keep the same notation, since there will be no confusion.
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In the (1 + 1)-dimensional case we can choose

γ5 = γ0γ1 =

(︃
1 0
0 −1

)︃
,

from which it is clear that

γ5

(︃
ψ+

0

)︃
=

(︃
ψ+

0

)︃
, γ5

(︃
0
ψ−

)︃
= −

(︃
0
ψ−

)︃
.

In terms of these chirality components, we have that

Sψ =
1

4π

∫︂
Ξ
dx0 dx1

(︂
iψ−(∂0 − ∂1)ψ− + iψ+(∂0 + ∂1)ψ+

)︂
.

From the action, the Euler-Lagrange equations follow, and we get

γµ∂µΨ = 0 ,

which in terms of the chirality components reads

(∂0 + ∂1)ψ+ = 0 , (∂0 − ∂1)ψ− = 0 .

These equations are solved by

ψ+(x
0, x1) = f(x0 − x1) ≡ f(u) , ψ−(x

0, x1) = g(x0 + x1) ≡ g(v) .

Hence the chiral component ψ+ is a right-moving mode, while the anti-chiral one ψ− is a
left-moving mode.

Rewriting the action in terms of the light-cone coordinates u and v, we get

Sψ =
1

2π

∫︂
Ξ
dudv

(︁
iψ+∂vψ+ + iψ−∂uψ−

)︁
.

When we pass in the Euclidean space-time, we apply Wick rotation, but also we need to
change the representation of the γ matrices, using, for instance

γ0 =

(︃
0 1
1 0

)︃
, γ1 = i

(︃
0 −1
1 0

)︃
,

hence the form of the action (1.11) does not change. In terms of the complex coordinates
(z, z), let us write the spinor as

Ψ(z, z) =

(︃
ψ(z, z)

ψ(z, z)

)︃
,

in such a way that we obtain

Sψ =
1

2π

∫︂
dz dz

(︁
iψ∂zψ + iψ∂zψ

)︁
,



14 1. Conformal field theories

The equations of motion follow and read

∂zψ(z, z) = 0 , ∂zψ(z, z) = 0 ,

which means that ψ is an holomorphic field while ψ is anti-holomorphic.
Also, in Euclidean space-time we need to slightly modify the definition of γ5 which is

now given by
γ5 := (−1)

d
4 γ1 · · · γd .

However we have that, with respect to the representation given above, nothing change in
the matrix form. Hence we have found the following relations

chiral −→ holomorphic −→ right-moving
anti-chiral −→ anti-holomorphic −→ left-moving .

In this theory, the holomorphic energy-momentum tensor is

T (z) = −1

2
:ψ(z)∂zψ(z): .

The relevant OPE’s are

ψ(z)ψ(w) ∼ 1

z − w
, ∂zψ(z)ψ(w) ∼ −

1

(z − w)2

T (z)ψ(w) ∼ 1

2

ψ(w)

(z − w)2
+
∂wψ(w)

z − w
,

where, from the last OPE, we see that ψ is a primary field of conformal dimension h = 1
2 .

Finally, the OPE of the energy-momentum tensor with itself reads

T (z)T (w) ∼ 1

4

1

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
. (1.12)

As usual analogous results hold for the anti-holomorphic part.

Central charge and conformal transformation of the energy-momentum tensor

If we look at the OPE’s in (1.10) and (1.12), we can see that they have the same form,
except for a constant in front of the first summand. We can generalize this behavior
saying that the OPE of the energy-momentum tensor with itself is

T (z)T (w) ∼ c

2

1

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
,

where the constant c depends on the specific model and is called central charge. In
particular, from (1.10) and (1.12) we have that the free bosonic theory has central charge
c = 1, while the central charge of the free fermionic theory is c = 1

2 .
Now, comparing the OPE of the energy-momentum tensor with itself with the one

we gave for a generic primary field, we can see that, for vanishing central charge, the
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energy-momentum tensor is a primary field of conformal dimension h = 2. But this is not
true in general. However it can be shown that, under a conformal transformation f(z),
the energy momentum tensor transforms as

T ′(z) =
(︂∂f
∂z

)︂2
T
(︁
f(z)

)︁
+

c

12
S
(︁
f(z), z

)︁
, (1.13)

where S(w, z) is the so-called Schwarzian derivative, defined as

S(w, z) =
1

(∂zw)2

(︂
(∂zw)(∂

3
zw)−

3

2
(∂2zw)

2
)︂
.

1.2 Operator formalism

Up to now we have studied CFT’s with the language of fields, hence all the information
where expressed in terms of fields, and we have never mentioned the operator formalism
or the Hilbert space. However it will be useful in what follows to deal with them.

Let us start recalling that, from an operator point of view, we need to distinguish
between space and time coordinates. This distinction is natural in a Minkowski space-
time, thanks to the non-trivial signature. However the same thing cannot be said about
Euclidean space-time, in which the selection of space and time is somewhat arbitrary. In
order to treat this situation, let us start from a theory defined on an infinite space-time
cylinder S1

R × R, where time parametrize the R direction, while the space is compactified
identifying the point that differs for 2πR. If we consider this situation in a Minkowski
space-time, and then we continue to the Euclidean one, we obtain that it is parametrized
by the complex coordinate

w := x0 + ix1 such that w ∼ w + 2πiR ,

where we have indicated the periodic identification of the spatial direction. Then we can
apply a further change of variables, mapping the cylinder in the complex plane. This is
achieved introducing the complex coordinate on the plane

z := e
w
R = e

x0

R e
ix1

R ,

from which, in particular, we see that the infinite past of the cylinder x0 = −∞ is mapped
to z = z = 0, whereas the infinite future x0 = +∞ lies on the point at the infinity.

In these coordinates for the complex plane, we can expand the fields in Laurent series.
In particular, given a field of conformal dimension (h, h), its Laurent expansion around
z = z = 0 reads

φ(z, z) =
∑︂

n,m∈Z
x−n−hz−m−hφn,m .

In this formalism we are interested in the operator that generates conformal transfor-
mations. What can be seen is that the conformal charge is

Qϵ =
1

2πi

∮︂
dz ϵ(z)T (z) .
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So let us expand in Laurent series the energy-momentum tensor and the infinitesimal
conformal parameter ϵ(z) as

T (z) =
∑︂
n∈Z

z−n−2Ln , T (z) =
∑︂
n∈Z

z−n−2Ln ,

ϵ(z) =
∑︂
n∈Z

zn+1ϵn .

Hence the conformal charge reads

Qϵ =
∑︂
n∈Z

ϵnLn .

In this way we have found that the modes of the energy-momentum tensor Ln and Ln
are the generators of the local conformal transformations on the Hilbert space, and are
the analogous of the generators of the conformal mapping ln and ln on the space of
functions. In particular, let us notice that the combination L0 + L0 generates dilations
on the complex plane, which corresponds to time translations. In the same way we have
that i(L0 − L0) generates rotations, which are spatial translations. This means that
these combinations are proportional to the Hamiltonian and the momentum operators
respectively, namely

H = L0 + L0 , P = i(L0 − L0) . (1.14)

The generators Ln and Ln satisfy an algebra analogous to the Witt one (1.7), but with
an additional term due to the presence of the central charge. In mathematical terms they
satisfy the central extension of the Witt algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 ,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 ,

[Ln, Lm] = 0 ,

called the Virasoro algebra.
Let us conclude this part discussing very briefly some of the characteristics of the

Hilbert spaces of a CFT, which actually can have very intricate structures. First of
all we look at the vacuum state |0⟩, which should be invariant under global conformal
transformation. In order for this to be true, and also since the quantities T (z) |0⟩ and
T (z) |0⟩ have to be well-defined as z, z → 0, we have that

Ln |0⟩ = 0 , Ln |0⟩ = 0 , n ≥ −1 .

Primary fields acting on the vacuum states create eigenstates of the Hamiltonian, and
satisfy the following commutation relations (whose expression can be easily derived from
the OPE of the product of primary field and energy-momentum tensor)

[Ln, φ(z, z)] = h(n+ 1)znφ(z, z) + zn+1∂zφ(z, z) , n ≥ −1
[Ln, φ(z, z)] = h(n+ 1)znφ(z, z) + zn+1∂zφ(z, z) , n ≥ −1
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where φ(z, z) is a primary field of conformal dimension (h, h). If we now define the
asymptotic state

|h, h⟩ := lim
z,z→0

φ(z, z) |0⟩ ,

applying the previous commutation relations, we conclude that

L0 |h, h⟩ = h |h, h⟩ , L0 |h, h⟩ = h |h, h⟩ ,

and hence |h, h⟩ is an eigenstate of the Hamiltonian. Analogously we have

Ln |h, h⟩ = 0 , Ln |h, h⟩ = 0 , n > 0 .

Excited states above the asymptotic states can be obtained by adding ladder operators,
which explicitly read, expanding the primary field φ(z, z) in its Laurent modes

[Ln, φm] =
(︁
n(h− 1)−m

)︁
φn+m .

In particular
[L0, φm] = −mφm ,

and
[L0, φ0] = 0 . (1.15)

This last commutation relation tells us that, when it is defined, the zero mode of the
primary field creates a degeneracy of the energy eigenstates.

1.2.1 Free fermion theory

The idea now is to study the characteristics of the free fermion theory from an operator
perspective, defining it on the cylinder and then using the tools we have introduced in
order to figure out how to built its Hilbert space.

We have introduced yet the action and the energy-momentum tensor for this theory,
and we have seen the crucial OPE’s, thanks to which we have been able to show that the
system has central charge c = 1

2 and the fermion field ψ has conformal dimension h = 1
2 .

Now, let us work on the cylinder of radius R. The mode expansion is

ψ(w) =

√︃
1

R

∑︂
n

ψne
−nw

R ,

where the operators ψn obey the anti-commutation relations

{ψn, ψn} = δn+m,0 . (1.16)

Since the space-time is a cylinder, we have to impose boundary conditions on the fields,
and due to the spinorial nature of fermions, we have two possibilities

ψ(w + 2πiR) = −ψ(w) Neveu-Schwarz sector (NS)
ψ(w + 2πiR) = +ψ(w) Ramond sector (R) .
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It is clear that, in order for these boundary conditions to be fulfilled, we have some
constraints on the index of the sum, indeed

n ∈ Z Neveu-Schwarz sector (NS)

n ∈ Z+
1

2
Ramond sector (R) .

We have yet explained how the cylinder can be mapped on the complex plane, so let
us perform this transformation and let us see how the fermionic fields behave. We have
to map

w ↦−→ z = e
w
R ,

and, since the fermionic field has conformal dimension h = 1
2 , it transforms as

ψcyl(w) ↦−→ ψcyl(z) =
(︂ dz

dw

)︂ 1
2
ψpl(z)

=

√︃
z

R
ψpl(z)

This means that the expansion on the modes on the complex plane is (we do not write
anymore the subscript pl since from now on it will be always clear from the context)

ψ(z) =
∑︂
n

ψnz
−n− 1

2 , (1.17)

as we expected. Now we need to translate also the boundary conditions we have imposed
on the cylinder. However, due to the presence of the factor z

1
2 , we have to exchange the

conditions, obtaining

ψ(e2πiz) = +ψ(z) Neveu-Schwarz sector (NS)

ψ(e2πiz) = −ψ(z) Ramond sector (R) ,

which, in terms of the index in the mode expansion read

n ∈ Z+
1

2
Neveu-Schwarz sector (NS)

n ∈ Z Ramond sector (R) .

The next step consists in studying the vacuum energies. In particular we are going to
focus on the Ramond sector, in which we will find a peculiar result, due to the presence
of the fermionic zero modes. We want to compute the vacuum expectation value of
the energy-momentum tensor in the Ramond sector. Hence, remembering the Laurent
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expansion (1.17) and the relation (1.16), let us start computing the two-point function

⟨ψ(z)ψ(w)⟩ =
∑︂

n,m∈Z
z−n−

1
2w−m− 1

2 ⟨ψnψm⟩ =
1

2
√
zw

+
+∞∑︂
n=1

z−n−
1
2wn−

1
2 =

=
1√
zw

(︂1
2
+

+∞∑︂
n=1

(︂w
z

)︂n)︂
=

1

2
√
zw

z + w

z − w
=

=
1

2(z − w)

(︄√︃
z

w
+

√︃
w

z

)︄
.

So the vacuum expectation value of the energy-momentum tensor follows

⟨T (z)⟩ = 1

2
lim
ϵ→0

(︂
− ⟨ψ(z + ϵ)∂ψ(z)⟩+ 1

ϵ2

)︂
=

= lim
w→z

[︄
− 1

4(z − w)

(︄√︃
z

w
+

√︃
w

z

)︄
+

1

2(z − w)2

]︄
=

=
1

16z2
.

From the definition of the energy-momentum tensor, its expansion in terms of the fermionic
modes is

T (z) =
1

2

∑︂
n,m∈Z

(︂
m+

1

2

)︂
z−n−

1
2 z−m− 3

2 :ψnψm:=

=
1

2

∑︂
n,m∈Z

(︂
m+

1

2

)︂
z−n−2 :ψn−mψm: ,

thanks to which we deduce the generators

Ln =
1

2

∑︂
m∈Z

(︂
m+

1

2

)︂
:ψn−mψm: .

From this general expression we can find the generator L0, but paying attention to the
fact that, since in the Ramond sector the energy-momentum tensor has non-vanishing
expectation value, we have to add the contribution of the vacuum, that is

L0 =
∑︂

m∈Z>0

mψ−mψm +
1

16
. (1.18)

Let us end this section with a behavior that is proper of any system with non-vanishing
central charge. In what follows will be useful to express the generators of conformal
transformations defined on the cylinder. In order to do this, let us apply the usual
transformation from the complex plane to the cylinder. Under this change of coordinates,
the energy-momentum tensor transforms as (1.13), hence, neglecting the dependence on
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the radius of the cylinder without loosing generality (since we are in the conformal case),
we get

Tcyl(w) = z2T (z)− c

24
=
∑︂
n∈Z

(︂
Ln −

c

24
δn,0

)︂
e−nw ,

from which, in particular
(Lcyl)0 = L0 −

c

24
.

Now remembering the definition we gave for the Hamiltonian and the momentum operators
in (1.14), we obtain

Hcyl = (Lcyl)0 + (Lcyl)0 = L0 + L0 −
c+ c

24
,

Pcyl = i
(︁
(Lcyl)0 − (Lcyl)0

)︁
= i(L0 − L0)− i

c+ c

24
.

(1.19)



Chapter 2

N = (0, 1) supersymmetric models

In this chapter we are going to introduce the example we want to focus on, from a
purely physical perspective. We will start in section 2.1, introducing the main features
of supersymmetric field theories in (1 + 1)-dimensions, with a particular attention in
N = (0, 1) supersymmetric models. Then, in 2.2, we will introduce the sigma model
with target S3 and Wess-Zumino coupling k. In order to do this, we will present the
condition under which the model is well-defined, and, following [GJW19], we will describe
its behavior in the IR regime. Finally, in 2.3, we will introduce the first topological
invariant we encounter, that is the Witten index. In doing this, we will explain how to
construct the partition function of the supersymmetric field theory, and how to vary this
construction in order to properly define the Witten index. We will conclude the chapter
with a crucial result on the Witten index, known as Atiyah-Patodi index theorem.

2.1 Supersymmetric field theories in (1 + 1) dimensions

In general, supersymmetric theories can be seen as, roughly speaking, theories with an
additional fermionic symmetry which maps bosons in fermions and vice versa. In order
to study these theories, we need to introduce a new formalism, in which supersymmetric
transformations are seen as translations in a specific direction on a properly defined space,
called superspace.

2.1.1 N = (0, 1) supersymmetric field theories

Let us start considering a field theory on Ξ := R2 with space and time coordinates x0, x1

and metric given by

ηµν =

(︃
1 0
0 −1

)︃
.

Let us then parametrize the Minkowski space-time through the light-cone bosonic coordi-
nates u and v introduced in (1.9), which, under Lorentz boosts of parameter a, transform
as

u −→ eau , v −→ e−av . (2.1)
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Then let us introduce a fermionic (Grassmanian) coordinate θ such that

θ2 = 0 ,

and with the properties ∫︂
dθ θ = 1 ,

∫︂
dθ f(u, v) = 0 .

This coordinate under the transformation (2.1), behaves like

θ −→ e
1
2
aθ ,

thus it is a chiral coordinate, i.e. right-moving. These three coordinates (u, v, θ)
parametrize the so-called superspace ˆ︁Ξ with N = (0, 1) supersymmetry, and the
N = (0, 1) supersymmetry is generated by the operator

Q =
∂

∂θ
+ iθ

∂

∂u
,

called supercharge, which satisfies

Q2 = i
∂

∂u
.

Finally, the superspace derivative is defined as

D :=
∂

∂θ
− iθ ∂

∂u
,

and it commutes with the supercharge Q and the ordinary derivatives ∂u and ∂v.
In this framework we are interested in the study of superfields, which are defined as

functions on the superspace. A generic superfield F(u, v, θ) can be Taylor expanded as1

F(u, v, θ) = f0(u, v) + θf1(u, v) .

Given a set of superfields, we want to introduce a supersymmetric action in order to
describe their dynamics. With this new formalism, there is a natural way to do this. Indeed,
we have that the integral in superspace of any arbitrary superfield is a supersymmetric
invariant quantity. In order to see this property, let us consider a generic superfield
Y (u, v, θ) (which of course can be a generic combination of various superfields), and
consider the integral ∫︂

dudv dθ Y (u, v, θ) . (2.2)

The supersymmetry variation take the form

δϵ = ϵQ ,

1Of course this expansion is exact since θ2 = 0.
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hence, varying the integral we get

δϵ

∫︂
dudv dθ Y (u, v, θ) =

∫︂
dudv dθ δϵY (u, v, θ) =

=

∫︂
dudv dθ ϵQY (u, v, θ) =

=

∫︂
dudv dθ ϵ

(︁
∂θ + iθ∂u

)︁(︁
y0(u, v) + θy1(u, v)

)︁
=

=

∫︂
dudv dθ ϵ

(︁
y1(u, v) + iθ∂uy0(u, v)

)︁
=

=

∫︂
dudv iϵ∂u

(︁
y0(u, v)

)︁
We have found that the variation of the integrand like (2.2) is a total derivative, which
vanishes after the integration over dudv, and hence it is supersymmetric invariant.

Now we want to restrict our attention to some particular classes of fields, and study
their actions.

The first type of field is the so-called scalar superfield Φ(u, v, θ). It can be expanded
as

Φ(u, v, θ) = φ(u, v) + iθψ(u, v) ,

where φ is a scalar field while ψ is a (anti-chiral) right-moving fermion. At the classical
level, the supersymmetric free action for this superfield is given by

SΦ =
i

2π

∫︂
du dv dθ ∂vΦDΦ .

Expanding we get

SΦ =
i

2π

∫︂
dudv dθ ∂v

(︁
φ+ iθψ

)︁
(∂θ − iθ∂u)

(︁
φ+ iθψ

)︁
=

=
i

2π

∫︂
dudv dθ

(︁
∂vφ+ iθ∂vψ

)︁(︁
iψ − iθ∂uφ

)︁
=

=
i

2π

∫︂
dudv dθ

(︁
i(∂vφ)ψ − iθ∂vφ∂uφ+ θψ∂vψ

)︁
=

=
1

π

∫︂
dudv

(︂1
2
∂vφ∂uφ+

i

2
ψ∂vψ

)︂
. (2.3)

The second superfield we want to consider is the Fermi superfield Λ(u, v, θ), i.e. an
anti-commuting superfield. In particular it can be expanded as

Λ(u, v, θ) = ξ(u, v) + θF (u, v) ,

where ξ is a fermionic (chiral) left-moving field on Ξ, while F is an auxiliary field. The
free action for this field is given by

SΛ =
1

2

∫︂
dudv dθΛDΛ .
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Expanding it we get

SΛ =
1

2π

∫︂
dudv dθ

(︁
ξ + θF

)︁
(∂θ − iθ∂u)

(︁
ξ + θF

)︁
=

=
1

2π

∫︂
dudv dθ (ξ + θF )(F − iθ∂uξ) =

=
1

2π

∫︂
dudv dθ (ξF + iθξ∂uξ + θF 2) =

=
1

π

∫︂
dudv

(︂ i
2
ξ∂uξ +

1

2
F 2
)︂
, (2.4)

where it becomes clear why F is an auxiliary field.
Up to now we have introduced only kinetic terms for the fields. However we can also

introduce interaction terms. For later purpose, let us consider the interaction between
n scalar superfields ΦI and a Fermi superfield Λ. Let W be some real-valued function
depending on scalar superfields, called superpotential. The coupling term we can add
to the action reads

SW =
1

π

∫︂
dudv dθΛW (ΦI) .

Expanding it we get

SW =
1

π

∫︂
dudv dθ

(︁
ξ + θF

)︁
W (φI + iθψI) =

=
1

π

∫︂
dudv dθ

(︁
ξ + θF

)︁(︂
W (φI) + iθ

∑︂
K

ψK
∂W (φI)

∂φK

)︂
=

=
1

π

∫︂
dudv dθ

(︂
ξW (φI) + iθξ

∑︂
K

ψK
∂W (φI)

∂φK
+ θFW (φI)

)︂
=

=
1

π

∫︂
dudv

(︂
FW (φI) + iξ

∑︂
K

ψK
∂W (φI)

∂φK

)︂
. (2.5)

In the end we have obtained

SΛ + SW =
1

π

∫︂
dudv

(︂ i
2
ξ∂uξ +

1

2
F 2 + FW (φI) + iξ

∑︂
K

ψK
∂W (φI)

∂φI

)︂
=:

1

π

∫︂
dudvLΛ+W ,

from which we can find the equation of motion of the field F , i.e.

∂µ
∂LΛ+W
∂(∂µF )

− ∂LΛ+W
∂F

= 0 =⇒ F = −W (φI) .

Hence, integrating out the auxiliary field F , namely substituting its equation of motion
in the action, we obtain

S′ =
1

π

∫︂
dudv

(︂ i
2
ξ∂uξ −

1

2
W 2(φI)− iξ

∑︂
K

ψK
∂W (φI)

∂φK

)︂
, (2.6)
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from which the scalar potential is

V (φI) =
1

2
W 2(φI) . (2.7)

In particular, from (2.6), we see that, if the superpotential W is linear in the fields, or the
scalar fields have non vanishing vacuum expectation values (in which case the derivative
of W has to be evaluated on the vacuum expectation values), at every point of the field
space in which dW ̸= 0 (namely its derivatives with respect to φI do not vanish), a linear
combination of the ψI and ξ combine themselves to get a mass.

2.2 Sigma model

Now we want to focus on a particular N = (0, 1) supersymmetric model in (1 + 1)-
dimensions, known as sigma model. This is defined as the system corresponding to
maps from a (1+1)-dimensional space Ξ to a target space which is a Riemannian manifold
M of dimension n. In this theory we have n scalar superfields ΦI(u, v, θ) (I = 1, . . . , n)
which now describe a map

Φ : ˆ︁Ξ M .

In particular, given a set of local coordinates xI (I = 1, . . . , n) on M , we have that

Φ∗xI = xI ◦ Φ = ΦI .

These superfields can be expanded as

ΦI(u, v, θ) = φI(u, v) + iθψI(u, v) , (2.8)

where the φI ’s are bosonic fields describing the map

φ : Ξ M

in the same way as before. Instead, the ψI ’s are (chiral) right-moving fermion on Ξ valued
on the pull-back φ∗(TM), i.e. are sections

ψI ∈ Γ(Ξ, φ∗(TM)) .

At the classical level, the supersymmetric action is analogous as before, and reads

SΦ =
i

2π

∫︂
dudv dθ gIJ∇vΦIDΦJ

where gIJ is the metric tensor on M and we have introduced the covariant derivative on
the target manifold, which acts as

∇vφI = ∂vφ
I ,

∇vψI = ∂vψ
I + iΓIJK(∂vφ

J)ψK , (2.9)
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where ΓIJK are the Christoffel symbols of the Levi-Civita connection on the target manifold,
given by

ΓIJK =
1

2
gIL
(︁
∂KgLJ + ∂JgLK − ∂LgJK

)︁
.

Expanding we get

SΦ =
i

2π

∫︂
dudv dθ gIJ∇v

(︁
φI + iθψI

)︁
(∂θ − iθ∂u)

(︁
φJ + iθψJ

)︁
=

=
i

2π

∫︂
dudv dθ gIJ

(︁
∂vφ

I + iθ∇vψI
)︁(︁
iψJ − iθ∂uφJ

)︁
=

=
i

2π

∫︂
dudv dθ gIJ

(︁
i(∂vφ

I)ψJ − iθ∂vφI∂uφJ + θψJ∇vψI
)︁
=

=
1

π

∫︂
dudv

(︂1
2
gIJ∂vφ

I∂uφ
J +

i

2
gIJψ

J∂vψ
I − 1

2
ΓIJKψ

IψJ∂vφ
K
)︂
. (2.10)

2.2.1 B-field

The action given above actually is not the most general we can have for a sigma model. Let
us consider the case in which the space-time is R2 with Euclidean signature and the target
manifold for the model is a Lie group G, with metric given by the Cartan-Killing form.
Then let us compactify the space-time adding a point at the infinity, hence considering
the Riemann sphere

S2 ≃ R2 ∪ {∞} .
The fields of this sigma model are maps

g : S2 G ,

whose action, which is equivalent to (2.10), reads

Sg =
1

4a2

∫︂
S2

d2x Tr
[︁
∂µg−1∂µg

]︁
,

with a2 a positive, dimensionless coupling constant. In the case in which the second
homotopy group of G is trivial, π2(G) = {0}, the image of the 2-sphere through g, g(S2),
can be seen as the boundary of a non-unique open ball B3 ⊂ G, that is

∂B3 = g(S2) .

Then we can add to the action the so called Wess-Zumino (WZ) term (which is a total
derivative up to boundary contributions)

ΓB3 = − i

24π

∫︂
B3

d3x ϵijk Tr
[︁
g−1(∂ig)g−1(∂jg)g−1(∂kg)

]︁
,

which, in order to be well defined, should depend only on the field g, and not on the
chosen ball B3. So given another ball B′

3 such that its boundary coincides with the image
through g of the 2-sphere, ∂B′

3 = g(S2), the difference

ΓB′
3
− ΓB3 = − i

24π

∫︂
S3

d3x ϵijk Tr
[︁
g−1(∂ig)g−1(∂jg)g−1(∂kg)

]︁
,
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should be zero. In the previous integral, the manifold on which we have to integrate
is B′

3 − B3, where, with the difference, we mean that we take the union between B′
3

and B3, that is B3 considered with the opposite orientation. It is easy to see that
this is equivalent to integrate over the whole compact 3-dimensional space G, which is
topologically equivalent to the 3-sphere S3. The problem is that this integral does not
vanish. Actually the term that should be independent from the choice of the B3 is the
factor in the action due to this contribution, that is

eikΓB3 ,

for a (in principle) generic constant k. It can be shown2 that the difference is actually
an integer multiple of 2π, hence, in order for the term to be well-defined, its coupling,
known as Wess-Zumino coupling, has to be an integer, k ∈ Z. In this way we have
obtained a more general action given by

Sσ+WZ =
1

4a2

∫︂
S2

d2x Tr
[︁
∂µg−1∂µg

]︁
+ kΓB3 .

If we now flow in the IR limit along the RG trajectories, we have that the coupling k,
being an integer, does not get renormalized, but the constant a2 does. In particular,
flowing the RG trajectories, we obtain a fixed point when

a2 =
4π

k
.

The model obtained in this way is called Wess-Zumino-Witten mode (WZW model),
and is a conformal interacting model (see [Wit84]).

Going on, the WZ term can be rewritten as an integral of a 3-form H on the target
manifold H ∈ Ω3(G), that is

ΓB3 =

∫︂
B3

H .

At the classical level this form results to be the field-strength of a 2-form B ∈ Ω2(G)
known as B-field

H = dB ,

from which follows the identity
dH = 0 .

In this situation, thanks to Stokes’ theorem, we can write the WZ term as

ΓB3 =

∫︂
B3

H =

∫︂
g(S2)

B =

∫︂
S2

g∗B .

Given a system of coordinates xI , I = 1, . . . , n on the target manifold, denoting now the
field of the theory as the superfield ΦI defined as (2.8) (in order to be consistent with the

2For details look at [DMS97].
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previous results), we get3

Sσ+WZ =
k

16π

∫︂
du dv

(︂(︁
gIJ(φ) +BIJ(φ)

)︁
∂vφ

I∂uφ
J+

+ igIJψ
I∂vψ

J −
(︁
ΓIJK +

1

2
HIJK

)︁
ψIψK∂φJ

)︂
,

where of course

B =
1

2
BIJ dx

I ∧ dxJ ,

H =
1

3!
HIJK dxI ∧ dxJ ∧ dxK with HIJK = ∂IBJK + ∂JBKI + ∂KBIJ .

When we try to quantize the theory, we have to pay attention to some aspects. First of
all we have yet explained that the form H has to satisfy a Dirac quantization condition.
We have imposed yet asking the difference ΓB′

3
− ΓB3 =

∫︁
S3
H to be an integer multiple

of 2π. This can be restated saying that, in order to define the model, it is necessary to
choose a class x ∈ H3(M,Z) which can be represented by the 3-form H/2π. For instance,
in the case in which M = S3, we have that

H3(S3,Z) ≃ Z ,

so, choosing the class is the same as choosing an integer k, with

k =

∫︂
S3

H

2π
∈ Z . (2.11)

Passing to the quantum level, some anomalies can arise. First of all it is necessary to
require the target manifold M to be a spin manifold, i.e. an orientable manifold whose
second Stiefel-Whitney class vanishes.

In order to introduce the second Stiefel-Whitney class4, let us consider the tangent
bundle TM to M , where the transition functions are elements of SO(n), tij ∈ SO(n).
Then let us consider the lift of these functions ˜︁tij ∈ Spin(n), such that

p(˜︁tij) = tij , ˜︁t−1
ij = ˜︁tji ,

where
p : Spin(n) SO(n)

is the 2-to-1 homomorphism between the double covering of the group SO(n), that is
Spin(n), and SO(n) itself. Being transition functions, the tij ’s have to satisfy the following
properties

tii = id in Ui
tij = t−1

ji in Ui ∩ Uj
tij ◦ tjk = tik in Ui ∩ Uj ∩ Uk

3Look at [DMS97] and [DPW20] for details.
4For details look at [Nak90].
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where of course the Ui’s are open subsets of M and

tij : Ui ∩ Uj SO(n) .

From here follows
tijtjktki = id ,

hence
p(˜︁tij˜︁tjk˜︁tki) = tijtjktki = id ,

which implies ˜︁tij˜︁tjk˜︁tki ∈ ker p = {± id} .

If we now define f2 such that

˜︁tij˜︁tjk˜︁tki = f2(i, j, k) id ,

we have that f2 defines a cohomology class [f2] ∈ H2(M,Z2). Then the second Stiefel-
Whitney class is

w2(M) := [f2] ∈ H2(M,Z2) .

Nevertheless, what we have required is not enough, since we can have also a sigma-
model anomaly. This anomaly is due to the fact that, since there are chiral fermions, the
fermionic measure on the path-integral transforms in a non-trivial way under the SO(n)
symmetry group. Since we have added the WZ-term, the B-field has to transform in
such a way that it compensates the transformation of the measure. However, introducing
these transformations makes the B-field not well-defined as a global 2-form. The way
to solve this inconsistency was proposed by Witten in [Wit00]. The idea is that the
B-field is defined as a way to associate a phase in the path-integral to each 2-dimensional
submanifold C ⊂M . Now given two cobordant 2-dimensional submanifolds C,C ′ ⊂M ,
namely such that there exists a 3-dimensional manifold U with

∂U = C ′ − C ,

then
ei
(︁ ∫︁

C′ B−
∫︁
C B
)︁
= ei

∫︁
U H ,

where now H is a well-defined 3-form also at the quantum level. Once this is done, we
have to impose a condition on H in order to cancel anomalies, that is

dH = − 1

8π
Tr(R ∧R) ,

which is different from zero. In order to formulate this condition in a different way, let us
consider a general manifold M , to which we can associate an integral characteristic class
called first Pontryagin class

p1 := −
1

8π2
Tr(R ∧R) ∈ H4(M,Z) ,



30 2. N = (0, 1) supersymmetric models

with R the curvature 2-form on M . If M is a spin manifold (as required for our situation),
then there exists a characteristic class λ such that

2λ = p1 .

In terms of differential forms, of course, it reads

λ = − 1

16π2
Tr(R ∧R) . (2.12)

In the case where a sigma-model anomaly arises, we can say that H, instead of being
a closed 3-form, is a trivialization of the class λ, which in terms of differential forms
means that

dH = 2πλ = − 1

8π
Tr(R ∧R) ̸= 0 . (2.13)

A spin manifold with a choice of a trivialization for the characteristic class λ is called
string manifold, which is the characterization of the manifold we need in order to have
a well-defined model.

Looking at the case in which M = S3 = SU(2), we have seen that the quantization
condition on H consists in choosing an integer k given by the relation (2.11). This partic-
ular choice is the same as introducing a Wess-Zumino interaction in the supersymmetric
sigma model with target S3. Summarizing, we have that studying the supersymmetric
sigma model with target SU(2) and Wess-Zumino coupling k, is the same as studying a
supersymmetric sigma model with target the 3-sphere S3 seen as a string manifold, which
we will indicate as S3

k .

2.2.2 Sigma model on S3

We want now to study a particular case of a (1+1)-dimensional N = (0, 1) supersymmetric
sigma model, that is the one with target space given by M = S3. In order to do that, let
us introduce four scalar superfields ΦI which transform under the vector representation
of O(4). Also, they parametrize M = R4 with a flat metric gIJ = δIJ . Moreover we
introduce a Fermi superfield Λ, which is coupled to the XI thanks to the superpotential

W (Φ) =
∑︂
I

(ΦI)2 −R2 (2.14)

where R ∈ R will be the radius of the sphere S3. From the general relation (2.6), using
the explicit form of the superpotential (2.14), we obtain

S′ =

∫︂
dudv

(︂ i
2
ξ∂uξ −

1

2

(︁∑︂
I

(φI)2 −R2
)︁2 − 2iξ

∑︂
I

φIψI
)︂
.

This superpotential is what ensures us that the fields ΦI , at low energies, are confined to
a sphere S3 with radius R.
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We can generalize this to the case of a sigma model with target SN requiring that the
ΦI ’s are N + 1-component fields with O(N + 1) symmetry. In cases like this, for large N ,
the fields Φ’s get mass, and, since these masses are generated from the coupling∫︂

dudv dθ Λ
(︂∑︂

I

(ΦI)2 −R2
)︂
,

the mechanism for the ΦI ’s to get mass is that the auxiliary field F in the expansion
of Λ gets an expectation value, so the supersymmetry is spontaneously broken. Then
in [GJW19] is conjectured that this behavior can be found also for N = 3, and we are
going to present another argument for that in the following part.

Anomalies in the sigma model with generic k

Now we study the anomalies of this model, but, since we have that the 3-sphere is
isomorphic to the Lie group SU(2), S3 ≃ SU(2), we want to focus on the model with a
generic Wess-Zumino coupling k. This is done since the anomalies are invariant under the
RG-flow in particular, but also under more general deformations. For this reason they
constrain the possible behavior of the theory after a deformation.

Let us start noticing that the sigma-model with target S3 and with coupling k = 0
introduced previously, has an obvious O(4) symmetry. This symmetry is broken to SO(4)
if the coupling k is different from zero. Also, we know that a double covering of SO(4) is
the product of two copies of SU(2), which we call

SU(2)l × SU(2)r ,

so we will express the next statements in terms of these two SU(2)’s.
The model has an anomaly due to the fact that there are only fermions of one chirality.

Anomalies for a simple non-abelian Lie group in two dimensions are quantized as integer
multiples of a basic invariant. In particular fermions in the vector representation of
SU(2)l × SU(2)r have the smallest possible non vanishing anomaly, which we indicate as
(1, 1).

Now we can add a Wess-Zumino interaction with coupling k. In order to study how
this term affects anomalies, we need to focus first on what happen for a purely bosonic
sigma model, and then we will generalize to the supersymmetric case.

It is well-known in literature (look at [GJW19] for instance) that Wess-Zumino
interaction with coupling k contributes (−k, k) to the SU(2)l × SU(2)r anomalies of a
purely-bosonic sigma model with target S3, since the current algebra of the whole theory
satisfies a Kač-Moody algebra at level k. Also, for |k| sufficiently large, there exists a
weakly coupled fixed point, that is the WZW model at level k, which has left-moving and
right-moving current algebra symmetries5

SU(2)L and SU(2)R .

5In this case we have used capital letters as subscripts only to distinguish the symmetry groups in the
UV from the ones in the IR.
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The level means that SU(2)R has an anomaly |k|, while SU(2)L has an anomaly −|k|.
This picture is obtained by a perturbative expansion valid for sufficiently large |k|, however,
as suggested in [GJW19], it is believed that it is actually valid for all k.

Said that, we can focus on the N = (0, 1) supersymmetric case. In this situation it is
known that the model flows to a weakly coupled fixed point analogous to the previous one,
called (0, 1) supersymmetric WZW model. In this model there is a left-moving SU(2)L
current algebra at some level κ and a right-moving N = 1 supersymmetric SU(2)R current
algebra at the same level κ. From unitarity it is required that κ ≥ 0. As we said, the
right-moving current algebra of level κ is supersymmetric. This means that it has actually
an SU(2)R anomaly given by κ+ 2. Another way to restate this is that the N = (0, 1)
supersymmetric WZW model at level κ is equivalent to the ordinary WZW model at
level κ plus the theory of three free right-moving fermions which transform in the adjoint
representation of SU(2)R, and which contribute 2 to the SU(2)R anomaly. Indeed, as
found independently in [Di +85] and [AA85] in the N = (1, 1) supersymmetric case (the
case we are interested in is obtained simply removing the left-moving fermions from the
action), a WZW supersymmetric model can be seen as the bosonic WZW, plus as many
free fermions as the number of generators of the Lie algebra associated with the target
group, which, in the case of SU(2), is exactly three. This translates in a contribution of 2
to the anomaly, since the fermions satisfy the Kač-Moody algebra at level h∨, the dual
Coxeter number of the Lie group, which, in the case of SU(2), is 2.

What we have found is that in the UV regime we have a model with an anomaly given
by the one of the sigma model, namely (1, 1), plus the one due to the WZ coupling k, i.e.
(−k, k), thus

SU(2)l × SU(2)r −→ (−k + 1, k + 1) .

In the IR instead we have a bosonic WZW model with anomaly (−κ, κ) plus three free
right-moving fermion with anomaly (0, 2), thus

SU(2)L × SU(2)R −→ (−κ, κ+ 2) .

Since anomalies are invariant under RG-flow, the two have to match, which means that

κ = |k| − 1 .

In this way we have found, for a generic k, a candidate superconformal fixed point which
describes in the infrared the N = (0, 1) supersymmetric sigma model with target S3.
Here it is clear that this argument fails for k = 0, for which we would have κ < 0. This
can be seen as an evidence of the fact that, as we have shown, this model spontaneously
breaks supersymmetry.

Summarizing, we have found the following behavior

UV : sigma model with target S3 + WZ coupling k

IR : WZW at bosonic level |k| − 1 + three free right-moving fermion

RG-flow
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2.2.3 Flowing up and down RG trajectories

We have explained why it has been supposed that for k = 0 the model spontaneously
breaks supersymmetry. Now the question is what happens for different values of the
coupling k. However we want to consider more general deformations then the ones due to
the flowing along the RG trajectories. The idea is the following.

Let F be a generic N = (0, 1) supersymmetric theory. Let us add to it some arbitrary
massive degrees of freedom in a supersymmetric fashion, which, in other words, means
that we replace F with any other theory F ′ which is equivalent to F in the IR. Then
we can arbitrarily perturb F ′ in a supersymmetric fashion, in such a way that we get
some other theory F ′′. Then the question becomes whether this theory F ′′ spontaneously
breaks supersymmetry. Of course, the procedure can be iterated several times and we
will refer to this deformation from F to F ′′ as flowing up and down the RG trajectories.

Let us focus on the case of the sigma model with target S3
k . Let Z be any four-

dimensional compact spin manifold without boundary, where, as we have explained, the
requirement for the manifold to have a spin structure, is needed in order to avoid an
anomaly in the N = (0, 1) supersymmetric sigma model with target Z. However this is
not enough and the model is anomalous if∫︂

Z
λ ̸= 0 ,

because in this case (2.13) cannot hold for any H. In order to obtain a well-defined sigma
model, we can remove a point from the manifold Z, obtaining a new manifold which we
call Z ′. In this way the 4-form λ becomes topologically trivial, since on Z ′ there is no
compact four-dimensional cycle on which it could be integrated, hence∫︂

Z′
λ = 0 .

Now we can define a complete Riemannian metric on Z ′ so that the missing point is
at infinite distance. In this way it has the good properties to be the target space of a
well-defined N = (0, 1) supersymmetric sigma model. It is clear that Z ′ has a non-compact
end, which indeed is topologically equivalent to R× S3, in particular

∂Z ′ = S3 .

This allows us to define a metric on Z ′ which looks asymptotically like the product of
a round metric on S3 times a flat metric on R, which means that, in the asymptotic
portion of the field space, the model is described by a sigma model with target S3 and,
decoupled from it, a free chiral superfield which parametrizes the non-compact component
R. Moreover, the sigma model can have also a Wess-Zumino coupling. This happens
since from the anomaly equation (2.13) follows, using Stoke’s theorem,∫︂

Z′

dH

2π
=

∫︂
S3

H

2π
= −

∫︂
Z′

Tr(R ∧R)
16π2

.
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However the integral on the right hand side can be easily computed in the following way.
We can “close” the non-compact metric on Z ′ adding an hemisphere at the end, obtaining
again the manifold Z. Giving the hemisphere the standard round metric, we have that

Tr(R ∧R)
⃓⃓
hemisphere = 0 ,

hence, remembering the relation (2.12),

−
∫︂
Z′

Tr(R ∧R)
16π2

= −
∫︂
Z

Tr(R ∧R)
16π2

=

∫︂
Z
λ .

In other words we have find that the Wess-Zumino coupling on S3 is given by the integral
of the characteristic class λ over the spin manifold Z∫︂

S3

H

2π
=

∫︂
Z
λ . (2.15)

Since it is known that the integral of p1 = 2λ over a 4-dimensional manifold is always a
multiple of 48, a very interesting consequence of (2.15) is that, from here, it can be shown
that

∫︁
Z λ, and hence the Wess-Zumino coupling, is an integer multiple of 24 when S3 is

the boundary of a 4-dimensional manifold with string structure. Now we want to add
massive degrees of freedom in a supersymmetric fashion. This is done by adding a Fermi
superfield Λ to the sigma model with target Z ′, thanks to the superpotential coupling

SW =

∫︂
dudv dθΛW ,

for a proper choice of the function W on Z ′. In particular we choose the superpotential
W as follows. Let us parametrize the non-compact direction by a real variable X, and let
us suppose that Z ′ is, or can be well approximated by, R× S3 for X > 0, and then this
region is glued to Z ′ in some fashion, in such a way that for X ≪ 0 the part corresponding
to R× S3 is missing. Then, for a given constant x0 ∈ R+, we can define W on Z ′ in such
a way that

W =

{︄
m(X − x0) X > 0

negative definite otherwise
. (2.16)

Of course, since the complement in Z ′ of the region X > 0 is compact, the function W is
bounded below. Moreover we have already seen in (2.7) that a term like this introduces a
potential energy given by

V =
1

2
W 2 ,

which vanishes only at {x0} × S3. Hence, at low energy, which is equivalent to say that
m→∞, the variable X freezes at the vacuum expectation values x0, and so we recover
the sigma model with target S3 we have started with.

Finally, we want to perturb the model in such a way that supersymmetry is sponta-
neously broken. This can be done with the following substitution

W −→ ˜︂W :=W + c c ∈ R+ .
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Since, as we have seen, the function W is bounded below, for a constant c sufficiently
large, ˜︂W is positive definite. This means that the potential energy, which of course is
given by

V =
1

2
˜︂W 2 ,

is now everywhere strictly positive, and so supersymmetry is spontaneously broken.
Summarizing, we have found that the N = (0, 1) supersymmetric sigma model with

target S3 and Wess-Zumino coupling k can be connected, in the sense explained above,
to a model that spontaneously breaks supersymmetry if k is divisible by 24. In particular
the deformation of flowing up and down the RG trajectories was done in the following
way:

• we flowed up by replacing the target manifold S3 with the manifold Z ′ equipped
with the superpotential W in equation (2.16);

• we made an ordinary perturbation in a supersymmetric fashion by replacing W
with ˜︂W ;

• finally we flowed down and found that the model spontaneously breaks supersym-
metry.

Generalizing to string boundary

Before going on let us notice that the procedure introduced for the sigma model with
target S3 can be easily generalized. Let M be a generic m-dimensional compact string
manifold, namely, a compact orientable manifold with a trivial second Stiefel-Whitney
class (i.e. a spin manifold) and with a choice of a trivialization of the class λ := p1/2
with p1 the first Pontryagin class. Then we can say that M is the string boundary of a
manifold Z, if Z is an (m+ 1)-dimensional string manifold, such that M = ∂Z, and the
string structure of Z restricts on its boundary to the string structure on M .

Now let us define the manifold Z ′ as

Z ′ := Z − ∂Z ,

and, on it, we can introduce a complete Riemannian metric that near the infinity looks
like R ×M . Then we can follows exactly the same steps as before, replacing, where
needed, S3 with M .

What we have done here shows us that, if M is a string boundary, then the N = (0, 1)
supersymmetric sigma model with target M can be deformed, by flowing up and down
the RG trajectories, to one that spontaneously breaks supersymmetry.

2.3 Partition function and the Witten index

In this section, we are going to introduce the first invariant we encounter for supersym-
metric field theories, that is the Witten index. As we will see later on, this invariant has
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a non trivial kernel and, for this reason, we will need to refine it. However, focusing on
its properties will be crucial in order to introduce the invariant we are looking for.

In what follows, we will start considering the construction of the partition function
of a supersymmetric field theory and some of its properties. This step will be crucial in
understanding how to properly define the Witten index. We will conclude the section
presenting an important theorem, the Atiyah-Singer index theorem, which gives us a
geometric interpretation of the Witten index and also allows us to better understand its
behavior.

2.3.1 Partition function

An important quantity we are going to study now is the partition function. In order
to find it, let us start from an Euclidean space-time R2, and let us compactify the spatial
direction on a circle of radius R. In this way we have that our theory is defined on a
cylinder R×S1

R, and so it can be regarded as a theory on a 1-dimensional space-time, that
is a quantum mechanical model. In this framework it is well known that the partition
function is defined as

Z(β,R) = Tr
[︁
e−βH

]︁
,

where the dependence on the radius R is implicit on H, which is obtained as an integral
of the Hamiltonian density on the circle of radius R. What we have done is equivalent to
evaluate the path integral in the case in which the worldsheet is the Euclidean cylinder of
length β and the two boundaries are identified (this identification is due to the presence of
the trace). This is clearly equivalent to saying that the worldsheet is a rectangular torus
with sides 2πR and β. However, this is not the most general situation we can describe.
Indeed, a possibility is to consider as the worldsheet a torus which is not rectangular, and
so in which one end is shifted before the identification by a quantity that we call ν. This
is achieved by introducing in the trace the operator

e−iνP ,

where the generator of the translation P is the momentum operator, which, like the
Hamiltonian, depends implicitly on the radius of the circle on which we have compactified.
In this way we get

Z(β, ν,R) = Tr
[︁
e−βHe−iνP

]︁
.

Now we want to factorize the dependence on R of the operators H and P . This is done
thanks to the rescaling

H ↦−→ H

R
, P ↦−→ P

R
,

which means that
Z(β, ν,R) = Tr

[︁
e−

β
R
He

−νi
R
P
]︁
.

Now, if we define the operators

HR :=
1

2
(H + P ) , HL :=

1

2
(H − P ) , (2.17)
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and thanks to the fact that [H,P ] = 0, we get

Z(β, ν,R) = Tr
[︁
e−

β
R
(HR+HL)e

−νi
R
ν(HR−HL)

]︁
=

= Tr
[︁
ei
(︁

ν+iβ
R

)︁
HLe−i

(︁
ν−iβ
R

)︁
HR
]︁
.

Let us introduce the following complex quantities

τ :=
ν + iβ

2πR
, q := e2πiτ , (2.18)

in such a way that the partition function becomes6

Z(τ, τ , R) = Tr
[︁
qHLqHR

]︁
. (2.19)

2.3.2 Witten index and elliptic genus

Now we want to introduce a crucial invariant for supersymmetric field theories known
as Witten index. All the following construction will be done on compact theories, whose
name is given by analogy with sigma models, where a model is compact in this sense if
the target space of the model is a compact manifold. However, in a general framework, it
is actually not so simple to formulate this definition, but we will interpret it as a spectral
condition. More precisely, in what follows, we say that a (d+ 1)-dimensional quantum
field theory is compact if its Wick-rotated partition function converge absolutely on all
closed space-times. In the Hamiltonian formalism, this occurs when the spectrum of the
Hamiltonian H is:

• bounded from below,

• discrete,

• does not grow too slowly.

In a compact supersymmetric theory, we can introduce a topological invariant known
as Witten index and defined as

TrH(−1)F , (2.20)

where H is the Hilbert space of the theory and (−1)F is the fermion number operator,
defined imposing that, acting on fermionic states, they are multiplied by (−1), while the
bosonic states are unchanged. Of course the trace in (2.20) is ill-defined, and has to be
regularized. In particular it can be done defining the temperature dependent Witten index

W (β) := TrH
[︁
(−1)F e−βH

]︁
, (2.21)

with β the inverse temperature.
6We have written explicitly the dependence on the radius even if we have included it in the definition

of τ . This was done since, in the conformal case, the dependence on the radius will disappear, but in
terms of τ and τ the expression will be unchanged.
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Now, we want to show that, in the case of a compact theory, the Witten index is
independent on the inverse temperature β. In doing this, we will also give it a physical
meaning. Let us remember some characteristics of a supersymmetric quantum field theory.
In general, the Hilbert space H of any quantum field theory can be decomposed as

H = H+ ⊕H− , (2.22)

where H+ and H− are the spaces of bosonic and fermionic states respectively, which can
be identified as the eigenspaces of the operator (−1)F relative to the eigenvalues ±1.
Furthermore, a supersymmetric theory is, by definition, a theory in which there are N
hermitian operators Qi, i = 1, . . . , N , which map H+ into H− and vice-versa. All these
operators have to satisfy the following relations

{(−1)F , Qi} = 0 , [H,Qi] = 0 ∀i = 1, . . . , N .

In addition to this, in the case of a supersymmetric quantum mechanics, we have also to
require that

Q2
i = H , {Qi, Qj} = 0 , i ̸= j . (2.23)

If we want to generalize to the case of a relativistic quantum field theory, we have to
notice that the relations (2.23) are not Lorentz invariant. Hence, let us focus on the case
(in which we are mainly interested for what follows) of a theory with one time and one
space dimensions, in such a way that there is only one momentum operator P . In the
case of two supersymmetry operators Q1 and Q2 we have that they satisfy

(Q1)
2 = H + P , (Q2)

2 = H − P , {Q1, Q2} = 0 , (2.24)

from which it follows
[Qi, H] = [Qi, P ] = 0 . (2.25)

We know that a crucial question in the study of supersymmetric quantum field theories
is whether or not they spontaneously break supersymmetry, which corresponds to ask
whether there exists a state |Ω⟩, called vacuum state, such that

Qi |Ω⟩ = 0 ∀i . (2.26)

It is clear form (2.25) that, if a vacuum state exists, then it is also a state of zero energy
and zero momentum. Once we have noticed this, we can properly interpret the meaning
of the Witten index. First of all, without loss of generality, we can restrict ourselves to
the case in which P = 0. In this case, again, the Hilbert space of the states annihilated by
the momentum, let us say H0, can be decomposed into bosonic and fermionic components
as

H0 = H+
0 ⊕H

−
0 .

Choosing one of the Qi’s and denoting it simply as Q, we have that Q2 = H and hence
we obtain that non-zero energy states are paired by the action of the supercharge. Indeed,
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let |φ⟩ be a normalized bosonic state of non-zero energy E. Let us define the (normalized)
fermionic state

|ψ⟩ := 1√
E
Q |φ⟩ .

Hence, we have that Q acts on these states as

Q |φ⟩ =
√
E |ψ⟩ , Q |ψ⟩ =

√
E |φ⟩ ,

which means that they are paired in a two-dimensional supermultiplet. Of course this
cannot be done for zero-energy states, which are annihilated also by the supercharge Q.
For this reason, when we compute the Witten index (2.20), we obtain that it depends
only on the sum, with sign, of the zero-energy states

Tr(−1)F = NE=0
B −NE=0

F . (2.27)

Moreover, interpreting the index in this way, it is quite clear that, varying the parameters
of the theory, the energy states can “move” in the spectrum, but always in Bose-Fermi
pairs, which means that the Witten index is independent from the parameters in the case
of a compact theory. For this reason we are allowed to consider directly the regularized
version of the index (2.21).

Thanks to the Witten index, from the relation (2.27), we can obtain important
information on the spontaneous breaking of supersymmetry in our theory. Indeed we
have the following possibilities:

• W (β) ̸= 0; this means that the difference between bosonic and fermionic supersym-
metric ground states is non-vanishing, hence one of them is different from zero. Of
course, this implies that supersymmetry is not spontaneously broken;

• W (β) = 0; in this situation we cannot say anything about the spontaneous breaking.
Indeed we cannot distinguish between the case in which NE=0

B = NE=0
F = 0, where

we have a breaking of the supersymmetry, and the case in which they are equal but
both different from zero, hence supersymmetry is not broken.

This definition can be generalized in the same way as we have done for the partition
function in (2.19), obtaining the expression

W (τ, τ , R) = Tr
[︁
(−1)F qHLqHR

]︁
. (2.28)

First of all let us notice the following fact, which is true also for the partition function
of course. We have explained that, in order to define the partition function, we need
to compactify the spatial direction on a circle, and so the quantities involved in these
definitions are naturally defined on a cylinder. Supposing now for simplicity that our
theory is conformal7, hence loosing the dependence on R, we notice that the definition of

7This constraint on the theory is actually not so strong. Indeed we are treating quantities which are
invariant under RG flow, so, if the theory is not initially conformal, we can always flow in the infrared
and find a conformal model.
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HR and HL are the same as the ones of (Lcyl)0 and (Lcyl)0 given in (1.19). So now we
can restate the definition of the Witten index in terms of the generators defined on the
complex plane, obtaining

W (τ, τ) = Tr
[︁
(−1)F qL0− c

24 qL0− c
24
]︁
, (2.29)

and the same for the partition function

Z(τ, τ) = Tr
[︁
qL0− c

24 qL0− c
24
]︁
.

Furthermore, we have that all these constructions can be reinterpreted in terms
of a path integral. Indeed, the Witten index, due to the presence of (−1)F , can be
represented as an Euclidean path-integral with periodic-periodic (also called Ramond-
Ramond) boundary conditions, i.e. periodic conditions in both spatial and time direction
for fermionic fields

W (τ, τ , R) =

∫︂
PBC

DφDψDψe−S[φ,ψ] .

Indeed the path integral is done, as noticed yet in the case of the partition function, on
a torus obtained compactifying the space on a cylinder of radius R and length β, and
then identifying the boundaries. Since bosonic fields have periodic boundary conditions,
in order to preserve supersymmetry, we have to impose these type of conditions also to
fermions. As we have explained in section 1.2.1, periodic conditions for fermions means
that they are in the Ramond sector, and since we have compactified in both time and
space directions, we have to impose the conditions twice. In mathematical terms, the
function yet defined, is called elliptic genus ZRR, and is equivalent to the definition we
gave of the Witten index.

Defined in this way, we have that the elliptic genus depends, in a completely general
framework, on the so called modular parameter of the torus (τ, τ), which is identified
as the τ defined in (2.18), and on the “area” of it. However, we usually work in the IR
limit, in which the theory becomes conformal, and so, from now on, we will neglect the
dependence on the size. Now let us remember how a torus can be defined, in order to
explain the meaning of the modular parameter.

Let us consider the complex plane C and two non-parallel vectors w1, w2 ∈ C. With
these two vectors we can define a torus identifying all the points that differ by an integer
combination of them. Of course, thanks to conformal invariance, the only quantity on
which the theory depends is the modular parameter τ , defined as

τ :=
ω2

ω1
.

It is clear from this definition that different choices of the vectors ω1 and ω2 can describe
the same torus. In particular this is true if the new complex numbers ω′

1 and ω′
2 are

related from the old ones by the transformation(︃
ω′
1

ω′
2

)︃
=

(︃
a b
c d

)︃(︃
ω1

ω2

)︃
,
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with the conditions
a, b, c, d ∈ Z , ad− bc = 1 .

These relations generate the group SL(2,Z) of invertible 2×2 matrices with integer entries
and determinant equals to one. In terms of the modular parameter, this transformation
reads

τ ↦−→ aτ + b

cτ + d
with

(︃
a b
c d

)︃
∈ SL(2,Z) .

It is also clear that nothing changes if all the integers in the matrix change sign. So we
conclude the transformation group that acts on the modular parameter and leaves the
structure of the torus invariant is given by

PSL(2,Z) := SL(2,Z)
/︁
Z2 ,

which can be shown to be generated by the transformations

T : τ ↦−→ τ + 1 , S : τ ↦−→ −1

τ
,

called T- and S-transformation, respectively8.
It is clear that, since the elliptic genus depends only on the torus on which we integrate,

it is invariant under the transformations that do not change the structure of the torus. In
order to better formalize this behavior, let us introduce some useful concepts.

Definition 2.3.1. A weakly holomorphic modular form of weight k is an holo-
morphic function f : h C such that it transforms as

f
(︂aτ + b

cτ + d

)︂
= (cτ + d)kf(τ) for

(︃
a b
c d

)︃
∈ SL(2,Z) .

Recall that h is the complex upper half plane

h = { z ∈ C
⃓⃓
Im(z) > 0 } .

An holomorphic function f : h C is said to be an holomorphic modular form of
weight k if it is a weakly holomorphic modular form of weight k and it is “holomorphic
at i∞” (or, equivalently, “holomorphic at the cusp”).

First of all let us explain what “holomorphic at i∞” means. We have that, under the
T-transformation, a modular form behaves like

f(τ + 1) = f(τ) ,

hence it is invariant under the action of Z on C described by

C× Z C

(z, n) z + n
.

8For details look at [DMS97] and [BP09]
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Also, the function
C
/︁
Z C \ {0}

z q := e2πiz

is an isomorphism, which implies that every function f(z) invariant under the Z-action
given above9 can be expressed as a function ˜︁f of q, which ranges over C \ {0}. Hence we
say that f(τ) is holomorphic at i∞ if the function ˜︁f(q) is meromorphic at 0 (note that
τ → i∞ corresponds to q → 0). In other words, the so-called q-expansion of the modular
form, namely the Laurent series of ˜︁f(q) around 0

f(τ) =
∑︂
n∈Z

anq
n ,

is such that
an = 0 for n < 0 .

However for later purpose (we will see that this property will characterize the Witten
genus in the non-compact case) it is better to relax one of the assumption in this
definition. In particular we define a real-analytic modular form of weight (w,w) as
a real analytic function f : h C which transforms as

f
(︂aτ + b

cτ + d

)︂
= (cτ + d)w(cτ + d)wf(τ) for

(︃
a b
c d

)︃
∈ SL(2,Z) .

With these new definitions, we can say that the elliptic genus ZRR(τ) is a weakly
holomorphic modular function of weight 0 with no multiplier and an integral q-expansion,
that is, the coefficients of its q-expansions are all integer. Let us verify these two properties.

Holomorphicity

In a compact theory, the spectrum of the hamiltonian is discrete and we have that the
elliptic genus is an holomorphic function. Indeed, the only states that give a non-vanishing
contribution to the elliptic genus are the supersymmetric ground states, which means that,
on these states, the action of the supersymmetry is trivial. In N = (0, 1) supersymmetric
models, the supersymmetry operator is such that

Q2 = i∂u =
i

2
(∂0 − ∂1) =

1

2
(H + P ) ,

where, being in a Euclidean spacetime, we have used the definition of the Hamiltonian
and momentum operators given by

H = i∂0 , P = −i∂1 .

Hence, the states that contribute to the elliptic genus are the ones for which

H = −P .

9The invariance under the Z is needed in order to consider the quotient C/Z without loosing information.
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Now, remembering the definitions in (2.17) we find that

HR =
1

2
(H + P ) ≡ 0 ,

and the elliptic genus (2.28) reads10

ZRR(τ, τ) = Tr
[︁
(−1)F e2πiτHL

]︁
≡ ZRR(τ) .

Integrality

The integrality of the q-expansion of the elliptic genus can be explained in the following
way. We have found in (2.28) that the Witten index has the form (we neglect the
dependence on the radius of the torus)

ZRR(τ, τ) = TrH
[︁
(−1)F qHLqHR

]︁
.

Now, since we have compactified the spatial direction on a circle of radius R, the
momentum operator, given by (HR −HL), is quantized and it takes values in Z. This
allows us to decompose the Hilbert space of the full theory as the sum of the eigenspaces
of the momentum operator

H =
⨁︂
k∈Z
Hk .

In this way we have that the elliptic genus can be decomposed as

ZRR(τ, τ) = TrH
[︁
(−1)F qHL−HR

(︁
qq
)︁HR

]︁
=

=
∑︂
k

qk TrHk

[︁
(−1)F

(︁
qq
)︁HR

]︁
=

=
∑︂
k

qk TrHk

[︁
(−1)F e−βHR

]︁
.

We have computed the q-expansion of the elliptic genus, obtaining that, for each k,
the coefficient of the expansion is given by the index of a SQM with Hilbert space Hk,
Hamiltonian HR and supercharge Q such that Q2 = HR. As we have seen, since we are
considering the case of a compact theory, we have that the index TrHk

[︁
(−1)F e−βHR

]︁
is

simply given by the difference between bosonic and fermionic ground states, which is of
course an integer. Hence we conclude that the q-expansion of the elliptic genus ZRR(τ, τ)
is integral.

These properties allow us to see the elliptic genus as a map from the (not yet defined
properly, but whose meaning is clear) set of supersymmetric quantum field theories SQFT
and the set, which is actually a ring, of weakly holomorphic integral modular forms11

wMFZ, namely
ZRR( · ) : SQFT wMFZ .

10In this case we avoid to write the dependence on the radius of the circle on which we compactify the
spatial direction, however it is understood.

11The ring of weakly holomorphic integral modular forms is a graded ring, given by the direct sum of
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2.3.3 Atiyah-Singer index theorem

In this paragraph we are going to focus on supersymmetric quantum mechanics in order
to state a crucial theorem known as Atiyah-Singer index theorem.

Let us consider a supersymmetric quantum mechanics (SQM in what follows), given
by an Hilbert space H, a supercharge Q and an Hamiltonian H. In particular, let us focus
on the case of a SQM model describing a supersymmetric particle moving on a compact
space M without boundaries and with even dimension. In the situation described above,
the supercharge Q can be identified with the Dirac operator of the theory iγµDµ and
hence the Hamiltonian as the Laplacian. Using a basis in which the chirality operator of
the field space, and in turn the fermion number operator, is diagonal

(−1)F = γ5 =

(︃
1 0
0 −1

)︃
we have that

Q = iγµDµ =

(︃
0 L†

L 0

)︃
, H = Q2 =

(︃
L†L 0
0 LL†

)︃
,

where the form of the supercharge is clearly compatible with the fact that it exchanges
bosons with fermions and vice-versa. Decomposing again the Hilbert space in the
eigenspaces of the chirality operator, in the same way as we have done in (2.22), we see
that

L : H+ −→ H− , L† : H− −→ H+ .

Furthermore, let us notice that

(kerH) ∩H+ ≡ ker(L†L) = kerL , (kerH) ∩H− ≡ ker(LL†) = kerL† .

Proof. Let us focus on the second equivalence. If |ψ⟩ ∈ kerL† we have that

LL† |ψ⟩ = L
(︁
L† |ψ⟩

)︁
= L(0) = 0 ,

which means that
kerL† ⊆ ker(LL†) .

Conversely, given |ψ⟩ ∈ ker(LL†) we can write

0 = ⟨ψ|LL†ψ⟩ = ⟨L†ψ|L†ψ⟩ =
⃦⃦⃦
L†ψ

⃦⃦⃦2
,

all the sets of weakly holomorphic integral modular forms of weight k; in formulae, called wMFZ
k the set

of weakly holomorphic modular forms of weight k, we have that the graded ring of weakly holomorphic
integral modular forms is

wMFZ =
⨁︂
k≥0

wMFZ
k .

The same comment is true for holomorphic integral modular forms, in which case their ring is labelled as
MFZ.
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from which L† |ψ⟩ = 0 and |ψ⟩ ∈ kerL†. In this way we have shown that

ker(LL†) ⊆ kerL† ,

and so
ker(LL†) = kerL† .

The first equivalence follows exactly in the same way.

Remembering that only ground states contribute to the Witten index, we conclude
that

TrH
[︁
(−1)F e−βH

]︁
= dim

(︁
ker(L†L)

)︁
− dim

(︁
ker(LL†)

)︁
=

= dim
(︁
kerL

)︁
− dim

(︁
kerL†)︁ =: ind

(︁
iγµDµ

)︁
, (2.30)

or, in other words, the Witten index equals the so-called index of the Dirac operator
ind(iγµDµ).

We have shown in section 2.3.2 that, if the theory is compact (i.e. the spectrum of
the Hamiltonian is discrete), which in this case means that the manifold M is compact
and without boundaries, we have that the Witten index is independent from β. For this
reason we can equivalently compute it in the limit β → 0, which gives us a different way
to interpret the index.

The Witten index can be expressed as an Euclidean path-integral

TrH
[︁
(−1)F e−βH

]︁
=

∫︂
PBC

DφDψDψe−S[φ,ψ] ,

where the fields φ(t) and ψ(t) are periodic in the Euclidean time with period β. The
action of the SQM is of the form∫︂

dt
(︂1
2
gIJ(φ)φ̇

I φ̇J +
1

2
gIJ(φ)ψ

I
Dtψ

J
)︂
,

where the dot on the fields stands for derivative with respect to the time, while gIJ is the
metric on the manifold M . The fact that metric depends on the scalar fields φ makes the
action very complicated in principle. However, it greatly simplifies in the limit β → 0.
Indeed, we can expand the fields in terms of the infinitesimal variations

φJ(t) = φJ0 + δφJ(t) , ψJ(t) = ψJ0 + δφJ(t) ,

where the variations are periodic. Hence, we can take the Fourier decompositions

δφJ(t) =
1√
β

+∞∑︂
n=−∞

φJne
2πin t

β , δφ̇J(t) =
1√
β

+∞∑︂
n=−∞

2πin

β
φJne

2πin t
β ,

and the same for δψJ(t). The non-zero modes in the Fourier expansion vanish due to
periodic boundary condition, and so the fields read

φJ(t) = φJ0 +
1√
β
δφJ0 , ψJ(t) = ψJ0 +

1√
β
δψJ0 .



46 2. N = (0, 1) supersymmetric models

Substituting these expressions in the action we can expand it at the lowest order in β,
which corresponds to take the second order in the fluctuations, and, rescaling t→ βt, we
arrive to a quadratic action in the fluctuations themselves.

In this way, the functional integral is simply a Gaussian path-integral which can be
evaluated, giving us the regularized determinant of the kinetic operators. This determinant
depends on the zero modes of the fields, and can be shown12 that its integration on these
modes corresponds to the integration of the so-called Dirac genus ˆ︁A on the manifold M .
In conclusion, we arrive to the identity

lim
β→0

Tr
[︁
(−1)F e−βH

]︁
=

∫︂
M

ˆ︁A .

Since the Witten index on the compact manifold M does not depend on β, we have that
the limits for β → ∞ and β → 0 have to coincide, which gives us the Atiyah-Singer
index theorem

ind(iγµDµ) =

∫︂
M

ˆ︁A .

Let us conclude this section noticing that, from this theorem, a property of character-
istic classes we have encountered yet follows. In particular in 2.2.3 we have used the fact
that the integral of the first Pontryagin class p1 on a 4-dimensional manifold with spin
structure is a multiple of 48. But, for this type of manifold, a direct computation shows
that ˆ︁A =

p1
48

,

hence ∫︂
M

p1
48

= ind(iγµDµ) ∈ Z ,

which is fulfilled only for p1 multiple of 48.

12For details look at [Win84] and [Eri14].



Chapter 3

The Stolz and Teichner program

In the previous chapter we have seen that if k is divisible by 24, then the sigma model
with target S3 and Wess-Zumino coupling k can be continuously deformed flowing up and
down the RG trajectories in a model which spontaneously breaks supersymmetry. Then
we can ask if this sufficient condition is also necessary. In order to answer this question
we need to find a sufficiently refined invariant of our theory. The first idea is to use the
usual Witten index, however can be shown that

ZRR(S
3
k) = 0 ,

hence we have no information from the Witten index regarding the spontaneous breaking.
This means that the Witten index is not a complete invariant. The way to overcome this
difficulties comes from a conjecture due to Stolz and Teichner ([ST04], [ST11]) which
introduce a new secondary invariant that can be seen as a topological version of the
Witten index. In particular they propose that the Witten index

ZRR( · ) : SQFT wMFZ ,

can be lifted to a topological Witten index Ztop
RR, from the set of SQFT to a particular set

known as Ω-spectrum of topological modular forms TMF, namely

Ztop
RR( · ) : SQFT TMF .

The crucial assumption of the conjecture is that this new invariant is complete, that is, it
gives an identification

SQFT ≃ TMF .

Thanks to this last assumption, we have that two theories are homotopic to each other,
that is, they can be deformed one into the other, if and only if they are in the same
TMF-class. The problem consists in the fact that this topological Witten index has, again,
a non-vanishing kernel. However, its kernel is composed by all the torsion classes of TMF,
which gives us the chance to introduced also invariants useful in studying these elements.

In what next we are going to explain what are the sets involved in this conjecture,
what are the problems that this conjecture presents, and then, once assumed as true, to
see what are its consequences and how it helps in solving our problem for the sigma-model.
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3.1 Topological modular forms

First of all we want to focus on the study of TMF. The idea of this section is to figure
out how this construction works, not being too much deep, since its definition is highly
non-trivial. In particular we will try to underline the properties that will help us to give
a more refined structure to the set SQFT. For more details on the construction of TMF
look at [Hop95], [Hop02], [Goe09], [Lur09] and [Dou+14].

3.1.1 Mathematical preliminaries

Let us start giving some basic definitions from algebraic topology, which will be useful in
next sections. The first step consists in defining the principal tool of these type of studies,
that is the definition of a category.

A category C is defined as the datum of a set Ob(C) of objects of C, for each two
objects X,Y ∈ Ob(C) a set HomC(X,Y ) of morphisms between X and Y , and, for each
three objects X,Y, Z ∈ Ob(C), a map

“ ◦ ” : HomC(X,Y )×HomC(Y,Z) HomC(X,Y )

(f, g) g ◦ f
,

called composition of morphisms. This composition has to satisfy two properties, namely

to be associative, that is, for all morphisms X Y Z W
f g h , we have

(h ◦ g) ◦ f = h ◦ (g ◦ f) .

Also, for every X ∈ Ob(C), there exists an identity map idX ∈ HomC(X,X), such that
∀ f ∈ HomC(X,Y ) and ∀ g ∈ HomC(Y,X), we have

f ◦ idX = f , idX ◦g = g .

Going on, a functor encodes the idea of a “function between categorie”. Formally, given
two categories C and D, a functor F : C D consists of a map

F : Ob(C) Ob(D) ,

and, for all X,Y ∈ Ob(C), of a map

F : HomC(X,Y ) HomD(F (X), F (Y )) ,

such that, for all X ∈ Ob(C)
F (idX) = idF (X) ,

and for every functions X Y Z
f g , we have

F (g ◦ f) = F (g) ◦ F (f) .

Then, we are ready to introduce the other main object of our discussion, that is
cohomology theories. A cohomology theory H is a collection of functors Hn and of
maps δn which satisfies the following axioms, also called Eilenberg-Steenrod axioms:



3.1 Topological modular forms 49

1. for each n ∈ Z, Hn is a contravariant functor from the category of pairs of topological
spaces (Y ⊆ X) to the one of abelian groups. This means that it associates to a
pair of topological spaces (X,Y ) (that is a topological space X and a subspace of it
Y ⊆ X) an abelian group Hn(X,Y ) known as n-dimensional cohomology group of
(X,Y ); also to a function of topological pairs

f : (X,Y ) (X ′, Y ′) ,

that is a continuous map f : X X ′ such that f(Y ) ⊆ Y ′, it associates an
homomorphism of abelian groups

Hn(f) : Hn(X ′, Y ′) Hn(X,Y ) .

called induced map. In particular this mapping has to be compatible with the
composition of morphisms in the two categories;

2. if f : X ′ X is a weak homotopy equivalence, that is it induces an isomor-
phism of homotopy groups for all basepoints x ∈ X

πn(X,x) πn(X
′, f(x))∼ ∀n ≥ 0 ;

then the induced map Hn(f) is an isomorphism

Hn(f) : Hn(X) Hn(X ′)∼ ,

where we have Hn(X) := Hn(X, ∅);

3. to every triple of topological spaces Z ⊆ Y ⊆ X, there exists an associated long
exact sequence

. . . Hn(X,Y ) Hn(X,Z) Hn(Y,Z) Hn+1(X,Y ) . . .δn .

Asking for the sequence to be exact means that, given any two subsequent arrow

A B C
f g

,

we have g ◦ f = 0 and Im f ≃ ker g. The maps δn are called connecting morphisms,
while the other arrows are induced by inclusions;

4. let A,B ⊆ Y be two subspaces such that the union of their interiors is equal to Y
itself. Then the inclusion (A,A ∩B) −→ (Y,B) induces an isomorphism

Hn(Y,B) Hn(A,A ∩B)∼

for all n ∈ Z;
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5. given a family of spaces {Xi} such that⨆︂
i

Xi = X ,

then the map
Hn(X)

∏︁
iH

n(Xi)

is an isomorphism for all n ∈ Z;

6. if X = { point }, then

Hn(X) =

{︄
0 if n ̸= 0

Z if n = 0 .

Given a cohomology theory H, we indicate the graded abelian group

H•(X,A) :=

+∞⨁︂
n=−∞

Hn(X,A) ,

and define the coefficient group

H• := H•( point ) =
+∞⨁︂

n=−∞
Hn( point ) .

Actually most of the cohomology theories we are interested in do not have the
cohomology of the point concentrated in degree zero. This motivates the definition of
generalized cohomology theories, for which we require the same axioms as before
except 6. We can also require other properties for our cohomology theory. In particular
we will say that a cohomology theory is multiplicative if H•(X) is equipped with a
structure of graded commutative ring, given by a multiplication map

Hk(X)×Hl(X) Hk+l(X) ,

with the following grading
a · b = (−1)|a| |b|b · a ,

for
a ∈ H|a|(X) , b ∈ H|b|(X) .

Moreover, a multiplicative cohomology theory H is even if

H2i+1( · ) = 0 ∀ i ∈ Z ,

while it is said to be periodic if there exists an element β ∈ H−n( · ) for some n ∈ Z
which is invertible in H•( · ), namely β has an inverse β−1 ∈ Hn( · ).
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3.1.2 The construction of TMF

In order to figure out how TMF can be defined, we have to start finding some invariants
which allow us to study the cohomology H•(X) associated to a vector bundle on X. We
can simply focus on line bundle and try to generalize the idea of the Chern class, which is
a complete invariant for line bundles. It is a well-known fact1 that the infinite dimensional
complex projective space CP∞ is a classifying space for complex line bundles. This means
that, for any complex line bundle L on a (well-behaved) space X, there is a classifying
map φ : X → CP∞ and an isomorphism L ≃ φ∗L(1), where L(1) is called universal line
bundle. In the case of ordinary cohomology, for the first Chern class, we know that the
cohomology ring of CP∞ on Z is the polynomial ring generated by the first Chern class t
of the canonical line bundle, i.e.

H•(CP∞,Z) = Z[t] .

The computations2 for this equality relies on the fact that all the cohomology groups
of CP∞ on Z of even degree 2i are isomorphic to each other and they are infinite-cyclic
generated by the i-th power of the first Chern class of the universal line bundle. Also,
the cohomology groups of odd degrees are zero. This isomorphism can be extended in the
case of a generalized cohomology theory, as3

H•(CP∞) ≃ H•(point)[[c1]] ≡ H•[[c1]] ,

where c1 satisfies analogous relations to the ones satisfied by the usual Chern class. In
particular this implies that, given two line bundles L1 and L2,

c1(L1 ⊗ L2) = F
(︁
c1(L1), c1(L2)

)︁
,

where F is a formal power series known as formal group law and satisfies the following
properties:

1. F (x, 0) = F (0, x) = x;

2. F (x1, x2) = F (x2, x1);

3. F
(︁
F (x1, x2), x3

)︁
= F

(︁
x1 , F (x2, x3)

)︁
.

A formal group law gives to the commutative ring H•[[c1]] the structure of a so-called
formal group4, which is canonically associated to the cohomology theory H. In this way
we have found that a choice of a formal group law corresponds to a choice of a cohomology
theory. Furthermore, we have that formal groups are related to algebraic groups. Hence,
given a one dimensional (connected) group variety G over an algebraically closed field k,
we can have one of the following possibilities:

1For details look at [Nak90].
2For the complete proof look at [Hat02].
3Let us recall that, given a ring R and a letter X, we define as R[X] the ring of polynomial

∑︁n
i=0 aiX

i

for all n ∈ Z with ai ∈ R; furthermore, we define as R[[X]] the ring of formal series in X, that is the
ring with elements given by

∑︁∞
i=0 aiX

i with ai ∈ R. These elements can be seen as polynomials with
infinite terms or, equivalently, as power series without the requirement of convergence.

4For details on this construction look at [Dou+14] and the references therein.
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1. G = Ga the additive group,

2. G = Gm the multiplicative group,

3. G is an elliptic curve.

We want to focus on this last possibility, which gives rise to the so called elliptic
cohomology theory. Roughly speaking, we have that there is a cohomology theory for
every elliptic curve.

Before going on, let us briefly recall what an elliptic curve is. An elliptic curve over
a field k, is a non-singular curve C in the projective plane P2 defined by a cubic equation
and such that its intersection with the line at the infinity is given by a point [0 : ∗ : 0]. In
formulae, the line at the infinity is P1

∞ = [0 : ∗ : ∗], hence we need

C ∩ P1
∞ = [0 : ∗ : 0] .

In affine coordinates5 (x, y), an elliptic curve can be written in the co-called Weierstrass
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

If the characteristic of the field k is neither 2 nor 3, we can rewrite the cubic which
describes the curve as, after a change of coordinates

y2 = x3 − 27c4x− 54c6 ,

where we have defined

c4 = (b2)
2 − 24b4 , c6 = (b2)

3 + 36b2b4 − 216b6 ,

b2 = (a1)
2 + 4a2 , b4 = 2a4 + a1a3 , b6 = (a3)

2 + 4a6 .

A crucial quantity is the discriminant of the cubic, defined as

∆ = −(b2)2b8 − 8(b4)
3 − 27(b6)

2 + 9b2b4b6 ,

where
b8 = (a1)

2a6 + 4a2a6 − a1a3a4 + a2(a3)
2 − (a4)

2 .

In particular it can be shown that the Weierstrass curve is singular if and only if ∆ = 0.
A peculiar characteristic of elliptic curves is that they can be described as an algebraic

group, defining a group law on their points. This is done as follows. Being defined as
a cubic, intersecting an elliptic curve C with any line in P2 will provide three points
(counted with multiplicity) of C. Hence, given two points P and Q on the curve C, we
can sum them in the following way:

• let l be the line containing P and Q (or tangent to C at P if P = Q);
5Let us recall that, given a generic projective space and an hyperplane H ⊆ P, the set P\H is naturally

endowed with a structure of an affine space, and given a set of coordinates on P, [X0 : X1 : · · · : Xn] such
that H = V (X0), the associated affine coordinates on P \H are given by the ratios

(︁
X1
X0

, . . . , Xn
X0

)︁
.
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• let R be the third point in the intersection l ∩ C;

• let us consider the line l′ passing through R and the point e = [0 : 1 : 0];

• let us define the sum P +Q as the third point in the intersection l′ ∩ C.

This construction gives us an abelian group structure on the points of C with identity
element e = [0 : 1 : 0]. The inverse of this statement is the one we have cited above,
according to which, given a one dimensional algebraic group over an algebraically closed
field k, it can be the either the additive group, or the multiplicative group or an elliptic
curve.

At this point we want to find a sort of “universal” elliptic cohomology, that is a
cohomology theory which we can vary in order to obtain all the other elliptic cohomology
theories. However, to find this universal elliptic cohomology is not an easy task. What
can be done is to find a way to associate an elliptic cohomology to a properly defined set
of maps related to elliptic curves

O : { maps related to elliptic curves } { elliptic cohomology theories } .

However in order to extract from this a global information, we have to do some work on
the target space.

We want now to figured out the behavior of the target space, which gives us information
on this universal cohomology theory, which is the set TMF we are interested in. The
first step needed consists in replacing the set of cohomology theories by a set of their
representatives. From the so-called Brown’s representability theorem, we have that any
cohomology theory H has a representing sequence of spaces En, such that, for a well-
behaved topological space X, we have

Hn(X) ≃ [X,En] ,

with [X,En] the set of homotopy classes of maps from X into En. By duality, it can
be defined a homology theory associated to the same sequence of spaces, which we call
Hn(X). They are naturally related by the following relations

π•(H) := H• ≃ H−• ,

where, of course,

H• := H•( point ) =
+∞⨁︂

n=−∞
Hn( point ) ,

is the coefficient group of the homology theory. The connecting maps of the cohomology
theory, δn, endow the sequence of spaces En with an additional structure. Indeed, they
induce a series of maps6

sn : En ΩEn+1 ∀n ∈ Z ,

6We will prove this sentence in Appendix A.
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such that the sn’s are weak homotopy equivalences. In other words, they induce isomor-
phisms between all homotopy groups

sln : πl(En) πl(ΩEn+1) ≃ πl+1(En+1)
∼ ∀l ∈ Z .

Here we have that the space ΩEn is the loop space of En, that is the space of based
loops in En or, in other words, the set of the maps from the circle S1 to En, such that a
chosen basepoint on S1 is mapped to a chosen basepoint in En. A sequence of spaces
with the properties above is called Ω-spectrum.

This construction allows us to replace as target space, the space of cohomology theories
with the one of Ω-spectra, on which can be introduced global notions. However, the
structure is not yet sufficiently well-behaved to give us a way to define it properly. So now
we restrict our attention to multiplicative cohomology theories, which are represented
by a more rigid structure, known as E∞-spectrum. In order to introduce this notion,
we need to define the E∞-ring (space), which can be defined, roughly speaking, as a
topological space A, equipped with the structure of a ring, for which the sum commutes
up to homotopy. Any E∞-ring A determines a cohomology theory HA, that is, for a
well-behaved topological space X, we have that

H−n
A (X) ≃ πnHom(X,A) for n ≥ 0 ,

where Hom(X,A) is endowed with a structure of E∞-ring, obtained computing all the
operations pointwise. This definition gives us a connective cohomology theory, that is, it
has the property that the n-th cohomology of a generic space X vanishes for n > 0, i.e.

Hn(X) = 0 for n > 0 .

However, in general, we need to describe theories which are not connective. For this
reason we want to introduce a slightly more general notion than E∞-ring. In particular,
we define the E∞-spectrum, which is an Ω-spectrum endowed with the structure of an
E∞-ring, in such a way that the related cohomology theory has all the good properties that
characterize a cohomology theory associated to an E∞-ring, but without the requirement
to be connective7. With this last definition we have the possibility to define the "universal"
elliptic cohomology TMF, which, for these reasons, results to be an E∞-spectrum.

The spectrum TMF we define in this way, owes its name to the fact that the ring of
its homotopy groups is rationally isomorphic to the ring of weakly holomorphic modular
forms wMF, that is⨁︂

k

πk(TMF)
∼−−−−−→

rational
wMF• ≃ Z[c4, c6,∆±1]

/︁
(c34 − c26 − 1728∆) . (3.1)

Here c4 and c6 are the forth and the sixth Eisenstein’s series, which are modular forms of
weight 4 and 6 respectively, and defined as, in the general case of a k-th series

ck(z) :=
1

2

∑︂
c,d∈Z

gcd(c,d)=1

1

(cz + d)k
.

7We gave very rough definitions of E∞-ring and E∞-spectrum, just to give an intuition of some of
their properties. The precise definitions are much more delicate and require some particular attentions
on the condition “up to homotopy”. For details some references are [May77], [May09], [Lur17].
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The element ∆ instead is the discriminant, and is a weight 12 integral modular form
defined by

∆(z) = e2πiz
∞∏︂
n=1

(︁
1− e2πinz

)︁24
.

It is clear from how this ring is defined, that it is periodic. However, as we have said,
the map is an isomorphism only over rational numbers, and in particular can be shown
that the discriminant, which corresponds to the periodic element of wMF•, is not in the
homotopy groups of TMF. Nevertheless its twenty-fourth power is

∆24 ∈ π242(TMF) ,

and this means that TMF is periodic with period 242 = 576.
The map in (3.1) comes from a well-known map called elliptic genus map

πn(tmf) MFZ
n/2 ∀n ∈ Z .

Here we have identified with tmf the non-periodic and connective version of TMF, where
connective means that

πn(tmf) = 0 ∀n ∈ Z<0 ,

while MFZ
• is the graded ring of integral modular forms. This map is not an isomorphism

in general, since it has both kernel and cokernel. In particular, the kernel is the ideal
generated by all the torsion classes, while the cokernel is described by

coker
(︁
πn(tmf) → MFn

2

)︁
=

⎧⎪⎨⎪⎩
Z
/︁

24
gcd(k,24)Z n = 24k ,

(Z
/︁
2Z)⌈

n−8
24

⌉ n ≡ 4 mod 8 ,

0 otherwise .

However, the elliptic genus becomes an isomorphism over rational numbers, namely

πn(tmf)⊗Q MFn/2⊗Q∼ ,

i.e. the ring of homotopy groups of tmf is rationally isomorphic to the ring of integral
modular forms. This version of the spectrum of topological modular forms is related to
the periodic one via

TMF = tmf[∆−24] ,

or, at the level of homotopy groups,

π•(TMF) = π•(tmf)[∆−24] .

3.2 Supersymmetric Quantum Field Theories

Now we want to describe the other construction introduced in the Stolz and Teichner
conjecture, namely the set of (1+1)-dimensional supersymmetric QFT. The first difficulties
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in this definition arise from the fact that, even if from a physical perspective it is clear
what a QFT is, we have not yet a precise mathematical definition. The first attempt
to formalize this concept was done by Atiyah [Ati89] and Segal [Seg02], who give a
geometrical interpretation of a QFT as a functor between two properly chosen categories.
An important step forward, that is the one necessary for our purpose, was done in two
articles by Stolz and Teichner ([ST04], [ST11]), who gave a more refined, but not yet
complete, definition of supersymmetric QFT’s.

What we are going to do in the next part, is to give a precise formal definition of a
QFT in a functorial perspective in a particular case, namely the topological quantum field
theory (TQFT), trying to justify as much as possible our construction from a physical
point of view. Then we will see how this definition has to be reformulated in order to
describe the so-called supersymmetric Euclidean field theory, as it was done by Stolz and
Teichner in [ST11], focusing on showing where the difficulties arise.

3.2.1 Topological Quantum Field Theory

Before starting giving the definition of a TQFT, let us recall some trivial facts about the
path integral. It is given by

Z =

∫︂
DΦ e−S[Φ] ,

where Φ :M X is a smooth map between two Riemannian manifold M (the spacetime)
and X (which, once chosen, gives us the nature of Φ as a physical field -scalar, spinor,
vector, . . . -), S[Φ] is the so-called action functional and is usually of the form

S[Φ] =

∫︂
M

√︁
det g dnx L

(︁
Φ(x), ∂µΦ(x)

)︁
,

with
√
det g dnx the volume form on M and L the lagrangian density. Then

∫︁
DΦ is an

integral over all Φ, which actually has no meaning in general. Despite it is not well-defined,
the path integral approach gives us a lot of information about the theory, and in particular
allows us to compute correlations functions. So let O1, . . . ,On be n observables, i.e.
functions from the set of field configurations to complex numbers

O1, . . . ,On : {Φ :M → X} C

Then we have that the correlation function of the observables O1, . . . ,On is

⟨O1 · · · On⟩g =
1

Z

∫︂
DΦO1 · · · One−S[Φ] ,

where g stands for the metric on M . If this correlation function is independent of g we
have a topological quantum field theory.

Definition

What we want to do now is to see a quantum field theory as a way of transporting
the geometric and dynamical structure of spacetime into the algebraic description of
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physical states and observables, that is to see it as a sort of map between geometry and
algebra which preserves certain structures. In the particular case of a topological quantum
field theory, to formalize this idea is relatively easy and was done by Atiyah and Segal
introducing the following definition

Definition 3.2.1. An n-dimensional (oriented closed) TQFT is a symmetric
monoidal functor

E : Bordn Vectk .

Now we are going to explain what this definition actually means, while then we will try
to make a comparison between the properties of the path integral and the one of this
definition.

Let us begin with Vectk. Its objects are k-vector spaces, with k a field, and morphisms
are k-linear maps. As we know, compositions between morphisms are required in the
definition of category, and in this case are trivial. However for this category we have
an additional structure, indeed it is a monoidal category, which means that objects
have a composition law too. In particular, given U, V ∈ Vectk we can compose them as
U ⊗k V ∈ Vectk, which respects the properties we require for a composition of morphisms,
namely it is associative up to isomorphism

(U ⊗k V )⊗k W ≃ U ⊗k (V ⊗k W ) , (3.2)

and k ∈ Vectk is a unit, since

k ⊗k V ≃ V ≃ V ⊗k k .

Moreover, since we can also take tensor products of linear maps, ⊗k is a functor

⊗k : Vectk × Vectk Vectk .

We can go on and notice that the monoidal category Vectk has also a symmetric structure:
given U, V ∈ Vectk, there are natural isomorphisms, known as braidings, such that

βU,V : U ⊗k V V ⊗k U

u⊗ v v ⊗ u
,

compatible with the isomorphism (3.2) and with the symmetry property

βU,V = β−1
V,U .

Then, let us focus on the symmetric monoidal category Bordn. Its objects are oriented
closed (n − 1)-dimensional real manifolds for some fixed n ∈ Z≥1 (from the physical
perspective, we can think of one of these manifolds as a sort of spacial slice of an
n-dimensional spacetime).
Now given E, F ∈ Bordn, a morphism in the category between these two objects E F
is the equivalence class of a bordism from E to F . A bordism E F is an oriented
compact n-dimensional manifold with boundary M , together with smooth maps

ιin : E M , ιout : F M ,
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with image in ∂M such that

ιin ⊔ ιout : E ⊔ F ∂M

is an orientation-preserving diffeomorphism, where E denotes E with the opposite orien-
tation. Two bordisms (M, ιin, ιout), (M

′, ι′in, ι
′
out) : E F are said to be equivalent if

there exists an orientation-preserving diffeomorphism ψ :M M ′ such that the diagram

M

E F

M ′

ψ

ιin

ι′in

ιout

ι′out

commutes.
Composition of morphisms M1 : E F and M2 : F G in Bordn is given by gluing
M1 and M2 along F . As we have said, the category Bordn has also the structure of a
monoidal category with “multiplication” given by the disjoint union, which is associative
by definition, and with unit element given by ∅ viewed as an (n−1)-dimensional manifold,
since

∅ ⊔ E = E = E ⊔ ∅

for all E ∈ Bordn.
Then can be shown8, via the so-called cylinder construction, that a diffeomorphism

between two (n−1)-dimensional manifolds (which can be seen as objects in Bordn) induces
an isomorphism between the two in Bordn. This implies that the natural diffeomorphism
E ⊔ F F ⊔ E induces an isomorphism which is the symmetric braiding

βE,F : E ⊔ F F ⊔ E

in Bordn.

Motivation

Now we want to compare this functorial definition9 with the path integral formulation,
remembering that we suppose the path integral to be always well-defined, even if it is not
true in general.

1. From a path integral point of view, we expect that a TQFT associates to an (n− 1)-
dimensional oriented manifold E a Hilbert spaces HE of states on E. We can think
of HE as the space of functionals on the classical fields on E, that is the space of
the maps

{E → X} −→ C .

8For details look at [CR18].
9For all the missing details on this part look at [CR18] and the references therein.
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On the other side, looking at the functorial definition, we have that it assigns objects
to objects, i.e. to an (n − 1)-dimensional manifold E ∈ Bordn a C-vector space
Z(E), which corresponds exactly to HE .

Here we have an apparent difference between the two approaches, since the path
integral gives us an Hilbert space, while the functor a C-vector space. However, it
can be shown that there is a non-degenerate pairing between Z(E) and Z(E), that
is Z(E) ≃ Z(E)∗, which gives to Z(E) the structure of an Hilbert space.

2. Let φ be a field on E and consider the path integral over the fields Φ’s on the
n-dimensional manifold M with boundary ∂M = E, where the Φ’s restrict to φ on
the boundary, i.e.

Z(M)(φ) =

∫︂
DΦe−S[Φ]

⃓⃓⃓
Φ on M s.t. Φ|∂M=φ

. (3.3)

Hence we have that the right-hand side produce a number for each φ : E X we
plug in, or, in other words, we have obtained a functional on fields on E associated
to the manifold M

Z(M) : {E → X} −→ C .

So, from the path integral point of view we expect to obtain a vector Z(M) ∈ HE
for each oriented n-manifold M with boundary ∂M = E.

On the other hand we know that a functor assigns morphisms to morphisms. This
means that Z produces, for every bordism M : E E′, a linear map

Z(M) : Z(E) Z(E′) ,

which we can think of as describing the evolution along M . In order to relate to the
path integral above, we need to think of an n-manifold M with boundary ∂M = E
as a bordism M : ∅ E. Can be shown that Z(∅) = C, in such a way that we
obtain

Z(M) : C Z(E) ,

which is the same as giving an element in Z(E) = HE by taking the image of 1 ∈ C.

3. Let us consider the space C(E1⊔E2) of maps from E1⊔E2 to some manifold (i.e. the
one needed in order to describe the particular field we want), which can be seen as
the set of classical fields. It is quite trivial to see that it equals the Cartesian product
C(E1)× C(E2), and we have that the linear space HE of functionals C(E) C
satisfies

HE1⊔E2 = HE1 ⊗HE2 .

Hence we require that, given an (n − 1)-manifold E which is a disjoint union
E = E1 ⊔ E2, we have

HE = HE1 ⊗HE2 .
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Similarly we would like the action to be “local enough” so that, given a field Φ
defined on M1 ⊔M2, we have

S[Φ] = S[Φ
⃓⃓
M1

] + S[Φ
⃓⃓
M2

] ,

and so the path integral in (3.3) splits into a product. We can restate this saying
that given two n-dimensional manifolds M1 and M2 with ∂M1 = E1 and ∂M2 = E2,
we expect that

Z(M1 ⊔M2) = Z(M1)⊗ Z(M2) .

Indeed we have required the TQFT to be a symmetric monoidal functor, so it has
to be compatible with the structure in the target and in the source, which gives us
the isomorphisms

Z(∅) ≃ C , Z(E ⊔ F ) ≃ Z(E)⊗C Z(F ) ,

compatible with the associativity of the products and the braidings; in particular
we can assume Z(∅) = C.

It seems we have not described the behavior of the TQFT under the disjoint union
of n-dimensional manifolds, however from a general statement about symmetric
monoidal functors (the same we are going to use in what follows to solve some
apparent incongruences) follows that it is not the case, being this behavior a
consequence of the structure of the functor.

4. What we want to require now is that, if we compute the path integral on a thin
cylinder, we can distinguish any two states placed on one boundary by selecting
an appropriate state to place on the other boundary. This allows us to introduce
somehow the idea of physical states. Indeed, an example in which this does not
happen is gauge theories if we do not identify gauge equivalent field configurations.
In this case, the corresponding state would be indistinguishable for thin cylinder
and so describe the same physical state.

In order to translate this requirement in a way which can be compared with the
functorial definition, let us consider a cylinder M = E× [0, 1], from which we obtain
an element Z(M) ∈ HE ⊗ HE . We expect this element to be non-degenerate in
the following sense. Given two elements u, v ∈ HE , if the contraction of u with
the tensor factor relative to HE of Z(M) via the scalar product ⟨·, ·⟩ is equal, as
an element of HE , to the same contraction but with v, then we have u = v. This
condition gives us an anti-linear injective map HE HE .

From the functorial perspective this is a bit more difficult to see, and is due to the
fact that a functor maps the identity to the identity. So we get

Z(E × [0, 1]) = idZ(E) .

Thanks to the statement we cited above, this equality translates in the non-
degeneracy condition required.
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5. We want to have the possibility to sum over intermediate states. Thus, referring
to (3.3), given an (n − 1)-dimensional manifold U , we want that the integration
over all Φ with Φ

⃓⃓
E
= φ can be split in an integration over all the configuration Φ

with Φ
⃓⃓
E
= φ and Φ

⃓⃓
U
= ψ for some ψ ∈ C(U) and then an integration over all ψ,

in formulae

Z(M)(φ) =

∫︂
ψ on U

Dψ
∫︂
DΦe−S[Φ]

⃓⃓⃓
Φ on M s.t. Φ|∂M=φ , Φ|U=ψ

.

In order to compare with the properties of the functorial definition we need to restate
this condition in a more handy way. So let us consider an n-dimensional manifold M
with boundary ∂M = E and let us embed a closed (n− 1)-dimensional manifold U
into M . Then we cut M open along U . It is quite trivial to see that this operation
produces a new n-dimensional manifold N with boundary ∂N = E ⊔ U ⊔ U . Now
let {ei} be an orthonormal basis of HU and let ei be the preimage of ei through
the map HU HU defined above. We require that

Z(M) =
∑︂
i

⟨ei ⊗ ei , Z(N)⟩ ∈ HE ,

where we think of

⟨ei ⊗ ei , · ⟩ : HE ⊗HU ⊗HU HE .

This property is linked to the fact that a functor is compatible with compositions,
that is, given two bordisms

M : E F , N : F G ,

we have
Z(M ⊔F N) = Z(M) ◦ Z(N) .

Here there is a difference with the path integral motivation. Indeed we have required
the gluing of manifolds to compose always disjoint n-manifold, which is not what
in general happens if we cut a n-bordism along any embedded (n− 1)-dimensional
manifold. However also this difference, as the previous ones, is only apparent and
solved by the statement cited above.

3.2.2 Supersymmetric euclidean field theory

Now we want to explain how the definition of a TQFT has to be generalized in order to
allow us to state properly the conjecture made by Stolz and Teichner. Unfortunately, the
precise definition is very technical, hence we are only going to sketch the main features,
underlying the aspects of the previous definition of TQFT we need to refine. For the
precise construction look at [ST11].

First of all we need the field theory defined as above to satisfy also the following
requirement. Given a (n−1)-dimensional closed oriented manifold E and a n-dimensional
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bordism M of E, we need the vector space Z(E) to depend smoothly on E and the linear
map Z(M) to depend smoothly on M . In order to make this requirement precise, roughly
speaking, we should replace the categories involved in the definition by a family version,
in which objects are families of closed (n− 1)-manifolds or of vector spaces, parametrized
by a smooth manifold X, and the same for morphisms.

Then, as we have said, we are interested in Euclidean field theories, namely, the
(n− 1)-dimensional closed oriented manifolds in Bordn and the n-dimensional bordisms
have to be endowed with an Euclidean metric, which in this case means a flat Riemannian
metric (in contrast with a language more common in physics, for which “Euclidean” is
used to indicate Riemannian metrics in contrast with Lorentzian ones, hence without the
flatness requirement). This particular interest is justified by the fact that, for topological
reasons, the only topology for closed manifolds which admits a flat metric is the torus.
Hence, only surfaces of genus one can arise in the bordism category. This is what we need
in order to relate this construction to TMF, in which only genus one information are
used10. The requirement for the field theory to be euclidean is solved by endowing our
definition of a particular structure known as rigid geometry (G,M) with G a Lie group
and M a manifold, and properly choosing them.

Another structure we have to endow with our definition of QFT is supersymmetry,
defining what we call supersymmetric field theory of dimension n|δ, where δ ∈ Z≥0. Let
us make some comments on how to read this definition from a physical perspective. In
particular, we have that the non-negative integer δ stands for the number of supersym-
metries. Usually in physics we label supersymmetry with respect to minimality, and so
the nomenclature makes sense only with respects to the dimension of the space-time, i.e.
N = 1 refers to the minimal supersymmetry, N = 2 to twice as much, and so on. In our
case we want to consider theories in (n = 2)-dimensions, and in particular chiral ones
(which can occur only in dimensions n = 2, 6 mod 8). Hence with δ = 1 we are referring
to N = (0, 1) supersymmetry.

Once introduced all these constructions, a good definition of a 2|1-supersymmetric
euclidean field theory can be obtained (in what follows we will refer with no distinction
to them as SEFT or SQFT, with the latter as the preferred notation). What we have
done up to now is well-defined from a mathematical point of view. However we have
not yet given to SQFT a structure compatible with the one of TMF. We are left with
two steps, the first one is to define a degree of SQFT which can be seen as a topological
degree, and the second one is to “reduce” the set of SQFT. Unfortunately, none of these
two steps are well-defined from a mathematical perspective. The problem for the degree
is easily solved in physical terms, considering as the cohomological degree of an SQFT
its gravitational anomaly. Then, in order to relate properly SQFT to TMF, we need
to remove some redundancies in the set of SQFT. This is done first of all taking what
is called concordance classes of SQFT. The physical interpretation of this equivalence
relation is not clear, but the idea we rely on is that theories of the same class are the
ones that can be connected by what we have called in section 2.2.3 flowing up and down
the RG trajectories. In particular, this equivalence gives us the notion of homotopy in

10Let us remember that there is a relation between elliptic curves and tori.
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the set SQFT. For this reason, from now on, when we talk about theories of the same
homotopy type, we mean they belong to the same concordance class. Also we need to
take only local field theories, due to the fact that otherwise there is no hope for this set
to fulfill the axiom 3 on page 49 for the definition of a cohomology theory. But there is
no formal definition of local euclidean field theory.

Hence, at this stage, we can formulate the conjecture due to Stolz and Teichner as

Conjecture 3.2.1. There exists an isomorphism

2|1-EFTnloc[X] ≃ TMFn(X)

where 2|1-EFTnloc[X] is the set of 2-dimensional N = (0, 1) supersymmetric local
euclidean field theories of degree n over a manifold X considered up to concordance,
while TMF is the generalized cohomology theory of topological modular forms.

We need to do two more comments on this conjecture. First of all, we have seen how
TMF is actually a so-called Ω-spectrum, but, even if we have identified a sort of degree
for the SQFT’s, we have not said anything about this type of structure. We will show in
section 3.2.4 that the set of SQFT has a natural structure of an Ω-spectrum. Then we
have also seen that TMF has periodicity 242, so we expect that the same property has to
be true for SQFT. However this is not proven yet (and so is one of the fact that makes
this statement only a conjecture). What Stolz and Teichner proved in [ST11] was that
SQFT has a 48 periodicity. In particular, they showed that there exists a field theory
P ∈ 2|0-EFT−48 which is a periodicity element, i.e. it gives an equivalence

2|0-EFTn(X) 2|0-EFTn−48(X)∼ .

Also they showed that theories in 2|0-EFT with spin structure are related to 2|1-EFT, so
this periodicity element P ∈ 2|0-EFT translates into a periodicity element in 2|1-EFT.
The hope, pointed out in [ST11], is that, after properly defining the locality condition for
SQFT, the 48 periodicity will turn in a 242 periodicity.

3.2.3 Gravitational anomaly

What we want to do now is to give some elementary notions on gravitational anomaly in
order to explain why we consider it as the cohomological degree for SQFT.

First of all, let us recall that, roughly speaking, anomalies occur when some sym-
metries of the classical actions are not preserved at the quantum level. In particular,
classical symmetries translate into the so-called Slavnov-Taylor identities for the quantum
effective action. In general, these identities are crucial in order to prove unitarity and
renormalizability of the theory. However, in proving the Slavnov-Taylor identities from
the classical symmetries, we need to require the invariance under the symmetries of the
integral measure. If this is not true we have an anomaly, i.e. the quantum effective action
is not invariant at one-loop level. Anomalies occur also in theories with gravitational cou-
plings only, in which case they are called (purely) gravitational anomalies (the term
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purely is due to the fact that also theories with both gauge and gravitational interactions
can have anomalies, in which case they are called mixed gauge-gravitational anomalies).
In particular they can occur only in (4k + 2)-dimensional theories with k ∈ Z≥0 that
contain spin-12 or spin-32 fields of definite chirality or an anti-symmetric tensor with 2k+1
indices which obeys a duality condition ( [AW84]). We will not enter in the details of why
this happens, but we want to give a very rough justification. First of all we can prove that
the only possibly anomalous part of the effective action is the imaginary one. So then,
in order to find matter fields in an n dimensional euclidean space-time, we have to look
at complex representations of the so-called holonomy group of the space-time manifold,
which is O(n) or a subgroup of it. But complex representation of O(n) can be found only
for n = 4k + 2. Then it can be seen that the only representations which actually give
gravitational anomaly are the ones listed above.

As we have said in section 2.3.2, in a non-anomalous theory, the Witten index
is invariant under T-transformation of the modular parameter. If instead F has a
gravitational anomaly w ∈ 1

2Z we have that ZRR(F) suffers a multiplier under T -
transformation, i.e.

T
[︁
ZRR(F)

]︁
= e−2w 2πi

24 ZRR(F) .

In order to explain the reason why this anomalous multiplier appears, let us start recalling
from (1.18) that each free fermion gives to the vacuum energy a contribution of 1

16 . So,
let us consider a generic theory with n bosons and n anti-chiral fermions, with central
charges

c = n , c =
3

2
n ,

from which the gravitational anomaly is

w = c− c = n

2
.

In this theory we have that the eigenvalue of L0 on the ground states is 0, while the
eigenvalue of L0 on the ground states is n

16 , since there are n anti-chiral fermions. Hence
it follows that, for a generic state

the eigenvalues of L0 −
c

24
are in Z− n

24
,

the eigenvalues of L0 −
c

24
are in Z+

n

16
− 3

2
· n
24

= Z .

This means that, computing the T-transformed elliptic genus

ZRR(τ + 1, τ + 1) = Tr
[︂
(−1)F qL0− c

24 qL0− c
24 e2πi

(︁
L0− c

24
−L0− c

24

)︁]︂
,

from which we conclude

ZRR(τ + 1, τ + 1) = e−n
2πi
24 ZRR(τ, τ) = e−2w 2πi

24 ZRR(τ, τ)
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However we can “adjust” the Witten index in a clever way, obtaining what is properly
called Witten genus11, rescaling it in the following way

ZRR(F) → Z ′
RR(F) := ZRR(F)η(τ)2w ,

where η(τ) is the Dedekind’s eta function

η(τ) = q1/24
∞∏︂
j=1

(1− qj) ,

which under T-transformation behaves as

η(τ + 1) = e
2πi
24 η(τ) .

This rescaling is useful since, in this way, the Witten genus of a theory F with gravitational
anomaly w is a modular form of weight w and trivial multiplier. In particular the
Witten genus maps the theory F ∈ SQFT to a modular form of the same weight as the
gravitational anomaly of the theory Z ′

RR(F) ∈ MFw. But as we have said, there exists
the elliptic genus map

πn(tmf) MFn/2 ∀n ∈ Z ,

thanks to which, for all n ∈ Z, we can write the following diagram

SQFT MFn/2

πn(tmf)

.

The map that fills the dotted arrow is the one conjectured by Stolz and Teichner, and,
from this diagram, where we can substitute TMF to tmf without any difficulties, we see
that, in order to be consistent, the cohomological degree of the theory in SQFT with
gravitation anomaly w has to be given by n = −2w (the minus sign is due to the fact
that we are talking about cohomological degree instead of homological one).

On the η-function in the Witten genus

We have defined the Witten genus for a gravitationally anomalous theory rescaling the
elliptic genus by η2w(τ), in such a way the result to be a modular form with a trivial
multiplier. However, it is useful to restate this procedure in terms of the so-called spectator
fermions.

Let us start considering a SQFT F with gravitational anomaly w. In order to “trivialize”
the anomaly, we can tensor F with the holomorphic theory of n = 2w free chiral fermions

Fer(n) :=
(︁
Fer1

)︁⊗n
.

11Here we have an ambiguity in the name. As we have seen yet, the Witten index and the elliptic genus
are strictly related, while the Witten genus is the same as the elliptic genus, but rescaled. Despite these
small differences, we will use the three names without making any difference, since the exact quantity
used will be always clear from the context.
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The central charge of this theory is n
2 , from which we can deduce that the eigenvalues of

L0 − c
24 are in

Z+
n

16
− 1

2
· n
24

= Z+
n

24
.

Hence we get that, since the elliptic genus of the product theory is the product of the
elliptic genera of the sub-theories, under T-transformation we get an extra factor en

2πi
24

which cancel the factor due to the anomaly in F . In this way we conclude that the
product theory is non-anomalous.

Now let us try to compute the elliptic genus of the non-anomalous theory F ⊗ Fer(n).
The problem now is that the elliptic genus of the theory Fer(n) is vanishing, due to
the presence of the fermionic zero modes in the Ramond-Ramond sector. Indeed, the
fermionic zero modes, since they are fermionic operators, exchange bosonic and fermionic
states. Also they commute with L0 and hence with the Hamiltonian, and they do not
have neither the kernel nor the cokernel, since (ψi0)

2 = 1
2 . This implies that, for each

eigenvalue of L0, the number of bosonic and fermionic state is the same, hence the elliptic
genus vanishes.

In order to solve this problem and obtain a non-vanishing result, let us start rescaling
the fermionic zero modes as

γi := 2
1
2ψi0 , (3.4)

in such a way that they are the generators of the Clifford algebra Cliff(n)

{γi, γj} = 2δij .

Then, let us add to the trace the operator

γ5 = (−1)
n
4 γ1 · · · γn .

This is such that

• its square is equal to 1;

• it anti-commutes with all the fermionic zero modes.

This implies that, when it acts on the ground states, it acts as the operator (−1)F modulo
a sign (from now on let us choose the plus sign, however nothing change with the opposite
choice). In this way the ground states related by the action of ψi0 for certain i = 1, . . . , n
give a contribution with the same sign, and do not cancel each other anymore.

When we consider the action on the other modes ψik, k ̸= 0, the operator γ5 commutes
with them, hence things are different. So let us perform the computations. The Hilbert
space of the theory Fer(n) can be factorized dividing the ground states (gs) and the
excited states (es). The n-point function computed on the ground states reads

⟨(−1)
n
4 :ψ1 · · ·ψn:⟩gs = Trgs

[︁
(−1)F (−1)

n
4 ψ1

0 · · ·ψn0 qL0− c
24 qL0− c

24
]︁

= 2−
n
2 Trgs

[︁
(−1)F (−1)

n
4 γ1 · · · γn

]︁
=

= 2−
n
2 Trgs

(︁
γ25
)︁
= 1
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The complete Hilbert space is obtained by acting on the vacuum state with creation
operators

ψik , k > −1

2
.

Since this operators, as we have explained yet, commute with γ5, we have that the n-point
function on the whole Hilbert space is

⟨(−1)
n
4 :ψ1 · · ·ψn:⟩ = Trgs

[︁
(−1)Fψ1

0 · · ·ψn0
]︁(︂

Tres
[︁
(−1)F qL0− 1

48 qL0− 1
48
]︁)︂n

.

We are considering only chiral fermions, so the operator qL0− 1
48 acts trivially. Also let us

remember the expression (1.18) and notice that the fermion number operator factorizes
on the fermonic modes, that is

F =
∑︂
m≥0

Fm , Fm = ψ−kψk , k > 0 ,

while F0 is defined such that it is zero when it acts on |0⟩, while it is 1 acting on ψ0 |0⟩.
Hence we get

Tres

[︂
(−1)F qL0− 1

48

]︂
= Tres

[︂
(−1)

∑︁
m>0 Fmq

∑︁
k>0 kψ−kψkq

1
24

]︂
=

= q
1
24

1∑︂
m1=0

1∑︂
m2=0

· · · ⟨m1,m2, . . .|
∏︂
k>0

(−1)Fkqkψ−kψk |m1,m2, . . .⟩ =

= q
1
24

1∑︂
m1=0

1∑︂
m2=0

· · · ⟨m1,m2, . . .|
∏︂
k>0

(−1)Fkqkmk |m1,m2, . . .⟩ =

= q
1
24

∞∏︂
k=1

1∑︂
mk=0

(−1)Fkqkmk =

= q
1
24

∞∏︂
k=1

(1− qk) = η(τ) ,

where we have used the fact that a generic state is

|m1,m2 . . .⟩ = (ψ1)m1(ψ2)m2 · · · |0⟩ ,

and the operator ψ−kψk is the fermionic number operator for the k-th mode. Hence, we
conclude that

⟨(−1)
n
4 :ψ1 · · ·ψn:⟩Fer(n) = η(τ)n . (3.5)

When we consider the theory F ⊗ Fer(n), if we compute the n-point function of the
operator (−1)

n
4 :ψ1 · · ·ψn:, we have that the Hilbert space of the whole theory factorizes

in the Hilbert spaces of the two sub-theories, and the result is given by the n-point
function of the operator in the theory Fer(n), times the elliptic genus of the theory F ,
that is

⟨(−1)
n
4 :ψ1 · · ·ψn:⟩F⊗Fer(n) = η(τ)nZRR(F) ,

which is exactly the Witten genus we have defined above.



68 3. The Stolz and Teichner program

3.2.4 SQFT as an Ω-spectrum

We have seen that the set TMF has a particular structure known as Ω-spectrum. Hence,
in order to compare the set SQFT with it, we need the former to have the same structure.
What we are going to see now is that SQFT is naturally endowed with this structure,
without any further requirement. Let us start from the choice of the basepoint for
our spaces. With the definition we have given of a QFT we can define the zero QFT
0 ∈ SQFT• as the TQFT which associates “0” to every non empty input, i.e. its partition
function is zero, its Hilbert space is zero-dimensional, and so on. In order to give a
physical interpretation to this theory it is sufficient to notice that asking for a theory F
to spontaneously break supersymmetry is the same as saying that the theory F flows to
0 under the action of the RG-flow, where the RG-flow is a canonically defined action of
the monoid R≥0 on SQFT•. In general we will say that F flows to FIR if FIR is the limit
under the RG-flow starting from F . We can consider these two notions as equivalent
for the following reason. As we know, a theory breaks supersymmetry if there are no
supersymmetric ground states, or, in other words, ground states at zero energy. If this
is what happens, the energy spectrum has necessarily some strictly positive minima
(is a well-known fact that, in a unitary supersymmetric theory, the spectrum of the
Hamiltonian is always positive semi-definite). Hence, going down in energy flowing the
RG trajectories, we reach at some point below the minima, a theory with no states, that
is the zero QFT defined above.

Now we have to build the map

SQFTn ΩSQFTn+1

and then verify it is a weak homotopy equivalence. In particular, let us notice that,
from the definition of the loop space, a point in ΩSQFTn is an R-family x F(x) of
theories in SQFTn that reach the basepoint at the “extrema” of R, hence that breaks
supersymmetry for x≪ 0 and x≫ 0, or, in other words, such that F(x) goes to the QFT
0 for x→ ±∞.

In order to build the map we are interested in, let us consider the theory Fer1, that is
a conformal field theory of a single chiral Majorana fermion ξ with trivial supersymmetry.
The lagrangian is the same as (2.4), that is, recalling that ξ is the upper component of a
Fermi superfield Λ = ξ + θF ,

LΛ =
i

2
ξ∂uξ +

1

2
F 2 .

Let us notice that the triviality of the supersymmetry follows once we impose the equation
of motion for F given by

∂LΛ
∂F

= 0 =⇒ F = 0 .

However, breaking conformal invariance, we can endow our theory with a different
supersymmetry. This can be done by adding a superpotential

W (Φ) = −x x ∈ R ,
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from which

SW =

∫︂
dudv dθΛW (Φ) =

=

∫︂
dudv dθ (ξ + θF )(−x) =

=

∫︂
dudv (−xF ) .

From here it follows that the lagrangian of the theory is

LΛ+W =
i

2
ξ∂uξ +

1

2
F 2 − xF , (3.6)

and integrating out in a trivial way the auxiliary field F we get

LFer1(x) =
i

2
ξ∂uξ −

1

2
x2 .

It gives us a family of SQFT’s depending on a real parameter x ∈ R which we call Fer1(x).
Let us notice that now, once imposed the equation of motion of F , i.e. on-shell, we have
that supersymmetry acts on ξ as

ξ −→ x .

Also, the potential energy is constant and, for x ̸= 0, it is strictly positive

V =
1

2
x2 > 0 ,

hence supersymmetry is spontaneously broken. At this point, given a theory F ∈ SQFTn,
we define the corresponding family in ΩSQFTn+1 as F ⊗ Fer1(x), thus defining the map

SQFTn ΩSQFTn+1

F F ⊗ Fer1(x)

.

We have seen that, if x ̸= 0, the theory Fer1(x) spontaneously breaks supersymmetry,
and so the same is true for F ⊗ Fer1(x). This implies that the R-family

x F ⊗ Fer1(x)

is actually a point in ΩSQFTn+1. What we need to do is to verify that this map just
defined is an homotopy equivalence.

Let us start considering the so-called dynamicalization map

ΩSQFTn+1 SQFTn

which, given a point in ΩSQFTn+1, i.e. a family x F(x), promotes the parameter x
to a dynamical scalar multiplet. This is done substituting the parameter x with a scalar
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superfield Φ = φ+ iθψ, with ψ an anti-chiral fermion field. Let us write the result of this
procedure as

F(x) ↦→
∫︂
Φ
F(Φ) .

Let us assume, without proving it, that, given a family
(︁
x ↦→ F(x)

)︁
∈ ΩSQFTn+1, the

theory
∫︁
ΦF(Φ) is compact. This dynamicalization map is our proposed homotopy inverse.

Hence, in order to verify that

F ↦−→ {x ↦→ F ⊗ Fer1(x)}

is an homotopy equivalence, it is sufficient to verify that its compositions with
∫︁
Φ are

homotopic to the identity.
Let us start from studying the composition

F ↦−→ F ⊗ Fer1(x) ↦−→
∫︂
Φ
F ⊗ Fer1(Φ) .

Since the copy of the theory F comes out of the integral, it is enough to verify the
dynamicalization

∫︁
Φ Fer1(Φ) to be deformable in a continuous way to the trivial theory

1 ∈ SQFT0. Hence let us come back to the theory Fer1(x) and dynamicalize it. The first
step is to promote x to a dynamical superfield Φ

x ↦−→ Φ = φ+ iθψ ,

adding of course the kinetic term for it, given by

SΦ =
i

2π

∫︂
dudv dθ ∂vΦDΦ ,

whose expansion in terms of ordinary fields is given by (2.3), that is

LΦ =
1

2
∂vφ∂uφ+

i

2
ψ∂vψ . (3.7)

Moreover, we need to modify also the superpotential interaction

W (Φ) = −x ↦−→ W (Φ) = −Φ ,

from which the interaction term becomes

SW =
1

π

∫︂
dudv dθΛW (Φ) =

=
1

π

∫︂
dudv dθ (ξ + θF )(−φ− iθψ) =

=
1

π

∫︂
dudv dθ (−ξφ+ iθξψ − θFφ) =

=
1

π

∫︂
dudv (iξψ − Fφ) ,
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in such a way that the full lagrangian is

LΛ+Φ+W =
1

2
∂uφ∂vφ+

i

2
ξ∂uξ +

i

2
ψ∂vψ + iξψ − Fφ+

1

2
F 2 .

Integrating out the field F imposing the equation of motion F = φ, we obtain

L∫︁
Φ Fer1(Φ) =

1

2
∂vφ∂uφ−

1

2
φ2 +

i

2
ξ∂uξ +

i

2
ψ∂vψ + iξψ ,

which we recognize as the theory of a massive Majorana fermion

χ :=

(︃
ψ
iξ

)︃
, (3.8)

and of a massive scalar field φ. This means that the behavior of this theory in the IR is
obtained substituting

φ, ξ, ψ ↦−→ 0 .

In this way we have found that

F ↦→ F ⊗ Fer1(x) ↦→
∫︂
Φ
F ⊗ Fer1(Φ) ↦→ F ⊗

∫︂
Φ
Fer1(Φ)

W↦−→ F ,

as we wanted.
The other composition is given by

F(x) ↦−→
∫︂
Φ
F(Φ) ↦−→

∫︂
Φ
F(Φ)⊗ Fer1(x) .

Before going on let us notice one fact we have implicitly assumed yet. When we deal with
family of theories, we are considering the case in which the field content of F(x) or every
kinematical information does not depend on the parameter x. What instead depend on
x are the lagrangian, the supercharge and every dynamical information. This is quite
reasonable. Indeed, if a field exists only for certain values of x, it is sufficient to extend
it in such a way that it exists for all x, but it is very massive except for those values it
was define earlier. Even if we are not able to topologize the set SQFT, the idea is that it
should be done in a way that cares primarily about low-energy effective field theories,
hence very massive fields are just small deformations which do not change the homotopy
type of the family F( · ).

Now, in order to study the composition above, we need first of all to dynamicalize the
parameter x in the family of theories F(x). Since the action of the theory

∫︁
du dv LF is

supersymmetric, we have that its supersymmetric variation has to be a total derivative,
that is

Q[LF (x)] = ∂uY
u(x) + ∂vY

v(x) ,

for some Y u and Y v. Remembering that Q2 = i∂u and that the supercharge commutes
with ordinary derivatives, we have

Q2[LF (x)] = i∂uLF (x) = ∂uQ[Y u(x)] + ∂vQ[Y v(x)] ,



72 3. The Stolz and Teichner program

hence
∂u

(︂
iLF (x)−Q[Y u(x)]

)︂
= ∂vQ[Y v(x)] .

Now we want to integrate both sides in
∫︁
dv. In doing this, we have that the RHS is

a boundary term, hence it does not depend on the finite values of v. Looking at the
previous identity as an identity of functionals on the fields, we have that also the LHS
has to be independent on the finite values of v. In other words, iL(x) and Q[Y u(x)], seen
as functionals on the fields at finite v, differ by a quantity D which does not depend on u.
This allows us to shift the lagrangian as

iLF (x) ↦−→ iLF (x)− ∂u(uD) ,

in such a way that iL(x) and Q[Y u(x)] coincide, and replacing L(x) with −iQ[Y u(x)] we
get the same action. We can write then

Q[Y u(x)] = iLF (x) ,

and applying the supercharge Q to both sides we obtain

Q[LF (x)] = ∂uY
u(x) ≡ ∂uY (x) ,

eliminating in this way the Y v(x) term. Now let us define the quantity

˜︁L(x) := −iY (x) + θLF (x) .

This is a superfield, indeed its supersymmetric variation reads

Q[ ˜︁L(x)] = −iQ[Y (x)] + θQ[LF (x)] = LF (x) + θ∂uY (x) =
(︁
∂θ + iθ∂u

)︁ ˜︁L(x) .
It is now clear that

LF (x) =
∫︂

dθ ˜︁L(x) .
Finally we promote x to the scalar superfield

Φ(u, v, θ) = φ(u, v) + iθψ(u, v) ,

obtaining, expanding in θ,∫︂
dθ ˜︁L(Φ) = ∫︂ dθ

(︂
− iY u(Φ) + θY ′(φ)ψ + θLF (φ)

)︂
=

= Y ′(φ)ψ + LF (φ) .

with clearly Y ′(x) = ∂xY (x). Also, we need to add the kinetic term for Φ given by
equation (3.7). The next step consists in tensoring this theory with Fer1(x), which results
in adding to the lagrangian the terms in (3.6), obtaining

LF(Φ)⊗Fer1(x) = LF (φ) + Y ′(φ)ψ +
1

2
∂uφ∂vφ+

i

2
ψ∂vψ +

i

2
ξ∂uξ +

1

2
F 2 − Fx .
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Now let us deform this SQFT introducing the superpotential

W (Φ) = f(Φ) ,

for some polynomial f ∈ R[x]. The action term for this potential is given by

SW =
1

π

∫︂
dudv dθΛW (Φ) =

=
1

π

∫︂
dudv dθ (ξ + θF )f(Φ) =

=
1

π

∫︂
dudv dθ (ξ + θF )

(︂
f(φ) + iθ

∂f(φ)

∂φ
ψ
)︂
=

=
1

π

∫︂
dudv dθ

(︁
ξf(φ)− iθξf ′(φ)ψ + θFf(φ)

)︁
=

=
1

π

∫︂
dudv

(︁
− iξf ′(φ)ψ + Ff(φ)

)︁
,

where of course

f ′(φ) :=
∂f(φ)

∂φ
.

Thanks to this new term the total lagrangian becomes

LTot = LF (φ)+Y ′(φ)ψ+
1

2
∂uφ∂vφ+

i

2
ψ∂vψ+

i

2
ξ∂uξ+

1

2
F 2−Fx− iξf ′(φ)ψ+Ff(φ) .

Integrating out the field F imposing the equation of motion

F = x− f(φ) ,

we get

LTot = · · ·+
1

2

(︁
x− f(φ)

)︁2 − x(︁x− f(φ))︁+ f(φ)
(︁
x− f(φ)

)︁
=

= LF (φ) + Y ′(φ)ψ +
1

2
∂uφ∂vφ+

i

2
ψ∂vψ +

i

2
ξ∂uξ − iξf ′(φ)ψ −

1

2

(︁
x− f(φ)

)︁2
,

where the ellipsis stand for those terms that do not change. If we now choose f(φ) = φ,
the lagrangian reads

LTot =
[︁
LF (φ) + Y ′(φ)ψ

]︁
+
[︂1
2
∂uφ∂vφ+

i

2
ψ∂vψ +

i

2
ξ∂uξ − iξψ −

1

2
(x− φ)2

]︂
.

Here, looking at the second bracketed expression, we see that the field φ gets a mass
with vacuum expectation value given by x, and also the fermion χ, defined as (3.8),
becomes massive. This means that the behavior of the theory in the IR can be obtained
substituting

φ ↦−→ x , ξ, ψ ↦−→ 0 ,
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hence recovering the original theory F(x). In this way we have found that

F(x) ↦→
∫︁
ΦF(Φ) ↦→

∫︁
ΦF(Φ)⊗ Fer1(x)

W↦−→ F(x) .

In conclusion, even if we are not able to properly define the set SQFT, we have shown
that, relying on the physical intuition of what a QFT is, the set SQFT has naturally
maps

SQFTn ΩSQFTn+1 ,

for all n ∈ Z, which induce isomorphisms at the level of the homotopy groups, and so
that give to the set the structure of an Ω-spectrum, as we expected.



Chapter 4

A secondary invariant

We have found in chapter 2 a limit under RG flow of the sigma model with target S3
k , and

we have seen that, if k = 0 mod 24, the theory spontaneously breaks supersymmetry. We
have also noticed that the Witten genus of this model is zero, so it gives us no information
on the spontaneous breaking of the supersymmetry. In order to see whether the condition
k = 0 mod 24 is also a necessary condition for the spontaneous breaking, we need to
find a new and more refined invariant for our theories. This will be achieved describing
the Witten genus for non-compact theories, and see how its properties change in this
situation.

Let us start with some nomenclature. We will say that a (1 + 1)-dimensional theory
with N = (0, 1) supersymmetry is null if supersymmetry is spontaneously broken, while
it is said nullhomotopic if it can be connected to a null theory via the deformations
that in section 2.2.3 on page 33, we have indicated as flowing up and down the RG flow.

Now we want to focus our attention on a possible way to enlarge the set SQFT, which
will bring us to formalize a sort of “mild” non-compactness, that is theories which violate
compactness in a controllable manner.

In what follows we will change our previous notation, identifying the gravitational
anomaly as

n = 2(c− c) .

This will be done in order to have an integer quantity.

4.1 Mildly non-compact theories

The first step consists in enlarging the set SQFT, allowing the theories to have more
general properties. In particular, up to now we have only considered compact theories.
As we have explained in 2.3.2 on page 37 , this definition is inspired from the case of
sigma models, where compact models are the ones with a compact manifold as a target.
In defining non-compact theories we want, again, to mimic sigma models whose target
manifolds have an asymptotic boundary region which approaches a configuration R+×N ,
with N a compact manifold, as seen in section 2.2.3.
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In the case of a general SQFT, a theory F of this type is described as follows.
The theory depends on a local scalar superfield Φ which parametrizes the non-compact
direction. Then, let us add to F the theory of a single chiral Fermi superfield Λ = ξ+ θF ,
in such a way that the lagrangian of the theory reads (we neglect the computations since
they are the same as the ones we have done several times before)

LF(Φ)⊗Fer1 = LF(Φ) +
i

2
ξ∂uξ +

1

2
F 2 .

Now we add the superpotential

W (Φ) = Φ− p with p ∈ R ,

whose contribution to the lagrangian, expanding as usual the superfield Φ as Φ = φ+ iθψ,
is

SW =

∫︂
du dv dθΛW (Φ) =

=

∫︂
du dv dθ (ξ + θF )(φ+ iθψ − p) =

=

∫︂
du dv dθ (ξφ− iθξψ − ξp+ θφF − θpF ) =

=

∫︂
du dv

(︁
− iξψ + F (φ− p)

)︁
,

hence
LBp = LF(Φ) +

i

2
ξ∂uξ − iξψ +

1

2
F 2 + F (φ− p) .

Integrating out F substituting it with its equations of motion F = −(φ− p), we obtain

LBp = LF(Φ) +
i

2
ξ∂uξ − iξψ −

1

2
(φ− p)2 ,

thanks to which we have obtained a family of SQFT’s Bp parametrized by p ∈ R. We
require the family Bp to be made of compact theories which approach a compact theory
B for p≫ 0, and spontaneously break supersymmetry, that is approach the zero QFT,
for p≪ 0.

In other words, we require that the family Bp, built from F as we have explained, is
a nullhomotopy of the compact theory B, that is a deformation of the theory B which
connects it to the zero QFT. Also, we can alway associate to any nullhomotopy of B
a mildly non-compact theory F dynamicalizing the parameter of the deformation to a
chiral superfield, as we have explained in section 3.2.4, which corresponds to reverse the
steps above. Summarizing we have find that

mildly non-compact SQFT F
with 1 cylindrical end nullhomotopy of a compact SQFT B∼
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The condition we have described is identified saying that the theory F has cylindrical end.
This definition can be easily generalized producing an homotopy between two theories B
and B′, simply requiring that, for p≪ 0 the family of theories approaches B′. However,
despite this requirement, the elliptic genus, defined as usual as the path integral on the
torus with Ramond-Ramond boundary conditions, has no reasons to converge. In order
to make sure that this definition makes sense, we need to ask that the ZRR vanishes on
the boundary theory, that is

ZRR(B) = 0 . (4.1)

This condition is not restrictive at all, since, if the elliptic genus of F is well-defined, we
expect the elliptic genus of B to vanish, being F a nullhomotopy of B. Once imposed (4.1),
we expect the theory to converge conditionally, indeed the end will be of the form R≫0×B,
hence the contribution to the elliptic genus will be

ZRR(B)× vol(R≫0) ≃ 0× vol(R≫0) ,

which we take to vanish. This ensure us to have a well-defined elliptic genus in this
non-compact case. However, some of the properties of the elliptic genus are different than
in the compact case, but looking at how they change, we will obtain crucial information
on the non-compact theory itself, which will allow us to defined the invariant we need.

4.1.1 Holomorphic anomaly equation

The holomorphicity argument shown in section 2.3.2 is valid only since we are dealing
with a theory with a discrete spectrum, in which case we can focus only on ground states.
The same thing cannot be done in the case of a non-compact theory as the one defined
earlier, and indeed the elliptic genus is not holomorphic anymore. However the anomaly
in the holomorphicity of a mildly non-compact theory F with gravitational anomaly n
can be computed, and in [GJ19] was proposed the following holomorphic anomaly
equation

√
−8τ2

∂

∂τ

[︁
ηn(τ)ZRR(F)(τ, τ)

]︁
= gB(τ, τ) , (4.2)

where τ2 = 1
2i(τ − τ) is the imaginary part of τ , while

gB(τ, τ) = ( torus one-point function of (−1)
n
4 :ψ1 · · ·ψn−1G: in Fer(n− 1)⊗ B ) .

Here B is the compact theory related to F in the way we have explained, while G is
the anti-holomorphic component of the supercurrent, that is the superpartner of the
energy-momentum tensor.

This equation can be easily generalized in the following way. Let us consider a non-
compact theory F with gravitational anomaly n, to which we can associate a family of
theories Bp. Now let us suppose that Bp stabilizes to a compact SQFT B+ for p≫ 0, and
to another compact SQFT B− for p≪ 0. In this case the holomorphic anomaly equation
can be written as

√
−8τ2

∂

∂τ

[︁
ηn(τ)ZRR(F)(τ, τ)

]︁
= gB+(τ, τ)− gB−(τ, τ) .
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4.1.2 Integrality of the q-expansion: compact case

We have seen in 2.3.2 that the elliptic genus, in the compact case, has an integral q-
expansion. This was shown in the following way. Let F be a compact SQFT and let us
compactify the spatial direction on a circle S1 of radius R. In this way we have obtained a
new theory F [S1] and we have that the action on the circle, i.e. the momentum operator
P , is quantized. Hence, for each eigenvalue k of the S1-action, parametrized by the
variable q, we have a supersymmetric quantum mechanics model. Therefore, the Witten
genus of the original theory, ηnZRR(F), for each k, restricts to the Witten index of a SQM,
which is of course an integer, simply counting with sign the number of the supersymmetric
ground states.

Then we want to refine the definition of the index in order to extend it in a useful
way to gravitational anomalous theories. The first step is to define what a degree n SQM
model is, interpreting this notion in term of the spectator fermions as we have done in
the definition of the Witten genus.

A degree n SQM model is a SQM model with Hilbert space H, endowed with
the action of the n-th Clifford algebra Cliff(n). In terms of the spectator fermions, this
algebra is the one generated by (after a simple rescaling shown in equation (3.4)) the
fermions ψi’s themselves. The SQM models we are interested in are obtained from the
compactification of (1+ 1)-dimensional SQFT’s, and from this follows that they have also
a time-reversal symmetry (see [Guk+18]). The presence of the time reversal symmetry
equips the Hilbert space H with a real structure, hence the Clifford algebra that acts on
it is the real one Cliff(n,R).

In this framework, the supersymmetric ground states are a finite-dimensional Cliff(n,R)-
module V , given by the action of the zero modes of the spectator fermions on the vacuum
state (indeed, let us recall from equation (1.15) that [L0, ψ

i
0] = 0, hence the vacuum state

is degenerate, and its degeneracy is given exactly by the action of the ψi0’s). However,
the usual supersymmetric Witten index is defined depending on1 V ⊗ C as a Cliff(n,C)-
module, ignoring the time-reversal symmetry. In particular, if n is even, the complex
Clifford algebra Cliff(n,C) has two irreducible modules, which differ by parity. If we
choose one of them as the one with positive parity I, we have that

V ⊗ C ≃ Ia|b = I ⊗C Ca|b ,

where Ca|b is the complex super-vector space with graded dimension (a, b). The Witten
index is defined as

index := a− b .

Indeed, from a more physical perspective, we have that a generic Cliff(n,C)-module M is
Z2-graded, hence can be decomposed as

M =M0 +M1 ,

1The fact that the complex module in Cliff(n,C) corresponding to a real module V of the real algebra
Cliff(n,R) is given by the complexification of V , is a standard result in the theory of modules of Clifford
algebras ( [ABS64]). It is related to the fact that complexifing the real Clifford algebra Cliff(n,R), we
get the complex Clifford algebra corresponding to the complexified quadratic form, that is Cliff(n,C).
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where these components will be connected by the grading morphisms given by the action
of the zero modes

ψi0 : M0 M1 .

Since ψi0 is a fermionic operator, we have that it exchange bosonic and fermionic states.
From here follows that choosing the parity of the modules is the same as choosing bosonic
and fermionic ground states, and then the definition of the Witten index is the usual one.
Analogously, the two irreducible modules M0 and M1 can be seen as the eigenspaces of
a fermionic number operator (−1)F . In particular, always for even n, the operator on
which eigenspaces we are interested in is

(−1)
n
4 γ10 · · · γn0 , (4.3)

Here, the γi0’s are the generators of the Clifford algebra

{γi, γj} = 2δij .

They are obtained by the zero modes of the fermions up to a multiplicative factor,
ψi0 = 2−

1
2γi, which generate the algebra

{ψi0, ψ
j
0} = δij .

The operator (4.3) satisfies the following properties (whose proofs are trivial)(︂
(−1)

n
4 γ10 · · · γn0

)︂2
= 1 ,

{︂
(−1)

n
4 γ10 · · · γn0 , γi0

}︂
= 0 ,[︂

(−1)
n
4 γ10 · · · γn0 , (−1)F

]︂
= 0 .

These imply that (−1)
n
4 γ10 · · · γn0 has eigenvalues ±1 and can be diagonalized simultane-

ously to (−1)F . In this case the two irreducible modules can be identified by the two
different choices of the relation between (−1)

n
4 γ10 · · · γn0 and (−1)F , indeed they can be

either
(−1)

n
4 γ10 · · · γn0 = (−1)F or (−1)

n
4 γ10 · · · γn0 = −(−1)F .

However we are interested in the situation in which V is a Cliff(n,R)-module, so let
us see what happens in this case, remembering that the modules of real Clifford algebras
are classified with periodicity 82.

• If n = 0 we have the usual situation, in which we known the index to be an integer,
hence index ∈ Z.

• If n = 2, the generators of the module are

γ1 :=
1√
2
ψ1
0 , γ2 :=

1√
2
ψ2
0 .

2We are going to study only the cases in which n ∈ 2Z. Indeed, we are no interested in odd n since
there is no modular form of weight not divisible by 2.
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Hence the Cliff(n,R)-module J has dimension 4 and it has as a basis

|0⟩ , γ1 |0⟩ , γ2 |0⟩ , γ1γ2 |0⟩ ,

where the first and the last states are bosonic, while the others are fermionic. Once
complexified, we have that the module J ⊗ C decomposes into two irreducible
modules of complex dimension 2, generated by the basis

|α1⟩ := (γ1 − iγ2) |0⟩ , |α2⟩ := (1− iγ1γ2) |0⟩ ,

and
|β1⟩ := (γ1 + iγ2) |0⟩ , |β2⟩ := (1 + iγ1γ2) |0⟩ .

In both cases, the first state is fermionic, while the second is bosonic. However,
looking at the eigenvalues of iγ1γ2 relative to these states, we get

(iγ1γ2) |α1⟩ = |α1⟩ , (iγ1γ2) |α2⟩ = − |α2⟩
(iγ1γ2) |β1⟩ = − |β1⟩ , (iγ1γ2) |β2⟩ = |β2⟩ ,

from which the difference in parity is clear. Summarizing we have that

J ⊗ C ≃ I1|1 ,

so
index = 0 for n = 2 mod 8 .

• If n = 6 we get the same behavior as the n = 2 case, hence we can summarize the
two results saying that

index = 0 for n = 2 mod 4 .

• If n = 4 we have 4 generators of the module, that is

γ1 :=
1√
2
ψ1
0 , γ2 :=

1√
2
ψ2
0 , γ3 :=

1√
2
ψ3
0 , γ4 :=

1√
2
ψ4
0 .

In this case there are two irreducible Cliff(n,R)-modules which differs for the parity,
J1|0 and J0|1, which have as basis respectively

(γ1γ3 − γ2γ4) |0⟩ , (γ1γ4 + γ2γ3) |0⟩ , (γ1γ2 + γ3γ4) |0⟩ , (1− γ1γ2γ3γ4) |0⟩ ;
(γ1 − γ2γ3γ4) |0⟩ , (γ2 + γ1γ3γ4) |0⟩ , (γ3 − γ1γ2γ4) |0⟩ , (γ4 + γ1γ2γ3) |0⟩ ,

and

(γ1γ3 + γ2γ4) |0⟩ , (γ1γ4 − γ2γ3) |0⟩ , (γ1γ2 − γ3γ4) |0⟩ , (1 + γ1γ2γ3γ4) |0⟩ ;
(γ1 + γ2γ3γ4) |0⟩ , (γ2 − γ1γ3γ4) |0⟩ , (γ3 + γ1γ2γ4) |0⟩ , (γ4 − γ1γ2γ3) |0⟩ .
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Here, the eigenvalues of (−1)γ1γ2γ3γ4 for the states of J1|0 are such that they are
+1 for the bosons and −1 for the fermions, and the opposite for the states in J0|1.
If we look at the complexified module J1|0 ⊗ C, we see that it has as basis(︂

(γ1γ3 − γ2γ4)− i(γ1γ4 + γ2γ3)
)︂
|0⟩ = (γ1 − iγ2)(γ3 − iγ4) |0⟩ ,(︂

(1− γ1γ2γ3γ4)− i(γ1γ2 + γ3γ4)
)︂
|0⟩ = (1− iγ1γ2)(1− iγ3γ4) |0⟩ ,(︂

(γ3 − γ1γ2γ4)− i(γ4 + γ1γ2γ3)
)︂
|0⟩ = (1− iγ1γ2)(γ3 − iγ4) |0⟩ ,(︂

(1− γ1γ2γ3γ4)− i(γ1γ2 + γ3γ4)
)︂
|0⟩ = (1− iγ1γ2)(1− iγ3γ4) |0⟩ ,

and the complex conjugated ones. Hence, it is clear that this module splits in two
copies of the irreducible Cliff(n,C)-module I,

J1|0 ⊗ C ≃ I2|0 , while J0|1 ⊗ C ≃ I0|2 ,

so the index is automatically even, that is

index ∈ 2Z for n = 4 mod 8 .

Summarizing all these results we have that the index of the SQM model of degree n is in
rZ for

r =

⎧⎪⎨⎪⎩
1 n = 0 mod 8 ,

2 n = 4 mod 8 ,

0 otherwise .
(4.4)

This result, in the SQFT case we are interested in, tells us that the Witten genus has a
q-expansion in3 rZ((q)), where r can assume the values in (4.4).

4.1.3 Integrality of the q-expansion: non-compact case

The next step consists in looking at what happens if instead the theory is not compact.
In order to do this, we have to slightly modify the conclusions stated by the Atiyah-Singer
index theorem explained in 2.3.3 on page 44. In particular, it is not true anymore that
the index is independent of all the parameters, due to the fact that the spectrum is not
discrete. We are going to show what is the relation between the two limits considered
before, that is β →∞ and β → 0, showing that they are equal up to a new term.

Let us focus on a 4-dimensional non-compact target manifold M , as the one in
Figure 4.1, described as follows: it contains a compact submanifold ˆ︂M ⊂ M with
boundary

∂ˆ︂M = N+ −N− ,

3Here we mean with Z((q)) the ring of formal Laurant series with coefficients in Z. In general, given a
ring R and a letter X, we have that a formal Laurent series, that is an element in R((X)), is a sum
like

∑︁∞
i=n aiX

i for some n ∈ Z and with ai ∈ R.
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N− N− N+N+

ˆ︂MM

Figure 4.1: The topological structure of the manifold M .

with N± two 3-dimensional manifolds. Moreover, the complement M \ ˆ︂M is given by two
half-cylinder, that is two asymptotic components described by R+ ×N+ and R− ×N−.
These components are endowed with the metrics

ds2 = du2 + g±ij(y
i) dyi dyj ,

where u ∈ R± is the coordinate that parametrize the non-compact directions in both
the asymptotic regions, while yi, i = 1, 2, 3 are the coordinates on N± and g±ij are the
u-independent metrics on N±. Let us study a particular case of this situation, for which
the generalization is then trivial. That is, let us consider the case in which the manifold
M is topologically of the form

M = R×N ,

with N a compact 3-dimensional manifold. This manifold M is then endowed with the
metric

ds2 = du2 + gij(u, y
k) dyi dyj , i = 1, 2, 3 ,

where, again, u ∈ R parametrizes the non-compact direction, yi, i = 1, 2, 3 are the
coordinates on N and gij is the metric on N . Finally, we have to require that the metric
gij(u, y

k) becomes constant in u for u≫ 0 and u≪ 0.
Then, let us consider the 4-dimensional gamma matrices γµ, µ = 1, . . . , 4, in the

representation

γi =

(︃
0 i˜︁γi
−i˜︁γi 0

)︃
, γ4 =

(︃
0 1
1 0

)︃
,

where we have used the gamma matrices in 3 dimensions ˜︁γi, i = 1, 2, 3. In this particular
representation, the chirality matrix is diagonal, of the form

γ5 =

(︃
1 0
0 −1

)︃
.

With this choice of the gamma matrices, the Dirac operator for the manifold M = R×N
is clearly given by

iγµDµ =

(︃
0 i∂u − ˜︁γkDk

i∂u + ˜︁γkDk 0

)︃
=

(︃
0 i(∂u +B)

i(∂u −B) 0

)︃
,
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where we have introduced the Hermitian, u-dependent, 3-dimensional boundary Dirac
operator

B(u) := i˜︁γkDk .

Of course, in the general situation described above, this construction holds in the cylindrical
ends R± ×N±, with an analogous definition of the boundary Dirac operators B±.

Then, we have to look at what happens to the Witten index. Indeed, in the non-
compact case, besides the usual discrete components of the spectrum of the Hamiltonian,
we have a continuous part of it, due to scattering states. For this reason, it is not clear if
the integrality properties we have found previously are still valid, so we have to focus on
this situation.

The results found in section 2.3.3 for the limits of the Witten index are still valid,
which means that

lim
β→∞

TrH
[︁
(−1)F e−βH

]︁
= ind

(︁
iγµDµ

)︁
, lim

β→0
TrH

[︁
(−1)F e−βH

]︁
=

∫︂
M

ˆ︁A =

∫︂
ˆ︂M ˆ︁A .

For consistency, we have introduced particular boundary conditions on ˆ︂M , known as APS
(Atiyah-Patodi-Singer) boundary conditions4, which ensure us that the Dirac genus ˆ︁A
vanishes on the cylindrical ends, from which the last equality above follows. Contrarily to
the compact case, now we have that the two limits are not equal, and so the Atiyah-Singer
index theorem is not valid anymore. However, in the non-compact case we are dealing
with, a new theorem, the Atiyah-Patodi-Singer index theorem, holds, and it states
that

ind
(︁
iγµDµ

)︁
=

∫︂
M

ˆ︁A− 1

2

(︂
η(B+) + dim

(︁
kerB+

)︁
− η(B−)− dim

(︁
kerB−

)︁)︂
.

Let us now justify these terms.
First of all we have introduced the APS η-invariant, defined as

η(B) :=
∑︂
λ̸=0

sign(λ)
⃓⃓
reg , (4.5)

where the sum is over all the non-vanishing eigenvalues of the boundary Dirac operator.
Of course, this sum, which is a measure of the asymmetry of the spectrum, has to be
regularized. A possibility consists in defining it as

η(B) = lim
s→0

∑︂
λ ̸=0

sign(λ)

|λ|s
=: lim

s→0
ηAPS(s) ,

where we have used the fact that ηAPS(s) is an analytic function near s = 0. The presence
of this term can be verified computing the integral of a local density over the cylindrical
ends (see [DJR19] for details).

The presence of the dimension of the kernel of the boundary Dirac operator is instead
clear, since we have excluded the vanishing eigenvalues in the definition (4.5).

4For the explicit expression of these boundary conditions look at [DJR19] and the references therein.



84 4. A secondary invariant

Then, we have that a crucial result holds, namely that the 4-dimensional index counts,
with sign, the number of the eigenvalues of B that cross 0 moving from an asymptotic
region to the other, that is going from u = −∞ to u = +∞. Let

Ψ(u, y) =

(︃
ψ+(u, y)
ψ−(u, y)

)︃
be an element of the kernel of the Dirac operator iγµDµ on M . In particular, let us focus
on the restriction of Ψ to one of the cylindrical ends, let us say R+ ×N+, in the region in
which the boundary Dirac operator B+ is stable, i.e. constant in u. Hence we have

iγµDµΨ =

(︃
0 i(∂u +B+)

i(∂u −B+) 0

)︃(︃
ψ+

ψ−

)︃
= 0

from which
i(∂u +B+)ψ− = 0 , i(∂u −B+)ψ+ = 0 . (4.6)

It is useful to decompose ψ±(u, y) in terms of the eigenfunctions ψλ(y) of B+, i.e.

ψ±(u, y) =
∑︂
λ

aλ±(u)ψλ(y) , (4.7)

in such a way that (4.6), for each eigenvalue λ of B+, read

i(∂u + λ)aλ− = 0 , i(∂u − λ)aλ+ = 0 .

These equations are solved by

aλ±(u) = aλ(0)e±λu u > 0 ,

where we have u > 0 since we have chosen to focus on the asymptotic region R+ ×N+.
In this way we have that, for u > 0

aλ+(u) is a normalizable wave function only if λ < 0 ,

aλ−(u) is a normalizable wave function only if λ > 0 .

Therefore, depending on the sign of λ, we have either a solution of positive chirality
or a solution of negative chirality. Of course, the same argument holds for the other
asymptotic region, R− ×N−, but with the signs reversed due to the different orientation
of the boundary manifold. This means that, if we consider a globally defined element of
the kernel of the Dirac operator, ψ+, it has to correspond to a negative eigenvalue of B
in the region R+ ×N+, and to a positive eigenvalue on the region R− ×N−, that is, the
corresponding eigenvalue, in passing from u = −∞ to u = +∞, has to change sign.

In conclusion, the ground states, i.e. the elements of the kernel of iγµDµ, are in
one-to-one correspondence with those eigenvalues of the boundary Dirac operator that
changes sign.

In order to figure out what kind of contribution the η-invariant gives, let us notice the
following fact. We know that the Hamiltonian of the theory is the square of the Dirac
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operator, hence the eigenvalue equation for the Hamiltonian, using the decomposition (4.7),
reads (︁

− ∂2u + λ2
)︁
aλ± = Eaλ± ,

which can have the following solutions:

• an exponentially suppressed solution if E < λ2, corresponding to the bound states,
which means that E is in the discrete spectrum;

• an oscillating solution if E > λ2, which means that E is in the continuous spectrum.

Hence, if B has no kernel in any of the two asymptotic regions, there is an energy gap
between the continuous and discrete spectrum. In this particular case, the continuous
spectrum is bounded from below by the square of the smallest eigenvalue of B, and so, in
the low energy limit, the one we are interested in, only the discrete spectrum contributes.
For this reason, in this situation, the Witten index has the same integrability condition
as in the compact case.

If, instead, B admits zero eigenvalues in the asymptotic regions, the energy gap does
not exist anymore, and the continuous spectrum extends to zero energy. This gives to the
Witten index the fractional contributions

±1

2
dim

(︁
kerB±

)︁
.

In order to explain the presence of the factor 1
2 , let us give the following argument. We can

consider two non-compact 4-dimensional manifolds M and M ′ with asymptotic boundaries
N1 − N2 and N2 − N3 respectively. Then, we can glue these two manifolds along N2,
obtaining a new 4-dimensional non-compact manifold M ∪N2M

′ with boundaries N1−N3.
Let us suppose that on M ∪N2 M

′ only an eigenvalue λ changes sign in the following way:
it moves from being positive to zero on M , and then from zero to negative on M ′. Of
course, for what we have said above, the contribution of this eigenvalue to the index of
M ∪N2 M

′ is the sum of the indices of M and M ′, since they are given by integrals of
local densities. Hence, if we call α the contribution to the index of M , and α′ the one of
M ′, we have that

α+ α′ = 1 .

Also, if we change the manifold M ′ with a new one M ′′ in which still λ moves from zero
to a negative value, and we call α′′ the contribution of M ′′ to the index, we have again

α+ α′′ = 1 ,

and so α′ = α′′, or, in other words, the fractional contribution to the index of an eigenvalue
λ is the same independently on the particular manifold, whenever λ passes from zero
to a negative value. Moreover, by symmetry reasons, if we change the orientation of
the boundary 3-manifold, all the eigenvalues of B flip signs and, in turn, the orientation
of the 4-manifold and therefore the sign of the index change. This means that we get
the opposite contribution to the index, −α′, when the eigenvalue moves from zero to a
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positive value. Finally, changing the signs of all the four coordinates of the 4-manifold, the
orientation in preserved, and so the index of the Dirac operator, which has as contribution
exactly α′. But the situation described is the same as M , hence α′ = α′′. Since they have
to sum to 1, we conclude

α = α′ =
1

2
.

Of course, what we have said up to now, can be expressed in terms of a u-dependent
supercharge Q(u). This is exactly the case we are interested in.

In order to see this, we have to define a mildly non-compact SQM model, in such a way
that it asymptotically behaves exactly as we have described up to now. This definition
is completely analogous to the one of the SQFT case. Hence given a SQM model M
depending on a scalar superfield Φ which parametrizes the non-compact direction, we
add a Fermi superfield Λ which couple to the scalar superfield through the superpotential
W (Φ) = Φ − u, with u ∈ R. In this way we have defined a family of SQM models Nu
all compact and parametrized by the real parameter u. In order for the theory M to
be mildly non-compact, we require that in the limits u→ ±∞, the family stabilizes to
compact SQM models N± with vanishing indices. As before, we can assume without
loss of generality, that the only quantities that vary with u for the family of theories Nu,
are the lagrangian and the supersymmetry operator, while the Hilbert space H of Nu is
independent of u.

Now let us start considering the case in which the degree of the SQM model M is
n = 4, from which it follows that Nu is a SQM model of degree 3. This happens since,
when we dynamicalize the parameter u in order to recover the theoryM, we promote u
to a regular scalar field φ, but also we need to add its fermionic superpartner ψ, which
gives a contribution +1 to the degree of the SQM model. In this situation we have that
the Hilbert space H of Nu is a Cliff(3,R)-module. For this algebra we have two canonical
isomorphisms

Cliff(3,R) ≃ H⊗ Cliff(−1,R) .

These two isomorphisms are described as follows. Let us call γi with i = 1, 2, 3 the
generators of Cliff(3,R), which fulfill the relation {γi, γj} = 2δij . Also, let us identify
with ei, i = 1, 2, 3 the generators of H, which satisfy {ei, ej} = −2δij and with γ, such
that γ2 = −1 the generator of Cliff(−1,R). Then, an element of H ⊗ Cliff(−1,R) is
generated by the products γei, so the isomorphisms are described identifying

γi ←→ ±γei .

It is straightforward to verify that ±γei satisfy the conditions required to the generators
of Cliff(3,R).

Let us choose one of them, thanks to which we have that the generator of the
supersymmetry is

Q(u) = g(u)γ ,

with g(u) a quaternionic matrix. The presence of the time-reversal symmetry ensures us
that the eigenvalues of g(u) are in R ⊂ H. Through a u-dependent change of basis, we
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can arrive to the situation in which only the spectrum of g(u), which is, by compactness,
a discrete subset of R, depends on u. The case we are interested in is the IR limit of our
construction, that is, given the index of the theoryM, ZR(M), we will compute it in the
limit τ → −i∞. Also, we have to notice that we have defined the index as the partition
function with periodic boundary conditions, which means that, following the notation
used above

ZR(M) = lim
β→0

TrH
[︁
(−1)F e−βH

]︁
=

∫︂
M

ˆ︁A .

Hence, the APS index theorem reads

ZR(M) = ind
(︁
iγµDµ

)︁
+

1

2

(︂
η
(︁
Q(u→ +∞)

)︁
+ dim

(︁
kerQ(u→ +∞)

)︁)︂
+

− 1

2

(︂
η
(︁
Q(u→ −∞)

)︁
+ dim

(︁
kerQ(u→ −∞)

)︁)︂
.

The summand ind(iγµDµ) fulfills the same integrality condition of the compact case, that
is, in the degree we are considering,

ind
(︁
iγµDµ

)︁
∈ 2Z .

The other two terms, instead, as explained above, give a fractional contribution for each
eigenvalue of Q that lands on 0 in the limits u→ ±∞.

The same argument, that we have explained in the case of a theory of degree n = 4, is
of course true for all the cases in which n = 4 mod 8, but also, with a slight modification
due to the different integrality condition of the index in the compact case, in the case
n = 0 mod 8. In order to give a unified description of the integrality condition of the
index, let us use the spectator fermions on the boundary theory, complexifying them.
Hence, we are interested in the irreducible modules of the algebra Cliff(n±,C). These
modules, since the algebra is the complex one, are classified modulo 2 and in the case
in which n± is odd, Cliff(n±,C) has only one irreducible module, that is the algebra
itself. We are actually interested only in this case, since we know that the degree of the
full theory has to be even, and so the degree of the boundary theories is odd. Going on,
we have that the even subalgebra of Cliff(n±,C) is isomorphic to C, which allows us to
write the irreducible module as C1|1. The supersymmetric ground states of the boundary
theories, the ones we are interested in, are again modules for the Clifford algebra and, in
particular, they have a decomposition in irreducible modules, i.e.

V ⊗ C ≃ Cb|b , b ∈ Z .

However, the theories we are considering have a time-reversal symmetry, which gives to
the Clifford algebra a real structure. Hence, in order to count the supersymmetric ground
states that land on zero on the boundary theories, we need to consider V as a module
of the real algebra. This can described simply rescaling b by the same factor r we have
found in (4.4), obtaining

V ≃ Ca|a , a ∈ rZ .
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In conclusion, calling the factor a the bosonic index of the boundary theories a(N±),
we conclude that

ZR(M) ∈ rZ+
1

2
a(N+)−

1

2
a(N−) .

In the SQFT case we care about, it is straightforward to figure out that this relation
becomes

ZRR(F) ∈ rZ((q)) +
1

2
a(B+)−

1

2
a(B−) , (4.8)

with clear meaning of the symbols.

4.2 The invariant

Now that we have found the behavior of the Witten index in the non-compact case, we
are ready to show how the full invariant can be defined.

Let B be a compact SCFT with gravitational anomaly

2(cR − cL) = n− 1 , n ≡ 0 mod 4 .

Let us suppose B to be nullhomotopic. Thanks to this property, we can build an SQFT
F with gravitational anomaly n and a non-compact direction, which has as boundary
B. Let ˆ︁f(τ, τ) be the Witten genus of F . Then, from what we have seen in the previous
sections

1. ˆ︁f is a real-analytic modular form of weight (n2 , 0). In particular it solves the
holomorphic anomaly equation

√
−8τ2

∂

∂τ
ˆ︁f(τ, τ) = gB(τ, τ) , (4.9)

where we have defined

gB(τ, τ) = torus one-point function of (−1)
n
4 :ψ1 · · ·ψn−1G: in Fer(n− 1)⊗ B .

(4.10)

2. The holomorphic part of the Witten genus

f(τ) = lim
τ→−i∞

ˆ︁f(τ, τ) ,
has a q-expansion

f ∈ f2(q) + rZ((q)) , (4.11)

where r is the one introduced in (4.4), while

f2(q) =
1

2
a
(︁
B[S1]

)︁
. (4.12)

Let us notice that we have considered the holomorphic part since what we have said
about the q-expansion of the index in the non-compact case is true in the IR limit,
which corresponds, exactly in the same way as extracting the holomorphic part, to
the limit τ → −i∞.
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Now, if B is nullhomotopic, then there exists a function ˆ︁f which solves the holomorphic
anomaly equation (4.9) and has q-expansion as (4.11).

On the contrary, if we do not know whether B is nullhomotopic, we actually have to
notice that gB(τ, τ) in (4.10) and f2(q) in (4.12) depend only on B itself. We can, for this
reason, use the knowledge of g in order to find a real-analytic modular form ˆ︁f1 which is
a solution for (4.9). However, it is clear that we have an ambiguity in the choice of the
solution. Let ˜︁f be an holomorphic modular form of weight n

2 and let ˆ︁f1 be a solution for
the holomorphic anomaly equation

√
−8τ2∂τ ˆ︁f1(τ, τ) = g .

Hence we have that also ˆ︁f1 + ˜︁f is a real-analytic modular form and a solution for the
same equation, indeed

√
−8τ2∂τ ( ˆ︁f1(τ, τ) + ˜︁f(τ)) = √−8τ2∂τ ˆ︁f1(τ, τ) = g .

So, let us call f1 the holomorphic part of ˆ︁f1, then g, and therefore B, determines the class
of f1 in

[f1] ∈
C((q))
MFn

2

.

On the other side, we have that the knowledge of B can actually determines f2 ∈ r
2Z((q)),

but we are interested only on it as a class in

[f2] ∈
C((q))
rZ((q))

.

None of these classes are individually deformation invariants, but their difference is so.
Hence we can define the deformation invariant

[f1]− [f2] ∈
C((q))

MFn
2
+rZ((q))

:= An . (4.13)

Let us show the invariance of this quantity under deformations. In order to do this, let
us deform the original SCFT B in some other theory B′. So we can build a non-compact
SQFT F with boundaries

B− = B , B+ = B′ .

Let us call f1 and f2 the classes introduced above for B and f ′1 and f ′2 the same classes
for B′.

Claim 4.2.1. The quantities f ′1 and f1 + ZIR
RR(F) solve the same holomorphic anomaly

equation. Here ZIR
RR(F) is the Witten genus of the non-compact theory F , computed

in the IR limit.

Proof. We want to show that
√
−8τ2∂τf ′1 =

√
−8τ2∂τ

(︁
f1 + ZIR

RR(F)
)︁
.
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In order to do this, we will see that
√
−8τ2∂τZIR

RR(F) =
√
−8τ2∂τf ′1 −

√
−8τ2∂τf1 .

By definition we have that
√
−8τ2∂τf ′1 =

√
−8τ2∂τ

(︁
lim

τ→−i∞
ˆ︁f ′1)︁ =

= lim
τ→−i∞

√
−8τ2∂τ ˆ︁f ′1 =

= lim
τ→−i∞

⟨(−1)
n
4 :ψ1 · · ·ψn−1G:⟩Fer(n−1)⊗B′ ,

and, in the same way
√
−8τ2∂τf1 = lim

τ→−i∞
⟨(−1)

n
4 :ψ1 · · ·ψn−1G:⟩Fer(n−1)⊗B .

Moreover, by construction, we know that

√
−8τ2∂τZIR

RR(F) = lim
τ→−i∞

√
−8τ2∂τZRR(F) =

= lim
τ→−i∞

(︂
⟨(−1)

n
4 :ψ1 · · ·ψn−1G:⟩Fer(n−1)⊗B′ − ⟨(−1)

n
4 :ψ1 · · ·ψn−1G:⟩Fer(n−1)⊗B

)︂
,

exactly as we wanted.

What we have shown now, implies that

f ′1 − f1 − ZIR
RR(F) ∈ MFn

2
.

Claim 4.2.2. The quantities f ′2 and f2 + ZIR
RR(F) differ by an element in rZ((q)), with

the usual meaning of the symbols.

Proof. We have shown in section 4.1.3 on page 81 that, if F is a non-compact theory, as
it is in our case, we have

ZIR
RR(F) ∈ rZ((q)) + f ′2 − f2 .

Hence the claim trivially follows and

f ′2 − f2 − ZIR
RR(F) ∈ rZ((q)) .

This two claims imply that

f ′1 − f1 − ZIR
RR(F)− f ′2 + f2 + ZIR

RR(F) ∈ MFn
2
+rZ((q)) ,

that is
f ′1 − f ′2 = f1 − f2 mod MFn

2
+rZ((q)) ,

hence the equivalence class defined in (4.13) is actually a deformation invariant.



Chapter 5

The invariant for the sigma model
S3
k

Let us study now the invariant for the model we started with, that is the sigma model
with target the 3-sphere S3 and Wess-Zumino coupling k we have described in section 2.2.
As we have said, it is crucial to first compute the gravitational anomaly of our model, that
is the degree of it. This model consists of 4 scalar superfields ΦI ’s and 1 Fermi superfield
Λ. In terms of the ordinary fields we have 4 bosonic fields and 4 fermionic fields from the
expansion of ΦI , and a chiral fermion field given by the upper component of Λ. Putting
all together we have that

w = c− c =
(︂
4 + 4 · 1

2

)︂
−
(︂
4 +

1

2

)︂
=

3

2
, (5.1)

which means that the degree of the theory is

n = 2w = 3 . (5.2)

In order to properly compute the invariant, we need to work in the IR regime. We have
explained the conjecture on the behavior of the model in this limit in 2.2.2, which proposes
that it behaves as a bosonic Wess-Zumino-Witten model at level κ = |k| − 1, together
with the theory of 3 anti-chiral free fermions. Let us underline, just for consistency, how
the gravitational anomaly matches in the two regimes, since the bosonic WZW model is
not anomalous.

One of the two component of the invariant introduced in section 4.2 is given by the
index of the SQM model obtained compactifying the original SQFT on a circle S1 of
radius R. So let us start studying this compactification. In particular let us focus on the
limit of small and big radius R. We are interested in the IR regime, but, in the case of
small R, there is a sort of “intermediate” regime, in which the energy is much smaller than
1/R, but still bigger than the threshold energy, hence we treat the model with the same
language as we would do in the UV regime. The case with big R, instead, is described as
the usual IR limit.
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k

small R. In this case we can study the problem using the language of sigma model. In
particular, since we are interested in ground states, and so in the low energy situation,
we can rely on the fact that, for energy much smaller than 1/R, those modes that
carry momentum around the circle can be neglected. In this approximation, the
model becomes a usual SQM model, for which the supercharge Q can be interpreted
as the Dirac operator on S3 acting on section of the spin bundle of S3, regardless
of k. It is well-known that this operator does not have any zero eigenvalues, hence
supersymmetry is spontaneously broken regardless of k.

big R. Now we have to work in the IR regime, i.e. in the case in which the model is
described by the bosonic WZW model and by the three free anti-chiral fermions.

If k = 0, the conjecture in [GJW19] says that supersymmetry is spontaneously
broken, since our IR fixed point loses its meaning (let us remember that, for the
unitarity requirement, the level κ of the bosonic WZW has to be greater or equal
to 0).

If k ̸= 0, the question becomes whether the supersymmetric current algebra of
G ≃ SU(2) at level κ = |k| − 1 has supersymmetric ground states in the Ramond
sector, namely whether there exist states with vanishing energy. Actually this does
not happen. Indeed, the energy of the ground states is given by

Eg.s. = −
cWZW

24
− 3 ·

(︂cFer
24
− 1

16

)︂
, (5.3)

with
cWZW = 3

κ

κ+ 2
, cFer =

1

2
. (5.4)

Hence the energy of the ground states is

Eg.s. =
1

8

2

κ+ 2
, (5.5)

which is greater than zero for all κ ≥ 0.

What we have obtained is that the sigma model with target S3 and WZ coupling k,
once compactified on the circle S1, spontaneously breaks supersymmetry, regardless of k,
and hence its index vanishes.

For this reason, the only non-vanishing contribution to the invariant is the solution
to the holomorphic anomaly equation. In order to compute it let us start focusing on a
particular case, namely the one in which k = 1, and then we will extend it to the general
case.

5.1 k = 1 case

Now we want to solve the holomorphic anomaly equation for the CFT of 3 free anti-chiral
fermions Fer3, described by the energy-momentum tensor

T = −1

2
ψa∂ ψa , (5.6)
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and supercurrent
G =

√
−1ψ1ψ2ψ3 . (5.7)

The holomorphic anomaly equation in this case reads
√
−8τ2∂τ ˆ︁f = ⟨(−1) :ψ1ψ2ψ3G:⟩Fer(3)⊗Fer(3) . (5.8)

In order to compute the torus one-point function, let us remember that the Hilbert space
of the product theory is given by the product of the Hilbert spaces of the sub-theories, and
hence the one-point function factorizes. In particular, rememebering the result in (3.5),

⟨(−1) :ψ1ψ2ψ3G:⟩Fer(3)⊗Fer(3) = −(
√
−1) ⟨:ψ1ψ2ψ3ψ1ψ2ψ3:⟩Fer(3)⊗Fer(3) =

= −
√
−1 ⟨:ψ1ψ2ψ3:⟩Fer(3) · ⟨:ψ1ψ2ψ3:⟩Fer(3) =

= −
√
−1(−1)−

3
4
(︁
η(τ)

)︁3 · (−1)− 3
4
(︁
η(τ)

)︁3
=
⃓⃓
η(τ)

⃓⃓6
.
(5.9)

Then we want to verify that the function

F1(τ) = −
1

24
+

∞∑︂
n=1

n
qn

1− qn
+

∞∑︂
n=1

(−1)n−1n
q

n(n+1)
2

1− qn
, (5.10)

has a modular non-holomorphic completion ˆ︁F1 of weight 2 such that 2 ˆ︁F1 satisfies the
anomaly equation, that is √

−8τ2∂τ
(︁
2 ˆ︁F1

)︁
=
⃓⃓
η(τ)

⃓⃓6
. (5.11)

In order to verify this statement, let us use the integral form

ˆ︁F1 =
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)H1(u1, u2; τ, τ) du1 du2 , (5.12)

where ℘(u1 + τu2, τ) is the Weierstrass elliptic function, while

H1(u1, u2 τ, τ) :=
∑︂
n,m∈Z

e2πi(nu2−mu1)(−1)n+m+nme
− π

2τ2
|mτ+n|2

. (5.13)

This function can be Poisson resummed to

H1(u1, u2; τ1, τ2) =
√
2τ2
⃓⃓
θ(u1 + τu2, τ)

⃓⃓2
e−2πτ2(u2)2 , (5.14)

where

θ(u, τ) ≡ θ1(u, τ) :=
∑︂
n∈Z

q
1
2
(n+ 1

2
)2e2πi(n+

1
2
)(u+ 1

2
) =

=
∑︂
n∈Z

q
1
2
(n+ 1

2
)2e2πiu(n+

1
2
)eπi(n+

1
2
) (5.15)
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Indeed, let us Poisson resum the expression (5.13) with respect to n, hence focusing on∑︂
n∈Z

e2πinu2(−1)n(1+m)e
− π

2τ2
|mτ+n|2

=
∑︂
n∈Z

e2πinu2e−πin(1+m)e
− π

2τ2
|mτ+n|2

. (5.16)

The Poisson resummation formula reads∑︂
n∈Z

φ(x+ n) =
∑︂
r∈Z

(︂∫︂
R
φ(t)e−2πirt dt

)︂
e2πirx ≡

∑︂
r∈Z

˜︁φ(r)e2πirx , (5.17)

which, in our case, means that we need to find the Fourier inverse transform of

˜︁φ(n) = eπin(1+m)e
− π

2τ2
|mτ+n|2

, (5.18)

that is
φ(t) =

∫︂
R
eπin(1+m)e

− π
2τ2

|mτ+n|2
e2πint dn . (5.19)

Focusing only on the exponents we obtain

πin(1 +m+ 2t)− π

2τ2
(mτ + n)(mτ + n) =

= − π

2τ2
χ2 + πi

(︂
−
(︁
m2 +m(1− 2t)

)︁
τ +

iτ2
2
(1 + 2t)2

)︂
. (5.20)

where we have introduced

χ := n+mτ + iτ2(1 + 2t) , (5.21)

which is only a shift of the original variable n (and so the measure of the integral for φ
change trivially). We have obtained that

φ(t) =

∫︂
R
e
− π

2τ2
χ2

e−πi
(︁
m2+m(1+2t)

)︁
τe−

πτ2
2

(1+2t)2 dχ =

=
(︂∫︂

R
e
− π

2τ2
χ2

dχ
)︂
e−πi

(︁
m2+m(1+2t)

)︁
τe−

πτ2
2

(1+2t)2 =

=
√
2τ2e

−πi
(︁
m2+m(1+2t)

)︁
τe−

πτ2
2

(1+2t)2 (5.22)

Hence, the Poisson resummation formula tells us that∑︂
n∈Z

e2πinu2(−1)n(1+m)e
− π

2τ2
|mτ+n|2

=
√
2τ2
∑︂
n∈Z

e−πi
(︁
m2+m(1+2n+2u2)

)︁
τe−

πτ2
2

(1+2n+2u2)2 .

(5.23)
Substituting this expression in (5.13) we easily find

H1(u1, u2; τ, τ) =
√
2τ2e

−2πτ2(u2)2
∑︂
m,n∈Z

(−1)me−2πium×

× e−πiτ
(︁
m2+m(1+2n)

)︁
e−

π
2
(1+2n)2e−2πτ2u2(1+2n) . (5.24)
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Let us perform the following change in the index of the sum

m ↦−→ k − n , (5.25)

with of course k ∈ Z, in such a way that

H1 =
√
2τ2e

−2πτ2(u2)2
∑︂
k,n∈Z

(−1)k−ne−2πiu(k−n)×

× e−πiτ
(︁
(k−n)2+(k−n)(1+2n)

)︁
e−

π
2
τ2(1+2n)2e−2πτ2u2(1+2n) . (5.26)

Let us focus only on the exponents, except the one due to the factor (−1)k−n, which
become

− 2πiu(k − n)− πiτ
(︁
(k − n)2 + (k − n)(1 + 2n)

)︁
− π

2
τ2(1 + 2n)2 − 2πτ2u2(1 + 2n) =

= −2πiu
(︁
k +

1

2

)︁
− πiτ

(︁
k +

1

2

)︁2
+ πiτ

(︁
n+

1

2

)︁2
+ 2πiu

(︁
n+

1

2

)︁
(5.27)

Inserting these exponents back in (5.26) and noticing that

(−1)k−n = (−1)k+n , (5.28)

we get

H1 =
√
2τ2e

−2πτ2(u2)2
∑︂
m,n∈Z

(−1)n+me2πiu(m+ 1
2
)e−2πiτ 1

2
(m+ 1

2
)2e2πiu(n+

1
2
)e2πiτ

1
2
(n+ 1

2
)2 =

=
√
2τ2e

−2πτ2(u2)2
∑︂
m,n∈Z

(−1)n+mxn+
1
2 q

1
2
(k+ 1

2
)2xn+

1
2 q

1
2
(n+ 1

2
)2 =

=
√
2τ2
⃓⃓
θ(u1 + τu2, τ)

⃓⃓2
e−2πτ2(u2)2 (5.29)

Let us specialize the expression of H1 in equation (5.13) to the IR regime, which
means taking the limit τ → −i∞. In this limit the function ℘ does not change being
an holomorphic function, and the only factor in H1 that is affected by the limit is the
exponent

− π

2τ2
|mτ + n|2 = − π

2τ2
(mτ + n)(mτ + n) =

= − π
2
2i(τ − τ)

(︁
m2ττ +mn(τ + τ) + n2

)︁
=

=
iπ

τ − τ
(︁
τ(m2τ +mn) +mnτ + n2

)︁
. (5.30)

Hence
e
− π

2τ2
|mτ+n|2 −→ eiπ(m

2τ+mn) , (5.31)

and the function H1 becomes

H1(τ ;u1, u2) =
∑︂
n,m∈Z

e2πi(nu2−mu1)(−1)n+meπim2τ . (5.32)
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This means that we get

F1 =
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
n,m∈Z

e2πi(nu2−mu1)(−1)n+meπim2τ du1 du2 , (5.33)

which is the Poisson resummation of

F1 =
1

8π2

∫︂ 1

0
℘(u1 +

τ

2
, τ)

∑︂
m∈Z

e−2πimu1(−1)meiπm2τ du1 . (5.34)

Indeed, focusing only on the sum on n, we have

∑︂
n∈Z

e2πinu2e−πin =
∑︂
n∈Z

e2πin(u2−
1
2
) =

∑︂
r∈Z

δ
(︂
r −

(︁
u2 −

1

2

)︁)︂
. (5.35)

Since u2 ∈ [0, 1], there exists only one term in the sum that gives a non-vanishing
contribution, that is ∑︂

n∈Z
e2πinu2(−1)n = δ

(︁
u2 −

1

2

)︁
. (5.36)

Substituting this expression in (5.33) we get

F1 =
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
m∈Z

e−2πimu1(−1)meiπm2τδ
(︁
u2 −

1

2

)︁
du1 du2 =

=
1

8π2

∫︂ 1

0
℘(u1 +

τ

2
, τ)

∑︂
m∈Z

e−2πimu1(−1)meiπm2τ du1 , (5.37)

as we wanted.
Now let us use the Fourier expansion of the Weierstrass elliptic function on the circle,

given by

1

(2πi)2
℘(ξ, τ) = −2G2(τ) +

∑︂
n∈Z
n ̸=0

n

1− qn
e2πiξn , (5.38)

where G2(τ) is the Eisenstein series of weight two

G2 = −
1

24
+

∞∑︂
n=1

n
qn

1− qn
. (5.39)
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In this way we get

F1 =
(2πi)2

8π2

∫︂ 1

0

(︂
− 2G2(τ) +

∑︂
n∈Z∗

n

1− qn
e2πi(u1+

τ
2
)n
)︂(︂∑︂

m∈Z
e−2πimu1(−1)meiπm2τ

)︂
du1 =

= −1

2

∫︂ 1

0

(︁
− 2G2(τ)

)︁(︂∑︂
m∈Z

e−2πimu1(−1)meiπm2τ
)︂
du1+

− 1

2

∫︂ 1

0

∑︂
m,n∈Z|n̸=0

n

1− qn
e2πin(u1+

τ
2
)e−2πimu1(−1)meiπm2τ du1 =

= G2(τ)
∑︂
m∈Z

∫︂ 1

0
e−2πimu1eπimeπim

2τ du1+

− 1

2

∑︂
m,n∈Z|n̸=0

eπimeπim
2τeπinτ

n

1− qn

∫︂ 1

0
e2πi(n−m)u1 du1 . (5.40)

Let us focus separately on the two summands. Regarding the first one we have

∑︂
m∈Z

∫︂ 1

0
e−2πimu1eπimeπim

2τ du1 = 1 +
∑︂
m∈Z∗

1

−2πim
(︁
e−2πim − 1

)︁
eπimeπim

2τ , (5.41)

but being m ∈ Z
e−2πim − 1 ≡ 0 . (5.42)

For the second summand, since the expansion of ℘ is on the circle, we have∫︂ 1

0
e2πi(n−m)u1 du1 = δm,n , (5.43)

hence

− 1

2

∑︂
m,n∈Z|n̸=0

eπimeπi(m
2+n)τ n

1− qn
δm,n =

∑︂
m>0

(−1)mq
m(m+1)

2
m

1− qm
. (5.44)

Putting all together we arrive at

F1 = G2(τ)−
∑︂
n>0

n

1− qn
(−1)nq

n(n+1)
2 , (5.45)

which, with the expression (5.39), becomes

F1 = −
1

24
+

∞∑︂
n=1

n
qn

1− qn
−
∑︂
n>0

n
(−1)n

1− qn
q

n(n+1)
2 =

= − 1

24
+

∞∑︂
n=1

n
qn

1− qn
+
∑︂
n>0

n
(−1)n−1

1− qn
q

n(n+1)
2 , (5.46)
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that is what we had in (5.10).
Now let us verify that the function 2 ˆ︁F1 satisfies the holomorphic anomaly equation.

In order to do that, let us notice that the expansion in Fourier modes around the circle of
℘ is still valid also if we do not consider the limit τ → −i∞. Hence

ˆ︁F1 =
−4π2

8π2

∫︂ 1

0

∫︂ 1

0

(︂
− 2G2(τ) +

∑︂
n∈Z∗

n

1− qn
e2πin(u1+τu2)

)︂
×

×
∑︂
n,m∈Z

e2πi(nu2−mu1)(−1)n+m+nme
− π

2τ2
|mτ+n|2

. (5.47)

Let us focus on the two summands separately. The first one reads

G2(τ)
[︂ ∫︂ 1

0

∫︂ 1

0
du1 du2+

∑︂
n,m∈Z∗

(−1)n+m+nme
− π

2τ2
|mτ+n|2

∫︂ 1

0
e2πinu2 du2

∫︂ 1

0
e−2πinu1 du1

]︂
=

= G2(τ)
[︂
1 +

∑︂
n,m∈Z∗

(−1)n+m+nme
− π

2τ2
|mτ+n|2

δn,0δm,0

]︂
= G2(τ) . (5.48)

The second one, instead, reads

− 1

2

∑︂
n,m,l∈Z|l ̸=0

∫︂ 1

0

∫︂ 1

0

l

1− ql
e2πi(u1+τu2)le2πinu2e−2πimu1(−1)n+m+nme

− π
2τ2

|mτ+n|2
du1 du2 =

= −1

2

∑︂
n,m,l

∫︂ 1

0

l

1− ql
e2πi(lτ+n)u2(−1)n+m+nme

− π
2τ2

|mτ+n|2
δl,m du2 =

= −1

2

∑︂
n,m∈Z|m̸=0

∫︂ 1

0

m

1− qm
e2πi(mτ+n)u2(−1)m+n+nme

− π
2τ2

|mτ+n|2
du2 =

= −1

2

∑︂
n,m∈Z|m̸=0

1

2πi

(︂
e2πi(mτ+n) − 1

)︂(−1)m+n+mn

mτ + n
e
− π

2τ2
|mτ+n|2 m

1− qm
=

= − i

4π

∑︂
n,m∈Z|m̸=0

m

mτ + n
(−1)m+n+mne

− π
2τ2

|mτ+n|2
. (5.49)

Putting all together we arrive at

ˆ︁F1 = G2(τ)−
i

4π

∑︂
n,m∈Z|m ̸=0

m

mτ + n
(−1)m+n+mne

− π
2τ2

|mτ+n|2

= − 1

24
+

∞∑︂
n=1

n
qn

1− qn
− i

4π

∑︂
n,m∈Z|m ̸=0

m

mτ + n
(−1)m+n+mne

− π
2τ2

|mτ+n|2 (5.50)

Then let us derive with respect to τ . The only term affected by this derivation is

e
− π

2τ2
|mτ+n|2

. (5.51)
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Focusing on the derivation of the exponent, we have

∂τ

(︂
− π

2τ2
|mτ + n|2

)︂
=

πi

4(τ2)2
(mτ + n)2 , (5.52)

from which

∂τ ˆ︁F1 = −
i

4π

∑︂
n,m∈Z|m ̸=0

(−1)n+m+nm m

mτ + n

πi

4(τ2)2
(mτ + n)2e

− π
2τ2

|mτ+n|2
=

=
1

16(τ2)2

∑︂
n,m∈Z|m ̸=0

(−1)n+m+nmm(mτ + n)e
− π

2τ2
|mτ+n|2

. (5.53)

This expression is the Poisson resummed of the holomorphic anomaly equation. Indeed
let us notice that

∂u∂u1H1 = ∂u∂u1

(︂ ∑︂
m,n∈Z

e2πi(nu2−mu1)(−1)n+m+nme
− π

2τ2
|mτ+n|2

)︂
=

=
1

τ − τ
(︁
τ∂u1 − ∂u2

)︁(︂
− 2πi

∑︂
n,m∈Z

e2πi(nu2−mu1)m(−1)n+m+nme
− π

2τ2
|mτ+n|2

)︂
=

=
2π2i

τ2

∑︂
n,m∈Z

m(mτ + n)(−1)n+m+nme
− π

2τ2
|mτ+n|2

e2πi(nu2−mu1) , (5.54)

hence, in particular, we have that

∂u∂u1H1

⃓⃓
u1=u2=0

=
2iπ2

τ2

∑︂
m,n∈Z

m(mτ + n)(−1)n+m+nme
− π

2τ2
|mτ+n|2

. (5.55)

Comparing this equation with (5.53), and using (5.14) we obtain

∂τ ˆ︁F1 =
1

16(τ2)2

∑︂
n,m∈Z

m(mτ + n)(−1)n+m+nme
− π

2τ2
|mτ+n|2

=

= − i

32π2τ2
∂u∂u1H1

⃓⃓
u1=u2=0

=

=
1

2

1√
−8τ2

⃓⃓
η(τ)

⃓⃓6
, (5.56)

where we have used the fact that

∂u∂u1H1

⃓⃓
u1=u2=0

= (∂u∂u + ∂2u)
(︁√

2τ2
⃓⃓
θ(u, τ)

⃓⃓2
e−2πτ2(u2)2

)︁⃓⃓
u1=u2=0

=

=
(︁√

2τ2∂uθ(u, τ)∂uθ(u, τ) + . . .
)︁⃓⃓
u1=u2=0

=

=
√
2τ24π

2
⃓⃓
η(τ)

⃓⃓6
, (5.57)

where the ellipsis stand for those terms that go to zero, since

θ(u, τ)
⃓⃓
u=0

= 0 , (5.58)
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and also
∂uθ(u, τ)

⃓⃓
u=0

= 2πη3(τ) . (5.59)

The same result can be obtained in a different way, noticing that the function
H1(u1, u2; τ, τ) satisfy the heat equation

∂τH1(u1, u2; τ, τ) =
i

4π
∂2uH1(u1, u2; τ, τ) , (5.60)

with
∂u =

1

τ − τ
(︁
τ∂u1 − ∂u2

)︁
. (5.61)

Indeed

∂τH1(u1, u2; τ, τ) =
∑︂
m,n∈Z

e2πi(nu2−mu1)(−1)n+m+nm∂τ

(︂
e
− π

2τ2
|mτ+n|2

)︂
=

=
πi

4(τ2)2

∑︂
m,n∈Z

e2πi(nu2−mu1)(−1)n+m+nm(mτ + n)2e
− π

2τ2
|mτ+n|2

,

(5.62)

where we have used the derivative found in (5.52). Then

∂uH1(u1, u2; τ, τ) =
1

τ − τ
(︁
τ∂u1H1 − ∂u2H1

)︁
=

= − π
τ2

∑︂
m,n∈Z

(mτ + n)e2πi(nu2−mu1)(−1)m+n+mne
− π

2τ2
|mτ+n|2

. (5.63)

It is clear from here that the double derivative acts trivially as

∂2uH1(u1, u2; τ, τ) =
π2

(τ2)2

∑︂
m,n∈Z

(mτ + n)2e2πi(nu2−mu1)(−1)m+n+mne
− π

2τ2
|mτ+n|2

,

(5.64)
which, compared with (5.62), verifies the heat equation (5.60).

Now let us use the heat equation in order to compute the holomorphic anomaly
equation, hence

∂τ ˆ︁F1 =
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)∂τH1(u1, u2; τ, τ) du1 du2 =

=
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

(︂ i

4π
∂2uH1(u1, u2; τ, τ)

)︂
du1 du2 =

= − i

32π3

∫︂ 1

0

∫︂ 1

0

(︁
∂u℘(u1 + τu2, τ)

)︁(︁
∂uH1(u1, u2; τ, τ)

)︁
du1 du2 . (5.65)

We have

∂u
(︁
u1 + τu2

)︁
= 0 , ∂u

(︂ 1

(u1 + τu2)2

)︂
= − π

τ2
∂u
(︁
δ(u1)δ(u2)

)︁
, (5.66)
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where
∂u =

1

τ − τ
(︁
τ∂u1 − ∂u2

)︁
. (5.67)

Since the Weierstrass elliptic function has a double pole in the origin with coefficient 1
and no residue, we have that, when we compute the derivative with respect to u, the only
term that contributes is the double pole. Hence it localizes H1 on u1 = u2 = 0 and, after
an integration by parts, we get

∂τ ˆ︁F1 = −
i

32π2τ2

(︂
∂u∂uH1(u1, u2; τ, τ)

)︂⃓⃓
u1=u2=0

. (5.68)

From here we can directly derive the holomorphic anomaly equation, indeed

∂u∂uH1(u1, u2; τ, τ) =
1

τ − τ
(︁
τ∂u1 − ∂u2

)︁
(∂uH1(u1, u2; τ, τ)

)︁
=

=
π

2i(τ2)2

∑︂
m,n∈Z

(mτ + n)
(︂
τ
(︁
∂u1e

−2πimu1
)︁
e2πinu2 +

−
(︁
∂u2e

2πimu2
)︁
e−2πinu1

)︂
(−1)n+m+nme

− π
2τ2

|mτ+n|2
=

= − π2

(τ2)2

∑︂
m,n∈Z

|mτ + n|2e2πi(nu2−mu1)(−1)n+m+nme
− π

2τ2
|mτ+n|2

.

(5.69)

Imposing the condition u1 = u2 = 0 we get

∂u∂uH1(u1, u2; τ, τ)
⃓⃓
u1=u2=0

= − π2

(τ2)2

∑︂
m,n∈Z

|mτ+n|2(−1)n+m+mne
− π

2τ2
|mτ+n|2

, (5.70)

hence

∂τ ˆ︁F1 = −
i

32π2τ2

−π2

(τ2)2

∑︂
m,n∈Z

|mτ + n|2(−1)m+n+mne
− π

2τ2
|mτ+n|2

=

=
i

32(τ2)3

∑︂
m,n∈Z

|mτ + n|2(−1)m+n+mne
− π

2τ2
|mτ+n|2

, (5.71)

which gives directly the holomorphic anomaly equation. Indeed, thanks to the expres-
sion (5.14) for H1, we have that

∂u∂uH1

⃓⃓
u1=u2=0

=
(︁√

2τ2∂uθ(u, τ)∂uθ(u, τ)e
−2πτ2(u2)2 + . . .

)︁⃓⃓
u1=u2=0

=

=
√
2τ24π

2
⃓⃓
η(τ)

⃓⃓6
, (5.72)

where the ellipsis stand for those terms that goes to zero when we impose u1 = u2 = 0.
From here we trivially conclude.
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5.2 The case of general k

Now we are going to focus on the general case, where we have a sigma model with target
S3 and Wess-Zumino coupling k, which in the IR goes to a N = (0, 1) supersymmetric
WZW model at bosonic level κ = |k| − 1 that, as we have yet explained, is equivalent to
a bosonic WZW model at level κ plus the theory of three free anti-chiral fermions. The
supercurrent in this theory is

G =
√
−1
√︃

2

κ+ 2
ψ1ψ2ψ3 + . . . , (5.73)

where the ellipsis stand for terms of the type∑︂
a

ψaJ
a
b , (5.74)

with Jab the currents of the bosonic WZW model. Since they are bosonic currents, the
one-point function still vanishes due to the presence of the fermionic zero modes. This in
particular means that the one-point function can be factorized in the sub-models which
form the whole theory, and it will be

gκ(τ, τ) =

√︃
2

κ+ 2

⃓⃓
η(τ)6

⃓⃓
ZWZW
κ (τ, τ) . (5.75)

The partition function on the torus of the WZW model can be expanded in terms of the
characters of the current algebra since the theory is a rational CFT, that is

ZWZW
κ (τ, τ) =

κ+1∑︂
2j+1=1

⃓⃓
χ
(κ)
j (τ)

⃓⃓2
. (5.76)

The characters of the current algebra are defined by

χ
(κ)
j (τ) =

q−
1
8∏︁

n>0(1− qn)3
∑︂

m∈Z+ j+1
2

κ+2

q(κ+2)m2(︁
2m(κ+ 2)

)︁
. (5.77)

If we define the theta functions of weight 3/2 as

Θk,l(τ) =
∑︂

m∈Z+ l
2k

mqkm
2
, (5.78)

we can rewrite

χ
(κ)
j (τ) =

2(κ+ 2)Θκ+2,2j+1(τ)

η(τ)3
. (5.79)
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With this definition we get

gκ(τ, τ) =

√
2√

κ+ 2

⃓⃓
η(τ)

⃓⃓6 κ+1∑︂
2j+1=1

(︁
2(κ+ 2)

)︁2Θκ+2,2j+1(τ)Θκ+2,2j+1(τ)

η(τ)3η(τ)3
=

= 4
√
2(κ+ 2)

3
2

⃓⃓
η(τ)

⃓⃓6 κ+1∑︂
2j+1=1

⃓⃓
Θκ+2,2j+1(τ)

⃓⃓2⃓⃓
η(τ)

⃓⃓6 =

= 4(κ+ 2)
√︁

2(κ+ 2)
κ+1∑︂

2j+1=1

⃓⃓
Θκ+2,2j+1(τ)

⃓⃓2
. (5.80)

In what follows it will be useful to define the flavoured WZW characters

χ
(κ)
j (ξ; τ) =

ϑκ+2,2j+1(ξ; τ)− ϑκ+2,2j+1(−ξ; τ)
θ(ξ; τ)

, (5.81)

where
ϑk,l(ξ; τ) =

∑︂
m∈Z+ l

2k

xkmqkm
2
, x = e2πiξ q = e2πiτ , (5.82)

Let us find now the generic solution of the holomorphic anomaly equation that, in
analogy with what we have done in the case k = 1, we call ˆ︁Fk. Let us define

ˆ︁Fk = 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)Hk(u1, u2; τ, τ) du1 du2 , (5.83)

where

Hk(u1, u2; τ, τ) =
√︁

(κ+ 2)τ2e
−(κ+2)πτ2(u2)2

κ+1∑︂
2j+1=1

⃓⃓
χ
(κ)
j (u1 + τu2; τ)

⃓⃓2 ⃓⃓
θ(u1 + τu2; τ)

⃓⃓2
.

(5.84)
This last function satisfies the heat equation

∂τHk(u1, u2; τ, τ) =
i

2π(κ+ 2)
∂2uHk(u1, u2; τ, τ) . (5.85)

Thanks to the heat equation, for the same reasons as in the case of k = 1, we have
that

∂τ ˆ︁Fk = − i

16π2(κ+ 2)τ2

(︂
∂u∂uHk(u1, u2; τ, τ)

)︂⃓⃓
u1=u2=0

. (5.86)

Let us compute the derivatives in the RHS, using the relation

∂u
(︁
χ
(κ)
j (u, τ)θ(u, τ)

)︁⃓⃓
u=0

= 2πiη(τ)3χ
(κ)
j (τ) . (5.87)
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In this way

∂u∂uHk

⃓⃓
u1=u2=0

=
√︁

(κ+ 2)τ2e
−(κ+2)πτ2(u2)2×

×
κ+1∑︂

2j+1=1

∂u
(︁
χ
(κ)
j (u; τ)θ(u; τ)

)︁
∂u
(︁
χ
(κ)
j (u; τ)θ(u; τ)

)︁⃓⃓
u1=u2=0

=

= 4π2
√︁
(κ+ 2)

⃓⃓
η(τ)

⃓⃓6 κ+1∑︂
2j+1=1

⃓⃓
χ
(κ)
j (τ)

⃓⃓2
, (5.88)

from which we conclude that

∂τ ˆ︁Fk = 1

2
√
−8τ2

√︃
2

κ+ 2

⃓⃓
η(τ)

⃓⃓6
ZWZW
k (τ, τ) , (5.89)

that is
√
−8τ2∂τ (2 ˆ︁Fk) =√︃ 2

κ+ 2

⃓⃓
η(τ)

⃓⃓6
ZWZW
k (τ, τ) = gk(τ, τ) . (5.90)

The last step consists in extracting the holomorphic part Fk of ˆ︁Fk. In order to do this,
let us notice that the function Hk(u1, u2; τ, τ) can be split in two parts

H
(1)
k (u1, u2; τ, τ) =

√︁
(κ+ 2)τ2e

−(κ+2)πτ2(u2)2
2κ+3∑︂

2j+1=0

⃓⃓
ϑκ+2,2j+1(u; τ)

⃓⃓2
H

(2)
k (u1, u2; τ, τ) = −

√︁
(κ+ 2)τ2e

−(κ+2)πτ2(u2)2
2κ+3∑︂

2j+1=0

ϑκ+2,2j+1(u; τ)ϑκ+2,2κ+4−2j−1(u; τ) .

(5.91)

Indeed, we have⃓⃓
ϑκ+2,2j+1(u; τ)− ϑκ+2,2j+1(−u; τ)

⃓⃓
=
⃓⃓
ϑκ+2,2j+1(u; τ)

⃓⃓2
+
⃓⃓
ϑκ+2,2j+1(−u; τ)

⃓⃓2
+

− ϑκ+2,2j+1(−u; τ)ϑκ+2,2j+1(u; τ)− ϑκ+2,2j+1(u; τ)ϑκ+2,2j+1(−u; τ) . (5.92)

A trivial property ensures us that

ϑk,l(−u; τ) = ϑk,2k−l , (5.93)

thanks to which we can see that

κ+1∑︂
2j+1=1

⃓⃓
ϑκ+2,2j+1(−u; τ)

⃓⃓2
=

κ+1∑︂
2j+1=1

⃓⃓
ϑκ+2,2κ+4−2j−1(u; τ)

⃓⃓2
=

=

2(κ+2)∑︂
2l+1=κ+3

⃓⃓
ϑκ+2,2l+1(u; τ)

⃓⃓2
, (5.94)



5.2 The case of general k 105

where we have first extended the sum to 2j + 1 = 0, since for this value the ϑ-function
vanishes, and then introduced the new variable l such that

2κ+ 4− 2j − 1 = 2l + 1 . (5.95)

Then, since χ(κ)
κ+1
2

= 0, we can extend the sum to 2l + 1 = κ+ 2, in such a way that

κ+1∑︂
2j+1=1

(︂⃓⃓
ϑκ+2,2j+1(u, τ)

⃓⃓2
+
⃓⃓
ϑκ+2,2j+1(−u, τ)

⃓⃓2)︂
=

2κ+3∑︂
2j+1=0

⃓⃓
ϑκ+2,2j+1(u; τ)

⃓⃓2
. (5.96)

In the same way we can see that

κ+1∑︂
2j+1=1

ϑκ+2,2j+1(−u; τ)ϑκ+2,2j+1(χ, τ) =

2(κ+2)∑︂
2l+1=κ+3

ϑκ+2,2l+1(u; τ)ϑκ+2,2κ+4−2l−1(u, τ) ,

(5.97)
and so we can justify also the second contribution in (5.91). These two terms Poisson
resum to

H
(1)
k (u1, u2; τ, τ) =

∑︂
m,n∈Z

(κ+ 2)e2πi(κ+2)(nu2−mu1)e
− (κ+2)π

τ2
|mτ+n|2

,

H
(2)
k (u1, u2; τ, τ) = −

∑︂
n,m∈Z

e2πi(nu2−mu1)e
− π

(κ+2)τ2
|mτ+n|2

. (5.98)

Let us verify these results, starting from studying H
(2)
k . We have to find the Fourier

transformation of
e2πinu2e

− π
(κ+2)τ2

|mτ+n|2
, (5.99)

that allows us to write

H
(2)
k = −

√︁
(κ+ 2)τ2

∑︂
m,n∈Z

e−2πimu1e
− π

(κ+2)τ2

(︁
2iτ1τ2m(κ+2)(u2−n)+(τ2)2(κ+2)2(u2−n)2+m2(τ2)2

)︁
.

(5.100)
Defining the new variables

a := (κ+ 2)n+m , b := (κ+ 2)n−m , (5.101)

we arrive at

H
(2)
k = −

√︁
(κ+ 2)τ2

∑︂
a,b∈Z

e
2πiτ a2

4(κ+2) e
−2πiτ b2

4(κ+2) e2πiu
a
2 e−2πiu b

2 e−(κ+2)πτ2(u2)2 =

= −
√︁
(κ+ 2)τ2e

−(κ+2)πτ2(u2)2
2κ+3∑︂

2j+1=0

ϑκ+2,2j+1(u; τ)ϑκ+2,2κ+4−2j−1(u; τ) . (5.102)
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Here, we have used the fact that, remembering the definition (5.82),

2κ+3∑︂
2j+1=0

ϑκ+2,2j+1(u, τ)ϑκ+2,2κ+2−2j−1(u, τ) =

=

2κ+2∑︂
2j+1=0

(︂ ∑︂
m∈Z+ 2j+1

2(κ+2)

x(κ+2)mq(κ+2)m2
)︂(︂ ∑︂

n∈Z+ 2(κ+2)−(2j+1)
2(κ+2)

x(κ+2)mq(κ+2)m2
)︂
=

=
2κ+3∑︂

2j+1=0

∑︂
m∈Z+ 2j+1

2(κ+2)

∑︂
n∈Z− 2j+1

2(κ+2)

x(κ+2)mq(κ+2)m2
x(κ+2)nq(κ+2)n2

. (5.103)

It is clear that the following relation holds

2κ+3∑︂
2j+1=0

∑︂
m∈Z± 2j+1

2(κ+2)

=
∑︂
m∈Z

⃓⃓⃓
m ↦→ m

2(κ+2)

, (5.104)

from which we conclude that

2κ+3∑︂
2j+1=0

ϑκ+2,2j+1(u, τ)ϑκ+2,2κ+2−2j−1(u, τ) =
∑︂
m,n∈Z

x
m
2 q

m2

4(κ+2)x
n
2 q

n2

4(κ+2) . (5.105)

Let us now focus on H(1)
k . In this case we have to find the Fourier transform of

e2πi(κ+2)nu2e
− (κ+2)π

τ2
|mτ+n|2

, (5.106)

thanks to which we can write

H
(1)
k =

∑︂
m,n∈Z

√︁
(κ+ 2)τ2

∑︂
m,n∈Z

e−2πi(κ+2)mu1e−(κ+2)π
(︁
2iτ1m(u2− n

κ+2
)+τ2(u2− n

κ+2
)2+m2τ2

)︁
.

(5.107)
Defining the new variables

a := (κ+ 2)m+ n , b := −(κ+ 2)m+ n , (5.108)

we get

H
(1)
k =

√︁
(κ+ 2)τ2

∑︂
a,b∈Z

e
2πiτ a2

4(κ+2) e
−2πiτ b2

4(κ+2) e2πiu
a
2 e−2πiu b

2 e−(κ+2)πτ2(u2)2 =

=
√︁
(κ+ 2)τ2e

−(κ+2)πτ2(u2)2
2κ+3∑︂

2j+1=0

⃓⃓
ϑκ+2,2j+1(u; τ)

⃓⃓2
, (5.109)
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as we wanted. In this case we have used the same argument as before, noticing that

2κ+3∑︂
2j+1=0

⃓⃓
ϑκ+2,2j+1(u; τ)

⃓⃓2
=

=

2κ+3∑︂
2j+1=0

(︂ ∑︂
m∈Z+ 2j+1

2(κ+2)

x(κ+2)mq(κ+2)m2
)︂(︂ ∑︂

n∈Z+ 2j+1
2(κ+2)

x(κ+2)nq(κ+2)n2
)︂
=

=

2κ+3∑︂
2j+1=0

∑︂
m∈Z+ 2j+1

2(κ+2)

∑︂
n∈Z+ 2j+1

2(κ+2)

x(κ+2)mq(κ+2)m2
x(κ+2)nq(κ+2)n2

=

=
∑︂
m,n∈Z

x
m
2 q

m2

4(κ+2)x
n
2 q

n2

4(κ+2) . (5.110)

The two expressions found in (5.98), can be unified as

Hk(u1, u2; τ, τ) =
∑︂
n,m∈Z

ϵκ+2
n,me

2πi(nu2−mu1)e
2πi
κ+2

m(mτ+n) , (5.111)

with

ϵκ+2
n,m =

{︄
κ+ 1 n,m ≡ 0 mod κ+ 2 ,

−1 otherwise .
(5.112)

Then we have to take the limit τ → −i∞. It is clear how in the expression of Hk, the
only term affected by the limit procedure is

e
− π

(κ+2)τ2
|mτ+n|2

, (5.113)

which, focusing on the exponent, becomes

− π

(κ+ 2)

1
τ−τ
2i

(mτ + n)(mτ + n)
τ→−i∞−−−−−−→ 2πi

κ+ 2
m(mτ + n) . (5.114)

Hence, in this limit, we get

Hk(τ → −i∞) =
∑︂
n,m∈Z

ϵκ+2
n,me

2πi(nu2−mu1)e
2πi
κ+2

m(mτ+n) , (5.115)

from which

Fk =
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
n,m∈Z

ϵκ+2
n,me

2πi(nu2−mu1)e
2πi
κ+2

m(mτ+n) du1 du2 . (5.116)
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This expression can be split in two parts

F
(1)
k =

κ+ 2

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
n,m∈Z

e2πi(κ+2)(nu2−mu1)e2πi(κ+2)m2τ du1 du2 ,

(5.117a)

F
(2)
k = − 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
n,m∈Z

e2πi(nu2−mu1)e
2πi
κ+2

m2τe
2πi
κ+2

mn du1 du2 .

(5.117b)

This splitting is justified as follows. Let us start from focusing only on the case in which
the indices of the sum ˜︁m and ˜︁n are both divisible by κ+ 2, that is

˜︁m ≡ ˜︁n ≡ 0 mod κ+ 2 , (5.118)

from which we have that there exist two integers m,n ∈ Z such that

˜︁m = (κ+ 2)m , ˜︁n = (κ+ 2)n . (5.119)

Hence, in this case

Fk =
κ+ 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
˜︁m,˜︁n∈Z e

2πi(˜︁nu2−˜︁mu1)e 2πi
κ+2

˜︁m(˜︁mτ+˜︁n) du1 du2 =
=
κ+ 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
m,n∈Z

e2πi(κ+2)(nu1−mu2)e2πi(κ+2)m2τ du1 du2 ,

(5.120)

where we have used the fact that

(κ+ 2)mn = ˜︁mn ∈ Z , (5.121)

and so e2πi(κ+2)mn = 1. If instead m,n ̸≡ 0 mod κ+ 2, then

Fk = −
1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
m,n∈Z

m,n ̸≡0 mod κ+2

e2πi(nu2−mu1)e
2πi
κ+2

m2τe
2πi
κ+2

mn du1 du2 .

(5.122)
If in this last relation we deleted the condition on the indices m and n, we would obtain
an expression whose error would be given by the extra counting of all the summands with
m ≡ n ≡ 0 mod κ+ 2. This error, with an obvious meaning of the following notation,
reads

− 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2)

∑︂
˜︁m,˜︁n∈Z˜︁m,˜︁n≡0 mod κ+2

e2πi(˜︁nu1−˜︁mu2)e 2πi
κ+2

˜︁m2τe
2πi
κ+2

˜︁m˜︁n du1 du2 =

= − 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
m,n∈Z

e2πi(κ+2)(nu2−mu2)e2πi(κ+2)m2τ du1 du2 , (5.123)
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which can be reabsorbed changing the constant in front of (5.120)

κ+ 1 ↦−→ κ+ 2 . (5.124)

This justifies the splitting in (5.117).
Looking at the expression of F (1)

k in (5.117a), we have that the sum over n is only
given by ∑︂

n∈Z
e2πi(κ+2)nu2 , (5.125)

from which follows

∑︂
n∈Z

e2πi(κ+2)u2n =
κ+1∑︂
l=0

δ
(︁
u2(κ+ 2)− l

)︁
=

=

κ+1∑︂
l=0

δ
(︂ 1

κ+ 2

(︁
u2 −

l

κ+ 2

)︁)︂
=

=
κ+1∑︂
l=0

1

κ+ 2
δ
(︂
u2 −

l

κ+ 2

)︂
. (5.126)

This allows us to rewrite

F
(1)
k =

κ+ 2

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
m∈Z

e−2πi(κ+2)mu1e2πi(κ+2)m2τ×

×
κ+1∑︂
l=0

1

κ+ 2
δ
(︂
u2 −

l

κ+ 2

)︂
du1 du2 =

=
1

8π2

κ+1∑︂
l=0

∑︂
m∈Z

∫︂ 1

0
℘
(︂
u1 + τ

l

κ+ 2
, τ
)︂
q(κ+2)m2

e−2πi(κ+2)mu1 du1 =

(︁
u1 ↦→u1−τ l

κ+2

)︁
=

1

8π2

κ+1∑︂
l=0

∑︂
m∈Z

∫︂ 1+τ l
κ+2

τ l
κ+2

℘(u1, τ)q
(κ+2)m2

e−2πi(κ+2)m(u1−τ l
κ+2

) du1 =

=
1

8π2

κ+1∑︂
l=0

∑︂
m∈Z

q(κ+2)m2+ml

∫︂ 1+τ l
κ+2

τ l
κ+2

℘(u1, τ)e
−2πi(κ+2)mu1 du1 ,

(5.127)

Let us focus for one second to the region of the complex plane on which the elliptic
function ℘ is defined, in order to change in a convenient way the extremes of the integration.
Let us refer to Figure 5.1 where we have identified with the dashed line one period (of
period τ of course) of the lattice on which ℘ is defined, and then we have represented a
path of integration, where the point B corresponds to the complex number 1+τ l

κ+2 , while
C corresponds to the number τ l

κ+2 (let us underline that it is crucial that l
κ+2 < 1). In

particular, the integral we have in (5.127) is done on the line between C and B. However,
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O

A

BC

Γ

T

Figure 5.1: Domain of ℘ and path of integration.

the lines AB and OC are on the sides of the lattice, hence they are identified but, since
they have the opposite directions, they cancel each other. For this reason, we can conclude
that the integral on the path from C to B is the same if computed from O to A. Hence

F
(1)
k =

κ+1∑︂
l=0

∑︂
m∈Z

q(κ+2)m2+ml 1

8π2

∫︂ 1

0
e−2πi(κ+2)mu1℘(u1, τ) du1 . (5.128)

Let us study now the expression of F (2)
k in (5.117b). If we focus only on the sum on

n, we can Poisson resum it as∑︂
n∈Z

e2πinu2e
2πi
κ+2

mn =
∑︂
n∈Z

δ
(︂
n− u2 −

m

κ+ 2

)︂
, (5.129)

however, in the RHS, the only term that contributes is the one for which u2 ∈ [0, 1), that
is

δ
(︂
u2 −

[︁
− m

κ+ 2

]︁)︂
, (5.130)

where we have used the following notation[︁
− m

κ+ 2

]︁
:= − m

κ+ 2
mod 1 . (5.131)

Hence

F
(2)
k = − 1

8π2

∫︂ 1

0

∫︂ 1

0
℘(u1 + τu2, τ)

∑︂
m∈Z

e−2πimu1e
2πi
κ+2

m2τδ
(︂
u2 +

m

κ+ 2

)︂
du1 du2 =

= − 1

8π2

∑︂
m∈Z

∫︂ 1

0
℘
(︁
u1 + τ

[︁
− m

κ+ 2

]︁
, τ
)︁
e−2πimu1e

2πi
κ+2

m2τ du1 =

u1 ↦→u1−τ [− m
κ+2

] = − 1

8π2

∑︂
m∈Z

∫︂ 1

0
℘(u1, τ)e

−2πim(u1−τ [ m
κ+2

])e
2πi
κ+2

m2τ du1 =

= − 1

8π2

∑︂
m∈Z

q
m2

κ+2
+m[− m

κ+2
]
∫︂ 1

0
e−2πimu1℘(u1, τ) du1 . (5.132)
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Since we are interested on the function Fk up to 2Z((q)) +MF2, let us consider only the
terms of order q0. In the case of F (1)

k , we have to look at the contribution for m = 0
in (5.128), that is, using the Fourier expansion of ℘ on the circle,

F
(1)
k

⃓⃓⃓
m=0

=
κ+1∑︂
l=0

1

8π2

∫︂ 1

0
℘(u1, τ) du1 =

=

κ+1∑︂
l=0

1

8π2

∫︂ 1

0

(︂
8π2G2(τ)− 4π2

∑︂
n∈Z∗

n

1− qn
e2πiu1n

)︂
du1 =

= (κ+ 2)G2(τ) +
i

4π
(κ+ 2)

∑︂
n∈Z∗

(e2πin − 1)

1− qn
=

= (κ+ 2)G2(τ) , (5.133)

where, since n ∈ Z we have of course that

e2πin − 1 ≡ 0 . (5.134)

We have now to focus on F (2)
k . Here, the contribution of order q0 are the ones of the

kind
q

m2

κ+2
+m[− m

κ+2
] = q0 , (5.135)

that is the ones with m = −(κ + 1),−κ,−(κ − 1), . . . ,−1, 0. Using again the Fourier
expansion of the elliptic function ℘, we get

F
(2)
k

⃓⃓
q0

= − 1

8π2

0∑︂
m=−κ−1

∫︂ 1

0
e2πimu1℘(u1, τ) du1

⃓⃓⃓
q0

=

= − 1

8π2

κ+1∑︂
m=−κ−1

∫︂ 1

0
e−2πimu1

(︂
8π2G2(τ)− 4π2

∑︂
n∈Z∗

n

1− qn
e2πiu1n

)︂
du1

⃓⃓⃓
q0

=

= −G2(τ)

0∑︂
m=−κ−1

∫︂ 1

0
e−2πimu1 du1 +

1

2

0∑︂
m=−κ−1

∑︂
n∈Z∗

n

1− qn

∫︂ 1

0
e2πi(n−m)u1 du1

⃓⃓⃓
q0

=

= −G2(τ) +
1

2

−1∑︂
m=−κ−1

m

1− qm
⃓⃓⃓
q0

(5.136)

In order to expand the last sum, and then take only the terms of order q0, we have to
notice that |q| < 1 and m < 0, hence

m

1− qm
= mq−m

1

q−m − 1
≃ −m

∞∑︂
l=0

q−(l+1)m , (5.137)

from which it is clear that the term we are looking for vanishes. This means that

F
(2)
k

⃓⃓
q0

= −G2(τ) . (5.138)
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In conclusion, the contribution to the invariant of Fk, that is its value modulo
2Z((q)) +MF2, is given by the sum of (5.133) and (5.138), which gives

Fk
⃓⃓
q0

= (κ+ 1)G2(τ)
⃓⃓
q0

= − k

24
. (5.139)

Let us comment on this result. We have computed only the terms in the expansion
of Fk of order q0, since the solution of the holomorphic anomaly equation is 2 ˆ︁Fk. So,
since our invariant is defined modulo 2Z((q)), and Fk has integral q expansion (except,
eventually, for the constant term), we have that the only possible obstruction for the
equivalence class to be zero is given exactly by the constant term. In this way, the
invariant we were looking for results to be

[f1]S3
k
= − k

12
mod 2 . (5.140)

Hence, the sigma model with target S3 and Wess-Zumino coupling k is nullhomotopic,
i.e. breaks supersymmetry, if and only if −k/12 ∈ 2Z, that is

k ≡ 0 mod 24 . (5.141)



Conclusion

In this thesis we have described a new deformation invariant for (1 + 1)-dimensional
supersymmetric field theories. The motivation for the construction of the invariant comes
from the Stolz and Teichner conjecture, which state that the spectrum TMF defined in
section 3.1 is equivalent to the spectrum SQFT of supersymmetric field theories defined
in section 3.2. The first invariant expected from this conjecture is the well-known Witten
genus. However, the Witten genus, seen as a map from TMF to modular forms, has a
non-vanishing kernel and cokernel. The kernel in particular contains all the torsion classes
of TMF. For this reason it is necessary to find some “secondary” invariant able to classify
the elements of the kernel. Following [GJ19] we have defined one of these invariants. We
have first looked at a deformation of a theory B of degree n as a non-compact theory of
degree n+1. Then we have studied how the properties of the Witten genus change in the
non-compact case. This, in particular, brought us to find an equation for the holomorphic
anomaly of the Witten genus (4.2), and then studying the integrality condition of its
q-expansion, finding the result in (4.8). From these conditions we have defined the
invariant (4.13).

Then, in chapter 5, we applied this construction to a particular case, that is the sigma
model with target S3 and Wess-Zumino coupling k. In this case, we have found that the
model spontaneously breaks supersymmetry only whether k ≡ 0 mod 24, as expected.
Indeed, in chapter 2, we have performed a sequence of transformations we have identified
as flowing up and down the RG trajectories, finding that a sufficient condition for the
model to break supersymmetry was to have a coupling multiple of 24.

This invariant, though, captures only some of the torsion classes in the space of
supersymmetric quantum field theories. As underlined by [GJ19], indeed, if we consider
the TMF classes represented by the group manifolds Sp(2), G2 and G2 ×U(1), they are
non-zero, in fact they have orders 3, 2 and 2 respectively. Both the elliptic genus and the
invariant defined in chapter 4 vanish in these cases, but, due to the conjectured relation
between TMF and SQFT, we expect that those theories are not nullhomotopic. From
here the failure of the secondary invariant introduced above to capture all the torsion
classes follows. For this reason the construction we have described in this thesis has to be
refined in order to obtain a complete set of invariants, which can distinguish between the
elements in the different elements in the kernel of the elliptic genus map.

Despite these limits, there are some possible ways to enlarge the range of application
of the conjecture:
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1. the first one consist in actually restricting the set of possible deformation allowed,
but in a useful way for applications. Indeed, we have considered only supersymmetry-
preserving deformations. But, at this point, a natural question arises, that is what
happens if we consider deformation that preserve supersymmetry and a flavor
symmetry with symmetry group given by G. In order to answer to this question,
we need to focus on a different space of supersymmetric field theories, invariant also
under the symmetry group G, let us say SQFTG. Moreover, we should consider a
G-equivariant version of TMF, let us say TMFG. Unfortunately, this set has not
been properly studied yet in the mathematical literature (as explained in [Guk+18]),
and it would be interesting to do so;

2. the other possible generalization consists in increasing the dimension of the theory,
or enhancing supersymmetry. The problem in this case would rely on the fact that,
even if a ring structure on the set of theories can always be defined, we are not sure
whether this ring has also the structure of a spectrum. Moreover, requiring the
manifold on which we define our model to have a string structure is not enough.
So far, a conjecture has been proposed only in the 6-dimensional case. The idea,
underlined in [Guk+18], comes from string theory, in which, in order to cancel the
anomalies (analogously to what we have done in 2.2.1) a new structure has to be
imposed, that is the fivebrane structure (for details look at [SSS09] and [Guk+18]).
So, the idea is that, in 6-dimensional theories, imposing the fivebrane structure
on the 6-manifold on which the theory is defined, we can perform an analogous
construction to the one described in this thesis. However, neither this idea has been
properly studied yet.



Appendix A

On the Brown’s representability
theorem

We have used as a crucial result the so-called Brown’s representability theorem, which
ensures us that any cohomology theory H can be represented by a sequence of spaces
{En} which forms an Ω-spectrum. We will not prove this theorem1, however we will
explain how the structure of Ω-spectrum arises. Before giving this justification, we need
to give a basic construction in algebraic topology known as suspension.

Definition A.0.1. Given a topological space X, the suspension SX is the quotient
X × [0, 1] obtained collapsing X × {0} to one point and X × {1} to another point.

An easy example that helps to understand the motivation for this construction is given by
the n-sphere X = Sn. In this case it is clear that SX = Sn+1, where the two suspension
points are identified with the poles (0, . . . , 0,±1) of Sn+1.

In the case we need to work with basepointed spaces, the suspension gives us an
ambiguity in the choice of its basepoint, which can be chosen arbitrarily in an entire
segment. For this reason it is convenient to introduce the following definition

Definition A.0.2. Given a topological space X with basepoint x0, we define the
reduced suspension ΣX as the basepointed space

ΣX :=
SX

{x0} × [0, 1]
,

with basepoint given by the image of {x0} × [0, 1] in ΣX.

For the reduced suspension holds the following adjoint relation, that is, given two
topological spaces X, Y with basepoints, we have

[ΣX,Y ] = [X,ΩY ] .

1The complete proof of Brown’s representability theorem can be found in [Hat02].
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This adjoint relation holds since a basepoint preserving map ΣX → Y and a basepoint
preserving map X → ΩY are identified associating to the map f : ΣX → Y the family
of the loops obtained by restricting f to the images of the segments {x} × [0, 1] in ΣX.

Let us apply what we have said to the case of Brown’s representability theorem. Let
H be a generalized cohomology theory and {En} the associated sequence of spaces such
that

Hn(X) = [X,En] .

We want to show that there exist a weak homotopy equivalence

En ΩEn+1 .

From the exactness of the sequence in the axiom 3 on page 49, it follows that there exists
the suspension isomorphism

Hn(X) ≃ Hn+1(ΣX) , (A.1)

In order to prove the validity of this isomorphism, let us consider the case of the
unreduced suspension, for which it is easier to deduce some topological properties. It is
clear, however, that we can replace SX with ΣS without any difficulties. The unreduced
suspension SX can be seen as the union of two cones CX and C ′X such that CX∩C ′X =
X. Indeed, a cone is generally defined as

CX :=
X × [0, 1]

X × {0}
.

So, let us apply the axiom 3 to {pt} ⊆ X ⊆ CX, that is

. . . 0 Hn(X, {pt}) Hn+1(CX,X) 0 . . .
δn , (A.2)

where we have used the fact that the cohomology groups Hn(CX, {pt}) are trivial,
since CX is contractible, that is it has the same homotopy type of the point. Now the
isomorphism (A.1) follows from the diagram

Hn(X, {pt}) Hn+1(CX,X)

Hn+1(SX,C ′X)

Hn+1(SX, {pt}) .

δn
∼

∼ f

∼

g

where δn is an isomorphism due to the exactness of the sequence in (A.2). Let us explain
where the isomorphisms f and g come from. Recalling the axiom 4 on page 49, choosing
Y = SX and A = CX, B = C ′X, which of course respect the properties required in the
axiom, we obtain directly

Hn(SX,C ′X) Hn(CX,CX ∩ C ′X) = Hn(CX,X)∼
f

.
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The isomorphism g, instead, exists due to the fact that C ′X is contractible. Hence we
conclude.

The isomorphism (A.1) corresponds to the natural bijection

[X,En] ≃ [ΣX,En+1] = [X,ΩEn+1] ,

which we call Γ. Thanks to this bijection, for all the f : X → En, we have the following
commutative diagram

[En, En] [X,En]

[En,ΩEn+1] [X,ΩEn+1]

Hn(f)

Γ Γ

Hn(f)

. (A.3)

Let us define now the map

sn := Γ(id) : En ΩEn+1 ,

and, thanks to the commutativity of (A.3), we obtain, for all f : X → En

Γ(f) = Γf∗(id) = f∗Γ(id) = f∗(sn) = snf ,

or, in other words, we have that the morphism

Γ : [X,En] [X,ΩEn+1]

acts by composition with sn. Since Γ is a bijection, if we choose X = Si, we find that sn
induces an isomorphism on πi(En) for all i, that is

Γ : [Si, En] ≡ πi(En) [Si,ΩEn+1] ≡ πi(ΩEn+1)
∼ .

We conclude that sn is a weak homotopy equivalence.
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