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Abstract

Measurements of the Cosmic Microwave Background (CMB) taken by both WMAP
and Planck Satellites have claimed the presence of statistical deviations from the
standard cosmological model. These anomalies, although not statistically signifi-
cant (2-3σ level), raise the possibility of new physics related to the early Universe’s
initial conditions (from inflation). A recent phenomenological model, proposed by
Hansen et al. (2019) successfully reproduces six of these anomalies. This toy model
is based on the notion that non-Gaussianity could be the source of these anoma-
lies and resembles models of primordial non-Gaussianity characterized by strongly
scale-dependent gNL-like trispectra. The objective of this work is to compute and
characterize the trispectrum of the initial curvature perturbation ζ from inflation,
which is the Fourier counterpart of the 4-point correlation function, associated with
the toy model. This analysis aims to provide insights into the physical properties
underlying the toy model. To achieve this, we investigate the shape of the primordial
trispectrum of ζ in two specific cases: the folded kite-shape limit and the specialized
planar limit. Our preliminary results in the folded limit, where k1 = k2, k3 = k4

and the diagonal k12 = 0, suggests that this configuration may be more suitable
for exploring our trispectrum’s shape. However, a more thorough analysis of the
trispectrum’s shape is needed to gain deeper insights into the type of primordial
non-Gaussianity present in the model and to support this initial finding. Addition-
ally, we provide explicit equations for the CMB trispectrum, which can be useful
for future numerical analyses. These analyses have the potential to enhance the
understanding of the properties that might be responsible for the CMB anomalies
and may help in providing both new forecasts and constraints on the non-Gaussian
parameter gNL when applied to Planck data.
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Chapter 1

Introduction

The Cosmic Microwave Background (CMB) structure had been hidden for many
years due to instrumental limitations. However, advancements in both theory and
observational data have firmly established that the CMB carries significant scientific
information through its temperature and polarization patterns. Since the initial de-
tection of temperature anisotropies by the COBE satellite, there has been a growing
interest in improving sensitivity and acquiring high-quality data on temperature
patterns from various missions. Extensive studies of this data have led to the devel-
opment of the current cosmological model (ΛCDM).

At the same time, measurements of the CMB by satellites like WMAP and Planck
have revealed indications of some departures from our standard cosmological model,
indicating the presence of unexpected features or anomalies at large angular scales
(see, e.g. Ade et al. 2016). While many of these anomalies may not be statistically
significant (2 – 3σ level), they provide a potential window to explore new physics
related to the initial conditions of the early Universe, attempting to explain their
presence in the data. Still, some researchers suggest that these anomalies could
be attributed to systematic issues or statistical flukes. Examples of these anomalies
include large-scale hemispherical power asymmetry, small-scale hemispherical power
asymmetry, non-Gaussian hot or cold spots, low power on large angular scales,
quadrupole and octopole alignment, and parity asymmetry on large angular scales
(Tegmark et al., 2003; Eriksen et al., 2007; Schwarz et al., 2015).

Motivated by the desire to identify a common physical cosmological origin for these
anomalies, numerous detailed investigations have been conducted. The proposed
models can generally be categorized into two groups: those with the explicit breaking
of statistical isotropy and those where statistical isotropy breaking arises (locally)
from the presence of primordial non-Gaussianity. Adhikari et al. (2018) found that
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the hemispherical power asymmetry could be modeled by a local-type trispectrum
(the Fourier counterpart of the 4-point correlation function) of primordial curvature
perturbations. However, they did not address the issue of an inflationary model
capable of explaining power asymmetry. On the other hand, Byrnes et al. (2016b)
reported a set of inflationary scenarios that could accommodate the hemispherical
asymmetry, concluding that a single-field model is inadequate to reproduce the
correct power asymmetry, and a multi-field scenario is more suitable.

A more recent phenomenological model proposed by Hansen et al. (2019) reproduces
simultaneously six extensively studied anomalies and is based on the idea that non-
Gaussianity may be the origin of these anomalies, manifesting as apparent deviations
from statistical isotropy and features in the power spectrum. However, the authors
did not derive the physical model that could give rise to the toy model reproducing
the CMB anomalies.

As a further development, the same authors also established a one-to-one connection
between the temperature field T used in the construction of the toy model and the
inflationary curvature perturbation ζ in its most general expression. To achieve this,
an expansion (in terms of convolution in Fourier space with a given kernel) of ζ was
carried out up to the order of primordial non-Gaussianity gNL, corresponding to
cubic non-linearities (Schmidt and Kamionkowski, 2010). Since the proposed model
involves the temperature field at the cubic order, it is necessary to explore higher-
order correlation functions, such as the four-point function or trispectrum. Thus, the
calculations developed up to now in Hansen et al. (2019) serve as a starting point for
this thesis, as the previously explained formalism allows us to obtain the expression
for the temperature field, expand it in harmonic spherical terms, and derive an
expression for the multiple coefficients (alm) in terms of curvature perturbation (ζ),
incorporating the non-Gaussian contribution.

Therefore, this thesis aims to compute and characterize the trispectrum template
associated with the toy model developed by Hansen et al. (2019). We can compute
the trispectrum in both harmonic space and Fourier space, providing complemen-
tary information to properly identify the properties of this high-order correlation
function.

In conducting a thorough trispectrum analysis, there are two essential quantities
that we aim to obtain. Firstly, the amplitude of the overall non-Gaussianity pro-
vides information about the strength of non-Gaussianity, while the so-called “shape”
of non-Gaussianity carries valuable information about the underlying physical pro-
cesses that generate the template. Analyzing these quantities allows us to associate
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specific information with different inflationary models or cosmological scenarios. To
determine these fundamental quantities, we need to analyze the obtained template
and identify the functional dependencies and behaviors of the different terms in-
volved.

For instance, the non-Gaussianity parameter gNL determines the overall amplitude
of the non-Gaussian contribution to the trispectrum, the functional form of the inte-
gral kernel contains valuable information for identifying the shape of our template,
and other contributions such as the primordial power spectrum, and geometrical
dependencies should be explored as well.

The results of our trispectrum analysis for this specific toy model can provide insights
into primordial non-Gaussianity, which may be related to the initial conditions of
the early Universe. Additionally, it can offer further information about the physical
model underlying the phenomenological model that reproduces the CMB anomalies.

The thesis is organized as follows. In Chapter 2, we present the main foundations
of the Standard Cosmological Model (ΛCDM). Chapter 3 contains a brief review of
Cosmic Microwave Background (CMB) anisotropies, power spectrum, and trispec-
trum. Chapter 4 introduces some of the most studied CMB anomalies, exploring
possible explanations for their presence in the data. The proposed model by Hansen
et al. (2019) is explained in Chapter 5, recovering the main equations. In Chapter
6, the trispectrum of the toy model is calculated and some of the characteristics of
the primordial trispectrum of ζ are studied, such as the shape. Finally, we provide a
discussion of our results, along with the most relevant conclusions and future work
in Chapter 7.
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Chapter 2

Standard Cosmological Model ΛCDM

Over the last few years, numerous pieces of evidence have pointed to a compre-
hensive picture of the Universe, in which our current understanding is consistent
with the parametric model Lambda Cold Dark Matter (ΛCDM). According to this
model, the Universe is experiencing an accelerated expansion and is comprised of
three main components, primarily composed of Dark Energy (DE), which drives
the late accelerated expansion of the Cosmos and is thought to be in the form of
the cosmological constant Λ. The second largest constituent is denominated Cold
Dark Matter (CDM), a non-luminous substance that interacts only through gravity.
In addition to these, there is baryonic matter, also known as ordinary matter. In-
deed, with these three ingredients, a wide variety of cosmological observations can
be explained Heavens (2008).

The foundations of this description are the Einstein Field Equations (EFE), which
describe the relationship between the geometry (curvature of spacetime) and the
distribution of matter and energy, and the Cosmological Principle, which states that
the Universe is homogeneous and isotropic on a large scale (∼ 200 Mpc). These
fundamental ideas provide the framework for understanding the evolution of the
Cosmos, identifying its components, and making predictions about its potential
future scenarios. The EFE states that

Rµν −
1

2
gµνR = 8πGTµν , (2.1)

where Rµν and R are respectively the Ricci tensor and scalar, gµν the metric, G the
Newtonian gravitational constant, and Tµν is the energy-momentum tensor of the
fluid which describes the energy content of the Universe.

Within the framework of the EFE, we can describe the dynamics of an expanding
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Universe with curvature k, that is symmetric under rotation and spatial translations,
conditions that satisfy the Friedmann-Lemaître-Robertson-Walker (FLRW) metric
given by

d2s = −d2t+ a2(t)

[
d2r

1− kr2
+ r2dΩ2

]
, (2.2)

where t represents the cosmic time of an observer comoving with the cosmic fluid,
a(t) is the scale factor that accounts for the expansion of the Universe, and k

parametrizes the curvature as follows: k = 0 corresponds to a flat universe, k = +1

to a closed universe, and k = −1 to an open universe.

The set of equations that govern the evolution of this model is the Friedmann Equa-
tions, which can be derived from the EFE by explicitly considering the 00 and
ij components and exploiting the conservation laws given by ∇µT

µν = 0. Here,
T µν = diag[−ρ(t), P (t), P (t), P (t)] represents the stress-energy tensor of a perfect
fluid. Consequently, we obtain(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (2.3)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (2.4)

ρ̇ = −3H(ρ+ P ) , (2.5)

where H = ȧ/a is the Hubble parameter, ρ denotes the energy density, and P stands
for the isotropic pressure of the fluid. The dot notation indicates differentiation with
respect to the cosmic time t. It is important to note that only two of these equations
are independent, so we require an additional equation to complete the system. This
additional expression is the equation of state, given by P = wρ, where the value of
w depends on the specific energy content under consideration.

2.1 Components of the Universe

The most abundant component of the Universe is an enigmatic form of energy known
as Dark Energy. This mysterious force exerts its influence on large scales, resulting
in accelerated expansion. The acceptance of this hypothesis grew substantially in the
late 1990s, supported by observations of distant supernovae (e.g. Riess et al. 1998).
Dark Energy is commonly associated with two forms: the cosmological constant,
denoted as Λ, and scalar fields such as quintessence or moduli. It is the vacuum
energy of the system that drives the accelerated expansion of the Universe. In
general, to achieve accelerated expansion, a field with a state equation parameter
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w < −1/3 is required. Particularly, Λ corresponds to a source field with w =

−1, implying a negative pressure P = −ρ. Currently, Dark Energy constitutes
approximately 68% of the total energy density of the Universe.

Another dominant component of the Universe is a strange form of pressureless mat-
ter, known as Dark Matter, which fills our Universe and is roughly five times more
abundant than ordinary matter Garrett and Duda (2011). The presence of DM
is essential as it provides the gravitational pull necessary to explain the observed
large-scale structure, the formation of galaxies, and galaxy clusters. Although DM
remains elusive and has yet to be directly detected, compelling cosmological and as-
trophysical evidence strongly supports its existence (see, for example Freese, 2009).
Furthermore, Dark Matter is described as a non-radiating, approximately collision-
less, and non-relativistic particle, which accounts for roughly 27% of the total energy
density.

Surprisingly, ordinary baryonic matter which includes everything made up of pro-
tons, electrons, and neutrons accounts for only about 5% of the total energy density
of the Universe. There is also a small percentage that corresponds to the contribu-
tion of radiation.

The ΛCDM model incorporates these components to accurately describe various
observed properties of the Universe, including the accelerating expansion, the Cos-
mic Microwave Background (CMB) radiation and its anisotropies, the abundance
pattern of the light elements (Hydrogen, Helium, and Lithium), and the formation
and evolution of the large-scale structure. However, it is the addition of inflation
to ΛCDM that allows for the development of what we commonly refer to as the
Standard Cosmological Model.

Through the combined analyses of data from different cosmological observations,
such as the CMB, galaxy surveys, and supernovas, scientists have not only vali-
dated but also refined the inflation + ΛCDM model. This model is described by six
fundamental parameters: Ωb baryon density, Ωc CDM density, ΩΛ density param-
eter for the cosmological constant, H0 Hubble constant today, As amplitude, and
ns spectral index of the scalar fluctuations. The current best-fit values for these
parameters are presented in Table 2.1. It is important to note that the last two pa-
rameters, As and ns, are derived from the power spectrum of a specific inflationary
model, for instance, the single-field model.
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Parameters Planck (CMB + Lensing)
Ωbh

2 0.0224±0.0001
Ωch

2 0.120±0.001
ΩΛ 0.6847 ± 0.0073
H0(kms−1Mpc−1) 67.4 ± 0.5
ln (1010As) 3.044 ± 0.014
ns 0.965±0.004

Table 2.1: Values for the six-parameter inflation + ΛCDM model obtained by fitting
the full-mission Planck data of the CMB, taken from Aghanim et al. (2020).

2.2 Thermal history of the Universe

The Standard Cosmological Model, therefore, consists of the following: the Universe
originated from an extremely hot and dense state known as the Big Bang (BB) ap-
proximately 13.8 Gyr ago. During its early moments, within the first 10−35 seconds,
it underwent a phase of nearly exponential expansion. Since then, the Universe has
continued to expand, under the gravitational influence described by General Rel-
ativity. During this inflationary epoch, quantum fluctuations in the inflaton field
played an important role in establishing the initial conditions for the generation of
the primordial density perturbations.

Figure 2.1: Schematic representation of the history of our Universe, taken from ESA
– C. Carreau.

Following the rapid expansion phase, a crucial process known as Reheating occurred,
facilitating efficient thermalization. This marked the beginning of the radiation-
dominated era, characterized by a fluid with an equation of state, where P = 1/3ρ,



12 2 Standard Cosmological Model ΛCDM

and a scale factor, a = t1/2. As the Universe continued to expand and cool down,
various particles began to form, including protons, electrons, and neutrons. When
the temperature reached ∼ 3000 K, roughly 380.000 years after the BB, the energy
of photons dropped to a level where protons and electrons could combine, forming
neutral hydrogen atoms through the process of recombination. This had a major
effect, for the first time, the Universe became transparent and photons could travel
freely through space. The decoupling of photons from matter led to the formation
of CMB radiation, which is the relic radiation from the early Universe that we can
observe today.

After the recombination phase ended, the Universe entered the matter-dominated
era. During this time, the dominant energy density was attributed to pressureless,
non-relativistic matter, comprising both CDM and baryonic matter. The scale factor
for this case is described by a = t2/3. Throughout this epoch, neutral hydrogen gas
continued to evolve. Eventually, the temperature and density conditions propitiated
the synthesis of light elements, such as Hydrogen (H), Helium (He), and a trace
amount of Lithium (Li). This process is known as Big Bang Nucleosynthesis (BBN)
and has a fundamental role in understanding the abundance of light elements in the
Universe. Following the era of BBN, galaxies and large-scale structures began to
form.

At present, the Universe continues its expansion, causing galaxies to move away from
each other. Furthermore, DE has emerged as the dominant component of the total
energy density. Consequently, the ultimate fate of the Cosmos and the long-term
evolution of its constituents remain actively researched topics.

2.3 The Inflationary Paradigm

The detection of the CMB reinforces the Hot Big Bang theory as the leading ex-
planation for the origin of the Universe. However, despite its success in explaining
many observations at that time, there were several notable “shortcomings”. The first
of these inconsistencies is dubbed the Horizon problem. This problem arises from
the fact that CMB radiation exhibits a remarkably uniform temperature across the
entire sky. This uniformity suggests that distant regions of the Universe should have
been in causal connection at certain points in cosmic history. However, it becomes
puzzling when one considers that these regions were separated by vast distances, and
should not have had enough time to communicate with each other. Consequently,
there seems to be no apparent reason for them to be causally connected, and even
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less to have the same thermal properties.

Another issue is the Flatness problem, which is connected to the curvature term
in equation (2.5). Nowadays, we understand that the Universe is nearly flat, with
a value of Ωk = 10−2, as indicated in Aghanim et al. (2020). To account for this
current value of Ωk, the HBB theory predicts that the early Universe was even flatter,
requiring a fine-tuning of the initial value to Ωk = 10−60, a seemingly unnatural
condition. Therefore, the inflationary paradigm, proposed by Guth (1981), emerged
as a potential solution to address the shortcomings of the HBB model.

It is widely accepted that the Universe underwent a phase of accelerating expansion
shortly after the Big Bang. This period of rapid expansion, known as inflation,
was remarkably brief, during which the universe’s size increased by a factor of at
least e60. Then, in this inflationary phase, regions that were causally connected
before inflation could come into thermal equilibrium. However, as inflation ended,
these same regions became causally disconnected and grew distant from each other.
This phenomenon offers a compelling explanation for the characteristics exhibited
by CMB radiation.

Furthermore, inflation provides a solution to the fine-tuning problem. Even if the
Universe began with arbitrary initial conditions, the quasi-exponential expansion
during inflation restores the value of the curvature consistent with a flat universe.
In addition to these benefits, inflationary theory also provides an explanation for
the formation of large-scale structures in the Cosmos. It proposes that quantum
fluctuations during this period acted as seeds for density perturbations, which sub-
sequently grew, leading to the formation of the structures we observe in the Universe
today.

As a result, the inflationary theory provides a compelling explanation for the origin
and characteristics of our Universe, and it has indeed become an essential part of
the cosmological model.

2.3.1 Single field Inflation

The simplest theory to explain the early rapid expansion of the Universe is the single-
field model, also known as Cosmic Inflation. This concept was originally proposed
by Guth (1981), where the mechanism driving the expansion is the vacuum energy
density of a scalar field called the inflaton field.

As previously discussed, in order to achieve inflation, the acceleration term in the sec-
ond Friedmann equation (2.5) must be positive, indicated by ä > 0. This condition
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implies that the equation of state parameter must satisfy w < −1/3. Consequently,
a mechanism is required to provide a sufficiently negative pressure during this phase.
One possible option is the cosmological constant Λ, however, the exponential expan-
sion it induces never ends, which is incompatible with the observed history of the
Universe. Alternatively, a single scalar field φ, can mimic the behavior of Λ and
drive an expansion that terminates when specific conditions are no longer fulfilled.

To examine the evolution of this scalar field, we assume it is minimally coupled to
gravity, resulting in an action that takes the following form

S = SHE + Sφ =

∫
d4x

√
−g

(
R− 1

2
gµν∂µφ∂νφ− V (φ)

)
, (2.6)

the above expression is the sum of two components: the gravitational Hilbert-
Einstein action SHE and the action of the inflaton scalar field Sφ. The lagrangian
for the real scalar field is constructed with a canonical kinetic term and a potential
term V (φ). The specific form of the potential can vary depending on the inflation
model1.

Additionally, the inflaton stress-energy momentum tensor Tµν is given by

Tµν = ∂µφ∂νφ− gµν

[
1

2
gαβ∂α φ∂β φ− V (φ)

]
. (2.7)

Furthermore, the dynamics of the inflaton field is described by the Equation of
Motion (EoM), derived from the variational principle, resulting in

φ̈+ 3Hφ̇− ∇2φ

a2
= −∂V

∂φ
, (2.8)

it is worth mentioning that this expression corresponds to the Klein-Gordon equation
for a quantum scalar field in the FLRW metric. In this equation, the term 3Hφ̇ can
be interpreted as a form of friction due to the expansion of the Universe.

In general, the inflaton field φ is decomposed into the sum of a background value
and quantum fluctuations, as follows

φ(x, t) = φ0(t) + δφ(x, t) , (2.9)

here, the classical background value represents the homogeneous and slowly varying
part of the field, denoted as ⟨φ(x, t)⟩ = φ0(t). On the other hand, quantum fluctu-

1For instance, the potential V (φ) can take the shape of a simple quadratic potential V (φ) =
1
2m

2
φφ

2, a self-interaction potential V (φ) = λ
4φ

4 or an effective potential to account for interactions
between φ and other fields.
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ations describe random perturbations in the field, with the property, ⟨δφ(x, t)⟩ = 0.
It is commonly assumed that ⟨δφ2(x, t)⟩ ≪ φ2

0(t), a condition that is observationally
supported by the small value of the CMB temperature anisotropies, ∆T/T ≃ 10−5,
which are related to the quantum fluctuations.

Evaluating equation (2.7) for the case of the background value φ0(t), we obtain the
following components of the stress-energy tensor

T 0
0 = −

[
1
2
φ̇2
0(t) + V (φ0)

]
= −ρφ(t) ,

T i
j =

[
1
2
φ̇2
0(t)− V (φ0)

]
δij = Pφ(t)δ

i
j ,

(2.10)

with such an energy-momentum tensor, we can achieve an inflationary period by
ensuring that, at a certain moment, the potential energy dominates over the ki-
netic term, meaning V (φ) ≫ 1

2
φ̇2. This condition implies that the pressure Pφ ∼

−V (φ) ∼ −ρφ. This requirement is fulfilled when φ0 traverses an almost flat region
of its potential, a state known as the slow-roll regime, as depicted in figure 2.2.
During this phase, inflation is primarily driven by the vacuum energy density of φ,
and the potential can be treated as constant.

Figure 2.2: Representation of the inflationary phase known as a slow-roll regimen
illustrated as a shaded area in the graph. Image credit Baumann (2012).

To establish and maintain the slow-roll regime for a sufficiently extended duration,
certain conditions must be satisfied. These conditions are the first slow-roll con-
dition, which dictates that V (φ) ≫ φ̇2, and the second slow-roll condition, which
stipulates that φ̈ ≪ 3Hφ̇. Fulfilling these conditions ensures that the potential en-
ergy dominates over the kinetic energy of the scalar field φ, resulting in a slow and
sustained evolution of the field.
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Moreover, we can introduce some parameters to quantify the characteristics of the
slow-roll dynamics,

ϵ = − Ḣ

H2
≃ 3

2

φ̇2

V (φ)
, (2.11)

η = − φ̈

Hφ̇
≃ V ′′

3H2
− Ḣ

H2

V ′

3Hφ̇
≃ ηv − ϵ , (2.12)

where ϵ quantifies the flatness of the potential, while η controls the duration of
inflation. It is important to note that these parameters must satisfy the condition
ϵ, η ≪ 1. Then, inflation comes to an end when these parameters reach unity. These
quantities are useful to compare the theoretical predictions with observational data.
In fact, a hierarchy of parameters can be constructed, with ϵ and η serving as the
first in this hierarchy.

2.3.2 Cosmological perturbations from Inflation

In the early Universe, during the inflationary epoch, the inflaton field underwent
quantum fluctuations. To comprehend this phenomenon, it is important to study
how these small-scale fluctuations, denoted as δφ, evolve into cosmological pertur-
bations on larger scales.

These primordial quantum fluctuations originated on scales much smaller than the
comoving Hubble radius, rH2. Subsequently, inflation amplified and stretched these
fluctuations beyond the horizon scale. On such scales, the fluctuations are no longer
causally connected, and they remain nearly constant over time because microscopic
physics has negligible influence on their evolution. Additionally, the fluctuations
are intimately linked with density perturbations, δρ, which give rise to the observed
anisotropy in the CMB temperature. As these perturbations re-enter the horizon,
they serve as the initial conditions for the formation of structures in the Universe.
For a more comprehensive exploration of the study of inflaton field quantum fluc-
tuations, refer to Riotto (2017). However, this section aims to present some key
results to facilitate an understanding of this process.

The evolution of the fluctuations can be described by perturbing equation (2.8) at
linear order. This linear perturbation analysis allows us to understand how small

2The comoving Hubble radius accounts for the causal connection over one Hubble time and is
defined as rH = c

aH .
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deviations from equation (2.8) give rise to the observed variations

δ̈φ+ 3H ˙δφ− ∇2δφ

a2
= −∂2V

∂φ2
δφ . (2.13)

To study the EoM, it is initially convenient to express the fluctuations as a function
of the conformal time τ and proceed with the quantization of the field. This approach
allows us to consider that

δφ =
δφ̂

a
, (2.14)

therefore, working in Fourier space, one can express the quantum operator δφ̂ as

δφ̂(x, τ) =

∫
d3k

(2π)3

[
uk(τ)âke

−ik·x + u∗
k(τ)â

†
ke

ik·x
]
, (2.15)

where uk represents the wave functions associated with the quantum operators δφ̂.
The operators â and â† 3 correspond to the annihilation and creation operators,
respectively. This means that âk|0⟩ = 0, where |0⟩ is the free vacuum state, and
⟨0|â†k = 0. After performing some mathematical steps, we can express the result as
follows

u′′
k(τ) +

[
k2 − a′′

a
+

∂2V

∂φ2
a2
]
uk(τ) = 0 . (2.16)

The above equation describes a harmonic oscillator, where the frequency changes
in time due to the expansion of the Universe. Particularly, in flat spacetime the
solution to the Klein-Gordon equation is

uk ≃
e−iwkτ

√
2wk

, (2.17)

here, w2
k = k2 + m2. When dealing with an expanding Universe, the choice of

the vacuum state becomes somewhat ambiguous. However, using the equivalence
principle, especially involving small scales and short time intervals, we can expect
the solution to mimic the behavior in flat Minkowski spacetime, plane waveforms.
Consequently, when we locally approximate the spacetime as flat, we can recover
the expression (2.17), leading to the following

uk(τ) ≃
e−ikτ

√
2k

, (2.18)

this choice is referred to as the Bunch-Davies vacuum for a scalar field in curved
spacetime. It involves the condition that at small scales we restore the flat case,

3These operators follow the usual canonical commutation relations: [âk, âk′ ] = 0 and [âk, â
†
k′ ] =

(2π)3δ3(k − k′).
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specifically when k ≫ aH.

One approach to solving equation (2.16) is by considering a massless scalar field,
m2

φ = V ′′(φ) = 0, in a pure de Sitter spacetime (H ≃ const). In this case, the
conformal time can be expressed as

dτ =
dt

a
↔ τ = − 1

aH
, (2.19)

as a result, the term a′′

a
takes the form

a′′

a
=

2

τ 2
=

2

r2H
. (2.20)

Hence, we are interested in solving the equation in two distinct regimes:

Sub-horizon regime: when the comoving wavelength associated with mode k is within
the Hubble radius rH , the following condition holds

k ≫ aH −→ u′′
k + k2uk = 0 , (2.21)

this expression represents a harmonic oscillator, describing a plane wave solution.
Consequently, it leads to

uk(τ) =
e−ikτ

√
2k

. (2.22)

Super-horizon regime: when the comoving wavelength associated with the mode k

exits the Hubble radius, so that

k ≪ aH −→ u′′
k −

a′′

a
uk = 0 . (2.23)

In this regime, the EoM becomes a second-order differential equation whose solution
corresponds to a combination of a growing and decaying mode,

uk(τ) = B(k)a(τ) + A(k)a−2(τ) , (2.24)

as we can observe, the decaying mode becomes negligible very quickly due to the
effect of inflation. As a consequence, our focus shifts to the growing one. In this case,
determining the amplitude of the fluctuations within this regime involves matching
the solutions given by equations (2.22) and (2.24) at the time when k mode exits



2.3 The Inflationary Paradigm 19

the horizon (the horizon crossing time), this leads to

|δφk| = |B(k)| = 1

a
√
2k

∣∣∣∣∣
k=aH

=
H√
2k3

, (2.25)

physically what happens is that the k modes that exit the Hubble radius acquire
a “frozen” value given by equation (2.25) because microphysics cannot act on such
larger scales. This means that outside the horizon perturbations freeze, and preserve
the primordial features until the re-entering of the horizon.

Alternatively, we can also solve the equation (2.16) in a more general case known as
Quasi-de Sitter, where (H ̸= const). For a more in-depth treatment refer to Bartolo
et al. (2004). In this case, the value of the quantum fluctuation is given by

|δφk| =
H√
2k3

(
k

aH

) 3
2
−ν

, (2.26)

where ϵ = ν − 3/2, this scale dependence on k−ϵ is one of the unique prediction of
inflationary models.

Up to this point, our focus has been on the study of quantum fluctuations in the
inflaton field. Nevertheless, for a complete understanding of how these fluctuations
evolve into primordial density perturbations, it is important to also account for
perturbations in the metric. As previously mentioned, the inflaton plays a crucial
role in the energy distribution of the Universe means that perturbations in the
energy-momentum tensor lead to variations in the FLRW metric. Conversely, metric
variations influence the evolution of inflaton perturbations, as they are incorporated
into the perturbed Klein-Gordon equation. Consequently, the study of both field
and metric perturbations is inherently intertwined and needs to be studied together,
which is extensively covered in Bartolo et al. (2004). To facilitate this analysis, we
use a gauge-invariant4 quantity known as the curvature perturbation on uniform
energy density hypersurfaces, denoted as ζ, given by

ζ ≡ −Φ̂−H
δρ

ρ
, (2.27)

which is a “mixed variable” containing both matter and metric perturbations. Such
a quantity is the most natural way to study the problem of the perturbations, since

4In cosmology, a gauge transformation is a map that links points of the background spacetime
and of the perturbed spacetime, keeping fixed the coordinates in the background spacetime. This
is necessary in order to compare a tensor before and after perturbation because they are defined
on different spacetimes unless choosing a one-to-one relationship between the two spaces.
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EFE equations themselves couple the metric and the inflaton fluctuations, as we
already mentioned. In this expression, Φ̂ represents the Bardeen potential, a crucial
parameter related to the scalar metric perturbations that describe spatial variations
in the gravitational potential. Besides, it is used to characterize the primordial
density fluctuations and their impact on the formation of large-scale structures in
the Universe. Additionally, it can be proved that the inhomogeneities generated
by the primordial inflaton fluctuations are responsible for producing temperature
anisotropies.

Fluctuations in the inflaton field are related to perturbation in the metric and in the
expansion rate. In fact, the fluctuations produce variations in the expansion rate in
different regions of the Universe on large scales. In particular, this temporal shift
can be expressed as

δt = −δφ

φ̇
, (2.28)

this effect is reflected in fluctuations of the number of e-folds5 given by

δN = Hδt = −H
δφ

φ̇
. (2.29)

The previous equation can be written using the equations (2.10), combined with the
background equation (2.8) of φ, and the continuity equation (2.5), as a result we
obtain that

δN = −H
δφ

φ̇
= −H

δρ

ρ̇
. (2.30)

Moving on to equation (2.27), the factor Φ̂ can be set equal to zero with a proper
choice of gauge (spatial flat gauge) leading to

ζ = δN = −H
δρ

ρ̇
= −H

δφ

φ̇
, (2.31)

where we can see how the fluctuations of the inflaton field are linked to the per-
turbation of the energy density. As pointed out before, the quantum fluctuations
are frozen out outside the horizon, and at re-entering they generate the density
perturbations and temperature fluctuations in the CMB

ζ
∣∣
texit

≃ −H
δφ

φ̇
= ζ
∣∣
tent

≃ −H
δρ

ρ̇
=

1

4

δρ

ρ
∼ ∆T

T
, (2.32)

where we use the fact that ρ ∝ a−4 ∝ T 4. This is a simplified model to treat how

5The number of e-folds is used to quantify the amount of cosmic expansion and it is defined as
N = ln

(
a(tf )
a(ti)

)
=
∫ tf
ti

Hdt
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the quantum fluctuations can imprint information in the temperature fluctuations
of the CMB, however, it helps us to see the relationship between them.

2.4 Correlation functions

According to the current inflationary paradigm, the origin of primordial density
perturbations can be traced back to quantum fluctuations of a scalar field. However,
these fluctuations cannot be directly observed. Instead, we rely on a statistical
approach to describe their properties.

In this statistical analysis, we consider the observable universe as a stochastic real-
ization within a statistical ensemble of possibilities. In general, to characterize these
perturbations statistically, we turn to joint ensemble averages involving a set of N
fields, either in real or Fourier space, e.g. Eriksen et al. (2002). These ensemble
averages are commonly known as the N -point correlation functions which quantify
the correlations between density or temperature perturbations at multiple points in
the space and can be defined as follows

CN(θ1, ..., θN) = ⟨T (n̂1)T (n̂2) · · ·T (n̂N)⟩ . (2.33)

In the case of Gaussian initial conditions, all the statistical information of the fluctu-
ations is encoded in the two-point correlation function, this is equivalently known as
the power spectrum in Fourier space. By contrast, non-Gaussian conditions could be
anything else, and higher-order correlation functions can provide useful information
about the nature of the fluctuations (Verde et al. 2000; Verde and Heavens 2001).

2.4.1 Power spectrum

The quantum fluctuations can be described by a random field, denoted as δφ(x, t).
Assuming that these fields follow a Gaussian distribution, their statistical properties
are primarily characterized by the expectation value, which in this case is ⟨δφ⟩ = 0.
However, a more interesting description involves computing the covariance, repre-
sented by the two-point correlation function.

In accordance with the Cosmological Principle, we make the assumption of statistical
homogeneity and isotropy, which implies that the two-point correlation function of
these fluctuations in real space can be defined as the ensemble average of the fields
at two distinct locations, x and x+r (in comoving coordinates). Consequently, the
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correlation function only depends on the separation distance r. This leads to

ξ(r) ≡ ⟨δ(x+ r)δ(x)⟩ , (2.34)

expanding the field in Fourier space, we arrive at the following expression

δ(x) =

∫
d3k

(2π)3
eik·x δ(k) . (2.35)

Indeed, as a consequence, the Fourier transform of the two-point correlation can
be expressed in terms of the power spectrum P (k), which only depends on the
magnitude of the wavevector k, and it measures the amplitude of the fluctuations
at a given scale k. Then, we can define that

⟨δ(k)δ(k′)⟩ = (2π)3δ3(k + k′)P (k) . (2.36)

Furthermore, it is possible to define the dimensionless power spectrum as follows

P(k) =
k3

2π2
P (k) , (2.37)

and the variance can be expressed as follows

⟨δ2(x)⟩ =
∫ ∞

0

dk

k
P(k) . (2.38)

In order to proper analyse the dimensionless power spectrum P(k), we introduce
the spectral index ns, which serves to characterize the shape of the spectrum

ns =
dlnP(k)

dlnk
, (2.39)

where ns represents the spectral index for scalar perturbations. Specifically, when
ns is constant, the adimensional power spectrum can be expressed as a power law

P(k) = P0(k)

(
k

k0

)ns−1

, (2.40)

here, k0 is a pivot scale, often chosen as k0 = 0.05 Mpc−1, while P0(k) denotes
the amplitude evaluated at this pivot scale. When ns = 1, the expression becomes
independent of k and is known as the Harrison-Zel’dovic spectrum.

The actual value determined by Akrami et al. (2020c) is ns = 0.9649± 0.0042 at 68
% CL in the case of single-field slow-roll inflation.
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2.5 Non-gaussianity

Non-Gaussianity stands as a crucial feature in cosmology, offering valuable insights
into the underlying processes during the early epochs of the Universe. While our
current observations align with the idea of scale-invariant perturbations, described
by almost Gaussian statistics, where the power spectrum encapsulates all the statis-
tical information, it is essential to acknowledge that deviations from pure Gaussian
behavior remain a viable and intriguing possibility.

The existence of some degree of non-Gaussianity within the primordial cosmological
perturbation field constitutes a broad prediction shared by various cosmological
scenarios (Verde et al. 2001; Maldacena 2003; Bartolo et al. 2005; Jung et al. 2023).
Moreover, it is worth noting that non-Gaussian signatures and their specific shape
are significant model dependent, which makes primordial non-Gaussianity (PNG)
a powerful tool to constrain inflation and to provide information about physics at
very high energy scales in the early Universe.

For instance, non-Gaussianity serves as an indicator of intriguing phenomena in the
Universe, suggesting the presence of non-linear interactions, asymmetry, or higher-
order dependencies. These features can be attributed to alternative models such
as warm inflation, curvature mechanism, ghost inflation, or even string theory, a
more thorough discussion can be found in Linde and Mukhanov (1997); Gupta et al.
(2002); Lyth et al. (2003); Bartolo et al. (2004).

The standard approach to quantifying non-Gaussianity involves analyzing higher-
order correlation functions, such as the three-point correlation function (referred to
as bispectrum in Fourier space, see e.g. Verde et al. (2000); Wang and Kamionkowski
2000; Babich et al. 2004; Akrami et al. 2020a) or the four-point correlation function
(trispectrum). These functions capture statistical relationships beyond simple pair-
wise correlations. In particular, they can reveal complex patterns in the data. In
general, we can define the Fourier transform of the N-point correlation functions of
the primordial curvature fluctuation using the following expression

⟨ζk1ζk2 ...ζkN
⟩ = (2π)3δ3(k12...N)Fζ(k1,k2, ...,kN) , (2.41)

in this expression, all the essential information regarding the amplitude and shape
of the primordial non-Gaussianity is encoded in the function Fζ(k1,k2, ...,kN). A
crucial observable for the study of PNG is the CMB since it originated at early
times when perturbations remained in the linear regime, ensuring the preservation
of their statistical characteristics. Currently, the most precise result in this field has
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been obtained through the analysis of Planck CMB data. This has yielded an upper
bound on the level of PNG, measuring at roughly less than 0.1 % of the amplitude
of the Gaussian component of the field Akrami et al. (2020a).

2.5.1 Primordial Trispectrum

The simplest indicator sensible to non-Gaussianity is the 3-point correlation function
of the primordial curvature perturbation ζ. However, recent investigations into this
issue of the initial perturbations have focused on the Fourier equivalent of the 4-
point correlation function, the trispectrum. This statistical quantity allows us to
study correlations among four Fourier modes, which represent the wavevectors of
the curvature perturbations. The trispectrum is formally defined as

⟨ζk1ζk2ζk3ζk4⟩c = (2π)3δ3(k1 + k2 + k3 + k4)Tζ(k1,k2,k3,k4) , (2.42)

in this equation, Tζ(k1,k2,k3,k4) represents the primordial trispectrum, with homo-
geneity being accounted by the presence of the Dirac delta. When we analyze this
function, we expect the wavevectors to form a closed quadrilateral configuration.
Notably, both the amplitude and shape of the trispectrum are model-dependent.
Consequently, predictions regarding these characteristics provide a valuable tool for
distinguishing among different inflationary scenarios.

Among the most widely used models for introducing non-gaussianity are the local
type non-Gaussian models, where non-linear contributions of the perturbations on
super-horizon scales give rise to non-Gaussian behavior. These models have been
extensively studied, as referenced in the literature Okamoto and Hu (2002); Bartolo
et al. (2004); Byrnes (2014). In these models, the Bardeen’s curvature potential Φ
in the matter-dominant era is expressed as a local function of a Gaussian field ΦG

and is often expanded into a Taylor series as (e.g. Nishimichi 2012)

Φ(x) = ΦG(x) + fNL

[
Φ2

G(x)− ⟨Φ2
G⟩
]
+ gNLΦ

3
G(x) + ... , (2.43)

In real space, the cubic-order contribution is often parametrized in terms of the
curvature perturbation ζ as

ζ(x) = ζG(x) +
9

25
gNL ζ

3
G(x) . (2.44)

In this context, the trispectrum in the local non-Gaussian model can be expressed
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as follows

Tζ(k1,k2,k3,k4) =
54

25
glocalNL [Pζ(k1)Pζ(k2)Pζ(k3) + 3 perm.] . (2.45)

In their analyses, Akrami et al. (2020a) found that the local-type trispectrum de-
scribed in equation (2.45) is consistently negligible in the context of single-field
inflation as discussed by Senatore and Zaldarriaga 2012b. However, it can have a sig-
nificantly large value in multi-field models of inflation, where the presence of a large
bispectrum is forbidden by symmetry as noted in Senatore and Zaldarriaga 2012a.
Additionally, other scenarios were explored including gσ̇

4

NL and g
(∂σ)4

NL , which can be
generated by operators in the effective field theory (EFT) of inflation. Currently,
the trispectrum constraint provided by Planck stands at gNL = (−5.8 ± 6.5) × 104

at the 68% CL.

Subsequently, extensive research has been undertaken to establish constraints on
the amplitude and shape of primordial non-Gaussianity using the trispectrum, such
as the works by Regan et al. 2010, Mizuno and Koyama 2010, Regan et al. 2015,
Smith et al. 2015, and Feng et al. 2015.

When considering the trispectrum shape, which encodes information about the dis-
tribution of power across various configurations, the most frequently examined shape
in the literature is the local shape. This shape describes a trispectrum that remains
relatively constant across different configurations of the four k modes. Other no-
table templates include the equilateral shape, characterized by four k modes with
similar magnitudes and approximately equal angles between them, the orthogonal
shape, where the signal is enhanced when the k modes align in specific patterns, and
the enfolded shape, which arises from folded or looped configurations resulting in
non-Gaussian signatures, a comprehensive discussion of these possible trispectrum
shapes can be found in the works of Chen et al. 2009, Bartolo et al. 2010, Regan
et al. 2010 and Akrami et al. (2020a).

It is important to highlight that these various shape templates are associated with
different inflationary models. Consequently, a thorough characterization of the
trispectrum proves valuable in distinguishing among several inflationary scenarios.

2.5.2 Shape of the primordial trispectrum

In this section, we aim to illustrate how it is possible to derive the shape of the
trispectrum using the approach proposed by Chen et al. (2009), which was sub-
sequently implemented in Bartolo et al. (2010). In their work Chen et al. (2009)
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calculated large scalar four-point correlation functions within the framework of gen-
eral single-field inflation models. They found that the leading order trispectra ex-
hibits four distinct shapes, enabling differentiation between them and the trispecta
of the local form. They also proposed a methodology for computing these differ-
ent shapes, including the local trispectrum. In this discussion, we will specifically
follow this approach for the local trispectrum case considering only the cubic-order
contribution.

We focus our attention on the trispectrum in the local form. This is obtained from
the ansatz in real space

ζ(x) = ζG +
3

5
fNL (ζ

2
G − ⟨ζ2G⟩) +

9

25
gNL (ζ

3
G − 3⟨ζ2G⟩ζG) . (2.46)

This particular form arises in multi-field models, where the large non-Gaussianities
are generated from isocurvature modes at super-horizon scales. The resulting trispec-
trum is given by

T = f 2
NL Tloc1 + gNL Tloc2 , (2.47)

where we introduce Tloc1 and Tloc2 which are associated with the specific shape.
Particularly, we focus on the cubic contribution that involves the gNL parameter
where Tloc2 is defined as follows

Tloc2 =
27

100

4∑
i=1

k3
i . (2.48)

Before delving into the discussion of the shape function, we note that the arguments
of this function are the four momenta k1, k2, k3, k4. For the configuration to form a
tetrahedron as in figure 2.3, the following conditions are required:

Firstly, we define three angles at one vertex as follows

cosα =
k2
1 + k2

14 − k2
4

2k1k14
, (2.49)

cos β =
k2
2 + k2

14 − k2
3

2k2k14
, (2.50)

cos γ =
k2
1 + k2

2 − k2
12

2k1k2
, (2.51)

these angles should satisfy that

1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ ≥ 0 . (2.52)
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Figure 2.3: Schematic representration of the tetrahedron considered by Chen et al.
(2009) in terms of the wavevectors k1, k2, k3, k4, two diagonals k12, k14 and a set of
three angles α, β and γ.

Secondly, the four momenta should satisfy all the triangle inequalities

k1 + k4 > k14 ; k1 + k2 > k12 ; k2 + k3 > k14 , (2.53)

k1 + k14 > k4 ; k1 + k12 > k2 ; k2 + k14 > k3 , (2.54)

k4 + k14 > k1 ; k2 + k12 > k1 ; k3 + k14 > k2 , (2.55)

the last triangle inequality (k3, k4, k12) is always satisfied given equations (2.52) and
(2.55).

These conditions are explored in various limits:

Equilaterial limit: k1 = k2 = k3 = k4.

Folded limit: k12 = 0 and k1 = k2, k3 = k4.

Specialized planar limit: k1 = k3 = k14 and one can solve for k12 that

k12 =

[
k2
1 +

k2k4
2k2

1

(
k2k4 +

√
(4k2

1 − k2
2)(4k

2
1 − k2

4)

)]1/2
. (2.56)

In figure 2.4, we have depicted the shape function Tloc2 in the equilateral limit, where
k1 = k2 = k3 = k4 with a fixed value of k1 = 1. The diagonals k12 and k14 vary
within the range of 0 to 2. Notably, it is observed that Tloc2 remains independent
of both k12 and k14. While, in figure 2.5, we have presented the folded limit of the
shape function. Here, we have kept k1 = 1 fixed, while allowing k4 to vary within
the range of 0 to 1, and the diagonal k14 within the range of 0 to 2. In particular, in
the folded limit we have assumed k4 < k1 without losing generality. Note also that
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Figure 2.4: Plot of the shape function Tloc2 in the equilateral limit, where k1 = k2 =
k3 = k4, because there is no k12, k14 dependence one gets a plateau.

Tloc2 does not vanish in the limit where k4 → 0.

In the work of Chen et al. (2009), other cases were investigated, including the special-
ized planar limit see figure 2.5, where k1 = k3 = k14, and the near double-squeezed
limit, where k3 = k4 = k12, resulting in a tetrahedron resembling a planar quadran-
gle. Additionally, in the specialized planar limit, we observe that the shape function
Tloc2 is non-vanishing. It is worth noting that the figures presented in this section
align closely with the findings reported in the referenced paper.

Figure 2.5: Shape function Tloc2 in two different limits. The plot on the left shows
the function in the folded limit (k1 = k2, k3 = k4 and k12 = 0), while on the right
the specialized planar limit ( k1 = k3 = k14) is presented.
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Chapter 3

The Cosmic Microwave Background

One of the observational pillars of our knowledge of the Universe and its evolu-
tion is the Cosmic Microwave Background (CMB) radiation. It is so rich that an
enormous amount of observational data and constraints have been obtained from it.
Hence, since its discovery it has been many efforts to elucidate its origin and main
characteristics.

The existence of the CMB was theorized by George Gamow in 1948 as a test for
his theory of the HBB. This faint radiation consists of photons emitted when the
Universe became transparent to light at the recombination epoch about 380.000
years after the BB. It was discovered by Penzias and Wilson in 1965 when they
detected an incredibly uniform and isotropic signal coming from all over the sky.

The CMB radiation is well-described by a blackbody spectrum with a mean tempera-
ture of T0 = 2.725K. Subsequent measurements of its spectrum by the Cosmic Back-
ground Explorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP),
and Planck have revealed also smaller temperature anisotropies ∆T/T ∼ 10−5,
which deeply impacted on our understanding of the evolution of cosmic structures.
Studying the CMB has revolutionized our comprehension of the universe’s origins
and structure. Moreover, it has confirmed the Big Bang theory’s predictions and
supported the cosmic inflation concept.

3.1 Origin of the Temperature Anisotropies

The standard cosmological scenario explaining the history of the cosmos involves an
inflationary epoch, followed by a reheating phase where the inflaton field begins to
oscillate around the minimum of its potential and subsequently decays into lighter
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relativistic particles. This process culminates with the efficient thermalization of
the Universe, making the beginning of the radiation-dominated era.

It has been observed that the CMB spectrum aligns closely with that of a near-
perfect blackbody. This correspondence reveals an almost complete level of ther-
malization between matter and radiation during its production. According to this
in the early times, baryons and photons were tightly coupled, with photons hav-
ing a significantly small mean free path which ensures a continuous scattering by
free electrons, thereby promoting thermal equilibrium. The predominant interaction
mechanism between electrons and photons during this phase is Compton scattering,
along with its non-relativistic counterpart, the Thomson scattering, given by

e− + γ ↔ e− + γ .

Eventually, the Universe cooled down sufficiently, enabling recombination to occur,
which allowed the formation of neutral hydrogen. During this period, protons and
electrons became bound together, leading to a decrease in the efficiency of the scat-
tering process. As a result, matter decoupled from radiation, and photons began to
propagate freely through space. These photons reach us today, composing the Cos-
mic Microwave Background radiation (CMB), as depicted in figure 3.1. The CMB
radiation appears to originate from a uniform spherical surface around the observer,
known as the Last Scattering Surface (LSS). This surface is placed at a redshift of
approximately zrec ≈ 1100, and the radius of this shell corresponds to the distance
each photon has traveled since its last scattering at the recombination epoch.

Figure 3.1: Map of the CMB temperature anisotropies by the Planck observatory.
Taken from ESA and the Planck Collaboration.

The origin of the temperature anisotropies illustrated in Figure 3.1 is closely tied to
the initial quantum fluctuations that existed during the inflationary epoch. Specif-
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ically, these super-horizon fluctuations generated the primordial curvature pertur-
bation denoted as ζ, which carries the information about the scalar density pertur-
bations δρ and primordial potentials Φ at early times. Consequently, the properties
of the CMB radiation are inherited from this primordial curvature perturbation ζ.
Looking back to the time before recombination, when the cosmological plasma con-
sisted of a tightly coupled photon-baryon fluid, we can explain almost completely
the anisotropy features of the CMB by analyzing the behavior of this fluid.

Two types of anisotropies are distinguished: primary anisotropies arising from pro-
cesses back to the time of recombination, and secondary anisotropies generated by
the interaction of CMB photons with cosmic structures, changing their properties
along the line of sight. The presence of the primary anisotropies can be attributed
to three fundamental effects: the interaction of photons with gravitational potential
wells at large angular scales (Sachs-Wolfe effect), the evolution of the photon-baryon
fluid, and Compton scattering at smaller scales (Silk damping).

The secondary anisotropies, on the other hand, emerge from various effects that
modify the properties of CMB photons. These mechanisms include variations in
the gravitational potential on large scales along the photon’s path (Rees-Sciama
effect and Integrated Sachs-Wolfe effect). Additionally, other processes involve the
scattering between CMB photons and free electrons, such as the Sunyaev-Zel’dovich
(SZ) effect, Ostriker-Vishniac (OV) effect, and inhomogeneous reionization. For an
in-depth review of all these phenomena, refer to Sachs and Wolfe (1967); Silk (1967);
Peebles and Yu (1970); Sunyaev and Zeldovich (1970); Aghanim et al. (2008).

In order to gain a comprehensive grasp of the physics underlying CMB anisotropies,
it is convenient to study the two-point correlation function or angular power spec-
trum, which we will delve into in the upcoming section.

3.2 CMB Angular Power Spectrum

In Chapter 2, we discussed the standard methodology used to establish the connec-
tion between theoretical predictions and observational data. For the case of CMB
radiation, its primary observable is the intensity as a function of frequency and di-
rection on the sky denoted as n̂. Additionally, the CMB spectrum closely resembles
that of a blackbody with nearly constant temperature across the entire sphere. Due
to this characteristic, the temperature field is commonly described in terms of the
temperature fluctuations, denoted as θ(n̂) = ∆T/T . Consequently, we can further
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expand this field into spherical harmonics, represented by Ylm, as follows

θ(n̂) =
∆T

T
(n̂) =

∞∑
l=0

l∑
m=−l

alm Ylm(n̂) , (3.1)

here, n̂ represents the coordinates of the temperature measurements across the
sky, and alm are the coefficients of this expansion, carrying information about the
amplitude of the CMB map within an angular aperture of θ ∼ l−1. To express
the alm coefficients in terms of the temperature anisotropies, we make use of the
orthogonality property intrinsic to spherical harmonics,

alm =

∫
dΩ(n̂)Y ∗

lm(n̂)θ(n̂) , (3.2)

as a result, all the statistics of the temperature field are encompassed within the
multiple coefficients alm. It is important to note that while the theoretical model
does not predict the specific values of alm, it does provide information about their
distribution.

As already pointed out, the density perturbations responsible for the temperature
anisotropies originate during inflation. In the context of the simplest inflationary
model, quantum fluctuations exhibit an almost Gaussian distribution. Consequently,
we expect that the multiple coefficients will follow the same statistical distribution.
This leads to an expected mean value of ⟨alm⟩ being zero, for this reason, the variance
Cl carries all the statistical information

⟨alma∗l′m′⟩ = δll′δmm′Cl , (3.3)

this expression is analogous to the definition of the power spectrum equation 2.36,
although in this context, it is referred to as the angular power spectrum. Observe
that for a given value of l, the alm coefficients have their own variance. Furthermore,
when considering a specific value of l, there exist 2l+1 individual values for the alm

coefficients. A more practical definition of Cl is provided by

Cl =
1

2l + 1

l∑
m=−l

⟨|alm|2⟩ . (3.4)

Moreover, an inherent uncertainty affects the angular power spectrum, imposing
limitations on its precision. The cosmic variance arises from the fact that we have
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only one realization of our Universe. The definition of cosmic variance is(
∆Cl

Cl

)
=

√
2

2l + 1
, (3.5)

the cosmic variance diminishes as the value of l increases and escalates as l decreases,
directly impacting the larger scales that are associated with the inflationary period.

On the other hand, it is advantageous to derive an expression for the multiple co-
efficients in terms of the curvature perturbation ζ, which allows us to compare the
theoretical predictions of a given inflationary model with the observational data.
Notably, equation (3.2) highlights the dependence of the alm coefficients on the
anisotropic temperature field θ(n̂) and it is widely accepted that the characteristics
of the temperature field stem from several physical processes associated with quan-
tum fluctuation that emerged during inflation and the subsequent evolution of the
photons until today. To account for all the processes influencing the temperature
field, it is customary to work in Fourier space. Particularly, when considering the
Sach-Wolfe approximation, the dominant contribution to temperature fluctuations
on large scales is the gravitational potential fluctuation. Hence, at the decoupling
time (t∗), we define that the temperature fluctuations are related to the gravitational
potential through the relation

∆T

T
∼ 1

3
Φ∗ . (3.6)

In equation (3.2), we can represent the temperature fluctuation field in Fourier space
as follows

alm =
1

3

∫
dΩ(n̂)Y ∗

lm(n̂)Φ∗(n̂) ,

=
1

3

∫
dΩ(n̂)Y ∗

lm(n̂)

∫
d3k

(2π)3
eix·kΦ∗(k) ,

(3.7)

the exponential term can be expanded into a sum of spherical Bessel functions jl

through the implementation of the Rayleigh plane wave expansion

eik·x = 4π
∑
lm

il jl(kr∗)Y
∗
lm(k̂)Ylm(n̂) , (3.8)

where r∗ is the distance from the last scattering surface, so that x = r∗ n̂. Substi-
tuting the aforementioned expression into (3.7), we derive

alm =
4π

3
il
∫

d3k

(2π)3
Φ∗(k)jl(kr∗)Y

∗
lm(k̂) . (3.9)
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Accounting for all the physical mechanisms to explain the CMB anisotropic radiation
requires the introduction of the transfer function ∆l(k). Specifically, within the Sach-
Wolfe approximation, ∆l(k) ∼ jl(kr∗)/3. The transfer function provides insight into
the post-recombination physical phenomenon and is computed through the solution
of the Boltzmann-Einstein equations 1. Consequently, equation (3.9) takes the form

alm = 4π il
∫

d3k

(2π)3
Φ(k)∆l(k)Y

∗
lm(k̂) . (3.10)

Furthermore, when considering first-order perturbations, we assume that during
the matter-dominated era at the time of decoupling, the gauge-invariant curvature
perturbation ζ is linked to the Bardeen potential (primordial gravitational potential)
Φ in the following manner

Φ = −3

5
ζ , (3.11)

by substituting the previous relation into (3.10), we establish a connection between
alm coefficients and the curvature perturbation through the following expression

alm = −12π

5
il
∫

d3k

(2π)3
ζ(k)∆l(k)Y

∗
lm(k̂) . (3.12)

At this point, we can proceed to explicitly calculate the angular power spectrum

⟨alma∗l′m′⟩ = (4π)2
∫

d3k

(2π)3
d3k′

(2π)3
(i)l−l′⟨Φ(k)Φ(k′)⟩∆l(k)∆

∗
l′(k

′)Y ∗
lm(k̂)Yl′m′(k̂′)

= (4π)2
∫

d3k

(2π)3
(i)l−l′ PΦ(k)∆l(k)∆

∗
l′(k)Y

∗
lm(k̂)Yl′m′(k̂)

= δll′δmm′Cl ,

(3.13)

in this derivation, we have used the orthonormality relation of spherical harmon-
ics to simplify the expression. Additionally, we establish the definition that the
temperature angular power spectrum is expressed as

Cl =
2

π

∫
dk k2 PΦ(k) |∆l(k)|2 . (3.14)

Figure 3.2 illustrates the theoretical prediction for the temperature angular power

1The Boltzmann equation tells us how the distribution function of some particle species evolves
in time, is given by

df

dλ
= C(f) ,

where λ is an affine parameter along a trajectory and C is the collision term which contains
information about interactions.
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spectrum (blue solid line) alongside the current observational data (red dots), ac-
quired from the Planck Satellite. Notably, the observational data align with the
best-fit model ΛCDM. Additionally, it is worth noting that the plotted quantity
is Dl = l(l + 1)Cl/2π, an auto-spectrum that indicates the approximate contribu-
tion per logarithmic interval of multipoles centered around l to the variance of the
fluctuation.

Figure 3.2: Planck CMB power spectra. Notice that the large scales have a signif-
icant error bar due to the effect of cosmic variance. Credit: ESA and the Planck
Collaboration Aghanim et al. (2020).

Furthermore, the power spectrum exhibits three distinct features: the Sachs-Wolfe
plateau (2 ≤ l ≤ 30), the acoustic peaks (30 ≤ l ≤ 1500), and the damping tail
(l ≥ 1500).

At the largest angular scales (low l), the primary driver of intensity fluctuations
is attributed to extensive gravitational potential perturbations existing within the
LSS during recombination. The gravitational effect arises from the fact that photons
must exit the maxima or minima of the potential associated with these perturba-
tions. When only the SW effect is dominant, the spectrum remains invariant across
varying angular scales.

As mentioned previously, on these larger scales, gravity exclusively operates within
the linear regime, and there are no reaction effects, such as those stemming from
pressure. Nonetheless, pressure contributions manifest on intermediate and smaller
angular scales. In these regions of the spectrum, photon and baryon dynamics are
dominant. Prior to decoupling, the photon-baryon fluid responds to the gravita-
tional influence of Dark Matter. As the fluid encounters a potential well, it starts to
fall toward the well. However, under the influence of gravity, the compression of the
photon-baryon fluid leads to a pressure counteracting the gravitational force. Subse-
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quently, the fluid expands outward. As this expansion proceeds, pressure diminishes,
causing gravity to prompt the fluid to fall inward again. This cyclic inward-outward
motion of the fluid constitutes acoustic oscillations, which represent standing sound
waves Ryden (2016). These oscillations impact the matter and energy distribution,
yielding overdense regions (compressions) and underdense regions (rarefactions) in
the plasma. Additionally, due to the Doppler effect, the photons become either
cooler or hotter than the average temperature, depending on the motion of the
photon-baryon fluid at the time of decoupling.

Following recombination, the photons in the CMB occasionally interact with free
electrons, resulting in intermittent diffusion or damping of the temperature fluctua-
tions on smaller scales. This process, known as Silk damping, leads to the attenua-
tion of temperature anisotropies, evident in the presence of the tail observed in the
power spectrum.

The significance of the CMB cannot be overstated. The correct understanding of
all the underlying physical processes from its formation in the early times until the
present day provides us with a plethora of insights into the properties of our Universe.
The distinct pattern of peaks and troughs exhibited in figure 3.2 corresponds to
fluctuations in the energy-density in the early Universe. These patterns enable us to
extract various cosmological parameters, including the abundances of Dark Matter
and Dark Energy, the spatial curvature, the Hubble constant, the spectral index of
primordial fluctuations, and other crucial characteristics of the early Universe.

On the other hand, the CMB power spectrum serves as a fundamental tool for the
analysis of observational data, encapsulating the entire statistical information of the
CMB under the assumption that the initial quantum fluctuations adhere to a Gaus-
sian distribution. Nevertheless, the potential exists for certain physical mechanisms
to induce non-Gaussian features, leaving an imprint on the CMB radiation. To ex-
plore non-Gaussianity, we use higher-order correlation functions. In this work, our
attention centers on the four-point correlation function, or its Fourier counterpart,
known as the trispectrum.

3.3 CMB Trispectrum

The four-point correlation function, or trispectrum in Fourier space, plays a crucial
role in the exploration of non-Gaussianity. It measures the degree of correlation
among temperature fluctuations at four distinct points across the CMB sky, as
depicted in figure 3.3. More precisely, it quantifies how much the temperature at
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one point tends to be higher or lower when the temperatures at the other three
points have specific values.

Figure 3.3: Schematic representation of the three-point correlation function (bispec-
trum, in Fourier space) and the four-point correlation function (trispectrum) in the
CMB map. Taken from Kalaja et al. (2021).

Hence, the CMB trispectrum constitutes the connected part of the four-point corre-
lation function of the alm coefficients in Fourier space and incorporates non-Gaussian
statistics. Adhering to the formalism outlined in Hu (2001) and Okamoto and Hu
(2002), the trispectrum can be defined as,

Tl1m1l2m2l3m3l4m4 = ⟨al1m1al2m2al3m3al4m4⟩c , (3.15)

thus exploiting equation (3.10), which elucidates that the primordial potential Φ
induces the multipole moments alm through a convolution involving the transfer
functions ∆l(k). As a result, the following expression is derived

⟨al1m1al2m2al3m3al4m4⟩c = (4π)4 (−i)
∑

i li

∫
d3k1d

3k2d
3k3d

3k4

(2π)12
∆l1(k1)∆l2(k2)×

∆l3(k3)∆l4(k4)⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩cY ∗
l1m1

(k̂1)Y
∗
l2m2

(k̂2)Y
∗
l3m3

(k̂3)Y
∗
l4m4

(k̂4) ,

(3.16)

where ki = |ki| represents the magnitude of the wavevector and the subscript c

denotes the connected component. By employing the definition of the primordial
trispectrum as presented in equation (2.42), and making the assumption of a statis-
tically isotropic trispectrum that only depends on the magnitude of the wavevector,
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the so-called diagonal-free trispectra, we obtain that

Tl1m1l2m2l3m3l4m4 =

∫
dΩ(n̂)Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)Yl4m4(n̂) t

l1l2
l3l4

, (3.17)

where tl1l2l3l4
is referred to as the extra-reduced trispectrum (as discussed in Fergusson

et al., 2010). Subsequently,

tl1l2l3l4
=

(
2

π

)4 ∫
r2 dr

∫
(k1k2k3k4)

2TΦ(k1, k2, k3, k4)∆l1(k1)∆l2(k2)∆l3(k3)∆l4(k4)

×jl1(k1r)jl2(k2r)jl3(k3r)jl4(k4r) .

(3.18)

By analyzing the trispectrum of the CMB, diverse inflationary models can be tested,
and insights into the physics governing the early Universe can be constrained. How-
ever, the study of the CMB trispectrum involves complex tasks requiring sophis-
ticated data analysis techniques. Notice that the aforementioned expression ex-
plicitly establishes the direct connection between the CMB trispectrum and the
four-point correlation of the primordial potential Φ, which originates from the in-
flationary epoch. Particularly, equation (3.18) was derived under the presumption
of a diagonal-free trispectrum of the primordial potential. It is important to ac-
knowledge that several ways exist to define the trispectrum of Φ. To offer a more
comprehensive approach, we explore the case of the local non-Gaussian model in the
subsequent section.

3.3.1 Trispectra in the local non-Gaussian model

Based on the formalism established by Okamoto and Hu (2002), we are enabled
to calculate the temperature trispectra within the context of slow-roll inflation. In
this scenario, non-Gaussianity emerges in the form of nonlinear corrections to the
correspondence between a Gaussian inflaton fluctuation and the primordial potential
Φ. Consequently, the higher-order terms can be expressed as follows

Φ(x) = ΦG(x) + f1 (Φ
2
G(x)− ⟨Φ2

G(x)⟩) + f2Φ
3
G(x) , (3.19)

where ΦG(x) denotes the linear Gaussian component of the Bardeen curvature po-
tential, and the non-Gaussian contributions are parametrized by f1 and f2. Further-
more, equation (3.19) can be equivalently expressed in Fourier space as a convolution
which is given by

Φ(k) = ΦG(k) + ΦA(k) + ΦB(k) , (3.20)
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with the nonlinear contributions defined as follows

ΦA(k) = f1

[∫
d3p

(2π)3
ΦG(k + p) ΦG(p)− (2π)2δ(k)⟨Φ2

G(x)⟩
]
, (3.21)

ΦB(k) = f2

∫
d3p1

(2π)3
d3p2

(2π)3
ΦG(p1) ΦG(p2) ΦG(p1 + p2 + k) . (3.22)

Then, the connected part of the four-point correlation ⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩c has
leading order contribution from terms of the form ⟨ΦA(k1)ΦA(k2)ΦG(k3)ΦG(k4)⟩c
and ⟨ΦB(k1)ΦG(k2)ΦG(k3)ΦG(k4)⟩c. In particular, we focus on the term that in-
volves cubic order contribution in Φ, which takes the following form

⟨ΦB(k1)ΦG(k2)ΦG(k3)ΦG(k4)⟩c .

In general, the primordial trispectrum can be defined as

⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩c = (2π)3 δ(k1 + k2 + k3 + k4)TΦ(k1,k2,k3,k4) , (3.23)

here, the four wavevectors form a quadrilateral as shown in figure 4.4. However, a

Figure 3.4: Quadrilateral configuration in terms of the wavevectors ki and the di-
agonal K. Taken from Regan et al. (2010).

more useful definition is to write

⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩c = (2π)3
∫

d3Kδ(k1 + k2 +K)δ(k3 + k4 −K)×

TΦ(k1,k2,k3,k4,K) ,

(3.24)

in the above expression, the delta function indicates that the diagonal K makes
triangles with (k1,k2) and (k3,k4), respectively. Since there are symmetries implicit
in this definition of TΦ, it is possible to form triangles with different combinations
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of the vectors. Then constructing

TΦ(k1,k2,k3,k4,K) = PΦ(k1,k2,k3,k4,K) +

∫
d3K ′[δ(k3 − k2 −K +K ′)×

PΦ(k1,k3,k2,k4,K
′) + δ(k4 − k2 −K +K ′)PΦ(k1,k4,k3,k2,K

′) ,

(3.25)

where PΦ are constructed using a reduced trispectrum TΦ according to

PΦ(k1,k2,k3,k4,K) = TΦ(k1,k2,k3,k4,K) + TΦ(k2,k1,k3,k4,K)

+ TΦ(k1,k2,k4,k3,K) + TΦ(k2,k1,k4,k3,K) . (3.26)

Therefore, considering only the reduced trispectrum for a particular arrangement
of vectors is enough to form the other contribution by permuting the symbols. In
particular, the leading order contribution to the reduced trispectrum T for the cubic
contribution is given by

TΦB
(k1,k2,k3,k4,K) = f2 [PΦ(k2)PΦ(k3)PΦ(k4) + PΦ(k1)PΦ(k2)PΦ(k4)] . (3.27)

On the other hand, we can express the harmonic four-point function using the
relation between the multiple coefficients and the primordial potential, this leads to

⟨al1m1al2m2al3m3al4m4⟩c = (4π)4 (−i)
∑

i li

∫
d3k1...d

3k4

(2π)12

∫
d3K(2π)3∆l1(k1)∆l2(k2)

×∆l3(k3)∆l4(k4)δ(k1 + k2 +K)δ(k3 + k4 −K)

× TΦ(k1,k2,k3,k4,K)Y ∗
l1m1

(k̂1)Y
∗
l2m2

(k̂2)Y
∗
l3m3

(k̂3)Y
∗
l4m4

(k̂4) ,

(3.28)

applying the integral definition of the delta function and performing the Rayleigh
expansion, we obtain that

⟨al1m1al2m2al3m3al4m4⟩c =
(
2

π

)5 ∫
r21dr1r

2
2dr2(k1k2k3k4K)2dk1dk2dk3dk4dKjL(Kr1)

× jL(Kr2) [∆l1(k1)jl1(k1r1)] [∆l2(k2)jl2(k2r1)] [∆l3(k3)jl3(k3r2)]

× [∆l4(k4)jl4(k4r2)] TΦ(k1, k2, k3, k4, K)hl1Ll2hl3Ll4 ,

(3.29)

where

hl1Ll2 =

√
(2l1 + 1)(2l2 + 1)(2L+ 1)

4π

(
l1 l2 L

0 0 0

)
, (3.30)
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and jl are the spherical Bessel functions. In order to derivate (3.29), we must choose
an appropriate parametrization for TΦ. Specifically, Regan et al. (2015) defined
the quadrilateral configuration by the magnitudes of the four sides ki, the diago-
nal length K and one angle θ which represents the deviation of the quadrilateral
from planarity, in the case of local models is possible to consider θ = 0, as a result,
TΦ(k1, k2, k3, k4, K). Now, we substitute the expression (3.27) into the above equa-
tion. Subsequently, the CMB trispectrum linked to the cubic contribution can be
expressed as

Tl1m1l2m2l3m3l4m4 = f2 hl1Ll2hl3Ll4

∫
r2drβl2(r)βl4(r) [µl1(r)βl3(r) + βl1(r)µl3(r)] ,

(3.31)
with

βl(r) =
2

π

∫
k2dkPΦ(k)∆l(k)jl(kr) , (3.32)

µl(r) =
2

π

∫
k2dk∆l(k)jl(kr) . (3.33)

In order to evaluate the trispectrum, we need to numerically compute the radiation
transfer function ∆l(k) by solving the Einstein-Boltzmann equation. However, if
our focus shifts to larger scales (where the multiple values are small, i.e. l ≪ 100),
we can assume that the dominant influence on temperature fluctuations is from
gravitational potential fluctuations. Thus, we work under the assumption that the
Sach-Wolfe effect stands as the only significant mechanism. As previously men-
tioned, the radiation transfer function takes on a simplified form ∆l(k) ∼ jl(kr∗)/3,
where r∗ denotes the conformal time elapsed from recombination to the present time.
Moreover, equation (3.33) can be further simplified by exploiting the properties of
the Bessel function ∫

k2 dk jl(kr∗) jl(kr) =
π

2r2∗
δ(r − r∗) , (3.34)

µl(r) =
1

3r2∗
δ(r − r∗) . (3.35)

In this case, the temperature power spectrum in the SW approximation is given by

CSW
l =

2

9π

∫
dk k2 PΦ(k) j

2
l (kr∗) , (3.36)
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and the other function becomes βl(k) = 3CSW
l . Therefore, the trispectrum can be

expressed in terms of the temperature power spectrum as

Tl1l2l3l4 = 9 f2C
SW
l2

CSW
l4

(
CSW

l1
+ CSW

l3

)
hl1Ll2 hl3Ll4 . (3.37)

This formula serves as a concrete example of one trispectrum template of the CMB
within the context of the local non-Gaussian model. This representation takes into
account only the cubic-order contribution in the expansion of the primordial per-
turbations. The specific trispectrum structure involves products of the temperature
angular power spectra, which we detailed in the previous section, the coefficient f2

quantifying non-Gaussianity amplitude, and the coupling coefficients hl1Ll2 . The
conventional approach to examining such expression requires the development of
estimators that facilitate the numerical treatment of the obtained trispectrum.
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Chapter 4

CMB Anomalies

Several unexpected features have been detected in the CMB radiation on larger an-
gular scales, both by WMAP and Planck observations. Individually, these features
manifest at significant levels, typically around 2-3σ, when tested against the ΛCDM
model. Among those features are the hemispherical asymmetry, the presence of non-
Gaussian cold/hot spots, the lack of large angular scales power, alignment of the
quadrupole and octopole, and parity asymmetry. The emergence of these anoma-
lies in the data has opened discussions regarding their origin and their potential
implications for our current cosmological model.

Despite numerous detailed investigations, a comprehensive understanding of the
anomalies remains elusive. Their presence in the data appears to challenge the sta-
tistical isotropy and scale invariance, as expected from the inflationary perturbations
Schwarz et al. (2015). Therefore, it becomes intriguing to explore alternative models
capable of reproducing the CMB anomalies and fitting better the observational data
than the standard isotropic and Gaussian assumptions.

4.1 Large-scale hemispherical asymmetry

Evidence of this anomaly emerged when local estimates of the angular power spec-
trum on large scales within the WMAP data disclosed a power asymmetry between
two hemispheres in the sky (Hansen et al., 2004; Eriksen et al. 2007). This hemi-
spherical power asymmetry has subsequently been modeled as a dipolar modulation
of an isotropic sky,

T (n̂) = T0(n̂)
[
1 + A n̂ · d̂

]
, (4.1)
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Figure 4.1: Example of a dipole modulation map leading to a pronounced large-scale
hemispherical power asymmetry. Taken from Bjørklund (2021).

where T (n̂) and T0(n̂) represent the modulated and unmodulated temperature
fields, respectively, with n̂ denoting an arbitrary direction on the sky. The param-
eters A and d̂ correspond to the amplitude and preferred direction of the dipolar
modulation. The result of the Planck 2015 analyses, employing the Commander
map, yielded an estimate of A = 0.066± 0.021, with the preferred direction d̂ align-
ing towards (l, b) = (230◦,−16◦)± 24◦ Ade et al. (2016). In figure 5.2, we provide a
visual representation of the effect of a dipolar modulation. It can be noticed, that
the fluctuations in one hemisphere are enhanced, while in the opposite hemisphere,
they are suppressed. More refined analyses from the latest Planck release report an
amplitude of A = 0.0695 and a dipole direction of (l, b) = (221◦,−20◦), incorporat-
ing the combination of temperature, polarization, and cross-correlations (TT, EE,
TE) from the component maps Commander, NILC, SEVEM, and SMICA Akrami
et al. (2020b).

4.2 Small-scale hemispherical asymmetry

Similar to the hemispherical asymmetry observed on large scales, Hansen et al.
(2009) identified the extension of this asymmetry to smaller scales (higher multipoles
l). This observation was subsequently supported by studies conducted by Axelsson
et al. (2013) and Ade et al. (2016), who confirmed the presence of this anomaly
within both the WMAP and Planck datasets. It is noteworthy that this asymmetry
does not arise from a dipolar modulation, as seen in the previous case. Since the
observed amplitude of the dipolar modulation falls well within the expected range
of Gaussian simulations. In the context of an isotropic and Gaussian sky, a random
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dipole component is always present.

4.3 The Cold Spot

Another anomaly identified in the WMAP first-year data is the existence of a large
cold spot in the southern hemisphere of the CMB map, as illustrated in figure 4.2.

Figure 4.2: Cold spot in WMAP 7th year temperature maps. The left panel shows
the complete map with a circle surrounding the anomaly. While the right panel is a
more detailed view of the spot. The figures are adopted from Schwarz et al. (2015).

The cold spot’s coordinates are situated at (l, b) = (207◦,−57◦) Cruz et al. (2006)
and it consists of several smaller spots, each with an approximate temperature of
-350 µK and a size of about 1◦. The spot’s morphology is found to be isotropic
and nearly circular, with an additional intriguing feature of being surrounded by a
hot ring. Various hypotheses have been proposed to account for its presence in the
data. These include exploring potential under-densities in the galaxy distribution
and investigating possible links with cold spots in the CMB maps, or looking for
some diffuse foregrounds that have not been considered up to now.

4.4 Large-scale power deficit

One of the extensively studied anomalies is the deficit of power in the power spectrum
on large scales. Both the WMAP and Planck power spectra of the CMB temperature
anisotropy, particularly at large scales (l < 30), exhibit values that are lower than
what aligns with the predictions of the best-fit cosmological model. As depicted
in figure 3.2, the Planck power spectrum is shown alongside the best-fit model.
Notably, the quadrupole l = 2 exhibits a low value and a dip in the spectrum is
around l ≃ 21. However, it is also important to consider the possibility that this
diminished large-scale spectrum might arise as a statistical fluke, given the impact of
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cosmic variance at this scale. Nonetheless, the significance of this anomaly persists
at the 2-3σ level Hansen et al. (2019).

4.5 Quadrupole and octopole alignment

Figure 4.3: Quadrupole and octopole alignment detected by WMAP mission. Image
credit Kavli Institute for Cosmological Physics, University of Chicago.

The current cosmological model assumes that temperature anisotropies possess ran-
dom phases, which translates into uncorrelated orientations and shapes of multi-
pole moments in harmonic space. However, an apparent alignment between the
quadrupole (l = 2) and octopole (l = 3) was found in WMAP data by Tegmark
et al. (2003). This alignment suggests that the patterns observed in the quadrupole
and octopole moments exhibit a degree of correlation (not randomly distributed),
contrary to what would be expected from the standard cosmological model.

The proposed explanations for this anomaly are often related to the Universe’s
topology. Considerations of a non-trivial topology on large scales could lead to
specific correlations in the CMB temperature fluctuations. For instance, the plain
bagel small universe model de Oliveira-Costa et al. (2004) and twisted back-to-back
models Cornish et al. (2004). Nevertheless, it is also plausible that the observed
alignment could arise from a statistical fluke, as random fluctuations can occasionally
lead to unexpected patterns.

4.6 Parity asymmetry

This anomaly refers to the observation that the CMB does not exhibit symmetry
under parity transformations. It is important to note that the standard cosmology
model does not offer any specific predictions in this regard. Both the WMAP and
Planck data reveal a significant odd-multipoles preference in the large scales of
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the CMB (e.g. Cheng et al. 2016), indicating a preferred axis in the CMB parity
asymmetry. Specifically, the Cl values for the lowest even multipoles consistently
appear lower than those for odd multipoles (Ade et al., 2016).

The precise origins of the parity asymmetry in the CMB temperature maps are still
under investigation. Recent studies have shown the presence of this anomaly both on
local and global scales. Additionally, the motion of the solar system might contribute
to the asymmetry. Furthermore, certain inflationary models propose the presence
of the parity violation, suggesting that the anomaly could be a consequence of the
interaction between the inflaton field and other fields during the early universe.

4.7 Possible explanations

Even though extensive studies have been conducted in order to explain some of the
CMB anomalies, we still do not have a consensus about their origins. Thus, many
argue that they are the result of statistical fluctuations, having a low significance.
Others, however, have explored the idea that they may share a common cosmological
origin, with the efforts centered on finding an explanation within the context of the
inflationary paradigm.

The attempts to model the observed statistical anisotropies in the CMB can be cat-
egorized into two groups: (i) explicit breaking of statistical isotropy, which implies
a preferred direction in the Universe, or (ii) the statistical isotropy breaking is spon-
taneous due to some stochastic modulating field or primordial non-Gaussianity. In
this brief review, we will particularly focus on some of the various ideas proposed
to study the hemispherical power asymmetry.

Numerous studies have examined the observed power asymmetry and assessed its
statistical significance using the WMAP and the Planck data. Several potential
explanations for this asymmetry have already been discussed, as explored in de-
tail in Dai et al. 2013). One particularly intriguing approach involves using su-
perhorizon fluctuations to generate the asymmetry, achieved either by employing
non-Gaussianity to couple them to observable perturbations or by postulating dif-
ferent primordial physics preceding the usual slow-roll inflation. Alternatively, one
can also postulate scenarios that are fundamentally anisotropic on the largest scales.

In their study, Adhikari et al. (2016) systematically analyzed the statistical prop-
erties of the power asymmetry expected in the CMB under the assumption of non-
Gaussian primordial perturbations existing on scales larger than we can observe.
They investigated both local and non-local models of primordial non-Gaussianity,
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providing a general method for describing deviations from statistical isotropy in a
finite sub-volume of an isotropic (but non-Gaussian) large volume. The study also
explored various explanations for the hemispherical power asymmetry. Furthermore,
the authors found that non-local models of non-Gaussianity and scale-dependent lo-
cal non-Gaussianity have the potential to account for the observed scale dependence
of the power asymmetry on large scales.

Moreover, it has been considered that if the primordial bispectrum (the Fourier
counterpart of the three-point function) is sufficiently large, the CMB hemispherical
power asymmetry may be explained by a large-scale mode of strong amplitude that
perturbs the 2-point function. In response to this, Byrnes et al. (2016a) provided
a method to compute the response of the two-point function in any model yielding
a local-like bispectrum. In general, this analysis shows that it is not the reduced
bispectrum fNL(k1, k2, k3) that sources the amplitude and scale dependence of the
mode coupling, but rather a combination of ‘response functions’. Therefore, contrary
to previous analyses, they concluded that it is possible to generate the asymmetry
while respecting observational constraints on the bispectrum and low-l multipoles,
even without tuning our location on the long-wavelength mode.

Other investigations have focused on studying several cosmological scenarios in
which anomalies like hemispherical power asymmetry can arise. When considering
only the power asymmetry, Erickcek et al. (2008) found that it cannot be produced
during single-field slow-roll inflation without violating the assumption of homogene-
ity of the Universe. However, within the framework of multi-field inflationary the-
ory, such as the curvaton model, this anomaly can emerge while preserving the
condition of homogeneity. The physical mechanism requires the consideration of
a large-amplitude super-horizon perturbation, as depicted in figure 4.4, possibly a
pre-inflationary remnant. It is considered that this perturbation could introduce a
preferred direction in the Universe, thus generating the observed asymmetry.

To support previous studies, Byrnes et al. (2016b) made also the assumption that
explanations for this hemispherical asymmetry require non-Gaussian fluctuations
that couple observable modes to those on much larger scales, and they conducted
thorough analyses of these scenarios. The study of single-source scenarios presented
numerous difficulties, so they chose not to further pursue these models. In contrast,
multiple-source scenarios appear to be more flexible and offer a better description of
the anomaly. However, it remains unclear whether the proposed inflationary model
can be embedded within a viable early Universe scenario.

A more recent study of the anomaly by Adhikari et al. (2018) revealed that the
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Figure 4.4: Representation of the modulation of short-wavelength (sub-horizon)
perturbation modes due to the presence of a long-wavelength (super-horizon) one,
ensured by the coupling provided by local non-Gaussianity. Taken from Erickcek
et al. (2008).

hemispherical power asymmetry and the lack of power at large scales may arise in
models featuring local-trispectra with strong scale-dependent τNL amplitude. In
particular, this type of τNL trispectrum can originate from the modulation of the
primordial curvature perturbation by a second uncorrelated field, as proposed by
Byrnes et al. (2016b). It is worth mentioning that this specific work does not
reproduce all the observed CMB anomalies.

However, the majority of the models proposed to study the CMB anomalies some-
how fail to achieve the correct description of some features of the large-scale power
asymmetry, or even to address several anomalies. These results provide evidence of
the challenge of constructing a model that can accurately reproduce all anomalies
while satisfying current constraints.

Another attempt to understand the CMB anomalies was made by Hansen et al.
(2019), where they considered that these anomalous features share a common cos-
mological origin and proposed a toy model that can naturally reproduce six of the
previously mentioned anomalies. Their methodology is based on the idea that the
non-linear terms that appear in the primordial gravitational potential, in some in-
flationary models, introduce non-Gaussianity. It is the presence of non-Gaussianity
that originates the apparent deviations from statistical isotropy and features in the
power spectrum seen in the data. While this work does not explicitly construct
an inflationary model, it focuses on determining the phenomenological properties a
physical model should exhibit. In this thesis, our focus is on finding the properties
of a possible inflationary model that can satisfy the conditions proposed for the toy
model.
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As we have seen, there are still many open questions about the CMB anomalies
and various methodologies can be implemented for their comprehensive study. This
chapter has highlighted some standard approaches to studying the hemispherical
asymmetry, despite encountering some difficulties. In particular, the toy model
that we plan to study in the next chapter incorporates some of the ideas proposed
in previous work to construct a new model capable of effectively reproducing the
anomalies discussed in this chapter. We hope this work can provide some insight
into the physical model behind the phenomenological model constructed by Hansen
et al. (2019).

To conclude this section, it is necessary to mention a relatively recent study that
aims to explain the presence of CMB anomalies as a result of an unknown fore-
ground in the CMB maps. Luparello et al. (2022) identified the presence of a new
foreground in the CMB associated with extended galactic halos. They found that
this foreground is statistically significant and proposed that it should be considered
in detailed cosmological studies. Taking this effect into account, Hansen et al. (2023)
investigated whether the new foreground might impact the CMB fluctuations map
and produce the observed CMB anomalies. Their findings suggested a remarkable
resemblance between the temperature model map based on nearby galaxies and the
Planck CMB map. Therefore, it is highly probable that the largest scales of the
CMB and the cosmological parameters may have important changes after proper
corrections of this new foreground component. However, reliable CMB corrected
maps can only be derived when suitable physical mechanisms are proposed and
tested.
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Chapter 5

Phenomenological Model

Chapter 4 revealed that the analysis of observational data from the CMB has brought
to light the existence of certain statistical deviations from the standard cosmological
model, collectively known as CMB anomalies. The origin of these features remains
a topic of investigation and constitutes a central motivation for this thesis.

A recent investigation by Hansen et al. (2019) introduces a phenomenological model
that can reproduce six of the most extensively studied CMB anomalies. The basis of
this model lies in the assumption of initial perturbations exhibiting non-Gaussianity,
which subsequently impacts the statistical properties of CMB radiation. Notably,
the toy model’s significance lies in its capability to account for multiple anomalies.

This chapter aims to present the relevant details of the toy model and demonstrate
how it is possible to establish a connection between this proposed model and a plau-
sible physical model. Specifically, this connection is explored within the framework
of the inflationary paradigm.

5.1 Proposed model

The temperature field considered in the model developed by Hansen et al. (2019)
follows a construction rooted in the conventional approach of modeling the power
asymmetry through a dipolar modulation. However, to effectively replicate the six
aforementioned anomalies, the model requires the incorporation of a set of filters.
These filters serve to facilitate the emergence of additional anomalous features while
preventing them from becoming more pronounced than expected. Additionally, the
filters must ensure the production of temperature maps consistent with the observed
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CMB maps. Thus, the structure of the toy model can be described as follows

T (θ, ϕ) = TG(θ, ϕ) + β
[
TG(θ, ϕ)T

2
F (θ, ϕ)

]Filtered
, (5.1)

where TG represents an isotropic Gaussian CMB temperature realization, and TF

denotes the filter temperature field given by

TF (n̂) =
∑
lm

aFlm Ylm(n̂) , (5.2)

with n̂ = (θ, ϕ). Furthermore, the filtered multiple coefficient aFlm is defined as
follows

aFlm =

∫
dΩ(n̂)Y ∗

lm(n̂)T (n̂)wl = wl a
G
lm , (5.3)

with the low-pass filter wl approaching zero for l > 28. Notably, equation (5.1)
results in a non-Gaussian temperature field that possesses the structural attributes
for replicating several of the CMB anomalies. To uncover the physical model that
underlies this toy model, our task involves identifying a theory in which the intro-
duction of non-Gaussianity is viable, analogous to how it was accomplished with
the temperature field. This entails addressing cubic-order contributions within our
theory. However, before working on this, it would be advantageous to expand the
temperature field using its representation in spherical harmonics.

Let’s consider equation (5.1) and express each term using the spherical harmonic
formalism. As a result, we obtain∑

lm

aNG
lm Ylm(n̂) =

∑
lm

aGlm Ylm(n̂) + β
∑
lm

aFlm Ylm(n̂) . (5.4)

In this case, our focus is only on the relationship between the multiple coefficients.
Thus, we define that

aNG
lm = aGlm + β aFlm , (5.5)

where the filtered multiple coefficient aFlm can be defined as follows

aFlm =

∫
dΩ(n̂)Y ∗

lm(n̂)TG(n̂)T
2
F (n̂)

=
∑
limi
i=1,2

∫
dΩ(n̂)Y ∗

lm(n̂)a
G
l1m1

Yl1m1(n̂) a
2F
l2m2

Yl2m2(n̂) , (5.6)
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aFlm =
∑
limi

i=1,2,3,4

∫
dΩ(n̂)Y ∗

lm(n̂)a
G
l1m1

Yl1m1(n̂)Yl2m2(n̂)

×
∫

dΩ(n̂′)Y ∗
l2m2

(n̂′)aFl1m1
Yl1m1(n̂

′)aFl3m3
Yl4m4(n̂

′) , (5.7)

in the above expression, we have defined that

a2Flm =
∑
limi
i=1,2

∫
dΩ(n̂)Y ∗

lm(n̂) a
F
l1m1

Yl1m1(n̂) a
F
l2m2

Yl2m2(n̂) . (5.8)

By using the orthogonal properties of the spherical harmonic functions, we can
further simplify equation (5.7)∑

lm

Y ∗
lm(n̂

′)Ylm(n̂) = δ3(n̂′ − n̂) , (5.9)

we obtain the following expression

aFlm =
∑
limi

i=1,2,3

aGl1m1
aFl2m2

aFl3m3

∫
dΩ(n̂)Y ∗

lm(n̂)Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂) . (5.10)

Notice that we can use the definition provided by equation (5.3) to express the
filtered multiple coefficients. Consequently, we express the filtered contribution of
the temperature field as follows

aFlm =
∑
limi

i=1,2,3

aGl1m1
aGl2m2

aGl3m3
wl2wl3 Bl1m1l2m2l3m3

lm , (5.11)

where,

Bl1m1l2m2l3m3
lm =

∫
dΩ(n̂)Y ∗

lm(n̂)Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂) . (5.12)

However, in order to optimally replicate the anomalies, it is essential for the fi-
nal term itself to be filtered. This requires incorporating an additional filter gl.
Consequently, the final expression for the non-Gaussian contribution of the cubic
temperature field in harmonic representation can be formulated as follows

aNG
lm = βaFlm = β

∑
limi

i=1,2,3

aGl1m1
aGl2m2

aGl3m3
gl wl2 wl3 Bl1m1l2m2l3m3

lm . (5.13)

The amplitude β and filters wl and gl serve as adjustable parameters that can be
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Figure 5.1: The filters wl and gl are plotted within the ranges l = (2, 30) and
l = (2, 1500), respectively.

tuned to reproduce the anomalous features. Particularly, the parameter β quantifies
the strength of the non-Gaussian contribution. Regarding the filters, one of the
proposed shapes can be seen in figure 5.1. From the structure of the filters, we can
infer that wl acts as a filter for large scale (low l), while gl operates on small scales
(high l). Different filter shapes are illustrated in Figure 2 of Hansen et al. (2019).

5.2 gNL model with strong scale-dependence

The form of non-Gaussianity incorporated in the toy model is based on the concept
of the local model, as previously discussed in earlier chapters. This specific type
of non-Gaussian model is employed to describe deviations from a purely Gaussian
distribution of primordial fluctuations that are generated during inflation. It is
commonly assumed that the primordial gravitational potential Φ (represented as
Bardeen’s gauge-invariant variable ΦH) can be expressed as a local but nonlinear
transformation of a linear random field ΦG (Liguori et al. 2003). The term local
refers to the fact that the model introduces a scale-dependent correction that varies
according to the observed region in the sky. As a result, the level of non-Gaussianity
can change depending on the angular scale of the CMB radiation. This leads to the
following parametrization

Φ(x) = ΦG(x) + fNL

[
Φ2

G(x)− ⟨Φ2
G(x)⟩

]
+ gNL

[
Φ3

G(x)− ⟨Φ3
G(x)⟩

]
, (5.14)

in real space, ΦG(x) represents the linear Gaussian component of the primordial
gravitational potential. The parameters fNL and gNL serve to quantify the amplitude
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of non-gaussianity within the model.

However, it proves convenient to consider a gNL-type model with strong scale de-
pendence. Given that the non-Gaussian contribution in the toy model operates at
cubic order, our focus will be on models with a strong scale dependence, specifically
involving the parameter gNL.

Local effects within inflationary models can emerge when there are interactions
or correlations across different scales of perturbations. In a standard single-field
slow-roll inflation context, interactions between different Fourier modes are typically
negligible, leading to a local Gaussian distribution of perturbations. Nevertheless,
in scenarios where local interactions are significant, the statistical properties of the
perturbations can deviate from Gaussianity, such that the non-linearity parameters
are no longer constants, but dependent on a k mode in Fourier space.

One specific model that can give rise to local-type non-Gaussianity effects is the
Curvaton Model. In this model, a secondary scalar field known as the curvaton
contributes to the primordial fluctuations alongside the inflaton field. Interactions
between the inflaton and the curvaton field can induce local effects in the perturba-
tions, generating non-Gaussian features in the CMB temperature anisotropies. In
our case, conducting more in-depth analyses of the relationship between the temper-
ature field of the toy model and the inflationary quantity ζ becomes indispensable
to clarify which inflationary model could produce the necessary conditions for gen-
erating the observed CMB anomalies.

Generally, as outlined by Schmidt and Kamionkowski (2010), the non-local function
of the Gaussian field can be expressed as a convolution kernel. In other words, the
constant parameter gNL is substituted with a suitable convolution kernel. Conse-
quently, the resulting expression in terms of the curvature perturbation ζ, which is
related to Φ, takes the following form in real space

ζ(x) = ζG(x) + gNL

∫
d3x1 d

3x2 d
3x3W(x1,x2,x3) ζG(x+ x1)

× ζG(x+ x2) ζG(x+ x3) ,

(5.15)

where W represents the kernel function. The parameter gNL quantifies the non-
Gaussian amplitude. In Fourier space, after applying the properties of the Fourier
transform and Dirac delta (see, Appendix A), the above expression can be written
as follows

ζ(k) = ζG(k) + gNL

2∏
i=1

∫
d3ki

(2π)3
W̃(k1,k2, k̃12)ζG(k1)ζG(k2)ζG(k̃12) , (5.16)
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here, it is defined that k̃12 = k − k1 − k2. Therefore, the kernel is

W̃(k1,k2, k̃12) =
3∏

i=1

∫
d3xiW(x1,x2,x3) e

ik1·x1eik2·x2eik̃12·x3 . (5.17)

By examining equation (5.16), we can derive an expression for the scale-dependent
parameter gNL as follows

gNL(k1,k2, k̃12) = gNL W̃(k1,k2, k̃12) . (5.18)

Furthermore, we can determine that the general form of the non-Gaussian curvature
perturbation ζ in this model is

ζ(k) = ζG(k) + gNL ζNG(k) . (5.19)

The next step is to establish a connection between the curvature perturbation ζ given
by equation (5.16) and the multipole coefficients alm, which contain the statistical
information of the temperature field in harmonic space.

5.3 Relation between ζ and alm coefficient

It is always possible to introduce a transfer function ∆l(k) to relate the curvature
perturbation ζ and the temperature field. The expression is given by

alm = −12π

5
il
∫

d3k

(2π)3
∆l(k)Y

∗
lm(k̂) ζ(k) , (5.20)

here, we have used equations (3.10) and (3.11). By substituting the definition of ζ
from the gNL-like scale dependent model as provided in (5.16), we can deduce that

aGlm = −12π

5
il
∫

d3k

(2π)3
∆l(k)Y

∗
lm(k̂) ζG(k) , (5.21)

aNG
lm = −gNL

12π

5
il
∫

d3k

(2π)3
∆l(k)Y

∗
lm(k̂)

2∏
i=1

∫
d3ki

(2π)3
W̃(k1,k2, k̃12)×

ζG(k1)ζG(k2)ζG(k̃12) . (5.22)

The first term corresponds to the Gaussian contribution, aGlm, while the second term
denotes the non-Gaussian cubic-order contribution, aNG

lm . From our previous results,
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we can establish a one-to-one correspondence between our multiple coefficients ex-
pressed in terms of ζ, as given in equations (5.21) and (5.22), and the coefficients
obtained through the expansion of the temperature field as shown in equation (5.13).
Consequently, we have aNG

lm = βaFlm

aNG
lm = −gNL

12πil

5

∫
d3k

(2π)3
∆l(k)Y

∗
lm(k̂)

2∏
i=1

∫
d3ki

(2π)3
W̃(k1,k2, k̃12)ζG(k1)ζG(k2)ζG(k̃12)

= β
∑
limi

i=1,2,3

aGl1m1
aGl2m2

aGl3m3
gl wl2 wl3 Bl1m1l2m2l3m3

lm

= β
∑
limi

i=1,2,3

aGl1m1
aGl2m2

aGl3m3
W̃ lml2l3

l1m1l2m2l3m3
= βaFlm .

(5.23)

For simplicity, we have defined that,

W̃ lml2l3
l1m1l2m2l3m3

= gl W
lml2l3
l1m1l2m2l3m3

= gl wl2 wl3 Bl1m1l2m2l3m3
lm . (5.24)

We have now established a comprehensive correlation between the two distinct def-
initions of the multipole coefficients, alm. Our current focus is to understand the
relationship between the kernel proposed in the definition of the non-Gaussian cur-
vature perturbation ζ and the filters used to generate the non-Gaussian temperature
field, in other words, the relation between W̃(k1,k2, k̃12) and W̃ lml2l3

l1m1l2m2l3m3
. To find

this association, working in terms of the perturbations in real space is advantageous
as it facilitates the identification of this relation. Starting from equation (5.20), we
can derive that

alm = −12π

5
il
∫

d3k

(2π)3
Y ∗
lm(k̂)∆l(k)

∫
d3x e−ix·kζ(x) , (5.25)

expanding the exponential using expression (3.8), we obtain that

alm = −12π

5
il
∫

d3k

(2π)3
Y ∗
lm(k̂)∆l(k)

∫
d3x 4π

∑
l′m′

(−i)l
′
jl′(kr)Yl′m′(k̂)Y ∗

l′m′(n̂)ζ(x)

= − 6

5π

∫
dΩ(n̂)Y ∗

lm(n̂)

∫ ∞

0

drr2
∫ ∞

0

dkk2∆l(k)jl(kx)ζ(r, n̂)

= − 6

5π

∫
dΩ(n̂)Y ∗

lm(n̂)

∫ ∞

0

drr2Dl(r)ζ(r, n̂) ,

(5.26)

here, we have made a change of coordinates from Cartesian to spherical coordinates,
where x = (r, n̂). Additionally, we can define the transfer function in real space and
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the curvature perturbation ζ, respectively, as follows

Dl(r) =

∫ ∞

0

dkk2∆l(k)jl(kr) , (5.27)

ζ(r, n̂) =
∑
lm

ζlm(r)Ylm(n̂) , (5.28)

replacing (5.28) into (5.26), we find that

alm = − 6

5π

∫ ∞

0

drr2Dl(r) ζlm(r) . (5.29)

In order to establish a correlation between the phenomenological model and the
curvature perturbation in real space, we can employ the relationship (5.23). Subse-
quently, we substitute the expression (5.26), leading to

aNG
lm = βaFlm = −β

(
6

5π

)3 ∑
limi

i=1,2,3

W̃ lml2l3
l1m1l2m2l3m3

3∏
j=1

∫
d3xjY

∗
l1m1

(n̂1)Dl1(r1)

× Y ∗
l2m2

(n̂2)Dl2(r2)Y
∗
l3m3

(n̂3)Dl3(r3) ζG(x1) ζG(x2) ζG(x3) .

(5.30)

On the other hand, using equation (5.26) and substituting the cubic-order definition
of the curvature perturbation ζ derived from equation (5.15), we can determine that

aNG
lm = − 6

5π
gNL

∫
dΩ(n̂)Y ∗

lm(n̂)

∫ ∞

0

drr2Dl(r)

×
3∏

j=1

∫
d3xjW(x̃1, x̃2, x̃3)ζG(x1)ζG(x2)ζG(x3) ,

(5.31)

where x̃i = xi − x. We can use the definition aNG
lm = βaFlm to relate both of the

previous expressions (5.30) and (5.31),

−β

(
6

5π

)3 ∑
limi

i=1,2,3

W̃ lml2l3
l1m1l2m2l3m3

3∏
j=1

∫
d3xjY

∗
ljmj

(n̂j)Dlj(rj)ζG(xj) =

− 6

5π
gNL

∫
dΩ(n̂)Y ∗

lm(n̂)

∫ ∞

0

drr2Dl(r)
3∏

j=1

∫
d3xjW(x̃1, x̃2, x̃3)ζG(xj) , (5.32)

by comparing the two sides of the equality, we can propose the following form for
the integral kernel. Equation (5.33) is a guess, as the equivalence of the integrands
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is not guaranteed, although the equality of the integrals remains valid,

W(x̃1, x̃2, x̃3) =
∑
limi

i=1,2,3

Y ∗
l1m1

(n̂1)Dl1(r1)Y
∗
l2m2

(n̂2)Dl2(r2)×

Y ∗
l3m3

(n̂3)Dl3(r3)F
l1m1l2m2l3m3(x) . (5.33)

The function F l1m1l2m2l3m3(x) constitutes the part of the kernel that contains the
information about the filters applied to the temperature field, thereby generating
CMB anomalies. It also provides insights into the convolutional operations acting on
the primordial curvature perturbation on the LSS. Furthermore, the integral kernel
W simplifies into an angular convolution when our observations are restricted to a
fixed distance r, and the transfer functions Dl(r) convey the physics encapsulated
within the kernel to the observer. Consequently, the kernel satisfies the following
relationship

W̃ lml2l3
l1m1l2m2l3m3

=

∫
dΩ(n̂)Y ∗

lm(n̂)

∫ ∞

0

dr r2Dl(r)F
l1m1l2m2l3m3(x) , (5.34)

where the function F can be expanded in spherical harmonics as follows

F l1m1l2m2l3m3(x) =
∑
l4m4

F l1m1l2m2l3m3
l4m4

(r)Yl4m4(n̂) ,

plugging the expression of F in equation (5.34), we obtain that∫ ∞

0

dr r2Dl(r)F
l1m1l2m2l3m3
lm (r) = W̃ lml2l3

l1m1l2m2l3m3
. (5.35)

We further simplify the above expression by computing the transfer function Dl in
a convenient way, using the Sachs-Wolfe approximation ∆l(k) =

1
3
jl(krdec). Then

Dl(r) =

∫ ∞

0

dkk2jl(kr)∆l(k)

=
1

3

∫ ∞

0

dkk2jl(kr)jl(krdec)

=
π

6 r2
δ(r − rdec) ,

(5.36)

where we applied the property of the Bessel function, as given in (3.34). Replacing
equation (5.36) into (5.35), we obtain an expression that relates the kernel compo-
nent to the filters at the position of the LSS,

F l1m1l2m2l3m3
lm (rdec) =

6

π
W̃ lml2l3

l1m1l2m2l3m3
. (5.37)
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The previous result is a specific case focused on the LSS. However, this expression
can be applied to any distance r. Working with the LSS is advantageous because
when the perturbation re-enters the horizon before decoupling, it leaves a distinct
footprint on the Last Scattering Surface, which subsequently affects the CMB pho-
tons. Furthermore, equation (5.37) provides insights into the behavior of the O(gNL)

term, giving the form of the filters, as presented in figure 5.1. Notably, the O(gNL)

term tends to zero when l2, l3 > 30 or l > 1500.

On the other hand, let’s now turn our attention to determining the form of the
kernel in Fourier space for the toy model. By taking the Fourier transform of the
expression (5.15), we obtain

ζ(k)|O(gNL) = gNL

3∏
j=1

3∏
q=1

∫
d3xjd

3x

∫
d3kq

(2π)3
W(x1 − x,x2 − x,x3 − x)eik1·x1

× eik2·x2eik3·x3e−ik·xζG(k1)ζG(k2)ζG(k3)

= gNL

∑
limi

i=1,2,3

3∏
j,q=1

∫
d3xjd

3x

∫
d3kq

(2π)3
eik1·x1eik2·x2eik3·x3e−ik·xF l1...m3(x)

× Y ∗
l1m1

(n̂1)Dl1(r1)Y
∗
l2m2

(n̂2)Dl2(r2)Y
∗
l3m3

(n̂3)Dl3(r3)ζG(k1)ζG(k2)ζG(k3)

= gNL(4π)
3
∑
limi

i=1,2,3

∑
LiMi
i=1,2,3

3∏
j,q=1

∫
d3xj

d3kq

(2π)3
F l1...m3(k)Y ∗

l1m1
(n̂1)Dl1(r1)

× Y ∗
l2m2

(n̂2)Dl2(r2)Y
∗
l3m3

(n̂3)Dl3(r3)Y
∗
L1M1

(k̂1)YL1M1(n̂1)Y
∗
L2M2

(k̂2)

× YL2M2(n̂2)Y
∗
L3M3

(k̂3)YL3M3(n̂3)jL1(k1r1)jL2(k2r2)jL3(k3r3)

× ζG(k1)ζG(k2)ζG(k3) ,

(5.38)

after applying the properties of the Bessel functions, the expression becomes

ζ(k)|O(gNL) = gNL

∑
limi

i=1,2,3

il1+l2+l3

3∏
q=1

∫
d3kq

(2π)3
F l1...m3(k)ζG(kq)

× Y ∗
l1m1

(k̂1)Dl1(k1)...Y
∗
l3m3

(k̂3)Dl3(k3) ,

(5.39)

note that the function F can be expressed as

F l1...m3(k) =

∫
d3xe−ik·xF l1...m3(x)

=
∑
lm

Ylm(k̂)F
l1...m3(k) .

(5.40)
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Moreover, in the Sach-Wolfe approximation, equation (5.39), takes the following
form

ζ(k)|O(gNL) =

(
1

3

)3

gNL

∑
limi

i=1,2,3

il1+l2+l3

3∏
q=1

∫
d3kq

(2π)3
F l1...m3(k)ζG(kq)

× Y ∗
l1m1

(k̂1)jl1(rdeck1)...Y
∗
l3m3

(k̂3)jl3(rdeck3) .

(5.41)

On the other hand, taking the Fourier transform of the definition of ζ in real space
leads to

ζ(k)|O(gNL) = gNL

∫
d3xe−ik·x

3∏
j=1

∫
d3xjW(x1 − x,x2 − x,x3 − x)

×
3∏

q=1

∫
d3kq

(2π)3
ei

∑3
j=1 xj ·kjζG(k1)ζG(k2)ζG(k3)

= gNL

3∏
q=1

∫
d3kq

(2π)3
W̃(k,k1,k2,k3)ζG(k1)ζG(k2)ζG(k3) ,

(5.42)

where the kernel is defined as follows

W̃(k,k1,k2,k3) =

∫
d3xe−ik·x

3∏
j=1

∫
d3xjW(x̃1, x̃2, x̃3) . (5.43)

Comparing equations (5.39) and (5.42), we obtain that the kernel is given by

W̃(k,k1,k2,k3) =
∑
limi

i=1,2,3

∑
lm

il1+l2+l3F l1...m3
lm (k)Ylm(k̂)

× Y ∗
l1m1

(k̂1)Dl1(k1)...Y
∗
l3m3

(k̂3)Dl3(k3) .

(5.44)

The preceding expression defines the integral kernel in Fourier space, and it exhibits
similarities with the expression provided in equation (5.33). It is important to note
that both equations are complex, making it non-trivial to extract insights about the
convolution inherent in this type of model through these formulations.

5.4 Second approach: filtered curvature perturba-

tion

In the previous section, we developed a method to reconstruct the curvature pertur-
bation starting from the phenomenological map of the temperature field, as shown in
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expression (5.1). This procedure aims to establish a relationship between the convo-
lution kernel and the filters applied to the alm coefficients of the filtered temperature
field, equations (5.33) and (5.44). However, we noted that these relationships have
intrinsic limitations that make it difficult to extract information, such as the presence
of transfer functions.

In this section, our goal is to directly reconstruct the curvature perturbation ζ in
Fourier space. Unlike the previous method, this approach allows us to derive the
expression without evaluating it on the surface of the last scattering. The methodol-
ogy involves finding an expression for ζ by applying the same filters proposed for the
temperature field. Thus, when we apply a filter to a specific temperature field, we
are simultaneously applying a filter to the perturbation responsible for generating
that part of the temperature.

In the toy model presented in equation (5.1), the filters gl and wl are given in
harmonic space. In this case, we define two filters analogous to the previously
encountered filters, but now tailored to rescale g(k) and w(k) in Fourier space.
Starting with w(k), we can define the filtered curvature perturbation as

ζF (k) = w(k)ζG(k) , (5.45)

where w(k) (equivalent to wl) is the filter function applied to the low multiples (large
scales) and approaches zero for l > 30, as illustrated in figure 5.1.

Additionally, the Fourier transform of ζ in real space is

ζF (x) =

∫
d3k

(2π)3
eik·xζG(k)w(k) . (5.46)

In the following steps, we can repeat the process we employed in the previous section
with alm. We wrote the cubic term in Fourier space and applied a second filter, gl(k),
which filters out high multiples (small scales) and becomes zero for l > 1500. Then,

ζNG(x) = ζG(k) + β ζ3F (k) , (5.47)

where

ζ3F (k) =

∫
d3xe−ik·xζG(x)ζ

2
F (x)

=

∫
d3xe−ik·x

3∏
j=1

∫
d3kj

(2π)3
eikj ·xw(k1)w(k2)ζG(k1)ζG(k2)ζG(k3) , (5.48)
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ζ3F (k) =
2∏

j=1

∫
d3kj

(2π)3
w(k1)w(k2)ζG(k1)ζG(k2)ζG(k − k1 − k2) . (5.49)

Finally, we incorporate the filter g(k) to fully replicate the toy model

g(k)ζ3F (k) =
2∏

j=1

∫
d3kj

(2π)3
w(k1)w(k2)g(k)ζG(k1)ζG(k2)ζG(k − k1 − k2) . (5.50)

Comparing the above expression multiplied by β, with equation (5.16), we observe
that

β = gNL and W̃(k1, k2, k − k1 − k2) ≡ g(k)w(k1)w(k2) . (5.51)

As we mentioned earlier, the filter w(k) is designed to remove information from large
scales (small k) and low multiples, while g(k) filters out information on small scales
(large k) and high multiples, for examples of filter shapes, see Hansen et al. (2019).
Consequently, we consider the condition that k ≫ k1, k2.

This approach is important because it simplifies the integral kernel expression found
in the definition of the curvature perturbation. Thus,

g(k)w(k1)w(k2) =
3∏

i=1

∫
d3xiW(x1,x2,x3)e

ik1·x1eik2·x2eik̃12·x3 . (5.52)

The results presented in this chapter reveal a potential connection between the phe-
nomenological model described by (5.1) and inflationary models where local non-
Gaussianity with a strong scale dependence can induce non-Gaussian behavior in
the temperature field. This non-Gaussianity has been represented as a convolution
involving three perturbations, including the cubic-order term (gNL term). Further-
more, we have established a relationship between the k modes of each perturbation,
as given by equation (5.51). Additionally, we have determined the link between the
integral kernel and filters, as in equation (5.37), providing insights into the type of
convolution involved in the curvature perturbations ζG.

These outcomes serve as a starting point for understanding the conditions that
the underlying inflationary model that gives rise to the toy model must satisfy. To
explore these conditions further, we will examine the four-point correlation function,
or trispectrum, in Fourier space.
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5.4.1 Filters in Fourier space

To relate the filters in terms of the multiples moment l with the wavenumber k,
we assume that the shape of the filters remains the same, but we need to find
the relationship between a given l and a specific k mode. To do this, we consider
two CMB photons, one hot and one cold, separated by a comoving distance λ ∼
k−1. These photons travel from recombination to the present time, starting with an
angular separation θ. We can then define

dLθ ∼ k−1 −→ θ ∼ k−1

η0 − η∗
, (5.53)

the linear distance between the photons can be approximated by the angular distance
between them, where dL = η0 − η∗. Here, η0 corresponds to the present time or
the time of observation, while η∗ represents an earlier epoch, such as the time of
recombination. Furthermore, we know that in the CMB, the angular separation is
θ ∼ l−1, leading to

l ∝ k(η0 − η∗) , (5.54)

where l represents the multipole moment, which is linked to the angular scale of
fluctuations in the CMB. It quantifies the number of oscillations within a given
angle in the sky. While, k represents the wavenumber, and characterizes the spatial
scale or frequency of the fluctuations.

Following the results in Hansen et al. (2019) and using the relation in equation
(5.54), we obtained the values presented in figure 5.2, where we have assumed that
η0 = 14000 Mpc and η∗ = 114 Mpc.

Figure 5.2: Filters w(k) and g(k) are plotted in the ranges k = (1.4 × 10−4, 2 ×
10−3)Mpc−1 and k = (1.4× 10−4, 10−1)Mpc−1, respectively.
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Chapter 6

Toy Model Trispectrum

The previous chapter has provided us with valuable insights into the connection
between the temperature field of the toy model and the inflationary curvature per-
turbation, as introduced by Hansen et al. (2019). This understanding serves as a
crucial foundation for uncovering the underlying physical model behind the proposed
toy model.

Now, as we shift our focus toward investigating the impact of non-Gaussianity in
our model, it becomes necessary to delve into higher-order statistics to understand
the characteristics of the CMB radiation. Specifically, our interest lies in a gNL-type
non-Gaussian model with strong scale dependence, particularly at cubic order in the
variable ζ. Working with the 4-point correlation function, known as the trispectrum
in Fourier space, is useful to accomplish this.

The trispectrum, when expressed in Fourier space, not only provides statistical
information about the correlation of four points in space, but also offers insights
into the specific configuration that the four k modes must adhere to in order to
form a closed quadrilateral in Fourier space.

In this chapter, we will work on a detailed calculation of the trispectrum associated
with the toy model presented in Chapter 5. We will highlight the relevant equations
and elucidate the key characteristics of this trispectrum.
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6.1 Primordial trispectrum of ζ

The trispectrum is the connected part1 of the four-point correlation function in
Fourier space. It becomes non-zero when four k vectors form a closed quadrilateral,
but one should keep in mind that these sets of four k vectors do not necessarily lie
on the same plane. Note that the trispectrum is the lowest-order correlation where
the connected part needs to be explicitly separated from the unconnected part. In
other words, the ensemble average of four Fourier modes, where their k vectors form
a closed quadrilateral, would generally not be zero even for a Gaussian random field.
However, what provides additional information beyond the power spectrum is the
connected part of that statistic (Verde and Heavens 2001; Gualdi et al. 2021).

To the lowest order in curvature perturbation ζ, the trispectrum is given by

⟨ζ1 ζ2 ζ3 ζ4⟩c = ⟨ζNG
1 ζG2 ζG3 ζG4 ⟩c + ⟨ζG1 ζNG

2 ζG3 ζG4 ⟩c
+ ⟨ζG1 ζG2 ζNG

3 ζG4 ⟩c + ⟨ζG1 ζG2 ζG3 ζNG
4 ⟩c ,

(6.1)

it is important to notice that the curvature perturbation ζ is defined as a combi-
nation of both Gaussian and non-Gaussian contributions, resembling the toy model
structure in terms of the temperature field, where the non-Gaussian contribution is
given by equation (5.16). It follows that

ζ(k) = ζG(k) + gNL ζNG(k) . (6.2)

In particular, the leading order contributions to the connected part of the 4-point
function come from terms such as

⟨ζG(k1)ζG(k2)ζG(k3)ζNG(k4)⟩c = (2π)3δ(k1 + k2 + k3 + k4)Tζ(k1,k2,k3,k4) .

(6.3)

It is important to keep in mind that the total contribution to ⟨ζ1ζ2ζ3ζ4⟩c is the sum
of the contribution from all the terms presented in equation (6.1). In our case, we
focus on the analysis of one particular arrangement given by expression (6.3) because
the other contributions can be formed by permuting the symbols.

1The connected part of the trispectrum refers to the component that contains the signal that
is sensitive to non-Gaussian features.
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By substituting the definition of ζ in the ensemble average, we obtain that

⟨ζG(k1)ζG(k2)ζG(k3)ζNG(k4)⟩ = gNL

∫
d3k5

(2π)3
d3k6

(2π)3
W̃(k5,k6, k̃56)

⟨ζG(k1) ζG(k2) ζG(k3) ζG(k5) ζG(k6) ζG(k4 − k5 − k6)⟩ , (6.4)

where we have defined that k̃56 = k4 − k5 − k6. To compute the ensemble aver-
age containing the six curvature perturbation contributions, we employ the Wick
theorem 2 that allows us to decompose this computation. As a result, one possible
combination for computing the two-point correlation functions can be expressed as
follows

= gNL

∫
d3k5

(2π)3
d3k6

(2π)3
W̃(k5,k6, k̃56)

[
⟨ζG(k1) ζG(k2)⟩⟨ζG(k3)ζG(k5)⟩

⟨ζG(k6) ζG(k4 − k5 − k6)⟩+ ⟨ζG(k1) ζG(k5)⟩⟨ζG(k3)ζG(k4 − k5 − k6)⟩

× ⟨ζG(k2)ζG(k6)⟩+ perm.
]

= gNL

∫
d3k5

(2π)3
d3k6

(2π)3
W̃(k5,k6, k̃56)

[
(2π)9δ3(k1 + k2)δ

3(k3 + k5)δ
3(k4 − k5)

× Pζ(k1)Pζ(k3)Pζ(k6) + (2π)9δ3(k1 + k5)δ
3(k3+k4 − k5 − k6)δ

3(k2 + k6)

× Pζ(k1)Pζ(k3)Pζ(k2) + perm.
]

= (2π)3gNL

∫
d3k6W̃(k4,k6, k̃46)δ

3(k1 + k2)δ
3(k3 + k4)Pζ(k1)Pζ(k3)Pζ(k6)+

(2π)3δ3(k1 + k2 + k3 + k4)gNL W̃(−k1,−k2, k̃12)Pζ(k1)Pζ(k2)Pζ(k3) + perm. ,

(6.5)

where we have applied the definition of the two-point correlation function in terms
of the power spectrum, equation (2.36). From the last line, we notice that the first
term is an unconnected part (as can be seen from Dirac’s deltas) of the four-point
correlation function because the Gaussian part involves products of two Dirac delta
functions, whereas the connected part has only one (Verde and Heavens 2001). This
implies that we need combinations of the Gaussian field with the fields contained in
the non-gaussian definition in order to obtain the connected components. Thus, the
connected part for this specific arrangement can be written as

⟨ζG(k1)ζG(k2)ζG(k3)ζNG(k4)⟩c = (2π)3δ3(k1 + k2 + k3 + k4)gNLW̃(−k1,−k2, k̃12)

× Pζ(k1)Pζ(k2)Pζ(k3) + perm. ,

(6.6)

2The Wick theorem states that any ensemble average of Gaussian random variables can be
obtained by products of ensemble averages of pairs.



68 6 Toy Model Trispectrum

from equation (6.3) we can identify that,

Tζ(k1,k2,k3,k4) = gNL W̃(−k1,−k2, k̃12)Pζ(k1)Pζ(k2)Pζ(k3) + perm . (6.7)

We can further simply the aforementioned expression, considering the last term of
equation (6.5) from which we can extract the following relations

k5 = −k1 −→ k5 = |k5| ; k1 = | − k1| −→ k5 = k1 , (6.8)

k6 = −k2 −→ k6 = |k6| ; k2 = | − k2| −→ k6 = k2 , (6.9)

considering the definition of the kernel given in the previous chapter, equation (5.51),
and using equations (6.8) and (6.9), this leads to

Tζ(k1, k2, k3, k4) = gNL g(k4)w(k1)w(k2)Pζ(k1)Pζ(k2)Pζ(k3) + perm. , (6.10)

where we have defined W̃(−k1,−k2, k̃12) ≡ g(k4)w(k1)w(k2). It is worth high-
lighting that equation (6.10) resembles the primordial trispectrum found by Akrami
et al. (2020a) for a local model. However, in our case, the gNL parameter is scale-
dependent, accounting for the presence of the filters in the expression.

On the other hand, figure 5.2 allows us to extract some additional information about
the k modes associated with the filters g and w, then we have the following ranges

1.4× 10−4 ≤ k1, k2 ≤ 2× 10−3 and 1.4× 10−4 ≤ k4 ≤ 10−1 . (6.11)

Otherwise, the filter w and g go to zero when k > 2 × 10−3 and k > 10−1, respec-
tively. Note that we cannot extract any information from the filters for the mode k3.
Additionally, we have the condition that k4 ≫ k5, k6, which implies that k4 ≫ k1, k2.

It is necessary to clarify that equation (6.10) represents only one possible term
among the different permutations for the case ⟨ζG(k1)ζG(k2)ζG(k3)ζNG(k4)⟩c. The
general expression of the primordial trispectrum of ζ in our gNL-type model with
scale dependence due to the filters, can be expressed as follows

Tζ(k1, k2, k3, k4) = 2 gNL

[
g(k4)Pζ(k1)Pζ(k2)Pζ(k3)

(
w(k1)w(k2) + w(k1)w(k3)

+ w(k2)w(k3)
)
+ 3 perm.

]
. (6.12)

The additional permutations can be obtained considering the other terms in the
definition given by equation (6.1). In the case of considering the filters g and w as
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constant equal to 1 in our expression, we obtain the following instead

Tζ(k1, k2, k3, k4) = 6 gNL

[
Pζ(k1)Pζ(k2)Pζ(k3) + 3 perm.

]
. (6.13)

The two equations (6.12) and (6.13) can be used to understand the type of model
that we are implementing in this work. On one side, equation (6.13) reflects what
is commonly known as the trispectrum of a local gNL-shape non-Gaussian model,
as seen in, e.g. Regan et al. (2015) and Akrami et al. (2020a). Meanwhile, equation
(6.12), which considers the effect of the filters and embodies the properties of the
phenomenological model, can be considered as a gNL-like non-Gaussian model with
strong scale dependence introduced by the filters.

6.1.1 Second approach

In this part, we expand explicitly all the terms involved in the connected contribution
of equation (6.4), leading to

⟨ζG(k1)ζG(k2)ζG(k3)ζNG(k4)⟩ = gNL

∫
d3k5

(2π)3
d3k6

(2π)3
W̃(k5,k6, k̃56)

⟨ζG(k1) ζG(k5)⟩⟨ζG(k3) ζG(k5̃6)⟩⟨ζG(k2) ζG(k6)⟩+ perm . (6.14)

Firstly, we apply the Wick theorem, and subsequently, we compute the two-point
correlation functions,

⟨ζG(k1) ζG(k5)⟩ = 16π2
∑
limi
i=1,5

(−i)l1+l5(−1)m1δl1l5δ−m1m5

∫
drr2jl1(k1r)jl5(k5r)

× Pζ(k1)Yl1m1(k̂1)Yl5m5(k̂5) , (6.15)

⟨ζG(k2) ζG(k6)⟩ = 16π2
∑
limi
i=2,6

(−i)l2+l6(−1)m2δl2l6δ−m2m6

∫
drr2jl2(k2r)jl6(k6r)

× Pζ(k2)Yl2m2(k̂2)Yl6m6(k̂6) , (6.16)

⟨ζG(k3) ζG(k̃56)⟩ = 256π4
∑
limi

i=3,4,5,6

(−i)l3+l4(i)l5+l6

∫
drr2jl3(k3r)jl4(k4r)jl5(k5r)jl6(k6r)

×
∫

dΩ(n̂)Y ∗
l3m3

(n̂)Y ∗
l4m4

(n̂)Yl5m5(n̂)Yl6m6(n̂)Y
∗
l5m5

(k̂5)Y
∗
l6m6

(k̂6)

× Pζ(k3)Yl3m3(k̂3)Yl4m4(k̂4) , (6.17)
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here, we have used the definition of the delta function in terms of exponentials (A.4)
and then expanded these terms using equation (3.8). Subsequently, by plugging the
previous terms into equation (6.14), we obtain

= gNL 1024π
2
∑
limi

i=1,2,3,4

(−i)l1+l2+l3+l4(−1)m1+m2δl1l5δ−m1m5δl2l6δ−m2m6

∫
dk5dk6×

(k5k6)
2 g(k4)w(k5)w(k6)Pζ(k1)Pζ(k2)Pζ(k3)Yl1m1(k̂1)Yl2m2(k̂2)Yl3m3(k̂3)Yl4m4(k̂4)∫

drr2jl1(k1r)jl5(k5r)

∫
drr2jl2(k2r)jl6(k6r)

∫
drr2jl3(k3r)jl4(k4r)jl5(k5r)jl6(k6r)∫

dΩ(n̂)Y ∗
l3m3

(n̂)Y ∗
l4m4

(n̂)Yl5m5(n̂)Yl6m6(n̂) + perm. ,

(6.18)

by exploiting the property of the Bessel function as shown in equation (3.34), we
further simplify the above expression to obtain that

⟨ζG(k1)ζG(k2)ζG(k3)ζNG(k4)⟩c = gNL256π
4
∑
limi

i=1,2,3,4

(−i)
∑

lig(k4)w(k1)w(k2)Pζ(k1)

×Pζ(k2)Pζ(k3)

∫
drr2jl3(k3r)jl4(k4r)jl2(k2r)jl1(k1r)Yl1m1(k̂1)Yl2m2(k̂2)

×Yl3m3(k̂3)Yl4m4(k̂4)

∫
dΩ(n̂)Y ∗

l3m3
(n̂)Y ∗

l4m4
(n̂)Y ∗

l1m1
(n̂)Y ∗

l2m2
(n̂) + perm .

(6.19)

It is important to realise that from equation (6.19), it is possible to recover our
previous result in equation (6.6), where

δ3(k1 + k2 + k3 + k4) = 256π4
∑
limi

i=1,2,3,4

(−i)
∑

li

∫
drr2jl3(k3r)jl4(k4r)jl2(k2r)jl1(k1r)

Yl1m1(k̂1)Yl2m2(k̂2)Yl3m3(k̂3)Yl4m4(k̂4)

∫
dΩ(n̂)Y ∗

l3m3
(n̂)Y ∗

l4m4
(n̂)Y ∗

l1m1
(n̂)Y ∗

l2m2
(n̂) .

(6.20)

6.1.2 Shape of the ζ trispectrum

The general expression of the primordial trispectrum Tζ is given by equation (6.12),
where the filters are defined by the step functions depicted in figure 5.2. The power
spectrum P (k) can be expressed in terms of the dimensionless power spectrum
P(k), as given in equation (2.37). In this context, P(k) is defined as presented
in equation (2.40). In order to simplify the analysis, we consider only the first term
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in equation (6.12). After taking into consideration the previous assumptions, we
can write this specific contribution to the trispectrum as follows

Tζ(k1, k2, k3, k4) = 16π6 gNL g(k4)w(k1)w(k2)
Pζ(k1)Pζ(k2)Pζ(k3)

(k1 k2 k3)3

= 16π6 gNL g(k4)w(k1)w(k2)
P3

ζ (k0)

(k1 k2 k3)3

(
k1 k2 k3

k3
0

)ns−1

.

(6.21)

The aim of this section is to study the shape of the primordial trispectrum of ζ

associated with the toy model. The shape is of particular importance because it is a
way to identify in which configuration the trispectrum peaks and the arrangement
follows for the k modes in order to form a closed tetrahedron. The correct character-
ization of this property can provide insight into the physical mechanism that gives
rise to a specific form of non-Gaussianity, helping to identify the initial conditions
of the early Universe.

To properly characterize the shape followed by our primordial trispectrum, we make
use of the conditions presented in section 2.5.2, as outlined in the work developed
by Chen et al. (2009) about the shape of trispectrum. Here, we explore the folded
limit and the specialized planar limit. Given that one of the conditions found for
the filters established that k4 ≫ k1, k2, we have decided not to study the equilateral
limit because it does not apply to our case.

In order to plot equation (6.21) is convenient to multiply by
∏4

i=1 k
3
i , which is a

standard technique used to analyze the shape of the bispectrum. This leads to the
following function

Tζ(k1, k2, k3, k4) = 16π6 gNL g(k4)w(k1)w(k2) k
3
4 P3

ζ (k0)

(
k1 k2 k3

k3
0

)ns−1

. (6.22)

Note that to plot the above expression, we only take into account the functions in
terms of k, e.g. the filters and the dependence on the different k modes. Moreover,
we assume the values of ns = 0.96 and k0 = 0.05Mpc−1. However, the parameters
gNL and P3

ζ (k0) are not included it.

6.1.2.1 Folded limit

In the folded limit, we assume that k1 = k2, k3 = k4 and the diagonal k12 goes to
zero. In this part, we plan to explore the shape of one of the contributions to the
trispectrum. We have two cases: when we consider the filters and constant filters.
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In these cases, the equations become

T loc1
ζ (k1, k4) = 48π6 k3

4

(
k2
1 k4
k3
0

)ns−1

,

T loc2
ζ (k1, k4) = 16π6 g(k4)w(k1)w(k1) k

3
4

(
k2
1 k4
k3
0

)ns−1

. (6.23)

Case 1:

Firstly, we plot T loc1
ζ equation (6.23) considering constant filters g = w = 1, and we

used the following values: k4 = 1 and k1 in the range of (0, 1), in contrast to the
condition in section 2.5.2 where k1 > k4. The diagonal k14 can take values between 0
and 2. Notice that figure 6.1 has the same shape as presented in figure 2.5, however,
in our case, T loc1

ζ has a greater value. We can then conclude that without the filter
contributions, the shape of our trispectrum resembles the result of Chen et al. (2009).

Figure 6.1: Shape function T loc1
ζ in the folded limit, where k1 = k2 and k3 = k4,

with constant filters g = w = 1.

The full expression considering all the permutations for T loc1
ζ can be expressed as

follows (see figure 6.2)

T loc1
ζ (k1, k4) = 48π6

[
2k3

4

(
k2
1 k4
k3
0

)ns−1

+ 2k3
1

(
k2
4 k1
k3
0

)ns−1 ]
. (6.24)

Case 2:

The subsequent step is to plot T loc2
ζ to assess the filters’ impact on the trispectrum’s

shape. In this case, we limit the range of the k variables to the one presented in
figure 5.2. Particularly, we assume that k4 = 0.1 and k1 takes values in the range of
(0, 0.002). We decided to consider all the contributions to get a better idea of the
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Figure 6.2: Shape function T loc1
ζ in the folded limit taking into account all the

contributions, equation (6.24) (where k1 = k2 and k3 = k4) with the filters g = w =
1. The shape resembles the one of a local model similar to Chen et al. (2009).

shape in this particular case. Consequently, equation (6.12) is modified to include
the additional terms. Thus, we obtain the following for the first contribution

T loc2
ζ (k1, k4) = 16π6 g(k4) k

3
4

(
k2
1 k4
k3
0

)ns−1 (
w(k1)w(k2)+w(k1)w(k3)+w(k2)w(k3)

)
.

(6.25)
On the other hand, the full expression of the primordial trispectrum in the folded
limit under this specific condition can be defined as

T loc2
ζ (k1, k4) = 16π6

[
2g(k4) k

3
4

(
k2
1 k4
k3
0

)ns−1 (
w(k1)w(k1) + 2w(k1)w(k4)

)
+ 2g(k1) k

3
1

(
k1 k

2
4

k3
0

)ns−1 (
w(k4)w(k4) + 2w(k1)w(k4)

)]
. (6.26)

From figure 6.3, it is immediately noticeable that the shape of the trispectrum
is significantly affected by the presence of the filters, considerably restricting the
range over which the function Tζ is non-zero. Another important feature is that the
shape resembles the structure of the filter w, which introduces a significant scale
dependence. Moreover, it is interesting to note that the diagonal k14 in both cases
needs to have approximately the same value as k4 for the configuration to satisfy the
conditions to form a closed quadrilateral. Additionally, it is possible to evidentiate
that the trispectrum peaks when k4 > k1.

Figures 6.2 and 6.3 reveal how different the shape of the gNL local model is compared
to the model with scale dependence. In particular, we can observe the strong effect
of the filters, where we can infer that under these initial conditions, the structure of
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Figure 6.3: Shape function T loc2
ζ in the folded limit, where k1 = k2 and k3 = k4. On

the left, we present the shape of a single contribution, as given by equation (6.25).
On the right, we plot the shape accounting for all the permutations, according to
equation (6.26).

the filter g becomes less significant in the overall shape function, and the shape is
predominantly determined by filter w. This effect arises from the way we propose
our initial conditions.

In contrast, when k1 is set to a value between (0, 0.002) and we examine the range
of k4 between (0, 0.1), we cannot distinguish any particular shape associated with
the filters, and the values of T loc2

ζ is lower than in the previous case, as depicted in
figure 6.4. Additional cases can be explored to gain more insights into the possible
shapes in the folded limit. For instance, consider the range of k1 and k4 as either
(0, 0.002) or (0, 0.1). However, the results are not satisfactory and we cannot
extract any shape from the plots. Given the previous cases, we find that the most
informative scenario arises when k4 > k1, with k4 = 0.1 and k1 varying within the
range of (0, 0.002). The value of k4 does not necessarily have to be set to 0.1, it can
be any value within the range of (0, 0.1).

Possible interpretation:

The shape of the configuration is a tool to study the features of non-Gaussianity
and potentially probe new particles that decay into the primordial fluctuations. In
particular, the physics behind the folded limit (or collapsed limit) considers that it
is possible to correlate two collections of modes generated late in inflation mediated
by a pair produced at early times, with long wavelength (Kalaja et al. 2021). In
other to probe such a process, it is standard to consider a collapsing quadrilateral
by making a diagonal very small. More generally, the momenta k can be bundled
in two groups, as shown in figure 6.7 all the momenta on each bundle have similar
magnitude, although the right and left momenta can be different. Additionally,
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Figure 6.4: Shape function T loc2
ζ in the folded limit, where the value of k1 = 0.008

and k4 varies in a range of (0, 0.1).

in the figure, left and right momenta are produced at similar times, however, the
correlation is mediated by σ which is generated earlier.

Figure 6.5: Cartoon of a folded N-point function configuration. Time grows along
the vertical direction and the horizontal line presents the end of inflation. The
momenta on each bundle have similar magnitude, but the left and right momenta
can be different. It assumes that left and right momenta are sourced at similar
times, but the correlation is mediated by σ which is generated earlier. Adopted
from Kalaja et al. (2021).

In our case, conducting an analysis like the one illustrated in figure 6.7 requires a
different parametrization of the shape function. This parametrization should allow
us to incorporate the effect of the mass of the particle mediating the interaction
and necessitates a more detailed numerical implementation. For additional informa-
tion, refer to Kalaja et al. (2021) and the references therein. This specific approach
to analyzing the physics behind the shape of the trispectrum serves as an exam-
ple that underscores the fundamental role of shape analysis in comprehending the
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interactions that can occur in the early Universe, ultimately leading to specific con-
figurations.

On the other hand, even though our exploration of the shape only considers some
cases, we can still extract insights useful for further in-depth studies. We find that
the configuration studied can be associated with the case of a folded kite (see,
figure 6.6), where k12 ≪ k1 ∼ k2, k3 ∼ k4. In fact, the diagonal k12 for our case
goes to zero, so we should expect that k14 ∼ k4, as evident from figure 6.2. While
we cannot strictly claim that this is the only valid configuration associated with the
shape of our trispectrum, it is the one that provides the most reasonable result for
now following the approach based on the work of Chen et al. (2009).

Figure 6.6: Representation of the folded kite shape of the trispectrum where k12 ≪
k1 ∼ k2, k3 ∼ k4. Adopted from Bellomo et al. (2018).

6.1.2.2 Specialized planar limit

It is characterized by the relation k1 = k3 = k14 and a specific form for the diagonal
k12, as given by equation (2.56). In this case, the equations take the following form

Case 1:

T loc1
ζ (k1, k2, k4) = 48π6

[
2k3

1

(
k1 k2 k4

k3
0

)ns−1

+ k3
2

(
k2
1 k4
k3
0

)ns−1

+ k3
4

(
k2
1 k2
k3
0

)ns−1 ]
.

(6.27)

In this case, we have plotted the equation (6.27) taking the filters as constant.
Similar to the folded limit case, we find that we recover the shape of a local model.
Additionally, we can observe that the shape is very similar to the one presented in
section 2.5.2. When we compare the graphs obtained for the local case in both limits
figures 6.2 and 6.7, we notice that the amplitude of the shape function is larger in
the folded limit.
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Figure 6.7: Shape function T loc1
ζ in the specialized planar limit (k1 = k3 = k14) with

constant filters. We recover the local shape obtained by Chen et al. (2009).

Case 2: When considering the shape function that incorporates the contributions
of the filters equation (6.28), it becomes challenging to identify a specific shape.
This complexity may arise from the limited number of configurations that meet the
conditions for forming a closed quadrilateral. Consequently, these configurations
may not adequately represent the general behavior of the trispectrum’s shape

T loc2
ζ (k1, k2, k4) = 16π6

[
2g(k1) k

3
1

(
k1 k2 k4

k3
0

)ns−1 (
w(k1)w(k2) + w(k2)w(k4)

+w(k1)w(k4)
)
+ g(k2) k

3
2

(
k2
1 k4
k3
0

)ns−1 (
w(k1)w(k1) + 2w(k1)w(k4)

)
+

g(k4) k
3
4

(
k2
1 k2
k3
0

)ns−1 (
w(k1)w(k1) + 2w(k1)w(k2)

) ]
.

(6.28)

Investigating the shape of our trispectrum in this limit, we considered various cases,
some of which are illustrated in figures 6.8 and 6.9. In this approach, we opted to
fix the value of one k, while the other two are treated as free parameters within
specific ranges. In the first plot, we assume initial conditions where k1 takes on a
particular value from the range (0, 0.1), while k2 and k4 vary within the ranges (0,
0.002) and (0, 0.1), respectively. However, it becomes evident from the figure that
distinguishing a specific shape is challenging. The plot presents a predominant peak
along with some additional features, but extracting meaningful information from
this configuration proves to be complicated.

In figure 6.9, the value of k1 is fixed within the range (0, 0.002) while allowing k4

and k2 to vary, similar to the previous case (graph on the left). On the right plot,
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Figure 6.8: Shape function T loc2
ζ in the specialized planar limit, with k1 = k3 =

k14 = 0.05, and k2, k4 varying in the ranges (0, 0.002) and (0, 0.1), respectively.

Figure 6.9: Shape function T loc2
ζ in the specialized planar limit, where k1 = k3 = k14.

On the left, we present the shape when k1 = 0.0008 and k2, k4 vary within the ranges
(0, 0.1) and (0, 0.002), respectively. On the right, we plot the shape interchanging
the ranges of k2 and k4.

we interchanged the ranges of k4 and k2, setting them to (0, 0.002) and (0, 0.1), re-
spectively. Once again, the shape of T loc2

ζ appears complex in both cases, exhibiting
negative values. These negative values might suggest that, in these scenarios, the
filter g has more relevance. The presence of multiple peaks indicates that specific
configurations satisfy the conditions and yield a non-zero T loc2

ζ . However, the pa-
rameter space is confined to cases where k1 ≥ k4, k2, which may suggest that most
relevant contributions come from ⟨ζNG

1 ζG2 ζG3 ζG4 ⟩c and ⟨ζG1 ζG2 ζNG
3 ζG4 ⟩c. Neverthe-

less, a more in-depth analysis of this limit is necessary to comprehend the features
exhibited in the plots.

Based on the previous discussion, we conclude that the folded limit appears to be
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the scenario that best describes our trispectrum. This conclusion is drawn from
the fact that the amplitude of T loc2

ζ is larger in this case. It is important to note
that this is our current assumption based on the results presented in this section,
and further investigation may lead to different conclusions if we explore additional
shapes and the physical significance of the filters.

6.2 Trispectrum of the CMB temperature

The CMB trispectrum is related to the third-order perturbations in the primordial
curvature ζ through the coupling parameter gNL. This parameter is often intro-
duced as a constant, relating to the amplitude of the trispectrum. In the simplest
model of inflation, a single-field slow-roll model infers that the amplitude and scale-
dependence of the higher-order correlation functions are of the order of the slow-
roll parameters, meaning they are too small to observe at present time. However,
several inflationary scenarios allow for a scale-dependent trispectrum, in which the
non-linearity parameters are no longer constants, but depend on a k mode in Fourier
space, as is the case with the trispectrum that we will explore in this section.

Similarly to Okamoto and Hu (2002), the leading order contributions to the CMB
trispectrum under the assumption of the toy model are

T = ⟨aNG
l1m1

aGl2m2
aGl3m3

aGl4m4
⟩c + ⟨aGl1m1

aNG
l2m2

aGl3m3
aGl4m4

⟩c+

⟨aGl1m1
aGl2m2

aNG
l3m3

aGl4m4
⟩c + ⟨aGl1m1

aGl2m2
aGl3m3

aNG
l4m4

⟩c . (6.29)

In our case, the Gaussian and non-Gaussian contribution of the alm coefficients are
given by equations (5.21) and (5.22), respectively. As a result, we obtain for the
⟨aGl1m1

aGl2m2
aGl3m3

aNG
l4m4

⟩ contribution that

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩c = gNL

(
12π

5

)4 4∏
j=1

i
∑

lj

∫
d3kj

(2π)3
∆l1(k1)∆l2(k2)∆l3(k3)

×∆l4(k4)Y
∗
l1m1

(k̂1)Y
∗
l2m2

(k̂2)Y
∗
l3m3

(k̂3)Y
∗
l4m4

(k̂4)

× ⟨ζG(k1) ζG(k2) ζG(k3) ζNG(k4)⟩c .
(6.30)
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Then, one of the connected contributions to this specific term is

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩c = gNL

(
12π

5

)4 4∏
j=1

i
∑

lj

∫
d3kj

(2π)3
∆l1(k1)∆l2(k2)

×∆l3(k3)∆l4(k4)Y
∗
l1m1

(k̂1)Y
∗
l2m2

(k̂2)Y
∗
l3m3

(k̂3)Y
∗
l4m4

(k̂4)

×⟨ζG(k1) ζG(k5)⟩⟨ζG(k3) ζG(k̃56)⟩⟨ζG(k2) ζG(k6)⟩+ perm. , (6.31)

by substituting equation (6.19) into equation (6.31) the expression becomes

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩c = gNL
1296

625π4

∫
dk1 dk2 dk3 dk4(k1 k2 k3 k4)

2×

∆l1(k1)∆l2(k2)∆l3(k3)∆l4(k4) g(k4)w(k1)w(k2)Pζ(k1)Pζ(k2)Pζ(k3)×∫
drr2jl3(k3r)jl4(k4r)jl1(k1r)jl2(k2r)×∫

dΩ(n̂)Y ∗
l3m3

(n̂)Y ∗
l4m4

(n̂)Y ∗
l1m1

(n̂)Y ∗
l2m2

(n̂) + perm . (6.32)

In order to further simplify the above expression, we can follow the approach outlined
in section 3.1. We can begin by defining the trispectrum as

Tl1m1l2m2l3m3l4m4 =

∫
dΩ(n̂)Y ∗

l1m1
(n̂)Y ∗

l2m2
(n̂)Y ∗

l3m3
(n̂)Y ∗

l4m4
(n̂) tl1l2l3l4

, (6.33)

where the reduced trispectrum is given by

tl1l2l3l4
= gNL

1296

625π4

∫
dk1 dk2 dk3 dk4(k1 k2 k3 k4)

2∆l1(k1)∆l2(k2)∆l3(k3)∆l4(k4)

g(k4)w(k1)w(k2)Pζ(k1)Pζ(k2)Pζ(k3)

∫
drr2jl1(k1r)jl2(k2r)jl3(k3r)jl4(k4r) + perm .

(6.34)

Additionally, we can write equation (6.34) in the following form

tl1l2l3l4
=

1296

625π4

∫
drr2βl1(r) βl2(r)αl3(r)µl4(r) + perm , (6.35)

where we have defined that

βl(r) =

∫
dk k2w(k)Pζ(k)∆l(k) jl(kr) , (6.36)

αl(r) =

∫
dk k2 Pζ(k)∆l(k) jl(kr) , (6.37)

µl(r) =

∫
dk k2 gNL g(k)∆l(k) jl(kr) . (6.38)
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It should be noted that the above development only considers one of the contribu-
tions within the term ⟨aGl1m1

aGl2m2
aGl3m3

aNG
l4m4

⟩c. We must also account for the other
permutations to obtain the complete reduced trispectrum associated with this term.
As a result, we obtain that

tl1l2l3l4
=

2592

625π4

∫
drr2µl4(r)

[
βl1(r) βl2(r)αl3(r)+βl1(r)βl3(r)αl2(r)+βl2(r)βl3(r)αl1(r)

]
.

(6.39)
On the other hand, to further simplify the expression provided in equation (6.39),
let us assume a constant kernel (constant filters) leading to

W̃ ≡ g(k4)w(k1)w(k2) ≡ g w2 . (6.40)

Additionally, we consider the Sachs-wolfes approximation where the transfer function
has a simple form given by ∆l(k) = 1/3 jl(kr∗), this assumption leads to the following
result

µl(r) = gNL
g π

6 r2∗
δ(r − r∗) . (6.41)

Since the temperature power spectrum has been defined as

CSW
l =

2

9π

∫
dk k2 Pζ(k) j

2
l (kr∗) , (6.42)

we can express then βl(r∗) =
3π
2
wCSW

l and αl(r∗) =
3π
2
CSW

l . The reduced trispec-
trum for this term is therefore given by

tl1l2l3l4
=

4374

625
g w2 gNLC

SW
l1

CSW
l2

CSW
l3

. (6.43)

So far, we have discussed how to calculate one component of the trispectrum and
derived a simplified expression for this case when we assume the Sachs-Wolfe ap-
proximation and that the filters are constants, resulting in equation (6.43), where
we observe that it is the product of three angular power spectra. It is worth noting
that the calculation of the additional terms of the trispectrum (T ) follows the same
procedure as above. Thus, the complete expression for the total trispectrum of the
CMB is given by
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tl1l2l3l4
=

2592

625π4

∫
drr2

[
µl1(r)

(
βl2(r)βl3(r)αl4(r) + βl2(r)βl4(r)αl3(r)

+βl3(r)βl4(r)αl2(r)
)
+ µl2(r)

(
βl1(r)βl3(r)αl4(r) + βl1(r)βl4(r)αl3(r)

+βl3(r)βl4(r)αl1(r)
)
+ µl3(r)

(
βl1(r)βl2(r)αl4(r) + βl1(r)βl4(r)αl2(r)

+βl2(r)βl4(r)αl1(r)
)
+ µl4(r)

(
βl1(r) βl2(r)αl3(r) + βl1(r)βl3(r)αl2(r)

+βl2(r)βl3(r)αl1(r)
)]

. (6.44)

Equations (6.33), (6.36), (6.37), (6.38) and (6.44) must be evaluated numerically to
better elucidate the type of trispectrum we are dealing with. For this purpose, codes
such as CMBFAST or CAMB can be employed to compute the full radiation transfer
∆l(k) and perform the integration over k. However, this analysis is out of the scope
of the results presented in this thesis and is proposed as a possible continuation of
this work.

Considering the challenge of understanding equation (6.33) without numerical im-
plementation, let us return to the simple case where the filters are constant and are
in the Sachs-Wolfe approximation. As a result, equation (6.44) is simplified to

tl1l2l3l4
=

4374

625
g w2 gNL

[
CSW

l2
CSW

l3
CSW

l4
+ CSW

l1
CSW

l3
CSW

l4

+ CSW
l1

CSW
l2

CSW
l4

+ CSW
l1

CSW
l2

CSW
l3

]
. (6.45)

In the previous case, equation (6.45) contains the contribution of the angular power
spectrum CSW

l in the Sachs-Wolfe approximation. Implementing equations (6.33)
and (6.45) numerically is necessary to obtain the CMB trispectrum in the Sachs-
Wolfe case.

In this section, we have presented the methodology for calculating the trispectrum
associated with the toy model. The most relevant equations are (6.33) and (6.44),
where we notice the influence of the filters in all expressions. Another interesting case
arises when we consider the filters as constants and obtain the expressions under the
Sachs-Wolfe approximation (equation (6.45)). It is evident that the implementation
of these equations is the next step in comprehending the model we are proposing,
where non-Gaussianity is the foundation. From this trispectrum template that we
are proposing, we could potentially analyze and explore this non-Gaussianity further.
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6.3 Future prospects

Further extensions of this work can take various approaches, each tailored to the
specific information we aim to extract from the equations. Some potential points
for future exploration include:

• Simulations of the coefficients alm using the equations expressed in terms of the
curvature perturbation ζ in real space, as described in equation (5.26), can be a
valuable approach to understanding the effects of the non-Gaussian model and its
ability to accurately reproduce the observed CMB map.

• Investigating the physical mechanism behind the convolution kernel proposed to
construct the definition of the curvature perturbation is an important step in un-
derstanding the underlying inflationary model that gives rise to the characteristic of
the toy model developed by Hansen et al. (2019). Further explorations of the shape
of the trispectum could be the key to gaining information about the kernel in our
model, see e.g. Kalaja et al. (2021).

• A numerical solution of the set of equations (6.33), (6.36), (6.37), (6.38) and
(6.44) is essential to assess the properties of the toy model’s trispectrum. Addi-
tionally, conducting a Fisher forecasting analysis of our trispectrum template would
be a valuable endeavor when working with Planck data. This analysis aims to ob-
tain constraints on non-Gaussianity through the gNL parameter, as demonstrated
in previous studies Kogo and Komatsu (2006), Regan et al. (2015), Akrami et al.
(2020a).

The potential of these analyses is immense and demands advanced numerical tech-
niques and further considerations beyond what we have developed in this thesis.
Therefore, there is still much to uncover about the CMB anomalies and their pos-
sible connection to the initial conditions of the early Universe. This work can be
considered as an initial exploration that can be refined to gain deeper insights into
the physical mechanism responsible for the presence of these anomalies in the CMB
maps.
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Chapter 7

Discussion and Conclusions

In this thesis, we have addressed the issue of the CMB anomalies which are sta-
tistical deviations observed when comparing observational data with our standard
model, ΛCDM (see, e.g. Schwarz et al. 2015). The primary aim of this work was
to investigate the characteristics of a possible physical model capable of generating
these anomalous features. To achieve this, we explored the properties of a phe-
nomenological model proposed by Hansen et al. (2019).

The CMB anomalies have been extensively explored since their discovery in the
data. However, we still do not have a satisfactory explanation for their presence
in the CMB. A brief review of some of the anomalies can be found in Chapter 4.
The literature on this topic contains numerous models and studies, with common
explanations falling into two categories: those that consider the breaking of isotropy
as a possible explanation and those that attribute the anomalies to the presence of
non-Gaussianity in the primordial perturbations. For instance, the modeling of the
hemispherical power asymmetry is often treated as a result of a dipolar modulation
of the temperature. Additionally, local non-Gaussian models, which can arise from
certain inflationary models such as the Curvaton inflation, have been proposed as
possible cosmological mechanisms to explain the anomalies in the CMB radiation.
However, some difficulties are encountered in these explanations.

Given the complexity of studying all the anomalies together, it has been standard
practice to focus on one, or at most, two of them. An intriguing proposal by Hansen
et al. (2019) successfully reproduces six of the CMB anomalies simultaneously. This
toy model is based on the construction of a non-Gaussian temperature field which
involves the contribution of a cubic order temperature field term. Additionally, the
model requires the introduction of an amplitude parameter, β, and some filters, wl

and gl, which can be tuned to test whether the anomalies can be reproduced, see
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equation (5.1). Intrigued by the model’s properties, Hansen et al. (2019) suggest that
this class of toy model resembles models of primordial non-Gaussianity characterized
by strongly scale-dependent gNL-like trispectra. Subsequent developments by the
same authors aimed to establish a connection between the toy model’s temperature
field (T (n̂)) and the inflationary quantity known as the curvature perturbation,
denoted by ζ.

We explored this connection between the temperature field and the curvature per-
turbation in Chapter 5. The methodology involves mimicking the behavior of the
non-Gaussian T (n̂) in the definition of ζ. To achieve this, we used an integral con-
volution kernel in Fourier space, where the convolution comprises the product of
three perturbations. This ansatz is commonly employed in non-Gaussian models to
account for non-linear corrections in the primordial potentials that generate non-
Gaussian features. In our case, the non-linear parameter associated with the cubic
order contribution is gNL, which measures the strength of non-Gaussianity. The
convolution kernel W̃ is then related to the filters introduced in the temperature
field. Furthermore, the presence of these filters imparts a scale dependence to our
model.

To establish the relation between the convolution kernel and the filters applied to the
toy model, two approaches were used: (1) an expansion of the temperature field T (n̂)

in spherical harmonics was performed, obtaining equations (5.13) and (5.30) for the
multiple coefficients alm in terms of ζ. Subsequently, we defined another relation
for alm in terms of the convolution definition of ζ, equation (5.31). Comparing
these two different expressions of the multiple coefficients we found a relationship
between the kernel and the filters, equation (5.33) and (5.44), however, we did
not explore these expressions due to their complicated form containing the transfer
function ∆l(k). (2) Instead, it was found convenient to reconstruct the curvature
perturbation by directly applying analogous filters to w and g in Fourier space to the
curvature perturbation ζ, see figure 5.2. As a result, we obtained equation (5.51),
which is a significant result because it provides a simplified expression for relating
the filters to the behavior of the convolution kernel, which can provide insights into
the interactions between the perturbations.

The expressions in Chapter 5 serve as the basis for the subsequent analysis required
to characterize the non-Gaussian model with strong scale dependence that we are
investigating as a potential physical model underlying the toy model’s properties.
To explore non-Gaussianity, we employ higher-order correlation functions. In par-
ticular, since we worked with a cubic order contribution in ζ, our analysis extends
to the four-point correlation function or trispectrum in Fourier space. When deal-
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ing with the 4-point correlation function, we must distinguish between unconnected
terms that contain Gaussian information and the connected terms that encapsu-
late non-Gaussian statistics. In our analysis, we focus on the connected terms that
satisfy equation (6.4).

In Chapter 6, we delve into the computation of the trispectrum associated with
the toy model. As discussed in Chapter 3, the statistical properties of the multiple
moments alm are inherited from ζ(k), so that, the CMB trispectrum is directly re-
lated to integrals of the 4-point correlation function of ζ(k). Specific trispectrum
templates are detailed in section 3.3. Therefore, we initially focus on the primordial
trispectrum of ζ. During the calculation, it becomes evident that to obtain the con-
nected contributions, we must consider combinations of the Gaussian perturbations
ζG with the perturbations contained in the definition of ζNG, as given by equation
(5.16). The resulting primordial trispectrum is presented in equation (6.12), where
the significant modification caused by the filters in the expression is noticeable when
compared to the local trispectrum with a constant gNL, as shown in equation (2.45)
Akrami et al. (2020a). Among the various results, equation (6.12) is one of the most
important ones. Additionally, we compute the local trispectrum for our case, as
described in equation (6.13), considering the filters as constant in the expression.
These two equations allow us to observe the distinction between a local-type model
with scale dependence introduced by the filters and a local-type model.

A more quantitative approach to studying the primordial trispectrum, Tζ , involves
analyzing its shape, which provides crucial information about the configurations
of the wavevectors k, where the trispectrum peaks or exhibits significant values.
This feature is of great significance as it offers insight into the specific physical
mechanisms that can generate a particular shape. In section 2.5.2, we illustrated
the methodology employed by Chen et al. (2009) to investigate the shape of the
trispectrum within a local model parametrized by the four wavevector magnitudes
k and two diagonals k12 and k14, as depicted in figure 2.3. Chen et al. (2009)
explored the local trispectrum in various limits: equilateral (k1 = k2 = k3 = k4),
folded limit (k1 = k2, k3 = k4, k12 = 0) and specialized planar limit (k1 = k3 = k14).
We have reproduced some of their results in figures 2.4 and 2.5. In this work, we
have used a similar methodology to investigate the shape of Tζ . To facilitate this
analysis, we assumed that the power spectrum P (k) can be expressed in terms of
the dimensionless power spectrum P(k), which is often parametrized as a power law
involving the amplitude P(k0) and the scalar spectral index ns. We further adopted
standard values for these parameters, specifically k0 = 0.05Mpc−1 and ns = 0.96.

In the folded limit, we conducted two separate analyses: in the first case, we plotted
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equation (6.24) considering the filters as constant. We ensured that k4 > k1 and used
the same conditions presented in section 2.5.2. Our results showed that the shape
of our local trispectrum, as depicted in figure 6.2, resembled the shape presented
in Chen et al. (2009). However, it is important to note that the amplitude of
Tζ was larger in our case. In the second case, we plotted the full expression of our
trispectrum, as described in equation (6.25). In this case, we set the initial conditions
based on the ranges of the filters w and g (figure 5.2). In one scenario, we fixed the
value of k4 in the range of (0, 0.1) and varied k1 in the range of (0, 0.002), while
keeping the diagonal k14 as a free parameter, see figure 6.3. In another scenario, we
set the value of k1 between (0, 0.002) and explored k4 between (0, 0.1), as shown in
figure 6.4. We also examined the case where both k1 and k4 varied within the same
range. However, this last scenario did not provide useful insights into identifying
the trispectrum’s shape, as it primarily revealed different configurations that satisfy
the given conditions. Among all these cases, we identified the first configuration as
the most appropriate for describing the shape of the trispectrum.

The plot depicted on the right side in figure 6.3 exhibits some intriguing features: the
overall shape of T loc2

ζ resembles the form of filter w, the conditions to form a closed
tetrahedron are satisfied when the diagonal k14 closely matches the value of k4. Ad-
ditionally, the amplitude of the trispectrum is significantly larger in the range where
k4 > k1. It is worth emphasizing the substantial impact of the filters on the shape of
the trispectrum, particularly when comparing a gNL local-type non-Gaussian model
(figure 6.2) and gNL-like non-Gaussian model with scale dependence introduced by
the filters (figure 6.3). Therefore, it is reasonable to associate the presence of the
filters as a strong constraint that limits the configurations where our trispectrum is
non-zero. Understanding the role of these filters and their significant influence on
the trispectrum’s shape requires a physical mechanism related to the convolution
kernel, which could provide further insights into this specific arrangement.

Furthermore, we also delved into the specialized planar limit described by equations
(6.27) and (6.28). In this case, we explored several initial conditions, but we could
not identify any specific shapes, similar to the case in figure 6.4. The plots often
displayed peaks or a single peak, and the amplitude T loc2

ζ exhibited lower values
than in the previous cases. Clearly, when filters are incorporated into the expression
of the shape function, the conditions necessary to generate a closed configuration
become challenging to satisfy. This significantly constrains the parameter space
where our trispectrum is non-zero. However, when we plotted (6.27) applying the
same conditions outlined in section 2.5.2, figure 6.7 started to resemble the shape of
the specialized limit as presented in Chen et al. (2009). This observation underscores
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the necessity for a more profound understanding of the filters to gain insights into
their effects on the shape.

From all the previous considerations, we assume that the folded limit best describes
our trispectrum based on the evidence we have accumulated thus far. This case can
be associated with a folded kite shape, as illustrated in figure 6.6. However, this
assumption remains subject to confirmation. It is important to note that we have
only examined two limits, and the specialized planar limit does not seem suitable
for characterizing the trispectrum’s shape. On the other hand, an intriguing work
conducted by Kalaja et al. (2021) introduced an alternative parametrization of the
shape function. This approach considers the mass of the mediator responsible for
interactions that could lead to the folded limit (or collapsed limit). Investigating
this type of parametrization may provide a deeper understanding of the interactions
between perturbations and potentially provide more insight into the role of the
filters. It is crucial to acknowledge that there are several aspects of the shape of
the primordial trispectrum that we still need to comprehend. Nevertheless, this
simplified study has allowed us to identify a potential shape and can open the way
for a more in-depth analysis.

After obtaining the expression for the 4-point correlation of ζ, as shown in equa-
tion 6.21, we proceeded to compute the temperature trispectrum, as given by equa-
tion 6.29. We defined the trispectrum expression, Tl1m1...l4m4 similarly to what was
discussed in section 3.3, as presented in equation 6.33. In this expression, the reduced
trispectrum tl1l2l3l4

specific for our model is defined in equation 6.44, and it is expressed
in terms of equations (6.36), (6.37) and (6.38). Additionally, we computed another
expression under the assumption of constant filters and in the Sach-Wolfes approx-
imation, given by equation (6.45), which contains the contribution of the product
of three angular power spectrum, CSW

l , and their permutations. It is important to
highlight that these equations require numerical solutions to better elucidate their
behavior and the influence of the filters. In the general case, we have to solve the
Boltzman-Einstein equations to obtain the radiative transfer function ∆l, and inte-
gration over k which can be done by numerical tools like CAMB and CMBFAST
codes. Consequently, our equations serve as a starting point for developing a further
numerical analysis of the properties of the template that we have derived, taking
into account the properties of the toy model.
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Appendix A

Conventions and definitions

Throughout the thesis, we use the following Fourier convention for the case of our
computations

f̃(k) =

∫
d3x e−ix·kf(x) , (A.1)

f(x) =

∫
d3k

(2π)3
eix·kf̃(k) , (A.2)

δ(x) =

∫
d3k

(2π)3
eix·k , (A.3)

δ(k) =

∫
d3x

(2π)3
e−ix·k . (A.4)

As usual, the temperature fluctuations of the CMB are decomposed into spherical
harmonics

∆T

T
(n̂) =

∞∑
l=0

l∑
m=−l

alm Ylm(n̂) , (A.5)

with the spherical harmonics normalization given by∫
dΩ(n̂)Y ∗

lm(n̂)Yl′m′(n̂) = δll′δmm′ , (A.6)

∑
lm

Y ∗
lm(n̂

′)Ylm(n̂) = δ3(n̂′ − n̂) . (A.7)

For the specific case of the Sachs-Wolfe temperature fluctuations and when the
Bardeen potential Φ is a Gaussian, the Sachs-Wolfe alm is given by

alm = −4π

3
il
∫

d3k

(2π)3
Φ(k) jl(kx)Y

∗
lm(k̂) . (A.8)
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Appendix B

Angular four-point correlation func-
tion

In this section, we compute the angular four-point correlation function for one of
the contributions. We consider the results obtained in Chapter 5. Particularly, we
follow the procedure outlined in Liguori et al. (2003).

Considering equations (5.26) and (5.31), we obtain that

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩c = gNL

(
6

5π

)4 ∑
LiMi
i=1,2,3

FL1M1L2M2L3M3
l4m4

(rdec)

×
3∏

p=1

∫
d3xpY

∗
l1m1

(n̂1)Dl1(r1)Y
∗
l2m2

(n̂2)Dl2(r2)Y
∗
l3m3

(n̂3)Dl3(r3)

×
6∏

j=4

∫
d3xjY

∗
L1M1

(n̂4)DL1(r4)Y
∗
L2M2

(n̂5)DL2(r5)Y
∗
L3M3

(n̂6)DL3(r6)

×⟨ζG(x1) ζG(x2) ζG(x3) ζG(x4) ζG(x5) ζG(x6)⟩ . (B.1)

Subsequently, we decompose the ensemble average by applying the Wick theorem,
leading to

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩c = gNL

(
6

5π

)4 ∑
LiMi
i=1,2,3

FL1M1L2M2L3M3
l4m4

(rdec)×

6∏
j=1

∫
drjr

2
jDl1(r1)Dl2(r2)Dl3(r3)DL1(r4)DL2(r5)DL3(r6)×

⟨ζGl1m1
(r1) ζ

G
L2M2

(r5)⟩ ⟨ζGl3m3
(r3) ζ

G
L1M1

(r1)⟩⟨ζGl2m2
(r2) ζ

G
L3M3

(r6)⟩+ perm. , (B.2)
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where we have decomposed the curvature perturbation as

ζG(x) =
∑
lm

ζGlm(r)Ylm(n̂) . (B.3)

We now compute the two-point correlation functions that satisfy the following prop-
erty,

⟨ζGl1m1
(r1) ζ

G
L2M2

(r5)⟩ =
∫

dΩ(n̂1)dΩ(n̂5)Y
∗
l1m1

(n̂1)Y
∗
L2M2

(n̂5)⟨ζG(x1) ζG(x5)⟩

=

∫
dΩ(n̂1)dΩ(n̂5)Y

∗
l1m1

(n̂1)Y
∗
L2M2

(n̂5)

∫
d3k

(2π)3
Pζ(k)e

i(x1−x5)·k

=
2

π
(−1)M2 il1−L2 δl1L2 δm1−M2

∫
dkk2jl1(kr1)jL2(kr5)Pζ(k) .

(B.4)

By substituting equation (B.4) into (B.2), this leads to

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩ = gNL

(
6

5π

)4 (
2

π

)3 ∑
LiMi
i=1,2,3

FL1M1L2M2L3M3
l4m4

(rdec)

×
6∏

j=1

∫
drjr

2
jDl1(r1)Dl2(r2)Dl3(r3)DL1(r4)DL2(r5)DL3(r6)

× il1−L2 (−1)M2δl1L2δm1 −M2

∫
dkk2jl1(kr1)jL2(kr5)Pζ(k)

× il3−L1 (−1)M1δl3L1δm3 −M1

∫
dkk2jl3(kr3)jL1(kr4)Pζ(k)

× il2−L3 (−1)M3δl2L3δm2 −M3

∫
dkk2jl2(kr2)jL3(kr6)Pζ(k) + perm. , (B.5)

to further simplify the above expression we can define that

blilj(rij) =

∫ ∞

0

dkk2jli(kri)jlj(krj)Pζ(k) , (B.6)

therefore, we obtain

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩ = gNL
10368

625π7

∑
limi

i=1,2,3

(−1)−m1−m2−m3 F l3−m3l1−m1l2−m2
l4m4

(rdec)

×
6∏

j=1

∫
drj r

2
j Dl1(r1)Dl2(r2)Dl3(r3)Dl3(r4)Dl1(r5)Dl2(r6)

× bl1l1(r15) bl2l2(r26) bl3l3(r34) + perm. ,

(B.7)
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where Pζ is the primordial curvature perturbation power spectrum, Dl is the radia-
tion transfer function, and F contains the relation between the integral kernel and
the filters applied to the CMB temperature field, equation (5.37). Thus, we obtain
that it can be expressed as follows,

F l3−m3l1−m1l2−m2
l4m4

(rdec) =
6

π
gl4wl1wl2Bl3−m3l1−m1l2−m2

l4m4
, (B.8)

here, gl and wL are the filters whose properties are described in section 5.1, and B
is given by

Bl3−m3l1−m1l2−m2
l4m4

=

∫
dΩ(n̂)Y ∗

l4m4
(n̂)Yl3−m3(n̂)Yl1−m1(n̂)Yl2−m2(n̂) . (B.9)

On the other hand, to further simplify the equation (B.7), we use the property Bessel
function (3.34),

⟨aGl1m1
aGl2m2

aGl3m3
aNG
l4m4

⟩ = gNL
1296

625π4

∑
limi

i=1,2,3

(−1)−m1−m2−m3 F l3−m3l1−m1l2−m2
l4m4

(rdec)

×
∫

dr4 dr5 dr6 r
2
4r

2
5r

2
6 D

2
l3
(r4)D

2
l1
(r5)D

2
l2
(r6)P

3
ζ (k) + perm.

(B.10)

To compute the four-point correlation function, we must solve the Boltzmann equa-
tion to obtain the radiation transfer functions Dl(rdec), substitute the expression for
F that contains the information of the filter, and propose a specific form for the
primordial curvature perturbation power spectrum, one particular choice could be
a power-law power spectrum such as Pζ(k) = Aζk

ns−4.
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