
Università degli studi di Padova
Dipartimento di Ingegneria dell’ Informazione

Corso di laurea Magistrale in Ingegneria informatica

Mining motifs in
Temporal networks

Laureando Relatore
Ilie Sarpe Prof. Fabio Vandin

Anno Accademico 2018/2019





Abstract

Temporal networks are mathematical tools used to model complex systems
which embed the temporal dimension; the ability of such networks to represent
time, makes them useful in a huge variety of fields ranging from biology to
physics. Counting little subnetworks of interest, called motifs, is one of the
key tasks in the analysis of the temporal networks, since the counts of the
motifs can characterize in a unique way a temporal network and it’s functions.
The increasing production and the availability of big temporal network
datasets require efficient, scalable and rigorous techniques for extracting
useful information from such large datasets.

In this thesis we address the problem of counting motifs in temporal
networks and we provide several algorithms for such problem. We provide a
new exact parallel algorithm, obtained from the combination of two existing
techniques, which is both scalable and efficient in practice. Such algorithm
provides the exact number of temporal motifs in a temporal network.

Exactly counting the number of motifs in a large network may be com-
putationally infeasible, thus we address the problem of approximating such
count with rigorous guarantees. For this purpose, we present the definition
of (ε, η)-approximation for the problem of counting temporal motifs, and we
provide, to the best of our knowledge, the first rigorous sampling algorithms
ever devised for such task. We rigorously prove their guarantees, their vari-
ance, the running time and we provide different bounds on the number of
samples s required to achieve the desired approximation factor.

We then tested all of these techniques on real world datasets, comparing
them to the state of the art techniques in such field, evaluating their efficiency,
scalability and accuracy.
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Chapter 1

Introduction

Large amount of data are produced everyday from different systems, such as
social and biological networks, internet of things, sensor networks, peer to
peer networks and many other systems. A key challenge in the data mining
field is to extract useful information from such data, to characterize and
understand better the behaviour and the rules of such complex systems [2].
Many approaches have been proposed for the extraction of useful information
from large amount of data, which are fundamental tasks in data mining, such
as pattern mining, clustering, similarity search, and graph mining [8]. Usually,
when data come from networks the system is modelled as a graph, which
is a mathematical abstraction for studying complex systems that helps to
characterize the system’s behaviour and to compute meaningful quantities
that give us useful informations.

In data mining, after modelling the system as a graph, one of the fun-
damental primitives is to identify small graphs, called graphlets or motifs,
which impose a certain topology and are fundamental for the comprehension
of the network; e.g., counting triangles is fundamental for computing the
clustering coefficient [14], moreover the number of motifs may be used to
compare different networks, for example in biology [13]. Identifying motifs
is thus a fundamental primitive and many techniques have been proposed
in literature to address such topic [6]. While there exist exact techniques
which do not scale on large datasets and approximated techniques which can
or cannot provide rigorous guarantees on the quality of the approximation
[3, 14], unfortunately all of these techniques have been devised for static
networks, which do not embed the temporal dimension.

Temporal networks or temporal graphs are a mathematical abstraction
for representing complex systems, and embedding in such representation
the temporal dimension. Many definitions have been proposed in literature
[1, 4, 5], in this thesis we will refer to a temporal graph following the definition
of [7, 9, 12]. Informally, we may say that a temporal graph is a sequence of
edges where each edge has an additional information, that is the timestamp of
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Figure 1.1: (a) Example of temporal graph, each edge reports a timestamp
corresponding to the time of the event which the edge represents. (b) Example
of temporal motif, a small subgraph which imposes a topology of interest and
a given order to the sequence of edges, in particular this is a 4-node 4-edge
temporal motif, known as “bi-fan motif” [9].

the event which the edge represents. For example, in an e-mail network each
edge is represented through the users which send and receive the mail and
the timestamp of the mail; one example of a temporal network is reported in
figure (1.1a).

Accounting for the temporal dimension is natural, since all the systems of
interest already mentioned present a temporal dimension which may give very
useful information on their structure, but computationally this makes thing
much more difficult. In particular, it has been proved that the techniques
developed for static graphs are not easily adaptable for temporal networks
[4, 10, 12]. Furthermore, the large amount of data produced every day requires
efficient, scalable and rigorous techniques for handling very large datasets.

In order to understand and discuss the temporal networks and the state
of the art techniques in such field, we need to formalize better the intuition
already given. The next section reports the basic definitions needed in this
thesis.

1.1 Basic Definitions

In this section we present the basic definitions needed in the presentation of
this thesis, and we define rigorously the problem of mining motifs in temporal
networks.

Definition 1. A temporal graph is a pair T = (V, E) where, V = {v1, . . . , vn}
and E = {(u, v, t) : u, v ∈ V, u 6= v, t ∈ R+} with |V| = n and |E| = m.

We may also denote V = {v1, . . . , vn} with the set V = {1, . . . , n} of the first
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n natural numbers. We also assume the edges in E to be sorted by increasing
timestamps and the timestamps to be unique, this is not a loss of generality
since the methods we are going to discuss can also handle the cases where
there can be edges with the same timestamps.

Each directed edge e = (u, v, t) ∈ E carries the temporal information,
represented as a timestamp t in R+, for the interaction between the nodes
u, v ∈ V at time t, as reported in figure (1.1a).

We now define the concept of temporal motif following the definition
introduced by Liu et al. in [9]:

Definition 2. A k-node l-edge temporal motif is a pair M = (K, σ) where
K = (VK, EK) is a static and connected (multi)graph where VK = {v1, . . . , vk},
EK = {(u, v) : u, v ∈ VK, u 6= v} s.t. |VK| = k and |EK| = l and σ is an ordering
of EK.

The temporal motif M = (K, σ) can be denoted with (u1, v1), . . . , (ul, vl)
i.e., the edges of EK between nodes of VK ordered according to σ. An example
of temporal motif is reported in figure (1.1b). Informally we can say that,
the temporal motif M represents the schema for which we want to count all
the occurrences in the graph T within a given timespan δ ∈ R+. In order to
formalize this intuition we present the following definition:

Definition 3. Given a temporal graph T = (V, E), a temporal motif M =
(K, σ), and δ ∈ R+, a time ordered sequence S = (u

′
1, v

′
1, t
′
1), . . . , (u

′
l, v
′
l , t
′
l)

of l unique temporal edges from T is a δ-instance of the temporal motif
M = (u1, v1), . . . , (ul, vl) if:

1. there exists a bijection f on the vertices such that f(u
′
i) = ui and

f(v
′
i) = vi, i = i, . . . , l and

2. the edges all occur within δ time, i.e., t′l − t
′
1 ≤ δ.

Note that here we slightly abuse the notation saying that the edges come
from T instead of E . A δ-instance is thus, informally, a sequence of edges
from the original graph which has the same topology of the motif M and did
not violate an additional constraint on the temporal dimension, i.e., point 2
in Definition 3.

We define the set of all the δ-instances as follows.

Definition 4. The set of all δ-instances of the motifM in T is U = {U : U is
a δ-instance ofM from a sequence of edges from T }, we denote the cardinality
of U with |U| = CM .

Given one δ-instance of the motifM , the following definition will be useful
in this thesis.
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Definition 5. For each δ-instance ofM namely, for each U = (uU1 , v
U
1 , t

U
1 ), . . . ,

(uUl , v
U
l , t

U
l ) ∈ U the motif duration is defined as ∆(U) , tUl − tU1 . We also

denote tU1 and tUl respectively as the starting time and ending time of the
instance U ∈ U .

Given these definitions we now can formalize the goal of temporal motif
mining.

Goal. Given a temporal graph T , a temporal motif M = (K, σ), and δ ∈ R+,
we want to compute CM i.e., the exact number of δ-instances of motif M in
the temporal graph T .

Other useful definitions are the following ones.

Definition 6. Given a temporal graph T = (V, E) we say that Gd = (Vd, Ed)
is the directed static subgraph associated with T or simply the directed static
subgraph of T if Vd = V and Ed = {(u, v)|∃t : (u, v, t) ∈ E}.

Definition 7. Given a temporal graph T = (V, E) and given Gd = (Vd, Ed)
the directed static subgraph of T we say Gu = (Vu, Eu) to be the undirected
static subgraph associated with T or simply the undirected static subgraph of
T if Vu = Vd = V and Ed = {{u, v}|(∃(u, v) ∈ Ed) ∨ (∃(v, u) ∈ Ed)}, where
with {a, b} we denote an undirected edge between a and b.

We may now look at a brief summary which describes the previous works
in the field of static and temporal motif mining.

1.2 Related Work

In this section we review some of the main works in the field motif mining,
both in static and temporal networks.

As mentioned in the introduction, counting motifs in graphs is a basic
primitive in data mining, thus many such techniques exist for static graphs.
Since exact approaches are usually not practicable, many approximated
approaches exist [3, 14], which can also provide rigorous guarantees on the
quality of the approximation. The number of motifs in a network may be
used to characterize the network’s behaviour, i.e., through the computation
of the clustering/local closure coefficient or the distribution of the motifs in
a network [13, 18, 19].

For the temporal networks instead not so many techniques for the problem
of counting motifs exist, the main works which follow the direction of this
thesis are [9, 12] which we will discuss in Chapter 2. A paper which goes in a
similar direction but employs a different definition of a motif is the paper by
Kovanen et al. [7]. Their definition requires the edges of the motif instance to
be consecutive, i.e., no other temporal edge may occur in between the events
a motif; such definition is less general than the one used in this thesis and
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may simplify some tasks, such as triangle counting which may be done in
linear time under such definition [9]. Finally, some exact routines have been
proposed such as [10, 15]. In the paper of Mackey et al. [10], the authors
devised an exact routine for enumerating all the motifs instances of a given
motif M . In the work of Sun et al. [15] they devised a new algorithm for
counting the motifs instances to address a slightly different problem, that is
to compute the most frequent motifs in a temporal graph. As for the static
networks, several applications there exist that use the counts of the temporal
motifs such as [16], where the authors use a metric based on the number of
motifs to classify different temporal networks. Another interesting application
comes from [17], where the authors used a slightly different definition of
temporal graph, adding to each edge an interval instead of a timestamp, to
represent long interactions; then a method to find interesting cliques in the
IP traffic is exploited.

Since the topic of temporal networks is new, not so much techniques for
mining motifs exist as we presented, moreover very few techniques adopt
the definitions we are using in this thesis, for an extensive review of other
definitions of temporal network and many other tasks related to such topics
we refer the reader to [1, 4, 5].

1.3 Our contributions

Our main contributions to the field of motif mining in temporal networks
is the development of the following algorithms:

• A first rigorous and scalable sampling algorithm for approximating the
motif counts in large temporal networks;

• An improved rigorous and scalable sampling algorithm for approximat-
ing the motif counts in large temporal networks;

• A parallelizable scalable technique for counting the number of motifs
in a temporal network exactly.

The approximation algorithms are presented in Chapter 3, where we
analyse such techniques, proving the correctness and the approximation
factor. For the first algorithm we use an analysis based on the Hoeffding
inequality, while for the improved algorithm in addition to the analysis with
the Hoeffding Bound we developed a more involved analysis based on the
tool of Martingales. Moreover we analyse the variance of the estimate used in
this improved algorithm obtaining two different bounds. We also analyse the
asymptotic complexity of both the algorithms. To the best of our knowledge,
these are the first rigorous sampling algorithms for approximating the counts
of motif in a temporal network ever devised.
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The exact scalable routine is reported in Chapter 4, as we will show
such approach is based on the combination of the works of [15] and [10];
which together may lead to a very scalable and efficient exact algorithm for
enumerating and thus counting temporal motifs.

All such techniques were then implemented in C++ and tested on several
datasets from the SNAP1 collection. The results of the tests and the discussion
of all the methods is then reported in Chapter 5.

1.4 Outline of the thesis

The thesis is organized as follows, in Chapter 2 we present the state of
the art techniques for mining temporal motifs, that are more similar to our
work. Chapter 3, describes the new sampling algorithms we developed for
approximating the count of a motif M in a temporal network T . Chapter
4 presents the parallel exact algorithm we developed for counting temporal
motifs. Chapter 5 reports all the tests we performed comparing both the state
of the art techniques for counting temporal motifs and our algorithms. The
last chapter, Chapter 6 reports all the conclusions of our work and possible
future directions.

1https://snap.stanford.edu/data/#temporal

https://snap.stanford.edu/data/#temporal


Chapter 2

Previous Approaches

As we mentioned in the introduction, in the related work section, the
main works that follow the direction of the algorithms we devised in Chapter
3 and Chapter 4, are the works of Paranjape et al. [12] and Liu et al. [9]. In
this chapter we review such works, that will better provide an insight of the
state of the art techniques for mining motifs in temporal networks. In the
first section we present the work of Paranjape et al., discussing the definitions
and the techniques they introduced, then we discuss the work of Liu et al.,
which is more similar to the work we will present in Chapter 3.

2.1 Work of Paranjape et al.

The work of Paranjape et al. was the first work to adopt the definition of
temporal motif as we already presented in definition 2, they also provided
different exact algorithms for counting temporal motifs based on the dynamic
programming technique. In particular they provided:

• An algorithmic framework and an exact routine for counting all the
δ-instances of different k-node l-edge temporal motif to be used in such
framework;

• An algorithmic framework that can be adapted to count all the δ-
instances of the 3-node 3-edge star motifs or all the δ-instances of the
3-node 3-edge triangle motifs.

For the sake of clarity, we can see in figure 2.1 the motifs with a grey
background which are the triangle motifs, the motifs with green background
that are the 2-node motifs and all the other motifs that are the star motifs.

2.1.1 General Schema

Now we present the first general schema designed by Paranjape et al., in
particular an idea of how the algorithm they devised are designed, all the

7
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Figure 2.1: All the possible motifs up to 3-nodes and 3-edges, grid from [12].

Algorithm 1: General counting schema adopted by Paranjape et
al.
Input: T = (V, E), δ ∈ R+,M = (K, σ).
Output: CM exact number of δ-instances of M in T .

1 H ← staticDirectedGraph(M)
2 Gd ← staticDirectedGraph(T )
3 H1, . . . Hu ← static instaces of H in Gd
4 CM ← 0
5 for i = 1, . . . , u do
6 S ← all the edges of E between pair of nodes forming an edge in

Hi

7 S′ ← sort(S)
8 CM ← CM+ exactCount(S′, δ,M)

9 return CM

details may be found in the original paper [12]. The general procedure that
they adopt is the one described in Algorithm 1. In line 1 they get H, the
directed static graph of motif M and in line 2 they get the static directed
graph of T . In line 3 they compute all the static instances of H in Gd. Up
to this point they did not considered the temporal dimension. This is done
in the inner cycle (lines 5-8) where for each static instance, they gather the
respective temporal edges from T , i.e., those temporal edges that “generated”
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the static dynamic edges of Hi, i = 1, . . . , u. Such sequence is used as a
candidate for extracting a part of the true count CM , avoiding to use the
routine “exactCount” on the whole edges of E . Along with this Algorithm 1,
the authors provided three different algorithms that can be used as exact
routines which use the powerful tool of dynamic programming ; we now discuss
such exact routines.

2.1.2 Counting all the δ-instances with l edges

The first procedure Paranjape et al. devised is based on the following
simple idea, that each motif it may be represented as a sequence of edges.
The authors use such idea to define the data structure “counts” which assigns
for a sequence of static directed edges a count, in particular:

• counts[e1, . . . , er] gives the counts of the sequence of edges e1, . . . , er in
the current portion of edges being examined if r < l;

• counts[e1, . . . , el] keeps the counts of the sequence of edges e1, . . . , el
during the whole procedure.

How this data structure is used is presented in Algorithm 2, the idea is to
span the input sequence S looking at the subsequence of temporal edges
(edstart, tstart), . . . , (edend, tend) such that tend − tstart ≤ δ, in such sequences
we update the data structure counts. It is quite clear that, at the end of
the algorithm, we can access from the data structure counts, the count of
the sequence of edges that represent the motif M and return such result.
Thus lines 1-3 initialize the data structure and the indexes, from line 4 the
input sequence is spanned, in lines 5-7 if tend − tstart > δ the value of start is
increased and counts is updated properly.

Algorithm 2: Extract of algorithm 1 by [12]
Input: S = (ed1, t1), . . . (edL, tL) sorted list of edges, δ ∈ R+,M

temporal motif.
Output: CSM exact number of δ-instances of M in S.

1 start ← 1
2 end ← 1
3 counts ← empty structure
4 while end ≤ L do
5 while tend − tstart > δ do
6 DecrementCounts(estart)
7 start ← start+1

8 IncrementCounts(eend)
9 end ← end+1

10 CSM ← counts[M ]
11 return CSM
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Instead if tend − tstart ≤ δ then end is increased and counts is updated
concordantly. After all the edges have been spanned, then the number of
δ-instances of motif M in the input sequence S may be returned from the
algorithm. The extra routines may be found in the original work, we do
not present such routines since they are not fundamental for understanding
the algorithm. Observe that such algorithm may be used to count all the
occurrences of an l-edge motif, and not only those of a specific motif which
makes it a powerful tool. Note that such algorithm counts the δ-instances in
the input sequence and do not enumerate them, which is a harder problem.

The complexity of such algorithm depends on the number of sequences
accounted for, in the data structure counts which may be up to O(|H|l) in the
general case where |H| is the number of edges in the static directed graph ofM .
The overall complexity of such routine is up to O(|H|l|S|), if one restricts the
sequences in counts to be contiguous, then the complexity becomes O(l2|S|)
since only O(l2) may be active for contiguous sequences. The complexity of
the algorithm 1 is thus O(staticEnumeration + |H|l

∑
S |S|) using algorithm

2 as subroutine and counting all the possible l-edges motifs in such subroutine.
If instead such algorithm is used to count only the δ-instances of the motif of
interest, then the routine has complexity O(staticEnumeration + l2

∑
S |S|).

It is interesting to note that the routine of Algorithm 1 may be parallelized,
launching all the iterations of cycle in lines 5-8 in parallel the running time
becomes O(staticEnumeration+ |H|l maxS{|S|}) in the general case. Observe
that if the algorithm is used to count motifs with 2 nodes, then |H| ≤ 2 since
at most two edges may connect two nodes in the static directed graph of
M , moreover

∑
S |S| = O(m) since for each pair of nodes the Algorithm 1

gathers the temporal edges which connects them; thus also no enumeration
is required. Thus in such case the complexity is limited by O(2lm) and if l is
small, typically up to 3, then the algorithm is linear up to constant factors.

Such algorithm is thus used to count 2-nodes motifs up to 3-edges, but it
achieves poor performances on other motifs, as also the authors discuss in
their work.

2.1.3 Improved exact routines

The authors provided much more complicated routines for counting 3-
nodes and 3-edges star motifs which use different data structures and a revised
procedure; this leads to an algorithm with a complexity O(m), which is linear
in the number of edges of the whole temporal graph. Along with such routine,
a fast algorithm for counting triangle motifs is presented which achieves a
complexity of O(staticEnumeration+m

√
τ), where staticEnumeration is the

complexity of enumerating all the triangles in Gu (recall definition 7) the
undirected static graph of T and τ is the number of static triangles in Gu.
Such complexity is significantly better than the O(staticEnumeration +mτ)
that results from using the Algorithm 1 with Algorithm 2 to count the triangle
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motifs.
We conclude observing that the algorithms developed by Paranjape et

al. have efficient asymptotic running time for motifs with at most 3-nodes
and 3-edges, but they cannot scale for general k-node l-edge temporal motif.
Furthermore, as also the authors specify, their algorithms cannot be adapted
to enumerate the temporal motifs in a temporal network.

2.2 Work of Liu et al.

In their work [9], Liu et al. adopted the same definitions of temporal graph
and temporal motif as Paranjape et al., and they discussed the following
topics,

• A proof of NP -hardness of counting a star temporal motif ;

• The first sampling-based technique for approximating a count CM of a
motif M in a temporal network T with a count C ′M hopefully not so
distant from CM ;

• Adapted such sampling technique to different algorithms;

• Developed an exact routine for counting a specific 2-node 3-edge motif,
such motif reported in figure (2.2b).

Now we discuss each of these contributions.

2.2.1 Proof of NP-hardness

We begin with a definition,

Definition 8. A k̄-temporal star is a temporal motif where the multigraph
is connected and has k = k̄ + 1 nodes, namely {v0, . . . , vk̄}, with edges
(ui, vi), i = 1, . . . , l where either ui or vi is v0, i = 1, . . . , l.

An example of such temporal motif is reported in figure (2.2a). Observe
that counting such motifs in static graphs may be done in polynomial time
since given one node u, it’s degree du, and k ∈ N, u is the center of

(
du
k

)
(k + 1)-node stars. Liu et al. proved that the same problem on temporal
graphs is NP -hard. They defined the problem as follows,

Problem. Given a temporal graph T , a k̄-temporal star S, and a time span
δ, the k-star-motif problem asks if there exists at least one δ-instance of S
in T .

Proving that k-star-motif is NP -hard is done reducing k-clique to
such problem and the proof may be found in [9], the interesting thing is that
such theorem shows how mining motifs in temporal networks may be much
more difficult than mining motifs in static networks even if the topologies are
the same.
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Figure 2.2: (a) k̄-star motif with k̄ = 4. (b) temporal motif for which [9]
developed an exact algorithm.

2.2.2 Sampling Framework

Motivated from the fact that counting exactly temporal motifs requires a
lot of computational resources, and from the availability of large temporal
networks, Liu et al. introduced the first sampling framework for approximating
the count CM of all the δ-instances of a temporal motif M in a temporal
network T with a number C ′M . Their sampling procedure employs the power
of randomization. The basic idea is to look at the temporal dimension of the
edges in E , in such dimension all the edges are distributed from t1, . . . , tm
the time stamps of the different edges; with such image in mind the idea of
Liu et al. is to partition the temporal dimension in different non-overlapping
intervals of length cδ, c > 1 which they define as follows, given s a random
shift in {−cδ + 1, . . . , 0} at random,

Is = {[s+ (j − 1)cδ + j · cδ − 1], j = 1, 2, . . . }.

Then clearly each interval of the set IS contains a portion of edges of E ,
moreover since the intervals are of length cδ many motifs will be included in
such intervals. In their paper the authors show that counting such motifs and
weighting each instance with the inverse of the probability of being accounted
in some interval, leads to an unbiased estimate of CM . In order to avoid to
sample all the intervals the authors proposed to use the importance sampling,
which allows to choose each sample with some probability, while keeping
the unbiasedness of the estimate. The variance of the estimate before the
application of the importance sampling is bounded by 1

c−1C
2
M , while the

estimate that uses the importance sampling has an increased variance due to
such technique.

The algorithmic framework is presented in Algorithm 3, after the procedure
selects a random shift in line 2, it spans all the set Is and with a probability
qj = r|Ij |/|E| they choose if to look at the j-th interval (lines 3-4), where
r is an hyper-parameter used to fix the situation where |Ij |/|E| << 1, but
which also plays a role in the weight of each motif counted. If the interval is



13 2 − Previous Approaches

Algorithm 3: Algorithm 1 by [9]
Input: T = (V, E),M, δ ∈ R+, probabilities q, repetitions b, c > 1.
Output: C ′M estimate of CM .

1 for a = 1, . . . , b do
2 s← randomInteger([−cδ + 1, . . . , 0])
3 foreach Ij ∈ Is (in parallel) do
4 if Uniform(0,1) ≤ qj then
5 Tj ← {(u, v, t) ∈ E|t ∈ Ij}
6 {(counti′ ,∆i′)} ← A(Tj ,M, δ)
7 foreach (counti′ ,∆i′) do
8 Za ← Za+ weighted(qj ,∆i′ , c, δ, counti′)

9 C ′M ←
1
b

∑b
a=1 Za

10 return C ′M

to be accounted, then all the edges of E that fall in such interval are gathered
(line 5) and all the δ instances in such set are mined using the algorithm
A. Then in the estimate, each motif is weighted with the inverse probability
of being sampled (line 8). All the procedure from line 2 to 8 is repeated b
times to reduce the final variance of a factor 1

b , then the final estimate is
computed as the arithmetic mean of all the partial b estimates (lines 9-10).
The requirements on the algorithm A is not necessary to enumerate all the
motifs but more specifically such routine has to produce the set {(counti,∆i)}
where counti is the number of instances of the motif with duration ∆i in the
specific interval.

Changing the algorithm A may have great impacts on the performances
of such framework, the authors proposed the following combined algorithms:

• BT+S: The algorithm A is in this case is implemented with the back-
tracking algorithm of [10] which can enumerate all the possible δ-
instances of a temporal motif M without any constraint on the number
of nodes or edges of the motif;

• BT+PS: Has the same implementation of BT+S but now the cycle
from line 3 is executed in parallel;

• EX23+S: The algorithm A is EX23, which is an algorithm designed
by Liu et al. to suite the framework in Algorithm 3, in particular such
combined algorithm may be used only to approximate the count of the
motif in figure (2.2b).

• EX23+PS: a parallel version of the previous algorithm.

Huge impact on the performances has the choice of the algorithm, in
particular we observe that the algorithm BT of [10] has an asymptotic
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complexity of O(|Tj |l) where |Tj | are the number of edges in the j-th sample
and l are the number of edges of the motif. Then the BT+S has a complexity
of O(

∑
j |Tj |l + |Is|CcδM ) where CcδM is the maximum number of motifs in

a temporal interval of length cδ and the term |Is|CcδM arises in the global
complexity from lines 7-8. Observe that in practice the complexity of BT+PS
may be much lower than mining the whole graph which has complexity O(ml).
While the BT+PS has a complexity of O(maxj{|Tj |l}+CcδM ) if enough threads
are available.

The complexity of EX23 is O(
∑

u,v k
2
u,v) where ku,v is the number of

temporal edges between nodes u, v ∈ V, u 6= v, thus leading to a total
complexity of O(

∑
j

∑
(u,v)∈Tj k

2
u,v + |Is|CcδM ) for the EX23+S algorithm and

O(maxj{
∑

(u,v)∈Tj k
2
u,v} + CcδM ) for the EX23+PS. As an aside note, the

authors claimed that the complexity of EX23 may be reduced, using some
special tree data structures, to O(

∑
u,v ku,v log(ku,v)) but, to the best of our

knowledge, no description or implementation of such technique is currently
available. We highlight the fact that EX23 and it’s sampling version can
count only one specific motif instance, motif in figure (2.2b); which makes
it not very useful in practice with respect to BT and it’s version, which can
count all the instances of an arbitrary motif provided by the user.



Chapter 3

Novel Sampling Algorithms

Sampling approaches are required since, in large networks, computing
exactly CM is expensive in terms of both memory and time, thus approx-
imating such count while providing rigorous guarantees on the quality of
the approximation, is a key task for the motif counting problem. In this
chapter we are going to introduce our sampling-based algorithms for the
motif counting problem in particular the goal that we want to address is the
following.

Goal of the approximation problem. Given a temporal graph T , a
temporal motif M = (K, σ), δ ∈ R+,(ε, η) ∈ (0, 1)2 we want to compute C ′M
such that P(|C ′M − CM | ≥ εCM ) ≤ η, that is we want to obtain an ε-relative
approximation to CM with probability at least 1− η; where we recall that
CM is the exact number of δ-instances of M in T . We call an algorithm that
provides such guarantees an (ε, η)-approximation algorithm.

To the best of our knowledge the algorithms we are going to present are
the first rigorous sampling techniques existing, for the problem of counting
motifs in temporal networks. In this chapter we present:

• A first (ε, η)-approximation algorithm, for which we analyse the cor-
rectness and we provide a bound on it’s sample size;

• An improved (ε, η)-approximation algorithm, for which we analyse the
correctness and we provide a bound on it’s sample size; we also provide
two other bounds on the sample size using the tool of Martingales. We
also analyse the variance of the estimate used in such approach.

• An analysis of the asymptotic running times of the methods mentioned
above.

15
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3.1 First Algorithm

The very first approach we introduce is based on sampling the temporal
dimension as Liu et al. [9], but now gathering the interval of length cδ starting
from a timestamp of an edge selected at random. This leads to the following
intuitive steps:

1. Randomly choose with uniform probability a timestamp tr of an edge
e ∈ E such that tr is between t1 and tlast (both included), where
tlast = arg mint:(u,v,t)∈E∧(t≥tm−cδ) {|t− tm + cδ|} for some c > 1;

2. gather all the edges {(u, v, t) ∈ E : tr ≤ t ≤ tr + cδ, c > 1} from the
original graph T and call the resulting sampled graph Ti;

3. use an exact algorithm to count all the δ-instances of motif M in Ti;

4. count the instances of motif M weighting each occurrence opportunely;

5. repeat the procedure for i = 1, . . . , s times in order to achieve the
desired accuracy;

6. return the average of the counts found over all the iterations.

Now we formalize these intuitive steps, specifying in a rigorous way all
the quantities involved in the final algorithm.

At step 1 the number of possible random timestamps, which corresponds
to the number of possible graphs Ti to be gathered at iteration i = 1, . . . , s
in step 2, is ∆T ,1 = |{e = (u, v, t) ∈ E : t1 ≤ t ≤ tlast}| for tlast defined as in
step 1. Step 3 employs an exact routine to output each motif U ∈ U that is
contained in Ti, for each motif the routine outputs the starting and ending
time.

To specify the description from step 4 we need to define a first set of
random variables Xi

U , i = 1, . . . , s, U ∈ U where:

Xi
U =


1 if motif U ∈ U is in the i-th sample Ti of the

graph T ;
0 otherwise.

Note that each Xi
U is a Bernoulli random variable; let us compute the

probability of each of the Xi
U ’s to assume value 1. Let rU be the number of

possible random choices tr from which we can count motif U gathering Ti at
some iteration i = 1, . . . , s, namely rU = |{(u, v, t) ∈ E : max{t1, tUl − cδ} ≤
t ≤ min{tlast, tU1 }}| for each motif instance U ∈ U . Then:

P(Xi
U = 1) = P(Ti obtained from a random timestamp tr

at iteration i ∈ {1, . . . , s} contains motif U) =
rU

∆T ,1
= pU

(1)
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Since each Xi
U , i = 1, . . . , s, U ∈ U is a Bernoulli random variable then it

also holds that E[Xi
U ] = pU .

Now we can express the weighted count at step 4 for each iteration
i = 1, . . . , s as a function of the variables already defined, this yields to
defining the following random vector X = (X1, . . . , Xi, . . . , Xs), i = 1, . . . , s
where:

Xi =
∑
U∈U

1

pU
Xi
U

Each variable Xi corresponds to the weighted count at iteration i =
1, . . . , s of the procedure at step 4, moreover observe that:

E[Xi] = E

[∑
U∈U

1

pU
Xi
U

]
F
=
∑
U∈U

1

pU
E
[
Xi
U

] (1)
=
∑
U∈U

1

pU
pU =

∑
U∈U

1 = CM (2)

where in F we used the linearity of the expectation and in the next step we
used equation (1). We showed that the expectation of each one of the Xi’s for
i = 1, . . . , s is exactly the quantity we want to estimate, moreover this result
does not depend on the specific procedure as long as the weights accounts
for the probability of each motif U ∈ U to be “sampled”.

Now we can state and prove the following lemma which formalizes step 6:

Lemma 1. ||X||1/s is an unbiased estimator for CM .

Proof. We have to prove that:

E
[
||X||1
s

]
= CM

this is done by considering the definition of X, the linearity of expectation
(L.) and the equation (2), thus:

E
[
||X||1
s

]
(L.)
=

E [||X||1]

s
=

1

s
E

[
s∑
i=1

Xi

]
=

(L.)
=

1

s

s∑
i=1

E [Xi]
(2)
=

1

s

s∑
i=1

CM =
sCM
s

= CM

Now we present the Algorithm 4 that formalizes the initial intuitive
procedure, and then we prove that the output of Algorithm 4 is an ε-relative
approximation to CM with probability at least 1− η.
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Algorithm 4: Temporal motif approximator - first variant
Input: T = (V, E),M = (K, σ), δ, ε, η, c
Output: C

′
M such that P(|C ′M − CM | ≥ εCM ) ≤ η

1 m← |E|
2 tlast ← * Timestamp t of an edge of T that minimizes
|t− tm + cδ| among all timestamps and t ≥ tm − cδ *

3 ∆T ,1 ← EDGE_COUNTER(T , t1, tlast)

4 s←
⌈

∆2
T ,1

2ε2
ln
(

2
η

)⌉
5 X ← (X1 = 0, . . . , Xs = 0)
6 for i← 1 to s (in parallel) do
7 tr ← RANDOM_TIMESTAMP(T , t1, tlast)
8 Ti ← TEMPORAL_GRAPH(T , tr, tr + cδ)
9 S ← EXACT_MOTIF_COUNTER(Ti,M, δ)

10 foreach (tU1 , t
U
l ) ∈ S do

11 rU ← EDGE_COUNTER(T ,max{t1, tUl − cδ},min{tlast, tU1 })
12 pU ← rU

∆T ,1

13 Xi ← Xi + 1
pU

14 C
′
M ←

1
s

∑s
i=1Xi

15 return C
′
M

Where the extra routines used in Algorithm 4 are the following ones:

Algorithm 5: EXACT_MOTIF_COUNTER
Input: T = (V, E),M = (K, σ), δ.
Output: The set S = {(tU1 , tUl ) : U ∈ U} of δ-instances of M in T

with their respective starting time ad ending time.
/* Save in S for each instance U of M in the input

graph the respective starting and ending time tU1 , t
U
l

*/
return S

Algorithm 6: EDGE_COUNTER
Input: T = (V, E), a ∈ R, b ∈ R with a ≤ b.
Output: Number of edges of E with a timestamp t such that

a ≤ t ≤ b.
m← |E |
if (b > tm) then

b← tm

return r ← |{(u, v, t) ∈ E : a ≤ t ≤ b}|
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Algorithm 7: RANDOM_TIMESTAMP
Input: T = (V, E), a ∈ R, b ∈ R with a ≤ b.
Output: A timestamp t of an edge of T chosen at random such that

a ≤ t ≤ b.
(u, v, t)← Random edge of E chosen with uniform probability,
such that a ≤ t ≤ b
return t

Algorithm 8: TEMPORAL_GRAPH
Input: T = (V, E), ta ∈ R+, tb ∈ R+ with ta ≤ tb.
Output: The temporal graph with edges that have timestamps in

[ta, tb].
if (tb > tm) then

tb ← tm

EG ← {(u, v, t) ∈ E : ta ≤ t ≤ tb}
VG ← {u ∈ V : (u, v, t) ∈ EG ∨ (v, u, t) ∈ EG}
return (VG, EG)

We already showed in lemma 1 that C ′M = ||X||1/s is an unbiased
estimator to CM . In order to prove the correctness of the algorithm 4, we
have to show that s is sufficiently large to achieve an ε-relative approximation
to CM with probability at least 1− η, for each (ε, η) ∈ (0, 1)2. To do this we
need the following result from [11]:

Theorem (Hoeffding bound 4.12-[11]). Let X1, . . . , Xs be independent
random variables such that for all 1 ≤ i ≤ s,E[Xi] = µ and P(a ≤ Xi ≤ b) =
1. Then

P

(∣∣∣∣∣1s
s∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
)
≤ 2e−2sε2/(b−a)2

Before applying this result we have to make some considerations on the
random vector X, in particular we have to limit the domain of it’s components
Xi, i = 1, . . . , s:

1. first of all note that trivially Xi ≥ 0 since in the worst case we do not
count any motif U ∈ U at iteration i ∈ {1, . . . , s};

2. moreover note that:

Xi =
∑
U∈U

1

pU
Xi
U

A.
≤
∑
U∈U

1

pU

(1.)
=
∑
U∈U

∆T ,1
rU

=

= ∆T ,1
∑
U∈U

1

rU

B.
≤ ∆T ,1

∑
U∈U

1 = ∆T ,1CM
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where A. accounts for the fact that each Xi
U assumes value in {0, 1}

hence by setting all the Xi
U = 1, U ∈ U we are possibly adding positive

terms to the sum. (1.) accounts for the definition of pU , U ∈ U . And
B. accounts for the fact that for each motif there exists at least one
timestamp to be sampled that allows us to count that motif, otherwise
the instance would not exist.

Thus 1 and 2 imply that P(0 ≤ Xi ≤ ∆T ,1CM ) = 1, i = 1, . . . , s, this
allows us to state the following lemma:

Lemma 2. Given (ε, η) ∈ (0, 1)2 let X = (X1, . . . , Xs) then if s ≥ ∆2
T ,1

2ε2
ln
(

2
η

)
for algorithm 4 it holds that:

P
(∣∣∣∣1s ||X||1 − CM

∣∣∣∣ ≥ εCM) ≤ η
Proof. We have to prove that for s ≥ ∆2

T ,1
2ε2

ln
(

2
η

)
it holds:

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)
≤ η

Recall that E[Xi] = CM ,P(0 ≤ Xi ≤ ∆T ,1CM ) = 1, i = 1, . . . , s hence
applying the Hoeffding bound (H.) to the quantity of interest:

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)

H.
≤

H.
≤ 2e−2s(εCM )2/(∆T ,1CM−0)2

= 2e−2sε2/∆2
T ,1

I.
≤ η

Where I. comes from the fact that we set s ≥ ∆2
T ,1

2ε2
ln
(

2
η

)
which concludes

the proof.

3.2 Improved Algorithm

The first algorithm relied on the fact that, at each iteration we can sample
a graph with timestamps in an interval of length cδ with c > 1, starting from
some timestamp of an edge chosen randomly, this is not the only possibility,
an alternative is presented in this section.

As first thing note that the timestamps of the edges of T are distributed
in [t1, tm] where m = |E|, since we assume the timestamps to be sorted. Once
the user specifies a motif M and a length δ, we can select a random number
in [tl − cδ, tm−l], where l is the number of edges in M , as from Definition 2,
and gather the edges of T with timestamps grater or equal than the random
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Algorithm 9: Temporal motif approximator - second variant
Input: T = (V, E),M = (K, σ), δ, ε, η, c
Output: C

′
M such that P(|C ′M − CM | ≥ εCM ) ≤ η

1 l← |EK|; m← |E|
2 ∆T ,2 ← tm−l − tl + cδ

3 s←
⌈

∆2
T ,2

2(c−1)2δ2ε2
ln
(

2
η

)⌉
4 X ← (X1 = 0, . . . , Xs = 0)
5 for i← 1 to s (in parallel) do
6 tr ← RANDOM_NUMBER(tl − cδ, tm−l)
7 Ti ← TEMPORAL_GRAPH(T , tr, tr + cδ)
8 S ← EXACT_MOTIF_COUNTER(Ti,M, δ)
9 foreach (tU1 , t

U
l ) ∈ S do

10 r̃U ← cδ − (tUl − tU1 )

11 p̃U ← r̃U
∆T ,2

12 Xi ← Xi + 1
p̃U

13 C
′
M ←

1
s

∑s
i=1Xi

14 return C
′
M

number selected of at most cδ with c > 1.
Such idea leads to algorithm 9, which is quite similar to the algorithm 4
already presented, thus we can analyse it directly proving the correctness.

In line 2 we get ∆T ,2 = tm−l−tl+cδ, the length of the interval [tl−cδ, tm−l];
from this interval at each iteration i = 1, . . . , s we take a random number tr
in line 6.

In line 3 we set the number of iterations, which we discuss later. In line 4
we initialize the vector of counts for each iteration i = 1, . . . s.

In line 7 we use algorithm 8 to gather the temporal graph Ti with edges
{(u, v, t) : tr ≤ t ≤ tr + cδ}, then we use the exact algorithm to get all the
instances of motif M in Ti, with length at most δ in line 8.

Let Xi
U , i = 1, . . . , s, U ∈ U be defined as in the previous analysis. Let

r̃U be the length of the interval from which a random number tr from
[tl − cδ, tm−l] allows to gather a graph Ti that contains motif U ∈ U at
each iteration i = 1, . . . , s of algorithm 9 i.e., r̃U = cδ − (tUl − tU1 ). Then
∀U ∈ U , i = 1, . . . , s:

P(Xi
U = 1) = P(Ti obtained from a random number tr at iteration

i ∈ {1, . . . , s} contains motif U) =
cδ − (tUl − tU1 )

∆T ,2
=

r̃U
∆T ,2

= p̃U

Let X = (X1, . . . , Xi, . . . , Xs) with each Xi, i = 1, . . . , s defined as in
the previous analysis but substituting pU with p̃U , then the results (2) and
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lemma 1 still hold, this reconciles with the fact that as long as the weight
of each motif accounts for the probability of motif U ∈ U to be counted at
iteration i = 1, . . . , s, the result is not constrained to the specific algorithm.
The previous observations clarify the weighted count in lines 9-13.

We still have to prove that the number of iterations set in line 2 are
sufficient to achieve the desired accuracy, to do so we present the following
observations on the Xi, i = 1, . . . , s:

1. first of all note that trivially Xi ≥ 0 since in the worst case we do not
count any motif U ∈ U at iteration i ∈ {1, . . . , s};

2. moreover note that:

Xi =
∑
U∈U

1

p̃U
Xi
U

A.
≤
∑
U∈U

1

p̃U

(1.)
=
∑
U∈U

∆T ,2
r̃U

=

= ∆T ,2
∑
U∈U

1

cδ − (tUl − tU1 )

B.
≤ ∆T ,2

∑
U∈U

1

cδ − δ
=

∆T ,2CM
(c− 1)δ

where A. accounts for the fact that each Xi
U assumes value in {0, 1}

hence by setting all the Xi
U = 1, U ∈ U we are possibly adding positive

terms to the sum. (1.) uses the definition of p̃U , U ∈ U . B. accounts for
the fact that the quantity tUl − tU1 corresponds to the duration ∆(U) of
motif U ∈ U hence by definition it holds 0 < ∆(U) ≤ δ.

Then 1 and 2 imply that P(0 ≤ Xi ≤ ∆T ,2CM/((c− 1)δ)) = 1, i = 1, . . . , s,
this allows us to state the following lemma:

Lemma 3. Given (ε, η) ∈ (0, 1)2, c > 1 let X = (X1, . . . , Xs) then if s ≥
∆2
T ,2

2(c−1)2δ2ε2
ln
(

2
η

)
for algorithm 9 it holds that:

P
(∣∣∣∣1s ||X||1 − CM

∣∣∣∣ ≥ εCM) ≤ η
Proof. We have to prove that for s ≥ ∆2

T ,2
2(c−1)2δ2ε2

ln
(

2
η

)
in algorithm 9 it

holds:

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)
≤ η

Recall that E[Xi] = CM ,P(0 ≤ Xi ≤ ∆T ,2CM/((c − 1)δ)) = 1, i = 1, . . . , s
hence applying the Hoeffding bound (H.) to the quantity of interest:

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)

H.
≤

H.
≤ 2e−2s(εCM )2/(∆T ,2CM/((c−1)δ)−0)2

= 2e−2s(c−1)2δ2ε2/∆2
T ,2

I.
≤ η
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Where I. comes from the fact that we set s ≥ ∆2
T ,2

2(c−1)2δ2ε2
ln
(

2
η

)
which

concludes the proof.

The sample size we derived in lemma 3, is not the only possible choice
for the parameter s, we observe that such choice has a crucial impact on the
performances of our algorithm, thus to try to reduce such value we performed
an analysis using the tool of martingales, such analysis is presented in the
next section.

3.3 Limiting the sample size through martingales

Let us perform the analysis of the Algorithm 9 already presented using
the tool of Martingales, we will present two main results:

• A first bound, similar to the bound already derived in lemma 3;

• An alternative bound, which may improve the size s, which is not
computable thus may be useful only theoretically and not in practice.

We now give a short introduction to martingales, following the presentation
from [11]. First of all a martingale is defined as follows.

Definition 9. A sequence of random variables Z0, Z1, . . . is a martingale with
respect to the sequence X0, X1, . . . if, for all n ≥ 0 the following conditions
hold:

• Zn is a function of X0, X1, . . . , Xn;

• E[|Zn|] <∞;

• E[Zn+1|X0, X1, . . . , Xn] = Zn.

A sequence of random variables Z0, Z1, . . . is called a martingale when it is
a martingale with respect to itself. That is, E[|Zn|] <∞, and E[Zn+1|Z0, . . . ,
Zn] = Zn.

To prove the bound on the sample size we will need the following result,

Theorem (Azuma–Hoeffding Inequality 13.4 - [11]). Let X0, . . . , Xn be
a martingale such that

|Xk −Xk−1| ≤ ck.

Then, for all t ≥ 1 and any λ > 0,

P [|Xt −X0| ≥ λ] ≤ 2e
− λ2

2
∑t
k=1

c2
k
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3.3.1 A first bound

Let us consider the variables X1, . . . , Xs already introduced, let f(X1, . . . ,
Xs) = 1/s

∑
Xi which is the function we use to obtain the estimate to our

procedure. Let us define a Doob martingale (Chapter 11 of [11]) on the
function f and the variables X1, . . . , Xs, in particular we define the following
martingale:

• Z0 = E[f(X1, . . . , Xs)] = E
[

1
s

∑s
i=1Xi

]
= CM ;

• Zi = E
[

1
s

∑s
j=1Xj |X1, . . . Xi

]
with i = 1, . . . , s, clearly Zs is the value

of the estimate at the end of the iterations of our algorithm, i.e., the
final output C ′M .

As we have done in the previous analysis, we want to bound the probability
P[|C ′M − CM | ≥ εCM ], to do so we need to analyse the martingale we
already defined, in particular we need to bound the quantity |Zi+1 − Zi|, i =
0, . . . , s− 1.

Let i = 0, then we have:

|Z1 − Z0| =

∣∣∣∣∣∣E
1

s

s∑
j=1

Xj |X1

− CM
∣∣∣∣∣∣ (1)

=

∣∣∣∣∣∣X1

s
+

1

s

s∑
j=2

E[Xj ]

− CM
∣∣∣∣∣∣ =

(2)
=

∣∣∣∣∣∣X1

s
+

1

s

s∑
j=2

CM

− CM
∣∣∣∣∣∣ (3)

=

∣∣∣∣X1

s
+
CM (s− 1)

s
− CM

∣∣∣∣ =

(4)
=

∣∣∣∣X1

s
− CM

s

∣∣∣∣ (5)

≤
∣∣∣∣∆T ,2CM(c− 1)δs

− CM
s

∣∣∣∣ (6)
=
CM
s

(
∆T ,2

(c− 1)δ
− 1

)
.

Where (1) comes from the linearity of expectation and the fact that the
variables Xj , j = 2, . . . , s are independent from the variable X1, (2) uses the
equality E[Xj ] = CM , j = 1, . . . , s, (3) and (4) are just a rearrangement of
the terms. (5) uses the bound on the domain of X1, while (6) it holds since
the term is positive so we can remove the absolute value.

Let i ∈ {1, . . . , s− 1}, then:

|Zi+1 − Zi|
(1)
=

∣∣∣∣∣∣E
1

s

s∑
j=1

Xj |X1, . . . , Xi+1

− E

1

s

s∑
j=1

Xj |X1, . . . , Xi

∣∣∣∣∣∣
(2)
=

∣∣∣∣∣∣X1

s
+ · · ·+ Xi+1

s
+

1

s

s∑
j=i+2

E[Xj ]

− X1

s
− · · · − Xi

s
−

−

1

s

s∑
j=i+1

E[Xj ]

∣∣∣∣∣∣
(3)

≤
∣∣∣∣∆T ,2CM(c− 1)δs

− CM
s

∣∣∣∣ =
CM
s

(
∆T ,2

(c− 1)δ
− 1

)
.
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In (1) we used the definition of the variables Zi, i = 1, . . . , s, while in
(2) we used the linearity of the expectation and the independence of the
variables Xi, i = 1, . . . , s, we observe that if the lower index of the summation
is greater than the upper one we are referring to the empty sum. Step (3)
comes from the fact that Xj , j = 1, . . . , i have the same values and opposite
signs, thus may be simplified and the fact that E[Xj ] = CM , j = 1, . . . , s.
The last step is just the same as the previous case.

Lemma 4. Given (ε, η) ∈ (0, 1)2, c > 1 let X1, . . . , Xs be defined as in the

algorithm 9, then if s ≥ 2
ε2

(
∆T ,2

(c−1)δ − 1
)2

log
(

2
η

)
for algorithm 9 it holds that:

P
(∣∣C ′M − CM ∣∣ ≥ εCM) ≤ η

Proof. Let Zi, i = 0, . . . , s be the martingale defined above, we have to prove

that for s ≥ 2
ε2

(
∆T ,2

(c−1)δ − 1
)2

log
(

2
η

)
in algorithm 9 it holds:

P
(∣∣C ′M − CM ∣∣ ≥ εCM) ≤ η = P (|Zt − Z0| ≥ εCM ) ≤ η

We already showed that ∀k = 1, . . . , s it holds

|Zk − Zk−1| ≤
CM
s

(
∆T ,2

(c− 1)δ
− 1

)
.

Thus applying the Azuma-Hoeffding Inequality in step (1.) and the fact that

we chose s ≥ 2
ε2

(
∆T ,2

(c−1)δ − 1
)2

log
(

2
η

)
(2.) we obtain:

P (|Zs − Z0| ≥ εCM )
(1.)

≤ 2e

− ε2C2
M

2
C2
M
s

(
∆T ,2
(c−1)δ

−1

)2

= 2e

− ε2s

2

(
∆T ,2
(c−1)δ

−1

)2 (2.)

≤ η.

Observe that such bound has the same order of magnitude as the one
already derived, thus it may be not efficient to use such bound in practice, in
the next section we devise a new bound which may be significantly better
than the ones already presented.

3.3.2 An alternative bound

In this section we try to derive a different bound to the number s of
iteration to achieve the desired (ε, η)-approximation of algorithm 9; the core
idea is to unpack the variables Xi, i = 1, . . . , s and exploit the dependencies
of the variables Xi

U , U ∈ U , i = 1, . . . , s. Suppose w.l.o.g., we labelled the
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motifs instances as U1, . . . , UCM , we want to rewrite the process as function
of the variables Xj

U , U ∈ U , j = 1, . . . , s which are exactly sCM , thus we
define,

X̂i =


1

if motif U
i−

(
d i
CM
e−1

)
CM

is in the sample d i
CM
e of T , i =

1, . . . , sCM ;

0 otherwise.

let us denote f(i) = i−
(
d i
CM
e − 1

)
CM and g(i) = d i

CM
e then we have,

P(X̂i = 1) = P(X
g(i)
Uf(i)

= 1) = p̃Uf(i)
, i = 1, . . . , sCM

were with a slightly abuse of notation (since now the motifs are labelled) we
referred to the same variables Xj

U , j = 1, . . . , s, U ∈ U used in the definition
of Xj , j = 1, . . . , s, thus p̃Uf(i)

= p̃U if U = Uf(i). Based on these definition
the estimator used in the algorithm is the following,

1

s

sCM∑
i=1

1

p̃Uf(i)

X̂i.

Then we may rephrase the algorithm 9 as the following stochastic process:

• Suppose we have s random timestamps tr, at each step i = 1, . . . , sCM
we are given the value of X̂i, which corresponds to the information
“the instance Uf(i) is/is not contained in the sample generated from the
timestamp number d i

CM
e”.

• At each step i = 1, . . . , sCM we sum 1
sp̃Uf(i)

to our estimate if X̂i = 1.

Such process is a rephrasing of the Algorithm 9 which suggests a very intuitive
way to define a Doob Martingale on the variables already defined, in particular:

• Z0 = E[f(X̂1, . . . , X̂sCM )] = E
[

1
s

∑sCM
i=1

1
p̃Uf(i)

X̂i

]
= CM ;

• Zi = E
[

1
s

∑sCM
i=1

1
p̃Uf(i)

X̂i|X̂1, . . . , X̂i

]
with i = 1, . . . , sCM , clearly as

in the previous analysis ZsCM is the value of the estimate at the end of
the iterations of our algorithm, i.e., the final output C ′M .
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To apply the Azuma-Hoeffding inequality we need to bound the quantity
|Zi+1 − Zi|, i = 0, . . . , sCM − 1, thus:

|Zi+1 − Zi|
(1)
=

∣∣∣∣∣∣E
1

s

sCM∑
j=1

1

p̃Uf(j)

X̂j |X̂1, . . . , X̂i+1

 −
− E

1

s

sCM∑
j=1

1

p̃Uf(j)

X̂j |X̂1, . . . , X̂i

∣∣∣∣∣∣
(l.)
=

∣∣∣∣∣∣
1

s

sCM∑
j=1

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i+1]

]
−

1

s

sCM∑
j=1

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i]

∣∣∣∣∣∣
(2)
=

∣∣∣∣∣ X1

sp̃Uf(1)

+ . . . +
Xi

sp̃Uf(i)

+
Xi+1

sp̃Uf(i+1)

+

1

s

sCM∑
j=i+2

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i+1]

−
− X1

sp̃Uf(1)

− · · · − Xi

sp̃Uf(i)

−

1

s

sCM∑
j=i+1

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i]

∣∣∣∣∣∣
(3)
=

∣∣∣∣∣ Xi+1

sp̃Uf(i+1)

+

1

s

sCM∑
j=i+2

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i+1]


−

1

s

sCM∑
j=i+1

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i]

∣∣∣∣∣∣
Where (1) is from the definition of Zi+1 and Zi, (l.) is from the linearity of

expectation, (2) is from the fact that in Zi+1 and Zi respectively the first i+1
and the first i variables are given and (3) from the fact that the first i variables
have the same values with opposite signs. Observe that now the variables
may be dependent thus we cannot remove the conditional expectation. Let
us denote the last equation with the symbol (F) for brevity.

In order to bound (F), we need to distinguish the following cases:

1. A : X̂i and X̂i+1 belong to the same sample, thus d i
CM
e = d i+1

CM
e;

2. B: X̂i and X̂i+1 belong to different samples, thus d i
CM
e+ 1 = d i+1

CM
e.

Let now consider the Case A, using the fact that by construction the
variables X̂i, i = 1, . . . , sCM are dependent only if they belong to same sample
we may rewrite the sums as follows,
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(F)
(1)
=

∣∣∣∣∣∣ Xi+1

sp̃Uf(i+1)

+

1

s

g(i+1)CM∑
j=i+2

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i+1]


+

1

s

sCM∑
j=g(i+1)CM+1

1

p̃Uf(j)

E[X̂j ]

 −
1

s

g(i)CM∑
j=i+1

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i]


−

1

s

sCM∑
j=g(i)CM+1

1

p̃Uf(j)

E[X̂j ]

∣∣∣∣∣∣ =

(2)
=

∣∣∣∣∣∣ Xi+1

sp̃Uf(i+1)

+

1

s

g(i+1)CM∑
j=i+2

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i+1]


−

1

s

g(i+1)CM∑
j=i+1

1

p̃Uf(j)

E[X̂j |X̂1, . . . , X̂i]

∣∣∣∣∣∣
In (1) we split each sum of (F) in two terms, the first is the sum on the

current sample, the second term is the sum on the other samples, and we
used the fact that only the variables in the current sample are dependent of
the variables X̂1, . . . , X̂i. In (2) we used the fact that we are in the case where
g(i) = g(i+ 1) since we assumed X̂i, X̂i+1 to be in the same sample. Observe
that if the lower index of the summation is greater than the upper one we
denote the sum as the empty sum. Let us denote the last equation with the
symbol (FF) for brevity. In order to bound (FF), let a = (g(i)− 1)CM + 1,
which is the first index of the variable in the current sample, then clearly the
sum on the variables on the current sample is dependent only to the variables
from Xa, Xa+1, . . . , then we distinguish the following cases:

1. There exists in X̂a, . . . , X̂i at least one variable that assumes value 1;

2. No variables in X̂a, . . . , X̂i has value 1.

Case 1., let a ≤ i1 < · · · < iq ≤ i be the indexes of the variables that assume
value 1, we define UUj = {U ∈ U : (tU1 ≥ t

Uj
l −cδ)∧ (tUl ≤ t

Uj
1 +cδ)∧U 6= Uj},

then the only motifs at time i that have the possibility to be accounted for,
are the motifs in UUi1 ∩ · · · ∩ UUiq , and their probability to be in the sample
may be computed, step which we will avoid. Now three sub-cases may arise,

• I : the motif instance associated with the random variable X̂i+1 is in
the set UUi1 ∩ · · · ∩ UUiq at time i, and X̂i+1 = 1;

• II : same situation as the case I but now X̂i+1 = 0;

• III : the motif instance associated with the random variable X̂i+1 is
not in the set UUi1 ∩ · · · ∩ UUiq , thus X̂i+1 = 0.
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In case I we have that |UUi1 ∩ · · · ∩ UUiq | ≥ |UUi1 ∩ · · · ∩ UUiq ∩ UUf(i+1)
|

since they are respectively at time i and at time i + 1 the sets of the only
possible motif instance that may have been sampled in the current sample.
The maximum difference in this case, arises when, at time i all the motifs in
UUi1 ∩ · · · ∩ UUiq have a starting time greater or equal and an ending time
lower or equal than the motif corresponding to variable X̂i+1, thus in this
case,

(FF)
(1.)

≤

∣∣∣∣∣∣∣
∆T ,2

s(c− 1)δ
+

 ∆T ,2
s(c− 1)δ

∑
Uj∈UUi1∩···∩UUiu∩UUf(i+1)

1


−

α1α2∆T ,2
s(c− 1)δ

∑
Uj∈UUi1∩···∩UUiq

1


∣∣∣∣∣∣∣

(2.)

≤
∣∣∣∣ ∆T ,2
s(c− 1)δ

+
∆T ,2

s(c− 1)δ
(C̆∗M − f(i)− 1)−

α1α2∆T ,2
s(c− 1)δ

(C̆∗M − f(i))

∣∣∣∣
(3.)

≤
∆T ,2

s(c− 1)δ
((C̆∗M − 1)− α1α2(C̆∗M − 1)) =

∆T ,2
s(c− 1)δ

(C̆∗M − 1)(1− α1α2)︸ ︷︷ ︸
Γ1/s

Where in (1.) we used the fact that Xi+1 = 1 and the consideration made
above, in particular if all the motifs instances have a starting time greater
or equal and an ending time lower or equal than the motif corresponding
to variable X̂i+1, then their probability to be in the sampled, given that
X̂i+1 = 1, is just 1 and the well known bound on each 1/p̃U . In the negative
term we introduced two “constants” 0 < α1, α2 < 1 which account for the fact
that the expectation of all the motifs in UUi1 ∩· · ·∩UUiq at time i may be lower
than 1, thus α1 is the minimum conditional expectation of a motif in such set;
and α2 accounts for the fact that the bound on each 1/p̃U generally it is lower
than the value used. In step (2.) we bounded the previous term introducing
C̆∗M = maxU∈U{|UU |} which maximizes the positive term, we introduced
also C̆∗M in the negative term since both positive and negative terms are
dependent, recall that |UUi1 ∩· · ·∩UUiq | ≥ |UUi1 ∩· · ·∩UUiq ∩UUf(i+1)

|. In the
step (3.) we used the fact that for f(i) ≥ 1 and we maximized the positive
term. We observe that such final it may be lossy and it is computationally
heavy to be estimated since all the motifs instances have to be identified,
which is the problem we want address, in particular a more accurate analysis
may be needed to understand better how to estimate α1, α2.

Case II. In such situation the worst case is similar to the previous one,
all the motifs have a starting time greater or equal and an ending time lower
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or equal than the motif corresponding to variable X̂i+1 then,

(FF)
(1.)

≤

∣∣∣∣∣∣∣−
1

s

∑
Uj∈UUi1∩···∩UUiq

1

p̃Uj
P[X̂j = 1|X̂a, . . . , X̂i+1]


∣∣∣∣∣∣∣

(2.)

≤
∆T ,2

s(c− 1)δ
C̆∗M︸ ︷︷ ︸

Γ2/s

In the first inequality (1.) we used the event where all the motif instances
are “contained” in the motif corresponding to the variable X̂i+1, thus they
are not in the sample since such variable has value 0. In the last step we
applied the absolute value and introduced C̆∗M which is defined as above,
which clearly bounds the quantity of interest.

Case III. In such case it is easy to verify that the quantity we want to
bound is 0 since we already had the information that such was not in the
sample so the expectation at time i + 1 is the same as the expectation at
time i.

Let us look at case 2 now. In this case no variable among X̂a, . . . , X̂i has
value 1 at time i, thus in this case it holds,

(FF)
(1)

≤

∣∣∣∣∣∣∣
∆T ,2

s(c− 1)δ
+

 ∆T ,2
s(c− 1)δ

∑
Uj∈UUf(i+1)

1

−
−

1

s

d i+1
CM
eCM∑

j=i+1

1

p̃Uf(j)

P[X̂j = 1|X̂a = 0, . . . , X̂i = 0]


∣∣∣∣∣∣∣

(2)

≤
∣∣∣∣ ∆T ,2
s(c− 1)δ

(C̆∗M + 1)−
β1β2∆T ,2
s(c− 1)δ

(C̆∗M + 1)

∣∣∣∣
=

∆T ,2
s(c− 1)δ

(C̆∗M + 1)(1− β1β2)︸ ︷︷ ︸
Γ3/s

Where in (1) we used the fact that X̂i+1 = 1, we used the bound on
1/p̃Uf(j)

and we bounded E[X̂j |X̂1, . . . , X̂i+1] with one since it is a Bernoulli
r.v.. In step (2) we used the bound on |UU |,∀U ∈ U and the fact that at
time i still holds that the number of instances over which the expectation is
computed is greater or equal than the one at step at i+ 1; observe that also
in this case we introduced 0 < β1, β2 < 1 which account respectively for the
minimum P[X̂j = 1|X̂a = 0, . . . , X̂i = 0] and the minimum 1/p̃Uf(j)

at step i.
Now it remains to analyse only the Case B, where in the original quantity

X̂i+1 and X̂i are from different samples, then in this case,
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(F)
(1)

≤

∣∣∣∣∣∣∣
∆T ,2

s(c− 1)δ
+

 ∆T ,2
s(c− 1)δ

∑
Uj∈UUf(i+1)

P[X̂Uj = 1|X̂i+1 = 1]

+

+

(
s− d i+1

CM
e

s

)
CM −

(
s− d i+1

CM
e+ 1

s

)
CM

∣∣∣∣∣
(2)

≤
∣∣∣∣ ∆T ,2
s(c− 1)δ

(Ĉ∗M + 1)− CM
s

∣∣∣∣︸ ︷︷ ︸
Γ4/s

Where in (1) we set X̂i+1 = 1 and we bound it’s probability, then the
positive term is break in two sums the first on the current sample for which
we conditioned and the second independent of the variable X̂i+1 on the next
samples (if there exist), instead the negative term is the expectation from
sample d i+1

CM
e to the last sample without any condition. The last step (2) uses

the bound on the positive sum as by definition of Ĉ∗M , which is reported in
the in section 3.4.2, and the fact that (s−g(i+1))

s CM − (s−g(i+1)+1)
s CM it is

just −CM
s .

Thus we just proved that for i = 0, . . . , sCM − 1 it holds,

|Zi+1 − Zi| ≤
max{Γ1,Γ2,Γ3,Γ4}

s
=

Γ∗

s

Then we can state the following lemma.

Lemma 5. Given (ε, η) ∈ (0, 1)2, c > 1 let X̂1, . . . , X̂sCM be the random
variables defined in this section, then if s ≥ 2(Γ∗)2

ε2CM

(
2
η

)
for algorithm 9 it

holds that:
P
(∣∣C ′M − CM ∣∣ ≥ εCM) ≤ η

Proof. Let Zi, i = 0, . . . , sCM be the martingale defined above, we have to
prove that for s ≥ 2(Γ∗)2

ε2CM

(
2
η

)
in algorithm 9 it holds:

P
(∣∣C ′M − CM ∣∣ ≥ εCM) ≤ η = P (|ZsCM − Z0| ≥ εCM ) ≤ η

We already showed that ∀k = 1, . . . , sCM it holds

|Zk − Zk−1| ≤
Γ∗

s
.

Thus applying the Azuma-Hoeffding Inequality in step (1.) and the fact that
we chose s ≥ 2(Γ∗)2

ε2CM

(
2
η

)
(2.) we obtain:

P (|Zs − Z0| ≥ εCM )
(1.)

≤ 2e
− ε2C2

M

2sCM
(Γ∗)2
s2

= 2e
− ε

2sCM
2(Γ∗)2

(2.)

≤ η.
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which concludes the proof.

As already mentioned computing such bound is much more difficult and
computationally heavy than estimating exactly the number of δ-instances of
a motif in a temporal network. This is also due to the fact that no tight and
efficiently computable upper bounds exist for the quantities involved in the
computation of Γ∗. Thus unfortunately we cannot evaluate such bound in
practice.

3.4 Variance analysis

In this section we want to bound the variance of our estimator, in particular
we want to bound the variance of the estimator used in algorithm 9. We will
develop two analysis, the first one follows the idea of [9] while the second is
completely new and may be significantly tighter.

3.4.1 A first upper bound

We recall that our estimator is:

1

s
||X||1 =

1

s

s∑
i=1

Xi.

Lemma 6. In algorithm 9 it holds that, Var
(

1
s ||X||1

)
= Var

(
1
s

∑s
i=1Xi

)
≤

C2
M
s

(
∆T ,2

(c−1)δ − 1
)

Proof. We start by observing that,

Var

(
1

s

s∑
i=1

Xi

)
=

1

s2

s∑
i=1

Var(Xi)

since the variables Xi, i = 1, . . . , s are independent and by the property
Var(aX) = a2Var(X). In order to evaluate the variance of the estimator we
need to bound the variance of the variables Xi, i = 1, . . . , s. We observe that
Var(Xi) = E[X2

i ]− E[Xi]
2, i = 1, . . . , s and we recall that E[Xi] = CM , thus

we need to bound the quantity E[X2
i ],

E[X2
i ] = E

(∑
U∈U

1

p̃U
Xi
U

)2
 (1)

= E

∑
U1∈U

∑
U2∈U

1

p̃U1 p̃U2

Xi
U1
Xi
U2

 =

(l.)
=
∑
U1∈U

∑
U2∈U

1

p̃U1 p̃U2

E[Xi
U1
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U2

]
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≤
∑
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∑
U2∈U

1

p̃U1 p̃U2

E[Xi
U1

] =

(3)
=
∑
U1∈U

∑
U2∈U

1

p̃U2
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≤
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∑
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Where (1) comes from the property of sums (
∑

i ai)
2 = (a1 + · · · + an) ·

(a1 + · · ·+ an) = (a1a1 + · · ·+ a1an + a2a1 + · · ·+ anan) =
∑

i

∑
j aiaj , then

we apply the linearity of expectation (l.). In (2) we apply the inequality
E[Xi

U1
Xi
U2

] ≤ E[Xi
U1

] and in step (3) we use the fact that E[Xi
U1

] = p̃U1 from
the definition of such variable, in (4) we use the bound on the value of p̃U2 .
The last equality comes from the fact that the two summations range over the
set of the motifs instances, and we are summing 1 for each instance, since the
inner term may be collected out of the summations due to it’s independency
of the index of the two sums. Based on the inequalities we derived we can
bound the variance of the variables Xi, i = 1, . . . , s in particular,

Var(Xi) = E[X2
i ]− E[Xi]

2 ≤ C2
M

∆T ,2
(c− 1)δ

− C2
M = C2

M

(
∆T ,2

(c− 1)δ
− 1

)
.

Note that such bound does not depend on the index i = 1, . . . , s, thus
substituting in the original summation we obtain,

Var

(
1

s

s∑
i=1

Xi

)
≤
C2
M

s

(
∆T ,2

(c− 1)δ
− 1

)
.

3.4.2 An improved upper bound

In this section we want to perform another variance analysis, which may
better give the intuition behind the estimate we are considering. We highlight
that in the worst case, the bound we are going to present is similar to the
one already derived, but in many cases it may be significantly better.

The idea is to use the same arguments of the bound already derived until
the application of the inequality E[Xi

U1
Xi
U2

] ≤ E[Xi
U1

] (thus until step (2) of
the previous proof) which we want to estimate in a different way, that is we
want to understand better the value of E[Xi

U1
Xi
U2

]. We observe that:

E[Xi
U1
Xi
U2

] = 1 · P(Xi
U1

= 1 ∧Xi
U2

= 1) = P(Xi
U1

= 1|Xi
U2

= 1)P(Xi
U2

= 1)

= P(Xi
U1

= 1|Xi
U2

= 1)p̃U2

In order to estimate a better bound to the quantity E[Xi
U1
Xi
U2

] we need
to exploit the value of P(Xi

U1
= 1|Xi

U2
= 1), U1, U2 ∈ U , i = 1, . . . , s, in

particular we observe that once we know that Xi
U2

= 1 this gives us the
following information: “tr chosen at random in the current iteration is in
the interval [tU2

l − cδ, t
U2
1 ]”; this immediately restricts the possible motifs

U1 ∈ U that can satisfy P(Xi
U1

= 1|Xi
U2

= 1). In particular the motifs
instances of interest are the only instances U1 ∈ U for which it holds (tU1

1 ≥
tU2
l − cδ) ∧ (tU1

l ≤ t
U2
1 + cδ), let call such set of motifs UU2 where we refer to

UUa = {U ∈ U : (tU1 ≥ t
Ua
l − cδ) ∧ (tUl ≤ t

Ua
1 + cδ) ∧ U 6= Ua}.
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To bound the probability P(Xi
U1

= 1|Xi
U2

= 1), U1 ∈ UU2 we need to
exploit a partition of the set UU2 , the partition is achieved looking at the
values of tU1

1 and tU1
l w.r.t., tU2

1 and tU2
l , ∀U1 ∈ UU2 in particular we distinguish

the following sets:

• U1
U2

= {U1 ∈ UU2 : (tU1
1 < tU2

1 ) ∧ (tU1
l < tU2

l )};

• U2
U2

= {U1 ∈ UU2 : (tU1
1 < tU2

1 ) ∧ (tU1
l ≥ t

U2
l )};

• U3
U2

= {U1 ∈ UU2 : (tU1
1 ≥ t

U2
1 ) ∧ (tU1

l ≤ t
U2
l )};

• U4
U2

= {U1 ∈ UU2 : (tU1
1 ≥ t

U2
1 ) ∧ (tU1

l > tU2
l )}.

Observe that some of these sets may be empty, but such division helps to
estimate the probability P(Xi

U1
= 1|Xi

U2
= 1), U1 ∈ UU2 in particular such

probability is equal to:

• pU1
1 = (cδ −∆(U1)− tU2

l + tU1
l )/(cδ −∆(U2)) if U1 ∈ U1

U2
;

• pU1
2 = (cδ −∆(U1))/(cδ −∆(U2)) if U1 ∈ U2

U2
;

• 1 if U1 ∈ U3
U2

;

• pU1
4 = (cδ −∆(U1)− tU1

1 + tU2
1 )/(cδ −∆(U2)) if U1 ∈ U4

U2
;

We observe that the major part of such probabilities may be lower than
one, and only in the case where U1 ∈ U3

U2
the probability is always equal to

one. We now define the following quantities which we will need to bound the
value of E[X2

i ], i = 1, . . . , s, let,

p̂UjU
= max

U1∈UjU
{pU1
j }, j = 1, 2, 4

and let

Ĉ∗M = max
U∈U
{p̂U1

U
|U1
U |+ p̂U2

U
|U2
U |+ |U3

U |+ p̂U4
U
|U4
U |}

then the following lemma holds,

Lemma 7. Let Xi, i = 1, . . . , s be defined as in Algorithm 9 then it holds:

E[X2
i ] ≤

∆T ,2
(c− 1)δ

CM Ĉ
∗
M
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Proof. By definition of E[X2
i ] we have,

E[X2
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≤
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(c− 1)δ
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In step (1) we used the equality E[Xi
U1
Xi
U2

] = P(Xi
U1

= 1|Xi
U2

= 1)p̃U2

and we simplified p̃U2 , in (2) we swapped the sums which can be done since the
sums are finite, we applied the bound on 1/p̃U1 and we applied the partition to
the motifs U1 ∈ UU2 substituting P(Xi

U1
= 1|Xi

U2
= 1) with the value of such

probability in each partition, as argued previously. In (3) we bounded each
probability pU1

j , j = 1, 2, 4 with the maximum of such probability assumed
by a motif in the respective interval. Step (4) just re-writes the inner sums
as the cardinality of the specific sets. Step (5) uses the definition of Ĉ∗M to
derive the final bound.

Lemma 8. In algorithm 9 it holds that, Var
(

1
s ||X||1

)
= Var

(
1
s

∑s
i=1Xi

)
≤

CM
s

(
∆T ,2Ĉ

∗
M

(c−1)δ − CM
)

Proof. Following the proof of lemma 4, we need to bound Var(Xi), i =
1, . . . , s,

Var(Xi) = E[X2
i ]−E[Xi]

2 ≤
∆T ,2

(c− 1)δ
CM Ĉ

∗
M−C2

M = CM

(
∆T ,2Ĉ

∗
M

(c− 1)δ
− CM

)
.

where we used the bound proved on E[X2
i ], i = 1, . . . , s in lemma 5, now using

the definition of the estimator we obtain,

Var

(
1

s

s∑
i=1

Xi

)
≤ CM

s

(
∆T ,2Ĉ

∗
M

(c− 1)δ
− CM

)
.
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3.5 Analysing the time complexity

The complexity of Algorithm 9 is dominated by the exact mining routine,
for which we used the backtracking algorithm by [10], such routine as described
in Chapter 2 is also used by Liu et al. [9] in their algorithmic framework. Thus
our Algorithm 9 has a similar temporal complexity of BT+S, in particular it is
bounded by O(

∑s
i |Ti|l + sCcδM ) where we recall CcδM is the maximum number

of motifs in a temporal interval of length cδ; while the complexity becomes
O(maxi=1,...,s{|Ti|l}+CcδM ) for a parallel implementation when enough threads
are available.

For Algorithm 4 we have the additional step of computing the rU for
each motif in the sample which may be non negligible thus, let |I∗cδ| be the
maximum number of edges of E in an interval of length cδ, then the complexity
of a serial implementation of 4 may be bounded by O(

∑s
i |Ti|l + sCcδM |I∗cδ|)

while a parallel implementation of the loop in line 6, leads to a overall
complexity of O(maxi=1,...,s{|Ti|l} + CcδM |I∗cδ|). Such algorithm has thus a
worst asymptotic complexity than it’s improved version.

Observe the impact of s in both the running times, in particular we know
that increasing s results in a more accurate estimate. But a larger s increases
also the running time, thus it is important to have a strict bound on such
quantity to obtain the desired ε-approximation and have a small running
time.



Chapter 4

Parallel Exact Approach

In this chapter we present the exact parallel approach we devised for
mining motifs in temporal networks. Such algorithm will use two different
key ingredients, the first one is the exact algorithm developed by Mackey et
al. [10] which can enumerate all the possible δ-instances of a given temporal
motif, without limits on the number of nodes or edge of such motif. The
second ingredient is based on the approach of “partitioning” devised by Sun
et al. [15] which exploits a partition of a given temporal graph in input.
To understand the final algorithm we will present some definitions in the
following section, then we explain the algorithm and how we improved it to
be both scalable and efficient in practice.

4.1 Definitions

Definition 10. Given a temporal graph T = (V, E) and given Gu = (Vu, Eu)
the undirected static subgraph associated with T , we say that T is weakly
connected if ∀(u, v) ∈ (Vu × Vu) \ {(v, v) : v ∈ Vu} there exists a path from u
to v and vice versa, i.e., for all the possible pair of nodes without counting
the pair with the same node, there exists a path.

The following definitions come from [15] and they have been adapted to
our framework,

Definition 11 (Adapted from definition 2 of [15]). Given a temporal graph
T = (V, E), given e1 = (u1, v1, t1), e2 = (u2, v2, t2) such that e1, e2 ∈ E , e1 6=
e2 and given δ ∈ R+, we say that the edge e1 is δ-temporally related to edge e2

if they are temporally adjacent, i.e., {u1, v1} ∩ {u2, v2} 6= ∅ and |t1 − t2| ≤ δ.

Definition 12 (Adapted from definition 3 of [15]). Given a temporal graph
T = (V, E) and δ ∈ R+, we say that T is a δ-temporally connected graph if
and only if the graph is weakly connected and all the adjacent edges are
δ-temporally related.

37
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Definition 13 (Adapted from definition 6 of [15]). Given a temporal graph
T = (V, E) and δ ∈ R+, Ti is a δ-maximum connected subgraph of T if and
only if Ti is a δ-temporally connected subgraph of T and there is no other
T ′i , δ-temporally connected subgraph of T that is a supergraph of Ti.

An example of the last definition, since it may not be so intuitive, is
reported in figure 4.1, where in (4.1a) we have the temporal graph and in
(4.1b) and (4.1c) there are the two δ-maximum connected subgraphs of the
input graph.

4.2 The algorithms

First of all we report the “partitiong algorithm” developed by [15], that is
used in our parallel exact approach as a preprocessing step.

Algorithm 10: Partitioning algorithm [15]
Input: T = (V, E), δ ∈ R+.
Output: T1, . . . , Tf where each Ti, i = 1, . . . , f is a δ-maximum

connected subgraph of T .
1 Mark all edges of E as unprocessed
2 i← 0
3 foreach e ∈ E do
4 if e is unprocessed then
5 Mark e as processed
6 i← i+ 1
7 Ti ← Ti ∪ {e}
8 foreach adjacent edge ea of e do
9 if |t(ea)− t(e)| ≤ δ then

10 DFSPart(ea, Ti, δ)

11 return T1, . . . , Ti

Where clearly the last i corresponds to f in the declaration of the output
of such algorithm and the function t(·) returns the timestamp of the edge
on which is invoked; to fully describe such approach we need to specify the
routine DFSPart which is described in Algorithm 11.
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(a) Temporal graph T .
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(b) First δ-maximum con-
nected subgraph of T .
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(c) Second δ-maximum con-
nected subgraph of T .

Figure 4.1: Example of application of the Algorithm 10 in particular we
have: (a) the input graph of the algorithm, and δ = 10; (b) the first δ-
maximum connected component, this component it is obtained launching
the DFSPart algorithm from the edge (1, 2, 1); (c) the second δ-maximum
connected component, this component it is obtained launching the DFSPart
algorithm from the edge (1, 3, 12), that is once the DFS routine has computed
the component in (b) the algorithm checks if it holds 12− 1 ≤ δ, since this
is not verified a new component is instantiated, it is easy to see that all the
other edges highlighted are in such component.

Algorithm 11: DFSPart(ea, Ti, δ) [15]
Input: ea the edge being processed, Ti the current component being

processed, time span δ ∈ R+.
1 if ea is not processed then
2 Ti ← Ti ∪ {e}
3 Mark ea as processed
4 foreach adjacent edge e′a of ea do
5 if |t(e′a)− t(ea)| ≤ δ then
6 DFSPart(e′a, Ti, δ)

An example of the application and the output of such algorithm is reported
in figure 4.1.

The core idea of parallelizing an exact routine for counting temporal
motifs is to use the already introduced Algorithm 10 to extract all the δ-
maximum connected subgraphs of a given input graph, and then count on
each component in parallel the number of motifs instances, summing all the
partial results together. Such intuitive idea leads to Algorithm 12, where in
line 1 we obtain all the δ-maximum connected subgraphs. The number f of
such subgraphs may be very large, typically f >> nt where nt is the number
of threads available on the current machine, thus executing in parallel the
exact counting on each component may lead to a very inefficient algorithm.
Since many of the components are very small, the idea is to merge with
a greedy procedure many of such components to obtain the new graphs
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Algorithm 12: Exact Parallel Algorithm
Input: T = (V, E), δ ∈ R+,M = (K, σ), nt number of threads.
Output: CM exact number of δ-instances of M in T .

1 T1, . . . , Tf ← Partitioning Algorithm(T , δ)
2 T1, . . . , Tr ← GreedyAggregator(T1, . . . , Tf , nt)
3 for i = 1, . . . , r (in parallel) do
4 CiM ← EXACT_MOTIF_COUNTER(Ti,M, δ)

5 CM ←
∑r

i=1C
i
M

6 return CM

T1, . . . , Tr where r ∼ nt. Then we execute in parallel on each graph the exact
routine (lines 3-4), as last thing we obtain the final count and return it (lines
5-6).

Now we motivate the fact that aggregating some of the δ-maximal com-
ponents may lead to an improvement of performances, even though we are
launching the exact routine on larger components. We use as exact routine
the algorithm developed by Mackey et al. [10], such routine has an overall
worst case complexity of O(|Ei|l) when it is executed on the component
Ti, i = 1, . . . , r where we recall l = |EK| and |Ei| is the number of edges in
the i-th component, i = 1, . . . , r. Looking inside the Backtracking algorithm
of Mackey et al. one can figure out that such algorithm is in some sense
able to recognize the different components even if merged, so the time is
limited by O(

∑
j |Ej |l) where the sum is taken over the indexes which form

the i-th component Ti, i = 1, . . . , r, such complexity may be much lower than
O(|Ei|l). Thus the overall complexity is limited by O(maxT1,...,Tr{

∑
j |Ej |l}),

where the sum is taken over the indexes which form the i-th component for
i = 1, . . . , r. Such complexity may be not so distant from launching all the
computations in parallel if the greedy aggregator do not aggregate “large”
subgraphs together. Thus, with our procedure we avoid much overhead of
launching too many threads in parallel which may cause congestion and slow
down significantly the algorithm.

As last thing, many approaches may be used for the greedy aggregator,
ours is reported in Algorithm 13. The basic idea is to limit the number of
components to 2 · nt since with too many threads there it is a non negligible
overhead for the CPU. Following such idea we define 2nt empty components
and each step i = 1, . . . , f we put the i-th δ-maximum connected subgraph
in the component which will have the minimum size after the insertion.
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Algorithm 13: GreedyAggregator
Input: T1, . . . , Tf δ-maximum subgraphs, nt number of threads.
Output: T1, . . . , Tr.

1 T ′1 , . . . , T ′2nt ← Empty components
2 for i = 1, . . . , f do
3 idx ← 0; minSize ←∞
4 for j = 1, . . . , 2nt do
5 if |T ′j ∪ Ti| < minSize then
6 idx ← j
7 minSize ← |T ′j ∪ Ti|

8 T ′idx ← T ′idx ∪ Ti
9 return T ′1 , . . . , T ′2nt





Chapter 5

Experimental Evaluation

In this chapter we present the experimental evaluation we performed on
several dataset coming from the SNAP library1, such datasets are reported
in table 5.1. All the experiments we are going to present were performed on
a 4 core Intel 4790k CPU with 16GB of RAM.

Dataset # of nodes # of static
edges

# of temporal
edges time span size (MB)

CollegeMsg 1.9K 20.3K 59.8K 194 days 1,2
email-Eu-core 986 24.9K 332.3K 2,20 years 5,5
sx-SuperUser 192K 854K 1.44M 7,60 years 34,1
FBWall 45.8K 264K 856K 4,27 years 19,4
SMS-A 44.4K - 548K 89 days 10,3
MathOverflow 24.8K 228K 390K 6,44 years 22,9
AskUbuntu 157K 545K 727K 7,16 years 10,9
Wikitalk 1.09M 3.13M 6.10M 6,23 years 173,5

Table 5.1: Temporal datasets used in the experiments.

The chapter is structured as follows,

• We discuss the results of the method BT+S by Paul Liu et al. [9] for
different choice of parameters, more specifically for two values of r; with
respect to the quality of the approximation;

• we discuss the results of the implementation of our two algorithm
variants comparing their accuracy in the approximation also with respect
to BT+S of Liu et al.;

• we compare the running times of the procedures of BT+S for the two
values of r with the running times of our two sampling version;

1https://snap.stanford.edu/temporal-motifs/data.html

43
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Shorthand δ c r b

θ′1 86400 20 100 1
θ′2 86400 20 30 1
θ′3 3200 20 100 1
θ′4 3200 20 30 1

Table 5.2: Configuration parameters used in the evaluation of the algorithm
"BT+S" from Paul Liu et al.

• we discuss the quality of the approximation on the dataset Wikitalk
of the parallel version of our sampling techniques and the algorithm
BT+PS by Liu et al. for different values of r, with δ = 86400 value for
which the sequential implementations cannot handle such dataset;

• we discuss the running times of the parallel implementations of our
sampling algorithms, our parallel exact routine and the algorithm
BT+PS with different parameters of Liu et al.

All the tables we are going to present, report the motif Mi,j , i, j = 1, . . . , 6
from the 6 × 6 grid from the article of Paranjape et al. reported in figure
2.1. We computed the exact number of δ-instances of motif Mi,j under the
column CM . For each network, with the specific choice of parameters fixed,
we executed 3 runs for each motif Mi,j , reported as run 1, 2, 3; to evaluate
the random nature of the algorithms we are considering. For each of the
runs we computed the error in percentage from the estimate C ′M to the true
count CM , i.e., this is obtained through |C ′M −CM |/CM · 100; thus for every
method and for everyone of the 3 runs such approximation is reported.

5.1 Comparison of BT+S for different values of r

Liu et al. released the code publicly2, their methods are all implemented in
C++. We focused on the implementation that use the backtracking algorithm
(BT) of Mackey et al. [10] since the other methods proposed by Liu et al.,
i.e., EX23+S and EX23+PS, are designed only for one specific motif so
they cannot be used on the whole grid we want to test. Several parameters
have to be chosen, we tested the configurations reported in table 5.2. We
typically chose δ = 86400 which was set to 3200 only on the dataset Wikitalk
since, otherwise the methods could not terminate without running out of
memory. The choice of b = 1 is made by the Liu et al. in their source code
so we do not changed such parameter, the choice of c = 20 it is suggested
from the authors while the crucial decision is how to set r. We recall that

2https://gitlab.com/paul.liu.ubc/sampling-temporal-motifs

https://gitlab.com/paul.liu.ubc/sampling-temporal-motifs
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the probability of each interval to be sampled, i.e., qj in the algorithm, is
computed as follows qj = r

|Ij |
|E| thus it’s value has a crucial impact on the

number of samples accounted in their algorithm. The authors suggested to
set it in [10, 100], so we choose two different values 30 and 100. In the tables
we are going to present we report s̄1 and s̄2 which represent, the maximum
number of intervals of length cδ evaluated respectively by BT+S with r = 100
and r = 30 among the three runs. Furthermore we report ϕ1 and ϕ2 which
reports the maximum fraction of temporal edges accounted during the three
runs of the whole sampling procedure for respectively BT+S with r = 100
and r = 30, i.e., the maximum over the three runs of the following quantity
ϕi =

∑
j |Ij |/|E|, i = 1, 2; observe that since b = 1 then ϕi ≤ 1, i = 1, 2 where

ϕ = 1 means that all the edges are accounted from the algorithm.
The results are presented in the tables from page 46 to 53, we can see

that in all the datasets, except Wikitalk, the version of BT+S with a higher
r achieves better performances or at least not worse than the version with
r = 30; this is not surprising in fact this is reflected in the values of s̄1, s̄2 and
ϕ1, ϕ2. In the datasets where the two versions have similar quality on the
approximation then the values of s̄1, s̄2 and ϕ1, ϕ2 tend to be close values, this
means that approximately the same samples are used in both the procedures,
while in the datasets where the version with r = 100 is significantly better,
then such version uses much more samples than the version with r = 30, an
example of such situation is reported in the table of the dataset SuperUser
at page 48. We also observe that even if the same number of samples are
accounted from the two versions, usually the version with r = 100 achieves
better approximations since the value of r is also used to weight each motif
instance, thus a higher r improves the final estimate. The version with r = 100
achieves good performances but in our experiments, differently from what
happened in the experiments of Liu et al., sometimes the approximation
error is much higher than 5%, see for example the runs for motif M6,1 on the
email-Eu-Core dataset at page 47. Finally we conclude discussing the results
of the Wikitalk dataset on page 53 where we set δ = 3200, where motifs M4,5

and M4,6 are not reported since they ran out of memory. All the two versions
achieves an approximation result which is way higher than the values achieved
on the other datasets, this is again not surprising since the dataset is very
large and δ is small, then |Ij |/|E| is a small value, then multiplying it by 100
or 30 it is not sufficient to sample “enough” windows, this is reflected in the
values of ϕ1 and ϕ2 which are very small. As we showed setting correctly the
value of r has a crucial impact on the quality of approximation, and on the
running times as we will see, and finding a “good” value for such parameter
is not always so easy.
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Approximation Factor in % on the dataset CollegeMsg

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 487365 10 1.0 1.25% 1.54% 1.0% 10 1.0 2.81% 2.87% 2.44%
M1,2 295970 10 1.0 1.13% 0.09% 0.09% 10 1.0 3.7% 2.44% 3.58%
M1,3 19929 10 1.0 1.58% 1.58% 1.2% 10 1.0 2.1% 2.08% 1.83%
M1,4 20000 10 1.0 1.52% 0.47% 1.0% 10 1.0 1.15% 1.17% 2.14%
M1,5 861906 10 1.0 1.45% 7.41% 1.86% 10 1.0 4.56% 5.25% 3.29%
M1,6 1204020 10 1.0 0.59% 1.58% 1.42% 10 1.0 1.17% 2.65% 2.5%
M2,1 368884 10 1.0 12.0% 0.23% 1.0% 9 0.99 9.95% 3.65% 3.9%
M2,2 254907 10 1.0 1.79% 0.05% 0.05% 10 1.0 4.02% 3.13% 2.05%
M2,3 16064 10 1.0 1.13% 0.78% 1.11% 10 1.0 0.73% 0.43% 1.94%
M2,4 9850 10 1.0 2.05% 2.05% 0.37% 10 1.0 0.92% 0.92% 0.57%
M2,5 829831 10 1.0 1.03% 1.7% 1.57% 10 1.0 3.02% 2.2% 4.1%
M2,6 800249 10 1.0 0.62% 3.08% 2.54% 9 0.99 1.9% 1.47% 0.96%
M3,1 336455 10 1.0 1.49% 1.72% 1.89% 10 1.0 3.86% 3.87% 4.09%
M3,2 349781 10 1.0 1.47% 1.47% 11.77% 9 0.99 4.21% 4.21% 9.83%
M3,3 854505 10 1.0 5.0% 1.04% 0.17% 10 1.0 1.72% 3.7% 3.58%
M3,4 1061197 10 1.0 5.35% 0.67% 0.43% 10 1.0 2.93% 2.52% 3.17%
M3,5 14138 10 1.0 1.62% 2.19% 1.42% 10 1.0 2.28% 2.96% 2.38%
M3,6 20041 10 1.0 2.7% 4.31% 1.91% 10 1.0 2.06% 3.74% 3.94%
M4,1 711713 10 1.0 1.82% 0.85% 0.75% 10 1.0 3.52% 1.31% 2.22%
M4,2 331604 10 1.0 0.31% 1.33% 1.12% 10 1.0 3.28% 4.43% 3.62%
M4,3 1759008 10 1.0 2.51% 1.45% 0.79% 10 1.0 0.49% 3.56% 0.83%
M4,4 866703 10 1.0 0.81% 0.24% 1.5% 10 1.0 2.83% 3.04% 3.94%
M4,5 20853 10 1.0 2.16% 1.87% 2.13% 9 0.99 2.46% 2.36% 2.44%
M4,6 17848 10 1.0 5.65% 0.97% 0.02% 10 1.0 2.72% 1.62% 0.56%
M5,1 398228 9 0.99 2.7% 2.57% 2.57% 10 1.0 6.39% 6.15% 6.58%
M5,2 364948 10 1.0 0.98% 0.83% 0.77% 10 1.0 6.65% 8.69% 9.41%
M5,3 751816 10 1.0 1.66% 1.11% 1.92% 10 1.0 4.83% 4.24% 4.53%
M5,4 891158 10 1.0 0.96% 1.19% 1.19% 10 1.0 3.34% 2.12% 2.42%
M5,5 747568 10 1.0 0.15% 1.18% 1.75% 10 1.0 2.9% 4.26% 3.85%
M5,6 882872 10 1.0 1.22% 1.47% 1.18% 9 0.99 0.2% 3.46% 4.09%
M6,1 773848 10 1.0 1.36% 0.67% 1.39% 10 1.0 4.11% 4.75% 4.29%
M6,2 381720 10 1.0 1.06% 1.06% 3.28% 9 0.99 7.09% 6.21% 6.21%
M6,3 1697377 10 1.0 0.55% 0.71% 0.12% 10 1.0 1.91% 0.57% 1.86%
M6,4 953679 10 1.0 0.18% 0.75% 1.66% 10 1.0 1.73% 2.53% 1.31%
M6,5 910724 10 1.0 0.86% 0.48% 1.99% 10 1.0 2.94% 1.71% 3.25%
M6,6 1201092 10 1.0 0.55% 0.77% 0.06% 9 0.99 1.56% 1.25% 2.59%



47 5 − Experimental Evaluation

Approximation Factor in % on the dataset email-Eu-core

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 514417 28 1.0 0.1% 0.34% 1.61% 24 0.92 6.93% 1.34% 3.33%
M1,2 430620 29 1.0 0.5% 0.11% 1.45% 25 0.95 3.09% 7.09% 3.43%
M1,3 169284 29 1.0 0.85% 0.01% 0.15% 24 0.92 3.14% 2.64% 1.9%
M1,4 198631 28 1.0 0.46% 1.37% 0.49% 24 0.95 0.37% 0.39% 3.46%
M1,5 626891 27 0.99 0.77% 0.99% 0.91% 24 0.95 0.78% 1.57% 0.6%
M1,6 789842 28 1.0 0.39% 0.22% 0.04% 23 0.89 4.55% 7.11% 7.57%
M2,1 711249 28 1.0 0.15% 0.9% 0.14% 24 0.95 0.79% 3.54% 6.73%
M2,2 817579 29 1.0 0.66% 0.81% 1.19% 24 0.95 0.37% 4.3% 1.38%
M2,3 160528 29 0.99 1.2% 1.12% 0.81% 23 0.92 3.61% 1.08% 1.72%
M2,4 122157 29 1.0 1.94% 0.9% 0.33% 25 0.95 0.77% 3.25% 3.19%
M2,5 1016020 29 1.0 0.12% 1.03% 0.16% 24 0.94 7.55% 0.82% 3.63%
M2,6 626374 27 0.99 1.33% 1.37% 1.33% 25 0.95 6.01% 3.53% 3.49%
M3,1 705429 29 1.0 1.23% 0.15% 0.23% 25 0.95 2.62% 3.68% 1.13%
M3,2 466983 28 1.0 0.59% 1.07% 0.36% 25 0.96 0.62% 3.03% 0.07%
M3,3 975941 28 1.0 0.91% 0.89% 0.08% 25 0.96 3.44% 3.37% 2.84%
M3,4 1091657 29 1.0 1.93% 1.47% 0.58% 25 0.95 0.12% 0.03% 3.02%
M3,5 136107 28 1.0 0.74% 0.12% 1.38% 24 0.95 3.77% 2.18% 3.89%
M3,6 209354 28 1.0 0.4% 0.7% 0.6% 25 0.95 1.7% 3.43% 1.14%
M4,1 3385029 28 1.0 0.54% 0.63% 0.57% 24 0.92 0.92% 2.85% 2.83%
M4,2 858673 28 1.0 0.52% 0.3% 1.51% 25 0.95 3.4% 1.02% 4.76%
M4,3 3693684 29 1.0 0.85% 0.9% 1.11% 25 0.95 1.1% 5.15% 0.53%
M4,4 1094325 28 1.0 0.58% 1.13% 0.79% 24 0.93 5.74% 1.22% 6.95%
M4,5 205742 28 1.0 0.84% 0.1% 0.44% 25 0.95 2.4% 4.62% 0.8%
M4,6 207165 27 0.99 0.58% 1.14% 0.32% 25 0.96 2.61% 1.59% 0.14%
M5,1 1392520 28 1.0 1.25% 0.13% 1.25% 25 0.95 2.04% 10.23% 0.42%
M5,2 1362409 28 1.0 0.79% 0.16% 1.22% 25 0.95 2.06% 5.38% 0.27%
M5,3 921000 28 1.0 0.28% 0.38% 0.57% 25 0.94 1.39% 0.06% 1.97%
M5,4 631995 28 1.0 1.05% 0.53% 0.64% 25 0.95 1.01% 1.18% 3.22%
M5,5 1072210 28 1.0 0.19% 0.3% 0.24% 25 0.95 2.77% 1.64% 2.23%
M5,6 651653 29 1.0 0.05% 1.37% 0.05% 25 0.95 0.68% 3.42% 1.24%
M6,1 2064940 29 0.99 9.88% 8.31% 6.4% 23 0.92 18.53% 14.35% 8.71%
M6,2 1363113 29 0.99 4.03% 0.21% 2.99% 25 0.95 6.82% 9.93% 8.32%
M6,3 3848912 28 1.0 1.6% 2.4% 4.27% 25 0.96 11.43% 15.93% 8.07%
M6,4 1029608 28 1.0 2.78% 0.4% 0.82% 25 0.96 0.41% 7.28% 1.49%
M6,5 1108292 28 1.0 2.64% 1.99% 4.91% 25 0.95 17.85% 6.5% 2.28%
M6,6 810796 29 1.0 0.14% 1.02% 0.23% 24 0.93 2.05% 0.73% 3.86%



5.1 − Comparison of BT+S for different values of r 48

Approximation Factor in % on the dataset sx-SuperUser

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 166857 103 0.85 0.04% 1.95% 0.73% 29 0.24 9.08% 9.19% 2.23%
M1,2 89735 102 0.85 1.84% 1.91% 2.1% 29 0.24 7.91% 7.65% 6.23%
M1,3 31181 99 0.82 2.32% 1.56% 1.5% 29 0.24 13.86% 3.85% 15.8%
M1,4 33002 99 0.82 1.46% 1.27% 1.76% 29 0.24 11.48% 8.63% 6.54%
M1,5 202005 101 0.84 0.32% 1.62% 1.56% 29 0.24 6.16% 6.15% 8.55%
M1,6 388398 99 0.83 1.68% 1.81% 1.17% 29 0.24 10.49% 10.74% 9.59%
M2,1 132965 102 0.84 0.19% 2.18% 0.09% 29 0.24 18.12% 13.86% 5.58%
M2,2 56823 101 0.84 2.06% 0.56% 1.6% 29 0.24 9.69% 8.39% 14.76%
M2,3 21089 103 0.85 0.4% 0.17% 2.64% 29 0.24 4.82% 16.87% 20.03%
M2,4 6334 103 0.85 3.73% 0.56% 1.06% 29 0.24 25.05% 20.31% 15.73%
M2,5 326259 100 0.83 1.39% 1.68% 1.87% 29 0.24 8.42% 7.93% 8.35%
M2,6 279654 99 0.82 0.35% 0.41% 0.77% 29 0.24 7.43% 0.42% 0.41%
M3,1 79626 99 0.82 2.14% 1.14% 0.33% 29 0.24 7.57% 1.18% 6.77%
M3,2 129020 100 0.83 1.28% 1.13% 0.67% 29 0.24 4.45% 3.23% 3.15%
M3,3 147975 99 0.83 1.4% 1.52% 1.29% 29 0.24 4.97% 3.86% 7.59%
M3,4 557702 102 0.85 1.07% 2.23% 1.77% 29 0.24 12.0% 10.95% 11.33%
M3,5 12263 101 0.84 1.6% 0.17% 1.67% 29 0.24 7.39% 10.65% 9.58%
M3,6 24870 100 0.83 1.07% 3.04% 1.91% 29 0.24 9.44% 6.98% 7.12%
M4,1 233400 99 0.82 0.41% 1.08% 0.13% 29 0.24 8.44% 6.1% 6.23%
M4,2 209077 102 0.85 1.8% 0.28% 1.37% 29 0.24 14.34% 13.26% 0.62%
M4,3 1091788 102 0.84 0.34% 1.56% 4.59% 29 0.24 5.63% 6.89% 5.94%
M4,4 601707 99 0.82 1.86% 1.37% 2.08% 29 0.24 6.93% 8.08% 5.3%
M4,5 22457 100 0.83 1.23% 0.17% 1.95% 29 0.24 11.52% 4.78% 8.12%
M4,6 11976 102 0.84 1.01% 1.2% 0.06% 29 0.24 7.59% 17.25% 18.04%
M5,1 17898 101 0.84 1.13% 1.79% 1.46% 29 0.24 14.77% 9.33% 9.97%
M5,2 112602 99 0.82 0.12% 1.19% 1.69% 29 0.24 6.76% 5.15% 3.04%
M5,3 549672 101 0.84 1.49% 1.26% 0.66% 29 0.24 6.51% 6.54% 6.77%
M5,4 343289 99 0.83 1.3% 0.59% 2.35% 29 0.24 7.37% 1.8% 8.37%
M5,5 170469 101 0.84 1.99% 0.86% 1.89% 29 0.24 4.51% 9.97% 4.19%
M5,6 184637 99 0.82 1.73% 0.98% 2.93% 29 0.24 4.91% 3.88% 5.06%
M6,1 167850 99 0.82 0.52% 0.04% 0.34% 29 0.24 6.95% 6.83% 6.71%
M6,2 40629 100 0.83 1.08% 0.47% 2.53% 29 0.24 9.91% 3.48% 9.54%
M6,3 1059493 98 0.82 1.63% 2.41% 0.64% 29 0.24 6.38% 7.46% 4.76%
M6,4 322650 98 0.82 2.14% 1.8% 1.95% 29 0.24 7.88% 11.69% 10.31%
M6,5 472529 99 0.82 1.77% 1.66% 2.55% 29 0.24 5.19% 9.49% 10.25%
M6,6 396247 102 0.85 0.12% 0.69% 1.34% 29 0.24 3.47% 10.57% 9.55%



49 5 − Experimental Evaluation

Approximation Factor in % on the dataset FBWall

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 115233 46 0.97 0.19% 0.14% 0.16% 28 0.67 1.2% 1.46% 0.56%
M1,2 135152 46 0.98 2.91% 2.58% 0.05% 28 0.67 4.32% 2.88% 1.47%
M1,3 11221 47 0.98 1.09% 2.43% 0.13% 28 0.67 3.99% 2.36% 3.43%
M1,4 12256 47 0.98 1.03% 0.89% 0.8% 27 0.68 3.96% 3.07% 2.32%
M1,5 251005 46 0.98 0.1% 0.4% 0.38% 28 0.67 3.02% 10.35% 2.5%
M1,6 207218 46 0.98 0.23% 0.51% 0.42% 29 0.7 2.4% 5.49% 0.7%
M2,1 90055 47 0.98 0.75% 1.06% 0.39% 28 0.7 12.54% 12.52% 2.12%
M2,2 117750 46 0.98 0.43% 0.51% 0.03% 28 0.68 5.5% 6.32% 5.49%
M2,3 14439 46 0.98 0.01% 0.43% 0.43% 28 0.67 13.18% 4.45% 4.84%
M2,4 11334 47 0.98 2.54% 0.07% 0.62% 28 0.69 1.45% 9.26% 0.33%
M2,5 209126 46 0.98 0.08% 0.64% 0.48% 28 0.69 3.3% 2.22% 4.74%
M2,6 273644 46 0.98 0.33% 0.57% 0.22% 29 0.7 3.27% 2.2% 4.82%
M3,1 106457 46 0.98 0.17% 0.39% 0.5% 28 0.69 1.51% 0.37% 8.65%
M3,2 100138 46 0.98 0.59% 0.88% 0.33% 28 0.69 3.65% 3.9% 4.2%
M3,3 212592 47 0.98 0.62% 0.05% 0.36% 28 0.69 3.27% 2.47% 5.35%
M3,4 155864 46 0.98 0.19% 0.91% 0.17% 28 0.68 1.53% 4.55% 4.02%
M3,5 7954 47 0.98 1.1% 0.63% 1.37% 28 0.69 11.06% 11.78% 4.58%
M3,6 10501 46 0.97 0.47% 0.65% 1.18% 28 0.68 0.34% 1.82% 0.4%
M4,1 154215 46 0.97 1.0% 0.89% 0.87% 28 0.68 1.86% 1.32% 2.15%
M4,2 102091 46 0.98 1.03% 0.26% 0.26% 28 0.7 6.25% 2.33% 7.01%
M4,3 265096 46 0.97 1.18% 0.12% 0.06% 28 0.68 0.72% 0.12% 0.36%
M4,4 267087 46 0.98 0.19% 0.85% 0.43% 28 0.68 2.31% 2.92% 5.6%
M4,5 13872 46 0.98 0.83% 0.82% 0.08% 28 0.67 4.15% 12.58% 10.64%
M4,6 13074 46 0.98 1.62% 0.76% 0.88% 28 0.67 4.82% 1.23% 6.77%
M5,1 970486 47 0.98 0.72% 0.2% 0.77% 28 0.67 3.67% 3.23% 3.33%
M5,2 832672 47 0.98 0.89% 0.86% 0.2% 28 0.7 2.43% 6.25% 7.19%
M5,3 293826 47 0.98 0.33% 1.13% 0.6% 28 0.67 3.22% 4.48% 5.15%
M5,4 273445 47 0.98 0.74% 0.21% 0.61% 27 0.68 7.08% 6.75% 7.39%
M5,5 243042 46 0.98 0.58% 0.6% 0.63% 28 0.7 3.83% 4.59% 5.19%
M5,6 215511 47 0.98 0.11% 0.23% 0.46% 29 0.7 2.79% 4.75% 3.81%
M6,1 939754 47 0.98 0.99% 0.07% 1.05% 28 0.67 7.25% 0.51% 6.29%
M6,2 841299 46 0.97 0.32% 0.79% 0.29% 28 0.67 2.8% 3.76% 1.88%
M6,3 270734 46 0.98 9.94% 1.07% 0.36% 28 0.68 5.9% 0.36% 3.45%
M6,4 191214 47 0.98 0.18% 2.23% 0.59% 28 0.69 3.27% 1.83% 4.7%
M6,5 185951 47 0.98 0.67% 0.55% 1.32% 28 0.69 0.94% 6.4% 6.89%
M6,6 200650 46 0.97 0.35% 0.18% 0.08% 28 0.67 5.61% 5.8% 4.88%



5.1 − Comparison of BT+S for different values of r 50

Approximation Factor in % on the dataset SMS-ME

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 1011752 19 1.0 2.16% 1.94% 1.64% 19 1.0 2.17% 2.06% 0.91%
M1,2 1129270 18 1.0 0.82% 0.7% 1.47% 19 1.0 1.01% 1.15% 1.47%
M1,3 21587 19 1.0 1.64% 2.0% 2.11% 19 1.0 1.64% 0.85% 6.61%
M1,4 22676 19 1.0 0.51% 1.83% 1.53% 18 1.0 1.44% 1.87% 2.23%
M1,5 5315944 19 1.0 1.86% 2.07% 2.07% 18 1.0 2.08% 1.52% 2.14%
M1,6 11469761 18 1.0 0.41% 2.66% 2.66% 18 1.0 2.49% 3.24% 2.51%
M2,1 1492053 18 1.0 0.86% 0.53% 1.39% 19 1.0 1.41% 0.89% 1.59%
M2,2 1705749 19 1.0 1.93% 7.61% 1.51% 18 1.0 0.09% 2.4% 1.98%
M2,3 20745 19 1.0 2.49% 2.64% 0.19% 18 1.0 0.24% 2.02% 2.71%
M2,4 18587 19 1.0 1.81% 1.77% 4.51% 18 1.0 2.79% 0.9% 0.45%
M2,5 5945908 19 1.0 2.02% 2.14% 1.9% 18 1.0 4.19% 8.28% 2.2%
M2,6 4862269 19 1.0 1.16% 25.34% 1.77% 19 1.0 1.94% 1.76% 1.82%
M3,1 1404994 19 1.0 1.58% 1.18% 0.4% 19 1.0 1.68% 0.67% 0.73%
M3,2 1074065 18 1.0 1.27% 1.25% 0.31% 19 1.0 1.27% 1.28% 0.65%
M3,3 6053318 19 1.0 2.07% 2.11% 2.17% 18 1.0 1.72% 1.72% 2.05%
M3,4 5342704 19 1.0 1.6% 1.91% 2.18% 18 1.0 0.38% 1.35% 1.65%
M3,5 20847 19 1.0 2.85% 4.61% 2.64% 19 1.0 1.82% 0.05% 2.53%
M3,6 24213 19 1.0 0.53% 0.48% 1.39% 19 1.0 0.83% 1.27% 1.17%
M4,1 2562388 19 1.0 0.53% 0.88% 0.33% 19 1.0 1.5% 1.8% 1.57%
M4,2 1656174 18 1.0 0.23% 0.7% 0.81% 19 1.0 0.44% 0.9% 1.65%
M4,3 8983423 19 1.0 0.13% 2.06% 1.93% 19 1.0 1.93% 0.44% 1.66%
M4,4 5739729 18 1.0 1.41% 1.48% 5.11% 18 1.0 5.3% 1.97% 2.0%
M4,5 23769 18 1.0 1.09% 0.47% 1.3% 18 1.0 1.55% 1.0% 1.47%
M4,6 23612 19 1.0 1.17% 1.58% 2.38% 19 1.0 0.01% 0.0% 3.76%
M5,1 54657431 19 1.0 0.54% 0.33% 1.35% 19 1.0 1.92% 1.05% 0.95%
M5,2 54016279 18 1.0 1.52% 0.6% 1.35% 18 1.0 1.64% 2.08% 1.39%
M5,3 5527281 19 1.0 1.65% 0.43% 2.01% 18 1.0 0.89% 1.92% 1.97%
M5,4 3891704 19 1.0 1.2% 37.62% 1.21% 19 1.0 1.8% 1.92% 1.79%
M5,5 5113195 19 1.0 2.1% 1.41% 1.78% 19 1.0 1.97% 1.96% 1.31%
M5,6 3679849 19 1.0 1.21% 1.84% 4.18% 19 1.0 0.94% 1.99% 0.13%
M6,1 84304364 19 1.0 1.25% 1.27% 0.38% 18 1.0 0.17% 1.6% 1.25%
M6,2 53917340 19 1.0 9.24% 0.37% 1.03% 19 1.0 1.62% 1.59% 0.61%
M6,3 8277785 18 1.0 2.01% 2.11% 0.96% 18 1.0 2.45% 2.46% 1.49%
M6,4 4260867 19 1.0 1.76% 1.62% 1.98% 18 1.0 2.14% 1.91% 1.71%
M6,5 4910880 19 1.0 0.48% 1.86% 2.18% 18 1.0 1.93% 1.86% 1.68%
M6,6 4858353 19 1.0 1.55% 12.26% 1.91% 19 1.0 1.66% 2.01% 2.12%



51 5 − Experimental Evaluation

Approximation Factor in % on the dataset MathOverflow

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 131573 94 0.83 3.65% 0.78% 2.34% 29 0.26 2.22% 7.05% 12.11%
M1,2 44890 94 0.83 0.76% 2.53% 2.94% 28 0.26 9.58% 7.4% 3.55%
M1,3 26091 94 0.83 1.43% 0.0% 1.16% 29 0.26 8.34% 4.08% 10.61%
M1,4 21087 92 0.82 1.1% 2.58% 1.02% 29 0.26 5.4% 4.91% 1.23%
M1,5 99043 93 0.82 1.41% 1.94% 0.91% 30 0.28 12.15% 0.86% 1.09%
M1,6 217732 94 0.83 1.89% 3.08% 0.24% 28 0.26 7.42% 0.85% 8.4%
M2,1 34272 93 0.83 2.03% 0.63% 1.4% 29 0.26 0.23% 3.87% 4.92%
M2,2 22100 92 0.82 2.68% 0.88% 2.58% 29 0.26 5.56% 14.59% 5.57%
M2,3 13368 94 0.83 3.59% 0.44% 2.09% 29 0.26 3.45% 4.77% 5.84%
M2,4 3653 94 0.83 0.25% 11.24% 0.34% 29 0.26 14.66% 8.64% 15.49%
M2,5 101393 94 0.83 1.73% 0.7% 1.42% 29 0.26 8.82% 10.54% 0.75%
M2,6 40368 92 0.82 0.11% 1.89% 1.1% 29 0.26 15.11% 13.09% 5.61%
M3,1 34576 90 0.8 0.47% 2.98% 2.8% 29 0.26 1.5% 4.6% 9.33%
M3,2 41057 93 0.82 1.32% 1.57% 1.52% 29 0.26 9.37% 0.51% 4.04%
M3,3 52813 94 0.83 1.42% 8.38% 2.06% 29 0.26 0.35% 10.82% 3.85%
M3,4 116977 94 0.83 1.75% 0.06% 1.31% 29 0.26 1.21% 1.94% 0.34%
M3,5 8247 93 0.82 0.56% 0.86% 0.77% 29 0.26 12.03% 5.96% 3.52%
M3,6 16182 94 0.83 0.8% 0.93% 2.34% 29 0.26 0.3% 8.79% 0.91%
M4,1 54579 93 0.83 0.96% 2.28% 0.84% 29 0.26 1.41% 11.9% 1.28%
M4,2 29390 94 0.83 5.13% 0.48% 1.19% 29 0.26 7.93% 0.68% 0.72%
M4,3 163441 93 0.83 2.41% 1.44% 2.37% 30 0.28 7.68% 9.56% 3.2%
M4,4 56309 94 0.83 0.97% 3.61% 4.37% 29 0.26 4.78% 4.07% 2.94%
M4,5 14552 92 0.82 0.8% 1.89% 1.16% 29 0.26 6.75% 1.1% 1.31%
M4,6 7518 93 0.83 7.54% 2.52% 0.11% 28 0.25 2.3% 2.49% 11.38%
M5,1 9184 93 0.83 2.63% 1.08% 0.9% 29 0.26 1.8% 4.57% 8.36%
M5,2 32226 94 0.83 0.06% 5.71% 3.49% 29 0.26 13.44% 12.44% 5.94%
M5,3 54195 94 0.83 3.86% 1.02% 3.47% 29 0.26 8.2% 3.47% 2.86%
M5,4 62683 94 0.83 1.96% 2.21% 1.2% 29 0.26 10.6% 2.68% 0.07%
M5,5 56811 90 0.8 1.05% 0.7% 0.75% 30 0.28 22.76% 18.86% 1.31%
M5,6 78042 93 0.83 0.44% 1.06% 0.67% 29 0.26 2.85% 17.87% 3.96%
M6,1 91919 94 0.83 1.92% 2.37% 0.19% 29 0.26 26.63% 25.88% 27.92%
M6,2 18407 93 0.83 5.72% 4.46% 0.31% 29 0.26 0.48% 0.97% 8.44%
M6,3 163078 92 0.82 1.49% 1.95% 1.66% 29 0.26 7.2% 11.2% 10.56%
M6,4 108044 91 0.82 1.99% 3.04% 3.41% 29 0.26 4.34% 4.8% 3.55%
M6,5 96115 94 0.83 1.71% 1.64% 1.6% 29 0.26 2.25% 5.07% 5.76%
M6,6 217864 94 0.83 0.77% 3.82% 0.48% 29 0.26 9.03% 6.3% 10.87%
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Approximation Factor in % on the dataset AskUbuntu

BT+S - θ′1 BT+S - θ′2

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 126939 89 0.93 1.33% 0.85% 3.74% 26 0.25 19.01% 21.79% 30.05%
M1,2 63189 88 0.92 2.26% 2.56% 2.96% 27 0.26 3.64% 21.32% 4.9%
M1,3 19951 89 0.93 8.54% 3.23% 1.41% 27 0.27 9.49% 1.97% 8.12%
M1,4 19804 89 0.93 4.15% 5.11% 2.48% 27 0.26 1.31% 11.33% 12.3%
M1,5 168096 88 0.92 1.56% 0.15% 2.95% 27 0.26 12.43% 13.75% 20.01%
M1,6 426148 89 0.93 0.54% 0.48% 1.71% 27 0.26 27.87% 25.57% 28.38%
M2,1 139655 88 0.92 0.38% 0.89% 0.28% 27 0.27 27.7% 33.59% 28.16%
M2,2 55458 89 0.93 2.24% 2.24% 1.97% 27 0.27 37.14% 13.91% 35.89%
M2,3 13713 88 0.93 1.46% 3.67% 5.62% 27 0.26 18.07% 12.93% 1.87%
M2,4 5509 88 0.92 8.22% 6.68% 3.36% 28 0.27 19.17% 32.11% 15.0%
M2,5 413142 89 0.92 0.06% 1.78% 2.81% 27 0.27 30.38% 32.13% 32.11%
M2,6 298509 89 0.92 1.25% 0.82% 0.57% 27 0.26 24.78% 27.55% 30.58%
M3,1 79470 88 0.92 1.29% 1.15% 2.62% 28 0.27 25.39% 22.49% 21.38%
M3,2 113270 89 0.93 0.83% 0.58% 0.93% 27 0.26 22.35% 20.67% 14.27%
M3,3 179073 89 0.93 2.44% 1.88% 0.67% 27 0.26 28.59% 18.17% 20.96%
M3,4 745480 90 0.94 0.12% 0.34% 0.86% 27 0.27 23.31% 30.1% 21.6%
M3,5 8946 89 0.93 5.26% 4.23% 2.22% 28 0.27 8.02% 1.59% 7.82%
M3,6 14639 89 0.93 0.45% 2.66% 5.65% 27 0.26 4.17% 6.06% 5.08%
M4,1 199595 89 0.93 1.71% 0.44% 0.01% 27 0.27 32.54% 25.49% 32.11%
M4,2 207846 89 0.93 0.09% 0.55% 0.59% 27 0.26 22.24% 26.83% 23.5%
M4,3 1044513 89 0.93 0.98% 0.37% 0.29% 28 0.27 44.8% 37.38% 40.63%
M4,4 660015 89 0.92 0.61% 0.38% 0.35% 27 0.26 27.51% 31.73% 33.03%
M4,5 15512 88 0.93 3.08% 0.16% 5.03% 27 0.26 12.13% 11.94% 5.8%
M4,6 8346 89 0.93 7.08% 6.17% 7.33% 27 0.27 0.92% 11.93% 1.35%
M5,1 21737 88 0.93 1.15% 2.24% 1.82% 27 0.26 28.39% 46.76% 18.38%
M5,2 133038 89 0.93 0.54% 0.38% 0.4% 27 0.27 20.64% 22.4% 29.45%
M5,3 613592 89 0.93 0.0% 1.97% 0.83% 27 0.27 23.88% 29.12% 23.9%
M5,4 344810 89 0.93 0.47% 1.48% 1.36% 27 0.26 22.53% 21.25% 26.27%
M5,5 184475 88 0.93 0.23% 1.71% 0.99% 27 0.27 29.66% 27.98% 16.17%
M5,6 152517 88 0.93 2.72% 2.33% 0.72% 28 0.27 7.9% 3.08% 6.36%
M6,1 248091 89 0.93 0.1% 1.02% 0.63% 27 0.26 30.52% 31.13% 31.21%
M6,2 54097 88 0.92 1.27% 1.27% 0.76% 27 0.26 38.02% 37.18% 24.12%
M6,3 994099 88 0.92 0.36% 2.53% 0.56% 27 0.27 43.52% 34.73% 39.01%
M6,4 410366 90 0.94 0.72% 0.03% 1.92% 27 0.27 25.19% 25.75% 26.39%
M6,5 654357 88 0.92 0.44% 0.44% 0.36% 27 0.26 31.41% 26.65% 29.5%
M6,6 438895 88 0.93 1.2% 1.41% 1.77% 27 0.26 18.84% 26.26% 27.26%
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Approximation Factor in % on the dataset WikiTalk

BT+S - θ′3 BT+S - θ′4

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 539857 103 0.09 13.64% 0.96% 4.53% 22 0.02 44.54% 41.81% 51.01%
M1,2 135226 102 0.1 17.09% 16.31% 4.73% 23 0.02 20.6% 23.63% 21.77%
M1,3 86836 103 0.09 0.27% 21.9% 6.85% 22 0.02 41.1% 42.27% 18.14%
M1,4 100824 103 0.09 11.45% 14.86% 14.01% 23 0.02 4.25% 29.06% 36.69%
M1,5 266910 102 0.09 9.3% 8.48% 6.44% 24 0.02 19.22% 13.22% 35.22%
M1,6 932924 100 0.09 4.45% 21.91% 15.74% 23 0.02 32.93% 41.81% 30.07%
M2,1 446410 99 0.09 31.72% 14.43% 8.32% 23 0.02 24.68% 173.3% 45.56%
M2,2 248332 102 0.1 68.03% 76.57% 12.73% 26 0.03 33.66% 39.14% 19.71%
M2,3 56354 102 0.1 12.15% 13.78% 13.39% 23 0.02 24.61% 9.92% 9.99%
M2,4 21941 103 0.09 31.12% 20.31% 8.26% 23 0.02 17.95% 61.49% 14.41%
M2,5 1017969 100 0.09 20.82% 23.62% 0.0% 25 0.03 29.33% 18.08% 29.29%
M2,6 229169 99 0.09 1.08% 12.22% 1.95% 21 0.02 8.52% 13.27% 37.39%
M3,1 462985 103 0.09 44.7% 16.96% 9.47% 23 0.02 29.23% 158.48% 159.63%
M3,2 158717 104 0.09 6.08% 6.49% 2.08% 24 0.02 39.26% 32.53% 34.46%
M3,3 831400 103 0.1 5.07% 6.87% 29.77% 26 0.03 15.51% 23.55% 28.38%
M3,4 1437961 101 0.09 36.11% 14.01% 34.55% 23 0.02 55.72% 51.69% 5.22%
M3,5 31988 103 0.09 7.99% 7.89% 8.04% 23 0.02 2.96% 52.33% 12.13%
M3,6 78717 101 0.09 0.24% 10.17% 12.31% 22 0.02 11.74% 19.77% 10.15%
M4,1 176665319 101 0.09 7.41% 34.99% 57.22% 24 0.02 81.3% 86.0% 42.31%
M4,2 579299 102 0.1 14.53% 9.43% 6.45% 24 0.02 38.96% 6.61% 39.0%
M4,3 376601375 102 0.09 18.52% 21.59% 12.07% 23 0.02 19.37% 75.37% 39.14%
M4,4 991003 101 0.09 22.6% 3.19% 3.11% 23 0.02 8.2% 14.46% 25.14%
M4,5 - - - - - - - - - - -
M4,6 - - - - - - - - - - -
M5,1 918754 103 0.09 5.21% 5.23% 8.58% 23 0.02 35.97% 28.68% 34.0%
M5,2 825696 102 0.09 5.42% 2.35% 2.32% 26 0.03 22.02% 30.25% 34.95%
M5,3 713196 100 0.09 9.93% 30.9% 2.22% 23 0.02 16.65% 16.62% 25.24%
M5,4 305617 104 0.09 5.96% 8.21% 6.18% 22 0.02 16.72% 35.07% 31.61%
M5,5 655935 101 0.09 2.55% 6.39% 1.63% 23 0.02 24.4% 20.15% 9.43%
M5,6 314878 101 0.09 2.4% 8.49% 3.16% 26 0.03 24.89% 43.51% 18.9%
M6,1 15047345 100 0.09 22.02% 5.87% 13.92% 23 0.02 44.69% 32.98% 70.22%
M6,2 799080 102 0.1 7.62% 7.19% 45.59% 23 0.02 32.4% 34.86% 27.3%
M6,3 382034965 101 0.09 16.25% 18.35% 12.93% 23 0.02 76.65% 67.49% 275.9%
M6,4 1538217 101 0.09 0.93% 49.76% 99.21% 21 0.02 45.06% 25.96% 72.65%
M6,5 910740 101 0.09 38.54% 35.17% 43.85% 23 0.02 24.53% 49.85% 53.14%
M6,6 972272 102 0.1 19.32% 71.58% 1.64% 22 0.02 48.73% 43.33% 43.87%
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5.2 Evaluation of our Sampling Algorithms

We implemented our two sampling versions using the C++ language, we
used as base code the code of Liu et al., and tested them on the dataset
in table 5.1. Our sampling algorithms are (ε, η)-approximation algorithms
and we tested the theoretical sample sizes to obtain an (ε = 0.1, η = 0.05)-
approximation but the theoretical sample sizes result in a huge number of
samples s which we decided to not test since it would require much more
running time than an exact routine. In the experiments we performed we
set the number of samples s the same for the two procedures and given a
dataset and a motif Mi,j , i, j = 1, . . . , 6 we set s to the value s̄1 on the same
dataset and the same motif from the previous tables, such that we also may
compare our algorithms to the sampling schema of Liu et al. We set the other
parameters to c = 20, δ = 86400 for all the datasets except wikitalk were we
set δ = 3200. The value of s is also reported in each table. In the tables we also
reported φ̄i, i = 1, 2 which are computed as follows φ̄i = 1/3

∑3
j=1 φ

i
j , i = 1, 2,

where φij =
∑

e∈E 1[e ∈ Sij ]/|E|, i = 1, 2, j = 1, 2, 3 where 1[·] is the indicator
function, Sij = {e ∈ E : e ∈ T ija , a = 1, . . . , s}, and T ija is the sample
a = 1, . . . , s of variant i = 1, 2 at run j = 1, 2, 3. Intuitively the value
of 0 ≤ φij ≤ 1, i = 1, 2, j = 1, 2, 3 quantifies how much the whole graph
is explored by our sampling procedures, i.e., when we chose randomly an
interval of length cδ we may end up choosing very close intervals, then in
such case φij ∼ 0, if instead we covered all the possible temporal edges then
φij ∼ 1. Then φ̄i, i = 1, 2 is the mean over the three runs for each variant
of the quantities φij . Thus informally, such number represents the fraction
of spanned edges, i.e., an edge is spanned if it is contained in some sample,
during the sampling procedure.

In the tables from page 55 to 62 we present our results, in particular we
first observe that it is not so clear which of the two procedures performs better
since this also depends on the motif and on the dataset. We observe that our
procedures achieve very high approximations on the datasets CollegeMsg,
email-Eu-core and SMS-ME and for some motifs on FBWall. While the
approximation is not so high on the other datasets except Wikitalk which we
will discuss at the end. Comparing our procedures to the ones of Liu et al.
we observe that their procedures work much better, this is also due to great
variance our estimates have (see the variance analysis in Chapter 3), while
the estimate of their schema has lower variance (see Chapter 2). The great
variance of our algorithms is reflected in the data, one example is the second
variant for motif M6,2 in the dataset email-Eu-Core at page 56 which ranges
from an approximation factor of 0, 82% to 74, 37% in only three runs. Finally,
looking at the wikitalk dataset where motifs M4,5 and M4,6 are not reported
since they ran out of memory, our algorithms are, except for some “unlucky”
motifs, comparable to the algorithms of Liu et al., which is interesting since
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we have greater variance but also achieve some lower approximation factor
than their procedures.

Looking at the values of φ̄i, i = 1, 2 we observe that usually our procedures
have such value under 0.8, this means that there are some intervals which we
do not look for in the whole procedure, this may be the key to understand
the large variance of our estimate. In particular we may end up sampling
many intervals which do not contain the motifs we are looking for, and we
may not look at the only important intervals we need. Moreover, we observe
that a higher value of φ̄i, i = 1, 2 leads to a lower mean approximation factor
along the three runs; which reconciles with the fact that more we explore the
dataset, a better estimate we may get. Interestingly on the dataset SuperUser,
table at page 58, we achieve good approximation factors overall but the values
of φ̄i, i = 1, 2 ae under 0.6 which suggests that this value alone cannot explain
all the performances of our algorithms, thus further measures may be needed.
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Approximation Factor in % on the dataset CollegeMsg

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 487365 10 0.77 66.77% 28.62% 76.63% 0.8 5.94% 139.65% 47.34%
M1,2 295970 10 0.78 3.28% 32.38% 7.84% 0.88 17.71% 17.53% 86.97%
M1,3 19929 10 0.67 70.61% 45.37% 51.35% 0.83 32.02% 140.87% 27.29%
M1,4 20000 10 0.86 44.75% 1.45% 67.87% 0.75 54.03% 10.24% 67.68%
M1,5 861906 10 0.8 19.28% 5.7% 32.7% 0.66 15.99% 50.82% 42.17%
M1,6 1204020 10 0.8 37.22% 32.4% 22.53% 0.81 114.7% 31.4% 64.55%
M2,1 368884 10 0.67 60.35% 32.27% 14.44% 0.65 113.24% 12.56% 2.51%
M2,2 254907 10 0.8 11.14% 35.5% 37.77% 0.65 2.4% 30.11% 77.97%
M2,3 16064 10 0.73 43.94% 26.25% 63.14% 0.57 13.67% 94.89% 10.95%
M2,4 9850 10 0.77 40.07% 34.5% 10.84% 0.45 95.33% 38.07% 70.18%
M2,5 829831 10 0.86 1.7% 13.83% 18.74% 0.72 49.81% 6.62% 0.69%
M2,6 800249 10 0.75 34.84% 24.06% 31.16% 0.44 82.51% 29.92% 59.62%
M3,1 336455 10 0.72 6.57% 29.76% 21.81% 0.71 44.25% 5.96% 79.15%
M3,2 349781 10 0.74 51.21% 30.37% 23.17% 0.74 15.93% 16.71% 162.26%
M3,3 854505 10 0.84 6.8% 21.99% 22.4% 0.67 63.54% 54.95% 80.25%
M3,4 1061197 10 0.68 16.96% 62.63% 53.61% 0.73 75.11% 46.95% 45.01%
M3,5 14138 10 0.83 0.94% 28.48% 7.44% 0.44 27.45% 40.88% 85.93%
M3,6 20041 10 0.73 39.35% 14.88% 22.25% 0.61 51.53% 49.61% 16.09%
M4,1 711713 10 0.79 26.23% 4.0% 19.54% 0.79 68.81% 172.81% 4.91%
M4,2 331604 10 0.87 19.49% 17.38% 7.34% 0.64 94.51% 53.02% 27.09%
M4,3 1759008 10 0.87 19.79% 22.98% 30.12% 0.68 4.55% 0.3% 14.05%
M4,4 866703 10 0.77 26.87% 1.96% 17.93% 0.41 78.46% 41.73% 37.54%
M4,5 20853 10 0.76 21.62% 67.41% 5.67% 0.84 32.51% 26.23% 40.37%
M4,6 17848 10 0.85 5.29% 24.04% 32.68% 0.73 12.43% 12.09% 27.78%
M5,1 398228 9 0.82 14.43% 28.17% 37.91% 0.58 23.51% 29.3% 75.99%
M5,2 364948 10 0.75 39.26% 35.83% 0.04% 0.67 23.16% 11.64% 27.37%
M5,3 751816 10 0.81 19.9% 10.25% 4.29% 0.7 30.56% 15.69% 10.51%
M5,4 891158 10 0.76 35.1% 25.81% 16.57% 0.68 56.62% 33.53% 30.6%
M5,5 747568 10 0.84 6.09% 5.07% 4.42% 0.71 56.34% 28.22% 19.45%
M5,6 882872 10 0.76 10.51% 19.7% 17.3% 0.72 15.61% 33.93% 22.15%
M6,1 773848 10 0.78 3.62% 0.08% 23.38% 0.49 70.46% 25.25% 16.39%
M6,2 381720 10 0.77 12.76% 4.57% 48.74% 0.52 84.37% 72.91% 6.89%
M6,3 1697377 10 0.72 18.84% 32.27% 31.09% 0.54 3.25% 46.71% 75.99%
M6,4 953679 10 0.84 0.53% 14.57% 23.11% 0.53 91.79% 2.95% 117.07%
M6,5 910724 10 0.8 57.73% 36.1% 3.19% 0.57 47.73% 51.16% 5.42%
M6,6 1201092 10 0.74 21.32% 47.73% 27.47% 0.76 187.22% 34.26% 5.12%
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Approximation Factor in % on the dataset email-Eu-core

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 514417 28 0.66 6.87% 2.28% 18.77% 0.49 54.25% 25.99% 14.04%
M1,2 430620 29 0.63 4.92% 15.58% 0.72% 0.44 24.87% 27.57% 14.45%
M1,3 169284 29 0.65 7.72% 7.3% 12.99% 0.55 4.55% 17.28% 23.48%
M1,4 198631 28 0.61 19.85% 11.31% 5.29% 0.5 19.96% 3.59% 6.36%
M1,5 626891 27 0.65 5.78% 5.25% 16.35% 0.42 12.5% 12.43% 47.87%
M1,6 789842 28 0.62 10.72% 9.22% 16.57% 0.54 27.55% 2.92% 16.75%
M2,1 711249 28 0.63 2.63% 0.52% 0.83% 0.52 1.11% 8.48% 23.59%
M2,2 817579 29 0.61 15.64% 2.03% 3.46% 0.57 20.32% 14.57% 1.61%
M2,3 160528 29 0.58 20.74% 15.24% 2.17% 0.47 45.97% 5.53% 29.78%
M2,4 122157 29 0.65 25.67% 9.45% 15.28% 0.51 8.42% 32.84% 7.26%
M2,5 1016020 29 0.69 4.73% 4.26% 12.01% 0.48 42.3% 12.58% 7.02%
M2,6 626374 27 0.59 9.5% 21.16% 14.98% 0.51 3.57% 1.01% 2.66%
M3,1 705429 29 0.61 0.49% 11.3% 17.46% 0.48 32.59% 11.29% 1.55%
M3,2 466983 28 0.66 6.36% 2.75% 1.24% 0.45 9.62% 6.07% 9.1%
M3,3 975941 28 0.66 15.2% 4.46% 2.94% 0.5 11.4% 13.55% 2.76%
M3,4 1091657 29 0.6 15.57% 6.73% 10.39% 0.47 5.13% 23.59% 24.61%
M3,5 136107 28 0.62 8.94% 9.61% 5.86% 0.44 3.9% 40.41% 16.04%
M3,6 209354 28 0.64 10.35% 20.77% 1.06% 0.44 12.31% 3.08% 4.1%
M4,1 3385029 28 0.69 4.16% 8.03% 2.56% 0.49 9.79% 5.4% 13.07%
M4,2 858673 28 0.66 1.94% 11.8% 5.43% 0.46 25.03% 15.81% 64.3%
M4,3 3693684 29 0.69 10.2% 10.54% 8.33% 0.49 1.05% 15.9% 0.99%
M4,4 1094325 28 0.68 3.3% 6.68% 6.47% 0.41 22.21% 43.33% 27.14%
M4,5 205742 28 0.62 19.73% 8.91% 5.51% 0.53 40.84% 19.52% 23.49%
M4,6 207165 27 0.64 11.57% 9.02% 13.27% 0.52 0.15% 29.29% 1.31%
M5,1 1392520 28 0.65 6.92% 36.71% 10.59% 0.45 61.06% 18.95% 10.9%
M5,2 1362409 28 0.65 1.38% 32.51% 35.41% 0.5 20.83% 24.54% 6.21%
M5,3 921000 28 0.61 8.36% 2.52% 4.04% 0.45 13.71% 30.22% 29.78%
M5,4 631995 28 0.65 1.48% 0.44% 5.54% 0.49 4.65% 16.84% 14.35%
M5,5 1072210 28 0.68 1.59% 12.27% 1.73% 0.48 21.65% 34.92% 0.4%
M5,6 651653 29 0.64 9.08% 1.22% 29.59% 0.52 23.79% 7.78% 3.04%
M6,1 2064940 29 0.67 11.25% 3.96% 15.88% 0.45 31.16% 6.01% 9.74%
M6,2 1363113 29 0.63 13.56% 16.28% 13.29% 0.47 1.44% 14.34% 11.75%
M6,3 3848912 28 0.61 21.64% 11.84% 28.49% 0.46 29.62% 21.13% 10.59%
M6,4 1029608 28 0.65 3.98% 4.87% 5.0% 0.52 9.13% 30.33% 2.19%
M6,5 1108292 28 0.62 15.24% 13.5% 4.74% 0.53 31.42% 10.05% 32.29%
M6,6 810796 29 0.62 6.54% 9.77% 11.89% 0.51 15.2% 22.05% 10.61%
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Approximation Factor in % on the dataset sx-SuperUser

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 166857 103 0.57 2.71% 6.43% 5.6% 0.52 3.75% 0.98% 2.36%
M1,2 89735 102 0.56 3.9% 3.81% 4.34% 0.51 8.95% 0.89% 1.5%
M1,3 31181 99 0.56 1.96% 8.56% 3.83% 0.51 12.21% 4.64% 13.12%
M1,4 33002 99 0.54 7.51% 5.66% 8.57% 0.52 4.92% 2.45% 2.81%
M1,5 202005 101 0.56 3.53% 0.51% 2.05% 0.51 0.68% 2.88% 8.95%
M1,6 388398 99 0.57 4.51% 0.62% 1.93% 0.53 1.05% 6.97% 4.28%
M2,1 132965 102 0.56 8.01% 2.35% 4.86% 0.52 6.84% 9.06% 0.56%
M2,2 56823 101 0.57 4.31% 1.31% 1.49% 0.5 5.1% 2.3% 6.6%
M2,3 21089 103 0.55 3.24% 2.72% 1.02% 0.5 3.5% 16.49% 17.79%
M2,4 6334 103 0.54 7.25% 7.09% 0.5% 0.49 15.47% 10.79% 28.35%
M2,5 326259 100 0.54 2.68% 5.18% 3.18% 0.51 3.69% 0.7% 3.89%
M2,6 279654 99 0.55 13.04% 5.04% 3.29% 0.51 12.79% 15.29% 5.88%
M3,1 79626 99 0.56 4.28% 0.01% 1.69% 0.53 3.52% 1.0% 1.02%
M3,2 129020 100 0.57 4.11% 6.91% 1.66% 0.53 1.6% 9.44% 1.21%
M3,3 147975 99 0.56 9.75% 3.26% 0.83% 0.5 16.27% 5.0% 3.64%
M3,4 557702 102 0.55 6.79% 2.05% 3.88% 0.51 0.23% 3.09% 10.68%
M3,5 12263 101 0.59 4.11% 1.92% 5.86% 0.53 7.66% 11.56% 8.68%
M3,6 24870 100 0.55 3.64% 1.11% 3.76% 0.49 10.26% 4.02% 9.64%
M4,1 233400 99 0.57 2.76% 2.17% 4.41% 0.51 4.28% 0.66% 3.02%
M4,2 209077 102 0.57 0.15% 0.63% 1.43% 0.5 0.06% 7.65% 4.26%
M4,3 1091788 102 0.56 3.01% 5.24% 9.47% 0.51 3.67% 2.15% 1.7%
M4,4 601707 99 0.55 4.26% 0.31% 4.77% 0.51 0.47% 13.52% 4.09%
M4,5 22457 100 0.55 3.86% 8.55% 3.0% 0.5 3.44% 7.74% 3.68%
M4,6 11976 102 0.57 0.89% 3.95% 10.07% 0.51 6.02% 6.4% 1.17%
M5,1 17898 101 0.57 3.68% 1.7% 2.06% 0.49 3.93% 1.11% 9.11%
M5,2 112602 99 0.56 2.18% 2.26% 0.87% 0.5 0.2% 8.0% 2.51%
M5,3 549672 101 0.57 4.27% 1.34% 9.59% 0.53 5.0% 3.41% 7.82%
M5,4 343289 99 0.56 3.78% 5.85% 7.35% 0.52 5.87% 5.59% 5.52%
M5,5 170469 101 0.58 0.03% 17.28% 1.42% 0.51 0.36% 9.3% 4.5%
M5,6 184637 99 0.55 5.35% 4.02% 1.85% 0.5 18.85% 10.53% 6.71%
M6,1 167850 99 0.55 2.29% 0.12% 4.5% 0.49 7.17% 6.05% 6.28%
M6,2 40629 100 0.56 0.98% 2.33% 3.91% 0.5 1.07% 8.1% 6.74%
M6,3 1059493 98 0.56 6.21% 3.86% 3.78% 0.48 3.55% 11.14% 10.97%
M6,4 322650 98 0.56 1.42% 1.07% 1.17% 0.51 10.35% 5.0% 8.44%
M6,5 472529 99 0.56 6.18% 1.44% 11.63% 0.51 1.33% 9.96% 2.06%
M6,6 396247 102 0.57 0.91% 0.47% 3.94% 0.53 4.94% 3.04% 5.38%
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Approximation Factor in % on the dataset FBWall

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 115233 46 0.63 4.23% 8.26% 5.67% 0.41 23.96% 6.07% 8.12%
M1,2 135152 46 0.65 0.72% 8.53% 0.54% 0.42 9.31% 42.35% 1.53%
M1,3 11221 47 0.68 19.0% 9.28% 12.15% 0.39 2.12% 41.46% 53.25%
M1,4 12256 47 0.66 3.4% 31.63% 0.88% 0.44 19.86% 20.04% 14.21%
M1,5 251005 46 0.68 0.25% 0.52% 6.28% 0.39 21.9% 15.27% 1.91%
M1,6 207218 46 0.63 6.41% 0.61% 2.86% 0.48 5.87% 26.71% 13.26%
M2,1 90055 47 0.66 10.49% 7.45% 8.65% 0.41 34.66% 13.91% 9.83%
M2,2 117750 46 0.64 2.41% 6.53% 7.83% 0.43 3.83% 8.01% 18.73%
M2,3 14439 46 0.62 5.53% 12.46% 9.4% 0.46 13.38% 27.9% 34.33%
M2,4 11334 47 0.67 14.44% 11.33% 16.87% 0.45 25.21% 2.5% 44.6%
M2,5 209126 46 0.64 0.09% 1.43% 1.86% 0.45 21.28% 18.66% 17.52%
M2,6 273644 46 0.66 0.93% 0.06% 5.12% 0.44 22.56% 0.48% 6.01%
M3,1 106457 46 0.64 9.25% 7.04% 1.9% 0.44 21.84% 11.06% 10.86%
M3,2 100138 46 0.64 2.44% 11.38% 2.51% 0.37 33.69% 16.9% 1.32%
M3,3 212592 47 0.62 9.47% 7.06% 2.87% 0.51 33.58% 11.27% 7.5%
M3,4 155864 46 0.66 19.48% 19.47% 5.63% 0.43 26.87% 6.05% 17.31%
M3,5 7954 47 0.66 30.06% 15.4% 5.73% 0.46 76.41% 73.03% 42.47%
M3,6 10501 46 0.68 41.0% 8.39% 22.31% 0.48 44.88% 3.19% 36.19%
M4,1 154215 46 0.67 2.27% 3.29% 19.62% 0.45 46.22% 47.02% 34.13%
M4,2 102091 46 0.68 0.19% 14.17% 5.15% 0.45 5.18% 0.9% 1.92%
M4,3 265096 46 0.64 2.78% 33.82% 8.86% 0.45 11.1% 21.34% 2.35%
M4,4 267087 46 0.6 0.01% 2.23% 6.74% 0.46 8.26% 2.24% 14.42%
M4,5 13872 46 0.64 21.92% 11.17% 8.85% 0.43 54.33% 18.61% 22.44%
M4,6 13074 46 0.66 10.44% 10.41% 2.91% 0.37 7.2% 60.96% 9.86%
M5,1 970486 47 0.67 2.36% 0.57% 10.74% 0.48 0.88% 13.35% 18.68%
M5,2 832672 47 0.64 3.5% 0.7% 18.85% 0.47 4.96% 23.92% 12.78%
M5,3 293826 47 0.66 1.82% 10.83% 0.64% 0.41 15.74% 10.11% 4.07%
M5,4 273445 47 0.64 6.49% 1.11% 4.27% 0.45 5.79% 15.43% 8.43%
M5,5 243042 46 0.66 2.79% 2.68% 9.59% 0.4 0.06% 8.03% 34.99%
M5,6 215511 47 0.64 5.47% 3.28% 3.41% 0.47 11.06% 11.5% 4.55%
M6,1 939754 47 0.63 7.54% 7.09% 5.18% 0.49 28.37% 24.95% 5.57%
M6,2 841299 46 0.65 15.04% 1.76% 4.5% 0.45 25.48% 30.17% 43.32%
M6,3 270734 46 0.68 22.58% 14.39% 2.12% 0.49 54.5% 27.31% 19.17%
M6,4 191214 47 0.63 5.62% 15.07% 5.1% 0.49 7.74% 2.21% 43.6%
M6,5 185951 47 0.61 4.19% 8.88% 1.27% 0.48 38.25% 7.63% 5.81%
M6,6 200650 46 0.64 5.21% 2.36% 3.71% 0.44 3.84% 27.79% 41.04%
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Approximation Factor in % on the dataset SMS-ME

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 1011752 19 0.57 27.39% 25.82% 3.27% 0.61 25.88% 5.34% 9.76%
M1,2 1129270 18 0.55 18.95% 57.21% 70.43% 0.64 34.62% 12.76% 3.99%
M1,3 21587 19 0.59 35.12% 5.27% 1.33% 0.69 11.02% 23.82% 9.57%
M1,4 22676 19 0.58 18.46% 23.83% 22.89% 0.61 6.06% 9.94% 0.73%
M1,5 5315944 19 0.58 13.49% 58.01% 55.56% 0.65 22.71% 14.34% 20.67%
M1,6 11469761 18 0.56 4.56% 22.27% 6.3% 0.61 14.81% 70.53% 84.12%
M2,1 1492053 18 0.66 27.78% 59.11% 12.33% 0.59 38.77% 45.08% 52.89%
M2,2 1705749 19 0.58 109.94% 34.48% 3.62% 0.72 5.5% 2.5% 22.35%
M2,3 20745 19 0.59 27.96% 13.3% 5.5% 0.62 0.97% 10.57% 19.87%
M2,4 18587 19 0.57 20.18% 12.39% 17.37% 0.65 11.2% 3.99% 3.5%
M2,5 5945908 19 0.6 73.52% 40.14% 57.55% 0.66 8.27% 24.7% 79.99%
M2,6 4862269 19 0.56 68.59% 19.43% 7.21% 0.69 3.59% 41.78% 42.9%
M3,1 1404994 19 0.62 115.32% 1.25% 3.93% 0.62 50.62% 56.27% 25.9%
M3,2 1074065 18 0.55 11.31% 59.6% 17.82% 0.7 41.83% 10.17% 40.11%
M3,3 6053318 19 0.61 56.44% 49.06% 51.53% 0.67 69.5% 44.23% 40.43%
M3,4 5342704 19 0.63 80.6% 45.42% 40.67% 0.64 46.37% 19.91% 10.22%
M3,5 20847 19 0.57 41.13% 4.2% 13.03% 0.64 17.19% 2.32% 8.53%
M3,6 24213 19 0.6 3.75% 16.76% 32.49% 0.68 6.88% 26.62% 9.36%
M4,1 2562388 19 0.57 39.86% 22.04% 55.1% 0.61 23.78% 12.96% 58.2%
M4,2 1656174 18 0.58 74.28% 51.13% 2.87% 0.6 13.17% 3.86% 10.86%
M4,3 8983423 19 0.54 28.63% 42.95% 0.65% 0.62 19.59% 36.79% 61.14%
M4,4 5739729 18 0.65 64.0% 47.2% 9.22% 0.63 35.17% 8.52% 2.99%
M4,5 23769 18 0.59 20.02% 7.87% 27.33% 0.61 8.63% 15.16% 23.48%
M4,6 23612 19 0.62 0.94% 8.99% 9.29% 0.62 6.97% 19.77% 0.43%
M5,1 54657431 19 0.6 25.07% 27.45% 16.25% 0.61 44.28% 3.64% 8.89%
M5,2 54016279 18 0.62 8.04% 17.5% 0.13% 0.67 8.23% 1.72% 5.49%
M5,3 5527281 19 0.62 61.86% 6.27% 7.54% 0.66 10.5% 35.2% 51.97%
M5,4 3891704 19 0.59 5.92% 23.19% 1.07% 0.67 52.82% 64.31% 73.37%
M5,5 5113195 19 0.64 5.87% 18.7% 6.71% 0.61 5.14% 49.82% 57.18%
M5,6 3679849 19 0.6 11.94% 56.42% 28.37% 0.59 72.54% 41.5% 57.42%
M6,1 84304364 19 0.6 25.24% 3.75% 0.8% 0.64 9.62% 15.38% 38.97%
M6,2 53917340 19 0.61 13.14% 3.31% 7.74% 0.63 2.8% 7.84% 6.27%
M6,3 8277785 18 0.61 6.69% 37.85% 14.88% 0.62 23.23% 2.16% 37.64%
M6,4 4260867 19 0.58 41.09% 21.43% 102.41% 0.67 2.37% 3.77% 65.42%
M6,5 4910880 19 0.6 73.61% 57.99% 58.22% 0.63 8.09% 18.18% 68.06%
M6,6 4858353 19 0.54 71.32% 37.3% 52.79% 0.66 7.02% 23.25% 85.4%
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Approximation Factor in % on the dataset MathOverflow

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 131573 94 0.56 0.47% 4.88% 0.98% 0.56 2.51% 2.88% 6.37%
M1,2 44890 94 0.56 8.43% 3.42% 4.99% 0.55 2.87% 1.74% 7.42%
M1,3 26091 94 0.56 0.44% 6.44% 15.05% 0.54 9.07% 5.65% 5.97%
M1,4 21087 92 0.55 2.11% 10.96% 7.78% 0.53 2.79% 11.71% 24.28%
M1,5 99043 93 0.55 0.84% 3.6% 4.14% 0.55 3.54% 6.91% 1.57%
M1,6 217732 94 0.57 8.19% 1.61% 1.88% 0.58 4.06% 7.3% 9.53%
M2,1 34272 93 0.55 17.33% 18.75% 2.5% 0.55 7.8% 10.93% 17.09%
M2,2 22100 92 0.55 3.03% 8.39% 19.74% 0.55 2.89% 0.95% 8.14%
M2,3 13368 94 0.54 12.0% 13.96% 17.38% 0.52 9.75% 2.51% 20.92%
M2,4 3653 94 0.54 1.52% 13.91% 9.62% 0.55 1.92% 8.06% 6.35%
M2,5 101393 94 0.57 1.55% 4.71% 0.64% 0.52 5.46% 4.66% 2.42%
M2,6 40368 92 0.58 6.61% 0.65% 9.04% 0.54 8.0% 28.97% 3.1%
M3,1 34576 90 0.57 12.9% 3.72% 13.71% 0.55 22.17% 7.76% 1.14%
M3,2 41057 93 0.57 2.29% 8.41% 7.25% 0.53 9.82% 8.39% 0.73%
M3,3 52813 94 0.58 20.67% 1.82% 2.06% 0.54 3.01% 5.71% 6.48%
M3,4 116977 94 0.55 0.26% 4.5% 15.16% 0.52 4.11% 0.29% 5.61%
M3,5 8247 93 0.57 3.59% 4.0% 0.33% 0.55 4.62% 18.83% 16.65%
M3,6 16182 94 0.54 5.23% 1.51% 8.87% 0.56 18.1% 3.63% 9.86%
M4,1 54579 93 0.55 1.52% 3.71% 0.9% 0.54 2.19% 14.16% 10.07%
M4,2 29390 94 0.55 16.36% 13.21% 10.5% 0.53 3.47% 1.6% 22.56%
M4,3 163441 93 0.55 1.63% 8.88% 6.14% 0.53 0.54% 8.97% 14.77%
M4,4 56309 94 0.55 5.1% 12.31% 0.02% 0.54 21.98% 2.7% 15.88%
M4,5 14552 92 0.56 5.62% 5.9% 15.72% 0.55 8.81% 3.62% 4.57%
M4,6 7518 93 0.58 11.3% 5.66% 2.91% 0.54 4.75% 0.78% 8.16%
M5,1 9184 93 0.53 1.31% 14.59% 18.13% 0.54 2.78% 8.49% 5.41%
M5,2 32226 94 0.58 1.54% 4.12% 0.22% 0.52 4.65% 0.05% 3.56%
M5,3 54195 94 0.56 14.94% 12.19% 18.74% 0.54 0.36% 13.82% 1.66%
M5,4 62683 94 0.54 5.69% 4.7% 11.77% 0.53 3.34% 15.12% 5.59%
M5,5 56811 90 0.55 14.45% 8.73% 9.42% 0.54 3.5% 12.81% 21.57%
M5,6 78042 93 0.55 3.69% 0.29% 7.47% 0.55 2.38% 5.16% 4.38%
M6,1 91919 94 0.57 15.24% 1.98% 19.64% 0.55 11.97% 14.15% 11.11%
M6,2 18407 93 0.56 12.8% 10.88% 3.82% 0.53 0.55% 1.51% 1.69%
M6,3 163078 92 0.55 5.27% 6.01% 9.64% 0.53 4.06% 1.28% 8.19%
M6,4 108044 91 0.55 3.74% 6.59% 4.89% 0.53 1.22% 13.44% 1.99%
M6,5 96115 94 0.56 0.74% 11.58% 6.49% 0.55 0.92% 9.95% 14.42%
M6,6 217864 94 0.56 1.2% 2.39% 1.64% 0.55 5.43% 4.03% 0.8%
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Approximation Factor in % on the dataset AskUbuntu

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 126939 89 0.6 3.76% 7.77% 0.13% 0.52 16.02% 8.76% 2.64%
M1,2 63189 88 0.62 4.26% 2.19% 3.16% 0.49 8.24% 2.35% 4.51%
M1,3 19951 89 0.61 6.83% 11.89% 2.21% 0.47 2.16% 6.66% 4.47%
M1,4 19804 89 0.62 9.23% 0.64% 9.27% 0.49 2.0% 0.35% 2.58%
M1,5 168096 88 0.59 0.13% 2.06% 3.16% 0.49 16.12% 1.63% 15.18%
M1,6 426148 89 0.59 5.24% 4.92% 6.75% 0.47 5.46% 15.3% 7.08%
M2,1 139655 88 0.6 3.4% 0.81% 3.89% 0.54 3.95% 34.85% 7.23%
M2,2 55458 89 0.6 3.5% 16.98% 2.91% 0.52 13.31% 13.44% 3.81%
M2,3 13713 88 0.6 4.84% 4.22% 7.66% 0.52 21.9% 7.96% 6.7%
M2,4 5509 88 0.58 6.88% 19.82% 5.02% 0.51 18.0% 19.16% 10.26%
M2,5 413142 89 0.57 0.79% 0.14% 15.23% 0.5 12.03% 26.02% 4.74%
M2,6 298509 89 0.6 3.67% 2.7% 18.74% 0.52 2.33% 25.18% 1.69%
M3,1 79470 88 0.6 0.9% 3.45% 7.54% 0.48 13.15% 9.32% 2.26%
M3,2 113270 89 0.6 7.64% 9.13% 1.72% 0.49 1.49% 7.08% 0.48%
M3,3 179073 89 0.62 7.36% 4.5% 8.11% 0.46 13.33% 14.51% 4.64%
M3,4 745480 90 0.6 8.03% 4.25% 4.56% 0.51 7.57% 2.7% 0.02%
M3,5 8946 89 0.6 12.52% 0.4% 7.14% 0.47 0.08% 11.91% 9.31%
M3,6 14639 89 0.61 6.35% 10.75% 4.12% 0.47 2.85% 0.9% 12.34%
M4,1 199595 89 0.61 7.66% 0.0% 1.75% 0.43 17.75% 22.54% 3.47%
M4,2 207846 89 0.6 0.08% 6.59% 7.73% 0.5 3.05% 11.24% 3.62%
M4,3 1044513 89 0.58 5.95% 4.79% 6.99% 0.44 23.24% 16.48% 0.2%
M4,4 660015 89 0.61 10.33% 2.41% 7.4% 0.5 3.1% 7.44% 2.8%
M4,5 15512 88 0.61 6.03% 9.27% 2.22% 0.49 14.16% 11.56% 6.43%
M4,6 8346 89 0.61 16.31% 20.01% 8.85% 0.48 9.99% 5.88% 0.98%
M5,1 21737 88 0.59 5.73% 12.27% 0.65% 0.46 2.15% 2.72% 0.77%
M5,2 133038 89 0.6 2.34% 0.33% 2.17% 0.54 8.49% 27.7% 12.03%
M5,3 613592 89 0.59 6.36% 14.45% 0.12% 0.47 4.12% 2.55% 10.5%
M5,4 344810 89 0.57 6.54% 6.98% 5.1% 0.51 4.46% 9.06% 9.38%
M5,5 184475 88 0.6 9.15% 11.0% 0.87% 0.51 4.11% 6.76% 7.97%
M5,6 152517 88 0.6 0.92% 5.41% 0.54% 0.47 12.92% 10.29% 11.27%
M6,1 248091 89 0.62 3.85% 8.0% 5.5% 0.51 14.49% 0.89% 10.61%
M6,2 54097 88 0.61 5.39% 1.76% 4.52% 0.51 13.45% 4.4% 1.83%
M6,3 994099 88 0.6 1.93% 5.17% 5.06% 0.5 17.75% 6.97% 0.79%
M6,4 410366 90 0.61 9.77% 4.65% 2.48% 0.51 18.86% 2.97% 13.11%
M6,5 654357 88 0.6 3.11% 1.1% 4.01% 0.49 10.61% 10.52% 9.61%
M6,6 438895 88 0.61 3.72% 4.05% 2.73% 0.47 10.33% 12.13% 4.68%
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Approximation Factor in % on the dataset WikiTalk

First Variant Second Variant

Motif CM s φ̄1 run 1 run 2 run 3 φ̄2 run 1 run 2 run 3

M1,1 539857 103 0.08 0.43% 0.6% 9.92% 0.04 28.43% 15.39% 20.19%
M1,2 135226 102 0.08 4.96% 3.99% 2.56% 0.03 4.08% 1.3% 18.33%
M1,3 86836 103 0.08 5.02% 12.55% 10.58% 0.03 5.98% 12.97% 24.29%
M1,4 100824 103 0.08 1.52% 6.85% 14.34% 0.04 12.55% 10.78% 2.43%
M1,5 266910 102 0.08 1.82% 8.77% 1.38% 0.03 29.72% 5.41% 10.21%
M1,6 932924 100 0.08 27.24% 38.92% 0.72% 0.03 33.78% 22.23% 13.93%
M2,1 446410 99 0.08 126.37% 19.95% 13.46% 0.03 44.54% 33.2% 18.38%
M2,2 248332 102 0.09 6.96% 9.03% 53.59% 0.03 5.32% 32.86% 3.18%
M2,3 56354 102 0.08 0.94% 4.8% 11.33% 0.04 5.55% 14.08% 9.15%
M2,4 21941 103 0.08 12.73% 1.75% 5.18% 0.03 29.86% 7.3% 14.31%
M2,5 1017969 100 0.08 19.83% 13.67% 16.17% 0.03 10.63% 104.09% 47.67%
M2,6 229169 99 0.08 8.73% 34.44% 7.19% 0.03 10.95% 22.81% 23.23%
M3,1 462985 103 0.08 30.8% 23.61% 19.23% 0.03 46.28% 91.12% 46.0%
M3,2 158717 104 0.08 0.37% 1.46% 11.74% 0.03 37.3% 13.12% 19.02%
M3,3 831400 103 0.08 17.69% 0.27% 16.01% 0.03 17.7% 3.8% 7.04%
M3,4 1437961 101 0.08 37.41% 100.69% 28.74% 0.03 37.09% 48.45% 46.32%
M3,5 31988 103 0.08 2.27% 14.7% 17.46% 0.04 4.85% 39.58% 62.6%
M3,6 78717 101 0.08 5.44% 0.74% 1.25% 0.03 17.41% 25.31% 8.04%
M4,1 176665319 101 0.08 37.34% 39.08% 12.01% 0.03 99.14% 45.32% 96.65%
M4,2 579299 102 0.08 10.53% 11.07% 1.72% 0.04 14.53% 31.46% 2.07%
M4,3 376601375 102 0.08 36.58% 41.91% 130.76% 0.03 94.67% 71.68% 190.88%
M4,4 991003 101 0.09 9.92% 3.73% 1.96% 0.03 27.57% 14.94% 25.2%
M4,5 - - - - - - - - - -
M4,6 - - - - - - - - - -
M5,1 918754 103 0.08 3.24% 10.16% 3.85% 0.03 7.35% 6.49% 0.55%
M5,2 825696 102 0.08 8.98% 10.55% 2.2% 0.03 136.81% 0.85% 159.15%
M5,3 713196 100 0.08 2.53% 15.82% 37.69% 0.03 14.97% 24.62% 12.91%
M5,4 305617 104 0.09 1.8% 18.06% 5.16% 0.03 5.15% 7.32% 18.03%
M5,5 655935 101 0.09 0.72% 8.84% 6.38% 0.04 27.51% 89.65% 14.65%
M5,6 314878 101 0.08 4.0% 2.55% 2.25% 0.03 3.69% 10.27% 12.23%
M6,1 15047345 100 0.08 43.99% 19.08% 16.79% 0.03 56.56% 1.81% 41.22%
M6,2 799080 102 0.08 8.38% 19.34% 5.22% 0.03 16.48% 11.4% 18.57%
M6,3 382034965 101 0.09 2.11% 196.59% 7.47% 0.03 74.44% 79.42% 66.02%
M6,4 1538217 101 0.08 32.28% 39.48% 1.68% 0.03 118.15% 59.44% 55.32%
M6,5 910740 101 0.08 57.45% 27.82% 23.36% 0.03 41.29% 45.96% 50.88%
M6,6 972272 102 0.08 22.0% 13.6% 6.35% 0.03 36.23% 9.03% 64.89%
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5.3 Running time comparison of the sequential meth-
ods

In this section we report the results of the running time comparison
between the different methods we considered. We compared the running
times between the exact routine of Machey et al. implemented by Liu et al.,
the algorithm BT+S with r = 100, the algorithm BT+S with r = 30, our
first algorithm which we called V1, and our improved algorithm which we
called V2. The results on the different datasets are reported from figure 5.1 to
figure 5.8. In such plots we have for each dataset on the x axis the 36 motifs,
and on the y axis the running time in seconds, such value is obtained from
the geometric mean of the three runs on each motif for each configuration,
namely let t1, t2, t3 be the running times for run 1, run 2, run 3 once fixed
the algorithm and the motif, then the time in the plot is obtained through
3
√∏

i ti
For the BT+S algorithms we can see that, as already anticipated, on the

datasets where ϕ1 ∼ ϕ2 then the two configurations of BT+S have essentially
the same running times, while for example in the dataset Askubuntu where
the difference between the two ϕ is non negligible also the difference in time
is much more visible. We also observe that when ϕ ∼ 1 then the running
time of the BT+S algorithm tends to be similar or sometimes even greater
than the running time of the exact routine.

For our algorithms, we can see that the first version usually requires much
more time than the second one, even if the number of samples s is the same
for the two methods. This is not surprising, since the computation of rU in
the first variant may require much more time w.r.t. the computation of r̃U in
the second variant. Comparing instead our algorithms with the two versions
of BT+S, we observe that V2 has usually a lower running time than the
BT+S with r = 100 while our first variant has similar running times to BT+S
with r = 100. We also observe that the datasets are quite small (see table
5.1), so it is interesting to look at the running times on the wikitalk dataset
which is our biggest dataset. On such dataset, the exact routine requires
much more time than the sampling based algorithms; which motivates the
requirements of scalable and efficient sampling algorithms. We also recall
that the approximation factor on such dataset is quite high, both for the
BT+S routines and ours, which is due to the fact that few samples are used
(ϕ << 1), to obtain a better approximation it is thus necessary to increase
the running time, processing a larger number of samples.
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Figure 5.1: Running times for each motif on CollegeMsg dataset.
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Figure 5.2: Running times for each motif on email-Eu-core dataset.
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Figure 5.3: Running times for each motif on sx-SuperUser dataset.
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Figure 5.4: Running times for each motif on FBWall dataset.
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Figure 5.5: Running times for each motif on SMS-ME dataset.
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Figure 5.6: Running times for each motif on MathOverflow dataset.
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Figure 5.7: Running times for each motif on AskUbuntu dataset.
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Figure 5.8: Running times for each motif on Wikitalk dataset.



5.4 − Approximation factor on wikitalk of the parallel approaches 68

5.4 Approximation factor on wikitalk of the paral-
lel approaches

We implemented our algorithms also in a parallel version which gave us
the possibility to compare our algorithms with the algorithm BT+PS of Liu et
al., which is a parallel version of the BT+S algorithm. We also implemented
our parallel-exact procedure which can be used to compute CM in parallel
(see Chapter 4). Thanks to these ingredients we were able to execute the
tests on the dataset wikitalk of such routines with δ = 86400. The results are
shown in the tables at pages 68 and 69, we can see that the same observations
we made until this moment still hold, in particular BT+PS with r = 100
performs better than it’s version with r = 30 and our techniques have a
worse approximation factor than the techniques of Liu et al. Such result is
not surprising but is interesting compared with the previous results on the
same dataset with δ = 3200, where our algorithms have similar, sometimes
even better, approximation factors w.r.t. the methods of Liu et al.
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Approximation Factor in % on the dataset WikiTalk

BT+PS - r = 100 BT+PS - r = 30

Motif CM s̄1 ϕ1 run 1 run 2 run 3 s̄2 ϕ2 run 1 run 2 run 3

M1,1 8467194 49 0.94 2.05% 2.45% 2.65% 29 0.67 5.75% 5.93% 5.92%
M1,2 2115630 49 0.94 1.28% 1.1% 1.1% 31 0.71 2.81% 2.32% 3.11%
M1,3 927677 49 0.94 1.29% 2.96% 3.0% 32 0.73 4.55% 1.37% 10.05%
M1,4 961976 50 0.94 2.14% 2.73% 0.37% 30 0.7 1.73% 1.81% 1.66%
M1,5 6223045 49 0.94 0.82% 1.47% 0.15% 30 0.68 1.82% 0.21% 0.23%
M1,6 18675425 49 0.94 2.13% 1.87% 1.16% 32 0.73 5.64% 5.92% 11.78%
M2,1 14747039 49 0.94 0.58% 0.34% 0.95% 32 0.73 0.74% 10.2% 6.6%
M2,2 6604184 49 0.94 0.26% 0.89% 0.45% 32 0.73 8.74% 0.29% 0.41%
M2,3 723812 50 0.94 1.68% 0.11% 1.59% 30 0.67 4.9% 4.88% 0.99%
M2,4 330579 49 0.94 0.33% 1.47% 2.25% 32 0.73 1.52% 9.89% 9.92%
M2,5 32488474 49 0.94 0.95% 0.1% 0.87% 30 0.68 3.62% 0.18% 2.66%
M2,6 5821053 49 0.94 0.49% 0.39% 0.15% 31 0.71 1.2% 3.89% 2.14%
M3,1 15149900 50 0.94 0.97% 0.61% 0.85% 31 0.71 3.42% 3.79% 3.93%
M3,2 2678302 49 0.94 1.15% 0.82% 0.89% 31 0.71 8.0% 3.28% 4.05%
M3,3 14898726 49 0.94 1.39% 0.18% 10.37% 32 0.73 0.14% 0.61% 7.27%
M3,4 37110092 49 0.94 0.34% 0.81% 0.55% 32 0.73 1.09% 9.78% 1.37%
M3,5 478996 50 0.94 1.12% 2.74% 2.32% 31 0.71 4.59% 4.23% 3.37%
M3,6 917969 50 0.94 2.12% 0.12% 0.83% 30 0.68 1.29% 1.21% 0.71%
M4,1 1936421730 49 0.94 1.2% 0.48% 1.0% 30 0.67 12.67% 14.64% 13.33%
M4,2 9559467 49 0.94 3.33% 0.27% 0.27% 30 0.67 2.59% 2.64% 2.72%
M4,3 3250417677 49 0.94 3.9% 1.36% 0.91% 31 0.71 6.26% 10.95% 0.65%
M4,4 18307141 49 0.94 0.11% 0.39% 1.0% 30 0.68 0.05% 1.05% 2.51%
M4,5 - - - - - - - - - - -
M4,6 - - - - - - - - - - -
M5,1 4498052 49 0.94 0.21% 0.18% 0.28% 32 0.73 0.62% 2.23% 6.52%
M5,2 4550745 48 0.94 0.39% 0.96% 0.4% 30 0.67 0.92% 2.53% 2.45%
M5,3 16434588 49 0.94 2.59% 0.91% 1.74% 30 0.67 4.42% 2.02% 5.84%
M5,4 6652470 50 0.94 0.41% 2.41% 0.42% 30 0.69 3.21% 3.11% 3.16%
M5,5 15620900 49 0.94 0.42% 0.85% 0.95% 30 0.68 3.77% 1.24% 3.85%
M5,6 6858394 49 0.94 3.19% 1.26% 1.6% 32 0.73 3.96% 6.86% 0.63%
M6,1 42572061 50 0.94 0.02% 0.87% 0.11% 30 0.67 4.41% 9.2% 4.48%
M6,2 4385596 49 0.94 0.51% 0.9% 1.61% 30 0.68 0.58% 2.88% 0.44%
M6,3 3416747081 49 0.94 0.7% 0.01% 0.72% 30 0.68 1.16% 11.1% 13.75%
M6,4 48528243 50 0.94 0.28% 0.39% 0.05% 31 0.71 18.05% 7.1% 3.6%
M6,5 28003470 49 0.94 0.59% 0.68% 0.52% 32 0.73 2.98% 8.48% 1.82%
M6,6 18879959 50 0.94 0.6% 3.18% 2.96% 31 0.71 3.66% 3.97% 7.95%
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Approximation Factor in % on the dataset WikiTalk

First Variant Second Variant

Motif CM s run 1 run 2 run 3 run 1 run 2 run 3

M1,1 8467194 49 2.72% 6.31% 5.83% 19.84% 11.97% 15.45%
M1,2 2115630 49 1.05% 0.2% 1.93% 4.56% 13.37% 10.25%
M1,3 927677 49 1.92% 0.58% 1.69% 31.42% 10.07% 24.43%
M1,4 961976 50 0.48% 4.12% 7.89% 0.79% 4.72% 22.44%
M1,5 6223045 49 1.68% 4.2% 4.7% 10.81% 18.1% 29.85%
M1,6 18675425 49 6.91% 14.62% 5.31% 11.83% 12.28% 14.91%
M2,1 14747039 49 58.28% 58.09% 7.22% 75.07% 46.34% 54.51%
M2,2 6604184 49 6.19% 1.88% 19.68% 51.66% 37.22% 59.57%
M2,3 723812 50 6.22% 1.14% 1.16% 33.98% 9.88% 23.96%
M2,4 330579 49 1.01% 5.39% 6.14% 15.73% 35.74% 11.52%
M2,5 32488474 49 24.38% 50.41% 2.38% 58.24% 45.71% 65.81%
M2,6 5821053 49 3.06% 0.43% 3.15% 9.27% 36.37% 8.79%
M3,1 15149900 50 32.22% 1.73% 26.77% 225.15% 32.58% 74.58%
M3,2 2678302 49 1.85% 3.03% 0.09% 10.97% 11.15% 13.18%
M3,3 14898726 49 15.21% 12.77% 18.94% 31.24% 41.23% 54.89%
M3,4 37110092 49 82.88% 21.19% 0.15% 45.3% 54.89% 32.13%
M3,5 478996 50 3.55% 2.74% 2.06% 17.34% 14.81% 12.3%
M3,6 917969 50 3.03% 1.9% 1.57% 7.75% 29.93% 26.3%
M4,1 1936421730 49 40.95% 32.45% 15.7% 50.54% 0.22% 7.0%
M4,2 9559467 49 14.39% 20.69% 37.64% 47.08% 44.68% 183.06%
M4,3 3250417677 49 29.54% 21.69% 49.78% 35.08% 25.73% 64.53%
M4,4 18307141 49 32.94% 14.79% 12.62% 27.19% 20.39% 18.55%
M4,5 - - - - - - - -
M4,6 - - - - - - - -
M5,1 4498052 49 6.91% 4.04% 1.76% 12.99% 30.13% 40.76%
M5,2 4550745 48 14.0% 7.19% 1.51% 44.06% 13.1% 53.67%
M5,3 16434588 49 3.34% 27.26% 3.25% 46.78% 42.71% 19.85%
M5,4 6652470 50 1.21% 6.06% 5.28% 10.0% 3.12% 13.23%
M5,5 15620900 49 12.6% 9.07% 12.98% 28.62% 49.3% 42.18%
M5,6 6858394 49 3.96% 1.54% 5.31% 1.65% 42.41% 9.7%
M6,1 42572061 50 32.92% 25.67% 24.72% 16.09% 16.39% 19.47%
M6,2 4385596 49 2.92% 18.45% 14.79% 11.38% 28.68% 3.86%
M6,3 3416747081 49 24.73% 14.6% 4.75% 76.05% 74.19% 5.93%
M6,4 48528243 50 23.34% 49.88% 28.11% 13.3% 41.42% 56.89%
M6,5 28003470 49 10.11% 23.73% 4.54% 39.64% 33.93% 147.89%
M6,6 18879959 50 3.92% 3.45% 12.4% 7.19% 30.86% 43.36%
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5.5 Running time comparison of the parallel meth-
ods

In this section we conclude comparing the running times of the parallel
approaches. We compared our parallel-exact approach with the two versions
of BT+PS with r = 100, r = 30 of Liu et al., and our first version with
parallel sampling (V1+PS) and the improved version with parallel sampling
(V2+PS). The comparison is shown from figure 5.9 to figure 5.16.

All the considerations made for the sequential algorithms still hold for their
parallel implementation for the BT+PS, V1+PS and V2+PS. In particular
the version of BT+PS with r = 100 is much slower than the one with r = 30,
V2+PS is usually much faster than the BT+PS,r = 100 and the V1+PS
sometimes is much slower than the other sampling algorithms. We observe that
all the parallel routines improve their sequential versions. It is also interesting
to note that, our parallel-exact version has very good performances on small
datasets and quite good performances on the dataset wikitalk, recall that
such routine is exact and in our tests results thus also efficient and scalable,
as we can see from the plots.
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Figure 5.9: Running times for each motif on CollegeMsg dataset.
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Figure 5.10: Running times for each motif on email-Eu-core dataset.
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Figure 5.11: Running times for each motif on sx-SuperUser dataset.
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Figure 5.12: Running times for each motif on FBWall dataset.
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Figure 5.13: Running times for each motif on SMS-ME dataset.
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Figure 5.14: Running times for each motif on MathOverflow dataset.
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Figure 5.15: Running times for each motif on AskUbuntu dataset.
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Figure 5.16: Running times for each motif on Wikitalk dataset.



Chapter 6

Conclusions

In this thesis we introduced, to the best of our knowledge, the first (ε, η)-
approximation algorithms for the temporal motif counting problem, proved
their guarantees, an efficiently computable bound on the sample size, and
analyses of the variance of the estimate. We also provided additional bounds,
that unfortunately are not computable, where we used the tool of Martingales.

Aside from the (ε, η)-approximation algorithms, we also developed an
exact parallel routine which may become very efficient and scalable in practice.
We implemented and compared all these techniques with the state of the art
techniques in the field of mining motifs in temporal networks. Our results
show that the exact parallel routine works very well in practice, especially
on large datasets, where an exact routine cannot be adopted, thanks to it’s
scalability. Unfortunately for the (ε, η)-approximation algorithms it comes out
that the sample size we derived it is too loose so it cannot be used in practice,
moreover more samples than the state of the art heuristics are needed, to
achieve equal or better performances. The estimate used in our algorithms
has also a large variance, which makes it difficult to understand how the
approximation works in practice. A positive note is that such techniques are
fast and scalable and can handle large datasets.

In future we would like to investigate different techniques for improving
the quality of our (ε, η)-approximation algorithms, in particular we want first
to test such algorithms on larger datasets to see their approximation quality.
As it comes out from the experiments such techniques seem to work better
than the state of the art techniques when δ is small, we will investigate such
direction. Then we would like to explore some variance reduction techniques
for our estimate and understand if it is possible, thanks to such techniques,
to concentrate the result of the algorithms around the desired estimate. We
would also like to try to improve the bound on the sample size s, which
may be done through a parametric analysis on the quantities involved in it’s
estimation.

Further future works may be to investigate different sampling techniques,
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for example based on a fixed memory, such technique it would be very useful
since as it comes out from our experiments the state of the art technique
use a lot of memory; in fact some runs went out of memory on not so large
datasets. Other directions for new sampling techniques could be to consider
also the topology of the graph when constructing the sample, and not only
the temporal dimension as we have done in the algorithms presented in this
thesis.
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