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Abstract

The purpose of this work is to analyse the relationships between different formulations
of Monge-Kantorovich transport problem, in the case of L1 cost. In particular, we focus on
the famous Benamou and Brenier’s dynamical formulation, finding a way to switch their
model from the quadratic cost to our cost function. Helped by the solutions of the other
formulations, we find a way to solve the dynamical problem, with L1 cost, and we compare
the solution to the one found by Benamou and Brenier, with L2 cost. For this aim, we also
analyse the intermediate cases of Lp costs, with 1 < p < 2, recurring to a numerical scheme
based on a smart adaptation of Newton method.
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Introduction

The history of optimal transport began in 1781, when the French mathematician Gas-
pard Monge proposed to the Académie des Sciences a problem written in a report called
“Mémoire sur la Theorie des Déblais et des Remblais” [37]. This problem consisted, briefly,
in finding the best way to move a pile of soil (“déblais”) from the ground to a hole (“rem-
blais”), in order to fill it (see Figure 1).
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Figure 1. Graphic representation of the mass transportation problem.

Obviously, the pile and the hole must have the same volume. Thus, both the pile and
the hole are modeled by finite measures µ+ and µ−, with the same mass, defined on some
subspaces X and Y of Rn. The movement is described by a map T , which has to “push” the
initial configuration onto the final arrangement. Moving the sand needs clearly some effort
which is modelled by a cost function c(x, y) defined on X×Y . In the description of Monge,
the cost function was just the Euclidean distance c(x, y) = ‖x− y‖. Apparently, it seems
a simple problem, but if one tries to deal with it, he immediately discovers that it hides
a highly nonlinear structure. This was the reason why the Académie des Sciences offered
a price to anyone who would be able to solve this problem. The French mathematician
Paul Émile Appell won this price, even if he was just able to provide only marginal results
about its solution. Thus, the problem remained without a solution, until progress was
made by Kantorovich [32], [33]. He inserted the problem into a more general framework,
which gave the possibility to use standard mathematical tools and, later, to provide a
solution. To do that, he started to look at the problem from a different point of view, which
allowed him to see a link between this problem and linear programming. Moreover, he
widely generalized the problem, taking into account general cost functions c(x, y), different
from the one considered by Monge, defined on more general measure spaces. The case of
quadratic cost function c(x, y) = ‖x− y‖2, physically related to the kinetic energy, was of
particular interest in literature, as, more generaly, strictly convex cost functions on x − y.
In these cases, as first shown by Brenier [14] in the L2 cost case, the optimal solution of
Kantorovich’s reformulation provides a solution to the problem formulated by Monge. Thus,
while in these cases things worked quite well, with the original L1 cost function adopted by
Monge, a solution had not been found yet. Sudakov [43] was the first to propose a solution
with this cost function. He decomposed Rn in the disjoint union of segments with special
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features, reduced the problem into a family of 1D problems and finally glued together the
1D maps constructed on these segments. The strategy seemed to work properly, but its
complete definition was proposed only later by Ambrosio [1]. Starting from a deformation
argument due to Dacorogna and Moser [20], Evans and Gangbo [27] proposed an alternative
method based on differential equations. Finally, a solution was found.

This problem, however, can not be merely reduced to the study about the existence
and the properties of a solution. Indeed, the beauty and the greatness of the problem
introduced by Monge are due to its generality. It has a number of diverse applications,
coming from different branches of mathematics. It is linked to flow minimization problems
describing traffic issues, to defining distances in the space of probabilities, image processing,
economics, meteorology, etcetera. After this brief historical background, a normal question
which arises could be: “why this thesis?” The literature is full of books fully describing
almost everything about optimal transport, starting from the “bible” of the field medalist
Villani [46] or the more recent work of Santambrogio [41] or, even, the lecture notes of
Ambrosio [1]. But the “problem” that we found is exactly this: the literature is full of
books or articles about optimal transport and, especially in the case of L1, the results are
scattered on different works and the situation is quite chaotic. Indeed, if the problem is
connected with several applications coming from different fields, it is normal that there will
be many different reformulations of the same problem. Thus, this work born from this
need to try to put some order in the situation, in the case of L1 cost, and find the relations
between different formulations. Our study starts from one of these formulations, taken from
fluid dynamic, firstly introduced in Benamou and Brenier [5]. In this famous work, they
introduced a time variable and looked at the way in which the system evolved in time. The
problem we have to face is that they treated the L2 cost case and their procedure is not
adaptable to L1. Therefore, we need an alternative formulation of Benamou and Brenier’s
dynamic problem and we find an original way to adapt this problem to the L1 cost case,
taking inspiration from Chen, Georgiou, and Pavon [18]. Thus, keeping this new dynamic
formulation at the center of the attention, using the information obtained from the other
formulations, we try to recover the optimal solution of this formulation with L1 cost, in the
same way Benamou and Brenier did, but with a different method. The result we achieve,
compared with the solution with a quadratic cost function, is somewhat unexpected. Thus,
we focus on the result obtained, trying to understand the main differences between the
two cases, both from geometrical and analytical point of views. To focus once more these
differences, we want to graphically see how the dynamical behavior of the optimal solutions
differ in time, when we change the cost function and when we change the initial and the
final data. First, we see some simulations in the already known cases of L1 and L2 costs.
Later, helped by a numerical scheme based on Newton method, we see how optimal densities
change in the intermediate cases of Lp costs, with 1 < p < 2. The structure of the thesis is
the following.
In Chapter 1 we provide some preliminary concepts, grouped in different mathematical
fields, in order to improve the flow of the reading.
Chapter 2 summarizes the chronological progresses that contributed to this work, starting
from the rigorous mathematical description of Monge and Kantorovich formulations of the
optimal transport problem and passing through other versions linked to these classical ones,
in order to obtain, at the end, a way to recover an optimal transport map in the case of L1

cost function.
In Chapter 3, after we presented two more formulations of the optimal transport in the L1

cost case, we try to find the relationships underlying these different formulations, attempting
to untangle the complex situation.
In Chapter 4 we focus on some of these formulations, trying to go deeper into the underlying
reasons and motivations. In order to do that, we also present some numerical and graphical
examples which allow the reader to better understand these particularly important results.
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In this work, we divided the original proofs from those taken from other books or articles,
specifying every time the source.

I would like to thank my advisors, Professor Mario Putti and Michele Pavon, and my
co-advisor, Enrico Facca, for the invaluable support and the precious advice they have
offered me throughout this work together.
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CHAPTER 1

Notation and some preliminary results

In the course of this work, we shall use some notations and well-known results, which
will be reported briefly in this chapter in order to clarify the meaning of the different
symbols and to improve the readability. First, the main notation will be listed and then the
preliminary results used throughout the work will be reported, grouped into homogeneous
areas.

1. Notation

• R+ : non-negative real numbers, i.e. [0,+∞[.
• R: the extended real number system, i.e. R ∪ {−∞,+∞}.
• Rn: the standard n-dimensional Euclidean space.
• πx, πy, πt: the projection of a product space onto one of its components.
• νΩ: the outward normal vector to a given domain Ω.
• δa: the Dirac mass concentrated at the point a.
• Ln: the Lebesgue measure on Rn.
• M ×N : the product space between M and N .
• µ⊗ ν: the product measure of µ and ν, i.e. µ⊗ ν(A×B) := µ(A)ν(B).
• ∼: X ∼ Y this symbol stands for two random variables X and Y with the same

distributions.
• a.e.: given a measure space (Ω,A, µ), we say that a property P holds almost

everywhere (a.e.) if µ({x ∈ Ω : P (x)) = 0.
Consider a matrix A:

• AT : is the transpose matrix of A.
• det(A): is the determinant of the matrix A.
• tr(A): is the trace of A.
• Aij : is the minor of the entry (i, j) of the square matrix A, i.e. the determinant

of the submatrix obtained deleting the i-th row and the j-th column.
• cof(A): is the cofactor matrix of A, i.e. the matrix whose (i, j) entry is obtained
by multypling the minor Aij by (−1)i+j .

• ej : is the unitary vector in the standard basis, with 1 in the j-th coordinate and
0’s elsewhere, i.e. ej := (0, . . . , 0, 1, 0, . . . , 0)T .

• 1: is the vector of ones, i.e. 1 := (1, . . . , 1)T .

• I: is the identity matrix, i.e. I :=
( 1 0 0 ··· 0

0 1 0 ··· 0
...
...
...
. . .

...
0 0 0 ··· 1

)
.

Consider a scalar function f : Rn → R :
• supp(f) := {x ∈ Rn : f(x) 6= 0} is the support of f .
• dom(f): is the natural domain of a function, i.e. the maximal set of values for
which the function is defined. In this case it is dom(f) = {x ∈ Rn : f(x) ∈ R}.

• f+(x) := max{f(x), 0}, f−(x) := max{−f(x), 0}.

• ∇: the gradient, which is the vector ∇f :=
(
∂f
∂x1

, . . . , ∂f∂xn

)T
.

• ∇· : the divergence, which is defined as ∇ · f =
∑n
i=1

∂f
∂xi

.
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• ∆: the Laplacian, which is ∆f := ∇ · (∇u) =
∑n
i=1

∂2f
∂x2
i
.

• D2: the Hessian matrix, i.e. D2f :=


∂2f
∂x2

1
... ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
... ∂2f

∂x2
n

.

• D: if we consider a function T : Rn → Rm, the Jacobian matrix DT is DT (x) =
∂T1(x)
∂x1

...
∂T1(x)
∂xn

...
. . .

...
∂Tn(x)
∂x1

...
∂Tn(x)
∂xn

.

• dJ(u, φ): if we consider a functional J : V → W , with V , W Banach spaces, the
Gâteaux differential of J at u ∈ U ⊂ X (U open set) in the direction φ ∈ X is
d
dεJ(u+εφ)

∣∣
ε=0. Note that it will also be called the first variation of J in direction

φ.
Consider a set Ω:

• ΩC: is the complement of Ω.
• Ω: is the closure of Ω, i.e. the smallest closed set containing Ω.
• Ω◦: is the interior of Ω, i.e. the largest open set contained in Ω.
• P(Ω): is the power set of Ω, i.e. the collection of subsets of Ω.

• χΩ: is the characteristic function of Ω, i.e. χΩ(x) :=
{

1, if x ∈ Ω,
0, otherwise.

• C(Ω), Cb(Ω), Cc(Ω), C0(Ω): the sets of functions from Ω to R which are continuous,
bounded continuous, compactly supported continuous and continuous vanishing
at infinity functions, respectively. If the codomain is different, it will be specified:
for example, C(Ω;Rn).

• LipC(Ω): is the set of all Lipschitz continuous functions with Lipschitz constant
Lip(f) = C, i.e. all the functions f such that |f(x) − f(y)| ≤ C|x − y|, for all x,
y ∈ Ω.

• AC(I; Ω): is the set of all the absolutely continuous functions defined on the
interval I ⊂ R, i.e. γ ∈ AC(I; Ω) if and only if γ is differentiable a.e. and
γ′ ∈ L1(I).

Consider a general topological space (X, τ):
• B(X): is the Borel σ-algebra, i.e. the smallest σ-algebra containing the topology
τ .

• M+(X): is the space of the positive finite Borel measures on X.
In this last part, we report some notations we will define throughout this work. Anyway, in
order to make the reading easier, we report them here. Given a measurable space (Ω,A),
we denote by:

• Lp(Ω), L1
loc(Ω),W 1,p(Ω),W 1,p

0 (Ω): the Lp space, locally integrable space, Sobolev
space and compactly supported Sobolev space of functions, respectively.

• 〈·, ·〉L2(Ω): the scalar product defined, for f, g ∈ L2(Ω), as:

〈f, g〉L2(Ω) :=
∫

Ω
f(x)g(x)dµ, f, g ∈ L2(Ω).

• 〈·, ·〉Lp(Ω): the dual pairing defined, for φ ∈ (Lp(Ω)∗, as:

〈φ, u〉Lp(Ω) =
∫

Ω
u · g dµ ∀u ∈ Lp(Ω).

• 〈·, ·〉C0(Ω;Rn): the dual pairing, defined for Φ ∈ (C0(Ω;Rn))∗, as:

〈Φ, f〉C0(Ω;Rn) =
∫

Ω
f · dµ =

n∑
i=1

∫
Ω
fidµi, ∀f ∈ C0(Ω;Rn).
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• M1(Ω) =M(Ω): the space of the finite signed Borel measures.
• Mn(Ω) := {µ : B(Ω)→ Rn : µ is a finite vector measure}, the set of all the finite
vector measures defined on the Borel set B(Ω) with values in Rn.

• Mn
div(Ω) :=

{
µ ∈Mn(Ω) : ∇ · µ ∈M(Ω)

}
;

• Mn
div,0(Ω) := {µ ∈Mn

div(Ω) : µ · νΩ = 0}.
• P(Ω): the set of all the probabilitiy measures defined on the measurable space

(Ω,B(Ω).

• Pp(Ω) =
{
µ ∈ P(Ω) :

∫
Ω
‖x‖p dµ(x) < +∞

}
.

Given two finite positive measures µ+ and µ−:
• T (µ+, µ−) := {T : X → Y | T is Borel measurable, one-to-one and T#(µ+) =
µ−}.

• Π(µ+, µ−) :=
{
µ ∈M+(Rn × Rn) | πx(µ) = µ+, πy(µ) = µ−

}
.

• X := C1([0, 1];Rn).
• Q1(µ+, µ−) :=

{
P ∈ P(X ) | (e0)#P = µ+ and (e1)#P = µ−

}
.

•
Qp(µ+, µ−) := {Q ∈ P(X ) | (e0)#Q = µ+, (e1)#Q = µ− and

diQ(x) = fQ(x)dx with fQ(x) ∈ Lp(Ω)}.
• dKRp(µ+, µ−): the p-Kantorovich-Rubinstein distance between µ+ and µ−.

Given a metric space (V, d):
• CSG([0, 1];V ) := {γ ∈ AC([0, 1];V ) : γ is a constant speed geodesic in V }.

Given two functions f+ and f−:
• P(f+, f−) :=

{
ρ : [0, 1]× Rn → Rn | ρ(0, x) = f+(x) and ρ(1, y) = f−(y)

}
.

2. Elements of Real and Functional Analysis

Before starting with some preliminary results taken from real and functional analysis,
let us make a small clarification. Throughout the whole work, any integral will be thought
in the sense of Lebesgue and the integral of any (Lebesgue) measurable scalar function
f : Ω→ R will be denoted by: ∫

Ω
f(x)dx.

For a reader who wants to go deeper into the details about Lebesgue integration, we
suggest a couple of standard books, such as Folland [29] and Rudin [39].

We want to focus, now, on some important spaces of functions and on their main
properties. For a deeper reading about this argument we suggest, again, Rudin [39] and
Folland [29]. Consider a measure space (Ω,A, µ).

Definition 1.1 (Lp spaces). For 1 ≤ p < +∞, the Lp space is defined as:

Lp(Ω,A, µ) = Lp(Ω) :=
{
f is µ−measurable : ‖f‖p < +∞

}
,

where the p-norm is defined as:

‖f‖p :=
(∫

Ω
|f(x)|p dµ

) 1
p

.

For p = +∞, the L∞ space is defined as:

L∞(Ω,A, µ) = L∞(Ω) := {f is µ−measurable : ‖f‖∞ < +∞} ,

where the essential supremum is defined as:

‖f‖∞ := inf {M ≥ 0 : |f(x)| ≤ for µ-a.e. x ∈ Ω} .

7



CHAPTER 1. Notation and some preliminary results.

It can be checked that the couple (Lp(Ω), ‖·‖p) is a Banach space and, in particular,
for p = 2, the couple (L2(Ω), 〈·, ·〉L2(Ω)) is a Hilbert space equipped with the inner product:

〈f, g〉L2(Ω) :=
∫

Ω
f(x)g(x)dµ, f, g ∈ L2(Ω). (1.1)

Note that, to be precise, in order to satisfy the property of the norm:

‖f‖p = 0 =⇒ f = 0,

we should identify functions which are equal almost everywhere. Moreover, we should
consider the Lp spaces as quotient spaces. Anyway, the Lp spaces and their quotients are
usually identified, for simplicity. Throughout this work, another particular space will also
appear:

Definition 1.2 (Locally integrable). A Lebesgue measurable function f : Rn → R is
said to be locally integrable, and it is denoted by f ∈ L1

loc(Rn), if for every compact set
K ⊂ Rn we get f ∈ L1(K).

This kind of functions are used, for example, inside the following classical theorem,
which is a well-known result, taken from real analysis.

Theorem 1.1 (Lebesgue differentiation). Consider f ∈ L1
loc(Rn). Then for Ln-a.e.

x ∈ Rn we get:

lim
r→0+

1
Ln(B(x, r))

∫
B(x,r)

f(y)dy = f(x).

After recalling that a measure µ, defined on a measurable space (Ω,A) is σ-finite if Ω
is a countable union of measurable sets with finite measure, we state another famous result
which will be useful in the course of this work.

Theorem 1.2 (Fubini-Tonelli). Suppose (M,A, µ) and (N,B, ν) two σ-finite measure
spaces.

(i) (Fubini) If f ∈ L1(µ⊗ ν), then, if we denote by:

fx(y) := fy(x) := f(x, y), ∀(x, y) ∈M ×N,

then fx ∈ L1(ν) for a.e. x ∈ M , fy ∈ L1(µ) for a.e. y ∈ N . Moreover, the
a.e.-defined functions g(x) :=

∫
N
fx(y)dν(y) and h(y) :=

∫
M
fy(x)dµ(x) are in

L1(µ) and L1(ν), respectively. Lastly, the following equality holds:∫
M×N

f(x, y)d(µ⊗ ν)(x, y) =
∫
M

(∫
N

f(x, y)dν(y)
)
dµ(x)

=
∫
N

(∫
M

f(x, y)dµ(x)
)
dν(y).

(1.2)

(ii) (Tonelli) If f : M × N → [0,+∞] is a non-negative µ ⊗ ν-measurable function,
then g(x) =

∫
N
fx(y)dν(y) and h(y) =

∫
M
fy(x)dµ(x) are µ-measurable and ν-

measurable, respectively, and (1.2) holds.

Inside these spaces we can define different types of convergence which are possible for
a sequence (fn)n∈N. We recall, here, just those modes of convergence which will be used
more inside this thesis.

Definition 1.3 (Different modes of convergence).
• Pointwise convergence: we say that fn : Ω→ R, n ∈ N, converges pointwise to
f : Ω→ R if:

lim
n→+∞

fn(x) = f(x), ∀x ∈ Ω.

8
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• Almost everywhere convergence: we say that fn : Ω → R, n ∈ N, converges
µ-almost everywhere (µ-a.e.) to f : Ω → R if there exists a set N ⊂ Ω such that
µ(N) = 0 and for all x ∈ Ω \N , we have:

lim
n→+∞

fn(x) = f(x).

• Strong convergence: let 1 ≤ p ≤ +∞. We say that fn → f strongly in Lp if
fn, f ∈ Lp(Ω) and

lim
n→+∞

‖fn − f‖p = 0.

• Weak convergence: let 1 ≤ p < +∞. We say that fn converges weakly to f in
Lp(Ω), and we denote it by fn ⇀ f in Lp, if f, fn ∈ Lp(Ω) and for all g ∈ Lq(Ω),
with 1 < q ≤ +∞ the Hölder conjugate of p, i.e.

1
p

+ 1
q

= 1, (1.3)

we have:
lim

n→+∞

∫
Ω
fn(x)g(x)dµ =

∫
Ω
f(x)g(x)dµ.

• Convergence in measure: given fn, f measurable functions, n ∈ N, we say that
fn → f in measure if for every ε > 0 we have:

lim
n→+∞

µ ({x ∈ Ω : |fn(x)− f(x)| ≥ ε}) = 0.

Let us remind the reader about another group of spaces: the Sobolev spaces. For a
complete description and characterization of Sobolev spaces see, for example, Burenkov [16].

Definition 1.4 (Sobolev spaces W 1,p). Consider Ω ⊂ Rn open set and 1 ≤ p ≤ ∞.
The Sobolev space W 1,p(Ω) is defined by:

W 1,p(Ω) :=
{
f ∈ Lp(Ω) : ∃g1, . . . , gn ∈ Lp(Ω) such that:

−
∫

Ω
f(x)∂φ(x)

∂xi
dx =

∫
Ω
gi(x)φ(x)dx ∀i = 1, . . . , n, ∀φ ∈ C∞c (Ω)

}
.

Note that, calling the functions gi distributional derivatives, we get the following link
between these spaces and Lp spaces:

• if f ∈ Lp(Ω), then f ∈ W 1,p(Ω) if and only if all of its distributional derivatives
are in Lp(Ω);

• if f ∈ C1(Ω) ∩ Lp(Ω), then f ∈ W 1,p(Ω) if and only if ∂f
∂xi
∈ Lp(Ω) for all

i = 1, . . . , n.
The Sobolev space W 1,p(Ω) is equipped with the following norm:

‖f‖W 1,p := ‖f‖p +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
p

, or, equivalently,

‖f‖W 1,p :=
(
‖f‖pp +

n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
p

) 1
p

.

We, now, want to introduce some tools taken from functional analysis, starting from
preliminary definitions, just to have everything we will need properly defined, and proceed-
ing with some non-trivial results. For the details about this part of functional analysis we
refer mainly to Brezis [15]. Consider two normed spaces (V, ‖·‖V ) and (W, ‖·‖)W .

Definition 1.5 (Operator norm). Given a linear operator T : V → W , the operator
norm is:

‖T‖op := sup
x 6=0

‖Tx‖W
‖x‖V

.

9
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In this context, a linear operator T : V →W is continuous if and only if ‖T‖op < +∞,
i.e. bounded operators and continuous operators coincide. We will denote the space of
linear and continuous operators by:

L(V,W ) := {T : V →W : T is linear and continuous} .

Moreover:

Definition 1.6 (Dual space). Given a normed vector space (E, ‖·‖), the dual space is:

E∗ := L(E,R).

This is a normed space, equipped with the operator norm:

‖T‖op := sup
x 6=0

|〈T, x〉∗|F
‖x‖E

,

where 〈·, ·〉∗ → R, is the dual pairing of these spaces, i.e. the evaluation of T against x.

Note that the ∗ below the scalar product is used to distinguish this dual product from
a normal scalar product. However, in the following Riesz Theorems, we will use a specific
notation for any scalar product, depending on the particular space in which is defined,
always having in mind that they are dual pairings.

Theorem 1.3 (Riesz representation for Lp spaces). Let 1 ≤ p < +∞ and (Ω,A, µ) is
σ-finite. Then for all φ ∈ (Lp(Ω))∗, there exists one and only one g ∈ Lq(Ω), with q Hölder
conjugate of p as defined in (1.3), such that:

〈φ, u〉Lp(Ω) =
∫

Ω
u · g dµ ∀u ∈ Lp(Ω). (1.4)

Moreover, ‖φ‖op = ‖g‖q.

Note that this theorem says that for 1 ≤ p < +∞ the map:

(Lp(Ω))∗ → Lq(Ω)
φ 7→ g

is a linear surjective isometry, which allow us to identify the two spaces. Note, also, that the
case p = +∞ is excluded, because the dual space of L∞(Ω) is strictly bigger then L1(Ω),
i.e. there are functionals on (L∞(Ω))∗ that cannot be represented as an integral against a
function g ∈ L1(Ω). We are going to recall, now, some famous and important definitions in
this field:

Definition 1.7 (Compactness, sequential compactness and relative compactness). Given
a topological space (X, τ), a subspace K ⊂ X is:

(i) compact if from every open cover of K, we can extract a finite subcover, i.e.
if K ⊂

⋃
i∈I Ai, with Ai ∈ τ for all i ∈ I, there exist A1, . . . , An such that

K ⊂
⋃n
i=1Ai.

(ii) sequentially compact if for every sequence contained in K, {xn} ⊂ K, there exist
a convergent subsequence, xnk

k→∞−→ x ∈ K.
(iii) relatively compact if K is compact.

In the case of Rn, for example, the conditions of being closed and bounded fully char-
acterize compact sets, but, in general, in infinite dimensional spaces it is not as easy to
understand. We have the following:

Theorem 1.4. Given a metric space (X, d), then:

K ⊂ X is compact ⇐⇒ K ⊂ X is sequentially compact.

10



CHAPTER 1. Notation and some preliminary results.

In this part we will just focus our attention on the conditions characterizing sequentially
compact sets in the case of Lp spaces, which will be the only case considered in this work.
Note that, the convergence of this subsequence will be “accepted” in any kind of way.
Thus, we need to introduce the weak and weak-* convergence, which arise from the notion
of weak and weak-* topologies, but, in the way in which we need these tools, we can give
self-sufficient and equivalent definitions.

Definition 1.8 (Weak and weak-* convergence). Given a normed space (E, ‖·‖E), we
say that:

(i) the sequence {xn}n∈N ⊂ E is weakly convergent to x ∈ E, and we write xn ⇀ x,
if for every f ∈ E∗, we have 〈f, xn〉∗ → 〈f, x〉∗.

(ii) the sequence {fn}n∈N ⊂ E∗ is weakly-* convergent to f ∈ E∗, and we write
fn

∗
⇀ f , if for every x ∈ E, we have 〈fn, x〉∗ → 〈f, x〉∗.

This definition elucidates the definition of the weak convergence given above in the case
of Lp spaces (Definition 1.3), using Riesz representation’s Theorem 1.3. We need, now,
another definition, in order to capture the difference between the case of Lp spaces, with
1 < p < +∞, and L1. This distinction between the two cases will be used later.

Definition 1.9 (Reflexive space). Consider a normed space (E, ‖·‖E), with the canon-
ical injection map J : E → E∗∗ given by:

〈J(x), f〉∗ = 〈f, x〉∗, ∀x ∈ E, ∀f ∈ E∗.
The space is said reflexive if J is surjective.

An example of reflexive spaces are, indeed, the Lp spaces for 1 < p < +∞, while the
L1 space is not reflexive. We have the following:

Theorem 1.5. If the normed space (E, ‖·‖E) is reflexive, every bounded sequence
{xn}n∈N admits a weakly converging subsequence (i.e. the bounded sets are relatively se-
quentially weakly compact).

In the case of L1 spaces, we cannot use this result. In this case, there is another
characterization:

Theorem 1.6 (Dunford-Pettis). Given Ω ⊂ Rn measurable set, F ⊂ L1(Ω) bounded
set. Then F is relatively weakly compact ⇐⇒ F is equintegrable, i.e.

(i) for all ε > 0 it exists a δ > 0 such that:∫
A

|f | dx < ε, ∀A ⊂ Ω measurable with Ln(A) < δ, ∀f ∈ F ;

(ii) for all ε > 0, it exists ω ⊂ Rn with finite measure such that:∫
Ω\ω
|f | dx < ε, ∀f ∈ F.

Obtaining a weakly converging subsequence in applications is very important. For
example:

Proposition 1.1 (Direct method in the Calculus of Variations). Consider a Banach
space V and a functional J : V → (−∞,+∞] bounded from below. Then the Direct method
in the Calculus of Variations is divided into three steps:

(i) Take a minimizing sequence {un}n∈N ⊂ V , i.e. lim
n→+∞

un = min {J(u) : u ∈ V }.
(ii) Show that un admits some subsequence unk that converges weakly to some u0 ∈ V ,

i.e. unk ⇀ u0.
(iii) Show that J is weakly sequentially lower-semicontinuous, i.e. for any weakly con-

vergent sequence un ⇀ u0, it follows that lim inf
n→+∞

J(un) ≥ J(u0).

Once these conditions are proved, we have that u0 is a minimizer for J .

11
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To conclude this section, we want to present an example that mixes together integration,
measure theory and duality properties, which will be used later in this thesis. For more
details about this part we refer to Rudin [39].

Definition 1.10 (Vector measure). A vector measure on a measurable space (Ω,A) is
a map with values in Rn, i.e. µ : A → Rn such that:

• µ(∅) = 0;
• If Ak ∈ A, k ∈ N are mutually disjoint sets, i.e. Ai ∩Aj = ∅, ∀i 6= j, then:

µ

(+∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak), with the absolute convergence.

In the case of n = 1 we say that µ is a signed measure; in the case of n = 2 it is called
complex measure. A finite vector measure is a vector measure µ such that µ(A) < +∞, for
all A ∈ A.

Given a measurable space (Ω,A), we denote by:
• M1(Ω) =M(Ω): the space of the finite signed Borel measures.
• Mn(Ω) := {µ : B(Ω)→ Rn : µ is a finite vector measure}, the set of all the finite
vector measures defined on the Borel set B(Ω) with values in Rn.

• Mn
div(Ω) :=

{
µ ∈Mn(Ω) : ∇ · µ ∈M(Ω)

}
;

• Mn
div,0(Ω) := {µ ∈Mn

div(Ω) : µ · νΩ = 0}.
For every such vector measure, we can associate a positive scalar measure, called total
variation measure, defined as:

Definition 1.11 (Total variation measure). Consider a finite vector measure µ ∈
Mn(Ω). The total variation measure ‖µ‖ ∈ M+(Ω) is a map ‖µ‖ : B(Ω) → [0,+∞],
which associates to every A ∈ B(Ω):

‖µ‖ (A) := sup
{+∞∑
k=1
‖µ(Ak)‖ : A =

∞⋃
k=1

Ak with Ak ∈ B(Ω) and Ai ∩Aj = ∅, ∀i 6= j

}

Note that
∑+∞
k=1 ‖µ(Ak)‖ < +∞, because the series is absolutely convergent, thanks to

the Definition 1.10. Moreover, note that the quantity ‖µ‖ := ‖µ‖ (Ω) is a norm on the space
Mn(Ω). We, now, need to recall a modified version of the Riesz representation theorem:

Theorem 1.7 (Riesz representation for continuous function). Given Ω ⊂ Rn open
bounded set, then every bounded linear functional Φ on (C0(Ω;Rn))∗ (with C0(Ω;Rn)) consid-
ered with the supremum norm) is represented by a unique finite vector measure µ ∈Mn(Ω),
in the sense that:

〈Φ, f〉C0(Ω;Rn) =
∫

Ω
f · dµ =

n∑
i=1

∫
Ω
fidµi, ∀f ∈ C0(Ω;Rn). (1.5)

Moreover, the map:
(C0(Ω;Rn)∗ →Mn(Ω)

Φ 7→ µ

is a linear surjective isometry, i.e. ‖Φ‖ = ‖µ‖ (Ω).

In practice, we construct the integral in (1.5) as the sum of the integrals of scalar
functions according to scalar measures. For the proof of this theorem, in Rudin [39] there
is a different version, but it is enough to apply that version piecewise. The integral of a
function f ∈ C0(Ω;Rn) with respect to µ ∈ Mn(Ω), as defined in (1.5), is well defined,
if ‖f‖ ∈ L1(Ω, ‖µ‖). Another important fact about vector measures, consequence of the
Radon-Nikodym theorem, is the following:

12
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Proposition 1.2. For every µ ∈ Mn(Ω), there exists a Borel function u : Ω → Rn,
called the density of µ with respect to ‖µ‖, such that µ = u · ‖µ‖ and ‖u‖ = 1 a.e. for the
measure ‖µ‖. In particular,∫

Ω
f · dµ =

∫
Ω

(f · u)d ‖µ‖ , ∀f ∈ C0(Ω;Rn).

3. Elements of Probability Theory

In this section, we just want to refresh the mind of the reader about well-known results
and properties of the integration in a probability setting, mainly in the case of absolutely
continuous random variables. For the details about this argument, we refer to Jacod and
Protter [31]. Let us start consider a measurable space (Ω,A) and for future reasons, denote:

• P(Ω): the set of all the probabilitiy measures defined on the measurable space
(Ω,B(Ω).

Note, also, that a probability measure P is just a measure that has the property P (Ω) = 1.
Moreover, let us recall two key definitions inside probability theory.

Definition 1.12 (Random variable). A measurable function X : E → F , with (E, E)
and (F,F) two measurable spaces, is a random variable if (E, E) = (Ω,A). Moreover, we
say that X is a random variable with values in R, if (F,F) = (R,B(R)).

Definition 1.13 (Distribution). Given a probability space (Ω,A, P ) and a random
variable X : Ω→ E, then the distribution of X is defined as:

PX(B) := P (X−1(B)) = P ({w ∈ Ω : X(ω) ∈ B}).

Note that PX is a probability measure on (E, E). It is possible to define the integral of
a random variable in the same way as the Lebesgue integral of a measurable function. This
particular integral is called expectation of a random variable and it is denoted by E(X), if
X : Ω → R is a random variable. Moreover, in the same way as before, we can define the
Lp spaces of random variables as:

Lp(Ω,A, P ) = Lp(Ω) :=
{
X : Ω→ R : X is a random variable and |X|p ∈ L1(Ω,A, P )

}
.

We want to report, here, a result which links the expectation of a random variable X to
the integral with respect to the distribution PX .

Theorem 1.8 (Expectation rule). Let X : Ω→ E be a random variable with values in
(E, E) and g : E → R be a measurable function. Then:

(i) g(X) ∈ L1(Ω,A, P ) if and only if g ∈ L1(E, E , PX);
(ii) If g ≥ 0 or if g satisfies one of the equivalent conditions in (i), we have:

E(g(X)) =
∫
g(x)dPX(x). (1.6)

As for the expectation, we can define different types of convergence of random variables,
with properties similar to the case of the convergence of measurable functions. Thus,
it is possible to define the convergence almost everywhere, the convergence in Lp, the
convergence in probability, in the same way as we did in Definition 1.3. The only case that
differs is the following:

Definition 1.14 (Convergence in Distribution). Consider a sequence of probabilities
(µn)n∈N ∈ P(Rd) and µ ∈ P(Rd), then we say that µn converges in distribution or converges
weakly to µ, and we write µn ⇀ µ, if:

lim
n→+∞

∫
f(x)dµn(x) =

∫
f(x)dµ(x), ∀f : Rd → R bounded and continuous.

13
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We say that the sequence of random variables (Xn)n∈N with values in Rd converges in
distribution or weakly to the random variable X, if their distributions PXn ⇀ PX , i.e. for
all f : Rd → R bounded and continuous, using (1.6), we have:

lim
n→+∞

E(f(Xn)) = E(f(X)).

An important theorem in this context, used later in this thesis, is the following:

Theorem 1.9 (Prokhorov). Consider a sequence of probability measures in Rd, (µn)n∈N ⊂
P(Rd), which satisfies the tightness property, i.e. for every ε > 0 there exists a compact
subset Kε ⊂ Rd such that:

µn(Rd \Kε) < ε ∀n ∈ N. (1.7)
Then there exists a subsequence (µnk)k∈N and µ ∈ P(Rd), such that µnk ⇀ µ.

For the proof of this theorem, Jacod and Protter [31] there is only the case d = 1. For
the proof in general case see, for example, Billingsley [7]. We need, now, to introduce an
important concept of the probability theory, which will be used often in this study.

Definition 1.15 (Absolutely continuous measure and random variable). Consider a
Lebesgue measurable function f : Rn → [0,+∞) such that:∫

Rn
f(x)dx = 1.

Then, function:
µ(A) =

∫
A

f(x)dx, A ∈ B(Rn),

is a probability measure on B(Rn), and we say that µ is an absolutely continuous measure
with density f . We say that the random variable X with values in Rn is absolutely contin-
uous, if its distribution PX is an absolutely continuous measure. The density of X is the
density of PX

Note that, by the definition of absolutely continuous measure µ with density f , we
obtain the rule: ∫

g(x)dµ(x) =
∫
g(x)f(x)dx, ∀g ∈ L1(Ω,A, µ).

As a consequence, we obtain:

Proposition 1.3. If X is an absolutely continuous random variable with values in Rn
and density fX , for all g : Rn → R such that g(X) ∈ L1, then:

E(g(X)) =
∫
g(x)fX(x)dx. (1.8)

Note that comparing Equations (1.6) and (1.8), we can denote the fact that a random
variable X is absolutely continuous with density fX by:

dPX(x) = fX(x)dx.
A particular case in which the densities of the random variables are used is the following:

Theorem 1.10. Assume that (X,Y ) is a random variable with values in R2, absolutely
continuous with density fX,Y , then both X and Y are absolutely continuous random variables
with densities given by, respectively:

fX(x) =
∫
fX,Y (x, y)dy, fY (y) =

∫
fX,Y (x, y)dx.

These densities fX and fY are called the marginal densities of f . We finally turn our
attention to a change of variable technique taken from standard calculus, in order to answer
the question: if X = (X1, . . . , Xn) has the density f , what is the density of Y = g(X)? We
start recalling the change of variable theorem, taken for example from Stroock [42].

14



CHAPTER 1. Notation and some preliminary results.

Theorem 1.11 (Change of variable or Jacobi’s transformation). Suppose that G is an
open set in Rn and g : G→ Rn is continuously differentiable, injective and its Jacobian Dg
never vanishes. If f is Lebesgue measurable on g(G), then f ◦ g is Lebesgue measurable on
G. Moreover, if f ∈ L1(g(G),A,Ln), then:∫

g(G)
f(y)dy =

∫
G

f(g(x)) |det(Dg(x))| dx. (1.9)

As an application of this theorem, we can answer the previous question with the fol-
lowing:

Theorem 1.12. Consider X = (X1, . . . , Xn) a random variable with values in Rn,
absolutely continuous with density fX and consider g : Rn → Rn be continuously differen-
tiable, injective and with Jacobian Dg never vanishing. Then Y = g(X) is an absolutely
continuous random variable with density:

fY (y) =
{
fX(g−1(y))

∣∣det(Dg−1(y))
∣∣ if y ∈ Im(g),

0 otherwise.
(1.10)

4. Elements of Linear Programming

For the first introductory part about linear programming we refer to Vanderbei [44],
while for a deeper reading about duality we suggest the book of Boyd and Vandenberghe
[10]. We start with some general definitions:

Definition 1.16 (Linear program). A linear program is a constrained optimization
problem, where the objective function f is linear and the constraints are described by linear
equalities or inequalities. The general case is:

min (or max) c1x1 + · · · + cnxn

subject to a11x1 + · · · + a1nxn ∼ b1,

...
...

am1x1 + · · · + amnxn ∼ bm,

where “∼” stands for one of the following symbols: “≥”, “≤” or “=”. In the problem above,
x1, . . . , xn are the variables; aij , bi and cj are the parameters.

In general, every linear program can be written in the standard form (possibly after an
addition of some variables, called “slack” or “surplus” variables, or after some changes of
the sign) as:

min cTx

s.t. Ax = b

x ≥ 0,
(1.11)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm and x ∈ Rn. Here we report some standard notations
and a basic result characterizing the different types of linear programs.

We say that x∗ ∈ Rn is:
• feasible if it satisfies all the constraints. In the case of the standard form, for
example, x∗ has to be non-negative and Ax∗ = b.

• an optimal solution if it is feasible and, in the case of minimization problems,
cTx∗ ≤ cTx, for all the feasible x ∈ Rn.

If x∗ is an optimal solution, the corresponding value cTx∗ is said the optimal value.

Theorem 1.13. Given a linear program in the standard form, one and only one of the
following alternatives holds:

(i) the problem has at least one optimal solution;
(ii) the problem is unfeasible, i.e. there are no admissible solutions;
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(iii) the problem is boundless, i.e. for every K ∈ R it exists an admissible solution
x ∈ Rn such that cTx < K.

We have just introduced the main features and definitions of the linear programming. Ac-
tually, for the aim of this work, we just need one property of these linear programs: the
existence of a dual program. If we call a general linear problem, as those we described be-
fore, primal problem, then we can construct a dual problem, arising from the primal problem,
which can give us some useful information about it. However, before going on with the full
list of the rules for the construction of a dual problem, let us briefly see some motivations
and interpretations of this duality property. Often, in this linear programming framework,
the dual program has an economic interpretation. For example, in the cases of problems
linked to allocation of resources, production or transportation, which have clear economic
features, the dual problem describes the issue of an operator who wants to penetrate the
market and propose an alternative to our business. It is called shadow market. The con-
straints of the dual represent the fact that the proposal of the operator must be competitive,
hence it must be economically interesting for us. Conversely, the objective function rep-
resents the will of the operator to maximize the profit. Later in this thesis, we will focus
on the case of the assignment problem and the economic interpretation of the dual will be
clearer through this specific example. Furthermore, it exists another interpretation of the
dual problem, which is the most natural one and it holds in more general conditions. It is
called Lagrangian duality. Consider a general optimization problem written in a standard
way as:

min
x∈S

f(x), (MP)

where the set of feasible solutions S can be written as intersections of equalities and in-
equalities, i.e.

S := {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, ∀i = 1, . . . ,m, ∀j = 1, . . . , p} . (1.12)

We assume S non-empty and we denote by x∗ the optimal solution. It is often useful to
find a lower bound for a minimization problem (or an upper bound for a maximization
problem). The basic idea in the Lagrangian duality is to take the constraints inside the
definition of S into account by augmenting the objective function with a weighted sum of
the constraint functions. Indeed we define the Lagrangian L : Rn × Rm × Rp → R as:

L(x, λ, ν) = f(x) +
m∑
i=1

λigi(x) +
p∑
j=1

νjhj(x). (1.13)

These λi and νj are called the Lagrange multipliers associated with the i-th inequality
constraint gi(x) ≤ 0 and with the j-th equality constraint hj(x), respectively. We, then,
consider the Lagrange dual function g : Rm × Rp → R defined as:

g(λ, ν) := inf
x∈Rn

L(x, λ, ν) = inf
x∈Rn

f(x) +
m∑
i=1

λigi(x) +
p∑
j=1

νjhj(x)

 . (1.14)

Note that it is the pointwise infimum of a family of affine functions of (λ, ν), thus it is
concave even without any particular assumptions on the principal problem (MP). The
basic property of this dual function is that it yields lower bounds on the optimal value
f(x∗) of (MP). Indeed, for any λ ≥ 0 and any ν, supposing x̃ ∈ S, we get:

m∑
i=1

λigi(x̃) +
p∑
j=1

νjhj(x̃) ≤ 0.

Therefore,

L(x̃, λ, ν) = f(x̃) +
m∑
i=1

λigi(x̃) +
p∑
j=1

νjhj(x̃) ≤ f(x̃).
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Hence, simply noting that g(λ, ν) of (1.14) is less than or equal to the Lagrange function
L(x̃, λ, ν) in the previous inequality, we get that g(λ, ν) ≤ f(x̃) holds for any x̃ ∈ S.
Furthermore, we get that, for any λ ≥ 0 and any ν, the following inequality holds:

g(λ, ν) ≤ f(x∗). (1.15)
Note that the previous inequality is non-trivial only when λ ≥ 0 and (λ, ν) ∈ dom(g),
i.e. g(λ, ν) > −∞. We refer to the couple (λ, ν), with the features just described, as dual
feasible, for reasons which will be clear later. Now, once we discovered that each of the dual
feasible couple gives us a lower bound on the optimal value x∗, a natural question is: what
is the best lower bound that can be obtained from the Lagrange dual function?

The answer to this question leads to the following optimization problem:
max g(λ, ν)
s.t. λ ≥ 0, (DP)

where the constraint (λ, ν) ∈ dom(g) is implicit. The problem (DP) is usually called
Lagrange dual problem. Moreover, the term dual feasible to describe the pair (λ, ν) with
λ ≥ 0 and (λ, ν) ∈ dom(g) now becomes clearer, because it stands for a couple which is
feasible for the dual problem. We look for the optimal couple (λ∗, ν∗) that solves (DP),
called dual optimal or optimal Lagrange multipliers. Note that Lagrange dual problem (DP)
involves the maximization of a concave function under convex constraints, thus it is a convex
problem. Thus, in general, a dual problem can be easier than the primal problem for its
convexity properties and, sometimes, a primal problem with a lot of difficult constraints
can be reduced into a dual problem with less constraints, easier to handle. Let us see in
details, now, the case in which the primal problem is a linear program in the standard form
as in (1.11). In this case, in order to transform feasible set into an intersections of equalities
and inequalities like the set S, we consider the functions gi(x) = −xi, i = 1, . . . , n. Thus,
taking λi for the n inequality constraints and νj for the m equality constraints, we get:

L(x, λ, ν) = cTx−
n∑
i=1

λixi + νT (Ax− b) = −bT ν + (c+AT ν − λ)Tx.

Therefore, the dual function in this case is:

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) = −bT ν + inf
x∈Rn

(c+AT ν − λ)Tx =
{
−bT ν if AT ν − λ+ c = 0
−∞ otherwise,

since a linear function is bounded from below only when it is identically zero. Hence, g is
finite only when AT ν−λ+ c = 0. Thus, the Lagrange dual problem, making these equality
constraints explicit and considering u = −ν, becomes:

min bTu

s.t. −ATu− λ+ c = 0
λ ≥ 0,

(1.16)

This problem, removing the constraints λ ≥ 0, can be expressed as:
min bTu

s.t. ATu ≤ c.
(1.17)

Hence, this example gives us the following duality rule:

min cTx,
s.t. Ax = b,

x ≥ 0

Dual︷︸︸︷←→ max bTu,
s.t. ATu ≤ c,
u ∈ Rm.

(1.18)

In general, it is easy to see, proceeding like above, that the following rules for the
construction of the dual problem, in this case of linear programming, hold:
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• the dual of a minimum problem is a maximum problem and vice versa.
• the type of the primal constraint determines the sign of the dual variable, taking
the same one. The sign of a primal variable determines the type of the dual
constraint, taking the opposite one.

• the vector c defining the objective function of the primal problem becomes the
right-hand side of the constraints in the dual; vice versa, the vector b of the primal
appears in the objective function of the dual.

• if the constraints of the primal problem are defined by a matrix A ∈ Rm×n,
then the constraints of the dual problem are defined by the transpose matrix
AT ∈ Rn×m.

Table 1 summarizes all the rules written above and fully describes the construction of a
dual linear problem. Note that, given a matrix A ∈ Rm×n, the i-th row of A is denoted by
aTi and the j-th column of A is denoted by Aj .

min cTx max bTu

aTi x ≤ bi ui ≤ 0 i = 1, . . . ,m1
aTi x ≥ bi ui ≥ 0 i = m1 + 1, . . . ,m2
aTi x = bi ui free i = m2 + 1, . . . ,m

xj ≥ 0 ATj u ≤ cj j = 1, . . . , n1
xj ≤ 0 ATj u ≥ cj j = n1 + 1, . . . , n2
xj free ATj u = cj j = n2 + 1, . . . , n

Table 1. The rules for the construction of the dual problem of a linear program.

We state here some important theorems in this context, where in every theorem we
suppose to consider a couple of primal-dual linear problems.

Theorem 1.14 (Weak duality). If x is feasible for the primal problem and u is feasible
for the dual problem, then:

bTu ≤ cTx.

This theorem follows directly from the definition of the Lagrange dual function, which
is a lower bound for the optimal value of the primal problem. In particular, is a lower bound
for any feasible point. Indeed, Theorem 1.14 is just (1.15) in the case of a linear program.
A direct consequence is the following:

Corollary 1.1. If x∗ is feasible for the primal problem, u∗ is feasible for the dual
problem and cTx∗ = bTu∗, then x∗ and u∗ are optimal solutions for the primal and the dual
problems, respectively.

Another important result, also following from the general framework of the Lagrange
duality, is the following:

Theorem 1.15 (Strong duality). The primal problem has an optimal solution x∗ if
and only if the dual problem has an optimal solution u∗. In that case, the optimal values
coincide, i.e.

cTx∗ = bTu∗.

Starting from the same problem written in (MP), in the case in which functions
g1, . . . , gm and h1, . . . , hp are differentiable, we can obtain some necessary conditions for
optimality, which will be useful later in this thesis. The idea is, again, to use the Lagrangian
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function L(x, λ, ν) defined in Equation (1.13) and to impose the fact that its gradient must
vanish at optimal solution x∗. We get that:

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +
p∑
j=1

ν∗j∇hj(x∗) = 0,

if (λ∗, ν∗) is optimal for the dual problem written in (DP). Thus, we obtain:

Proposition 1.4 (Karush–Kuhn–Tucker (KKT) conditions). If x∗ is a local solution
of constrained minimization problem (MP) and (λ∗, ν∗) is a solution of constrained maxi-
mization problem (DP), the following conditions hold:

∇XL(x∗, λ∗, ν∗) = 0,
gi(x∗) ≤ 0 i = 1, . . . ,m
hj(x∗) = 0 j = 1, . . . , p
λ∗i ≥ 0 i = 1, . . . ,m
λ∗i gi(x∗) = 0 i = 1, . . . ,m

(KKT )

We refer again to Boyd and Vandenberghe [10] for a deeper analysis about this result.

5. Elements of Convex Analysis

In this section, we want to start by describing some tools of convex analysis. For a
deeper reading about the introductory concepts and the preliminary results set out below,
see both Ekeland and Temam [23] and Brezis [15].

Definition 1.17 (Convex set). Given a vector space V over R, we say that C ⊂ V is
a convex set if:

λu+ (1− λ)v ∈ C, ∀u, v ∈ C, ∀λ ∈ [0, 1].

Definition 1.18 (Convex function). Given a vector space V and a convex subset
C ⊂ V , a function F : C → R is said to be convex if

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y) ∀x, y ∈ C, ∀t ∈ [0, 1].
It is called strictly convex if the inequality above is strict for all x 6= y and for all t ∈ (0, 1).

Definition 1.19 (Concave function). Given a vector space V and a convex subset
C ⊂ V , a function F : C → R is said to be concave if

F (tx+ (1− t)y) ≥ tF (x) + (1− t)F (y) ∀x, y ∈ C, ∀t ∈ [0, 1].
It is called strictly concave if the inequality above is strict for all x 6= y and for all t ∈ (0, 1).

In this work, we will need also a suitable generalization of this definition, which adapts
the notion of concavity to the geometry of a function c(x, y).

Definition 1.20 (c-concave function). Given two vector spaces V andW and a function
c : V ×W → [0,+∞], a function F : V → R is said to be c-concave if there existsG : W → R,
G 6≡ −∞, such that:

F (x) = inf
y∈W

[c(x, y)−G(y)], ∀x ∈ V.

Indeed, the previous generalization is motivated by the fact that, in general, the point-
wise infimum of a family of affine functions is a concave function.

The following proposition collects together some properties of the convex functions:

Proposition 1.5. Given a vector space V and a convex subset C ⊂ V :
(i) If F : C → R is convex and if λ ≥ 0, then λF is convex.
(ii) If F and G are convex functions from C into R, then F +G is convex.
(iii) If (Fi)i∈I is any family of convex functions of C into R, their pointwise supremum

F (x) = supi∈I Fi(x) is convex.
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Definition 1.21 (Epigraph). Given a vector space V and a function F : V → R, the
epigraph of F is the set:

epi(F ) = {(x, a) ∈ V × R : F (x) ≤ a} .

The following result links together this final concept with the definition of convex func-
tion.

Proposition 1.6. Given a convex subset C ⊂ V of a vector space V , a function
F : C → R is convex if and only if its epigraph is a convex set.

Another important preliminary definition, taken from this framework, is:

Definition 1.22 (Lower semi-continuous). Given a metric space V , F : V → R is l.s.c.
if and only if for every x ∈ V and every sequence {xn} such that xn → x, we have:

F (x) ≤ lim inf
n→∞

F (xn).

Note that, using the definition of a closed set as a set which contains all its limit points,
we get the following characterization:

Proposition 1.7. Given a normed vector space V , it follows that a function F is l.s.c
if and only if epi(F ) is closed.

Furthermore, as in Proposition 1.5 about convex functions, also in this case the property
of being lower semi-continuous is linear and it is preserved for the pointwise supremum of
a family of lower semi-continuous functions. Another important tool is the following:

Definition 1.23 (Legendre-Fenchel transform). Given a normed vector space V and
a function F : V → R, the Legendre-Fenchel transformation is the function F ∗ : V ∗ → R
defined as:

F ∗(f) := sup
v∈V

[〈f, v〉∗ − F (v)] ∀f ∈ V ∗,

where V ∗ is the usual dual vector space.

Note that the Legendre-Fenchel transformation F ∗ is always convex and l.s.c. on V ∗.
Indeed, for any v ∈ V , the function f 7→ 〈f, v〉∗ − F (v) is convex and l.s.c. on V ∗. It
follows that the pointwise supremum for v ∈ V is a convex and l.s.c function, thanks to
the properties of convex and l.s.c functions stated before. The last important result from
convex analysis is the following:

Definition 1.24 (Subgradient and subdifferential). Given a normed space V and a
function F : V → R. We say that u∗ ∈ V ∗ is a subgradient of F at x0 ∈ V if the following
subgradient inequality holds:

〈u∗, x− x0〉∗ + F (x0) ≤ F (x), ∀x ∈ V. (1.19)
The set ∂F (x0) := {u∗ ∈ V : u∗ is a subgradient of F at x0} is called the subdifferential
of F at x0.

For the details about this subtle argument we refer to the convex analysis chapter in
the book of Clarke [19]. Another characterization of the subderivative, using the Legendre-
Fenchel transform, is given by the following:

Proposition 1.8. Consider a normed space V , a function F : V → R and its Legendre-
Fenchel transform. Then u∗ ∈ ∂F (x0) if and only if:

F (x0) + F ∗(u∗) = 〈u∗, x0〉∗. (1.20)

Just to have an intuition about this delicate and non-trivial tool, if we consider the
affine function h(x) := F (x0) + 〈u∗, x − x0〉∗, the graph of h is a non-vertical supporting
hyperplane of epi(F ) at the point (x0, F (x0)), as in Figure 2. It is easy to understand, also
helped by this figure, that the subderivative and the subdifferential are tools introduced
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x0

F (x0)

x

y

F (x)

h(x)

Figure 2. Graphic representation of the meaning of a subgradient of F at x0.

-1 1

+∞+∞

x

y

Figure 3. Graphic representation of function F (x).

to generalize the concept of derivative of functions which are not differentiable. Indeed, if
we look, for example, at the case of the absolute value on R, i.e. F : R → R defined as
F (x) = |x|. We know that F is not differentiable at 0, but, in this case, the subdifferential
of F at 0 is ∂F (0) = [−1, 1]. However, note there is no guarantee that the subdifferential is
a priori non-empty, as we can see in the following example.

Example 1.1. Consider F : R→ R, defined as:

F (x) =
{
−
√

1− |x|2 if |x| ≤ 1,
+∞ if |x| > 1.

The function is represented in Figure 3. In this case the ∂F (−1) = ∂F (1) = ∅, because it
is not possible to find an non-vertical hyperplane passing through (1, F (1)) or (−1, F (−1))
remaining below epi(F ).

Thus, the following characterization of the subdifferential is non-trivial and very useful.

Proposition 1.9. Let V be a normed space and F : V → R. Then, for every x0 ∈
V , the subdifferential ∂F (x0) is a convex subset of V ∗ which is also closed for the weak-
* topology. Moreover, in the case in which the function F is convex and continuous at
x0 ∈ dom(F ), then ∂F (x0) 6= ∅.

21



CHAPTER 1. Notation and some preliminary results.

Furthermore, another characterization of the subdifferential holds in a more particu-
lar case, which, once more, stresses the fact that this concept generalize the definition of
derivative.

Proposition 1.10. Let V be a normed space and let F : V → R be a convex function,
with x0 ∈ dom(F ). If F is Gâteaux differentiable at x0, then:

∂F (x0) = {DF (x0)}.

We introduced this concept, because it is linked with optimization problems. Before
going on with the result, we need to do a latter consideration, which will be useful to remove
the constraints of an optimization problem. If we consider a function f : Rn → R and a
convex subset C ⊂ Rn, the following are equivalent:

min
x∈C

f(x) ⇐⇒ min
x∈Rn

f(x) + IC(x), where IC(x) =
{

0 if x ∈ C,
+∞ if x /∈ C.

(1.21)

The function IC is called the indicator function of C. Moreover, its subdifferential NC(x) :=
∂IC(x) is another particular structure, called normal cone.

Proposition 1.11. Suppose that C ⊂ V is convex subset of a normed space and that
F : V → R is a continuous convex function, with x0 ∈ C. Then:

F (x0) = min
x∈C

F (x) ⇐⇒ 0 ∈ ∂(F (x0) + IC(x0)) = ∂F (x0) +NC(x0). (1.22)

Note that this result simply follows from the subgradient inequality 1.19. Let us present,
now, two important theorems taken from convex analysis, whose applications will be of great
importance in this work.

Theorem 1.16 (Fenchel-Moreau). Assume that V is a normed vector space and that
F : V → R is a convex and l.s.c function. Then F ∗∗ = F .

For the proof of this theorem, we suggest Brezis [15]. Now, let us consider V andW two
vector spaces, with the analogous standard dual vector spaces V ∗ and W ∗, and consider a
linear continuous operator from V into W , Λ ∈ L(V,W ), whose adjoint Λ∗ ∈ L(W ∗, V ∗),
is defined by:

〈Λ∗p∗, u〉∗ := 〈p∗,Λu〉∗ ∀p∗ ∈W ∗, ∀u ∈ V. (1.23)
Let us assume, also, that F : V → R and G : W → R are two functions. Define, then, a
principal problem as:

inf
u∈V

[F (u) +G(Λu)]. (P1)

Recalling the concept of dual problem taken from linear programming and using a technique
similar to the Lagrangian duality, properly extended to a convex analysis framework, we
want to find a correspondence between the solutions of the primal and the dual problems,
as in the Strong Duality Theorem 1.15. All the details are explained in Ekeland and Témam
[23]. We have that the dual formulation of the problem (P1) is:

sup
p∗∈W∗

[−F ∗(Λ∗p∗)−G∗(−p∗)] . (P∗1)

The functions F ∗ : V ∗ → R and G∗ : W ∗ → R are the Legendre-Fenchel transformations of
F and G, respectively. With all these preliminary definitions, the following result holds:

Theorem 1.17 (Fenchel–Rockafellar). Let us assume that F and G are convex func-
tions, that inf (P1) is finite and that there exists u0 ∈ V such that F (u0) < +∞, G(Λu0) <
+∞, with G continuous in Λu0. Then, it follows that:

inf (P1) = sup (P∗1).

The proof of this theorem can also be found inside Ekeland and Témam [23].
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CHAPTER 2

The Monge-Kantorovich Mass Transfer

In this chapter, we start to deal with Monge-Kantorovich optimal transport problem.
For the sake of the exposition, we need to spend some words on the structure of this chapter
and on the way in which it will be developed. Starting from the original formulation due
to Monge [37], we describe the mathematical background underlying this apparently simple
problem and we hit against the high non linearity of the problem set like that. Taking
inspiration from Kantorovich [32] and [33], we change the point of view. Indeed, looking
at the initial problem from a different perspective, we start considering a “relaxation” of
it, passing through the discrete case. Noting that this reformulation is connected with the
linear programming, we can apply standard mathematical tools coming from this field and
we can consider the dual problem. These new formulations of the original problem are
solvable under reasonable assumptions, as they are linear problem, just depending on the
cost function c and on linear constraints. Coming back to the original issue, with these
new information taken from Kantorovich formulations, we are also able to solve Monge
problem. In the case of a cost function c(x, y) = h(x− y) with h strictly convex, we use a
result due to Gangbo-McCann [30]. Thus, we concentrate on the original L1 cost function
c(x, y) = ‖x− y‖, for which this result does not hold. In this case, we follow the idea used
in Evans and Gangbo [27], who thought of using a differential equation technique involving
a deformation argument which dates back to Dacorogna and Moser [20]. Following this
idea, we give a “recipe” for the construction of an optimal solution of Monge problem.

1. Formulation of the problem

The original formulation of the optimal mass transfer problem was proposed by Gaspard
Monge in 1781, with a report called “Mémoire sur la Theorie des Déblais et des Remblais”
(see the front page in Figure 4). He asked which was the best way to move a pile of soil
or rubble (“déblais”) from the ground to an excavation or fill (“remblais”), with the least
amount of work. In mathematical words, consider two positive finite Borel measures µ+

(the mass distribution of the “déblais”) and µ− (the mass distribution of the “remblais”)
on Rn, i.e. µ+, µ− ∈M+(Rn), satisfying the mass balance condition:

µ+(Rn) = µ−(Rn) <∞. (2.1)

Note that we could consider measures µ+ and µ− defined on general complete and separable
spaces, but, for the aim of this thesis, it is enough to consider Rn or some proper subspaces
of it. Moreover, if we divide the equality in (2.1) by a constant, it is the same to consider
µ+(Rn) = µ−(Rn) = 1, and, thus, µ+, µ− ∈ P(Rn). Denoting by X = supp(µ+) and by
Y = supp(µ−), we will call transport map (or, alternatively mass rearrangement map or
mass transfer) T : X → Y a one-to-one and Borel measurable map, which tells us how
a certain point x moves to y = T (x). This map T , in order to be feasible for the Monge
optimal mass problem, must also satisfy the property of rearranging µ+ into µ−. This
property is expressed through:

T#(µ+) = µ−, (2.2)
where # denotes the push-forward of a measure, defined by:

T#(µ+)(B) = µ+(T−1(B)), B ∈ B(Y ). (2.3)
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Figure 4. Front page of Monge’s “Mémoire sur la Theorie des Déblais et
des Remblais”.

This last constraint can also be written, using a change of variable, in the following way:∫
X

h(T (x))dµ+(x) =
∫
Y

h(y)d(T#(µ+))(y), ∀h ∈ L1(Y, T#(µ+)). (2.4)

Thus, we denote the set of all possible transport maps by:

T (µ+, µ−) := {T : X → Y | T is Borel measurable, one-to-one and T#(µ+) = µ−}.

Moreover, consider the work or cost density function:

c : Rn × Rn → [0, ∞) .

This function tells us the work required to move a unit of mass from the position x ∈
X to the position y ∈ Y . Hence, if dµ+(x) denotes the mass associated with a small
neighborhood near x, the infinitesimal cost for to transport dµ+(x) from x to T (x) is
c(x, T (x))dµ+(x). With this notation in our mind, we can define the total cost associated
to a mass rearrangement map T by:

I(T ) :=
∫
X

c(x, T (x))dµ+(x). (2.5)

Then, the original Monge problem reads as:

Problem (M).

Given two positive finite measures µ+, µ− ∈M+(Rn) satisfying (2.1), find an optimal mass
transfer T ∗ ∈ T (µ+, µ−) such that:

I(T ∗) = inf
T∈T (µ+,µ−)

I(T ). (2.6)

We will see from the following two examples, which can be found for example in Am-
brosio [1], that the existence or the uniqueness of an optimal transport map are not always
guaranteed.

Example 2.1 (Non existence). Consider the case in which X = Y = [−1,+1], µ+ = δ0
and µ− = 1

2δ−1 + 1
2δ1, then Problem (M) has no solution simply because mass cannot split.

The problem is unfeasible, i.e. there is no map such that T#(µ+) = µ−.
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Example 2.2 (Non uniqueness). Consider the case in which X = Y = R, µ+ =
χ[0,n]dx,µ− = χ[1,n+1]dx and there is an L1 cost function, i.e. c(x, y) = ‖x− y‖. Then,
consider the two transport maps:

T1(x) = x+ 1; (2.7)

T2(x) =
{
x+ n, on [0, 1)
x, on [1, n] .

(2.8)

Now, note that if we consider a function h : R→ R with Lip(h) = 1, then∫
Y

h(y)dµ−(y)−
∫
X

h(x)dµ+(x)
(2.4)︷︸︸︷=

∫
X

[h(T (x))− h(x)] dµ+(x)
Lip(h)=1︷︸︸︷
≤

∫
X

‖x− T (x)‖ dµ+(x).

If we consider h(x) = x, for which Lip(h) = 1, then∫
X

h(x)d
(
µ− − µ+) =

∫ n+1

1
xdx−

∫ n

0
xdx = x2

2

∣∣∣x=n+1

x=1
− x2

2

∣∣∣x=n

x=0
= n.

Thus, any transport map is characterized by the fact that its cost has to be greater than or
equal to n and both T1 and T2 satisfy the equality:∫

X

‖x− T1(x)‖ dµ+(x) =
∫
X

‖x− T2(x)‖ dµ+(x) = n.

Hence, we can conclude that they are both optimal and we loose the uniqueness of the
minimizer.

The difficulty of Problem (M) is not only due to the fact that the existence and the
uniqueness of the minimizer are not a priori ensured, but also that, still now, after more
than two hundred years, it is really difficult to solve a problem set like that, because of
its high nonlinearity. Indeed, consider, for example, absolutely continuous measures with
smooth densities f+ and f−, as defined in Definition 1.15 inside Section 3 of Chapter 1.
This can briefly be written as:

dµ+ = f+dx, dµ− = f−dy. (2.9)

Note that, throughout the whole work, we will consider in most of the cases this type of
measures. One reason of this particular choice is that in this case, it is possible to write the
constraint expressed in (2.2) in a different way, starting from (2.4) and using the change of
variable Theorem 1.11. For any h ∈ L1(Y, µ−), we get:∫

X

h(T (x))f+(x)dx
(2.4)︷︸︸︷=

∫
Y

h(y)f−(y)dy
(1.9)︷︸︸︷=

∫
X

h(T (x))|det (DT (x)) |f−(T (x))dx.

Looking at the right-hand side and at the left-hand side of the previous equality, by the
arbitrariness of function h, it follows that the constraint in (2.2) reads as:

f+(x) = f−(T (x))|det (DT (x)) |. (2.10)

Even in this case, the structure of the constraint is highly nonlinear and it is not obvious
that there exists any mapping satisfying the constraint (as for Example 2.1). Indeed, in
order to briefly understand this nonlinearity, we will try to apply the Direct method in the
Calculus of Variations, written in Proposition 1.1. Thus, supposing that it exists, consider
a minimizing sequence {Tk}+∞k=1 ⊆ T (µ+, µ−), i.e.

I(Tk) k→+∞−→ inf
T∈T (µ+,µ−)

I(T ).

The second step would be to find a subsequence {Tkj}+∞j=1 converging to the optimal mass
allocation map T ∗, i.e.

Tkj
j→+∞−→ T ∗,
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Figure 5. Graphic example of the optimal transport problem in the dis-
crete case.

in some type of metric. The problem is that there is no clear way to extract such a
subsequence, converging in any reasonable sense to the minimizer. Moreover, even if we
want to show the lower semi-continuity of this functional, we will have problems. In general,
in any Banach space V , the goal is reached if we show that the functional I(·) satisfies the
following property:

I(T ) ≥ α‖T‖q − β, for some α > 0, q ≥ 1 and β ≥ 0,

for whatever metric. This property is linked to the concept of coercivity, intended, in a
general way, as the characteristic of a function that tends to infinity when ‖T‖ goes to
infinity. The problem, also in this case, is that we are not able to show coerciveness in any
type of Sobolev space, hence the Direct method of the Calculus of Variations fails both for
the step of the sequential compactness and for the step of the lower semi-continuity.

2. Kantorovich formulation: Relaxation and Duality

Kantorovich in his works [32] and [33], in the 1940’s, tried to solve this highly nonlinear
Problem (M) using the following two steps:

(i) “relax” the original Monge’s mass transfer problem;
(ii) use a dual variational principle.

The main idea of (i) is to transform Problem (M) into a linear problem. Just to have some
intuitions about the problem, let us pass through the discrete case, which is, as announced in
Section 4 of Chapter 1, an example of linear programming. The discrete case of the optimal
transport problem is also known in literature as assignment problem. The details about this
formulation can be found, for example, in a classical book about linear programming such
as Sakarovitch [40]. Suppose that we want to move an initial configuration of resources (soil
in Monge’s formulation) positioned in n different places, everyone with a non-negative fixed
amount of resources µ+

i , i = 1, . . . , n. Note that the initial configuration, in general, could
also be seen as n different warehouses, each with a different amount of stock. The aim is to
move these resources into m different places, representing the final fixed configuration, for
example the excavation, each with a requested non-negative quantity of material µ−j . The
unitary cost for the transport of a single unit of resource from the position i ∈ {1, . . . n}
to the place j ∈ {1, . . . ,m} is cij . Suppose, finally, that the volume expected in the final
configuration is the same as the volume present in the initial configuration, i.e. the volume
balance condition is satisfied:

n∑
i=1

µ+
i =

m∑
j=1

µ−j . (2.11)

We have to decide how to better move the resources, in such a way that every resource
in the initial configuration is moved into the final and the final configuration is fulfilled,
minimizing the transportation cost. To do that, we have to define the variables µij , which
stands for the quantity of resources moved from the initial place i to the final place j. The
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situation is graphically represented in Figure 5. Now, we have all the parameters and the
variables in order to describe the linear program that has to accomplish the aim described
before.

Problem (P).

Find an optimal solution µ = {µij}i,j which satisfies:

min
n∑
i=1

m∑
j=1

cijµij

subject to
m∑
j=1

µij = µ+
i i = 1, . . . , n;

n∑
i=1

µij = µ−j j = 1, . . . ,m;

µij ≥ 0 ∀i, j.
The continuous version of this discrete problem means that the mass of the initial and

of the final configurations are no more divided into different places, but they are arranged
with initial and final “distributions”. Hence, let us define the set of all the admissible maps,
taking into account the three constraints used in the discrete case, this time in a continuous
way. This set is defined by:

Π(µ+, µ−) :=
{
µ ∈M+(Rn × Rn) | πx(µ) = µ+, πy(µ) = µ−

}
. (2.12)

This is the affine space of the measures defined on the product space Rn × Rn, whose ele-
ments are characterized by the fact that the standard projections on the first n coordinates
and on the last n coordinates are µ+ and µ−. Such measures are called transport plans.
The projections of such measures are also called marginal distributions, as defined in the
probability Section 3 of Chapter 1. Note, also, that the space Π(µ+, µ−) is always not
empty because it contains, for example, the product measure of µ+ and µ−, i.e. µ+ ⊗ µ−,
and it is convex. Now, given µ ∈ Π(µ+, µ−), we define the relaxed cost functional

J(µ) :=
∫
Rn×Rn

c(x, y)dµ(x, y), (2.13)

a continuous version of the objective function in Problem (P). Using these definitions,
Problem (M) is “relaxed” into:

Problem (K).

Given two positive finite measures µ+, µ− ∈ M+(Rn) satisfying (2.1), find an optimal
transport plan µ∗ ∈ Π(µ+, µ−) such that:

J(µ∗) = inf
µ∈Π(µ+,µ−)

J(µ). (2.14)

The correspondence between Kantorovich and Monge formulations is that if T : X → Y
belongs to T (µ+, µ−), then the transport plan defined by:

µT (E) := µ+ ({x ∈ X | (x, T (x)) ∈ E}) , E ⊂ B(Rn × Rn)

belongs to Π(µ+, µ−), using (2.2). Moreover, if it exists, the induced transport plan has
the same cost of the transport map, i.e.

I(T ) =
∫
Rn
c(x, T (x))dµ+(x) =

∫
Rn×Rn

c(x, y)dµT (x, y) = J(µT ). (2.15)
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Furthermore, the link between the two formulations is even stronger. As the title of the first
step suggested, we are going to motivate the term “relax”, used to describe Kantorovich
way of proceeding. Let us define:

Definition 2.1 (Relaxation). Let V be a metric space and let F : V → R be a
functional, bounded from below. We define the relaxation of F as:

F := max
{
G : V → R : G is lower semi-continuous and G ≤ F

}
.

Note that, as the supremum of an arbitrary family of l.s.c. functionals, it is also
l.s.c, as we noted in the preliminary Chapter 1 in Section 5. Moreover, we also have the
representation formula:

F (x) = inf
{

lim inf
n

F (xn) : xn → x
}
. (2.16)

A consequence of this representation is that:
inf
x∈V

F (x) = inf
x∈V

F (x). (2.17)

In order to define both the problems on the same domain, we re-write Monge problem (M),
using (2.15), as:

inf
{
M(µ) : µ ∈ Π(µ+, µ−)

}
,

where

M(µ) =
{
J(µ) = I(T ) if µ = µT

+∞ otherwise.
(2.18)

It is the same to consider this problem or Monge problem, because we are forced to consider
only those plans induced by a transport map. Now, M and J are defined in the same set
and, clearly, J(µ) ≤M(µ), µ ∈ Π(µ+, µ−), by the definition of M . Thus:

Theorem 2.1. Suppose that both X,Y ⊂ Rn the supports of µ+ and µ−, respectively,
are compact and convex subsets. Assume, also, c continuous in X × Y and µ+ atomless,
i.e. µ+({x}) = 0 for all x ∈ X. Then J is the relaxation of M and, in particular, the
optimal values of Monge Problem (P) and Kantorovich Problem (K) coincide, i.e.

inf
µ∈Π(µ+,µ−)

J(µ) = inf
µ∈Π(µ+,µ−)

M(µ). (2.19)

Outline of the “proof” (Santambrogio [41]). (≤) Note that the functional J is
continuous, thus l.s.c., and we have J ≤ M . Then, necessarily, K is smaller than the
relaxation M of M , because J belongs to the set along which is taken the infimum in
Definition 2.1.

(≥) For the vice versa, we want to use the representation formula of the relaxation
given by (2.16). Thus, we need to prove that for each µ ∈ Π(µ+, µ−), we are able to find
a sequence of transport maps {Tn}n∈N, such that µTn ⇀ µ and M(µTn) → J(µ), in order
to conclude that the infimum in the sequential characterization in (2.16) will be smaller
than J . Actually, since M(µ) = J(µ) for µ = µTn , by the definition of M in (2.18), and
since J is continuous, we know that if such a sequence of maps {Tn}n∈N exists, the limit
M(µTn)→ J(µ) will be automatically true. We only need to produce the sequence {Tn}n∈N
such that µTn ⇀ µ. This is possible thanks to the density of the set of plans induced by a
transport map, i.e. of the form µT , along the set of plans Π(µ+, µ−). This result is shown in
Santambrogio [41, Theorem 1.32], in the case of µ+ atomless, which is an hypothesis of the
theorem we are proving. Thus we have shown that J is the relaxation of M . To conclude
that the optimal values of the two problems coincide, we just need to apply the property of
the relaxation, given by (2.17). �

For the complete proof of this theorem see Ambrosio [1] or Santambrogio [41].
This change of formulation of the problem is due to the fact that, unlike Monge’s

formulation, in this case the existence is ensured, under reasonable conditions. Indeed, we
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want briefly to discuss the existence in a couple of cases. For the first case, we need the
following:

Lemma 2.1. Let V be a metric space and consider f : V → R ∪ {+∞} a lower semi-
continuous function, bounded from below. Then the functional K : M+(V ) → R ∪ {+∞}
defined by:

K(µ) :=
∫
V

f(x)dµ(x),

is lower semi-continuous for the weak convergence of measures.

Theorem 2.2 (Existence case (I)). Suppose that both X, Y ⊂ Rn, the supports of µ+,
µ− ∈ M+(Rn), are compact and convex subsets. Moreover, suppose c : X × Y → [0,+∞]
lower semi-continuous and bounded from below. Then (K) admits a solution.

The idea of this proof is to use the Direct method of the Calculus of Variations written
in Proposition 1.1 to show the lower semi-continuity existence. The strategy is, first of all,
to show the sequential compactness of Π(µ+, µ−) and, then, to use Lemma 2.1, with f = c
defined on X × Y , to prove that function J defined in (2.13) is lower semi-continuous for
the weak convergence. The second existence case described below is even more general and
it is true for every X and Y Polish spaces, i.e. complete and separable metric spaces. In
this case, let us assume X = Y = Rn.

Theorem 2.3 (Existence case (II)). Consider µ+, µ− ∈ M+(Rn) and c : Rn × Rn →
[0,+∞] lower semi-continuous. Then (K) admits a solution.

The idea, in this case, is to show that any sequence in Π(µ+, µ−) satisfies the tightness,
a property of a sequence of probabilities previously introduced in Equation (1.7). Once
shown this property, we are able to deduce, using Prokhorov’s Theorem 1.9, the weakly
sequential compactness of the set Π(µ+, µ−). For the complete proofs of Lemma 2.1 and
both Theorem 2.2 and 2.3, see Section 1.1 of Santambrogio [41]. To provide some examples
of the existence, let us consider again Example 2.1 and Example 2.2. For the first one, we
saw that the optimal transport map does not exist, but the optimal transport plan is given
by

µ(x, y) = 1
2δ0 × δ−1(x, y) + 1

2δ0 × δ1(x, y).

In general, however, also in this case uniqueness fails because of the linearity of J and
because of the convexity of Π(µ+, µ−). Example 2.2 highlights this lack of uniqueness. We
showed before that there are at least two optimal maps T1 and T2, defined in (2.7) and
(2.8). Is possible to show that, for any t ∈ [0, 1], the measure

t (Id× T1)# (µ+) + (1− t) (Id× T2)# (µ−),

is optimal.
Thus, under some assumptions, the existence of Kantorovich relaxed Problem (K),

which is called also “weak solution” of the Monge’s original problem, is ensured. We also
showed that, under other assumptions, the optimal values of the two problems coincide.
The problem is that the information about the form of an optimal solution of Problem (M)
are still missing. Perhaps the next idea, also provided by Kantorovich, will help us finding
the answer to this problem.

The second intuition (ii) provided by Kantorovich, was to take into account a dual
formulation of Problem (K). The more intuitive way to understand this formulation is to
consider the finite dimensional case explained, for example, in Evans [26], but also in other
classical book of linear programming, such as Sakarovitch [40]. We have already shown,
at the beginning, of this section, that the Kantorovich relaxed reformulation of Monge
original problem comes from a linear program, in the discrete case. Thus, we want to start
considering the dual problem of a linear program, with the techniques and the motivations
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we introduced in Section 4 of Chapter 1. Note that, primal Problem (P), can be written in
a compact way. Indeed, consider c ∈ RN , b ∈ RM defined by:{

N = nm, M = n+m, x = (µ11, . . . , µ1m, µ21, . . . , µ2m, . . . , µnm)T ,
c = (c11, . . . , c1m, c21, . . . , c2m, . . . , cnm)T , b =

(
µ+

1 , . . . , µ
+
n , µ

−
1 , . . . , µ

−
m

)T
Moreover, consider the matrix A ∈ RM×N :

n rows
{

m rows
{



1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

e1 e1 . . . e1
e2 e2 . . . e2
...

...
...

...
em em . . . em


.

Here the vectors 1, 0 and ej are row vectors in Rm, respectively, 1 = (1, . . . , 1), 0 = (0, . . . , 0)
and ej = (0, . . . , 1, 0, . . . , 0), with the one in the j-th slot, for j = 1, . . . ,m. Then, Problem
(P) becomes:

Problem (P).

Find an optimal solution x∗ ∈ RN satisfying:
min cTx

s.t. Ax = b

x ≥ 0,

Once we write the primal Problem (P) in this way, we can derive the dual formulation
simply using the rules summarized in Table 1.

Problem (D).

Find an optimal solution y∗ ∈ RM satisfying:
max bT y,

s.t. AT y ≤ c,
y ∈ RM

Finally, calling y = (u1, . . . , un, v1, . . . , vm) ∈ Rn+m and employing the explicit form of
the matrix AT , we obtain that Problem (D) is equivalent to:

Problem (D).

Find and optimal couple y∗ = (u∗, v∗) such that:

max
n∑
i=1

uiµ
+
i +

m∑
j=1

vjµ
−
j

s.t. ui + vj ≤ cij ∀i = 1, . . . , n, ∀j = 1, . . . ,m.
This dual program has an interesting economic interpretation that can be deduced from

the preliminary chapter, in Section 4 about linear programming. In this case the shadow
market is represented by an operator who offers to buy the resources that are in the initial
configuration and to sell the same material at the final configuration, assuming for himself
the cost of transportation. The operator offers to pay the price ui for a unit of material
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placed at point i ∈ {1, . . . , n} and to sell it at j ∈ {1, . . . ,m} for the unit price vj . The
constraints ensure the competitiveness of the offer: for every initial and final location i and
j, the balance of the operator cost of a unit of resource in i and the operator remuneration
for the sale at point j cannot be more than the amount of money a buyer could spend in
buying the good in i and transporting it to j. The objective function represents the fact
that the operator wants to maximize his incomes. Furthermore, we have, by Strong Duality
Theorem 1.15, that any competitive optimal offer made by the operator must coincide in
value with the cost of an optimal solution of the discrete transport Problem (P), i.e.

n∑
i=1

m∑
j=1

cijµ
∗
ij =

n∑
i=1

u∗iµ
+
i +

m∑
j=1

v∗jµ
−
j . (2.20)

We can now guess the dual variational formulation of Problem (K), by using a continuous
variant of the discrete Problem (D). First of all, we define the space:

L := {(u, v) | u, v : Rn → R, u(x) + v(y) ≤ c(x, y) s.t. x, y ∈ Rn} . (2.21)
Here, u and v are intended to live in the space of continuous functions, i.e. C(Rn). Moreover,
we define the functional:

K(u, v) :=
∫
X

u(x)dµ+(x) +
∫
Y

v(y)dµ−(y). (2.22)

The continuous dual problem of (K) becomes:

Problem (D).

Given two positive finite measures µ+, µ− ∈ M+(Rn) satisfying (2.1), find an optimal
couple (u∗, v∗) ∈ L such that

K(u∗, v∗) = max
(u,v)∈L

K(u, v). (2.23)

As an extension of the Strong Duality Theorem 1.15 in the discrete case, reported in
(2.20), we have that in the case the optimal couple exists, the dual and the primal problem
must achieve the same value:

K(u∗, v∗) = max
(u,v)∈L

K(u, v) = min
µ∈Π(µ+,µ−)

J(µ) = J(µ∗). (2.24)

We introduced this discrete procedure in order to understand better this transition to
the dual problem, which is motivated and justified by the Lagrange duality introduced in
the linear programming section. We can obtain this dual reformulation of Kantorovich
problem, using results of convex analysis in infinite dimensional spaces, which we briefly
introduced in Section 5 of Chapter 1. For this duality result we have taken inspiration
from Santambrogio [41]. Suppose that the supports X and Y of our measures µ+ and µ−
are compact and that c : X × Y → R is continuous. We want to introduce a function
H : C(X × Y )→ R, that is defined for every continuous function p ∈ C(X × Y ) as:

H(p) := −max
(u,v)

{∫
X

u(x)dµ+(x) +
∫
Y

v(y)dµ−(y) : u(x) + v(y) ≤ c(x, y)− p(x, y)
}
.

This function coincides with the opposite of the value of Problem (D) in the case of a cost
function c− p. The main tool we plan to use to prove the duality correspondence between
Problems (K) and (D) is Fenchel-Moreau Theroem 1.16. In order to apply it, we use a
result that can also be found in [41]:

Lemma 2.2. The function H : C(X × Y ) → R is convex and l.s.c with respect to the
uniform convergence on the compact space X × Y .

This result tells us that the conditions of the Fenchel-Moreau theorem are satisfied and
we can apply it to the function H. Before proving the duality result, let us compute the
Legendre-Fenchel transformation H∗ : M(X × Y ) → R ∪ {+∞} of the function H. For
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every µ ∈M(X × Y ), which is, recalling Riesz representation Theorem 1.7, the dual space
of C(X × Y ), the Legendre-Fenchel transformation is given by:

H∗(µ) = sup
p

[∫
X×Y

p dµ+ sup
(u,v)

{∫
X

udµ+ +
∫
Y

vdµ− : u(x) + v(y) ≤ c(x, y)− p(x, y)
}]

.

Note that we used the scalar product 〈µ, p〉C0(X×Y ) =
∫
X×Y p dµ defined inside the Riesz

representation theorem recalled above. Now:
• if µ /∈M+(X×Y ), then there exists a function p0 ≤ 0 s.t.

∫
p0dµ > 0 and, taking

u = v = 0, p = c+ np0 and letting n→∞, we obtain H∗(µ) = +∞;
• if µ ∈M+(X×Y ), we choose the largest possible p, i.e. p(x, y) = c(x, y)−u(x)−
v(y).

Hence, for all µ ∈M+(X × Y ), we obtain, using the largest p:

H∗(µ) =
∫
X×Y

c(x, y)dµ(x, y)+ sup
(u,v)

{∫
X

udµ+ +
∫
Y

vdµ− −
∫
X×Y

(u(x) + v(y))dµ(x, y)
}
.

Note, also, that:

sup
u,v

(∫
X

udµ+ +
∫
Y

vdµ− −
∫
X×Y

(u(x) + v(y)) dµ(x, y)
)

=
{

0 if µ ∈ Π(µ+, µ−),
+∞ otherwise.

We get, from the definition of J in (2.13):

H∗(µ) =
{
J(µ) if µ ∈ Π(µ+, µ−),
+∞ otherwise.

(2.25)

Finally, we are ready to prove the duality theorem:

Theorem 2.4. If X, Y are compact spaces and the cost function c : X × Y → R is
continuous, then the optimal values of Problems (K) and (D) coincide.

Proof (Santambrogio [41]). By Lemma 2.2, H is convex and l.s.c. Thus, we can
use Fenchel-Moreau Theorem 1.16 and we get:

max (D) = −H(0) = −H∗∗(0).

Moreover, by the definition of Legendre-Fenchel conjugate and (2.25), we have:

H∗∗(0) = sup
µ

[〈0, µ〉∗ −H∗(µ)] = − inf
µ
H∗(µ) = −min (K).

Putting together the last two equalities, we obtain:

max (D) = min (K). �

If we assume the same conditions of Theorem 2.1, it follows:

min
T∈T (µ+,µ−)

I(T ) = min
µ∈Π(µ+,µ−)

J(µ) = max
(u,v)∈L

K(u, v). (2.26)

Summarizing, instead of solving a highly nonlinear Problem (M), we can consider a
relaxation and, then, a dualization which puts us in a setting where we can use standard
mathematical tools. This allows us to construct a minimizer as a limit of a minimizing
sequence, in some metric, as we saw before. However, even if we can find an optimal pair
(u∗, v∗) ∈ L or an optimal plan µ∗ ∈ Π(µ+, µ−), we are still far away from the original issue.
Thus, we can not be pleased with this “weak” solution and the question remains: how can
we recover the optimal transport map T ∗ and what is its form? We want to start answering
this question in a general case, where the cost function c is a strictly convex function of
x− y. Recalling Definition 1.20 of c-concave function, the following theorem holds:
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Theorem 2.5 (Gangbo-McCann). Suppose that µ+, µ− ∈ M+(Rn) are absolutely
continuous measure with densities f+ and f−, respectively. Moreover, suppose that c(x, y) =
h(x− y) with h : Rn → R strictly convex and that there exists µ̃ such that:∫

Rn×Rn
h(x− y)dµ̃(x, y) < +∞.

Then, there exists a unique optimizer µ∗ for the relaxed Kantorovich Problem (K). Further-
more, the unique optimal µ∗ is induced by a transport map T ∗, i.e.

µ∗ = (Id× T ∗)#µ
+. (2.27)

This T ∗ is uniquely determined µ+-a.e by the conditions (T ∗)#µ
+ = µ− and

T ∗(x) = x−∇h∗ (∇φ(x)) , (2.28)
where h∗ is the usual Legendre-Fenchel transform of h and φ is a c-concave function.

The proof of this theorem is due to Gangbo and McCann and can be found in [30].
Note, that, typical examples of strictly convex functions are c(x, y) = ‖x− y‖p, with p >
1. In these cases, we are able to recover existence and uniqueness of Monge’s original
Problem (M) and we know the form of the optimal transport map T ∗. For the case p = 1,
instead, Theorem 2.5 does not apply. Thus, the previous question about the existence and
the form of the optimal T ∗ remains without an answer.

3. Introduction to the L1 case and some first results

From now on, we will just focus on the non-strictly convex cost c(x, y) = ‖x− y‖, which
is Monge’s original cost. Thus, Problem (M), in this case of L1 cost function, becomes:

Problem (M1).

Given two positive finite measures µ+, µ− ∈M+(Rn) satisfying (2.1), find an optimal mass
transfer T ∗ ∈ T (µ+, µ−) such that:

I1(T ∗) = inf
T∈T (µ+,µ−)

I1(T ), (2.29)

with:
I1(T ) =

∫
X

‖x− T (x)‖ dµ+(x). (2.30)

We start by building some intuitions about the form of T ∗ ∈ T (µ+, µ−). We begin with
some informal insights, without proofs, for the moment, trying to have some information
about the optimal transport map and about its geometric properties. This reasoning is
taken from Evans [26].

Let us assume that T ∗ ∈ T (µ+, µ−) minimizes Problem (M1). Fix a positive integer
m ≥ 2, select some distinct points {xk}mk=1 ⊂ X = supp(µ+) and assume we can find m
small disjoint balls around xk (Figure 6)

Ek := B(xk, rk) (k = 1, . . . ,m). (2.31)
The radii {rk}mk=1 are chosen in such a way that

µ+(E1) = · · · = µ+(Em) = ε. (2.32)
Next, set yk := T ∗(xk), Fk := T ∗(Ek). Since T ∗ satisfies (2.2), we have that:

µ−(F1) = · · · = µ−(Fm) = ε. (2.33)
We, then, construct another mapping T ∈ T (µ+, µ−) by cyclically permuting the images of
{Ek}mk=1, i.e. {

T (xk) = yk+1, T (Ek) = Fk+1, k = 1, . . . ,m
T ≡ T ∗ on X \

⋃m
k=1Ek,

(2.34)
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Figure 6. Representation of T ∈ T (µ+, µ−), defined in (2.34)

as it is represented in Figure 6, where ym+1 := y1, Fm+1 := F1 (this picture is taken from
Evans [26]). Now, since, by the minimality of T ∗, we have I1(T ∗) ≤ I1(T ), then, we get:

m∑
k=1

∫
Ek

‖x− T ∗(x)‖ dµ+(x) ≤
m∑
k=1

∫
Ek

‖x− T (x)‖ dµ+(x). (2.35)

Dividing by ε and sending ε→ 0, we obtain, using Lebesgue Differentiation Theorem 1.1:
m∑
k=1
‖xk − yk‖ ≤

m∑
k=1
‖xk − yk+1‖ . (2.36)

Let us try to gain some geometrical intuition about inequality (2.36). Consider a closed
curve, contained in X, C := {r(t) | 0 ≤ t ≤ 1} (r(0) = r(1)), with constant speed
parametrization. Take m equally spaced points along C, i.e. xk := r( km ). Choosing τ > 0,
s.t. τ = 1

m and letting m→∞, we get from (2.36):

i(τ) :=
∫ 1

0
‖r(t)− T ∗(r(t))‖ dt ≤

∫ 1

0
‖r(t)− T ∗(r(t+ τ))‖ dt

t+τ=s︷︸︸︷=
∫ 1

0
‖r(s− τ)− T ∗(r(s))‖ ds.

Hence, i(τ) has a minimum in τ = 0, which implies:

0 = i′(0) =
∫ 1

0

(
T ∗(r(t))− r(t)
‖T ∗(r(t))− r(t)‖

)
· r′(t)dt =

∫
C

ξ · ds,

where

ξ(x) := T ∗(x)− x
‖T ∗(x)− x‖ .

As this holds for all closed curves C, it follows, thanks to a property of the holomorphic
functions, see, for example, Rudin [39], that ξ is a gradient of some function u∗ : Rn → R,
i.e.:

T ∗(x)− x
‖T ∗(x)− x‖ = −∇u∗(x). (2.37)

This function is called the Kantorovich potential and satisfies the eikonal equation:

‖∇u∗‖ = 1 on X = supp(µ+). (2.38)
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In other words, at point x, the optimal transport map T ∗ moves in the direction of the
gradient of a potential u∗, by the distance d∗(x) := ‖T ∗(x)− x‖, i.e.

T ∗(x) = x− d∗(x)∇u∗(x). (2.39)

Remark 2.1. Note that the same result can be achieved using a Lagrange multiplier
argument for the constraint f+ = f−(T )|det(DT )|, as in equation (2.10), in the case of
absolutely continuous measures with densities f+ and f−. In this case, the augmented work
functional is:

Ĩ(T ) :=
∫
Rn
‖x− T (x)‖ f+(x) + λ(x)

[
f−(T (x))|det(DT (x))| − f+(x)

]
dx.

Annihilating the first variation d
dε Ĩ(T + εφ)

∣∣
ε=0 of Ĩ in the direction φ, we obtain the

equality:
∂

∂xi

(
λf−(T ∗)cof(DT ∗)ki

)
= T ∗k − xk
‖T ∗ − x‖

f+(x) + λ
∂

∂yk

(
f−(T ∗)

)
det(DT ∗), (2.40)

with (cof(DT ∗))ki the (k, i)− th entry of the cofactor matrix of DT ∗. The cofactor matrix
appears here, because for any matrix A ∈ Rn×m, chosen a column j, the determinant can
be written as:

det(A) =
n∑
i=1

aijcof(A)ij . (2.41)

Now, standard matrix identities assert:

(i) ∂

∂xi
(cof(DT ∗))ki = 0;

(ii)
∂T ∗j
∂xi

(cof(DT ∗))ki = δkj(det(DT ∗));

(iii) ∂T ∗k
∂xj

(cof(DT ∗))ki = δij(det(DT ∗)).

Then, we get:
∂

∂xi

(
λf−(T ∗)cof(DT ∗)ki

)
= ∂λ

∂xi
f−(T ∗)cof(DT ∗)ki+

+ λ

n∑
j=1

∂

∂yj
(f−(T ∗))

∂T ∗j
∂xi

cof(DT ∗)ki + λf−(T ∗) ∂

∂xi
(cof(DT ∗))ki using (i) and (ii)

= ∂λ

∂xi
f−(T ∗)cof(DT ∗)ki + λ

∂

∂yk

(
f−(T ∗)

)
det(DT ∗).

Thus, using this equality inside (2.40), we obtain:
∂λ

∂xi
f−(T ∗)cof(DT ∗)ki = T ∗k − xk

‖T ∗ − x‖
f+(x).

Now, using the identity written in (2.41), multiplying by ∂T∗
k

∂xi
the previous equality and

summing on k, we deduce:

∂λ

∂xi
f−(T ∗)det(DT ∗) =

n∑
k=1

T ∗k − xk
‖T ∗ − x‖

∂T ∗k
∂xi

f+(x).

Recalling that f+ and f− satisfy the constraint written in (2.10), we obtain the final
representation:

∂λ

∂xi
=

n∑
k=1

T ∗k − xk
‖T ∗ − x‖

∂T ∗k
∂xi

.

Next, setting u∗ : Rn → R by:
λ(x) = −u∗(T ∗(x)).
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Then:
n∑
k=1

∂u∗

∂yk
(T ∗)∂T

∗
k

∂xi
= − ∂λ

∂xi
= −

n∑
k=1

T ∗k − xk
‖T ∗ − x‖

∂T ∗k
∂xi

.

Hence, finally we get:

∇u∗(T ∗(x)) = − T ∗(x)− x
‖T ∗(x)− x‖ ,

which is exactly the same equality as in (2.37). �

Now, the idea is to transform the previous heuristic calculations into a proof of the
existence of an optimal transport map T ∗, using its explicit form written in (2.39). Thus,
we should start from the existence of the Kantorovich potential u∗. Note that, looking at
Remark 2.1 and at the way in which we introduced the Lagrange duality in Section 4 of
Chapter 1, it is clear that this potential u∗ is linked to dual Problem (D), in the case of L1

cost function. Thus, first of all, let us precisely write both Problems (K) and (D), in the
specific case of L1 cost function. For the first one, just considering the explicit formulation
of c, we get:

Problem (K1).

Given two positive finite measures µ+, µ− ∈ M+(Rn) satisfying (2.1), find an optimal
transport plan µ∗ ∈ Π(µ+, µ−) such that:

J1(µ∗) = inf
µ∈Π(µ+,µ−)

J1(µ), (2.42)

with:
J1(µ) =

∫
Rn×Rn

‖x− y‖ dµ(x, y). (2.43)

For the dual case, we want to consider simple case of absolutely continuous measures
with densities f+ and f−, which, as in (2.9), can be briefly written as dµ+ = f+dx,
dµ− = f−dy. As in the general case, f+ and f− have to satisfy the mass balance condition:∫

X

f+(x)dx =
∫
Y

f−(y)dy, (2.44)

where X and Y are the usual supports of f+ and f−. Problem (D) defined before becomes,
with an L1 cost:

Problem (D1).

Given two positive finite absolutely continuous measures µ+, µ− ∈ M+(Rn) with densities
f+ and f− satisfying (2.44), find an optimal couple (u∗, v∗) which maximizes:

K1(u, v) =
∫
X

u(x)f+(x)dx+
∫
Y

v(y)f−(y)dy (2.45)

under the constraint:
u(x) + v(y) ≤ ‖x− y‖ x ∈ X, y ∈ Y. (2.46)

The first important result, here exposed, is the proof of the existence of Kantorovich
potential u∗, which, as we already said, is linked to the optimal solution of dual Problem
(D1). Also in this case, this result is taken from Evans [26].

Lemma 2.3. Given two positive finite absolutely continuous measures µ+, µ− ∈M+(Rn)
with densities f+ and f− satisfying (2.44), there exists an optimal couple (u∗, v∗) solving
Problem (D1). Moreover, we can take

v∗ = −u∗, (2.47)
with u∗ : Rn → R Lipschitz continuous with Lipschitz constant 1, i.e. u∗ ∈ Lip1(Rn).
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Proof (Evans [26]). Take the pair (u, v) which satisfies (2.46). Then:

u(x) ≤ inf
y∈Y

(‖x− y‖ − v(y)) =: û(x), (2.48)

with (û, v) satisfying the constraint

û(x) + v(y) ≤ ‖x− y‖ x ∈ X, y ∈ Y.

This implies
v(y) ≤ min

x∈X
(‖x− y‖ − û(x)) =: v̂(y) (2.49)

Also in this case
û(x) + v̂(y) ≤ ‖x− y‖ x ∈ X, y ∈ Y. (2.50)

Moreover, since v ≤ v̂ and (2.48) holds, we have:

û(x) ≥ inf
y∈Y

(‖x− y‖ − v̂(y)),

which, added to (2.50), gives us:

û(x) = min
y∈Y

(‖x− y‖ − v̂(y)). (2.51)

Now, since f± ≥ 0 and û ≥ u, v̂ ≥ v, we see that K(u, v) ≤ K(û, v̂). Next, focusing on this
pair (û, v̂), take z ∈ X ∩ Y (if X ∩ Y 6= ∅) and suppose

û(z) + v̂(z) < 0. (2.52)

Take, then, x ∈ X, y ∈ Y so that, using definitions in (2.49) and (2.51), satisfy{
v̂(z) = ‖x− z‖ − û(x)
û(z) = ‖z − y‖ − v̂(y)

Adding the two rows, we get:

‖x− z‖+ ‖z − y‖ = û(x) + v̂(y) + û(z) + v̂(z)
(2.52)︷︸︸︷
< û(x) + v̂(y)

(2.50)︷︸︸︷
≤ |x− y|,

which contradicts the triangle inequality. It follows, then, that û + v̂ ≥ 0 on X ∩ Y , but,
clearly, (2.50) implies û+ v̂ ≤ 0 on X ∩ Y and so the equality holds:

û+ v̂ = 0 on X ∩ Y. (2.53)

Using this property, we can extend the definition of û, by setting:

û := −v̂ on Y,

and the inequality in (2.50) reads as:

û(x)− û(y) ≤ ‖x− y‖ (x ∈ X, y ∈ Y ).

Finally, once we have this intuition on the form of û, we can extend it to Rn, in such a way
that the inequality above is satisfied in the whole space. For example, one way to extend a
general function f : S → R, with S subset of (X, ‖·‖) arbitrary normed space, to g : X → R
in such a way that Lip(g) = Lip(f) is given by Kirszbraun’s Theorem, which can be found
for example in [28, Theorem 2.10.43]. The explicit form of this function g given by:

g(x) := inf
s∈S

[f(s) + Lip(f) · ‖x− s‖], ∀x ∈ X.

Thus, we can extend û to all Rn, calling this extension u∗, in such a way that it is a Lipschitz
function with Lipschitz constant 1. �

In conclusion, we saw that there exists an optimal solution (u∗, v∗) of Problem (D1),
which is equivalent to the following:
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Problem (D′1).

Given two positive finite absolutely continuous measures µ+, µ− ∈ M+(Rn) with densities
f+ and f− satisfying (2.44), find an optimal u∗ maximizing:

K1(u) :=
∫
Rn
u(x)(f+(x)− f−(x))dx (2.54)

under the constraint:
‖∇u‖ ≤ 1 a.e. in Rn,
‖∇u‖ = 1 a.e in X ∪ Y.

(2.55)

We want to focus, just for a while, on this maximal u∗, called, as before, Kantorovich
potential and for doing that we need first some definitions. Note that the ball B(0, R) will
be intended as a ball large enough to contain both the supports of the measures µ+ and
µ−.

Definition 2.2 (Transport set). Given the Kantorovich potential u∗, we call transport
set the following:

Ts := {z ∈ B(0, R) : u∗(z) = u∗(x)− ‖x− z‖ for some point x ∈ X
and u∗(z) = u∗(y) + ‖z − y‖ for some y ∈ Y }.

Observe that if z ∈ Ts, then the corresponding x, y, z are collinear. Indeed, using the
identities u∗(x)− u∗(z) = ‖x− z‖, u∗(z)− u∗(y) = ‖z − y‖, we deduce:

‖x− z‖+ ‖z − y‖ = u∗(x)− u∗(y) ≤ ‖x− y‖ .
Thus, applying the triangle inequality, we get the colinearity. Moreover, it is possible to
show, that X ∪ Y ⊂ Ts. We need to introduce another definition.

Definition 2.3 (Transport ray). Given z0 ∈ Ts, we define the set:
Rz0 := {z ∈ B(0, R) : ‖u(z0)− u(z)‖ = ‖z0 − z‖}.

Note that if u∗ is differentiable at z0, then Rz0 is a line segment. In that case, it is called
transport ray passing through z0.

Observe that this is the set containing z0 along which u∗ changes at the maximum rate
1. It is also possible to show that one end of Rz0 , call it a0, lies in X and the other end,
call it b0, lies in Y . Thus, we think to Rz0 as pointing “downhill” from a0 to b0, because u∗
decreases at rate 1 as we move along Rz0 , from a0 to b0. We call Rz0 \ {a0, b0} the interior
of a transport ray. These segments are constructed in such a way that u∗ behaves in a
particular way along these structures and it satisfies a lot of peculiar properties. We do not
want to go deeper into the details of these transport rays, because it is not the aim of this
thesis and it is a delicate and complex issue. However, for all the details we refer to [27] or
to [41]. Here we are interested just in a particular property, which will be useful later on
and it is taken from [27]:

Lemma 2.4. If z belongs to the interior of a transport ray ]a0, b0[, i.e. exists t ∈ (0, 1)
such that z = (1− t)a0 + tb0, then u∗ is differentiable at z and ∇u∗(z) = a0−b0

|a0−b0| .

4. Existence of an optimal mass transport map

In this section, we want to use the Kantorovich transport potential u∗ in order to
build an optimal mass transfer map T ∗. Looking at Equation (2.39), where it appears
the link between optimal T ∗ and Kantorovich potential u∗, we only miss the information
about distance d∗(x). This problem was originally solved in [43] by decomposing almost
all X in transport rays. He, then, built the optimal transport map by gluing together
the 1-dimensional transport maps constructed in each ray. This technique worked under
restrictive assumptions later relaxed (see [1]). Here, we consider a different approach based
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differential equations. We are going to present only an empirical discussion of this procedure,
referring to [27] for a complete proof. The idea is to extract the missing information of d∗(x)
from the variational Problem (D′1), approximated by the solution of a partial differential
equation called p-Laplacian PDE, as p→ +∞. We start with the following:

Definition 2.4 (p-Laplacian). Let 1 < p < ∞, Ω ⊂ Rn a convex and open set and
u : Ω → R sufficiently regular, usually in W 1,p(Ω). We define the p-Laplacian, a quasi-
linear elliptic partial differential operator of the second order, as:

∆pu := ∇ ·
(
‖∇u‖p−2∇u

)
. (2.56)

When p = 2, it is the normal Laplacian operator.

Let us consider, now, the p-Laplacian PDE:

−∆pup = −∇ ·
(
‖∇up‖p−2∇up

)
= f+ − f− = f (n+ 1 ≤ p ≤ ∞) (2.57)

and note that this equation is the Euler-Lagrange equation for the problem of maximizing:

Kp(u) :=
∫

Ω
u(x)(f+(x)− f−(x))− 1

p
‖∇u(x)‖p dx, (2.58)

over all u ∈ W 1,p
0 (Ω). Note also that, if up is the solution of (2.57), then ‖∇up‖p−2 is

very large in any region {‖∇up‖ > 1 + ε} and very small in any region {‖∇up‖ < 1 − ε},
if ε > 0. The limit as p → ∞ can be interpeted as an “infinitely fast / infinitely slow”
diffusion limit (see the work of Evans, Feldman, and Gariepy [25]). Also helped by the
intuition just stated, it is not very hard to prove that if up → u∗, as p → ∞, then u∗ is
Lipschitz continuous with Lipschitz constant 1 and it maximizes the functional K1 in (D′1).
Thus, u∗ is the Kantorovich potential. But there is still the issue of the missing information
about the distance d∗(x). The most important discovery due to Evans-Gangbo is that PDE
(2.57), in fact, contains, in the limit as p → ∞, a “transport density”, which allow us to
compute this distance. The idea is to start using a maximum principle argument, taken
from Bhattacharya-DiBenedetto-Manfredi [6], which tells us that:

sup
p
‖up‖ , ‖∇up‖ , ‖∇up‖p ≤ C <∞

for some constant C. Next, we proceed using this information to see that it exists a
subsequence pk →∞ such that:{

upk → u∗ locally uniformly
Dupk → ∇u∗ boundedly, a.e.

for some function u∗, which is differentiable almost everywhere. To prove the differentia-
bility, it can be used a not so famous result called Rademacher’s Theorem ([28, Theorem
3.1.6]). The most important result is:

‖∇upk‖
p−2

⇀ a∗ weakly-* in L∞

for some non-negative bounded function a∗, called the transport density. Thus, from all
these intuitions, it follows:

Lemma 2.5 (PDE Version). Assume that the mass densities f+ and f− are non-
negative, Lipschitz continuous functions on Rn with disjoint compact supports X and Y
having smooth boundaries. Moreover, assume that they satisfy the mass balance condition
(2.44). Then, it follows that:

(i) There exists a non-negative L∞ function a∗ such that

−∇ · (a∗(x)∇u∗(x)) = f+(x)− f−(x), x ∈ Rn, (2.59)

in a weak sense.
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(ii) Furthermore {
‖∇u∗‖ = 1 a.e. on the set {a∗ > 0}
‖∇u∗‖ ≤ 1 a.e. on the set {a∗ ≥ 0}

(2.60)

Note that, with “weak sense”, we mean that:

−
∫
Rn
∇ · (a∗(x)∇u∗(x))φ(x)dx =

∫
Rn

(f+(x)− f−(x))φ(x)dx, ∀φ ∈ C1
c (Rn).

This condition, if we use the integration by parts and the fact that φ ∈ C1
c (Rn), becomes:∫

Rn
a∗(x)∇u∗(x))∇φ(x)dx =

∫
Rn

(f+(x)− f−(x))φ(x)dx, ∀φ ∈ C1
c (Rn). (2.61)

Summarizing, we have the following:

Problem (PDE).

Consider two positive finite measures µ+, µ− ∈ M+(Rn) with mass densities f+ and f−
non-negative, Lipschitz continuous on Rn, with disjoint compact supports X and Y and
with smooth boundaries, respectively. Moreover, assume that they satisfy the mass balance
condition (2.44). Find the optimal pair (a∗, u∗) ∈ (L∞(Rn),Lip1(Rn)) that satisfies:

−∇ · (a∗(x)∇u∗(x)) = f+(x)− f−(x), x ∈ Rn (in a weak sense),
‖∇u∗‖ = 1 a.e. on the set {a∗ > 0},
‖∇u∗‖ ≤ 1 a.e. on the set {a∗ ≥ 0}.

(2.62)

We want to spend some words about the origin of this transport density a∗ and about
Problem (PDE), due to its importance in this work. Indeed, even if we saw that this version
came from a limit in weak-* topology of the p-Laplacian solutions and it provided us the
missing information about distance d∗, it has also other characteristics and meanings. Here,
we report a couple of other interpretations of the origin of this PDE, taken from different
fields. Moreover, in the next chapter, we will see that this transport density will appear also
in other contexts, providing us a link between this PDE formulation and other formulation
we will introduce later.

(i) Optimization: Consider the KKT conditions (Proposition 1.4). We consider
Problem (D′1), written in the same form as the constrained minimization problem
expressed in (MP). In our case, function f in (MP) is −K1 (eq. (2.54)) and the
function representing the constraints of S (eq. (1.12)) is g(u) := ‖∇u‖ − 1 ≤
0. Note that we changed sign of K1, because Problem (MP) is a minimization
problem, while Problem (D′1) is a maximization problem. The Lagrangian L can,
then be defined as:

L(u, λ) :=
∫
Rn
u(x)(f−(x)− f+(x)) + λ(x) (‖∇u(x)− 1‖) dx.

Now, if we define g̃(u) as:

g̃(u) := 1
2

(
‖∇u‖2 − 1

)
,

we obtain that:
g̃(u) ≤ 0 ⇒ (‖∇u‖ − 1) · (‖∇u‖+ 1) ≤ 0 ⇒ g(u) ≤ 0.

Vice versa,
g(u) ≤ 0 ⇒ ‖∇u‖2 ≤ 1 ⇒ g̃(u) ≤ 0.

Hence, it is equivalent to consider the constraint given by g̃(u) and, thus, the
Lagrangian function:

L̃(u, λ) :=
∫
Rn
u(x)(f−(x)− f+(x)) + λ(x)

2

(
‖∇u(x)‖2 − 1

)
dx.
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We want to annihilate, now, the derivative with respect to the first variable, in
order to satisfy the first condition of the KKT Proposition 1.4. Note that, since
the Lagrangian L̃ is defined, in the first variable, on a space of functions, it is
not possible to consider a standard derivative in that variable. Thus, we consider
the Gâteaux derivative in the variable u, i.e. the first variation of L̃. For doing
that, consider ε > 0, φ ∈ C1

c (Rn) and calculate the following derivative, as it was
recalled in the notation in the preliminary chapter:

d

dε
L̃(u+ εφ, λ)

∣∣∣
ε=0

= d

dε

(∫
Rn

(u+ εφ)(f− − f+) + λ

2

(
‖∇u+ ε∇φ‖2 − 1

)
dx

) ∣∣∣
ε=0

=

=
(∫

Rn
φ(f− − f+) + λ

2 · 2 (∇u+ ε∇φ)∇φ dx
) ∣∣∣

ε=0
=

=
(∫

Rn
φ(f− − f+) + λ∇u · ∇φ dx

)
.

Annihilating the last equality, we obtain that (2.61) is verified for an optimal
couple (u∗, λ∗). Note, in addition, that condition (2.60) is exactly the last KKT
condition. Thus, this result can be summarized by saying that if u∗ is the optimal
solution of (D′1), a∗ is the optimal Lagrange multiplier corresponding to the
constraint ‖∇u∗‖ ≤ 1, satisfying, paired with u∗, the KKT conditions for the
constrained maximization Problem (D′1).

(ii) Convex analysis: Let us define:

K := {u ∈ L2(Rn) | ‖∇u‖ ≤ 1 a.e.}

and the indicator function of this set

IK(u) :=
{

0 if u ∈ K
+∞ otherwise.

Now, note that K is convex and K1(u) = 〈f+ − f−, u〉L2(Rn), using the scalar
product defined in (1.1), is continuous and convex, thus we are in the hypothesis
of Proposition 1.11. Note also that, reasoning as we did in equation (1.21), max-
imizing the function K1, in (D′1), on the set K, is the same as maximizing the
function K1 − IK on all L2(Rn). Indeed, if u /∈ K, then K1(u) − IK(u) = −∞.
The idea is that doing a constrained maximization is the same as maximizing
in the whole space with a penalization for those elements not in the right space.
Moreover, note that the following two problems are equivalent:

max
u∈L2(Rn)

K1(u)− IK(u) ⇐⇒ −
(

min
u∈L2(Rn)

− (K1(u)− IK(u))
)
.

Applying, now, Proposition 1.11, together with the previous equality, Kantorovich
potential u∗ is the maximizer of Problem (D′1) if and only if 0 ∈ ∂ (−K1(u∗) + IK(u∗)).
By definition of subdifferential (eq. 1.24), we obtain:

〈0, v − u∗〉∗ −K1(u∗) + IK(u∗) ≤ −K1(v) + IK(v), ∀v ∈ L2(Rn).

Using the definition of K1 and the scalar product in L2, which we recalled above,
we obtain:

IK(v) ≥ IK(u∗) + 〈f+ − f−, v − u∗〉L2(Rn), ∀v ∈ L2(Rn),

i.e.
f+ − f− ∈ ∂IK(u∗),

This final representation is the same result as in Lemma 2.5, but in a convex
analysis language.
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Now, let us go on with the core problem of this chapter: we want to find the optimal
transport map. Before we directly address this issue, we need a deformation argument due
to Dacorogna and Moser [20]. We need this result, because the idea of Evans and Gangbo
was to use this deformation argument to build an optimal transport map, using a “recipe”
we will see later. We will show also an outline of the original proof of this result, because
the idea used inside this proof will often be used in order to prove that two functions f+

and f− satisfy the constraint expressed in (2.10).

Theorem 2.6 (Dacorogna-Moser). Let Ω ⊂ Rn be a bounded open set with Ck+3 regular
boundary ∂Ω and let f ∈ Ck(Ω), positive and such that∫

Ω
f(x)dx = meas(Ω).

Then there exists a Ck-diffeomorphism u : Ω̄→ Ω̄ satisfying:{
det(Du(x)) = f(x), x ∈ Ω
u(x) = x, x ∈ ∂Ω

(2.63)

Outline of the “proof” (Dacorogna-Moser [20]). Let us define for t ∈ [0, 1],
z ∈ Ω:

vt(z) := v(z)
t+ (1− t)f(z) , (2.64)

where v satisfies {
∇ · v = f − 1 in Ω,
v = 0 on ∂Ω.

(2.65)

Such v exists thanks to Dacorogna and Moser [20, Theorem 2]. We then define Φ : [0, 1]×
Ω→ Rn as the solution of the following ODE:{

∂
∂t (Φ(t, x)) = vt(Φ(t, x)) for t > 0
Φ(0, x) = x

(2.66)

Now, we change notation in a standard way calling Φt(x) := Φ(t, x). Note that Φt is
uniquely defined for every t ∈ [0, 1]. We also have that for every t ∈ [0, 1]:

Φt(x) ≡ x if x ∈ ∂Ω.
This follows from the uniqueness of the solution of (2.66), from the fact that, on ∂Ω, v = 0
and Φ0(x) = x. Our claim is now that u(x) := Φ1(x) is the solution of (2.63). We have just
verified the boundary conditions. Hence, we only need to check that det (DΦ1(x)) = f(x).
To prove this, let us define:

h(t, x) := det(DΦt(x)) (t+ (1− t)f(Φt(x))) . (2.67)
Note that if we show that:

∂

∂t
h(t, x) = 0 ∀t ∈ [0, 1], (*)

it follows that:
h(1, x) = det (DΦ1(x)) = f(x) = h(0, x),

which is exactly what we want to prove. We therefore only need to prove (*). To do that,
we need to use the property that if A is an n× n matrix and ψ is a matrix valued function
satisfying ψ′(t) = A(t)ψ(t), then:

(detψ)′ = tr(A) · detψ. (2.68)
We prove this identity for 2×2 matrices and it is easy to extend it for general n×n matrices.
Thus, consider the equality:(

ψ′11 ψ′12
ψ′21 ψ′22

)
=
(
a11 a12
a21 a22

)
·
(
ψ11 ψ12
ψ21 ψ22

)
.
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Looking at the matrix multiplication at each entry we obtain:
ψ′11 = a11ψ11 + a12ψ21;
ψ′12 = a11ψ12 + a12ψ22;
ψ′21 = a21ψ11 + a22ψ21;
ψ′22 = a21ψ12 + a22ψ22;

Hence,
(det(ψ))′ = (ψ11ψ22 − ψ12ψ21)′ = ψ′11ψ22 + ψ11ψ

′
22 − ψ′12ψ21 − ψ12ψ

′
21

= (a11ψ11 + a12ψ21)ψ22 + ψ11(a21ψ12 + a22ψ22)−
− (a11ψ12 + a12ψ22)ψ21 − ψ12(a21ψ11 + a22ψ21)

= tr(A) · det(ψ).

Now, in order to use Equation (2.68), note that:

∂

∂t
(DΦt(x)) = D

∂Φt(x)
∂t

(2.66)︷︸︸︷= Dvt(Φt(x)) ·DΦt(x).

Thus, in our case, we have A(t) = Dvt(Φt(x)), that implies, using (2.68):
∂

∂t
(detDΦt(x)) = det(DΦt(x)) · tr(Dvt(Φt(x))) = det(DΦt(x)) · (∇ · (vt(Φt(x)))) . (2.69)

Differentiating, now, (2.67), we get:
∂

∂t
h(t, x) = ∂

∂t
(det(DΦt(x))) · [t+ (1− t)f(Φt(x))] +

+ det (DΦt(x)) ·
[
1− f(Φt(x)) + (1− t)∇f(Φt(x)) ·

(
∂

∂t
Φt(x)

)]
.

Using (2.66) and (2.69), we get:
∂

∂t
h(t, x) = det (DΦt(x)) · [∇ · (vt (Φt(x))) · (t+ (1− t)f(Φt(x))) .+

+ (1− f(Φt(x))) + (1− t)∇f(Φt(x)) · vt (Φt(x))].

Finally, taking the divergence in the definition of vt written in (2.64), it follows that:

∇ · (v(x)) = (t+ (1− t)f(x)) · (∇ · vt (Φt(x))) + (1− t)∇f(x) · vt(x).

Combining this relation with the previous identity, we get:
∂

∂t
h(t, x) = det (DΦt(x)) · [∇ · (v(Φt(x))) + (1− f(Φt(x)))] .

The definition of v in (2.65) gives immediately (*) and the proof is complete. �

Note that this proof is just an outline, because we did not prove any regularity of the
function u. For the complete proof we refer to [20]. Now, we are ready to show the existence
of an optimal mass transportation map that is given by the following recipe:

(1) Solve Problem (PDE), which gives us the couple (a∗, u∗);
(2) Fix x0 ∈ X = supp(µ+) and use (u∗, a∗) to describe the flow of a Cauchy problem

involving ∇u∗ and a∗, given by:{
ż(t) = b(z(t), t) (0 ≤ t ≤ 1)
z(0) = x0

(2.70)

for the time dependent vector field, depending on time:

b(z, t) := −a∗(z)∇u∗(z)
tf−(z) + (1− t)f+(z) (2.71)
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(3) Calling z(t, x0) the solution of (2.70), note that we are in the same situation of
Dacorogna-Moser’s Theorem 2.6 with:

v(x) = −a∗(x)∇u∗(x) (velocity)
∇ · (v(x)) = f+(x)− f−(x)

vt(x) = v(x)
tf−(x)︸ ︷︷ ︸

Added

+(1−t)f+(x)
.

Using the same idea as in that theorem, we define the optimal mass transfer as
the time-one map of the flow z, i.e.:

T ∗(x) := z(1, x). (2.72)

Once we have all this intuitive background, we would like to verify if this is actually the
map we were looking for. We have the following theorem, taken from [26] or [27].

Theorem 2.7. Assume that densities f+ and f− of the absolutely continuous measures
µ+ and µ−, respectively, are non-negative Lipschitz continuous functions on Rn with disjoint
compact supports X and Y having smooth boundaries. Moreover, assume that they satisfy
the mass balance condition (2.44). Consider T ∗ defined in (2.72). Then:

(i) T ∗ : X → Y is bijective.
(ii) T ∗ satisfies equation (2.10) and, thus:∫

X

h(T ∗(x))f+(x)dx =
∫
Y

h(y)f−(y)dy, ∀h ∈ L1(Y, µ−). (2.73)

(iii) For all T : X → Y satisfying (2.73), we get:∫
X

‖x− T ∗(x)‖ f+(x)dx ≤
∫
X

‖x− T (x)‖ f+(x)dx.

Thus, T ∗ defined in (2.72) is an optimal solution of Monge’s original Problem (M1).

Outline of the “proof” (Evans-Gangbo [27]). (i) T ∗ is bijective thanks to
Dacorogna-Moser’s Theorem 2.6, using the fact that the solution of Equation
(2.63) is a diffeomorphism.

(ii) The idea is the same of the proof of Dacorogna-Moser’s Theroem 2.6. Thus, calling
z(t, x) the solution of (2.70) starting from x and calling:

J(t, x) := det(Dz(t, x)) ·
(
tf−(z(t, x)) + (1− t)f+(z(t, x))

)
,

we follow step-by-step their proof. Hence, we want to show, also in this case, that
∂
∂tJ(t, x) = 0, in order to equate the value of J at times 0 and 1. Using (2.69), we
obtain:

∂

∂t
J(t, x) = det(Dz) · [∇ · (b(z, t))

(
tf−(z) + (1− t)f+(z)

)
+

+
(
f−(z)− f+(z)

)
+
(
t∇f−(z) · b(z, t) + (1− t)∇f+(z) · b(z, t)

)
],

(2.74)

where z = z(t, x). Now, following again the idea of Dacorogna-Moser, using the
definition of b in (2.71), we get:

−∇·(a∗(z)∇u∗(z)) = (∇·b(z, t))·(tf−(z)+(1−t)f+(z))+b(z, t)·(t∇f−(z)+(1−t)∇f+(z)).

Finally, recalling the PDE in (2.59), we get that the summands inside the paren-
thesis (2.74) are equal to zero. Furthermore, using the definition of T ∗ in (2.72),
we get:

J(0, x) = f+(x) = det(DT ∗(x))f−(T ∗(x)) = J(1, x),
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that confirms assertion (ii), just using a change of variable, as we did to obtain
(2.10). Note that, in that case there was an absolute value, but both f+ and f−
are positive and T ∗ is invertible, thus det(DT ∗) remains strictly positive.

(iii) Finally, we need to use a property of the transport rays. Indeed, it follows from
the construction of these particular segments, that for a.e. x0 ∈ X the point
y0 = T ∗(x0) lies on the transport ray Rx0 . By Definition 2.3 of transport ray, we
obtain:

u∗(x)− u∗(T ∗(x)) = ‖x− T ∗(x)‖ . (2.75)
For the details about transport rays and this particular result we refer again to
Evans and Gangbo [27]. Thus, we obtain:∫

X

‖x− T ∗(x)‖ f+(x)dx =
∫
X

[u∗(x)− u∗(T ∗(x))] f+(x)dx by (2.75)

=
∫
X

u∗(x)f+(x)dx−
∫
Y

u∗(y)f−(y)dy by (ii)

= max
u∈Lip1(Rn)

∫
Rn
u(x)(f+(x)− f−(x))dx, by def. of u∗

= min
S∈T (µ+,µ−)

∫
X

‖x− S(x)‖ f+(x)dx by (2.26)

≤
∫
X

‖x− T (x)‖ f+(x)dx. �

Remark 2.2. This proof is in “quotations”, because, actually, neither a∗ nor ∇u∗ nor
f± are smooth enough to justify these computations. However, it is still useful to outline the
general idea in order to figure out the main intuitions and tools used for the proof, even if
it is not rigorous. For a careful proof, with all the analytic details, see again Evans-Gangbo
[27]. They used the same idea of employing Dacorogna-Moser’s theorem, but “mollifying”
(which means regularizing) −(a∗(z)∇u∗(z))ε, f+

ε and f−ε , in order to get the “permission”
to do the computations. They regularized, also, the analogous vector field bε,δ and the
solution zε,δ of a smooth variant of (2.70). Finally they took the solution zε,δ(1, x0) as an
approximation of Tε,δ and passing to limits ε→ 0 and δ → 0 they obtained our T ∗. �
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CHAPTER 3

Other formulations of the mass transfer problem

In this chapter, we want to take a different look at the Monge-Kantorovich transport
problem. We start introducing a dynamic version of the problem, taking inspiration from the
celebrated Benamou and Brenier [5]. After the description of their original idea, developed
with a quadratic cost function, we would like to adapt it to the case of L1 cost, remaining
consistent with the rest of the thesis. The problem is that their procedure is not adaptable to
L1. Thus, we need another way to move Monge-Kantorovich problem with L1 cost function
to a dynamical framework. To do that, we want to adapt to this case a technique provided
by Chen, Georgiou and Pavon [18], who also worked with L2 cost functions. However, their
way of proceeding can be adjusted to the L1 cost case. In their work, they were also able
to find a solution to this dynamical reformulation doing a variational analysis. In our case,
instead, after the failure of this mathematical technique, we try to solve this problem in
another way. Our idea is to get some useful information from another version of the mass
transportation problem, this time a static one, introduced firstly by Beckmann [3]. Adding
these other two, the different formulations count to six: we feel an urgent need of order
and clarity in the situation. This need to sort things out and to find the relationships
between the different formulations is also evident in literature: we can cite the work of
Ambrosio [1] or a more recent paper written by Brasco and Petrache [11] or, even, the book
of Santambrogio [41], just to have some examples. This need is due to the fact that the
different formulations come from different settings and backgrounds, but they all describe
the same problem. Thus a normal question to ask is: what are the connections between
them? The final section tries to answer this question.

1. A fluid-dynamic version of the optimal transport problem

In this section, we will introduce an alternative formulation for the Monge-Kantorovich
optimal transport problem. The idea we are going to use was firstly introduced in the famous
work Benamou and Brenier [5]. They reset the whole problem into a dynamical framework,
originally for numerical purposes. In fact, a continuum mechanics formulation was implicitly
contained in the original problem addressed by Monge, who decided to eliminate the time
variable just to reduce the dimension of the problem. Benamou and Brenier, instead, decided
to reintroduce the time variable, because, from a computational point of view, it is more
convenient to solve a convex space-time minimization problem. In their work they used the
quadratic cost function and, unfortunately, their way of proceeding is not suited for the L1

cost. Let us briefly see their original problem and why it does not fit well for our purposes.
First of all, they fixed a time interval, which we suppose [0, 1], and they considered all
the possible time-dependent density and velocity fields ρ(t, x) ≥ 0, v(t, x) ∈ Rn, smooth
enough, subject to some constraints described in the following:

Problem (DYN 2).

Given two positive finite absolutely continuous measures µ+, µ− ∈ M+(Rn) with densities
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f+ and f− satisfying (2.44), find an optimal couple (ρ∗, v∗) satisfying:
inf

(ρ,v)

∫
Rn

∫ 1

0
‖v(t, x)‖2 ρ(t, x)dtdx,

∂ρ

∂t
(t, x) +∇ · (v(t, x)ρ(t, x)) = 0 (continuity eq.),

ρ(x, 0) = f+(x), ρ(y, 1) = f−(y) (initial and final conditions).

(3.1)

In order to show why this dynamic problem is related with Monge-Kantorovich optimal
transport problem, let us see the precise connection between this problem and Problem
(M) with cost function c(x, y) = ‖x− y‖2, taken directly from [5].

Theorem 3.1. Consider µ+, µ− ∈ M+(Rn) two absolutely continuous measures with
smooth and compactly supported densities f+ and f−. Then:

min (M) = min (DYN 2). (3.2)

Proof (Benamou and Brenier [5]). (≤) Consider an admissible pair (ρ, v) for Prob-
lem (DYN 2) and consider the flow:{

X ′(t, x) = vt(X(t, x))
X(0, x) = x,

with the usual notation vt(x) = v(t, x). It can be proved (we will precisely state this
result later) that curve ρ satisfying the continuity equation with initial datum f+, can be
represented by ρt = (X(t, ·))#f

+. Using this characterization and using Jensen’s inequality
(see for example Rudin [39, Theorem 3.3]) with convex function φ(x) = ‖x‖2, we get:∫ 1

0

∫
Rn
‖v(t, x)‖2 ρ(t, x)dxdt =

∫ 1

0

∫
Rn
‖vt(X(t, x))‖2 f+(x)dxdt by def. of X(t, x)

=
∫ 1

0

∫
Rn
‖X ′(t, x))‖2 f+(x)dxdt by Fubini-Tonelli Theorem 1.2

=
∫
Rn

∫ 1

0
‖X ′(t, x))‖2 f+(x)dtdx by Jensen’s inequality

≥
∫
Rn
‖X(1, x)− x‖2 f+(x)dx ≥ min (M).

Note that, in the last part, used the fact that f− = X(1, ·)#f
+, which can be proved

following exactly what we did in the proof of Dacorogna and Moser Theorem 2.6. Thus
T (x) = X(1, x) is an admissible transport map for (M), with cost function c(x, y) =
‖x− y‖2 and the last inequality of the previous calculation is justified. This inequality tells
us, by the arbitrariness of the couple (ρ, v), that:

min (M) ≤ min (DYN 2). (3.3)

(≥) For the other inequality, we consider the optimal transport map T ∗, uniquely given
by Gangbo-McCann Theorem 2.5, in the case of strictly convex cost c(x, y) = ‖x− y‖2.
Setting Xt(x) = (1− t)x+ tT ∗(x) and considering v of the form:

vt(x) = T ∗(X−1
t (x))−X−1

t (x),

(the proof of the fact that such Xt is invertible can be found in [41, Lemma 5.29]) we get:

X ′(t, x) = T ∗(x)− x = T ∗(X−1
t (X(t, x)))−X−1

t (X(t, x)) = vt(X(t, x)),
X(0, x) = x.

Thus, Xt is the flow map of v and, as before, ρt = (Xt)#f
+ is a solution of the continuity

equation with velocity field v and initial and final data equal to f+ and f−, respectively.
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With this choice of (ρ, v) we get:∫
Rn

∫ 1

0
‖X ′(t, x))‖2 f+(x)dtdx =

∫
Rn
‖T ∗(x)− x‖2 f+(x)dx = min (M)

Thus, noting that the left-hand side of the equality above is exactly equal to∫ 1

0

∫
Rn
‖v(t, x)‖2 ρ(t, x)dxdt,

we recover (3.2) and we conclude the proof. �

Note that we can even say more about the last proof. In the last part, we actually
proved, using (3.3), that:∫ 1

0

∫
Rn
‖v(t, x)‖2 ρ(t, x)dxdt = min (M) ≤ min (DYN 2).

Hence, we obtained that the optimal couple solving (DYN 2) is given by:{
ρt(x) = ((1− t)x+ tT ∗(x))#f

+(x) ;
vt(x) = T ∗(X−1

t (x))−X−1
t (x).

(3.4)

This boxed equality represents density ρt with a nonlinear interpolation formula, which we
will describe, later, in any details. Note that, if we try to adapt the previous statement to
the L1 cost case we fail, because, as already said, Gangbo-McCann Theorem 2.5 can not
be used in the case of non strictly convex cost function c(x, y) = ‖x− y‖. Thus, we want
to recover a correspondence between classical formulations and this dynamic formulation
similar to the one given by Theorem 3.1, but in our L1 cost case. To do that, we will take
inspiration from the recent Chen, Georgiou and Pavon [18]. Even in this work they used an
L2 cost function, but their technique is adaptable to the L1 cost case. Let us start defining
the space:

X := C1([0, 1];Rn). (3.5)
Observe, then, the elementary fact:

‖x− y‖ = inf
γ∈Xxy

∫ 1

0
‖γ̇(t)‖ dt, (3.6)

where Xxy = {γ ∈ X | γ(0) = x, γ(1) = y}. This simple observation comes from the fact
that the shortest path connecting x and y is the straight line γx,y(t) = (1− t)x+ ty. Now,
doing the same observation from a stochastic point of view, we get that the probability
measure on P(X ) concentrated on the path {γx,y(t) | 0 ≤ t ≤ 1} solves the problem:

inf
Pxy∈Q1(δx,δy)

EPxy
{∫ 1

0
‖γ̇(t)‖ dt

}
, (3.7)

where Q1(δx, δy) is the set of all the probability measures on X whose marginal at time 0
and 1 are, respectively, the Dirac measures concentrated at x and y, i.e.

Q1(δx, δy) := {Pxy ∈ P(X ) | (e0)#Pxy = δx and (e1)#Pxy = δy} . (3.8)

Function et used above is the evaluation map at time t, i.e.
et : X → Rn

γ 7→ γ(t). (3.9)

Thus, using the fact that (3.7) is another representation of ‖x− y‖, recalling that Problem
(K1) with L1 cost is:

inf
µ∈Π(µ+,µ−)

∫
Rn×Rn

‖x− y‖ dµ(x, y)
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and plugging (3.7) in the relaxed cost functional J(µ) (eq. (2.13)), we obtain:

inf
µ∈Π(µ+,µ−)

∫
Rn×Rn

[
inf

Pxy∈Q1(δx,δy)
EPxy

{∫ 1

0
‖γ̇(t)‖ dt

}]
dµ(x, y).

Now observe that, if we have Pxy ∈ Q1(δx, δy) and µ ∈ Π(µ+, µ−), we obtain that:

P =
∫
Rn×Rn

Pxydµ(x, y) (3.10)

is a probability measure in

Q1(µ+, µ−) :=
{
P ∈ P(X ) | (e0)#P = µ+ and (e1)#P = µ−

}
. (3.11)

Note that, also the converse is true, i.e. every measure P ∈ Q1(µ+, µ−) can be “disinte-
grated” with respect to the initial and final positions in Pxy ∈ Q1(δx, δy) and µ ∈ Π(µ+, µ−)
such that (3.10) is verified. Hence, we get that Problem (K1) is equivalent to:

inf
P∈Q1(µ+,µ−)

EP
{∫ 1

0
‖γ̇(t)‖ dt

}
. (3.12)

Now, if instead of this static version we take an hydrodynamic version of the equality in
(3.6), we can write: 

‖x− y‖ = inf
v∈Vy

∫ 1

0
‖v(t, γv(t))‖ dt,

γ̇v(t) = v(t, γv(t)),
γv(0) = x, a.e.

where Vy = {v : [0, 1]× Rn → Rn | v is continuous and γv(1) = y} . Following the same
idea as before, we get that optimal transport Problem (K1) is equivalent to the following
stochastic control problem with atypical boundary conditions:

inf
v∈V

E
{∫ 1

0
‖v(t, γv(t))‖ dt

}
,

γ̇v(t) = v(t, γv(t)),
γv(0) ∼ µ+, γv(1) ∼ µ−,

(3.13)

where V is simply the set of all continuous v(·, ·). Finally, let us suppose, as usual,
that we have absolutely continuous measures with smooth densities dµ+(x) = f+(x)dx,
dµ−(y) = f−(y)dy and that there exists a density ρ(t, x) such that γv(t) ∼ ρ(t, x)dx. More-
over, suppose that such density satisfies (weakly) the continuity equation expressing the
conservation of mass, i.e.

∂ρ

∂t
(t, x) +∇ · (v(t, x)ρ(t, x)) = 0. (3.14)

Using this new definition of the variable γv(t) and using the rule in Proposition 1.3, we get
that the probabilistic average becomes:

E
{∫ 1

0
‖v(t, γv(t))‖ dt

} γv(t)∼ρ(t,x)dx︷︸︸︷=
∫
Rn

∫ 1

0
‖v(t, x)‖ ρ(t, x)dtdx.

Furthermore, putting this last equality inside (3.13), we obtain the L1 cost case of the “fluid
dynamic” version of the optimal transport:

Problem (DYN 1).
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Given two positive finite absolutely continuous measures µ+, µ− ∈ M+(Rn) with densities
f+ and f− satisfying (2.44), find an optimal couple (ρ∗, v∗) satisfying:

inf
(ρ,v)

∫
Rn

∫ 1

0
‖v(t, x)‖ ρ(t, x)dtdx,

∂ρ

∂t
(t, x) +∇ · (v(t, x)ρ(t, x)) = 0,

ρ(0, x) = f+(x), ρ(1, y) = f−(y).

(3.15)

Note that the last line is obtained using the definition of γv(t) and (3.13). Following,
again, the idea of the work of Chen, Georgiou and Pavon [18], we want to do the variational
analysis of dynamic Problem (DYN 1). It can be done in many different ways: let us write
here an example of the way in which this can be carried out. First of all, let us start defining
the family of the probability densities:

P(f+, f−) :=
{
ρ : [0, 1]× Rn → Rn | ρ(0, x) = f+(x) and ρ(1, y) = f−(y)

}
. (3.16)

Consider the unconstrained minimization problem of the Lagrangian over the space P(f+, f−)×
V:

L(ρ, v) :=
∫
Rn

∫ 1

0

[
‖v(t, x)‖ ρ(t, x) + λ(t, x)

(
∂ρ

∂t
+∇ · (vρ)

)]
dtdx, (3.17)

where λ : [0, 1] × Rn → R is a C1 Lagrange multiplier. Now, integrating by parts this
Lagrangian and supposing that the density satisfies ρ(t, x) ‖x‖→+∞−→ 0, L(ρ, v) can be written
as: ∫

Rn

∫ 1

0

(
‖v(t, x)‖ − ∂λ

∂t
(t, x)− v(t, x) · ∇λ(t, x)

)
ρ(t, x)dtdx+

+
∫
Rn

(
λ(x, 1)f+(x)− λ(x, 0)f−(x)

)
dx.

Thus, noting that the last part is simply a constant not depending on (ρ, v), Problem
(DYN 1) is the same as solving:

inf
(ρ,v)

∫
Rn

∫ 1

0

(
‖v(t, x)‖ − ∂λ

∂t
(t, x)− v(t, x) · ∇λ(t, x)

)
ρ(t, x)dtdx, (3.18)

over P(f+, f−) × V. To solve it, we follow a two-step optimization procedure. Thus, we
first fix ρ ∈ P(f+, f−) and minimize (3.18) along all v ∈ V. The integrand in (3.18), for a
fixed ρ, is convex and differentiable for v 6= 0. Thus we obtain the optimality condition:

v∗ρ(t, x)∥∥v∗ρ(t, x)
∥∥ = ∇λ(t, x), whenever {ρ(t, x) > 0}. (3.19)

Note that this optimality condition implies that:
• ‖∇λ‖ = 1 on the support of ρ(t, x);
• v∗ρ is the gradient of a potential.

Plugging this optimal v∗ρ in (3.18) yields the second minimization problem:

inf
ρ∈P(f+,f−)

H(ρ) :=
∫
Rn

∫ 1

0

(
−∂λ
∂t

(t, x) + ‖v(t, x)‖
(

1− ‖∇λ(t, x)‖2
))

ρ(t, x)dtdx.

Note that if λ(t, x) does not depend on time and if v∗ρ is of the form (3.19), we get that the
functional H just defined, is automatically zero over P(f+, f−). Hence, every ρ ∈ P(f+, f−)
is a minimizer of the Lagrangian together with the optimal v∗ρ defined on (3.19). All this
considerations are summarized into the following:
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Proposition 3.1. Consider a function λ(t, x) = λ(x) not depending on time and a
couple (ρ∗, v∗) ∈ P(f+, f−)× V satisfying:

∂ρ∗

∂t
(t, x) +∇ · (‖v∗(t, x)‖∇λ(x)ρ∗(t, x))) = 0,

‖∇λ‖ = 1 on {ρ(t, x) > 0},
v∗

‖v∗‖ = ∇λ on {ρ(t, x) > 0}.

(3.20)

Then (ρ∗, v∗) is a solution of (DYN 1), provided that ρ(t, x) ‖x‖→+∞−→ 0.

If we compare this result with the variational analysis for the L2 dynamic Problem
(DYN 2), which can be found always in [18], or also in [5], it easy to see that there are a lot
of differences. In the case of L2 cost, they obtained a result which completely characterized
all the optimal couples solving the dynamical problem. Indeed, doing the same analysis
we did above, in that case they obtained that, if the Lagrange multiplier λ solves the
Hamilton-Jacobi equation:

∂λ

∂t
+ 1

2 ‖∇λ‖
2 = 0,

with some boundary condition, then the couple (ρ∗, v∗), with v∗ = ∇λ and ρ∗ solving the
continuity equation with this vector field, will be a solution for the dynamic problem with
the L2 cost function. Here, instead, we obtain a result which does not give us an explicit
solution without knowing the quantity ‖v∗‖. This problem reminded us, in some way, of
problem we addressed in the previous chapter, of finding T ∗ given by (2.39), not having
information about the distance d∗. Indeed, we will see that, also in this case, the quantity
a∗ and u∗ will be involved to solve this problem. However, the variational analysis, in
this case, is useless and this problem in the case of L1 cost function must be solved in a
different way. Our strategy will be to use the other formulations of the Monge-Kantorovich
problem in order to find a relation similar to the one given by Theorem 3.1 and extract
useful information from this correspondence, in such a way that we will be able to write an
explicit solution, as we did for the L2 cost case (eq. (3.4)).

2. Beckmann’s problem

In this section, we want to discuss a model for the optimal transport problem pro-
posed by Beckmann in [3] and discussed more recently in [41]. Here we present just a
particular case of a wider class of convex optimization problems, which are of the form
min{

∫
H(w) dx : ∇ · w = f+ − f−} and we will treat just the case of the non-strictly

convex function H(z) = ‖z‖, being coherent with the rest of the work. Beckmann called
this problem continuous transportation model. However, later in this work, we will get back
to the general case of the convex minimization problems written above and we will see the
similarities and the differences with this L1 case. Note that, even if Beckmann worked in the
same years of Kantorovich, he was not aware of Kantorovich’s papers on related matters.
Just to introduce some features of this model, instead of looking at dynamic model, as in
the previous section, here we are interested in a “static” model. Since it may be difficult
to understand what “static” means when we want to describe the movement, let us look
at one example first. We want to consider the traffic intensity in each point of the space,
but, instead of considering the traffic intensity hour by hour, here we want to consider the
average traffic intensity at such a point during the whole day. In this case, we call w the
mass flow rate and, consequently, ∇ ·w stands for the excess of mass which is injected into
the motion at every point. Being more precise, if particles are injected into the motion
according to the distribution µ+ and exit with the distribution µ−, the vector field w must
satisfy:

∇ · w = µ+ − µ−. (3.21)
Formally, we will consider the following:
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Problem (B).

Consider an open convex subset Ω ⊂ Rn which contains X = supp(f+) and Y = supp(f−),
where f+ and f− are the densities of µ+ and µ−, respectively, satisfying (2.44). Then,
Beckmann minimization problem consists in finding an optimal vector field w ∈ L1(Ω)
satisfying:

inf
w

{∫
Ω
‖w(x)‖ dx : w : Ω→ Rn, ∇ · w = f+ − f−, w · νΩ = 0 on ∂Ω

}
. (3.22)

Here the divergence condition is to be interpreted in a weak sense and, with the Neu-
mann boundary condition, i.e.:

−
∫

Ω
∇φ(x)w(x)dx =

∫
Ω
φ(x)(f+(x)− f−(x))dx, ∀φ ∈ C1

c (Ω). (3.23)

The first observation on this problem is that it is not a priori well-posed, in the sense that
there may not exist an L1 vector field minimizing Problem (B). This can be understood
using a standard method of the Calculus of Variations to prove the existence. Following
the idea stated in Proposition 1.1, we consider a minimizing sequence and we would like to
extract a subsequence converging to the minimum, in order to find a minimizer using some
lower semi-continuity property. Thus, starting with wn → w, it is easy to prove that such
w satisfies the divergence constraint ∇ · w = f+ − f−, using the fact that:

−
∫

Ω
∇φ wndx =

∫
Ω
φ(f+ − f−)dx

and letting n→∞. The fact is that, even if we have that the sequence is bounded in L1, i.e.∫
Ω ‖wn‖ dx ≤ C, it is not enough to extract a converging subsequence, even weakly. Indeed,
the space L1 is not reflexive, as we showed in the Section 2 of the Chapter 1. Thus bounded
sequences are not guaranteed to have weakly converging subsequences, because we cannot
use Theorem 1.5. In order to automatically deduce the weakly sequential compactness of
a subspace in L1, we need also the equintegrability condition, a property described inside
Dunford-Pettis Theorem 1.6. If we are able to show this property, we can use that theorem
and conclude. To avoid this difficulty of well-posedness, we will choose a different setting
for (B): the framework of vector measures. We already described vector measures (see
Section 2 of Chapter 1), looking at the definition and at some properties of these objects.
In particular, we saw that if µ ∈Mn(Ω), we can define the total variation measure ‖µ‖ (Ω)
(Definition 1.11). Hence, we can reformulate Problem (B), in this context, by:

Problem (B′).

Consider an open convex subset Ω ⊂ Rn which contains X = supp(f+) and Y = supp(f−),
where f+ and f− are the densities of µ+ and µ−, respectively, satisfying (2.44). Then,
Beckmann minimization problem in a vector measures form consists in finding an optimal
vector measure w∗ ∈Mn

div,0(Ω) satisfying:

inf
w

{
‖w‖ (Ω) : w ∈Mn

div,0(Ω), ∇ · w = f+ − f−
}
. (3.24)

Here the two constraints have a meaning similar to (3.23), but in the context of the
space of measuresMn

div,0(Ω) (see notation), they become, also recalling Riesz representation
Theorem 1.7:∫

Ω
∇φ · dw = 〈∇φ,w〉C0(Ω;Rn) =

∫
Ω
φ
(
f− − f+) dx, ∀φ ∈ C1

c (Ω). (3.25)

3. Relationship between different formulations

With all these formulations of the same problem coming from different fields, it becomes
important to find a correspondence between the problems, as stated in the introduction of
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this chapter. Moreover, if possible, it is also important to find a correlation between the
minimizers/maximizers of different formulations. If a solution of a problem can be built from
the minimizer/maximizer of another problem we say that the two problems are equivalent.
The situation is complex and a bit confused, thus let us proceed step by step. Let us start
recalling the fact that Problem (K1) is the relaxation of Problem (M1), as shown in Theorem
2.1 of Chapter 2 and that Problems (K1) and (D1) have the same optimal value thanks to
Duality Theorem 2.4. The first step of this section is the relation between Problem (3.24)
just introduced, and the dual Problem (D′1). To do that, we want to use a duality result,
recalled in Convex Analysis Section 5 of Chapter 1. The idea of using Fenchel-Rockafellar
Theorem 1.17 in this particular case, is taken from Barrett and Prigozhin [2]. To be precise
and to give the formal background, in the whole section we will consider a compact convex
subset Ω ⊂ Rn and, as always, two absolutely continuous measures with densities f+ and
f−, respectively. Moreover, suppose that the supports of these densities f+ and f− are
contained in Ω. We are ready, then, for the following:

Theorem 3.2. The minimal value of Beckmann Problem (B′) is the same as the max-
imal value of the dual Problem (D′1), i.e.

min (B′) = max (D′1). (3.26)

Proof (Barrett-Prigozhin [2]). First of all, note that if µ = µ+ − µ−, then µ ∈
M(Ω). Moreover, if f = f+−f−, we write the duality pairing (1.5) of Riesz representation
Theorem 1.7 using, with some abuse of notation, the absolutely continuous measure dµ =
fdx:

〈f, u〉C(Ω) =
∫

Ω
u · fdx ∀u ∈ C(Ω).

Thus, Problem (D′1) can be written in the form:
max

{
〈f, u〉C(Ω) : u ∈ Lip1(Ω)

}
.

With Fenchel-Rockafellar Theorem 1.17 in mind, we want to find proper functions F and
G and proper spaces V and W , in order to write (D′1), written in the form just stated, as
the principal problem (P1). Then, consider spaces V := C1(Ω), W := C(Ω;Rn) and linear
operator Λ : V →W , defined as

Λu := ∇u.
Moreover, consider the functions F : V → R and G : W → R, defined as:

F (u) := −〈f, u〉C(Ω) and G(v) :=
{

0 if ‖v(x)‖ ≤ 1 ∀x ∈ Ω,
+∞ otherwise.

Then it is easy to see that the principal problem:
inf
u∈V

[F (u) +G(Λu)], (P3)

with the functions and the spaces defined above, is the same as Problem (D′1). Note that
F and G are convex functions and if we take u0 = 0, we obtain F (u0) = 0. Moreover,
the function G(v) is continuous at Λu0 = 0. Thus, the hypothesis of Fencel-Rockafellar
Theorem 1.17 are verified. Before using that theorem, we have to write down explicitly the
dual formulation in this particular case. First of all, recall that the dual space ofW is, using
Riesz representation Theorem 1.7, W ∗ = Mn(Ω) and that Λ∗ : W ∗ → V ∗ is the adjoint
of Λ, as defined in (1.23). Using the definition of Legendre-Fenchel conjugate function, let
us try to understand how are defined functions F ∗ and G∗. Considering u∗ ∈ V ∗, we have
that:

F ∗(u∗) = sup
u∈V

[
〈u∗, u〉∗ + 〈f, u〉C(Ω)

]
=
{

0 if u∗ + f = 0,
+∞ otherwise.

Therefore, looking at the dual formulation (P∗1), it follows that:
−F ∗(Λ∗p∗) > −∞ ⇐⇒ Λ∗p∗ + f = 0.
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Thus, the supremum in (P∗1) should be considered only on the following convex set:
Z :=

{
p∗ ∈W ∗ : 〈Λ∗p∗, u〉∗ + 〈f, u〉C(Ω) = 0 ∀u ∈ C1(Ω)

}
= by def. of Λ∗

=
{
p∗ ∈W ∗ : 〈p∗,∇u〉C(Ω) + 〈f, u〉C(Ω) = 0 ∀u ∈ C1(Ω)

}
= by int. by parts

=
{
w ∈Mn

div,0(Ω) : 〈∇w − f, η〉C(Ω) = 0 ∀η ∈ C(Ω)
}
.

Note that this set is exactly the set described by the two constraints in the minimization
Problem (B′). Moreover, looking at G∗, we have that if w ∈W ∗, then:

G∗(w) = sup
{
〈w, v〉C0(Ω;Rn) : v ∈W and ‖v(x)‖ ≤ 1 ∀x ∈ Ω

}
= ‖w‖ (Ω).

The last equality is due to the definition of the scalar product in Riesz representation
Theorem 1.7 plus Proposition 1.2. Hence, the dual problem can be written as:

sup{−‖w‖ (Ω) : w ∈ Z}. (P∗3)
Therefore, using now the result of Fenchel-Rockafellar Theorem 1.17, we obtain:

max (D′1) = max{〈f, u〉C(Ω) : u ∈ Lip1(Ω)} = inf{‖w‖ (Ω) : w ∈ Z} = min (B′). (3.27)
�

The second new relation is between the relaxed Kantorovich Problem (K1) and, again,
the Beckmann problem (B′). The interesting fact is that we can even recover equivalence
of the two problems, in the sense stated at the beginning of this section, as we can see in
the following theorem, taken from Section 4.2.2 of Santambrogio [41].

Theorem 3.3. The minimal value of Problem (B′) equals the minimal value of Problem
(K1), i.e.:

min (B′) = min (K1). (3.28)
Moreover, a solution of Beckmann Problem (B′) can be built from a solution of Kantorovich
Problem (K1).

Proof (Santambrogio [41]). (≥) We start taking an arbitrary function φ ∈ C1(Ω)
with φ ∈ Lip1(Ω), so that ‖∇φ‖ ≤ 1. Consider any w ∈ Mn

div,0(Ω) with ∇ · w = f+ − f−.
We get, then:

‖w‖ (Ω) =
∫

Ω
1d ‖w‖ ≥

∫
Ω

(−∇φ) · dw
(3.25)︷︸︸︷=

∫
Ω
φ(f+ − f−)dx.

Now, if we consider a sequence in Lip1(Ω) ∩ C1(Ω) uniformly converging to the Kantorovich
potential u∗ (for instance the convolution φε = χε ∗ u∗, with χε the standard mollifier, as
described, for example, in Brezis [15]), we obtain:∫

Ω
u∗(f+ − f−)dx = max (D′1) = min (K1),

where we used the Strong Duality Theorem 1.15 for the last equality. Moreover, we have
that:

‖w‖ (Ω) ≥ min (K1),
for any w with the property as above, i.e. for any vector measure satisfying the constraints
of the minimization Problem (B′). This means:

min (B′) ≥ min (K1). (3.29)
(≤) For the converse, we shall show that it is possible to construct an optimal w starting
from an optimal µ for (K1). This idea is taken from Bouchitté and Buttazzo [8]. We start
by defining, given an arbitrary transport plan µ ∈ Π(µ+, µ−), a scalar measure σµ ∈M(Ω)
as:

〈σµ, φ〉C0(Ω) :=
∫

Ω×Ω

∫ 1

0

∥∥γ′x,y(t)
∥∥φ(γx,y(t))dt dµ(x, y), ∀φ ∈ C0(Ω). (3.30)

55



CHAPTER 3. Other formulations of the mass transfer problem.

Here γx,y ∈ Xxy (space defined in the first section of this chapter) is a parametrization of the
segment [x, y], taken for simplicity with constant speed, e.g. γx,y(t) = (1− t)x+ ty (again
already defined in the first section of the this chapter). Note that, using the duality isometry
given by Riesz representation Theorem 1.7 that correlates (C0(Ω))∗ and M(Ω), this σµ is
effectively a scalar measure. Define, also, a vector measure wµ ∈ Mn(Ω), depending on µ,
as:

〈wµ, ξ〉C0(Ω;Rn) :=
∫

Ω×Ω

∫ 1

0
γ′x,y(t) · ξ(γx,y(t))dt dµ(x, y), ∀ξ ∈ C0(Ω;Rn). (3.31)

Also in this case we use Riesz representation Theorem 1.7 to confirm that wµ is actually a
vector measure. Note that if ξ = ∇φ ∈ C0(Ω;Rn), then:∫ 1

0
γx,y(t) · ∇φ(γx,y(t))dt =

∫ 1

0

d

dt
(φ(γx,y(t))) dt = φ(y)− φ(x).

Hence,

〈wµ,∇φ〉C0(Ω;Rn) =
∫

Ω×Ω
φ(y)dµ(x, y)−

∫
Ω×Ω

φ(x)dµ(x, y)
µ∈Π(µ+,µ−)︷︸︸︷=

∫
Ω
φ(x)

(
f−(x)− f+(x)

)
dx.

This equality, using the definition of the scalar product 〈·, ·〉C0(Ω;Rn) in (1.5), tells us that
wµ satisfies the divergence constraint in the weak sense and with the Neumann boundary
condition, i.e.

−
∫

Ω
∇φ · dwµ =

∫
Ω
φ
(
f+ − f−

)
dx, ∀φ ∈ C1

c (Ω). (3.32)

Recalling that this constraint is the same as wµ ∈ Mn
div,0(Ω) and ∇ · wµ = f+ − f− in a

weak sense, we can easy say that wµ is in the search set for Problem (B′). Simply using
Cauchy-Schwarz inequality, it is easy to see that the mass of wµ can be estimated by:

‖wµ‖ ≤ σµ ∀µ ∈ Π(µ+, µ−). (3.33)
Considering, now, an optimal µ which solves Problem (K1) and looking at the mass of σµ,
we obtain:∫

Ω
dσµ =

∫
Ω×Ω

∫ 1

0

∥∥γ′x,y(t)
∥∥ dt dµ(x, y) =

∫
Ω×Ω
‖x− y‖ dµ(x, y) = min (K1)

(3.29)︷︸︸︷
≤ min (B′).

Finally, this inequality plus inequality (3.33), tells us that wµ is a solution of Beckmann’s
Problem (B′). �

Remark 3.1. Actually, we can even say more about the relationship between the vector
measure wµ and the scalar measure σµ. Using the Kantorovich potential u∗, we have:

γ′x,y(t) = −‖x− y‖ x− y
‖x− y‖

= −‖x− y‖∇u∗(γx,y(t)), ∀t ∈ (0, 1), ∀x, y ∈ supp(µ),

where we used the fact that γx,y(t) is in the interior of a transport ray ]x, y[ and we used
Lemma 2.4 in Chapter 2. This allows us to write, for every ξ ∈ C0(Ω;Rn):

〈wµ, ξ〉C0(Ω;Rn) =
∫

Ω×Ω

∫ 1

0
−‖x− y‖∇u∗(γx,y(t)) · ξ(γx,y(t))dt dµ(x, y) =

= −
∫ 1

0
dt

∫
Ω×Ω
∇u∗(γx,y(t)) · ξ(γx,y(t)) ‖x− y‖ dµ(x, y).

Introducing the function πt : Ω × Ω → Ω given by πt(x, y) := γx,y(t) = (1 − t)x + ty and
defining the measure c ·µ ∈M+(Ω×Ω) as the absolutely continuous measure with density
c(x, y) = ‖x− y‖, we can write:

〈wµ, ξ〉C0(Ω;Rn) = −
∫ 1

0
dt

∫
Ω
∇u∗(z) · ξ(z)d((πt)#(c · µ)). (3.34)
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The same kind of computations gives:

〈σµ, φ〉C0(Ω) =
∫ 1

0
dt

∫
Ω
φ(z)d((πt)#(c · µ)). (3.35)

Hence, comparing these last two equalities, we get:
〈wµ, ξ〉C0(Ω;Rn) = 〈σµ,−ξ · ∇u∗〉C0(Ω). (3.36)

By the arbitrariness of ξ and using the dual pairing in (1.5), it follows that:
wµ = −∇u∗ · σµ. (3.37)

This confirms (3.33) and tells us that −∇u∗ is the density of wµ w.r.t σµ, in the sense of
Proposition 1.2, i.e.∫

Ω
ξ · dwµ = 〈wµ, ξ〉C0(Ω;Rn) = 〈σµ,−ξ · ∇u∗〉C0(Ω) = −

∫
Ω

(ξ · ∇u∗)dσµ.

Note also that Proposition 1.2 tells us that:
‖∇u∗‖ = 1 σµ-a.e.. (3.38)

Moreover, using the equality in (3.35) and using (1.5), we obtain an explicit representation
of σµ given by:

σµ =
∫ 1

0
((πt)#(c · µ))dt. (3.39)

�

Scalar measure σµ described in the proof above and in the previous remark is strictly
related to a∗ of Lemma 2.5 introduced in [27]. In this case, this object is connected to some
shape-optimization problems treated in Bouchitté and Buttazzo [8] and [9]. This relation
between σµ and a∗, using some considerations which can be found in both Ambrosio [1] and
Santambrogio [41], is described in the following:

Proposition 3.2. Starting from an optimal µ ∈ Π(µ+, µ−) solving Problem (K1),
the scalar measure σµ defined in (3.30) solves, together with the Kantorovich potential u∗,
Problem (PDE).

Proof. For all φ ∈ C1
c (Ω), we get:

−
∫

Ω
∇φ · ∇u∗dσµ = −〈σµ,∇φ · ∇u∗〉C0(Ω)

(3.36)︷︸︸︷= 〈∇φ,wµ〉C(Ω,Rn)

(3.32)︷︸︸︷=
∫

Ω
φ(f− − f+)dx.

This means that, looking at the weak formulation of Equation (2.59) of (PDE) as written
in (2.61), the scalar measure σµ is absolutely continuous with density exactly equal to a∗,
i.e.

dσµ(x) = a∗(x)dx. (3.40)
Thus, in this sense, the couple (σµ, u∗) solves equation (2.59), where with σµ in this case
we mean its density. Note, also, that we have already shown the other condition (2.60) of
Problem (PDE) in the previous remark, precisely in (3.38). �

With an abuse of language, both scalar measure σµ and density a∗ are usually called
with the same name scalar density. This is due to the fact that the density of an absolutely
continuous measure and the measure itself are, often, improperly identified.

Thus, we have seen the correspondences between Beckmann Problem (B′) and the
“classic versions” of the Monge-Kantorovich Problems (K1) and (D′1), that also provides a
way to obtain a solution of (PDE).

We want to focus, now, on the relation between Problem (B′) and the dynamic Problem
(DYN 1). Indeed, in order to fill the gap left at the end of Section 1 of this chapter, by
the failure of the variational analysis, we want to see (DYN 1) from a different perspective.
The idea is to take information from the Beckamann Problem (B′) in order to obtain an
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optimal couple that minimizes the dynamical problem. Before doing that, note that if we
consider the case of a proper, compact and convex subset Ω ⊂ Rn, such that the supports of
f+ and f− are contained inside this set, we can substitute Rn with Ω inside the integral of
(DYN 1), provided that the admissible velocity vector fields v satisfy Neumann boundary
condition v · νΩ = 0 on the boundary ∂Ω. In this case, the continuity equation has to be
intended in a weak sense, i.e. for all φ ∈ C1([0, 1]× Ω):∫

Ω
φ(1, x)f−(x)dx−

∫
Ω
φ(0, x)f+(x)dx =

∫ 1

0

∫
Ω

∂φ

∂t
(t, x)ρ(t, x)dxdt

+
∫ 1

0

∫
Ω
∇φ(t, x) · (v(t, x)ρ(t, x))dxdt.

(3.41)

Note that we obtained the equation above just integrating the continuity equation (3.14)
multiplied by a test function φ ∈ C1([0, 1]×Ω) and using zero Neumann boundary conditions.

After this clarification, we are ready to prove the following relationship, which takes
inspiration from an idea used in Brasco [12]:

Theorem 3.4. The minimal value of Problem (B′) equals the minimal value of Problem
(DYN 1), i.e.:

min (B′) = min (DYN 1). (3.42)
Moreover, starting from w ∈Mn

div,0(Ω) solution of (B′), assumed absolutely continuous, it
is possible to construct an optimal pair (ρw, vw) solving (DYN 1).

Proof. (≤) Given a feasible couple (ρ, v) for Problem (DYN 1), i.e. a couple satisfying:
∂ρ

∂t
(t, x) +∇ · (v(t, x)ρ(t, x)) = 0

ρ(x, 0) = f+(x), ρ(y, 1) = f−(y),

we consider the function:

fw̃(x) :=
∫ 1

0
v(t, x)ρ(t, x)dt. (3.43)

Assuming enough regularity for the couple (ρ, v) so that we can interchange ∇ with the
integral sign, we see that fw̃ solves, for all φ ∈ C1

c (Ω):∫
Ω
∇φ(x) fw̃(x)dx = −

∫
Ω
φ(x)

∫ 1

0
∇ · (v(t, x)ρ(t, x)) dtdx

=
∫

Ω
φ(x)

∫ 1

0

∂ρ

∂t
(t, x)dtdx =

∫
Ω
φ(x)

(
f−(x)− f+(x)

)
dx.

This means, comparing this equality with the one written in (3.25), that the absolutely
continuous measure with density fw̃, i.e. dw̃ = fw̃dx, satisfies Beckmann’s Problem (B′)
weak constraint. Now, using Minkowski’s integral inequality with p = 1, we get:∫

Ω

∫ 1

0
‖v(t, x)‖ ρ(t, x)dt dx ≥

∫
Ω

∥∥∥∥∫ 1

0
v(t, x)ρ(t, x)dt

∥∥∥∥ dx =
∫

Ω
‖fw̃(x)‖ dx =

∫
Ω
d ‖w̃‖

By the arbitrariness of the couple (ρ, v), the inequality above implies:
‖w̃‖ (Ω) ≤ inf (DYN 1).

Thus, using also the arbitrariness of w̃, we obtain:
min (B′) ≤ inf (DYN 1). (3.44)

(≥) For the converse, we consider an absolutely continuous measure w, with density fw,
that solves of (B′), satisfying the divergence constraint (3.25) in a weak sense. Consider
the couple, depending on w, given by:

ρw(t, x) := (1− t)f+(x) + tf−(x); vw(t, x) := fw(x)
ρw(t, x) . (3.45)

58



CHAPTER 3. Other formulations of the mass transfer problem.

For all φ ∈ C1
c ([0, 1]× Ω) we can write:∫ 1

0

∫
Ω

∂φ

∂t
(t, x)ρw(t, x)dxdt+

∫ 1

0

∫
Ω
∇φ(t, x) · (vw(t, x)ρw(t, x))dx dt =

=
∫

Ω
(φ(1, x)− φ(0, x))f+(x)dx+

∫
Ω

(f−(x)− f+(x))
(∫ 1

0
t · ∂φ

∂t
(t, x) dt

)
dx

+
∫ 1

0

∫
Ω
∇φ(t, x) · fw(x)dx dt = (integrating by parts the second term)

=
∫

Ω
φ(1, x)f−(x)dx−

∫
Ω
φ(0, x)f+(x)dx−

∫
Ω

(f−(x)− f+(x))
(∫ 1

0
φ(t, x)dt

)
dx

+
∫

Ω
∇
(∫ 1

0
φ(t, x)dt

)
· fw(x)dxdt =

∫
Ω
φ(1, x)f−(x)dx−

∫
Ω
φ(0, x)f+(x)dx.

Note that we obtain the last equality using the fact that fw satisfies the divergence constraint
in a weak sense written in (3.25), with the test function Φ(x) =

∫ 1
0 φ(t, x)dt ∈ C1

c (Ω).
Clearly, we assumed enough regularity in order to take the gradient out of the integral sign
and in order to use Fubini-Tonelli Theorem 1.2. The last calculation tells us that the couple
(ρw, vw) satisfies the continuity equation in a weak sense, i.e.

∂ρw
∂t

(t, x) +∇ · (vw(t, x)ρw(t, x)) = 0, in a weak sense;

ρw(x, 0) = f+(x), ρw(y, 1) = f−(y), by the definition of ρw in (3.45).

This means that the couple (ρw, vw) belongs to the feasible set of Problem (DYN 1). Finally,
note that:∫

Ω

∫ 1

0
‖vw(t, x)‖ ρw(t, x)dt dx =

∫
Ω
‖fw(x)‖ dx = ‖w‖ (Ω) = min (B′)

(3.44)︷︸︸︷
≤ min (DYN 1).

This inequality tells us that this pair (ρw, vw) is actually the minimizer we were looking
for. �

Note that density ρ(t, x) solution of Problem (DYN 1) is simply represented by the
affine interpolation between f+ and f−. As we already said, in general, the affine inter-
polation differs greatly from the optimal density of Problem (DYN 2), represented in (3.4).
We will come back to this relation between L1 and L2 optimal density and we will discuss
it in detail, from both an analytical and a geometrical point of view. Instead, now, we
want to highlight another parallelism between the dynamic formulation (DYN 1) and the
Kantorovich formulation (K1), just putting together Theorem 3.3 and Theorem 3.4. More-
over, using also the deformation argument explained in Theorem 2.6, we will connect almost
all the ideas used in the theorems above, in order to find a correlation with the optimal
transport map of Evans defined in Theorem 2.7.

Theorem 3.5. The minimal value of Problem (K1) is equal to the minimal value of
Problem (DYN 1), i.e.:

min (K1) = min (DYN 1). (3.46)
Moreover, starting from an optimal transport plan µ ∈ Π(µ+, µ−) solution of (K1), it is
possible to construct an optimal couple (ρµ, vµ) solution of (DYN 1).

Proof. The idea of the proof is, as already stated, simply to connect Theorem 3.3 and
Theorem 3.4. Indeed, for the proof of the first part, we just need to combine the equalities
(3.28) and (3.42) to get:

min (K1) = min (B′) = min (DYN 1).
For the second part, we start from an optimal µ ∈ Π(µ+, µ−) and we want to use both
proofs of Theorems (3.5) and (3.6), combined together as before. Thus, we start defining
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the scalar measure σµ ∈ M(Ω) and the vector measure wµ ∈ Mn(Ω), respectively as in
(3.30) and (3.31). Recall that wµ and σµ are related by (3.37), i.e.

wµ = −∇u∗ · σµ,
where u∗ is the Kantorovich potential. Moreover, wµ satisfies the divergence constraint in
a weak sense, as in (3.32), and is a solution of the Beckmann Problem (B′). In order to use
Theorem 3.4, starting from this optimal wµ, we want to find the density of this measure.
To do this, we combine (3.37) and (3.40) to yield:

dwµ = fwµdx

(3.37)︷︸︸︷= = −∇u∗ · dσµ
(3.40)︷︸︸︷= −∇u∗ · a∗dx.

This equality tells us that the density of the optimal measure wµ is:
fwµ(x) = −a∗(x) · ∇u∗(x). (3.47)

We are now ready to apply Theorem 3.4. We start defining the couple:

ρwµ(t, x) = (1− t)f+(x) + tf−(x); vwµ(t, x) =
fwµ(x)
ρwµ(t, x) = −a

∗(x) · ∇u∗(x)
ρwµ(t, x) , (3.48)

as in (3.45). Hence, we obtain that the pair (ρwµ , vwµ) is optimal for Problem (DYN 1),
following step-by-step the final part of the proof of previous Theorem 3.4. �

Remark 3.2. As stated before, we can use the proof of the previous theorem to correlate
the optimal couple (ρ∗, v∗) = (ρwµ , vwµ), defined in (3.48), solution of (DYN 1), to the
optimal transportation map T ∗ given by Evans in [26]. Let us consider the velocity vector
field v∗ and denote by v∗t (x) = v∗(t, x), in a standard compact way. Consider, then, its flow
Y (t, x) = Yt(x) = yx(t), solution of the Cauchy problem{

y′x(t) = v∗t (yx(t)),
yx(0) = x.

Thus, defining:
T ∗(x) := yx(1) = Y1(x), ∀x ∈ Ω, (3.49)

and, doing the same calculations we did inside the proof of Dacorogna and Moser Theorem
2.6, we get that:

d

dt
h(t, x) = d

dt

(
det∇Y (t, x)

(
(1− t)f+(Y (t, x)) + tf−(Y (t, x))

))
= 0.

Hence, h(0, x) and h(1, x) must be equal and we obtain:
f+(x) = f−(T ∗(x))det(DT ∗(x)).

As already noted in Chapter 2, this determinant is always strictly positive. Now, looking
at the constraint in (2.10), obtained by (2.2) just using a change of variable, we obtain,
proceeding backward, the same push-forward constraint T ∗#(f+) = f−. Thus, T ∗ is a
transport map, i.e. it belongs to T (µ+, µ−). Furthermore, noting that T ∗ is defined exactly
as in Theorem 2.7 as the time-one map of the flow of an ODE with the same velocity
−a∗ · ∇u∗, T ∗ is exactly the same optimal transport map that solves Monge’s original
problem (M1) and that was found by [26].

Note that, with this last remark, we finally achieved a result similar to the one obtained
with the L2 cost case (Theorem 3.1), recovering a correspondence between the classical
Monge’s formulation (M1) and the dynamic formulation (DYN 1), also in the case of L1

cost function. Doing that, we also found many other correspondences between different for-
mulations. In search for a quick summary of the complex relationships between the different
formulations, we show in Figure 7 a visual representation of the different formulations and
of the theorems used for their analysis.
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(M1)

(K1)

(B′)(D′1)
Theorem 3.2
(Duality)

Theorem 2.4
(Duality)

(DYN 1)

Theorem 3.5

Theorem 3.4

Remark 3.2(PDE)

Theorem 2.7

Proposition 3.2

Theorem 2.1
(Relaxation)

Theorem 3.3

Figure 7. Summary of the relations between different formulations of
Monge-Kantorovich problem.
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CHAPTER 4

Supplementary analysis of the results obtained

This chapter born from the will to examine in depth some aspects we treated quickly
before. We start from the study of the density that solves Problem (DYN 1). Trying to
interpret the reasons underlying its form, we compare this solution with the solution of the
dynamical problem in the case of a cost function c(x, y) = ‖x− y‖p, with p > 1. We find a
lot of differences between them, both from analytical and geometrical point of views. The
geometric perspective is particularly important, because allow us to introduce an important
distance, defined in some particular spaces of probabilities, which, actually, is the real reason
of the differences between the two cases considered. In the second part, we want to see the
correspondence between Beckmann Problem (B) and dynamical Problem (DYN 1) from a
wider point of view. For this aim, we look at some extensions of the two problems and we
prove an equivalence between these wider class of problems, analogous to the one given by
Theorem 3.4. The interesting fact is that this relationship is achieved using many procedures
we have already introduced. In the final part, we want to present some simulations and
numerical solutions, graphically representing the time evolutions of the optimal densities
of (DYN 1) and (DYN 2). Our initial will is to underline the differences between these two
problems. However, once graphically confirmed the already known theoretical differences
between these two cases, we pass to examine the intermediate cases of Lp costs, with1 <
p < 2. To do that, we consider two different examples of initial and final data. In the first
case, we are able to recover an exact solution, while in the second case we need to recur to
a numerical scheme, taken from Delzanno and Finn [22], based on Newton method.

1. Optimal densities solving dynamical problems

In this part, we want to analyse the solution of dynamical formulation (DYN 1), in
order to understand why the optimal density ρ ∈ P(f+, f−) (eq. (3.16)), is just the affine
interpolation between f+ and f− written in (3.45). We want to dwell on this result and
study the analytic and the geometric details underlying it, because it was somewhat unex-
pected. The reason why it is surprising is that the dynamical formulation may be used, in
applications, for example, to morph two different images. This technique consists, briefly,
on transforming one image into another, taking into account also the intermediate images.
In the case of affine interpolation, it physically corresponds to a teleport phenomenon: at
every time, the mass disappears from the initial configuration and appears in the final con-
figuration, as we will see later with an example. This is the reason why it is interesting to go
deeper into the details of this result and to understand the reasons behind this behavior. To
do that, we will do a comparison between the optimal solutions of the dynamical problems
in the case of costs c(x, y) = ‖x− y‖p, with p = 1 and p > 1. This will be useful in order to
outline the geometrical differences between the two cases and to understand the different
ways in which the optimal density changes in time.

We consider first the case p = 1. We will start reporting a uniqueness result for
continuity equation (3.14). The following materials is summarized from Santambrogio [41],
where more details and proofs can be found.

Theorem 4.1. Suppose that Ω ⊂ Rn is either a convex, open subset or Rn itself.
Suppose that vt : Ω→ Rn, defined as vt(x) := v(t, x) is Lipschitz continuous in x, uniformly
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continuous in t and uniformly bounded, and consider its flow X(t, x), such that:{
X ′(t, x) = vt(X(t, x)),
X(0, x) = x.

(4.1)

Suppose also that, for every x ∈ Ω and every t ∈ [0, 1], we have X(t, x) ∈ Ω (which is
obvious for Ω = Rn, and requires suitable Neumann conditions on vt otherwise). Then, for
every positive finite Borel measure µ+ ∈M+(Ω), the measures ρt := (X(t, ·))#µ

+ solve the
continuity equation with initial datum µ+, i.e.

∂ρ

∂t
(t, x) +∇ · (v(t, x)ρ(t, x)) = 0, (t, x) ∈ Ω× [0, 1]

ρ(x, 0) = µ+(x) x ∈ Ω,
(4.2)

where ρ(t, x) := ρt(x). Moreover, every solution of the same equation, if ρt are absolutely
continuous for every t, is necessarily obtained as ρt := (X(t, ·))#µ

+. In particular, the
continuity equation admits a unique solution.

Using this uniqueness result, we want to motivate the fact that the optimal solution of
dynamical Problem (DYN 1) is exactly the affine interpolation between µ+ and µ−. Just
to be precise, we will consider the case of absolutely continuous function with densities f+

and f−. We will apply the theorem above considering the density f+, as initial condition.
As done in the proof of Theorem 3.4, consider an optimal measure w ∈Mn

div,0(Ω) satisfying
weakly the constraint ∇ · w = f+ − f− and solving (B′). Let us suppose that this optimal
measure w is absolutely continuous with density fw. Then the optimal solution of (DYN 1)
is given by the couple:

ft(x) := (1− t)f+(x) + tf−(x); vt(x) := v(t, x) := fw(x)
ft(x) , (t, x) ∈ [0, 1]× Ω.

Consider, then, the flow X(t, x) of the following Cauchy problem:{
X ′(t, x) = vt(X(t, x)),
X(0, x) = x.

Thanks to Theorem 4.1, ρt = X(t, ·)#f
+ solves the continuity equation ∂ρt

∂t +∇· (vtρt) = 0
with initial datum f+. Moreover, if we consider (ft, vt) defined above, we get:

∂ft
∂t

= f− − f+; ∇ · (ftvt) = ∇ · w = f+ − f−.

By the uniqueness result of Theorem 4.1 and by the fact that ρ0 = f+, we obtain the
equality:

ft(x) = (1− t)f+(x) + tf−(x) = X(t, ·)#f
+, ∀x ∈ Ω, ∀t ∈ [0, 1]. (4.3)

This result confirms once more that the affine interpolation is the optimal solution for
(DYN 1). We want to focus, now, on the dynamical formulation of the optimal transporta-
tion problem, in the case of a cost function c(x, y) = ‖x− y‖p, with p > 1, in order to
get some intuitions about the differences between this case and the L1 case. Note that we
already described the dynamic formulation (DYN 2) with a quadratic cost function, taken
from [5]. However, in order to extend this dynamic formulation to a general p > 1, as we
did for the case of p = 1, we use the procedure provided by [18] (Section 1 Chapter 3).
Looking at the way in which we proceeded in the case of L1 cost and noting that equality
(3.6) is still true in the case of any p ≥ 1, it is easy to obtain the general version of the fluid
dynamic formulation, given by:

Problem (DYN p).
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Given two positive finite absolutely continuous measures µ+, µ− ∈ M+(Rn) with densities
f+ and f− satisfying (2.44), find an optimal couple (ρ∗, v∗) satisfying:

inf
(ρ,v)

∫
Rn

∫ 1

0
‖v(t, x)‖p ρ(t, x)dtdx,

∂ρ

∂t
(t, x) +∇x · (v(t, x)ρ(t, x)) = 0,

ρ(x, 0) = f+(x), ρ(y, 1) = f−(y).

(4.4)

We want to get some geometric intuitions about the differences underlying the cases
of p = 1 and p > 1. To do that, we need to introduce a geometrical formulation of the
optimal transport problem, which can be viewed as a distance on the space of the probability
measures. Note, that we do not want to go deep into the geometrical details of the problem,
which will be really challenging and not required by the aim of this thesis. However, we
want to give an intuition about the geometry underlying this problem and, to do that, we
have to introduce some tools just to be able to answer this issue. Hence, first of all, let us
recall some definitions about metric spaces.

Definition 4.1 (Length of a curve). Given a metric space (V, d) and a curve γ ∈
AC([0, 1];V ), we define the length ` of γ as:

`(γ) :=
∫ 1

0
‖γ′(t)‖d dt.

Definition 4.2 (Geodesic and constant speed geodesic). Given a metric space (V, d),
a curve γ ∈ AC([0, 1];V ) is said to be:

• a geodesic between x and y in V if it minimizes the length among all curves such
that θ(0) = x and θ(1) = y, i.e.

`(γ) = min {`(θ) : θ ∈ AC([0, 1];V ) and θ(0) = x, θ(1) = y} .

• a constant speed geodesic between x and y in V is a geodesic for which

d(γ(t), γ(s)) = |t− s| d(x, y), ∀t, s ∈ [0, 1].

We denote the set of the constant speed geodesics between γ(0) and γ(1) in V as:

CSG([0, 1];V ) := {γ ∈ AC([0, 1];V ) : γ is a constant speed geodesic in V } . (4.5)

From now on, consider Ω ⊂ Rn convex and unbounded, which, clearly, includes the
case of Ω = Rn. In order to define the previously announced distance on the space of
probabilities, we introduce, for p ≥ 1 the following space:

Pp(Ω) =
{
µ ∈ P(Ω) :

∫
Ω
‖x‖p dµ(x) < +∞

}
. (4.6)

This is the set of probability measures with finite p-momentum. Note that, whenever Ω is
bounded, this space clearly coincides with the whole P(Ω). We are ready, now, to define
the Kantorovich-Rubinstein-Wasserstein distance. Note that this distance, in the literature,
is known just as Wasserstein distance, even if Kantorovich and Rubinstein discovered its
existence before Wasserstein and he just did a brief article about its relation with Markov
fields. Thus, we decided to call it like that for historical reasons and we included the name
of Wasserstein so that it will be more recognisable. For a further clarification about the
name, we cite a brief article [45] about the history and the work of Kantorovich.

Definition 4.3 (Kantorovich-Rubinstein-Wasserstein distance). Consider p ≥ 1 and
µ+, µ− ∈ Pp(Ω). Then the p-Kantorovich-Rubinstein-Wasserstein distance between µ+ and
µ− is given by:

dKRWp
(µ+, µ−) := inf

{∫
Ω×Ω
‖x− y‖p dµ(x, y) : µ ∈ Π(µ+, µ−)

} 1
p

. (4.7)
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Note the obvious relationship between this distance and the Kantorovich formulation
of the optimal transport problem (K), with c(x, y) = ‖x− y‖p. The assumption µ+, µ− ∈
Pp(Ω) guarantees finiteness of this value, thanks to the inequality ‖x− y‖p ≤ C(‖x‖p +
‖y‖p). Moreover, it can be shown that dKRWp is actually a distance on the space Pp(Ω).
Thus:

Definition 4.4 (Kantorovich-Rubinstein-Wasserstein space). For any p ≥ 1, we define
theKantorovich-Rubinstein-Wasserstein space of order p as the metric space (Pp(Ω), dKRWp

).
There are a number of studies that characterize the geometrical and topological prop-

erties of this distance. For example, the fact that it “metrizes” weak convergence, i.e.
µk ⇀ µ in Pp(Ω) ⇐⇒ dKRWp(µk, µ)→ 0, as k →∞,

But, also, the fact that it is a Polish space, i.e. a separable and complete metric space, if
Ω is a Polish space. As said at the beginning, we do not want to spend a lot of time on
this geometrical details. For the proofs of what we just stated and for more details about
this topic, we suggest the book of Villani [46]. Chapter 6 of this book is entirely dedicated
to the Kantorovich-Rubinstein-Wasserstein distances and we refer to it for any deepening
about the geometrical and topological details. The definitions above involve also the case
of p = 1, but, we want to focus for a while on the case of p > 1 strictly greater than 1.
We want to present a precise connection between this minimization Problem (DYN p) and
the distance dKRWp

(µ+, µ−)p, in order to obtain some information about the form of the
optimal density ρ, in the case of p > 1. Recalling the link between the distance dKRWp

and Problem (K) and proceeding like we did in the proof of Theorem 3.1, it would be easy
to prove that the correspondence between classical versions of Monge-Kantorovich problem
and the dynamical Problem (DYN p) with p = 2, given by the abovementioned theorem,
holds also in the case of a general p > 1.

Theorem 4.2. Consider µ+, µ− ∈ M+(Rn) two absolutely continuous measures with
smooth and compactly supported densities f+ and f−. Then, for every p > 1, the p-
Kantorovich-Rubinstein distance between µ+ and µ− is characterized as follows:

dKRWp(µ+, µ−)p = min (DYN p). (4.8)
This theorem gives, recalling again the link between the distance dKRWp

and Problem
(K) with a cost function c(x, y) = ‖x− y‖p, a generalization of the equivalence given in
Theorem 3.5. Moreover, note that we can even say more. Indeed, doing the same observation
we did after the proof of Theorem 3.1, we can prove, exactly in the same way, that the
optimal couple solving (DYN p) is given by:{

ρt(x) = ((1− t)x+ tT ∗(x))#f
+(x) ;

vt(x) = T ∗(X−1
t (x))−X−1

t (x).
(4.9)

Note that this couple is exactly the same as in the case of p = 2 (eq. (4.35)). Thus,
note that the optimal curve ρ, in the case of p > 1, is not anymore given by the affine
interpolation between f+ and f−, but is given by a linear relation involving the optimal
transport map. As previously announced, to understand the real difference between this
case and the case of p = 1, we have to understand the geometry behind dynamical Problem
(DYN p). Specifically, we want to look at the geodesics in the Kantorovich-Rubinstein-
Wasserstein spaces and, in particular, we want to define and characterize the constant
speed geodesics in these spaces. Just to have an intuition about their form, we want to
start with a basic example, taken from[12].

Example 4.1. Fix two distinct points x0, x1 ∈ Ω. Clearly, the constant speed geodesic
between these two points in Ω is the segment x0x1, parametrized by x0x1(t) = (1−t)x0+tx1.
Then, it is straightforward to see that curve µ : [0, 1]→ Pp(Ω) concentrated on this segment,
i.e. given by:

ρt := δx0x1(t), t ∈ [0, 1],
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verifies the following equality:
dKRWp(ρt, ρs) = |t− s| ‖x0 − x1‖ = |t− s| dKRWp(ρ0, ρ1).

This means that ρt is a constant speed geodesic in Pp(Ω), connecting the two Dirac measures
ρ0 = δx0 and ρ1 = δx1 . Note that this ρ can be written in the form ρt = (et)#Q, where et
is the usual evaluation map at time t, defined in (3.9) and Q, belonging to the space P(X ),
is defined as:

Q = δx0x1 .

Here X is the usual space of C1 curves, defined in (3.5).

This example gives an insight about the characterization of the constant speed geodesics
in these Kantorovich-Rubinstein-Wassersstein spaces. Indeed, we will present here a result
which fully describes the space CSG([0, 1];Pp(Ω)) in terms of the constant speed geodesics
in Ω, exactly as in the case of the previous example. For the proof, we refer the reader to
Lisini [35, Theorem 4.2].

Theorem 4.3. For p > 1, a curve µ ∈ AC([0, 1];Pp(Ω)) is a constant speed geodesic if
and only if there exists Q ∈ P(X ) such that:

(i) ρt = (et)#Q, for every t ∈ [0, 1];
(ii) Q is concentrated on the set of constant speed geodesics CSG([0, 1]; Ω);
(iii) dKRWp

(µ0, µ1)p =
∫
X ‖γ(0)− γ(1)‖p dQ(γ).

Note that theorem above is written in general terms, because is taken from a work in
which instead of Ω ⊂ Rn it was considered a general Polish space (V, d). In the case of
Ω ⊂ Rn, we can be more precise about the form of the constant speed geodesics and we
can derive an explicit formulation for the probability Q. Indeed every element in space
CSG([0, 1]; Ω) is the segment xy, parametrized, as in the previous example, by xy(t) =
(1− t)x+ ty. Now, consider µ∗ ∈ Π(µ+, µ−) the optimal transport plan minimizing (4.7).
Using (iii) we get that:

dKRWp(µ+, µ−)p =
∫

Ω×Ω
‖x− y‖p dµ∗(x, y) =

∫
X
‖γ(0)− γ(1)‖ dQ(γ).

Furthermore, if we add the fact that the measure Q is concentrated on the set of constant
speed geodesics CSG([0, 1]; Ω), which are simply the straight line connecting two points x
and y we obtain the following form for the probability measure Q:

Q =
∫

Ω×Ω
δxydµ

∗(x, y). (4.10)

In other words, Q is the probability measure whose disintegration with respect to the optimal
µ∗ is given by the family of Dirac masses {δxy}(x,y)∈Ω×Ω concentrated on the segments xy.
Then, using (i) of the Theorem 4.3, we get that µ ∈ AC([0, 1];Pp(Ω)) is a constant speed
geodesic if and only if it has the form:

ρt = (et)#Q = ((1− t)πx + tπy)#µ
∗, t ∈ [0, 1]. (4.11)

This is explicitly represented, using the integral representation of a measure in terms of
Riesz representation Theorem 1.7, by the following:∫

Ω
φ(x)dρt(x) =

∫
Ω×Ω

φ((1− t)x+ ty)dµ∗(x, y), ∀φ ∈ C0(Ω)

Formula (4.11) is usually referred to as displacement interpolation. This terminology has
been introduced for the first time in the work of McCann [36]. He was working on a model
for interacting gases and he was looking for an interpolant ρt, different from the linear
interpolation. His aim was to obtain convexity on the total energy E(ρ) with respect to
the interpolation parameter t, i.e. E(ρt) ≤ (1 − t)E(ρ0) + tE(ρ1). He discovered that a
curve ρt in the form of displacement interpolation satisfied his requests. We refer to the
work cited above for all the details. Here we are interested in understanding the differences
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between this displacement interpolation and the linear interpolation obtained for p = 1.
Note that Theorem 2.5 states that in the case of strictly convex cost, which is the case
of c(x, y) = ‖x− y‖p, with p > 1, the unique optimal transport plan µ∗ is induced by a
transport map T ∗. This relationship, already represented in Equation (2.27), is given by:

µ∗ = (Id× T ∗)#µ
+.

Observe that, in this case, displacement interpolation formula (4.11) can be rewritten as:

ρt = ((1− t)Id + tT ∗)#µ
+, t ∈ [0, 1], (4.12)

which means that Q is given by Q =
∫

Ω δxT∗(x)dµ
+(x). Note that the equality written

above, in the case of µ+ absolutely continuous with density f+, is exactly equal to the
optimal ρt written in (4.9). This means that in the case of p > 1, the optimal solutions
of the dynamical Problems (DYN p) are constant speed geodesics on p-Kantorovich-
Rubinstein-Wasserstein spaces Pp(Ω). Moreover, these geodesics can all be written as
displacement interpolations. On the contrary, in the case of p = 1, we showed that
the optimal solution of dynamical Problem (DYN 1) is the affine interpolation written in
(4.3). We want to show, now, that in this case the optimal solution is not obtained via
displacement interpolation. Indeed, consider for example two Dirac measures ρ0 = δx0 and
ρ1 = δx1 with x0, x1 ∈ Rn, as in Example 4.1. In this case, the optimal solution of dynam-
ical Problem (DYN 1) with initial and final data ρ0 and ρ1, respectively, is given by the
linear interpolation ρt = (1− t)δx0 + tδx1 such that:

dKRW1(ρt, ρs) = |t− s| ‖x0 − x1‖ = |t− s| dKRW1(ρ0, ρ1), for every t, s ∈ [0, 1].

However, in this case, it is not true that ρt can be written as a displacement interpolation.
Indeed, noting that the optimal plan in this case is µ∗(x, y) = δx0 × δx1(x, y), we obtain,
using (4.11), that the curves verifying the displacement interpolation equality are given by:∫

Ω
φ(x)dηt(x) =

∫
Ω×Ω

φ((1− t)x+ ty)dµ∗(x, y) = φ((1− t)x0 + tx1), ∀φ ∈ C0(Ω).

On the other hand, the linear interpolation ρt satisfies:∫
Ω
φ(x)dρt(x) =

∫
Ω
φ(x)d((1− t)δx0 + tδx1)(x) = (1− t)φ(x0) + tφ(x1), ∀φ ∈ C0(Ω).

We obtain that such ρt can not be written in the form of displacement interpolation, because
the two equalities above are not the same for all φ ∈ C0(Ω) (they are not all linear). Thus,
we showed that in the case of p > 1, the optimal solution of the dynamical problem ρt is
linked to the displacement interpolation, while in the case of p = 1 it is represented by
linear. The simulations in the final section of this chapter will underline once more the
difference between these two cases and will also help us to visualize it.

2. More on the relation between (B′) and (DYN 1)

In this section we take a different point of view in the analysis of the relations between
Problems (B′) and (DYN 1). As announced in Section 2 of Chapter 3, Beckmann mini-
mization Problem (B) can be extended to a wider class of minimization problems. Before
describing all the formal details about this class of problems, let us spend some words about
the reasons behind this extension of the Beckmann continuous transportation model. This
generalization of (B′) comes from the idea of taking into account a non-uniform cost for
the movement, due to the presence of some obstacles or of particular configurations. To
do that, we have to introduce a positive function k : Ω → R+, where k(x) stands for the
local cost at x per unit length of a path passing through x. Indeed, if we know a priori the
congestion function k, this problem can be modeled by the following minimization problem:

min
{∫

k(x) |w(x)| dx : ∇ · w = µ+ − µ−, w · νΩ = 0 on ∂Ω
}
. (4.13)
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Yet, as it happens in many situations, for example in urban traffic, this function k is not
known a priori, but it depends on the traffic vector field w itself. The easiest model for this
problem, chosen also by Beckmann, is to consider k as a function of the modulus of w, i.e.

k(x) = g(‖w(x)‖). (4.14)

We consider the following problem (for more details see [13]):

Problem (BH).

Given Ω ⊂ Rn a convex and compact set with a smooth boundary and two measures µ+,
µ− ∈M+(Ω) satisfying the mass balance condition restricted in Ω,

µ+(Ω) = µ−(Ω) < +∞.

Given the function H : Rn → R satisfying the following properties:
(i) H is a convex radially symmetric function with H(0) = 0;
(ii) there exist some positive real constants a, b and p ∈ [1,+∞) such that:

a ‖x‖p ≤ H(x) ≤ b(‖x‖p + 1), x ∈ Rn;

(iii) H is differentiable in Rn \ {0} and there exists a positive constant c such that:

‖∇H(x‖ ≤ c(|x|p−1 + 1), x ∈ Rn \ {0}.

Find an optimal vector field w ∈ Lp(Ω;Rn) that minimizes the following class of problems:

inf
w∈Lp(Ω;Rn)

{∫
Ω
H(w(x)) dx : ∇ · w = µ+ − µ−, w · νΩ = 0 on ∂Ω

}
, (4.15)

where, as usual, the divergence constraint has to be interpreted in a weak sense.
We will consider two special cases H(·) = H1(‖·‖) and H(·) = H2(‖·‖) with H1, H2 :

R+ → R+ defined as H1(t) = g(t)t and H ′2(t) = g(t), H2(0) = 0. The reasons why we
consider these two functions H1 and H2 will be clearer later. Note that Problem (BH), in
the case of H1, is exactly the initial intuitive minimization problem (4.13), with a metric k
depending on w. The functions H1 and H2 satisfy the same properties as H, without the
modulus in the inequalities. Moreover, g : R+ → R+ is an increasing function that models
the congestion effect and has to satisfy similar conditions, namely atp−1 ≤ g(t) ≤ b(tp−1+1)
for some positive real constants a, b. Note that the case of H(x) = ‖x‖ is exactly Beckmann
minimization problem (B), as we have already said in Section 2 of Chapter 3. Note, also,
that in the case of H strictly convex the problem is well posed. Indeed, in the case w ∈ Lp,
with p > 1, Lp reflexive space, enable the application of Theorem 1.5 in order to use the
Direct method in the Calculus of Variations. Thus, we will consider in this section just
the case of p > 1. However, also in this case, follow the previous approach and cast the
problem within the setting of vector measures, reasoning as for (B′) and taking as domain
of minimization a proper subspace ofMn

div,0(Ω).
Before going on with the analogous generalization of the dynamical Problem (DYN 1),

we want to consider first a discrete problem which can give us some good insights about its
form, passing to the limits. We refer to the original idea of Wardrop in [47] or to the more
recent work [41] of Santambrogio for all the details. The main ingredients of the model are:

• a finite oriented connected graph G = (V,E) modeling the network;
• some travel time functions ge : R+ → R+, continuous and increasing, giving, for

each edge e ∈ E, the travel time on e when the flow is θ ∈ R+. Note that this
functions ge are meant to capture the congestion effects, which can be different
according to different edges, since some roads may be longer or wider;

• for each pair of nodes (x, y) ∈ N2 interpreted as origins/destinations, we consider
a transport plan µx,y representing the “mass” that has to be sent from x to y;
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• we will denote by Xx,y the set of all simple paths connecting x and y. With simple
path we mean a path on the graph G = (V,E) that contains no repeated vertices.
Moreover, we will denote by X := ∪(x,y)∈N2Xx,y the set of all the simple paths.

The unknowns of the problem are the flow configurations, divided into the following vari-
ables:

• the edge flows i = (ie)e∈E , where ie is the total flux on the edge e;
• the path flows q = (qγ)γ∈X, where qγ is the mass traveling on each generic path γ.

The values ie and qγ are all non-negative and have to satisfy the mass conservation con-
straints:

µx,y =
∑

γ∈Xx,y

qγ , ∀(x, y) ∈ N2 (4.16)

and
ie =

∑
γ∈X : e∈γ

qγ , ∀e ∈ E. (4.17)

The last equation tells us that i is a function of q. Finally, we want to define, given the
edge flows i = (ie)e∈E , the total cost or weighted length of the path γ ∈ X by:

Li(γ) =
∑
e∈γ

ge(ie), (4.18)

depending on the already mentioned travel time functions ge. In this case, we do not want
to solve a standard maximization or minimization linear program, as we did for the discrete
version of Kantorovich problem, but we want to find a particular flow configuration called
Wardrop equilibrium. Intuitively speaking, we want to find a flow configuration such that
every actually used path is an optimal path for the cost Li. Formally, let us give the
following:

Definition 4.5 (Wardrop equilibrium). A Wardrop equilibrium is a flow configuration
q = (qγ)γ∈X satisfying qγ ≥ 0 and constraint (4.16). Moreover, when we compute the values
ie, for all e ∈ E, with equation (4.17), for every (x, y) ∈ N2 and every γ ∈ Xx,y with qγ > 0,
we have:

Li(γ) = min
η∈Xx,y

Li(η). (4.19)

Wardrop equilibria can be characterized by a variational principle, as it is stated in the
following theorem, taken from [4]:

Theorem 4.4. The flow configuration q = (qγ)γ∈X is a Wardrop equilibrium if and only
if it solves the convex minimization problem:

min
{∑
e∈E

He(ie) : q ≥ 0 satisfies (4.16)
}
, (4.20)

where, for each e, we define He as: H ′e = ge.

The proof of this characterization theorem dates back to [4], but it can be found also
in Santambrogio [41]. Note that the previous result gives us for free an existence result for
i and, also, its uniqueness, in the case of ge strictly increasing, i.e. He strictly convex.

Remark 4.1. Wardrop equilibria, which solves (4.20), does not, in general, represent
the natural total social cost measured by the total time lost which would rather be∑

e∈E
iege(ie). (4.21)

We refer to the transport configuration that minimizes (4.21) as efficient transport patterns.
It would be tempting to deduce, from Theorem 4.4, that equilibria are efficient, but, in
general, H1(θ) = θg(θ) and H ′2(θ) = g(θ) lead to very different states. For this difference
between efficiency and equilibrium, we considered two different types of function H for
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Problem (BH). However, for example, efficient and equilibria configurations coincide in the
special case of He(θ) = aeθ

p. The difference between efficiency and equilibrium is a topic
especially treated in the case of finite-dimensional network, where it is usually known as
price of anarchy (see [38]).

Remark 4.2. In the problem just presented, the transport plan µ is fixed. This may be
interpreted as a short-term problem. Alternatively, we can consider the long-term problem,
where we fix only the initial and final distributions µ+, µ−. In this case, one also obtains
an optimality condition for µ, in the sense that it minimizes among all transport plans in
Π(µ+, µ−) (thought in the discrete sense), the total cost:∑

µx,ydi(x, y) with di(x, y) := min
γ∈Xx,y

Li(γ). (4.22)

In the case of long-term problem, we have the same convex minimization problem as in
(4.20), but minimizing also over µ.

We want to generalize the previous analysis to a continuous framework, trying to iden-
tify each instrument and parameter with their continuous counterpart. Consider Ω ⊂ Rn
and two measures µ+, µ− ∈ M+(Ω) as in the beginning of this section. We proceed in
steps:

• The framework is, as always, Π(µ+, µ−). This means that we consider a long-term
problem, in the sense of Remark 4.2.

• As a continuous version of the set of all the simple paths X, we will consider the
same space X = C1([0, 1]; Ω) considered in Section 1 of Chapter 3.

• We will consider continuous and increasing travel times functions g : R+ → R+ .
• We choose as continuous path flows, extensions of the discrete flows q, the proba-

bility measures defined on the space X , i.e. Q ∈ P(X ).
• For the continuous counterpart of i, we look at the relation written in (4.17), which
tells us that i is a function depending on q. Thus, recalling the definition of the
scalar measure σµ written in (3.30), we define the measure iQ ∈ M+(Ω), called
the traffic intensity, as:

〈iQ, φ〉C0(Ω;R+) :=
∫
X

(∫ 1

0
φ(γ(t)) ‖γ′(t)‖ dt

)
dQ(γ), ∀φ ∈ C0(Ω;R+). (4.23)

Note that, reasoning as for σµ and using Riesz representation Theorem 1.7, we know that iQ
is actually a scalar measure. It is a generalization of the discrete i, but the interpretation,
in this case, is that for every subregion A, iQ(A) represents the total cumulated traffic in
A induced by Q. It means that for every path we compute “how long” it stays in A and,
then, we average on paths. The link with σµ, starting from its definition in (3.30), is that
if we define the measure which concentrates on the transport rays as:

Qµ :=
∫
δxydµ(x, y), where xy stands for the segment connecting x and y,

with µ ∈ Π(µ+, µ−), then:

〈iQµ , φ〉C0(Ω;R+) = 〈σµ, φ〉C0(Ω).

Furthermore, to any measure Q ∈ P(X ) we need to associate another measure which is not
linked to any object used in the discrete case, but which will be useful later. Thus, we
define the measure wQ ∈Mn(Ω), called traffic flow, as:

〈wQ, ξ〉C0(Ω;Rn) :=
∫
X

(∫ 1

0
ξ(γ(t)) · γ′(t)dt

)
dQ(γ), ∀ξ ∈ C0(Ω;Rn). (4.24)

Note that, also in this case, wQ is a measure linked via Riesz representation Theorem 1.7
to the vector measure wµ defined in (3.31). Moreover, taking a gradient field ξ = ∇φ ∈
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C0(Ω;Rn), we get:

〈wQ,∇φ〉C0(Ω;Rn) =
∫
X

[φ(γ(1))− φ(γ(0))] dQ(γ) =
∫

Ω
φ d((e1)#Q− (e0)#Q).

From now on, we will restrict our attention just to the admissible plans which, recalling the
discrete constraint in (4.16), will be given by the following set:

Qp(µ+, µ−) := {Q ∈ P(X ) | (e0)#Q = µ+, (e1)#Q = µ− and
diQ(x) = fQ(x)dx with fQ(x) ∈ Lp(Ω)}.

(4.25)

With diQ(x) = fQ(x)dx we mean, using a compact notation, that iQ is an absolutely
continuous measure with density fQ (Section 3 of Chapter 1). Note that this resembles the
set defined in (3.11) in Section 1 of Chapter 3, but with an Lp constraint (to be compared
with the set of the admissible vector field w ∈ Lp(Ω;Rn) of Problem (BH)). At first glance,
it may seem hard to check if Qp(µ+, µ−) 6= 0. However, if, for example, we assume that the
density of the measures µ+ and µ− are in Lp, we can conclude that there is at least one
Q ∈ P(X ) such that its density fQ ∈ Lp. This follows from a regularity result shown in [21].
Coming back, for a while, to the vector measure wQ defined above, using an admissible plan
Q ∈ Qp(µ+, µ−), we get that it satisfies the constraint:

∇ · wQ = µ+ − µ−. (4.26)
Obviously this constraint is always meant in the weak sense, automatically endowed with
Neumann boundary conditions, as in (3.23). We see immediately that the total variation
of the vector measure wQ is less than or equal to the scalar measure iQ, i.e.

‖wQ‖ ≤ iQ, ∀Q ∈ Qp(µ+, µ−). (4.27)
This result can be easily shown using, again, Cauchy-Schwarz inequality. In this context, we
define the congested function kQ associated to Q ∈ Qp(µ+, µ−), considering an absolutely
continuous measure iQ ∈M+(Ω) with density fQ, as:

kQ(x) := g(fQ(x)). (4.28)
The last ingredients to complete the description of the continuous case are the continuous
analogues of the total cost defined on (4.19) and the function dkQ , continuous version of the
di defined in (4.22). They are defined by:

LkQ(γ) =
∫ 1

0
g(fQ(γ(t))) ‖γ′(t)‖ dt

and
dkQ(x, y) := inf

γ∈Xxy
LkQ(γ), (4.29)

where Xxy = {γ ∈ X | γ(0) = x, γ(1) = y}, as in Section 1 of Chapter 3. Note that, using
Definition 4.2, paths in X such that dkQ(γ(0), γ(1)) = LkQ(γ) are geodesics between γ(0)
and γ(1) in X . Now, we are ready to define the notion of Wardrop equilibrium in the
continuous case, adapting the idea used in Definition 4.5 in a continuous framework. This
means that a Wardrop equilibrium is just an admissible plan Q, such that almost every
path in X should be optimal for the cost LkQ .

Definition 4.6 (Wardrop equilibrium in continuous case). A Wardrop equilibrium is
an admissible plan Q ∈ Q(µ+, µ−) such that:

Q({γ : LkQ(γ) = dkQ(γ(0), γ(1))}) = 1.

Existence or, even, well-posedness of these equilibria are not always straightforward.
However, it is possible to link these Wardrop equilibria to solutions of minimal traffic
problem, extending Theorem 4.4 to a continuous framework. The variational problem, con-
tinuous version of the congested traffic dynamic issue, represented in minimization problem
(4.20), is the following:
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Problem (DYNH).

Given Ω ⊂ Rn a convex and compact set with a smooth boundary and two positive measures
µ+, µ− ∈M+(Ω) that satisfy the mass balance condition, as in (2.1), but restricted in this
domain, i.e.

µ+(Ω) = µ−(Ω) < +∞.
Find an optimal probability measure Q ∈ Qp(µ+, µ−) satisfying the following minimization
problem:

inf
Q∈Qp(µ+,µ−)

∫
Ω
H2(fQ(x))dx. (4.30)

This minimization problem is called (DYNH), because it is strictly linked with Problem
(DYN 1). Indeed, as in the case of (BH), this (DYNH) is a wider problem containing, as
a particular case, the dynamical Problem (DYN 1). Thus, considering H2(t) = t and,
accordingly, p = 1, the problem just introduced becomes:

inf
Q∈Q1(µ+,µ−)

∫
Ω
fQ(x)dx = inf

Q∈Q1(µ+,µ−)

∫
Ω
diQ(x) = inf

Q∈Q1(µ+,µ−)

∫
X

(∫ 1

0
‖γ′t‖ dt

)
dQ(w).

Note that the right-hand side of the last equality, using Theorem 1.8, is equivalent to
(3.12), i.e. it is another way of writing problem (DYN 1). Moreover, (DYNH) is also
linked to dynamical Problem (DYN p), as can be seen by repeating the same argument
but with H2(t) = tp, for p > 1. Once motivated the name (DYNH), we are ready to
state the previously announced characterization of Wardrop equilibria using the dynamical
variational problem (DYNH), generalization in a continuous framework of Theorem 4.4.
The full proof requires to take care of some regularity issues in details. However, the
following result summarizes the work done by Carlier, Jimenez and Santambrogio in [17].
Thus, we refer to this article for the details and its complete proof.

Theorem 4.5. Under the assumptions on H and, thus, on H2 and provided that the set
Qp(µ+, µ−) is non-empty, the problem (DYNH) admits at least one minimizer. Moreover,
Q ∈ Qp(µ+, µ−) solves (DYNH) if and only if Q is a Wardrop equilibrium and µQ :=
(e0, e1)#Q solves the optimization problem:

min
µ∈Π(µ+,µ−)

∫
Ω×Ω

dkQ(x, y)dµ(x, y) (4.31)

Remark 4.3. Note that the second condition means that µQ solves a Monge-Kantorovich
problem for a distance cost depending on Q itself, which is a new equilibrium condition.
This second equilibrium condition depends on the fact that we choose a long-term prob-
lem and, thus, we have also to consider an optimality condition for µ, as explained for the
discrete case inside Remark 4.2. Indeed, the minimization problem in (4.31) is exactly the
continuous version of the the discrete minimization problem written in (4.22). It is also
interesting to note that the last part of the previous theorem gives us a link between the
extension of dynamical Problem (DYNH) and Problem (K), with a non-uniform cost given
by dk(x, y). Thus, this result not only links Wardrop equilibria with solutions of varia-
tional Problem (DYNH), but also, in some way, extends Theorem 3.5 for a wider classes of
problems.

We are ready, now, to show the core theorem of this section which, as announced,
gives us the correspondence between optimal values of minimization Problems (BH) and
(DYNH), extending, in some way, Theorem 3.4. As in that theorem, we will start with
inequality min (BH) ≤ min (DYNH) and, then, we will show that starting from an optimal
w solution of (BH), we are able to recover an optimal Qw ∈ Qp(µ+, µ−). Thus, we are able
to show the equivalence of the two problems. We will consider, inside this theorem, just
the case of H2. However, we remind that for H(t) = atp, which is the case of Problems
(DYN 1) and (DYN p), the conditions defining H1 and H2 are the same.
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Theorem 4.6. Suppose that µ+, µ− are absolutely continuous measure with densities
f+, f− and that the set Qp(µ+, µ−) is non-empty. Then the minimal value of Problem
(BH) equals the minimal value of Problem (DYNH), i.e.:

min (BH) = min (DYNH). (4.32)
Moreover, starting from an optimal w ∈ Lp(Ω;Rn) solution of (BH) it is possible to con-
struct an optimal probability measure Qw solving (DYNH).

Outline of the “proof”. (≤) Let us start considering an arbitrary Q ∈ Qp(µ+, µ−).
Note that, by the fact that Q belongs to this set, iQ is an absolutely continuous measure
and, thus, it follows that also wQ is absolutely continuous. Just to clarify the notation, we
get:

diQ(x) = fQ(x)dx, dwQ(x) = gQ(x)dx,
for some gQ : Ω→ Rn. Note, also, that using (4.26), we get that gQ satisfies the divergence
constraint in the weak sense and with Neumann boundary condition, i.e.

−
∫

Ω
∇φ · gQ(x)dx =

∫
Ω
φ
(
f+ − f−

)
dx, ∀φ ∈ C1

c (Ω).

Furthermore, recalling the inequality in (4.27), we get that:
‖gQ(x)‖ ≤ fQ(x), ∀x ∈ Ω. (4.33)

Thus, we obtain also that gQ ∈ Lp(Ω;Rn), i.e. it satisfies all the conditions in order to be
inside the feasible set of minimization Problem (BH). We are ready, now, to show the first
inequality, using (4.33) and the fact that H2 is increasing, since its derivative g is always
positive. Indeed, we get:∫

Ω
H(gQ(x))dx =

∫
Ω
H2(‖gQ(x)‖)dx ≤

∫
Ω
H2(fQ(x))dx.

By the arbitrariness of Q ∈ Qp(µ+, µ−), we get:
min (BH) ≤ min (DYNH).

(≥) Conversely, given an optimal w ∈ Lp(Ω;Rn) solution of (BH), we want to construct
a probability measure Qw ∈ Qp(µ+, µ−) that will be optimal for (DYNH). To show the
optimality of Qw, the strategy is equivalent to show that:

fQw(x) = ‖w(x)‖ , ∀x ∈ Ω, (4.34)
with fQw , as usual, the density of the absolutely continuous measure iQw . Since∫

Ω
H2(fQw(x))dx =

∫
Ω
H2(‖w(x)‖)dx =

∫
Ω
H(w(x))dx = min (BH) ≤ min (DYNH),

we can automatically conclude the optimality of Qw. The idea for the construction of
this Qw is to start defining a couple (ρ, v) as in (3.45), inside the proof of Theorem (3.4).
We proceed, again, applying the deformation argument of Dacorogna-Moser, introduced in
Theorem 2.6. Then, we define the probability measure Qw using something similar to the
displacement interpolation formula written in (4.12). In that case we obtained that the
Q, involved in the displacement interpolation, was given by Q =

∫
Ω δxT∗(x)dµ

+(x). Now,
instead, we do not consider the optimal T ∗, but we define Qw as the probability measure
concentrated in the flowX of the ODE used inside Dacorogna-Moser deformation argument.
Define:

ρt(x) := (1− t)µ+(x) + tµ−(x); v̂t(x) := v̂(t, x) := w(x)
ρt(x) . (4.35)

and consider the following Cauchy problem:{
X ′(t, x) = v̂t(X(t, x)),
X(0, x) = x.

(4.36)
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We define the candidate probability measure as the disintegration Qw =
∫

ΩQ
xdµ+(x),

where, for µ+-a.e. x, Qx is the Dirac delta concentrated on this curve X, that is:

Qx = δX(·,x). (4.37)

Just to be more concrete, this means that Qw is represented as:∫
X
F (γ)dQw(γ) =

∫
Ω
F (X(·, x))dµ+(x), ∀F ∈ C(X ;R).

Note that, so far, the proof has been rigorous and should not be in “quotations”. The
fact that requires the proof to be just an outline is that, here, we have to assume some
regularity on the function v̂t, in order to have uniqueness for Cauchy problem (4.36) and
for the continuity equation. We assume, looking at the hypothesis of Theorem 4.1, that
the function v̂t is at least Lipschitz. There are two possible ways to proceed further, both
showing that Qw is feasible for Problem (DYNH), but from two different perspectives. In
the first case, we can follow exactly the idea of the proof of Dacorogna-Moser Theorem 2.6,
seeing the problem from a Lagrangian point of view. In the second case, we can use the
uniqueness of the continuity equation and, thus, Theorem 4.1, following an Eulerian point
of view.

(i) Lagrangian: As we did inside the proof of Dacorogna-Moser Theorem 2.6, we
define the function h as in (2.67), i.e.:

h(t, x) = det∇xX(t, x)
(
(1− t)f+(X(t, x)) + tf−(X(t, x))

)
.

Proceeding exactly as in that proof, it is possible to show that d
dth(t, x) = 0. This

implies, in particular, that h(1, x) = h(0, x), yielding:

f+(x) = f−(X(1, x))det∇xX(1, x).

Looking at the way in which we found the constraint in (2.10) and reasoning
backwards, we obtain µ− = (X(1, ·))#µ

+. Note that, this is exactly what we also
did inside Remark 3.2. Moreover, we get:

(e0)#Qw = µ+,

(e1)#Qw =
∫
δX(1,x)dµ

+(x) =
∫
d
(
(X(1, ·))#µ

+) = µ−.
(4.38)

This means that Qw ∈ Q1(µ+, µ−).
(ii) Eulerian: As we already stated, we suppose enough regularity on v̂t in order to

apply uniqueness Theorem 4.1 for the continuity equation with initial datum µ+,
which, we recall, is: {

∂tρt +∇x · (v̂tρt) = 0,
ρ0 = µ+,

where ρt(x) = ρ(t, x). We saw, in the uniqueness theorem recalled above, that the
unique solution of this problem is given by ρt = (X(t, ·))#µ

+. However, also the
linear interpolation µt defined above satisfies the initial condition µ+ and:

∂tµt +∇x · (v̂tµt) = µ− − µ+ +∇x ·
(
w

µt
µt

)
= µ− − µ+ +∇x · w = 0.

Thus by the uniqueness of the Cauchy problem for the continuity equation, with
initial datum µ+, we have that:

µt = (X(t, ·))#µ
+ (4.39)

Note, also, that this confirms the fact that µ− = (X(1, ·))#µ
+ and, thus, (4.38).
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We are ready, now, for the final part of the proof. We want to show the equality in (4.34), in
order to conclude. To this aim, invoke the disintegration of Qw and Fubini-Tonelli Theorem
1.2. Using these tools, we get:∫

Ω
φ(x)diQw(x) =

∫
X

∫ 1

0
φ(γ(t)) ‖γ′(t)‖ dtdQw(γ) by Fubini-Tonelli

=
∫ 1

0

∫
X
φ(γ(t)) ‖γ′(t)‖ dQw(γ)dt by def. of Qw and by (4.36)

=
∫ 1

0

∫
Ω

∫
X
φ(γ(t)) ‖v̂t(γ(t))‖ dQxw(γ)dµ+(x)dt by (4.39)

=
∫ 1

0

∫
Ω
φ(x) ‖v̂t(x)‖ dµt(x)dt by (4.35)

=
∫ 1

0

∫
Ω
φ(x) ‖w(x)‖ dxdt.

From the last calculation, noting that in the last term of the equality there is no dependence
on time, we get: ∫

Ω
φ(x)diQw(x) =

∫
Ω
φ(x) ‖w(x)‖ dx,∀φ ∈ C0(Ω;R+).

This clearly implies that iQw is an absolutely continuous measure with density fQw(x) =
‖w(x)‖, and, thus, that fQw ∈ Lp(Ω). Hence, this tells us that Qw ∈ Qp(µ+, µ−) and that
(4.34) is verified, thus proving the theorem �

Remark 4.4. This theorem takes inspiration from a recent paper due to Brasco, Carlier
and Santambrogio [13]. Note that it is possible to remove the quotation marks from the
proof. Indeed, without supposing the Lipschitz regularity for the velocity vector field v̂, it
is still possible to prove this theorem, following the same calculations and almost the same
idea. The only thing we are not allowed to do without Lipschitz vector field v̂ is to conclude
that µt = (X(t, ·)#µ

+. In the general case, the idea is not anymore to use uniqueness of the
continuity equation, but the notion of superposition principle. This tool can be interpreted
as a probabilistic version of the method of the characteristics and allows us to avoid using
the uniqueness of the solution of the continuity equation. All the details about this general
case can be found always in the just cited paper [13].

Just to say some final considerations, we showed this extension of the correspondence
between the Beckmann Problem (B′) and the dynamical Problem (DYN 1), in order to see
that the techniques, used in the previous chapter to show the various relationships, are
taken from a wider context. Indeed, the ideas of defining a scalar and a vector measures
(Theorem 3.3) or the idea of invoking Dacorogna and Moser’s Theorem 2.6 clearly took
inspiration from the above proof.

3. Some simulations and numerical results

We want to present, below, some examples which will help us to understand, once more,
the main differences between the optimal solutions of dynamical Problems (DYN p) in the
cases of p > 1 and p = 1. To do that, we present here some simulations describing the way in
which these optimal densities ρt change in time. We want to present two different examples
of initial and final data. In the first one, actually, we do not need any numerical solution,
because we are able to recover the exact solutions, using the theoretical representations of
the optimal densities in the two cases analyzed. This is due to the particular choice of the
initial and final conditions. In the second example, instead, we need to use a numerical
scheme, because we are not able to recover an exact solution, proceeding like in the first
example. We want to include, also, some simulations and numerical results in order to show
not only a list of theoretical results, but also the concrete way in which these results work.
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Figure 8. Initial and final data f+ and f−.

f + f -

-10 -5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

c(x,y)=||x-y||

f0.25

(a) Time t = 0.25.

f + f -

-10 -5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

c(x,y)=||x-y||

f0.5

(b) Time t = 0.50.

f + f -

-10 -5 0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

c(x,y)=||x-y||

f0.75

(c) Time t = 0.75.
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Figure 9. Time evolution of density (4.41) in the L1 cost case.

3.1. Two Gaussians obtained one from the other through a translation. Con-
sider the case of µ+ and µ− two measures with Gaussian densities:

f+(x) = 1√
2π

exp−
(x+5)2

2 , f−(x) = 1√
2π

exp−
(x−5)2

2 , (4.40)

i.e. with the densities of a standard normal distributed random variable, translated by −5
and +5, as shown in Figure 8.

In the L1 cost case, we have shown that the optimal solution of the dynamical Problem
(DYN 1) is simply the affine interpolation given by the density:

ft(x) = (1− t)f+(x) + tf−(x), ∀t ∈ [0, 1]. (4.41)
In Figure 9 we show the shape of ft, as time increases. Note that, as already stated, the
process can be thought as a teleport phenomenon, in the sense that the mass in initial
datum f+ disappears and reappears in f−.

In the quadratic cost case, instead, the optimal solution of (DYN p) with p = 2, is not
anymore the affine interpolation, but it is given by the displacement interpolation formula
(4.12). In this particular case, f−(x) = f+(x− 10), thus the final datum is obtained from
the initial one through a translation. Here we want to show an example taken from [5],
that considers the particular case p = 2 and a final density f− obtained from an initial f+

through a dilatation and a translation, i.e.:
f−(x) = rf+(r(x− c)), (4.42)

for some r > 0 and some c ∈ R. It can easily be verified that, in this particular situation,
the optimal transport map T ∗ is given by:

T ∗(x) = r−1x+ c. (4.43)
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Figure 10. Time evolution of density (4.44) in the L2 cost case.

In our case, r = 1 and c = 10 yields T ∗(x) = x+10. Thus, the density ρ solving displacement
interpolation formula (4.12) is given by:

ρt(y) = f+((1− t)Id + tT ∗)−1(y)) = f+(X−1
t (y)).

Now, using the definition of T ∗, it is easy to see that the inverse of the function above is
given by X−1

t (y) = y − 10t. Hence, the optimal density solving the dynamical formulation
of optimal transport Problem (DYN p) with p = 2 and these particular initial and final data
is given by:

ρt(x) = f+(x− 10t). (4.44)
Figure 10 represents the evolution of this solution ρt. We can see that, contrary to the

case p = 1, here there is a real transport, in which the initial state f+ moves towards the
final configuration f−.

Now, a natural question is what happens in the intermediate case of c(x, y) = ‖x− y‖p
with 1 < p < 2. One could think that, for p close enough to 1, the optimal density ρt
solving the dynamical problem (DYN p), could be something in between the cases of p = 1
and p = 2. Thus, we hypothesized that the optimal velocity v∗, solving Problem (DYN p)
together with ρt, could decrease a bit for small times and, then, could increase in order to
have ρ1 = f−. We tried to solve this problem doing, again, a variational analysis. Thus,
recalling what we did in Section 1 of Chapter 3, we start by defining the Lagrangian function
of Problem (DYN p) as:

Lp(ρ, v) :=
∫
Rn

∫ 1

0

[
‖v(t, x)‖p

p
ρ(t, x) + λ(t, x)

(
∂ρ

∂t
+∇x · (vρ)

)]
dtdx,

defined over the space P(f+, f−) × V. Here, λ ∈ C1([0, 1] × Rn) is a smooth Lagrange
multiplier, P(f+, f−) is the space defined in (3.16) and V is simply the space of continuous
velocity field v. Note that we put a 1

p before the norm of velocity v to simplify the com-
putations, since the problem remains the same. Following step-by-step the idea used for
the variational analysis of Problem (DYN 1), integrating by parts, we obtain the equivalent
problem of finding the minimum of:∫

Rn

∫ 1

0

(
‖v(t, x)‖p

p
− ∂λ

∂t
(t, x)− v(t, x) · ∇xλ(t, x)

)
ρ(t, x)dtdx, (4.45)

again over P(f+, f−)×V. Going on as in that case, we fix ρ ∈ P(f+, f−) and we minimize
along all v ∈ V, using a two-step minimization procedure. Then, differentiating with respect
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to v the integrand of (4.45), we obtain a characterization of the optimal v, i.e.

v = ‖v‖2−p∇λ. (4.46)

Defining q as the Hölder conjugate of p (eq. (1.3)) and taking the norm in both the left-hand
side and the right-hand side in the previous equality, we obtain:

‖v‖ = ‖∇λ‖
1
p−1 = ‖∇λ‖q−1

.

Thus, putting it inside (4.46), we get:

v = ‖∇λ‖
2−p
p−1 ∇λ = ‖∇λ‖q−2∇λ. (4.47)

Looking at the integrand in (4.45), using this v just defined, we obtain a differential equation
for λ, which is:

∂λ

∂t
= −v · ∇λ+ ‖v‖

p

p
= −‖∇λ‖q + 1

p
‖∇λ‖(q−1)p = −1

q
‖∇λ‖q . (4.48)

This is the Hamilton-Jacobi equation with Hamiltonian H(v) = ‖v‖q
q and it is a result

analogous to what Benamou and Brenier obtained in [5], but with a general p > 1. Once we
have that λ satisfies this equation and v is of the form of (4.47), we obtain that the integral
in (4.45) is automatically zero for any ρ ∈ P(f+, f−). Hence, summarizing, we need to solve
the following system of equations:

∂λ
∂t + 1

q ‖∇λ‖
q = 0;

v = ‖∇λ‖q−2∇λ;
∂ρ
∂t +∇ · (ρv) = 0,

(4.49)

with some initial condition λ(0, x) = λ0(x) for the Hamilton-Jacobi equation and the stan-
dard initial condition ρ(0, x) = f+(x) for the continuity equation. Note that, as we already
said in Section 1 of Chapter 3, a similar result for L2 cost was shown in [18]. However, we
took the idea of doing the variational analysis in order to solve Problem (DYN p) also for
1 < p < 2 from Delzanno and Finn [22]. In this work, they obtained a numerical scheme
looking at system (4.49). In our case, instead, where we have that our initial data are
just two Gaussians obtained one from the other through a translation, we are even luckier,
because we are able to find an exact solution for optimal ρ given by system (4.49). Indeed,
it is easy to understand that the only missing ingredient in order to solve the above system
of equations is the initial datum λ0(x). Our idea is to find this λ0 taking inspiration from
the case of p = 2. In that case, we have that ∇λ(0, x) = v(0, x) = T ∗(x)− x, just using the
definition of v and Equation 4.35. Using, now, the explicit solution of the optimal transport
map, given in this case by T ∗ = x+ 10, we obtain:

λ(0, x) = λ0(x) = 10x. (4.50)

Hence, in the case of general 1 < p < 2, we do not have an explicit solution for T ∗ and,
thus, for λ0, but we can try to solve a similar problem, i.e.{

∂λ
∂t + 1

q |∇λ|
q = 0,

λ(0, x) = cx,
(4.51)

with c > 0 that has to be found. This nonlinear PDE can be solved using the method
of characteristics for nonlinear equations, which can be found in Evans [24], for example.
If we consider a parametrization x(t) ∈ R, t ∈ [0, 1] and we call y(t) = ∂λ

∂x (t, x) and
z(t) = λ(t, x(t)), the characteristics, in the case of Hamilton-Jacobi equations are defined
by: 

ẏ(t) = − ∂
∂xH(x(t), y(t));

ẋ(t) = ∂
∂yH(x(t), y(t));

ż(t) = ∂
∂yH(x(t), y(t)) · y(t)−H(x(t), y(t)).

(4.52)
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Figure 11. Initial and final data ρ+ and ρ−.

The last equation is simply obtained deriving z(t) = λ(t, x(t)) and using the other two
characteristics equation and the definition of Hamilton-Jacobi equation. If we focus, now,
on our specific case, in which the Hamiltonian is given by H(x, y) = |y|q

q , we can notice that
it only depends on y. Thus, we obtain:

ẏ(t) = 0 =⇒ y(t) = ∂λ

∂x
(0, x) = c.

Then, looking at the evolution in time of the variable x, we get:

ẋ(t) = ∂

∂y
H(y(t)) = |y|q−2

y = cq−1 =⇒ x(t) = x0 + tcq−1.

Thus, by inverting the last equality, we obtain x0 = x(t) − tcq−1. Noting, also, that the
third characteristic equation is:

ż(t) = ∂

∂y
H(y(t)) · y(t)−H(y(t)) = (1− 1

q
)cq = 1

p
cq,

we obtain an explicit representation for λ(t, x), solving (4.51), given by:

λ(t, x) = z(0) + tż(t) = c(x− tcq−1) + t(1
p
cq) = cx+ tcq(−1 + 1

p
) = cx− t

q
cq. (4.53)

Going on with the second equation of (4.49), we obtain the constant velocity v(t, x) = cq−1.
Inserting this v inside the third equation of (4.49), we obtain that we have to solve the
transport equation: {

∂ρ
∂t + v ∂ρ∂x = 0,
ρ(0, x) = f+(x).

(4.54)

Using again the method of characteristics, this equation is solved by:

ρ(t, x) = f+(x− cq−1t), (4.55)

as it can be checked, again, in Evans [24]. In order to find the right constant c, putting
together the fact that ρ at time 1 has to be equal to f− and that f−(x) = f+(x− 10), we
obtain:

ρ(1, x) = f+(x− cq−1) = f+(x− 10) =⇒ c = 10
1
q−1 .

Note that our initial guess was wrong, because optimal velocity v is constant and optimal
density ρ(t, x) given by (4.55), with the right c, is exactly equal to the optimal density
solving (4.4) for p = 2, given by (4.44). Thus, for any 1 < p < 2, even with p very close to
1, the time evolution of the optimal density ρt is equal to the one represented in Figure 10.
Note, also, that this case was really peculiar because the initial and the final data where
just a translation one from the other and the optimal velocity remained constant in time.

80



CHAPTER 4. Supplementary analysis of the results obtained.

ρ+

ρ-

-10 -5 0 5 10

0.2

0.4

0.6

0.8

c(x,y)=||x-y||

f0.25

(a) Time t = 0.25.

ρ+

ρ-

-10 -5 0 5 10

0.2

0.4

0.6

0.8

c(x,y)=||x-y||

f0.5

(b) Time t = 0.50.

ρ+

ρ-

-10 -5 0 5 10

0.2

0.4

0.6

0.8

c(x,y)=||x-y||

f0.75

(c) Time t = 0.75.
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Figure 12. Time evolution of density (4.57) in the L1 cost case.

3.2. Two Gaussians obtained one from the other through a translation and a
dilatation. If we consider as initial and final data the densities of two normal distributions
with different variance, the velocity is no more constant in time and we have some troubles
to find an exact solution. Indeed, consider the following functions:

ρ+(x) = 1√
π

exp−(x+5)2
, ρ−(x) = 1√

3π
exp−

(x−5)2
3 , (4.56)

which are the densities of two normal distributed random variables in N(−5, 1
2 ) and in

N(5, 3
2 ), respectively, as can be seen in Figure 11.

In the case of L1 cost function, it follows from what we have seen in Section 1 of Chapter
4 that the optimal density is again the affine interpolation between ρ+ and ρ−, given by:

ft(x) = (1− t)ρ+(x) + tρ−(x). (4.57)
The dynamical evolution is presented in Figure 12 and is again a “teleport” phenomenon,
similar to the one shown in Figure 9.

In the case of (DYN 2), on the other hand, the optimal density is represented by the
displacement interpolation formula (4.12) and we are able to recover its explicit formulation,
using, again, the same idea as in the previous example (Subsection 3.1). Indeed, note that,
also in this case, the final density ρ− is a dilatation and a translation of the initial density,
as in Equation (4.42) with r = 1√

3 and c = 5(1 +
√

3). Thus, using again the representation
of the optimal transport map given by (4.43), we have that:

T ∗(x) =
√

3x+ 5(1 +
√

3).

With this optimal transport map, it can be verified that X−1
t (y) = ((1 − t)Id +

tT ∗)−1(y) = y−t5(1+
√

3)
1−t(1−

√
3) . Now, comparing the evaluation at time 1 of ρt, given by dis-

placement interpolation formula (4.12), with this X−1
t , and f−, we notice that we have

also to rescale everything by 1
1+t(

√
3−1) . Hence, we obtain that the optimal density solving

dynamical Problem (DYN 2) and initial and final data given by (4.56), is:

ρt(x) = 1
1 + t(

√
3− 1)

f+
(
x− t5(1 +

√
3)

1− t(1−
√

3)

)
. (4.58)

Note that, at time 1, we have ρ(1, x) = 1√
3f

+(x−5(1+
√

3)√
3 ) = f−(x), confirming that it is

the right density. Its dynamical evolution in time is pictured in Figure 13.
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Figure 13. Time evolution of density (4.58) in the L2 cost case.

Using, again, the same strategy of the previous Subsection 3.1, in order to obtain
optimal density ρt solving Problem (DYN p), with 1 < p < 2, we need to solve system of
equations (4.49). The problem is, again, that we do not know initial datum λ0(x) for the
Hamilton-Jacobi equation, thus we have to get some intuitions about its form from the case
of p = 2. Following the same idea of the previous example, in the case of p = 2, we know
that ∇λ(0, x) = v(0, x) = T ∗(x)−x. However, this time T ∗ is quite different and we obtain
∇λ(0, x) = (

√
3−1)x+ 5(1 +

√
3). Taking the integral in the both sides of the last equality,

we obtain that the initial datum of the Hamilton-Jacobi equation with p = 2 is:

λ(0, x) = λ0(x) = (
√

3− 1)x
2

2 + 5(1 +
√

3)x. (4.59)

Thus, if we want to proceed like in the previous example, in order to find an explicit solution
of the Hamilton-Jacobi equation for a general 1 < p < 2, we could consider, as initial datum,
a general quadratic polynomial and solve the following PDE:{

∂λ
∂t + 1

q |∇λ|
q = 0,

λ(0, x) = ax2 + bx+ c.

Using, again, the method of characteristics, we should solve the equations in (4.52), but,
this time, we are not able to find an explicit solution. Indeed, p(t) is again constant, because
the Hamiltonian is still not depending on x, but, now, it has the form:

p(t) = p(0) = 2ax0 + b.

This dependence on the initial datum x0 is the real problem, because, this time, if we try
to proceed as before, we must be able to invert x(t, x0) given by:

x(t, x0) = x0 + t |2ax0 + b|q−2 (2ax0 + b).

It is clear that this is not an easy task. Thus, we need to proceed numerically. We are
going to use the numerical scheme described in [22]. The problem, clearly, is to find the
right initial datum of Hamilton-Jacobi equation. It has to be chosen in such a way that
the density solving (4.49), with the velocity inside continuity equation given by the solution
of Hamilton-Jacobi equation starting from that initial datum, must be equal to the final
density ρ− defined in (4.56). In other words, we would like to find an initial condition of
Hamilton-Jacobi equation λ0 such that, if ρ(t, x, λ0) is the solution of (4.49), “starting”
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from λ0, then function G, defined by:

G(x, λ0) = ρ(1, λ0, x)− ρ−(x), (4.60)

will be constantly equal to 0. The idea recast the original problem into the problem of
finding a zero of G, which can be approximated by means of Newton method. Before
explaining how to apply Newton method in this particular case, we need to find a robust
discretization of the three equations in (4.49). First of all, note that we are in 1D and we
can transform Hamilton-Jacobi equation in conservative form:{

φt +H(φx) = 0,
φ(0, x) = φ0(x),

u=φx︷ ︸︸ ︷=⇒
{
ut +H(u)x,
u(0, x) = ∂φ0

∂x (x).
(4.61)

Thus, we have that both Hamilton-Jacobi equation and continuity equation inside (4.49),
if considered in 1D, are of the form:{

ut + F (u)x = 0, for x ∈ [a, b], t ∈ [0, T ],
u(0, x) = u0(x), for x ∈ [a, b],

(4.62)

for a right function F . The conservative form is fundamental to obtain a stable and accurate
Finite-Volume based scheme. For all the details about this part we refer to Leveque [34].
The idea is to discretize our time and space intervals, in order to use a Finite Volume
Method and solve in any subinterval equation (4.62). The basis of finite volume schemes is
the Divergence Theorem, a well-known result which can be found in any standard analysis
book. The scheme is the following:

(1) Take a partition of [a, b] and [0, T ]. For example, we will consider a uniform
subdivison of space interval [a, b] into Nx subintervals of dimension ∆x and a
uniform subdivision of time interval [0, T ] into Nt subintervals of dimension ∆t.
We denote by xi, for i = 1, . . . , Nx, the center of the i-th cell [xi−1/2, xi+1/2],
with right and left boundary points xi+1/2 and xi−1/2, respectively. Moreover,
we denote by [tk, tk+1], with k = 1, . . . , Nt, the k-th time subinterval. Note that
∆x = (b−a)

Nx
and ∆t = 1

Nt
.

(2) Define a piecewise smooth function φ(x) given by the characteristic function of
the i-th space subinterval and the k-th time subinterval:

φi,k(x, t) = χi(x)χk(t), where χi(x) =
{

1 if x ∈ [xi−1/2, xi+1/2],
0 otherwise;

χk(t) =
{

1 if t ∈ [tk, tk+1],
0 otherwise.

(3) In order to find a weak solution of Conservation Equation (4.62), annihilate the
integral of the PDE inside this conservative equation multiplied by the previous
test function, i.e.∫ tk+1

tk

∫ xi+1/2

xi−1/2

(ut + F (u)x)dx dt = 0, ∀i = 1, . . . , Nx, ∀k = 1, . . . , Nt. (4.63)

(4) Apply the Divergence Theorem and use Fubini-Tonelli Theorem 1.2 in order to
exchange space and time integrals:∫ tk+1

tk

(∫ xi+1/2

xi−1/2

utdx−
[
F (u)

∣∣
xi+1/2

− F (u)
∣∣
xi−1/2

])
dt

=
∫ xi+1/2

xi−1/2

∫ tk+1

tk
utdx dt−

∫ tk+1

tk

[
F (u)

∣∣
xi+1/2

− F (u)
∣∣
xi−1/2

]
dt.
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(5) Define the cell average at time tk, our unknown, as:

ukh,i = 1
∆x

∫ xi+1/2

xi−1/2

u(tk, x)dx. (4.64)

Using a forward Euler scheme, i.e. using a simple "left-evaluation" (time tk) quad-
rature rule for the time-integrals of the flux functions, we obtain the scheme:

uk+1
h,i = ukh,i −

∆t
∆x

[
Gkh,i+1/2 −G

k
h,i−1/2

]
, (4.65)

where flux operator Gkh,i is defined as:

Gkh,i = 1
∆tF (u(tk, xi)). (4.66)

Now, we just need to evaluate the fluxes Gkh,i+1/2 and Gkh,i−1/2. These are obtained solving
a Riemann problem at each cell interface ` = i− 1/2 and ` = i+ 1/2. This problem, whose
theoretical details can be found again in Leveque [34], consists in solving the same problem
(4.62), where the initial conditions are given by constant states uL and uR just on the left
and on the right of x`. Since we are using an explicit time-stepping scheme, uL and uR are
the numerical approximations of the cell averages at the previous time step tk. Thus, the
Riemann problems read as:

Problem (R).

Find a solution u∗ of the equation:
ut + F (u)x = 0, x = x`,

subject to the following initial condition:

u(x, 0) =
{
uL = ukh,`−1/2, if x < x`

uR = ukh,`+1/2, if x > x`

It can be shown that a weak solution of Riemann Problem (R) is given by:

u∗(uL, uR) =
{
uL, if θ > 0,
uR, if θ < 0,

(4.67)

where θ = F (uR)−F (uL)
uR−uL is given by the Rankine-Hugoniot jump condition. The solution

of the Riemann Problem (R) can be used to evaluate the numerical flux. Note that the
numerical flux can be written as a function of uL and uR, i.e., the left and right states of
the local Riemann Problem. For example,

Gkh,i+1/2(ukh,L, ukh,R) = Gkh,i+1/2(ukh,i, ukh,i+1).

One way to obtain a numerical flux is with the standard Godunov Scheme, which is the one
we will use in our work, where the flux is simply given by:

Gkh,i+1/2(ukh,i, ukh,i+1) = F (u∗(ukh,i, ukh,i+1)).

The resulting scheme displays first order convergence in both space and time, i.e., the norm
of the error tends to zero linearly as ∆t and ∆x tend to zero:∥∥ukh,i − u(xi, tk)

∥∥ ≤ C1∆t+ C2∆x, (4.68)

with u exact solution of (4.62). Thus, before going on with Newton method, we want to
show this result of convergence in the cases of F (u) = u2

2 , which is Hamilton-Jacobi equation
with q = 2, and F (u) = v, which is the continuity equation with constant velocity. We will
do this, because in these particular cases we have explicit solutions and because we want to
test if we can trust our schemes.
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• Hamilton-Jacobi’s equation with q = 2 or Burger’s equation: we want to
test the thoretical convergence of our implementation of Godunov’s scheme in the
case in which initial and final data are given by (4.56), with p = 2. In this case, we
know that the initial solution of Hamilton-Jacobi equation λ0 is given by (4.59).
Thus, using the method of characteristics, in the same way we tried to do in the
case of a general 1 < p < 2, we obtain three equations:

y(t, x0) = y(0) = (
√

3− 1)x0 + 5(1 +
√

3),
x(t, x0) = x0 + t((

√
3− 1)x0 + 5(1 +

√
3)),

z(t, x0) = λ0(x0) + t
2 ((
√

3− 1)x0 + 5(1 +
√

3)).

In this case, we are able to invert the second equation and, if we call a = (
√

3− 1)
and c = 5(1 +

√
3), we get:

x0 = x− ct
1 + at

.

Using this x0 inside z(t, x0) and deriving with respect to x, in order to obtain a
solution of the “conservative” form of the Hamilton-Jacobi equation, using what
we observed in (4.61), we obtain the explicit solution:

∂λ

∂x
(t, x) = c+ 2ax

1 + 2at . (4.69)

This is our exact solution which will be used inside (4.68) in order to test the
convergence of our scheme, in this particular case. The numerical solution ukh,i,
instead, is exactly given by (4.65), following the same scheme we stated before.
Note that, in this case, θ given by the Rankine-Hugoniot condition is equal to
(uL + uR)/2 and F (x) = x2/2, as we already recalled. Moreover, note that we
choose an L2 norm for the error, which is calculated by evaluating in every cell
the difference between ukh,i and (u(tk, xi) + u(tk, xi+1))/2, because we know the
approximation of the solution at x` = xi+1/2. Thus, the error is defined by:

eks(Nx, Nt) =
(
Nx∑
i=1

(
ukh,i −

u(tk, xi) + u(tk, xi+1)
2

)2

∆x
) 1

2

. (4.70)

We will evaluate this error always at the final time step k = Nt. Thus, we have
all the ingredients in order to check the convergence of the solution of Hamilton-
Jacobi equation with p = 2 with a Godunov scheme. The idea is to double, at
every step, the time and space discretizations and to look at the new error: if
halve the error, then we will conclude that our scheme satisfies (4.68) and that
there is a first order convergence in both time and space. Table 2 shows that the
errors decrease at the correct rate, thus providing the necessary confidence on the
correctness of our implementation.

Step s = 1 s = 2 s = 3 s = 4 s = 5
Nx 100 200 400 800 1600
Nt 150 300 600 1200 2400
es+1/es 0.5010 0.5005 0.5002 0.5001 /

Table 2. Convergence rate of Godunov scheme solving Hamilton-Jacobi
equation with p = 2.

• Continuity equation with constant velocity or Transport equation: we
want to test the convergence for continuity equation with constant velocity v = 10
with initial data given by (4.40). Indeed, in this case it is easy to see that the
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solution of (4.54) is simply given, using the standard method of characteristics,
by:

ρ(t, x) = f+(x− 10t).
Using this exact solution and arguing in the same way we did before, with θ given
by Rankine-Hugoniot condition which, this time, is constantly equal to v and with
the same L2 error given by formula (4.70), we obtain the following Table 3.

Step s = 1 s = 2 s = 3 s = 4 s = 5
Nx 100 200 400 800 1600
Nt 150 300 600 1200 2400
es+1/es 0.6346 0.5812 0.5455 0.5242 /

Table 3. Convergence rate of Godunov scheme solving continuity equa-
tion with constant velocity v.

Now, we are confident enough in order to apply these schemes for solving the system of
equations in (4.49) and use a Newton method to find the right initial condition of Hamilton-
Jacobi equations. The precise algorithm to obtain the optimal density solving (DYN p) for
a general 1 < p < 2, with initial and final data given by (4.56), is given by:

(1) Start with an initial guess S0 = ∂λ0
∂x (x), as we are solving Hamilton-Jacobi for the

derivative. Note that, in the case of p = 2, we have ∂λ0
∂x (x) = (

√
3−1)x+5(1+

√
3).

Thus, with a general 1 < p < 2, we can start with something similar.
(2) Call r0 = ‖G(S0)‖2

‖S0‖2
, with G as in (4.60), but depending on S0 (the derivative of

the initial condition=. Fix the number of steps at n = 0.
(3) If ‖G(Sn)‖2

‖Sn‖2
< δ, with δ parameter fixed by the user in order to check the conver-

gence, then STOP. Otherwise:
(4) Calculate the “Newton update” dS by:

JndS = −G(Sn),
where Jn = ∂G

∂S

∣∣
Sn

. In this case, it is not possible to find an explicit derivative of
G. Thus, we will use the Gâteaux derivative:

∂G

∂S

∣∣∣
Sn
v = lim

ε→0

G(Sn + εv)−G(Sn)
ε

,

with ε small enough. Thus, the Jacobian matrix becomes:

(Jn)ij = Gi(Sn + εej)−Gi(Sn)
ε

, (4.71)

where ε is very small (in our case ε = 10−15) and ej is the standard vector with 1
in the j-th coordinate and 0’s elsewhere.

(5) Once we find dS, update Sn+1 = Sn+αdS, with a proper 0 ≤ α ≤ 1. Update also
n = n+ 1 and go back to (3).

With this Newton method we are able to find an optimal density solving the dynamical
formulation (DYN p), with 1 < p < 2. The solutions starting from the initial datum of the
Hamilton-Jacobi equation given by this Newton’s method are represented in Figure 14, in
the cases of p = 1.9, 1.8, 1.7, 1.6. Let us spend some words on the results obtained. In the
first two cases of p = 1.9 and p = 1.8 we choose Nx = 100 and Nt = 150, while for the other
two cases Nx = 100 and Nt = 200. We have to choose the number of time discretizations
higher then the number of space discretizations, because of the Courant–Friedrichs–Lewy
(CFL) condition. This is a necessary condition ensuring the stability of the numerical
approximation. In general, it is given by:

v∆t
∆x ≤ Cmax, (4.72)
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Figure 14. Time evolution the optimal densities found with the Newton’s
method, in the cases of p = 1.9, 1.8, 1.7, 1.6.

where Cmax, in the case of explicit time schemes, as our case, is usually equal to 1. This
v represents the magnitude of the velocity, which in our case is given by v = ‖∇λ‖q−2∇λ.
Thus, when p tends to 1, q increases and we have to provide the stability of the method
increasing the number of time discretizations Nt. Note that there are some errors due to
the method, but it seems that the optimal densities, with these p, behave like in the case
of p = 2 (Figure 13). Unfortunately, we are not able to find the optimal density solving
(DYN p) with this method, for a p smaller. Indeed, there are two main reasons why we can
not extend this method for that p:

(i) the already defined CFL number (eq. (4.72)), which forces us to excessively in-
crease the number of time discretizations Nt, creating numerical diffusion;

(ii) Godunov scheme is a very diffusive method. Thus, to increase the precision of
the method and to reduce the diffusion effect, it is possible to consider a second
order Godunov scheme, in both time and space. For a higher order explicit time
integration we can employ Runge-Kutta method. Obtaining second order in space
needs, instead, higher order interpolation of the cell values, in order to obtain
second order accurate left and right states for the Riemann solution. It is clearly
out of the competences and the aims of this thesis.
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