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Abstract

The wide application of robots in industries and society has brought the need

to prescribe complex high-level tasks to autonomous agents. Signal Temporal

Logic (STL) is a temporal logic that allows to express desired spatio-temporal

requirements, while quantifying the satisfaction of the preferences. When plan-

ning under STL specifications, the main challenge is to generate trajectories that

satisfy the logical formulas and to track those trajectories.

The project proposes a solution for the motion planning problem of multiple

autonomous agents, subject to coupled STL specifications. Starting from a sce-

nario where only two agents are involved, a sampling-based algorithm, Coupled

STL_RRT*, is designed. The proposed RRT*-based approach builds two trees in

the coupled time and state domain in a distributed manner. For each dynamical

system, given an initial position, the developed strategy finds a probabilistic op-

timal trajectory in terms of a cost function that depends on the required control

inputs. Before adding new states to the corresponding tree, the algorithm checks

if the logical formula is not violated, hence ensuring that the final time-varying

trajectory satisfies the spatio-temporal specifications. The dynamics of the au-

tonomous agent is directly taken into account and reachability is exploited to

obtain a trajectory that is feasible with respect to the dynamic constraints. The

algorithm is then simulated, considering an environment with a static obstacle

and different STL requirements, specified by the user.

Finally, the approach is extended to the case of multi-agent systems with more

than three agents. As in the previous case, the algorithm builds a spatio-

temporal tree for each agent, ensuring that the final trajectory satisfies the STL

requirements. The proposed solution is then verified in simulated scenarios,

considering 4-agents and 6-agents systems. To conclude, a 3D extension is de-

veloped and tested with three agents, assuming a double integrator dynamics

both along 𝑥 and 𝑦.





Sommario

L’ampia applicazione dei robot nelle industrie e nella società ha portato alla

necessità di prescrivere complessi compiti di alto livello ad agenti autonomi.

Signal Temporal Logic (STL) è una logica temporale che consente di esprimere

requisiti spazio-temporali e quantificare il livello di soddisfazione delle pref-

erenze. Quando si pianifica considerando specifiche STL, la sfida principale è

generare traiettorie che soddisfino le formule logiche e seguire le traiettorie così

ottenute.

Il progetto propone una soluzione per il problema di pianificazione del movi-

mento di multipli agenti autonomi, soggetti a specifiche STL accoppiate. Par-

tendo da uno scenario in cui sono coinvolti solo due agenti, un algoritmo basato

sul campionamento, Coupled STL_RRT*, è progettato. L’approccio proposto,

basato su RRT*, costruisce in modo distribuito due alberi nel dominio del tempo

e dello stato accoppiati. Per ogni sistema dinamico, data una posizione iniziale,

la strategia sviluppata trova la traiettoria probabilisticamente ottimale in ter-

mini di una funzione di costo che dipende dagli input di controllo richiesti.

Prima di aggiungere nuovi stati all’albero corrispondente, l’algoritmo controlla

se la formula logica non viene violata, assicurando quindi che la traiettoria

finale, variabile nel tempo, soddisfi le specifiche spazio-temporali. La dinam-

ica dell’agente autonomo è presa direttamente in considerazione e il concetto

di raggiungibilità viene sfruttato per ottenere traiettorie ammissibili rispetto ai

vincoli dinamici. L’algoritmo è quindi simulato, considerando un ambiente con

un ostacolo statico e diversi requisiti STL, specificati dall’utente.

Infine, l’approccio viene esteso al caso di sistemi multi-agente con più di tre

agenti. Come nel caso precedente, l’algoritmo costruisce un albero spazio-

temporale per ciascun agente, assicurando che la traiettoria finale soddisfi i

requisiti STL. La soluzione proposta è poi verificata in scenari simulati, con-

siderando sistemi con 4 o 6 agenti. Per concludere, un’estensione 3D viene

sviluppata e testata con tre agenti, assumendo una dinamica a doppio integra-

tore sia lungo 𝑥 che lungo 𝑦.
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Chapter 1

Introduction

1.1 Motivation

In the last few years, multi-agent systems (MASs) have received increasing atten-

tion in different studying areas, such as civil engineering and computer science,

to solve complex issues. Indeed, the use of multiple robots allows to subdi-

vide sophisticated problems into smaller tasks and brings several advantages

compared to single-agent systems. Among the benefits of MASs, it is possible

to mention scalability, robustness, increased fault tolerance and better perfor-

mance. Furthermore, even if many robotic tasks can be executed by single robots,

in general multi-agent teams can accomplish these objectives using simpler, less

expensive and more flexible robots.

When considering a multi-agent system, the individual tasks are allocated to

autonomous entities (the agents), characterized by individual actuation, sensing

and decision-making capabilities. Each agent decides on a proper action to solve

the task using multiple inputs and exploits its interactions with neighboring

agents and with the environment to learn new contexts and actions [1]. The

main characteristics of a multi-agent system are:

• autonomy (agents are responsible for their individual tasks);

• complexity (induced by the mechanisms of decision-making, learning,
reasoning);

• adaptability (agents activities are adapted to the dynamic changes of the
environment);

• concurrency (if tasks are processed in parallel);

1



1.1. MOTIVATION

• communication (either inter-agent or intra-agent);

• distribution (multi-agent systems are often distributed over a network);

• mobility (agents could be required to move between environments);

• openness (multi-agent systems can dynamically decide upon their partic-
ipants) [2].

Agents may have collaborative objectives, so that it is necessary to consider coor-

dination, collaboration and connectivity between all the single entities involved

in the tasks. When coupled cooperation objectives need to be achieved, it is

required to provide communication and real-time coordinated control between

all the agents of the system for the execution. The need of cooperation implies

that the robots must acquire some knowledge about the state and actions of the

other agents, either through sensory perception or explicit communication (see

Figure 1.1) [3].

Agent Agent

Agent

Agent-agent 

interaction

Sensing Sensing 

Sensing Acting 

Acting Acting 

Environment 

Figure 1.1: Example of multi-agent system

Multi-agent systems have been studied and exploited in several areas, such

as robotics, transportation, manufacturing, agriculture (see Figure 1.2). The

main application domains of multi-agent systems are ambient intelligence, grid

computing, electronic business, computational biology, monitoring and con-

trol, resource management, military and manufacturing applications. Many

researchers have exploited agent technology to industrial applications such as

manufacturing enterprise integration, supply chain management, manufactur-

ing planning, scheduling and control [4].
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(a) Assembly (b) Transportation

(c) Manipulation (d) Agriculture

Figure 1.2: Examples of application of multi-agent systems

In the last decades, global objectives that have been reached are consensus, for-

mation control, connectivity maintenance. More recently, the goal has become

the one of imposing more complex specifications and adding the human inter-

vention during the execution of tasks, thus requiring the capability of controlling

robotic agents in real-time.

With the advancement of robotic agents and autonomous vehicles, it has become

necessary to define high-level preferences and reach more complex goals. This

demand has hence led to the development of efficient and expressive languages,

known as temporal logics (TL). These logics provide a mathematically precise

language to specify rules and time-constrained requirements on the behavior of

robotic systems, offering a great degree of versatility when describing complex

planning objectives. More specifically, TL can express traditional robot specifica-

tions, such as reaching a goal or avoiding an obstacle, but also more complicated

ones, such as sequencing, coverage or temporal ordering of different tasks [5].

Consequently, in recent years, motion planning algorithms have been enhanced

with temporal logic specifications. Traditionally, the motion planning problem

3
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consists in finding a sequence of control inputs capable of driving a dynamical

system from its initial state to a goal region, while satisfying environment con-

straints, such as maintaining a certain distance from obstacles or boundaries of

the workspace. When complex missions and constraints need to be taken into

account, a special form of temporal logic, namely Signal Temporal Logic (STL),

can be exploited to establish temporal and spatial rules in robot's trajectories.

Through the help of operators in STL formulas, users are able to define minimum

or maximum distances from obstacles [6], restrictions on the mutual position

between multiple agents, constraints concerning speed and acceleration limits.

This combined task and motion planning problem poses computational chal-

lenges derived from robot dynamics, collision avoidance, temporal constraints

and dependencies between motion trajectories and time requirements. Indeed,

a solution satisfying the STL formula 𝜑 may not be feasible due to dynamic con-

straints or, on the other hand, collision-free and dynamically-feasible trajectories

may violate the requirements encoded in 𝜑 [7].

1.2 Scope and Outline

This project addresses the cooperative motion planning problem of two or more

autonomous agents, evolving in time and space, to deliver coupled tasks ex-

pressed as signal temporal logic specifications. The contribution is the design

of an algorithm, Coupled STL_RRT*, that solves the aforementioned problem,

taking into account the dynamics of the two coupled agents. Given the STL for-

mula expressing the desired preferences, the algorithm is guided towards the

selection of the probabilistic optimal trajectory for each agent. The choice of the

best trajectory, in particular, is influenced by a cost function that depends on the

control inputs required to drive the agent through subsequent states. Coupled

STL_RRT* is then extended to deal with coupled multi-agent systems.

The thesis is divided as follows:

• Chapter 2 firstly presents notation and preliminaries regarding signal tem-
poral logic. Moreover, a comparison between different temporal logics is
provided, with emphasis on the advantages of STL with respect to the
other logics. The focus is then on topics related to optimal motion plan-
ning algorithms;

4
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• Chapter 3 introduces related works regarding the design of controllers
under STL specifications and the solution to multi-agent motion planning;

• Chapter 4 contains the main contribution of the project, i.e. the algorithm
designed for the solution of the problem;

• Chapter 5 presents simulations and results obtained by testing the algo-
rithm, initially considering two autonomous agents;

• Chapter 6 regards the extension of the developed algorithm to multi-
agent systems and simulations when more than 4 agents are coupled. In
addition, a 3D version of the approach is explained and simulated;

• Chapter 7 concludes the thesis, by summarizing the results and highlight-
ing future research directions.

5





Chapter 2

Background

In this chapter, some general notation and conventions related to Signal Temporal

Logic (STL) are presented. More specifically, the focus regards qualitative and

quantitative semantics, definitions of operators, horizon, validity domain and

robustness of an STL formula. STL is also compared to other temporal logics,

highlighting the advantages of the former and the drawbacks of the latters.

The last section of the chapter concerns optimal motion planning algorithms,

with emphasis on Rapidly-exploring Random Tree Star (RRT*) approach.

2.1 Notation

LetR be the set of real numbers, whileR𝑛 is the 𝑛-dimensional real vector space.

The sets of non-negative and positive real numbers are R≥0 and R>0. The sets of

natural numbers and integers are indicated by N and Z respectively.

The Boolean domainB contains two values, true and false. The former is denoted

by ⊤, the latter by ⊥.

Given the interval 𝐼 = [𝑎, 𝑏], the interval [𝑡 + 𝑎, 𝑡 + 𝑏] is denoted by 𝑡 + 𝐼.

If 𝑐 ∈ R and [𝑎, 𝑏] ∈ R2, the Kronecker sum is defined as 𝑐 ⊕ [𝑎, 𝑏] = [𝑐+ 𝑎, 𝑐+ 𝑏].

2.2 Signal Temporal Logic

STL is a predicate-based logic that takes into account time and space, hence

allowing to formulate complex specifications with timing requirements or dead-

lines and spatial and temporal properties over continuous-time signals.

7
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2.2.1 Syntax

STL is based on a continuous-time signal 𝒙 : R≥0→ R
𝑛 and contains predicates

𝜇 : R𝑛 → B as the atomic elements [8]. The syntax of STL, also known as

grammar of STL, is defined as follows:

𝜑 = ⊤ | 𝜇 | ¬𝜑
��G[𝑎,𝑏]𝜑

�� ℱ[𝑎,𝑏]𝜑
��𝜑1U[𝑎,𝑏]𝜑2

��𝜑1 ∧ 𝜑2 (2.1)

Above, 𝜑1, 𝜑2 are STL formulas, ¬ and ∧ are the Boolean operators for negation

and conjunction and U[𝑎,𝑏] encodes the until operator, with 0 ≤ 𝑎 ≤ 𝑏 < ∞. 𝜇 is

a predicate of the form 𝜇 : R𝑛 → B, defined via a predicate function ℎ : R𝑛 → R

as:

𝜇(𝒙(𝑡)) =

{
⊤ ℎ(𝒙(𝑡)) ≥ 0

⊥ ℎ(𝒙(𝑡)) < 0
(2.2)

It is also possible to define the disjunction, the eventually and the always oper-

ators as 𝜑1 ∨ 𝜑2 ≡ ¬
(
¬𝜑1 ∧ ¬𝜑2

)
, ℱ[𝑎,𝑏]𝜑 ≡ ⊤U[𝑎,𝑏]𝜑, and G[𝑎,𝑏]𝜑 ≡ ¬ℱ[𝑎,𝑏]¬𝜑.

The satisfaction relation (𝒙 , 𝑡) |= 𝜑 indicates that signal 𝒙 satisfies 𝜑 at time 𝑡.

Example 2.1. Consider the predicate function ℎ(𝒙(𝑡)) := 𝑟 − ‖𝒙(𝑡)‖. Clearly,

the corresponding predicate 𝜇(𝒙(𝑡)) = ⊤ if and only if ‖𝒙(𝑡)‖ ≤ 𝑟. For a given

trajectory 𝒙 : R≥0→ R
𝑛 as in Figure 2.1, it follows that 𝜇(𝒙(𝑡)) = ⊤ if and only if

𝒙(𝑡) is within the ball of radius 𝑟 centered at the origin.

ℬ(0,r)

x

y

x(T )

x(0)

Figure 2.1: Example of predicate function
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Example 2.2. Consider a given environment, characterized by the presence of

obstacles. The desire of keeping a minimum and maximum distance to every

obstacle can be written in STL as: 𝜑 = G (dist(𝜎,O) − 𝐷min ∧ 𝐷max − dist(𝜎,O)),

in which 𝜎 is a signal representing a path, dist(𝜎,O) returns the Euclidean

distance between a path 𝜎 and the closest obstacle 𝑜 ∈ O and dist(𝜎,O) −

𝐷min , 𝐷max −dist(𝜎,O) are predicate functions ℎmin and ℎmax, respectively. The

corresponding predicates, 𝜇min and 𝜇max, are evaluated as true if dist(𝜎,O) ≥

𝐷min and dist(𝜎,O) ≤ 𝐷max. In turn, the formula 𝜑 is evaluated as true if both

𝜇min and 𝜇max hold true for all times.

Qualitative semantics

Given the interval 𝐼 = [𝑎, 𝑏], the STL qualitative semantics is defined recursively

as follows:

(𝒙 , 𝑡) |= 𝜇 ⇔ ℎ(𝒙(𝑡)) ≥ 0

(𝒙 , 𝑡) |= ¬𝜑 ⇔ ¬((𝒙 , 𝑡) |= 𝜑)

(𝒙 , 𝑡) |= 𝜑1 ∧ 𝜑2 ⇔ (𝒙 , 𝑡) |= 𝜑1 ∧ (𝒙 , 𝑡) |= 𝜑2

(𝒙 , 𝑡) |= 𝜑1 ∨ 𝜑2 ⇔ (𝒙 , 𝑡) |= 𝜑1 ∨ (𝒙 , 𝑡) |= 𝜑2

(𝒙 , 𝑡) |= ℱ𝐼𝜑 ⇔ ∃𝑡1 ∈ 𝑡 + 𝐼 s.t. (𝒙 , 𝑡1) |= 𝜑

(𝒙 , 𝑡) |= G𝐼𝜑 ⇔ ∀𝑡1 ∈ 𝑡 + 𝐼, (𝒙 , 𝑡1) |= 𝜑

(𝒙 , 𝑡) |= 𝜑1U𝐼𝜑2⇔ ∃𝑡1 ∈ 𝑡 + 𝐼 s.t. (𝒙 , 𝑡1) |= 𝜑2 ∧ ∀𝑡2 ∈ [𝑡 , 𝑡1] , (𝒙 , 𝑡2) |= 𝜑1

Time horizon

The time horizon of an STL formula is defined as:

th(𝜑) =




0 if 𝜑 = 𝜇

th
(
𝜑1

)
if 𝜑 = ¬𝜑1

max
{
th

(
𝜑1

)
, th

(
𝜑2

)}
if 𝜑 = 𝜑1 ∧ 𝜑2 or 𝜑 = 𝜑1 ∨ 𝜑2

𝑏 +max
{
th

(
𝜑1

)
, th

(
𝜑2

)}
if 𝜑 = 𝜑1U[𝑎,𝑏]𝜑2

𝑏 + th
(
𝜑1

)
if 𝜑 = G[𝑎,𝑏]𝜑1 or 𝜑 = ℱ[𝑎,𝑏]𝜑1

(2.3)

In this thesis, only time bounded temporal operators will be taken into account,

i.e. th(𝜑) < ∞. The choice results to be not restrictive when considering real

robots, given that in many robotic tasks an unbounded formula may not be

feasible.
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Validity domain

The validity domain vd(𝜑) of an STL formula 𝜑 is recursively defined as:

vd(𝜑) =




0, if 𝜑 = 𝜇

vd
(
𝜑1

)
, if 𝜑 = ¬𝜑1

[𝑎, 𝑏], if 𝜑 = G[𝑎,𝑏]𝜇

𝑎 ⊕ vd
(
𝜑1

)
, if 𝜑 = G[𝑎,𝑏]𝜑1, 𝜑1 ≠ 𝜇

𝑡∗ + 𝐼∗ ⊕ vd
(
𝜑1

)
, if 𝜑 = ℱ[𝑎,𝑏]𝜑1

(2.4)

where 𝐼∗ ∈ [𝑎, 𝑏] and 𝑡∗ =
{
𝑡 | 𝜑 = ℱ[𝑎,𝑏]𝜑1

}
is a variable whose initial value is

0, changing over time to save the last instance of satisfaction for the eventually

operator [9]. If a path contains only predicates, then vd
(
𝜑
)
= th(𝜑).

Example 2.3. Consider the following examples for the evaluation of the validity

domain:

• 𝜑1 = G[3,8]𝜇, then vd
(
𝜑1

)
= [3, 8]. Hence the predicate 𝜇 must hold

during all the interval of definition of the always operator, in order to have
𝜑1 satisfied;

• 𝜑2 = ℱ[5,10]𝜇, then 𝑡∗ = 0, 𝐼∗ ∈ [5, 10] and vd
(
𝜇
)
= 0. Therefore, vd

(
𝜑2

)
=

𝐼∗ ∈ [5, 10] is the instance when 𝜇 is required to hold;

• 𝜑3 = ℱ[5,10]G[0,3]𝜇, then 𝑡∗ = 0, 𝐼∗ ∈ [5, 10], vd
(
G[0,3]𝜇

)
= [0, 3]. Therefore,

vd
(
𝜑3

)
= 0 + 𝐼∗ ⊕ [0, 3] = [𝐼∗, 𝐼∗ + 3] is the interval over which 𝜇 needs to

hold such that 𝜑3 is satisfied;

• 𝜑4 = G[2,10]ℱ[0,5]𝜇, then 𝑎 = 2 and vd
(
𝜑4

)
= 2 ⊕ vd

(
ℱ[0,5]𝜇

)
= 2 + 0 + 𝐼∗

where 𝐼∗ ∈ [0, 5]. For instance, if 𝐼∗ = 1, then vd
(
𝜑4

)
= 3 is the time

instance when 𝜇 needs to hold. Once 𝜇 = ⊤, then 𝑡∗ = 𝐼∗ and the new
vd

(
𝜑4

)
= 2 + 1 + 𝐼∗ where 𝐼∗ ∈ [0, 5].

2.2.2 Robust Semantics

In addition to qualitative semantics, authors have suggested many forms of

quantitative semantics, also known as robust semantics. This semantics allows

to quantify the degree of satisfaction of the STL formula, i.e. given a signal 𝒙 it

determines how robustly 𝒙 satisfies an STL formula 𝜑 at time 𝑡. For this reason,

this semantics can be usefully exploited for the control of dynamical systems

10
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under STL specifications, giving an upper bound on noise that can be added to

the signal 𝒙 before the Boolean evaluation of the semantics changes [8]. More

specifically, the quantitative STL semantics returns a real value representing

the distance to satisfaction or violation of the considered STL formula and it is

defined as follows:

𝜌 (ℎ(𝒙(𝑡)) ≥ 0, 𝒙 , 𝑡) = ℎ(𝒙(𝑡))

𝜌
(
¬𝜑, 𝒙 , 𝑡

)
= −𝜌(𝜑, 𝒙 , 𝑡)

𝜌
(
𝜑1 ∧ 𝜑2, 𝒙 , 𝑡

)
= min

(
𝜌

(
𝜑1, 𝒙 , 𝑡

)
, 𝜌

(
𝜑2, 𝒙 , 𝑡

) )

𝜌
(
G𝐼𝜑, 𝒙 , 𝑡

)
= inf
𝑡1∈𝑡+𝐼

𝜌
(
𝜑, 𝒙 , 𝑡1

)

𝜌
(
ℱ𝐼𝜑, 𝒙 , 𝑡

)
= sup
𝑡1∈𝑡+𝐼

𝜌
(
𝜑, 𝒙 , 𝑡1

)

𝜌
(
𝜑1U𝐼𝜑2, 𝒙 , 𝑡

)
= sup
𝑡1∈𝑡+𝐼

min

(
𝜌

(
𝜑2, 𝒙 , 𝑡1

)
, inf
𝑡2∈(𝑡 ,𝑡1)

𝜌
(
𝜑1, 𝒙 , 𝑡2

)
)

A signal 𝒙 satisfies an STL formula 𝜑 at time 𝑡 if and only if 𝜌(𝜑, 𝒙 , 𝑡) ≥ 0.

Clearly, the greater the value of 𝜌, the more robust the signal is. In other words,

the signal not only satisfies the STL formula, but it is also robust to eventual

perturbations. On the other hand, if the value of 𝜌 is positive but close to 0, in

the next time instants it could happen to violate the constraints encoded in the

STL formula.

Example 2.4. Consider a continuous-time signal 𝒙 : R≥0 → R
𝑛 and the three

STL formulas
𝜑1 := ℱ[2,5](2 ≤ 𝒙 ≤ 3)

𝜑2 := G[2.5,4.6](1 ≤ 𝒙 ≤ 3)

𝜑3 := G[2,5](0.4 ≤ 𝒙 ≤ 2.5).

From Figure 2.2, it can be seen that 𝜑1 and 𝜑2 are both satisfied by 𝒙 at time 0,

namely (𝒙 , 0) |= 𝜑1 and (𝒙 , 0) |= 𝜑2. However, the formula 𝜑1 is satisfied more

robustly than 𝜑2 since 𝜌(𝜑1, 𝒙 , 0) > 𝜌(𝜑2, 𝒙 , 0). Indeed only a small noise added

to 𝒙(𝑡) at 𝑡 = 4 will lead to (𝒙 , 0) 6|= 𝜑2, while a small noise will not affect the

satisfaction of 𝜑1. The formula 𝜑3, instead, is not satisfied, since 𝒙 does not

result to be between 0.4 and 2.5 at every instant in the time interval [2, 5].

11
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1 2 3 4 5 6

1

2

3

t

𝔁(t)

(a) 𝜑1 := ℱ[2,5](2 ≤ 𝒙 ≤ 3) is satisfied by 𝒙

1 2 3 4 5 6

1

2

3

t

𝔁(t)

(b) 𝜑2 := G[2.5,4.6](1 ≤ 𝒙 ≤ 3) is satisfied by 𝒙

1 2 3 4 5 6

1

2

3

t

𝔁(t)

(c) 𝜑3 := G[2,5](0.4 ≤ 𝒙 ≤ 2.5) is not satisfied by 𝒙

Figure 2.2: Three examples regarding robust semantics of STL

Example 2.5. Consider again the specification of Example 2.2. Suppose it is

desired that a robot stays 3 𝑚 away from every obstacle during its exploration

task, written in STL as 𝜓 = G𝜑, and 𝜑 = dist(𝜎,O) − 3. Let 𝜎(𝛼) be a path such

that (i) dist(𝜎(0),O) = 5, (ii) dist(𝜎(0.3),O) = 2 and (iii) dist(𝜎(1),O) = 0.5. In

12
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each individual case, the robustness of the path with respect to 𝜑 is calculated

as 𝜌(𝜑, 𝜎, 𝛼) = ℎ(𝜎(𝛼)), and results in (i) 𝜌(𝜑, 𝜎, 0) = 2, (ii) 𝜌(𝜑, 𝜎, 0.3) = −1 and

(iii) 𝜌(𝜑, 𝜎, 1) = −4.5 [6]. Finally, the robustness of the path with respect to the

formula 𝜓 is calculated as follows:

𝜌(𝜓, 𝜎) = min
𝛼∈[0,1]

𝜌(𝜑, 𝜎, 𝛼)

= min(𝜌(𝜑, 𝜎, 0), 𝜌(𝜑, 𝜎, 0.3), 𝜌(𝜑, 𝜎, 1))

= −4.5

2.2.3 STL Parse Tree

An STL formula can be easily represented as a tree, called STL Parse Tree.

Each node represents either a temporal operator (always, eventually), a logical

operator (conjunction, disjunction, negation) or a predicate (𝜇). In particular,

leaf nodes constitute the predicate nodes of the tree, while the set nodes are

operators and are accompanied by a satisfaction variable 𝜏 ∈ {−1,+1}. The

satisfaction variable tree has the same structure as the parse tree; each set node

is associated with a satisfaction variable 𝜏𝑖 , while each leaf node is associated

with a predicate variable 𝜋𝑖 . A path is a formula from a root node to a leaf node;

a sub-path, instead, is a path from a set node to a leaf node. A signal 𝒙 satisfies a

sub-path if the set node, corresponding to the beginning of the path, has 𝜏 = +1

[9].

Example 2.6. Consider the following STL formula:

𝜑 = G𝐼1
(
𝜇1

)
∧ ℱ𝐼2

(
G𝐼3

(
𝜇2

)
∨ 𝜇3

)
∧ G𝐼4ℱ𝐼5

(
𝜇4

)

The STL parse tree and the satisfaction variable tree for the STL formula are

shown in Figure 2.3. Suppose 𝜏3 = +1 =⇒ 𝒙 |= ℱ𝐼2
(
G𝐼3

(
𝜇2

)
∨ 𝜇3

)
. Moreover, if

𝜏2 = +1 =⇒ 𝒙 |= G𝐼1
(
𝜇1

)
. Hence the following equivalence holds:

(𝒙 , 𝑡) |= 𝜑⇔ 𝜌(𝜑, 𝒙 , 𝑡) ≥ 0⇔ 𝜏6 = +1⇔ 𝜏(root) = 𝜏1 = +1.

13
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(b) Satisfaction variable tree

Figure 2.3: Example of STL parse tree and satisfaction variable tree

2.3 Control under Temporal Logic

The need of autonomous systems, able to address complex and time-constrained

tasks in dynamic environments, has led to the development of efficient and ex-

pressive languages to describe objectives under strict deadlines and encode

such specifications for control. Sophisticated and complicated tasks, such as se-

quential or reactive ones, including qualitative and quantitative spatio-temporal

properties, are typically formulated in temporal logics. In the last years, a great

amount of temporal logics, including Linear Temporal Logic (LTL), Metric Tem-

poral Logic (MTL) and Signal Temporal Logic (STL), has been considered and

exploited in control problems.

It is possible to distinguish between two categories of methods for temporal logic

control: automata-based and optimization-based. In the first case, the system

must be finitely abstracted and the temporal logic specifications are represented

through an automaton. Even though promising results have been achieved

exploiting this kind of approach, automata-based solutions are generally very

computationally expensive. In the second case, instead, the definition of quanti-

tative semantics for temporal logics is exploited, in order to compute a real-value

(robustness metric) that measures how strongly a specification is satisfied or vi-
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olated. As a consequence, the solution of the control problem coincides with the

solution of an optimization problem, whose objective is the one of maximizing

the robustness [10].

In the next two sections, different temporal logics are compared: the focus is on

the drawbacks of LTL and MTL and the advantages of STL specifications.

2.3.1 Drawbacks of Linear and Metric Temporal Logic

Temporal logics can be naturally exploited to express traditional robot specifi-

cations, such as reaching a goal or avoiding an obstacle. To obtain satisfaction

of MTL specifications, abstraction-based approaches are required. As already

presented before, these methods are characterized by the translation of the tem-

poral logic specification into an automata representation and by the abstraction

of the system and the environment into a finite transition diagram. Based on

these abstractions, algorithms are derived for verification and synthesis of dis-

crete controllers, that drive the system to satisfy the specification. Despite their

success in the correct-by-construction design of controllers, abstraction-based

approaches could be affected by ”state explosion” issues. Indeed both the syn-

thesis and abstraction algorithms scale at least exponentially with the dimension

of the discretized configuration space (curse of dimensionality), leading to im-

practicable application of such approaches for large-scale multi-agent systems

[11].

In order to provide computational solutions to motion planning problems un-

der LTL specifications, it is necessary to operate in discrete time. For example,

authors in [5] construct discrete abstractions of robot motion, generate discrete

plans satisfying the temporal logic formula and finally translate the latter to con-

tinuous trajectories using hybrid control. Critical to this approach is providing

formal guarantees ensuring that, if the discrete plan satisfies the temporal logic

formula, then the continuous motion also satisfies the exact same formula.

Another drawback of standard temporal logics concerns the fact that they only

involve qualitative temporal operators and cannot deal with quantitative tem-

poral requirements. Indeed, LTL specifications require only the order of events

that should be executed by the system, neglecting temporal distance between
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them. MTL and STL, compared with LTL, quantitatively take time into account.

In this way, more complex specifications, including specific time requirements,

can be formulated. In fact, MTL and STL allow to impose time-constrained

tasks, such as strict deadlines [12]. Typical examples of objectives, expressed

through STL or MTL formulas, are:

• Maximal distance between an event and its reaction, e.g. event A is fol-
lowed by event B within 5 time units;

• Exact distance between events, e.g. event A is followed by event B in
exactly 3 time units;

• Minimal distance between events, e.g. two consecutive events A are at
least 7 time units apart;

• Periodicity, e.g. event A occurs regularly with a period of 5 time units [13].

Approaches such as MTL, however, usually define tasks over finite-state spaces,

requiring the abstraction of the underlying continuous -time and -space systems

to discrete one. As explained before, this abstraction could lead to possible loss

of information and risk of ”state explosion” [9]. Moreover, MTL and LTL are

proposition-based logics, hence resulting to be less expressive than STL, which

is instead a predicate-based logic.

Using STL avoids the aforementioned drawbacks and allows to express speci-

fications in continuous time and space. The advantages of such approach are

discussed below more in detail.

2.3.2 Advantages of Signal Temporal Logic

STL is a predicate-based logic interpreted over continuous-time signals and

allows to impose desired spatial and temporal properties. STL specifications

can be exploited to specify tasks that systems may or may not satisfy, based

on logic operators (negation, disjunction, conjunction) and temporal operators

(eventually, always, until). Additionally, it is possible to include combinations

of surveillance (“Visit regions A and B every 8 seconds, while agents are in

triangular formation”) and safety (“Stay at least 4 meters away from region B in

the time interval [10 30] seconds”).
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Furthermore, contrary to LTL and MTL, STL offers tools to evaluate how much

the task is satisfied or not over a continuous-time signal, avoiding the abstraction

of the system dynamics. As already presented in Section 2.2.2, one of the main

advantages relies on the fact that STL permits to introduce robustness notions,

i.e. to specify how severely a given specification must be satisfied. The idea,

hence, is to be able to access how much of the specification is satisfied and not

just whether it is satisfied. Such quantitative semantics has been successfully

used for implementing optimization-based synthesis and efficiently assessing

satisfaction [14]. The quantitative semantics provides a useful tool for the con-

trol of dynamical systems under STL specifications, giving an upper bound on

noise that can be added to the signal 𝒙 before the evaluation of the semantics

changes, namely before the satisfied formula becomes violated or vice versa. The

robustness degree then gives a measure of how much a signal can be perturbed

before changing the truth value of the specification [8].

2.4 Optimal Motion Planning

Given a starting position A and a goal position B, motion planning algorithms

aim at finding a trajectory from A to B, such that the robot avoids obstacles along

the path and satisfies constraints on the workspace. However, a feasible solution

is not sufficient if its quality is also important. For instance, in many industrial

applications, the users are interested in solution paths with the minimum time

to execute, so as to achieve the highest productivity. This requirement results in

the problem of optimal motion planning, i.e. computing motion plans that are

of the minimum cost with respect to a given cost functional, such as the length

of a path or the consumed energy [15].

In many applications, given the high dimensionality of the search space, the

geometric properties of the obstacles, the cost to be optimized, the dynamic and

kinematic model of the robot, online computation may be not feasible [16]. This

has led to the development of two branches of research in the area of motion

planning: on-line planning and off-line planning. In the former case, the trajec-

tory is computed during motion; these kinds of planners are used if obstacles

are discovered while the robot is moving and the environment is changing as

time passes. In the latter case, instead, the trajectory is obtained before motion

begins. In many industrial applications, where tasks are repeated in static envi-
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ronments, off-line planners are widely used.

In order to simplify the study of STL constraints for the coupled agents, this

thesis considers a known workspace with static obstacles. The two probabilis-

tic optimal trajectories are computed off-line: when the maximum number of

iterations is reached, the algorithm returns the sequence of optimal control in-

puts (with corresponding time intervals) that allows each agent to follow the

probabilistic optimal trajectory.

2.4.1 RRT*

Even when dynamics is not considered, motion planning is PSPACE-hard. Com-

plete algorithms, providing solutions if they exist, scale exponentially with the

number of degrees of freedom of the robots, resulting in computational hard-

ness. Hence, practical approaches relax completeness guarantee, in order to

avoid the issues deriving from the curse of dimensionality. In the last years,

sampling-based planners have become a powerful tool for the solution of path

and motion planning problems. With respect to grid-based algorithms such as

A* and D* or potential field approaches, sampling-based planning methods are

characterized by low computational cost, applicability to large scale problems

and probabilistic completeness [17].

One of the most used sampling-based planners is Rapidly-exploring Random

Tree (RRT), proposed by LaValle and Kuffner in [18]. The basic idea of the simple

RRT algorithm is to sample random states and extend the tree toward them. In

each iteration, a random state is selected from the metric space. Then, the nearest

neighbor is found in the current tree, according to a predefined metric. At this

point, a control 𝑢 is computed, in order to move from the selected closest vertex

toward the random point. Finally, the new edge and the new vertex are inserted,

resulting hence in a tree that explores the state space in a uniform and rapid way.

However, basic RRT algorithm usually finds a feasible solution very quickly,

with no guarantee on the quality of the solution, given that it does not use any

metric to measure the motion optimality between subsequent states. To solve

the issue, authors in [19] have proposed the optimal version of RRT, called RRT*,

and showed its globally asymptotically optimality. The two key additions, with

respect to the standard RRT, are the near neighbor search and the rewiring pro-
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cedure (see Figure 2.4). For what regards the first one, it finds the best parent

vertex to the new node, considering a circle of radius 𝑟. Inside this region, in

particular, the parent is selected in order to obtain the minimum cost path from

the initial node to the new one, instead of taking the nearest node as parent by

default, as it happens in RRT. Concerning the second feature of RRT*, neighbors

of the new connected vertex are considered. More specifically, if the path to a

neighbor vertex, considering the new node as parent, has a cost that is lower

with respect to the path passing through the current parent of the neighbor ver-

tex, then the neighbor vertex is rewired. This means that the edge between the

neighbor node and its parent is removed, while a new edge is created, selecting

the new added node as its new parent.
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Figure 2.4: Near neighbor search and rewiring operation in RRT*

In recent years, a large variety of RRT*-based approaches has been proposed.

Among them, it is possible to cite RRT*FN (deals with the problem of high

memory consumption, allowing a limited number of nodes in the tree), B-RRT*

(generates two trees simultaneously, one from the start position and one from
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the goal position) and Adapted RRT* (solves optimal path planning for car-like

robots, dealing with non-holonomic or kinodynamic constraints). For a more

complete survey on RRT*-based approaches, it is possible to consult [17].

The pseudo-code of the RRT* algorithm is reported in Algorithm 1 [19]. 𝐺 =

(𝑉, 𝐸) is the tree that is built incrementally by the algorithm, where 𝑉 is the set

of nodes and 𝐸 is the set of edges.

Algorithm 1: RRT*

1 𝑉 ← {𝑥start};
2 𝐸← ∅;
3 for 𝑘 = 1, ..., 𝐾 do
4 𝐺← (𝑉, 𝐸);
5 𝑥rand← SampleFree;
6 𝑥nearest← Nearest (𝐺, 𝑥rand);
7 𝑥new← Steer (𝑥nearest, 𝑥rand);
8 if NoCollision (𝑥nearest, 𝑥new) then
9 𝑋near← Near (𝐺, 𝑥new, 𝑟);

10 𝑉 ← 𝑉 ∪ {𝑥new};
11 𝑥min← 𝑥nearest;
12 𝑐min← Cost (𝑥nearest) +𝑐( Line (𝑥nearest, 𝑥new) );
13 foreach 𝑥near ∈ 𝑋near do
14 if NoCollision (𝑥near, 𝑥new) ∧ Cost (𝑥near) +𝑐( Line

(𝑥near, 𝑥new) ) < 𝑐min then
15 𝑥min← 𝑥near;
16 𝑐min← Cost (𝑥near) +𝑐( Line (𝑥near, 𝑥new) );

17 𝐸← 𝐸 ∪ {(𝑥min, 𝑥new)};
18 foreach 𝑥near ∈ 𝑋near do
19 if NoCollision (𝑥new, 𝑥near) ∧ Cost (𝑥new) +𝑐( Line

(𝑥new, 𝑥near) ) < Cost (𝑥near) then
20 𝑥parent← Parent (𝑥near);
21 𝐸← (𝐸\{(𝑥parent, 𝑥near)}) ∪ {(𝑥new, 𝑥near)};

22 return 𝐺 = (𝑉, 𝐸);
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Related Work

3.1 Synthesis of Controllers under Signal Temporal

Logic

Given a system subject to constraints expressed through temporal logic formu-

las, the satisfaction of the specifications has been checked in the past years using

formal verification techniques. Recently, the need for computationally efficient

control methods under temporal logic tasks has become more apparent, in par-

ticular when multi-agent systems are considered. Existing approaches, such as

model checking, only examine if the given tasks are satisfied by the system and

increase exponentially with the dimension of the model. The computational bur-

dens of model checking can be relaxed using sampling-based planners, control

barrier functions and prescribed performance control.

3.1.1 Sampling-based Methods

Sampling-based methods have helped the improvement and progress in robotic

motion planning and control, also facing high-dimensional domains. Most

of sampling-based methods exploit Rapidly-exploring Random Trees (RRT) or

Probabilistic Roadmaps (PRM) for temporal logic synthesis. The two algorithms

presented in the next section solve the motion planning problem under STL

specifications, extending RRT to include the STL formula.
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STLcoRRT

In sampling-based planners, the free space is modeled using graphs, composed

by nodes and edges. Control problems, such as motion planning problem, can

be hence reduced to a graph-search problem (find a path in the graph). This sam-

pling procedure is exploited by authors in [9], in order to develop a distributed

algorithm for cooperative motion planning of two coupled agents under STL

specifications. In particular, the proposed algorithm builds incrementally a

spatio-temporal tree for each agent, by sampling points in the coupled state and

time domain of the agents. Before adding a new edge, it checks if it satisfies cer-

tain parts of the given task. By doing so, the obtained time-varying trajectories,

represented by the two spatio-temporal trees, satisfy the given task.

The algorithm, STLcoRRT, is a variation of the standard Rapidly-exploring Ran-

dom Tree algorithm. While the latter samples a point 𝒙samp from R𝑛 , finds its

nearest neighbor in the existing tree and creates a new vertex by drawing an

edge of predefined length [20], the key element of the former is the incorpo-

ration of time in the sampling process, leading to a time-augmented sampling

method. The generated tree T = (V , ℰ), consequently, is a spatio-temporal tree.

Each vertex in the set V = {𝒛1, 𝒛2, . . .} is given by 𝒛 𝑖 = (𝑡𝑖 , 𝒙 𝑖) ∈ Z ⊂ R+ × R
𝑛 .

Clearly, the time associated with a new sample vertex must be greater than the

time associated with the nearest node of the tree; in other words, every new

sample 𝒛new must be ahead in time with respect to 𝒛nearest. Moreover, differently

from the original sampling-based algorithm, the obstacle collision checking is

substituted with a procedure that checks upon satisfaction or violation of the

STL formula for each added edge.

More specifically, STLcoRRT algorithm includes two components: the sampling-

based procedure to build a tree and the verification of the satisfaction of the STL

formula. Each sample corresponds to a (𝑛 + 1)-dimensional point 𝒛 = (𝑡 , 𝒙); if it

is feasible with respect to the STL formula 𝜑, it is added as a vertex to the tree.

Considering the point of view of agent 𝑖, after the initialization of the tree,

agent 𝑖 requests the updated tree of agent 𝑗. Then, the sampling procedure is

implemented, through three standard functions taken from the original RRT

algorithm. At this point, two scenarios arise: either agent 𝑖 samples in a time
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region where agent 𝑗 has already explored, or it samples in a time region where

agent 𝑗 is yet to explore. Depending on the situation, different functions are

exploited to decide the satisfiability of the STL formula. Both the agents si-

multaneously run STLcoRRT and communicate with the other agent after every

edge addition. The final module is the verification of the STL formula based on

the sampled points.

The proposed algorithm solves the cooperative motion planning problem under

the entire fragment of signal temporal logic for continuous -time and -state

systems, without resorting to discretization techniques. However, dynamics of

the two agents and explicit control design are not taken into account.

Algorithm based on Direction of Increasing Satisfaction

The dynamics of the system is directly taken into account, instead, by authors

in [14], where a different sampling-based approach is proposed. The key is

to guide and influence the selection of samples using a quantitative measure of

how well and robustly the specification is satisfied by the best path in the current

tree of samples. This allows to converge to a path that indeed satisfies the task

expressed as an STL specification with maximum robustness. By defining the

Direction of Increasing Satisfaction (DIS), it is possible to find the most promis-

ing direction of exploration to improve the robustness of the STL formula, given

a partial trajectory. In particular, two functions are exploited when conjunc-

tions are taken into account: the choice function decides which of the two input

formulae yields the largest robustness gain for their conjunction; the blending

function combines the two directions computed for the two sub-formulae of the

conjunction and should give priority to the one returned by the choice function.

Relying on quantitative semantics of the logic, it is possible to guide sampling.

Given a dynamical system ℛ =
(
𝑓 , 𝑋,𝑈, 𝒙init

)
and an STL specification, the aim

is to find a control policy 𝑢 such that the robustness degree of the state trajectory,

originating in 𝒙init under 𝑢, is maximized with respect to the STL specification.

The algorithm is based on RRT* and generates a tree of state-formula pairs.

States are generated in a random way, while STL formulas associated with them

indicate the progress towards the satisfaction of the overall STL specification. To

obtain maximal satisfaction, biased sampling and guided steering are exploited.
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More specifically, to guide the steering of the system, authors take into account

a random convex combination between states that have been randomly gener-

ated and states along the DIS. Finally, an online monitoring algorithm for STL

formulas is developed.

After the initialization, in each iteration, the algorithm randomly samples a time

and state and attempts to add to the existing tree a new vertex that minimizes

a convex combination of random sampling and moving along the DIS. Once

the new node is added, near vertices are considered and eventually rewiring is

performed, in order to take into account the best path to reach vertices.

With respect to STLcoRRT, this sampling-based algorithm considers only a sin-

gle agent and linear predicates. On the other hand, dynamics of the system

and robustness of the STL specification are taken into account. As it will be

explained in Chapter 4, the proposed solution for the motion planning prob-

lem of coupled agents addressed in this thesis will exploit the advantages of

both algorithms, allowing to drive the multi-agent system through probabilistic

optimal trajectories.

3.1.2 Control Barrier Functions

Control barrier functions were introduced as a tool to formally prove safety of

hybrid systems. Intuitively, an environment is safe if dangerous things do not

happen. Given the locus where damaging things could happen, it is possible to

exploit invariance to guarantee safety properties of the system. Indeed, if a set is

invariant, any trajectory starting inside it will never reach the complement of the

set, i.e. the unsafe one [21]. The concept of safety is of extreme importance when

considering autonomous systems, especially the ones operating in unknown and

unstructured environments and cooperating with humans. For control systems

and based on the notion of barrier functions, control barrier functions have first

been presented to guarantee the existence of a control law that renders a desired

safe set forward invariant. They are related to Control Lyapunov Functions,

but instead of stability they guarantee that the trajectories of a system remain

in a pre-defined forward invariant set [22]. In order to encode STL tasks into a

control barrier function, it is necessary to design the temporal properties of the

control barrier function in order to account for the STL semantics.
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Consider a dynamical system of the form:

𝒙¤ (𝑡) = 𝑓 (𝒙) + 𝑔(𝒙) 𝒖 , 𝒙(𝑡0) := 𝒙0 (3.1)

where 𝑓 and 𝑔 are locally Lipschitz continuous functions. Let 𝔟 : 𝔇×[𝑡0, 𝑡1] → R

be a continuously differentiable function, where 𝔇 ⊆ R𝑛 , and define the set

ℭ(𝑡) := {𝒙 ∈ 𝔇 | 𝔟(𝒙 , 𝑡) ≥ 0}.

The continuously differentiable function 𝔟(𝒙 , 𝑡) is said to be a candidate control

barrier function if for each 𝒙0 ∈ ℭ (𝑡0) there exists an absolutely continuous func-

tion 𝒙 : [𝑡0, 𝑡1] → R
𝑛 with 𝒙 (𝑡0) := 𝒙0, such that 𝒙(𝑡) ∈ ℭ(𝑡) for all 𝑡 ∈ [𝑡0, 𝑡1].

A candidate control barrier function 𝔟(𝒙 , 𝑡) is a valid control barrier function for

(3.1) if there exists a locally Lipschitz continuous class K function 𝛼 such that,

for all (𝒙 , 𝑡) ∈ ℭ(𝑡) × [𝑡0, 𝑡1],

sup
𝒖∈U

𝜕𝔟(𝒙 , 𝑡)𝑇

𝜕𝒙
( 𝑓 (𝒙) + 𝑔(𝒙)𝒖) +

𝜕𝔟(𝒙 , 𝑡)

𝜕𝑡
≥ −𝛼(𝔟(𝒙 , 𝑡)) (3.2)

Recall that a class K function 𝛼 : R≥0 → R≥0 is a continuous and strictly in-

creasing function with 𝛼(0) = 0. An extended class K function is a function

𝛼 : R→ R that is again continuous and strictly increasing with 𝛼(0) = 0.

If 𝒖 is locally Lipschitz continuous in 𝒙 and piecewise continuous in 𝑡 and it

belongs to the set of control inputs 𝑆𝑢 that guarantee the satisfaction of formula

3.2, then the set ℭ(𝑡) is forward invariant for the control law 𝒖(𝒙 , 𝑡) if 𝔟(𝒙 , 𝑡) is a

valid control barrier function. This means that, considering a trajectory starting

inside ℭ, i.e. 𝒙0 ∈ ℭ (𝑡0), 𝒙(𝑡) will remain inside ℭ(𝑡) for all 𝑡 ∈ [𝑡0, 𝑡1]. In ap-

plications, such as safety control, this leads to the fact that the trajectory of the

dynamical system remains inside the desired safe region.

Authors in [23] have shown that time-varying control barrier functions can be

used to satisfy STL formulas for single-agent systems, by leveraging the temporal

properties of 𝔟(𝒙 , 𝑡). Their main contribution is a control strategy that offers a

good trade-off between computational efficiency and expressivity of the STL

fragment under consideration.
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In a first step, time-varying control barrier functions are defined; in a second

step, they are used to satisfy STL tasks. The temporal properties of the control

barrier functions hence need to be designed in a way that accounts for the STL

semantics. The main idea is described in the next example.

Example 3.1. Consider the formula 𝜑 := ℱ[5,15]

(
‖𝒙 − [10 0]𝑇 ‖ ≤ 5

)
and let

𝑡0 := 0 and 𝑡1 := 15. Note that the corresponding predicate function is ℎ(𝒙) :=

5− ‖𝒙 − [10 0]𝑇 ‖. Also consider, without loss of generality, an initial condition

𝑥(0) := [0 0]𝑇 . For the candidate control barrier function 𝔟(𝒙 , 𝑡) := 𝛾(𝑡) −

𝒙 − [10 0]𝑇


 with 𝛾(𝑡) := − 5

15 𝑡 + 10, it holds that 𝔟(𝒙(0), 0) = 0 and hence

𝒙(0) ∈ ℭ(0). If there exists a control law 𝒖(𝒙 , 𝑡) so that the solution to 3.1 satisfies

𝒃(𝒙(𝑡), 𝑡) ≥ 0 for all 𝑡 ∈ [𝑡0, 𝑡1], e.g. when 𝔟(𝒙 , 𝑡) is a valid control barrier

function, then (𝒙 , 0) |= 𝜑 follows. Note therefore that 𝛾 (𝑡1) = 5 and hence

𝔟 (𝒙 , 𝑡1) = 5 −


𝒙 − [10 0]𝑇



 = ℎ(𝒙). This means that 𝔟 (𝒙 (𝑡1) , 𝑡1) ≥ 0 implies

that


𝒙 (𝑡1) − [10 0]𝑇



 ≤ 5, which yields (𝒙 , 0) |= 𝜑.

From the example above, it results that 𝔟 (𝒙 , 𝑡) is associated with the predicate

function ℎ(𝒙) and guarantees the satisfaction of the STL formula. However, in

order to add conjunctions, a smooth under-approximation of the min-operator

is used. In the general case, the control barrier function 𝔟 (𝒙 , 𝑡) has the form:

𝔟(𝒙 , 𝑡) := − ln

(
𝑝∑

𝑖=1

exp (−𝔟𝑖(𝒙 , 𝑡))

)

(3.3)

where 𝑝 is the number of functions 𝔟𝑖(𝒙 , 𝑡), each corresponding to either an

always, eventually, or until operator with time interval [𝑎𝑖 , 𝑏𝑖]. To avoid conser-

vatism of the control barrier function when a large number of tasks is considered,

it is possible to deactivate the functions 𝔟𝑖(𝒙 , 𝑡)when the corresponding tempo-

ral operators are satisfied (at 𝑡 = 𝑏𝑖 , namely the right extreme of the interval of

definition of the operator itself). The control barrier function of the exponential

form is hence piecewise continuous in 𝑡 and characterized by a hybrid time

domain.

Let 𝑇𝑖 denote the time interval at which 𝔟𝑖(𝒙 , 𝑡) contributes to 𝔟(𝒙 , 𝑡). The de-

activation can be encoded by exploiting the integer functions 𝑜𝑖(𝑡) defined as:

𝑜𝑖(𝑡) =

{
1, 𝑡 ∈ 𝑇𝑖

0, 𝑡 ∉ 𝑇𝑖
(3.4)
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As presented by authors in [24], the modified barrier function can be written as:

𝔟(𝒙 , 𝑡) = − ln

(
𝑝∑

𝑖=1

𝑜𝑖(𝑡) exp (−𝔟𝑖(𝒙 , 𝑡))

)

(3.5)

In [25], the results presented above are extended to multi-agent systems. More

specifically, authors propose a decentralized control barrier function-based feed-

back control law for continuous-time multi-agent systems under a set of STL

tasks. Time-varying control barrier functions are hence expanded to systems

with discontinuous control inputs; the control law is finally obtained by solving

a computationally tractable convex quadratic program.

Control barrier functions can be constructed to account for a fragment of STL

tasks and also maximize the robustness by which the STL specification is satis-

fied. However, on the other hand, it is also true that these functions are designed

such that they under-approximate the predicate functions of the STL task. More-

over, they can deal with only a small fragment of STL specifications, without

taking into account disjunctions.

3.1.3 Prescribed Performance Control

Prescribed Performance Control (PPC) is a funnel-based feedback control strat-

egy, that constrains a generic tracking error 𝒆 : R≥0 → R
𝑛 to a time-varying

funnel, specifically designed by the user. By prescribed performance, authors

in [26] mean that the output tracking error converges to a predefined residual

set, with convergence rate no less than a specified value and maximum over-

shoot less than some constant. They also prove that, to solve the prescribed

performance tracking problem of a dynamical system, it is sufficient to achieve

bounded states of a novel system, involving both non linearities of the original

one and the desired performance characteristics.

PPC can be applied to dynamical systems, in order to impose a desired transient

behavior of the system trajectories and satisfy STL specifications. Authors in

[27] consider a non-linear system subject to a subset of STL specifications and

translate this constrained control problem into a PPC one, ensuring satisfaction

of the temporal formulas.
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Let 𝒆(𝑡) := 𝒙(𝑡)−𝒙𝑑(𝑡) be the tracking error, defined as the difference between the

achieved trajectory and the desired one. To prescribe transient and steady-state

behavior of this error, it is possible to define two functions, i.e. the performance

function 𝛾 and the transformation function 𝑆.

Firstly, a performance function 𝛾 : R≥0 → R>0 is a continuously differentiable,

bounded, positive and non-increasing function, given by:

𝛾(𝑡) := (𝛾0 − 𝛾∞) exp(−𝑙𝑡) + 𝛾∞ (3.6)

where 𝛾0, 𝛾∞ ∈ R>0 with 𝛾0 ≥ 𝛾∞ and 𝑙 ∈ R≥0 [25].

The task is to synthesize a feedback control law such that, given −𝛾𝑖(0) < 𝑒𝑖(0) <

𝑀𝛾𝑖(0) for all 𝑖 ∈ {1, . . . , 𝑛}, the errors 𝑒𝑖 satisfy the same chain of inequalities

∀𝑡 ∈ R≥0:

−𝛾𝑖(𝑡) < 𝑒𝑖(𝑡) < 𝑀𝛾𝑖(𝑡) (3.7)

with 0 ≤ 𝑀 ≤ 1 and 𝛾𝑖 being a performance function as defined in 3.6.

Then, given the normalized error 𝜉𝑖(𝑡) :=
𝑒𝑖(𝑡)
𝛾𝑖(𝑡)

, it is possible to define the trans-

formation function 𝑆 : (−1, 𝑀) → R as:

𝑆(𝜉) := ln

(
−

𝜉 + 1

𝜉 −𝑀

)
(3.8)

Dividing 3.7 by 𝛾𝑖 and applying the transformation function 𝑆 results in an

unconstrained control problem −∞ < 𝑆 (𝜉𝑖(𝑡)) < ∞ with the transformed error

𝜖𝑖(𝑡) := 𝑆 (𝜉𝑖(𝑡)). If the latter is bounded for all 𝑡 ≥ 0, then 𝑒𝑖 satisfies 3.7.

To better understand how the performance function 𝛾(𝑡) can be exploited to im-

pose a transient behavior on the tracking error 𝒆(𝑡), it is possible to observe the

evolution of the performance functions −𝛾(𝑡) and 𝑀𝛾(𝑡) in Figure 3.1. Notice

that the scalar error 𝑒𝑖(𝑡) is indeed contained in the funnel defined by 𝑀 := 0.8

and 𝛾𝑖(𝑡) := (𝛾∞ − 𝛾0) exp(−𝑙𝑡) + 𝛾0 with 𝛾∞ := 10, 𝛾0 := 1, and 𝑙 := 0.2.
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igure 2.1: Evolution of a scalar error that is contained in the funnel

Figure 3.1: Evolution of a scalar error contained in a funnel

At this point the objective is to synthesize a continuous feedback control law

𝒖(𝒙 , 𝑡) for atomic STL formulas of the kind:

𝜓 := ⊤ | 𝜇 | ¬𝜇 | 𝜓1 ∧ 𝜓2

𝜑 := 𝐺[𝑎,𝑏]𝜓 | 𝐹[𝑎,𝑏]𝜓

STL formulas as 𝜑 are known as atomic temporal formulas, due to use of eventu-

ally and always operators that makes 𝑡 appear explicitly in the robustness metric

𝜌(𝜑, 𝒙 , 𝑡). Instead, STL specifications as 𝜓 are known as non-temporal formulas,

i.e. Boolean formulas.

The approach is to leverage the funnel control idea presented before and replace

the tracking error, that is supposed to evolve within the funnel, by the robustness

semantics of the STL specification [8]. Considering the STL formulas defined

above, denote with 𝜌(𝜓, 𝒙 , 𝑡) the robustness metric associated with each non-

temporal formula 𝜓, assumed to be concave or convex. The main idea of PPC is

to achieve satisfaction of the temporal formula 𝜑 by controlling the evolution of

𝜌(𝜓, 𝒙 , 𝑡) in time, such that it stays bounded between two prescribed curves, that

identify a funnel, related to the always or eventually operators. When consider-

ing the always operator, for example, the lower curve must remain at or above 0

during all the interval [𝑎, 𝑏] to ensure that 𝜌(𝜓, 𝒙 , 𝑡) ≥ 0 and therefore satisfac-

tion of the task 𝜑 as 𝜌(𝜑, 𝒙 , 𝑡) = min𝑡∈[𝑎,𝑏] 𝜌(𝜓, 𝒙 , 𝑡) ≥ 0 [28]. More specifically,
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the two boundaries for 𝜌(𝜓, 𝒙 , 𝑡) are defined by a curve 𝛾(𝑡) ∈ R and a parameter

𝜌𝑚𝑎𝑥 ∈ R , chosen so that the task 𝜑 will be satisfied if 𝛾(𝑡) < 𝜌(𝜓, 𝒙 , 𝑡) < 𝜌max

holds for all 𝑡 ∈ [𝑎, 𝑏].

Under some assumptions, the satisfaction is achieved by the control law:

𝒖𝜑(𝒙 , 𝑡) = 𝜖(𝒙 , 𝑡)𝑔T(𝒙)
𝜕𝜌(𝜓, 𝒙 , 𝑡)

𝜕𝒙
(3.9)

where 𝜖 is the transformation error defined before. To compute the derivative

of 𝜌(𝜓, 𝒙 , 𝑡), authors in [27] use a differentiable under-approximation for con-

junctions of propositions.

Funnel-based control applied to systems under STL specifications results to be

computationally tractable and robust. However, this approach is characterized

by loss of optimality guarantees, such as provided by optimization or learning-

based approaches. Moreover, it allows to consider only fragments of an STL

formula and it could lead to possible infinity control, if the robust semantics is

close to the boundaries of the funnel.

3.2 Kinodynamic Planning Algorithms using RRT*

In the last years, RRT* has been exploited to solve the optimal path planning

problem, that consists in finding the shortest and smooth path between two

positions, avoiding eventual obstacles. The standard RRT* algorithm connects

pair of states (nodes of the tree) using straight lines, that are infeasible for kino-

dynamic systems, due to differential constraints.

Kinodynamic planning consists in driving a robot from a start state to a goal state

or region, avoiding obstacles and obeying kinematic and dynamic constraints,

that express the relationship between a robot's control and its motion. The found

trajectories hence need not only to lie in the free space but also to be feasible with

respect to the model of the robot's dynamics [29]. The constraints are usually

expressed by means of differential equations that govern the state of the robot.

The two main issues to be addressed when solving a kinodynamic planning

problem with sampling-based algorithms are the following ones:

1. How to evaluate distance between states under kinodynamic constraints;
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2. How to drive the robot through unvisited states.

In many cases, the objective is not only to find a feasible solution, but also to

take into account the quality of it, with the aim of driving the system through an

optimal path. Algorithms are hence designed to find optimal trajectories with

respect to a cost functional that depends on both the state and the input. This

cost is usually selected in order to minimize time and energy, maximize safety

or some combinations of them. However, for the most general formulations of

robot dynamics, driving the robot exactly from a start to a target state may be

computationally expensive, requiring tools from nonlinear optimal control.

Authors in [30] have proposed a variant of RRT under differential constraints

and proved its probabilistic completeness. Specifically, under the assumption of

Lipschitz continuous functions in the system dynamics, the approach expands

the tree by propagating random control for random durations.

To deal with differential constraints, Kinodynamic-RRT* has been proposed by

authors in [31]. This extension of RRT* is able to handle systems described by

differential constraints. Given a system described by a differential equation, the

optimal kinodynamic motion planning problem is solved: the objective is to

find a control 𝑢 such that the corresponding trajectory satisfies the constraints,

avoids obstacles, reaches the goal region and minimizes a cost functional 𝐽.

More specifically, the tree is initialized with the initial state. In each iteration,

one random sample is collected and the tree is expanded towards this sample,

following the procedure:

1. Extension of nearest vertex toward the sample. The former is selected ac-
cording to a distance function and the control and trajectory are computed
(𝒙new steers the nearest vertex towards the sample and its final state is
denoted with 𝒛new);

2. If there is no collision, 𝒛new is added and its parent is selected consider-
ing neighbor nodes and taking the one that can be steered to 𝒛new with
minimum cost;

3. Finally, rewiring of the tree is performed. Again, near vertices of 𝒛new are
considered and 𝒛new is set as parent of a near vertex if it can be steered
towards 𝒛near with a trajectory whose cost is lower than the current cost of
𝒛near.
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Authors in [32] instead have proposed a different variant of RRT*, LQR-RRT*,

that allows to derive automatically the distance metric and the node extension

method required by RRT*. These two heuristics are obtained applying linear

quadratic regulation (LQR), without requiring domain-specific design choices.

The steps required by the algorithm are the same followed by the standard

RRT*; the differences regard how near and nearest nodes are evaluated and how

steering towards the random sample is obtained. More specifically, LQRNearest

function returns the nearest node in term of the cost-to-go function 𝑆, solution

of the Algebraic Riccati equation related to the matrices of the linearized system.

In a similar way, LQRNear returns the set of vertices within a certain distance

from the considered state, evaluated through the LQR cost function. Finally,

LQRSteer function connects two states using the LQR policy calculated by lin-

earizing about the current state.

The optimal motion planning for robots with linear differential constraints has

been solved by researchers in [33], by using a fixed-final-state-free-final-time

controller, able to connect any two states in an exact and optimal way, where the

cost function is expressed as a trade-off between the duration and the control

effort. The proposed algorithm works similarly to the standard RRT*, including

indeed a sampling procedure, a search of the nearest node in terms of a non-

Euclidean distance and a rewiring of the tree. However, two main differences

arise: the found trajectory arrives exactly at a goal state (not goal region as in

most of RRT* cases) and the sampled point is connected directly to the tree,

instead of the final point of a partial trajectory using a steering function as in the

standard RRT*.

In this thesis, the designed algorithm inherits the idea of using reachability

to build the tree, as presented by authors in [34]. They have proposed the

Reachability-Guided Rapidly-exploring Random Tree (RG-RRT) as a planning

strategy for general systems subject to differential constraints. This procedure

directly considers the limitations of the system dynamics to shape the Voronoi

bias, decreasing the sensitivity to the distance metric and not requiring a system-

specific metric heuristic. This results in a tree that expands efficiently, taking

into account system dynamics and considering the reachable region of the state

space of each node. 𝑅Δ𝑡(𝒛0), specifically, is defined as the set of all points that

can be achieved from 𝒛0 in finite time Δ𝑡, according to the state equation and the
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set of available control inputs 𝑈 . Once the initial node and its corresponding

reachable set are added, a random sample is drawn. If the closest reachable

point is closer to the sample than the closest node of the tree, then both this

reachable point and the corresponding parent node are returned. Otherwise,

the sample is discarded and a new one is drawn: this results in throwing away

samples for which the nearest node is closer than its reachable set.
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Chapter 4

Methodologies

The following chapter addresses the cooperative motion planning problem of

coupled agents and presents the developed solution. Firstly, the problem for-

mulation is reported; secondly, the algorithm is explained from a general point

of view; finally, all the involved functions are defined step by step.

4.1 Problem Formulation

The problem addressed in this thesis is the cooperative motion planning prob-

lem of two autonomous agents, subject to a coupled task expressed as an STL

formula of the form 2.1.

Assume that the two dynamical systems evolve inR𝑛 and that they are described

by ℛ𝑖 =
(
𝑓𝑖 , 𝑋𝑖 , 𝑈𝑖 , 𝒙init 𝑖

)
, 𝑖 = 1, 2, where 𝑋𝑖 ⊆ R

𝑛 is the state space, 𝑈𝑖 ⊆ R
𝑚 is

the control space, 𝑓𝑖 : 𝑋𝑖 ×𝑈𝑖 → 𝑋𝑖 is a Lipschitz continuous function, and 𝒙init 𝑖

is the initial state of system 𝑖. The system behavior (for both agents) is given by:

ℛ𝑖 : 𝒙 𝑖¤ = 𝑓𝑖(𝒙 𝑖(𝑡), 𝒖 𝑖(𝑡)), 𝒙 𝑖(0) = 𝒙init 𝑖 , 𝑖 = 1, 2 (4.1)

Denote with 𝒙 𝑖 [𝒙init 𝑖 , 𝒖 𝑖] the state trajectory originating at 𝒙init 𝑖 obtained by

implementing the control policy 𝒖 𝑖 .

The system ℛ𝑖 is said to satisfy an STL specification 𝜑 under a control policy 𝒖 𝑖

if the state trajectory starting at 𝒙init 𝑖 and obtained through the application of 𝒖 𝑖

satisfies 𝜑, namely 𝒙 𝑖 [𝑥init 𝑖 , 𝒖 𝑖] |= 𝜑.

The aim of the project is, however, not only to come up with a feasible trajectory
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with respect to the environment and the STL specification, but to find the optimal

trajectory for each agent. In other words, the returned trajectory, with the

associated control sequence, must be such that it avoids the obstacles, satisfies

the STL specification and minimizes a cost function.

Hence, the problem to be addressed can be formulated as follows:

Problem 4.1. Given two dynamical systemsℛ1, ℛ2 subject to a task expressed as

an STL formula 𝜑, find control policies 𝒖∗1 and 𝒖∗2 with time domain [0, 𝑇] such

that the costs of the state trajectories, originating respectively in 𝒙init1 and 𝒙init2

under 𝒖∗1 and 𝒖∗2 and satisfying the STL specification, are minimized, i.e.

• 𝒙 𝑖

[
𝒙init 𝑖 , 𝒖

∗
𝑖

]
∈ 𝑋free for all 𝑡 ∈ [0, 𝑇], 𝑖 = 1, 2;

• 𝒙 𝑖

[
𝒙init 𝑖 , 𝒖

∗
𝑖

]
|= 𝜑, 𝑖 = 1, 2;

• 𝒖∗
𝑖
= argmin

𝒖 𝑖∈U𝑖

cost (𝒙 𝑖 [𝒙init 𝑖 , 𝒖 𝑖]) , 𝑖 = 1, 2.

The proposed solution for the cooperative optimal motion planning problem

under STL specifications is explained in detail in the next section.

4.2 Coupled STL_RRT*

The designed approach is inspired by the standard RRT* algorithm and by the

work in [9]. It derives, for each agent, the control sequence 𝑢∗ associated with a

probabilistic optimal trajectory satisfying the STL formula 𝜑. With reference to

RRT*, time is added in the sampling process, thus resulting in the construction

of spatio-temporal trees. On the other hand, the differences with respect to the

solution proposed in [9] are the incorporation of dynamic constraints, exploit-

ing reachability, the best parent search and rewiring procedure. These additions

allow to obtain time-varying trajectories that are probabilistic optimal, feasible

with respect to the dynamics and satisfying 𝜑.

The proposed algorithm, Coupled STL_RRT*, presents three main components:

the sampling-based procedure to expand the tree, the STL verification to check

upon the satisfaction of the STL formula, and the rewiring procedure to obtain

minimum-cost trajectories. Each sample corresponds to a point 𝒛 = (𝑡 , 𝑥) ∈ Z ⊂
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R+ × R; the nearest point in the tree is firstly considered and reachable states

are computed from it. Before adding new points to the tree, the best parent is

selected and the STL verification procedure checks if the potential new nodes do

not violate the active part of the STL formula and if the corresponding trajectories

are feasible as well. Finally, the rewiring step modifies the connections between

the nodes to ensure that the total path from the root to each vertex is the one with

minimum cost. When the algorithm terminates, the generated trajectories are

guaranteed to satisfy the STL formula and to be both feasible and probabilistic

optimal. The different steps are highlighted in Figure 4.1.

Sampling 
Nearest 

node search

Reachable 

states

Addition of 

new nodes

Yes
No

Return 

optimal path

Yes

Workspace 

Limits on parameters 

Max number of iterations STL formula Initial states

Rewire

Maximum 

number of iteration?

Figure 4.1: Main steps of Coupled STL_RRT*

4.2.1 Overall Algorithm

For the discussion below, index 𝑖 is used to refer to the agent that is currently

running the pseudo-code and index 𝑗 for the other agent. From the point of

view of agent 𝑖, once the tree is initialized with the initial state 𝒛init 𝑖 (lines 1-3),

in each iteration the following steps are performed:

1. Sample a random state 𝒛rand𝑖 . Check for collision with the obstacle: if it
occurs, keep sampling a new state, maintaining the same time variable,
until the random sample does not lie in the obstacle region (lines 5-7);

2. Find the closest node 𝒛nearest𝑖 from the nodes of the current tree. If the
nearest nodes of the two agents share the same time variable, go to step 3,
given that the two trees are synchronized. Otherwise, keep the smallest
time variable 𝑡min. Considering the other agent, update the nearest node,
by choosing between nodes with time variable 𝑡min (lines 8-9);

3. Compute the set of reachable states from 𝒛nearest 𝑖 (line 10);
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4. Add new nodes 𝒛new 𝑖 to the tree, depending on the time variable of the
sample and of the reachable nodes. Before adding a new node, select the
best parent, check if the corresponding trajectory does not collide with the
obstacle and if it satisfies the active STL formula (lines 11-15);

5. Rewire the tree, considering neighbor nodes 𝒛near 𝑖 in the tree that are
reachable from 𝒛new 𝑖 . If the path through 𝒛new 𝑖 has cost lower than the
current one, update the parent of 𝒛near 𝑖 with 𝒛new 𝑖 . Before rewiring the
tree, check for collision and satisfaction of the active STL formula (line 18).

The pseudo-code of the algorithm, from the point of view of agent 𝑖, is reported

in Algorithm 2, while the block diagram can be seen in Figure 4.2.

Algorithm 2: Coupled STL_RRT*: Agent 𝑖 perspective

Input: ( 𝑓𝑖 , 𝑋𝑖 , 𝑈𝑖 , 𝑥init 𝑖) = dynamical system
𝜑 = STL formula
𝑜𝑏𝑠 = obstacle to be avoided
𝑡max, 𝑣max, 𝑦max, 𝑢max, 𝑁max = limits on parameters

Output: 𝑢𝑖 = optimal control sequence
1 𝑇𝑖 ← (𝑉𝑖 = ∅, 𝐸𝑖 = ∅);
2 𝒛init 𝑖 ← (0, 𝑥init 𝑖) ;
3 𝑉𝑖 ← InsertNode (𝒛init 𝑖 , 𝑉𝑖);
4 for 𝑖 = 1 to 𝑖 = 𝑁max do
5 𝒛rand 𝑖 ← RandomState ();
6 while ! NoPointCollision (𝒛rand 𝑖 , 𝑜𝑏𝑠) do
7 𝒛rand 𝑖 ← RandomState ();

8 𝒛nearest 𝑖 ← Nearest (𝒛rand 𝑖 , 𝑉𝑖);
9 𝒛nearest 𝑖 ← Synchro (𝒛nearest 𝑖 , 𝒛nearest 𝑗);

10 𝑅𝑖 ← ReachableSet (𝒛nearest 𝑖);
11 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← ComputeNn (𝑅𝑖) ;
12 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← BestParent (𝑉𝑖) ;
13 if 𝑡new𝑖 ∈ 𝐼𝜑 then
14 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← CheckPointSTL (𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝜑);

15 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← CheckTrajSTL (𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝜑);
16 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
17 𝑉𝑖 ← InsertNode (𝒛new 𝑖 , 𝑉𝑖);
18 Rewire (𝒛new 𝑖);

19 𝑝𝑎𝑡ℎ𝑖 ← FindOptPath (𝑉𝑖);
20 𝑢𝑖 ← FindOptU (𝑝𝑎𝑡ℎ𝑖);
21 return (𝑢𝑖);
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Figure 4.2: Block diagram of Coupled STL_RRT*
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4.2.2 Definition of Variables

In this work, a double integrator dynamics is considered. Recall that, given

the initial state 𝑥(0), the initial velocity 𝑥¤ (0) and the control input 𝑢, the state

equation and the velocity equation result to be the following ones:

𝑥(𝑡) = 𝑥(0) + 𝑥¤ (0)𝑡 + 1
2𝑢𝑡

2

𝑥¤ (𝑡) = 𝑥¤ (0) + 𝑢𝑡
(4.2)

For each agent, the algorithm builds a tree, 𝑇 = (𝑉, 𝐸), consisting of a set of

vertices {𝒛 𝑖} connected by edges. Each agent is identified by a struct (either 𝑎1

or 𝑎2), in which the initial state, the random sample, the new nodes to be added

are saved, iteration after iteration. In turn, each node is associated with a struct

containing the following parameters:

• 𝑐𝑜𝑜𝑟𝑑: the first one represents the time variable, the second one defines
the state;

• 𝑣𝑒𝑙: velocity of the dynamical system at that node;

• 𝑝𝑎𝑟𝑒𝑛𝑡: parent of the node;

• 𝑢: control to be applied to reach the node starting from its parent;

• 𝑐𝑜𝑠𝑡: cost to reach the node starting from the root of the tree;

• 𝑝𝑜𝑠: position of the node in the array containing all the vertices of the tree.

4.2.3 STL Specifications

In this thesis, STL formulas mainly express minimum or maximum distance

between the two agents or between the agents and the environment. Formulas

that have been taken into account contain the always and the eventually opera-

tors, also nested to obtain complex specifications. Note that the until operator

𝜑1U[𝑎,𝑏]𝜑2 is equivalent to ℱ[𝑡1]𝜑2 ∧ G[𝑎,𝑡1]𝜑1, with 𝑡1 ∈ (𝑎, 𝑏]. The two agents

construct their trees simultaneously, checking if no collision happens with the

obstacle and if the STL formula is satisfied in its validity domain. The possible

cases that are taken into account are single operators and nested formulas. In

order to consider all the possibilities and to be able to adapt the algorithm to

different types of STL formulas, each STL specification is defined using a struct

containing the following parameters:
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• 𝑑min: minimum distance between agents or minimum value of the state of
one agent;

• 𝑑max: maximum distance between agents or maximum value of the state
of one agent;

• 𝑡𝑖 : initial instant of the validity domain of single operator formulas;

• 𝑡 𝑓 : final instant of the validity domain of single operator formulas;

• 𝑡𝑦𝑝𝑒: operator in the STL formula (0 if always, 1 if eventually);

• 𝑖𝑛𝑒𝑞: type of inequality (0 if ≥, 1 if ≤);

• 𝑎𝑔𝑒𝑛𝑡: agent involved in the specification (0 if both agents, 1 if agent 1, 2
if agent 2);

• 𝑓 𝑙𝑎𝑔_𝑒𝑣: Boolean variable accounting for the satisfaction of the eventually
operator. If true, the eventually has been satisfied and so it is not necessary
to check for it in the next iterations;

• 𝑓 𝑙𝑎𝑔_𝑛𝑒𝑠: Boolean variable indicating if the STL formula is nested. Once
the nested formula is satisfied, it is set to be false;

• 𝑣𝑎𝑙_𝑑𝑜𝑚: validity domain of the formula. The interval is initialized,
depending on the type of the STL specification, as explained in Section
2.2.1.

In order to deal with nested formulas, a further struct is defined, containing

the parameters:

• 𝑡𝑦𝑝𝑒: type of nested formula (0 if G(ℱ ), 1 if ℱ (G));

• 𝑜𝑢𝑡𝑒𝑟: interval of definition of the external operator in the nested formula;

• 𝑖𝑛𝑛𝑒𝑟: interval of definition of the internal operator in the nested formula.

Single operators

The simplest STL formulas are given by single operators, concerning either one

agent or both of them. Within this class of specifications, it is possible to dis-

tinguish three sub-cases: single predicate (1), always operator (2) or eventually

operator (3).
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An example of (1) is 𝜑 = |𝑥1 − 𝑥2 | > 3, requiring the agents to be 3 units apart

at all time instants. The two agents build their trees, ensuring that every added

node is at least 3 units away from all the nodes of the other agent with same

time variable. By proceeding in this way, any final trajectory will satisfy 𝜑.

The formula 𝜑 = G[3,5] |𝑥1 − 𝑥2 | > 4 is an example of the use of the always op-

erator (2). In particular, it requires that in the interval [3, 5] every added vertex

is at least 4 units apart with respect to the other agent. When the two agents

need to expand the tree in [3, 5], namely when the always operator is active, it

is necessary to check that the distance between the agents is at least 4, for each

possible pair of incident nodes. If the constraint is not satisfied, the potential

new nodes are not added to the trees.

Finally, an example of case (3) is given by formula 𝜑 = ℱ[5,7] |𝑥1 − 𝑥2 | > 10,

requiring the agents to be 10 units apart at any instant in the interval [5, 7].

Differently from the always operator, even if a pair of new nodes (𝒛new1 , 𝒛new2),

with time variable 𝑡new ∈ [5, 7], does not satisfy 𝜑, (𝒛new1 , 𝒛new2) are added to

the corresponding trees, because the satisfaction could occur for the subsequent

vertices. As soon as two added nodes do not violate the specification, they are

taken as new roots for the expansion of the trees, in order to ensure that the final

trajectories will go through them, hence satisfying the STL formula.

Nested formulas

Operators can be nested into STL formulas, allowing to define specifications

such as 𝜑 = G[0,10]ℱ[1,3] |𝑥1 − 𝑥2 | > 8 (1) or 𝜑 = ℱ[0,10]G[1,2] |𝑥1 − 𝑥2 | < 5 (2).

In the first example, the formula requires to satisfy |𝑥1 − 𝑥2 | > 8 every 2 seconds

in the interval [1, 13] in which the STL formula is active. If, for example, the

predicate is true at 𝑡 = 2.5, then it is necessary to have |𝑥1 − 𝑥2 | > 8 also at any

instant in the time interval [3.5, 5.5]. Hence, the time interval for the evaluation

of the predicate keeps being updated, until the nested formula becomes inactive.

In the second case, it is required to satisfy |𝑥1 − 𝑥2 | < 5 for one second in the

time interval [1, 12]. If the predicate is true at 𝑡 = 1.5, the nested STL formula

results to be satisfied if the predicate keeps being true in the interval [2.5, 3.5].
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4.2.4 Definition of Functions

InsertNode

The function InsertNode adds the node 𝒛 𝑖 into the array containing all the

nodes of the current tree. Before the insertion, all the parameters associated to

the vertex must be properly set. In the case of the initial node, in particular,

velocity, control input, parent, cost and time are set to 0, the position in the array

is set to 1 and the state is set depending on the initial configuration of the agent.

RandomState

Once the trees of the two agents are initialized, the algorithm starts to build

incrementally the RRT* structures. In each iteration, through the function

RandomState, two random samples are drawn. First of all, the time variable,

that is the same for both agents, is randomly generated. Then, the state vari-

ables are randomly drawn as well. If the sample lies inside the obstacle region,

the time variable is kept and the state is again randomly generated. Hence,

the function RandomState is called until both samples do not collide with the

obstacle.

Nearest

Given the random sample 𝒛rand 𝑖 = (𝑡rand 𝑖 , 𝑥rand 𝑖), the function Nearest finds

the nearest node 𝒛nearest 𝑖 = (𝑡nearest 𝑖 , 𝑥nearest 𝑖) to it in the current tree of the

agent. More specifically, the function evaluates the distance between the sample

and each node of the tree, computing the Euclidean metric. It is important to

underline the fact that the nearest node must be back in time with respect to

the random sample, given that tree is required to propagate forward in time. In

other words the condition 𝑡nearest 𝑖 < 𝑡rand 𝑖 must be satisfied. In order to be sure

that the random sample is ahead in time with respect to the closest node in the

tree, the distance is set to ∞ if the considered vertex has time variable greater

than the one of the sample. In Figure 4.3, it is possible to observe the distinction

between two groups of nodes in the current tree. Given the random sample, its

distance from the red vertices is set to ∞, due to the fact that they are ahead

in time. Instead, the distance between the sample and the light blue nodes is

computed using the Euclidean metric. Among all these values, the function

finally selects the minimum one.
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Figure 4.3: Example of the evaluation of the distance between random sample
and nodes in the current tree: for red nodes, distance is set to ∞; for light blue
nodes, the Euclidean distance is computed.

Synchro

The function Synchro is necessary to synchronize the expansion of the two trees.

Once the two nearest nodes 𝒛nearest 𝑖 and 𝒛nearest 𝑗 are found, indeed, two possible

cases arise. If the two nearest nodes share the same time variable, the agents

are already synchronized and the algorithm goes further. Otherwise, if the two

time variables of the nearest nodes do not coincide, i.e. 𝑡nearest 𝑖 > 𝑡nearest 𝑗 or vice

versa, the algorithm proceeds as follows:

1. Take the smallest time variable between 𝑡nearest 𝑖 and 𝑡nearest 𝑗 , for example
𝑡nearest 𝑗 . For simplicity, call it 𝑡min;

2. Consider agent 𝑖 and update the nearest node. This is done by evaluating
again the Euclidean distance between the nodes in the current tree and the
random sample, but restricting the set of candidate nearest nodes to the
set of vertices with time variable equal to 𝑡min;

3. Pick the updated nearest node 𝒛nearest 𝑖 as the node with time variable 𝑡min

that is closest to the random sample 𝒛rand 𝑖 .

This procedure ensures that the two trees grow simultaneously, adding nodes

at the same time instants, and facilitates the evaluation of the STL specifica-
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tion. An example of the two cases (trees already synchronized and trees not

synchronized) is shown in Figure 4.4.
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Figure 4.4: Example of synchronization of nearest nodes: trees on the left are
already synchronized, trees on the right require synchronization

ReachableSet

In the standard RRT* algorithm, to move from the selected nearest node 𝑥nearest

toward the sampled point 𝑥samp, an edge of length 𝑠𝑡𝑒𝑝 is drawn in the direction

of 𝑥samp. This results in a new node 𝑥new, added to the tree together with the

edge. The standard RRT* algorithm, hence, connects states using straight lines,

that are infeasible for kinodynamic systems, due to differential constraints. In

this work, to expand the tree of agent 𝑖 taking into account the dynamics of the

system, reachability is exploited. More specifically, the function ReachableSet

computes the reachable states starting from 𝒛nearest 𝑖 . They are obtained by

applying a constant control input 𝑢 in the interval [−𝑢max 𝑢max], for a fixed time

Δ𝑡, randomly generated in each iteration. By discretizing the interval [−𝑢max

𝑢max], the reachable states are evaluated and saved only if they satisfy the limits

on the environment and on the velocity. If, for at least one agent, the reachable

set from 𝒛nearest is empty, the algorithm continues to the next iteration. Moreover,

notice that the reachable nodes of agent 𝑖 share the same time variable not only

with each other, but also with the reachable nodes of the other agent, given that

the nearest nodes are synchronized and Δ𝑡 is the same for both autonomous

systems.
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ComputeNn

Based on the reachable nodes returned by the function ReachableSet, potential

nodes to be added to the tree are evaluated. The new candidate vertices are

obtained by calling the function ComputeNn. Depending on the time variable

of the random sample and the time variable of the reachable nodes, two cases

arise, as depicted in Figure 4.5.
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Figure 4.5: Example of evaluation of potential new nodes to be added to the tree

In the first case (see Figure 4.5a), the time variable 𝑡reach 𝑖 of the reachable nodes is

smaller than the time variable 𝑡rand 𝑖 of the random sample. All reachable nodes

are hence saved as potential nodes to be added to the tree. In the second case (see

Figure 4.5b), instead, the time variable of the random sample is smaller than the
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time variable of the reachable nodes. Therefore, for each reachable node 𝒛reach 𝑖 ,

𝑡rand 𝑖 is used to save as potential new node the one with time variable 𝑡rand 𝑖 ,

taken along the trajectory that connects 𝒛nearest 𝑖 with the considered reachable

node 𝒛reach 𝑖 .

At this point, for each potential new node 𝒛new 𝑖 , the algorithm checks for possible

collisions with the obstacle region, not only considering the single vertex but

also the whole trajectory. It could happen, indeed, that 𝒛new 𝑖 lies outside the

obstacle region, but part of the trajectory collides. By interpolating the parabola

between 𝒛nearest 𝑖 and 𝒛new 𝑖 , it is possible to check if no collision occurs. If 𝒛new 𝑖 is

already inside the obstacle region, it is directly discarded (Figure 4.6a). 𝒛new 𝑖 is

also not considered as potential new node if at least one point along the trajectory

collides with the obstacle region (Figure 4.6b). Instead, if no collision occurs, as

shown in Figure 4.6c, the node is kept.
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Figure 4.6: Examples of collision and no collision with the obstacle

BestParent

As in the standard RRT* algorithm, new nodes are not connected directly to

the nearest node, but to the best vertex in the current tree. To this aim, for

each potential new node, the function BestParent selects as parent the vertex

that brings to the minimum cost path from the initial node to the new one.

More specifically, the function iterates considering all nodes in the tree that are

within a radius 𝑟 centered on the potential new node. Initially, the parent of

the potential new node is set to be the nearest one; then, if through a node 𝒛 𝑖 of

the current tree it is possible to reach the new node with a path that has lower

cost, the parent is updated to be 𝒛 𝑖 and also the cost, velocity and control are
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changed, depending on 𝒛 𝑖 .

CheckPointSTL

At this point, it is necessary to verify the satisfaction of the STL specifica-

tion before expanding the tree. To this aim, the algorithm calls the function

CheckPointSTL, that checks, for each potential new node 𝒛new 𝑖 = (𝑡new 𝑖 , 𝑥new 𝑖),

if it satisfies the STL specification 𝜑. The function is exploited only if 𝑡new 𝑖

is within the validity domain of the STL formula; otherwise, the procedure is

skipped. In the former case, two possibilities arise depending on the specifica-

tion.

For STL formulas that express preferences related to only one agent, for example

𝜑 := G𝐼(1 ≤ 𝑥𝑖 ≤ 3) (1) or 𝜑 := ℱ𝐼(2 ≤ 𝑥𝑖 ≤ 4) (2), the procedure is the same

applied to check for eventual collisions with the obstacle. However, the func-

tion operates differently if the operator is the always or the eventually one (see

Algorithm 3).

Algorithm 3: CheckPointSTL: single agent involved

Input: 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 = array of potential new nodes of agent 𝑖
𝜑 = STL formula

Output: 𝑛𝑖 = updated array of potential new nodes of agent 𝑖
1 𝑛𝑖 ← ∅;
2 if 𝜑 = G𝐼(𝜇) then
3 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
4 if 𝜇 = ⊤ then
5 𝑛𝑖 ← Insert (𝒛new 𝑖);

6 if 𝜑 = ℱ𝐼(𝜇) then
7 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
8 if 𝜇 = ⊤ then
9 𝑛𝑖 ← 𝒛new 𝑖 ;

10 𝑓 𝑙𝑎𝑔_𝑒𝑣 ← ⊤;
11 break;

12 if 𝑓 𝑙𝑎𝑔_𝑒𝑣 = ⊥ then
13 𝑛𝑖 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ;

14 return 𝑛𝑖 ;
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In the case of the always operator (1), given 𝒛new 𝑖 , the function evaluates the STL

formula considering the coordinates of the new point and, if the specification is

not satisfied, the point is discarded (it will not be added to the tree of agent 𝑖).

On the other hand, in the case of the eventually (2), even if 𝒛new 𝑖 does not satisfy

the specification, it is not discarded: the predicate could be true in the subse-

quent iterations, when evaluating it for one of the children nodes of 𝒛new 𝑖 . If,

instead, 𝒛new 𝑖 satisfies the STL formula, it is saved as unique node to be added to

the tree of agent 𝑖 and selected as new root for the expansion of the tree. In this

way, it is possible to ensure that every final trajectory will satisfy the eventually

operator, forcing the presence of 𝒛new 𝑖 in it. Moreover, the Boolean variable

𝑓 𝑙𝑎𝑔_𝑒𝑣 is set to be true, given that the STL specification is satisfied by at least

𝒛new 𝑖 .

The second possibility regards STL specifications that involve both agents, such

as 𝜑 := G𝐼(|𝑥𝑖 − 𝑥 𝑗 | ≤ 3) or 𝜑 := ℱ𝐼(|𝑥𝑖 − 𝑥 𝑗 | ≥ 4). When the STL specification is

coupled, the verification of the satisfaction requires to consider also the incident

nodes of the other agent. These nodes are the ones that share the same time

variable of the potential new nodes of agent 𝑖 and are extracted from the tree of

agent 𝑗 by interpolation (see the example in Figure 4.7). Again, it is necessary to

distinguish the scenario of the always operator (1) from the one of the eventually

operator (2), as highlighted in Algorithm 4.

In case (1), the function CheckPointSTL iterates considering all the nodes in

𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 and in 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 . More specifically, for each potential new node

𝒛new 𝑖 of agent 𝑖, it is necessary to consider each possible new node 𝒛new 𝑗 of

agent 𝑗. In order to ensure that the formula is satisfied for each choice of the

two agents, from 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 the function eliminates the nodes that violate the

STL specification with at least one node in 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 . By proceeding in this

way, the two updated arrays 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 and 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 contain new nodes for

the two agents that satisfy the coupled STL formula, whatever is the choice of

the nodes in the final trajectories. The same procedure is applied also iterating

through each incident node 𝒛inc 𝑗 of agent 𝑗.

When the STL formula contains the eventually operator, instead, two cases arise.

As seen before for a single agent, if all the possible pairs of nodes (𝒛new 𝑖 , 𝒛new 𝑗)
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Figure 4.7: Example of incident nodes of agent 𝑗 to the potential new nodes of
agent 𝑖

or (𝒛new 𝑖 , 𝒛inc 𝑗) do not satisfy the specification, the two arrays of potential new

nodes are not modified and no point is discarded. Indeed, the STL formula

could be satisfied by two children nodes in the next iterations. On the other

hand, as soon as a pair (𝒛new 𝑖 , 𝒛new 𝑗) or (𝒛new 𝑖 , 𝒛inc 𝑗) satisfies the specification,

the two satisfying nodes are returned as unique nodes to be added to the trees

of the agents. Both of them will be set as new roots for the future expansion of

the trees, in order to ensure that the final trajectories will pass through them and

hence satisfy the eventually operator. Moreover, the Boolean variable 𝑓 𝑙𝑎𝑔_𝑒𝑣

is set to be true.

CheckTrajSTL

The last function that is called before the expansion of the tree is CheckTrajSTL,

which checks if the nodes in 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 satisfy the active STL specification

along their trajectories. Clearly, the verification is performed only considering

the time instants within the validity domain of the STL formula. Again, two

cases arise, depending on the type of the preferences, as already seen in the

explanation of CheckPointSTL.

If the STL specification regards only one agent, it is necessary to interpolate the
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Algorithm 4: CheckPointSTL: both agents involved

Input: 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 = array of potential new nodes of agent 𝑖
𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 = array of potential new nodes of agent 𝑗
𝜑 = STL formula

Output: 𝑛𝑖 = updated array of potential new nodes of agent 𝑖
𝑛 𝑗 = updated array of potential new nodes of agent 𝑗

1 𝑛𝑖 ← ∅, 𝑛 𝑗 ← ∅;
2 𝑖𝑛𝑐 𝑗 ← IncidentPoint (𝑇𝑗 , 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖);
3 if 𝜑 = G𝐼(𝜇) then
4 𝑓 𝑙𝑎𝑔 = ⊤;
5 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
6 foreach 𝒛new 𝑗 ∈ {𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗} ∪ {𝑖𝑛𝑐 𝑗} do

7 if 𝜇 = ⊥ then
8 𝑓 𝑙𝑎𝑔 = ⊥;
9 break;

10 if 𝑓 𝑙𝑎𝑔 = ⊤ then
11 𝑛𝑖 ← Insert (𝒛new 𝑖);

12 𝑛 𝑗 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 ;

13 if 𝜑 = ℱ𝐼(𝜇) then
14 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
15 foreach 𝒛new 𝑗 ∈ {𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗} ∪ {𝑖𝑛𝑐 𝑗} do

16 if 𝜇 = ⊤ then
17 𝑛𝑖 ← 𝒛new 𝑖 , 𝑛 𝑗 ← 𝒛new 𝑗 ;

18 𝑓 𝑙𝑎𝑔_𝑒𝑣 ← ⊤;
19 break;

20 if 𝑓 𝑙𝑎𝑔_𝑒𝑣 = ⊥ then
21 𝑛𝑖 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝑛 𝑗 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 ;

22 return 𝑛𝑖 , 𝑛 𝑗 ;

trajectory that connects each 𝒛new 𝑖 to its parent. The function, again, operates

differently depending on the operator.

In the case of the always operator, if there is no satisfaction for at least one point

along the trajectory, then 𝒛new 𝑖 is discarded from the array of potential new

nodes and it will not be added as new node to the tree.

On the other hand, in the case of the eventually operator, more than one scenario

emerges. If 𝑓 𝑙𝑎𝑔_𝑒𝑣 is true, this means that the eventually operator has been
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already satisfied for at least one node. If so, there is no need of checking upon

the satisfaction of the specification also along the trajectory and the array of

potential new nodes is not modified. Instead, if the STL formula is still not satis-

fied, the function interpolates along the trajectory up to 𝒛new 𝑖 . Two cases arise in

turn, as seen also for the function CheckPointSTL. When, for each potential new

node, the STL specification is not satisfied along the trajectory (this implies that

it is necessary to satisfy the specification in the subsequent iterations), the array

𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 is just returned without any modification. If, alternatively, a point

along the trajectory of 𝒛new 𝑖 satisfies the specification, then 𝒛new 𝑖 is returned as

unique new point to be added and 𝑓 𝑙𝑎𝑔_𝑒𝑣 is set to be true. The pseudo-code

of the function, when a single agent is involved, is reported in Algorithm 5.

In the second case, when the STL formula specifies preferences on both agents,

the procedure needs to consider all the combinations between each possible

node in 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 and each possible node in 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 . Incident nodes of

agent 𝑗 are also taken into account (see Algorithm 6).

In particular, when the always operator is considered, CheckTrajSTL updates

the arrays 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 and 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 , by eliminating from 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 the

nodes 𝒛new 𝑖 that violate the STL formula along the trajectory with at least one

node of 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 or one incident node of agent 𝑗. In order to check upon

the satisfaction of the STL specification along the trajectory, it is necessary to

interpolate between each potential new node and its parent, taking into account

the potential new nodes and the incident nodes of agent 𝑗. An example of the

procedure is reported in Figure 4.8. More specifically, starting from a potential

new node 𝒛new 𝑖 and an incident node 𝒛inc 𝑗 , the corresponding trajectories are

interpolated going backwards through the parent nodes in the tree of agent 𝑗.

In the first step, time is interpolated between the time variable of the parent of

𝒛inc 𝑗 (called 𝑡start) and the time variable of 𝒛inc 𝑗 (called 𝑡final). In the second step,

𝑡final becomes the time variable of the parent of 𝒛inc 𝑗 , while 𝑡start is set as the time

variable of the parent of the parent of 𝒛inc 𝑗 . The interpolation is performed in

this way, until 𝑡start becomes the time variable of the parent of 𝒛new 𝑖 .

In the case of the eventually operator, instead, there is more than one possibility,

as presented when the STL formula involves only one agent. Indeed, if the speci-

fication is still not satisfied, for each combination (𝒛new 𝑖 , 𝒛new 𝑗) and (𝒛new 𝑖 , 𝒛inc 𝑗),
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Algorithm 5: CheckTrajSTL: single agent involved

Input: 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 = array of potential new nodes of agent 𝑖
𝜑 = STL formula

Output: 𝑛𝑖 = updated array of potential new nodes of agent 𝑖
1 𝑛𝑖 ← ∅;
2 if 𝜑 = G𝐼(𝜇) then
3 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
4 for 𝑡 ∈ [𝑡par𝑖

, 𝑡new𝑖 ] do

5 𝒛inter 𝑖 ← Interpolate (𝒛new 𝑖);
6 if 𝜇 = ⊥ then
7 𝑓 𝑙𝑎𝑔 = ⊥;
8 break;

9 if 𝑓 𝑙𝑎𝑔 = ⊤ then
10 𝑛𝑖 ← Insert (𝒛new 𝑖);

11 if 𝜑 = ℱ𝐼(𝜇) then
12 if 𝑓 𝑙𝑎𝑔_𝑒𝑣 = ⊤ then
13 𝑛𝑖 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ;
14 else
15 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
16 for 𝑡 ∈ [𝑡par𝑖

, 𝑡new𝑖 ] do

17 𝒛inter 𝑖 ← Interpolate (𝒛new 𝑖);
18 if 𝜇 = ⊤ then
19 𝑛𝑖 ← 𝒛new 𝑖 ;
20 𝑓 𝑙𝑎𝑔_𝑒𝑣 ← ⊤;
21 break;

22 if 𝑓 𝑙𝑎𝑔_𝑒𝑣 = ⊥ then
23 𝑛𝑖 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ;

24 return 𝑛𝑖 ;

interpolation is performed along the corresponding trajectories. If, considering

𝒛new 𝑖 and 𝒛new 𝑗 , two interpolated points satisfy the STL formula, 𝒛new 𝑖 and 𝒛new 𝑗

are saved as unique new nodes and 𝑓 𝑙𝑎𝑔_𝑒𝑣 is set to be true. Otherwise, if the

eventually operator still remains not satisfied, the two arrays 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 and

𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 are not modified. This happens also if the formula containing the

eventually operator has been already satisfied.
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Algorithm 6: CheckTrajSTL: both agents involved

Input: 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 = array of potential new nodes of agent 𝑖
𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 = array of potential new nodes of agent 𝑗
𝜑 = STL formula

Output: 𝑛𝑖 = updated array of potential new nodes of agent 𝑖
𝑛 𝑗 = updated array of potential new nodes of agent 𝑗

1 𝑛𝑖 ← ∅, 𝑛 𝑗 ← ∅;
2 𝑖𝑛𝑐 𝑗 ← IncidentPoint (𝑇𝑗 , 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖);
3 if 𝜑 = G𝐼(𝜇) then
4 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
5 foreach 𝒛new 𝑗 ∈ {𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗} ∪ {𝑖𝑛𝑐 𝑗} do

6 for 𝑡 ∈ [𝑡par𝑖
, 𝑡new𝑖 ] do

7 𝒛inter 𝑖 ← Interpolate (𝒛new 𝑖);
8 𝒛inter 𝑗 ← Interpolate (𝒛new 𝑗);

9 if 𝜇 = ⊥ then
10 𝑓 𝑙𝑎𝑔 = ⊥;
11 break;

12 if 𝑓 𝑙𝑎𝑔 = ⊤ then
13 𝑛𝑖 ← Insert (𝒛new 𝑖);

14 𝑛 𝑗 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 ;

15 if 𝜑 = ℱ𝐼(𝜇) then
16 if 𝑓 𝑙𝑎𝑔_𝑒𝑣 = ⊤ then
17 𝑛𝑖 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝑛 𝑗 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 ;
18 else
19 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
20 foreach 𝒛new 𝑗 ∈ {𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗} ∪ {𝑖𝑛𝑐 𝑗} do

21 for 𝑡 ∈ [𝑡par𝑖
, 𝑡new𝑖 ] do

22 𝒛inter 𝑖 ← Interpolate (𝒛new 𝑖);
23 𝒛inter 𝑗 ← Interpolate (𝒛new 𝑗);

24 if 𝜇 = ⊤ then
25 𝑛𝑖 ← 𝒛new 𝑖 , 𝑛 𝑗 ← 𝒛new 𝑗 ;

26 𝑓 𝑙𝑎𝑔_𝑒𝑣 ← ⊤;
27 break;

28 if 𝑓 𝑙𝑎𝑔_𝑒𝑣 = ⊥ then
29 𝑛𝑖 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝑛 𝑗 ← 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠 𝑗 ;

30 return 𝑛𝑖 , 𝑛 𝑗 ;
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Figure 4.8: Example of interpolation considering a potential new node of agent
𝑖 and an incident node of agent 𝑗

Rewire

Once a new node 𝒛new 𝑖 is added to the tree of agent 𝑖, the function Rewire is

used to rewire the tree. As already presented in Section 2.4.1, the rewiring pro-

cedure allows to find probabilistic optimal trajectories, by minimizing the path

between the beginning of the tree and the nodes. Considering the newly added

node 𝒛new 𝑖 , the function searches within a given radius in the current tree. If a

neighbor node to 𝒛new 𝑖 (call it 𝒛near 𝑖), ahead in time with respect to 𝒛new 𝑖 , can

be reached from 𝒛new 𝑖 and the cost is lower than the current cost, the parent

of 𝒛near 𝑖 is updated to be 𝒛new 𝑖 . The pseudo-code of the rewiring procedure is

reported in Algorithm 7.

In the proposed algorithm it is possible to distinguish three steps within the

function Rewire:

1. Check if the node 𝒛near 𝑖 can be reached, starting from 𝒛new 𝑖 , and if the
obtained cost is lower than the current one (lines 4-5);

2. Check if the rewired trajectory does not collide with the obstacle and does
not exit from the environment (line 6);

3. If necessary, check if the STL formula is satisfied along the rewired trajec-
tory (lines 7-9).
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Algorithm 7: Rewiring

Input: 𝒛new 𝑖 = new node added to the tree of agent 𝑖
1 foreach 𝒛 𝑖 ∈ 𝑉𝑖 do
2 if Dist (𝒛new 𝑖 , 𝒛 𝑖) < 𝑟 then
3 𝑡 = 𝑡𝑖 − 𝑡new 𝑖 ;
4 [ 𝑓 𝑙𝑎𝑔, 𝑐𝑡𝑟𝑙] = CheckReachability (𝒛new 𝑖 , 𝒛 𝑖);
5 if 𝑓 𝑙𝑎𝑔 = ⊤ ∧ 𝒛 𝑖cost > 𝒛new 𝑖cost + Abs (𝑐𝑡𝑟𝑙)·𝑡 then
6 if NoTrajColl (𝒛new 𝑖 , 𝒛 𝑖 , 𝑜𝑏𝑠) ∧ NoTrajExit (𝒛new 𝑖 , 𝒛 𝑖) then
7 𝑓 𝑙𝑎𝑔_𝑟𝑒𝑤 = CheckRewireSTL (𝒛new 𝑖 , 𝒛 𝑖);
8 if 𝑓 𝑙𝑎𝑔_𝑟𝑒𝑤 = ⊥ ∧ 𝜑 = G𝐼(𝜇) then
9 Continue;

10 𝒛 𝑖parent← 𝒛new 𝑖 ;

11 𝒛 𝑖cost = 𝒛new 𝑖cost + Abs (𝑐𝑡𝑟𝑙)·𝑡;
12 𝒛 𝑖vel← 𝒛new 𝑖vel + 𝑐𝑡𝑟𝑙 · 𝑡;
13 𝒛 𝑖u← 𝑐𝑡𝑟𝑙;

If all the steps are passed, the parameters of 𝒛near 𝑖 (cost, control, velocity and

parent) are updated according to 𝒛new 𝑖 (lines 10-13) and the rewired trajectory

is plotted.

For what regards step 1, given the double integrator dynamics and the coor-

dinates of 𝒛near 𝑖 and 𝒛new 𝑖 , it is possible to compute the required control 𝑢, in

order to drive the agent between the two nodes. If the resulting value is within

the interval [−𝑢max 𝑢max], then 𝒛near 𝑖 is actually reachable, starting from 𝒛new 𝑖 . If

so, the function checks upon the feasibility of the trajectory with respect to the

environment. Finally, the STL formula is evaluated along the rewired trajectory.

Again, the procedure differs, depending on whether the specification concerns

only one of the agents or both and depending on the type of operator.

When only one agent is involved and the STL formula contains the always op-

erator, it is necessary to interpolate the rewired trajectory and check upon the

satisfaction in the time instants within the validity domain of the formula itself.

If there is at least one violation, the rewiring between 𝒛new 𝑖 and 𝒛near 𝑖 will not

be performed.

Instead, in the case of the eventually operator, rewiring is performed, also in

the case of no satisfaction, given that the STL formula could be satisfied in the
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subsequent iterations.

The procedure is more complicated when both agents are involved. Starting

from the always operator, consider the rewired trajectory of agent 𝑖 between

𝒛new 𝑖 and 𝒛near 𝑖 . While the previous trajectory, having 𝒛near 𝑖 as final point, was

satisfying the specification for construction, the rewired one could violate the

formula with the corresponding trajectories of agent 𝑗. Given that the final

trajectories will travel backwards through the trees, the nodes of the other agent

that need to be considered are the ones sharing the time variable with 𝒛near 𝑖 ,

namely the incident ones to 𝒛near 𝑖 . For each of them, the function interpolates

the trajectories of agent 𝑖 and agent 𝑗 between the same time instants, up to 𝒛new 𝑖

(the procedure is the same one of the function CheckTrajSTL). If no violation

occurs, then the rewired trajectory is plotted and the parameters of 𝒛near 𝑖 are

updated. An example of the described procedure is reported in Figure 4.9.
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Figure 4.9: Trajectories to be interpolated in the rewiring procedure
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Chapter 5

Simulations and Discussion

This chapter presents simulations carried out in Matlab to test the designed algo-

rithm. The focus is on STL fragments of the kind 𝜑 = 𝜇 | G[𝑎,𝑏]𝜑 | ℱ[𝑎,𝑏]𝜑 | 𝜑1∧𝜑2.

5.1 Parameters

As already highlighted in Algorithm 2, the inputs of Coupled STL_RRT* are the

following ones:

• ( 𝑓𝑖 , 𝑋𝑖 , 𝑈𝑖 , 𝑥init 𝑖) = dynamical system;

• 𝜑 = STL formula;

• 𝑜𝑏𝑠 = obstacle to be avoided;

• 𝑡max = limit on the time;

• 𝑣max = limit on the velocity;

• 𝑦max = limit on the environment;

• 𝑢max = limit on the control input;

• 𝑁max = maximum number of iterations.

For what regards the simulations, double integrator dynamics is considered.

Consequently, the maximum control input that can be applied to the two au-

tonomous agents represents the maximum acceleration, expressed in 𝑚/𝑠2.

All the parameters of the STL formula (see Section 4.2.3) are set by the user, de-

pending on the desired preferences. It is possible to take into account formulas

of the kind 𝜑 = ℱ𝐼 |𝑥1 − 𝑥2 | ⋚ 𝑑 ∧ G𝐼 |𝑥1 − 𝑥2 | ⋚ 𝑑, by saving each STL fragment
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of the conjunction into an array. It is important to underline the fact that it could

be possible to consider also predicates that do not express only maximum or

minimum distances between the agents, as soon as the corresponding predicate

functions can be evaluated.

The obstacle to be avoided, instead, is static and it is represented by a rectangle,

whose coordinates can be arbitrarily changed by the user. It could be also pos-

sible to define a more complex environment with various obstacles, defining an

array to contain all of them.

5.2 Simulation Results

The algorithm has been tested setting the aforementioned parameters as follows:

• 𝑥init1 = 3 𝑚, 𝑥init2 = −3 𝑚;

• 𝑜𝑏𝑠 = rectangle (left lower corner = (3.7, 4), length = 3 𝑚, height = 1.8 𝑚);

• 𝑡max = 30 𝑠;

• 𝑣max = 1 𝑚/𝑠;

• 𝑦max = 6 𝑚;

• 𝑢max = 1.25 𝑚/𝑠2;

• 𝑁max = 500.
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Figure 5.1: Environment and initial positions of the agents
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In the next subsections, the results obtained with different STL formulas are

presented. In all the cases, the tree of agent 1 is the blue one, while the vertices

and edges of agent 2 are yellow. The rewired trajectories are coloured in green

and the returned probabilistic optimal trajectories, satisfying the STL formula,

are highlighted in red.

5.2.1 Single Predicate Formula

The first STL formula that has been taken into account contains a single predicate

𝜇, expressing a desired minimum or maximum distance between the two au-

tonomous agents. More specifically, the preference is encoded as 𝜑 = |𝑥1− 𝑥2 | >

4, requiring the agents to be 4 units apart at all times. Agent 1 and agent 2 build

their trees ensuring that every added vertex is at least 4 units away from all

incident nodes of the other agent. A new node is added only if it satisfies the

specification, ensuring that the final trajectories will satisfy 𝜑 as well.
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Figure 5.2: 𝜑 = |𝑥1 − 𝑥2 | > 4

The obtained probabilistic optimal trajectories are highlighted in Figure 5.2,

while the optimal sequences of control inputs are plotted in Figure 5.3.
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(a) Agent 1: optimal control sequence
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(b) Agent 2: optimal control sequence

Figure 5.3: Optimal control inputs for 𝜑 = |𝑥1 − 𝑥2 | > 4

5.2.2 Always Operator

The second formula that has been simulated contains the always operator, ex-

pressing a desired distance between the two agents in a specific time interval.
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Figure 5.4: 𝜑 = G[3,8] |𝑥1 − 𝑥2 | < 2

Figure 5.4 shows the evolution of the two trees and the probabilistic optimal

trajectories when the STL formula is 𝜑 = G[3,8] |𝑥1 − 𝑥2 | < 2. It requires that

in the interval [3, 8] every added vertex is less than 2 units apart with respect

to the other agent. When the two agents need to expand the tree in [3, 8], the
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algorithm checks that the distance between the autonomous agents is less than

2 units, for each possible pair of incident nodes. If the constraint is not satisfied,

the potential new nodes are not added to the trees. Notice that outside the

validity domain of the always operator the distance could be greater than 2

units, as it happens in the first instants (initial distance is indeed equal to 6

units).
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(a) Agent 1: optimal control sequence
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(b) Agent 2: optimal control sequence

Figure 5.5: Optimal control inputs for 𝜑 = G[3,8] |𝑥1 − 𝑥2 | < 2

5.2.3 Eventually Operator

As third case, the algorithm has been tested considering an STL specification

containing the eventually operator. More specifically, the preference is given by

𝜑 = ℱ[3,7] |𝑥1 − 𝑥2 | > 5, requiring the agents to be 5 units apart at any instant in

the interval [3, 7]. Differently from the always operator, even if a pair of new

nodes (𝒛new1 , 𝒛new2) with time variable 𝑡new ∈ [3, 7] does not satisfy 𝜑, (𝒛new1 ,

𝒛new2) are added to the corresponding trees, because the satisfaction could occur

for the children nodes. As soon as two added nodes do not violate the speci-

fication, they are taken as new roots for the expansion of the trees, in order to

ensure that the final trajectories will go through them, hence satisfying the STL

formula. In this specific case (see Figure 5.6), the first two nodes that satisfy the

STL formula are circled in red. The common time variable is 𝑡 = 4.5244 𝑠, while

the two state variables are 𝑥1 = 2.6003 𝑚 and 𝑥2 = -2.4099 𝑚.
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Figure 5.6: 𝜑 = ℱ[3,7] |𝑥1 − 𝑥2 | > 5
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(a) Agent 1: optimal control sequence
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(b) Agent 2: optimal control sequence

Figure 5.7: Optimal control inputs for 𝜑 = ℱ[3,7] |𝑥1 − 𝑥2 | > 5

5.2.4 Nested Formulas

In the fourth case, nested formulas have been simulated. Operators can be nested

into STL formulas, allowing to define specifications such as𝜑 = G𝐼𝐺ℱ𝐼𝐹 |𝑥1 − 𝑥2 | ⋚

𝑑 (1) or 𝜑 = ℱ𝐼𝐹G𝐼𝐺 |𝑥1 − 𝑥2 | ⋚ 𝑑 (2).

For the first type of nested formulas, 𝜑 = G[0,6]ℱ[1,3] |𝑥1 − 𝑥2 | > 4 has been taken

into account. The formula requires to satisfy |𝑥1 − 𝑥2 | > 4 every 2 seconds in

the interval [1, 9] in which the STL formula is active. The time interval for

the evaluation of the predicate keeps being updated, until the nested formula
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becomes inactive.
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Figure 5.8: 𝜑 = G[0,6]ℱ[1,3] |𝑥1 − 𝑥2 | > 4
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(a) Agent 1: optimal control sequence
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(b) Agent 2: optimal control sequence

Figure 5.9: Optimal control inputs for 𝜑 = G[0,6]ℱ[1,3] |𝑥1 − 𝑥2 | > 4

In Figure 5.8, the vertices that satisfy the eventually operator are circled in red.

They are then used as new roots for the expansion of the trees, in order to ensure

that the final trajectories will pass through them. In particular, the selected pair

of nodes are the following ones:

• 𝑡 = 1.7118 𝑠, 𝑥1 = 2.4872 𝑚 and 𝑥2 = -3.5128 𝑚;

• 𝑡 = 3.3582 𝑠, 𝑥1 = 0.9950 𝑚 and 𝑥2 = -4.2435 𝑚;
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• 𝑡 = 5.4563 𝑠, 𝑥1 = 0.0119 𝑚 and 𝑥2 = -4.3372 𝑚;

• 𝑡 = 6.7514 𝑠, 𝑥1 = -0.6186 𝑚 and 𝑥2 = -4.7413 𝑚;

• 𝑡 = 8.6519 𝑠, 𝑥1 = -1.1539 𝑚 and 𝑥2 = -5.6827 𝑚;

• 𝑡 = 10.3414 𝑠, 𝑥1 = -1.7973 𝑚 and 𝑥2 = -5.3531 𝑚;

For the second type of nested formulas, instead, 𝜑 = ℱ[0,10]G[1,5] |𝑥1 − 𝑥2 | < 3

has been tested. The preference requires to satisfy |𝑥1 − 𝑥2 | < 3 for four seconds

in the time interval [1, 15].
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Figure 5.10: 𝜑 = ℱ[0,10]G[1,5] |𝑥1 − 𝑥2 | < 3

From Figure 5.10, it is possible to observe that the first time instant in [0, 10] in

which the predicate |𝑥1 − 𝑥2 | < 3 is verified is 𝑡 = 5.7112 𝑠. The corresponding

state variables in the trees have values 𝑥1 = 1.8772𝑚 and 𝑥2 = -1.0060𝑚. Starting

from them, the algorithm imposes to have a maximum distance of 3 units be-

tween the two agents in the next 4 seconds, at least in the interval [5.7112 9.7112]

seconds. In this way, the nested formula is satisfied and then deactivated. For 𝑡

> 10 𝑠, instead, the trees are allowed to have vertices at distance greater than 3

units.

The optimal sequences of control inputs are reported in Figure 5.11.
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(a) Agent 1: optimal control sequence
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(b) Agent 2: optimal control sequence

Figure 5.11: Optimal control inputs for 𝜑 = ℱ[0,10]G[1,5] |𝑥1 − 𝑥2 | < 3

5.2.5 Conjunctions

In order to express even more complex specifications, STL formulas containing

conjunctions have been simulated. In particular, consider 𝜑 = G[0,10](𝑥1 >

0) ∧ G[0,6] |𝑥1 − 𝑥2 | > 3. Agent 1 is required to sample only in the set 𝑥1 > 0 in [0,

10], while the two agents need to keep a minimum distance equal to 3 units in

the interval [0, 6] (see Figure 5.12).
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Figure 5.12: 𝜑 = G[0,10](𝑥1 > 0) ∧ G[0,6] |𝑥1 − 𝑥2 | > 3
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(a) Agent 1: optimal control sequence
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(b) Agent 2: optimal control sequence

Figure 5.13: Optimal control inputs for 𝜑 = G[0,10](𝑥1 > 0) ∧ G[0,6] |𝑥1 − 𝑥2 | > 3

5.2.6 Combination of Nested Operators and Conjunctions

The last example contains conjunctions of nested formulas and single operators,

expressing preferences related to a single agent and to both as well.
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Figure 5.14: 𝜑 = G[0,5](𝑥1 > 0) ∧ G[0,5](𝑥2 < 0) ∧ ℱ[4,10]G[1,5] |𝑥1 − 𝑥2 | < 2

𝜑 = G[0,5](𝑥1 > 0) ∧ G[0,5](𝑥2 < 0) ∧ ℱ[4,10]G[1,5] |𝑥1 − 𝑥2 | < 2 is the formula that

has been simulated. Agent 1 is required to sample only in the set 𝑥1 > 0 in the

interval [0, 5], agent 2 is required to sample only in the set 𝑥2 < 0 in [0, 5] and

the distance between them must be less than 2 units for 4 seconds in the time
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interval [5, 15]. As already seen in the second example of the nested formulas,

as soon as two nodes satisfy the predicate |𝑥1 − 𝑥2 | < 2, the algorithm imposes

to keep a distance less than 2 units also in the next 4 seconds.
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(a) Agent 1: optimal control sequence
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Figure 5.15: Optimal control inputs for 𝜑 = G[0,5](𝑥1 > 0) ∧ G[0,5](𝑥2 < 0) ∧
ℱ[4,10]G[1,5] |𝑥1 − 𝑥2 | < 2
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Chapter 6

Multi-agent Extension

This chapter extends the algorithm Coupled STL_RRT* to multiple agents. The

work is divided as follows: Section 6.1 presents the problem formulation; Section

6.2 discusses the extensions and changes of Coupled STL_RRT* to deal with

multi-agent systems; Section 6.3 contains simulations; Section 6.4 exposes the

3D extension and its test on a 3-agents system.

6.1 Problem Formulation

The problem to be addressed in this chapter is the cooperative motion planning

problem of multiple agents, subject to coupled STL tasks.

A multi-agent system can be represented by an undirected graph G = {V, E},

where each node is an agent and each edge represents the communication

between two agents. Let |V| = 𝑁 and 𝜑 be the STL formula encoding pref-

erences for the multi-agent system. When multiple agents are involved, STL

specifications could include coupled constraints between agents, such as 𝜇 =

|𝑥2 − 𝑥3 | < 3. Therefore, let 𝑀 be the set of all predicates in the STL formula

𝜑, and V
′ = {𝑣𝑖 ∈ V | 𝑥𝑖 appears in any predicate of 𝜑

}
be the set of all nodes

whose states appear in the predicates of the STL formula 𝜑. Furthermore, let

E
′ =

{{
𝑣𝑖 , 𝑣 𝑗

}
∈ E | 𝑥𝑖 , 𝑥 𝑗 appear in a single predicate 𝜇 ∈ 𝑀

}
. Then the graph

G
′ = {V′, E′} is the task dependency graph, a sub-graph of the connection graph

[34]. Clearly, agents that have coupled tasks are neighbours in both G and G
′

(see Figure 6.1 for an example).
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Figure 6.1: Example of connection graph (left) and task dependency graph
(right)

At this point, given a multi-agent system represented by a graph and an STL

formula 𝜑 expressing coupled constraints between the agents, the problem to

be solved is an extension of Problem 4.1 and can be formulated as follows:

Problem 6.1. Given a multi-agent system with 𝑁 agents, each of them repre-

sented by the dynamical system ℛ𝑖 , 𝑖 = 1, ..., 𝑁 , and an STL formula 𝜑, find

control policies 𝒖∗
𝑖

with time domain [0, 𝑇] such that the costs of the state tra-

jectories, originating in 𝒙init𝑖 under 𝒖∗
𝑖

and satisfying the STL specification, are

minimized, i.e.

• 𝒙 𝑖

[
𝒙init 𝑖 , 𝒖

∗
𝑖

]
∈ 𝑋free for all 𝑡 ∈ [0, 𝑇], 𝑖 = 1, ..., 𝑁 ;

• 𝒙 𝑖

[
𝒙init 𝑖 , 𝒖

∗
𝑖

]
|= 𝜑, 𝑖 = 1, ..., 𝑁 ;

• 𝒖∗
𝑖
= argmin

𝒖 𝑖∈U𝑖

cost (𝒙 𝑖 [𝒙init 𝑖 , 𝒖 𝑖]), 𝑖 = 1, ..., 𝑁 .

6.2 MA-Coupled STL_RRT*

This section provides the proposed solution for the cooperative optimal motion

planning problem of multi-agent systems under STL specifications. The de-

signed approach is an extension of the algorithm Coupled STL_RRT*, presented

in Section 4.2. Again, three are the main components: the sampling-based pro-

cedure to expand the tree, the STL verification to check upon the satisfaction of
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Algorithm 8: MA-Coupled STL_RRT*: Agent 𝑖 perspective

Input: ( 𝑓𝑖 , 𝑋𝑖 , 𝑈𝑖 , 𝑥init 𝑖) = dynamical system
𝜑 = STL formula
𝑜𝑏𝑠 = obstacle to be avoided
𝑡max, 𝑣max, 𝑦max, 𝑢max, 𝑁max = limits on parameters

Output: 𝑢𝑖 = optimal control sequence
1 𝑇𝑖 ← (𝑉𝑖 = ∅, 𝐸𝑖 = ∅);
2 𝒛init 𝑖 ← (0, 𝑥init 𝑖) ;
3 𝑉𝑖 ← InsertNode (𝒛init 𝑖 , 𝑉𝑖);
4 for 𝑖 = 1 to 𝑖 = 𝑁max do
5 𝒛rand 𝑖 ← RandomState ();
6 while ! NoPointCollision (𝒛rand 𝑖 , 𝑜𝑏𝑠) do
7 𝒛rand 𝑖 ← RandomState ();

8 𝒛nearest 𝑖 ← Nearest (𝒛rand 𝑖 , 𝑉𝑖);

9 𝒛nearest 𝑖 ← Synchro (𝒛nearest 𝑖);
10 𝑅𝑖 ← ReachableSet (𝒛nearest 𝑖);
11 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← ComputeNn (𝑅𝑖) ;
12 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← BestParent (𝑉𝑖) ;
13 if 𝑡new ∈ 𝐼𝜑 then

14 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← CheckPointSTL (𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝜑);

15 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 ← CheckTrajSTL (𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 , 𝜑);
16 foreach 𝒛new 𝑖 ∈ 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝑠𝑖 do
17 𝑉𝑖 ← InsertNode (𝒛new 𝑖 , 𝑉𝑖);
18 Rewire (𝒛new 𝑖);

19 𝑝𝑎𝑡ℎ𝑖 ← FindOptPath (𝑉𝑖);
20 𝑢𝑖 ← FindOptU (𝑝𝑎𝑡ℎ𝑖);
21 return (𝑢𝑖);

the STL formula, and the rewiring procedure to obtain minimum-cost trajecto-

ries. Among the multiple agents, let 𝑖 be the one running the algorithm. The

pseudo-code is reported in Algorithm 8.

As in the 2-agents scenario, the algorithm builds for every agent a tree, 𝑇 =

(𝑉, 𝐸), consisting of a set of vertices {𝒛 𝑖} connected by edges. Each agent is

identified by a struct 𝑎𝑖 , 𝑖 = 1, ..., 𝑁 ; they are all saved into the struct 𝑎, where

the first position contains 𝑎1, the second 𝑎2 and so on. For what regards the STL

specifications, instead, one addition is required. Indeed, in the 2-agents case,

predicates encode constraints related to either one of the agents or both of them.

When multiple agents are taken into account, STL specifications express cou-

pled constraints between agents. Consequently, for each STL fragment in 𝜑, it
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is necessary to indicate the involved entities, by defining the parameters 𝑎𝑔𝑒𝑛𝑡1

and 𝑎𝑔𝑒𝑛𝑡2. Note that, in the general case, STL tasks could encode preferences

related to more than two agents, such as 𝜑 = G[2,6] |𝑥1 + 𝑥2 + 𝑥3 | < 5. However,

in this work, the straightforward extension of Coupled STL_RRT* considers only

coupled constraints.

Highlighted lines in Algorithm 8 are the ones that have been changed with

respect to the case in which only two agents are involved. For what regards

the function Synchro, when multiple agents are considered, it is necessary to

select the minimum time variable between all the nearest nodes. At this point,

all the agents (excluded the one whose 𝒛nearest has the minimum 𝑡nearest) must

be synchronized, following the procedure explained in Chapter 4. Concerning

CheckPointSTL and CheckTrajSTL, instead, the main change is related to the

fact that the algorithm is required to extract the two involved agents from the

considered STL fragment. Hence, for each predicate in 𝜑, the parameters 𝑎𝑔𝑒𝑛𝑡1

and 𝑎𝑔𝑒𝑛𝑡2 are consulted, in order to check upon the verification of the STL

specification taking into account only the implicated agents.

6.3 Simulations

MA-Coupled STL_RRT* has been tested considering different multi-agent sys-

tems, starting from 4 agents and then increasing the number of autonomous

entities and the complexity of the STL formula. In all the simulations, the inputs

of the algorithm have been set as follows:

• 𝑜𝑏𝑠 = rectangle (left lower corner = (4, 7), length = 3 𝑚, height = 2 𝑚)

• 𝑡max = 15 𝑠;

• 𝑣max = 1 𝑚/𝑠;

• 𝑦max = 10 𝑚;

• 𝑢max = 1.25 𝑚/𝑠2;

• 𝑁max = 200.

Depending on the number of agents, instead, the initial positions 𝑥init𝑖 have been

allocated differently.
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CHAPTER 6. MULTI-AGENT EXTENSION

6.3.1 Simulations with 4 Autonomous Agents

The first tests that have been performed take into account a multi-agent system

with 4 autonomous agents. The initial positions of the agents have been set as

follows: 𝑥init1 = 6 𝑚, 𝑥init2 = 2 𝑚, 𝑥init3 = −2 𝑚, 𝑥init4 = −6 𝑚.

The STL specification that has been simulated is 𝜑 = G[2,6] |𝑥1 − 𝑥2 | < 5 ∧

G[0,6] |𝑥1 − 𝑥4 | > 8 ∧ ℱ[0,7] |𝑥1 − 𝑥3 | < 7 ∧ ℱ[3,10] |𝑥3 − 𝑥4 | > 4. Agents 1 and 2 are

required to be less than 5 units apart at every instant in the interval [2, 6]; agents

1 and 4 are required to be at least 8 units apart at every instant in the interval

[0, 6]; agents 1 and 3 are required to be less than 7 units apart at any instant in

the interval [0, 7]; agents 3 and 4 are required to be at least 4 units apart at any

instant in the interval [3, 10]. When the specification includes the eventually

operator, the nodes that satisfy it are circled in red and taken as new roots for

the future expansion of the trees, as already explained in Chapter 4.
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Figure 6.2: 𝜑 = G[2,6] |𝑥1 − 𝑥2 | < 5 ∧ G[0,6] |𝑥1 − 𝑥4 | > 8 ∧ ℱ[0,7] |𝑥1 − 𝑥3 | < 7 ∧
ℱ[3,10] |𝑥3 − 𝑥4 | > 4

Maintaining the same multi-agent system, nested STL formulas have been

tested. In particular, the considered specification is 𝜑 = ℱ[0,6] |𝑥1 − 𝑥2 | >

5 ∧ ℱ[2,8]G[0,2] |𝑥1 − 𝑥3 | < 7 ∧ G[3,6] |𝑥3 − 𝑥4 | > 2. For what regards the nested

formula related to agents 1 and 3, it is required to satisfy |𝑥1 − 𝑥3 | < 7 for 2
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seconds in the time interval [2, 10]. The resulting trajectories are highlighted in

Figure 6.3.
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Figure 6.3: 𝜑 = ℱ[0,6] |𝑥1 − 𝑥2 | > 5 ∧ ℱ[2,8]G[0,2] |𝑥1 − 𝑥3 | < 7 ∧ G[3,6] |𝑥3 − 𝑥4 | > 2

6.3.2 Simulations with 6 Autonomous Agents

When the multi-agent system has been extended to include 6 agents, the initial

positions of the agents have been set as follows: 𝑥init1 = 7𝑚, 𝑥init2 = 4𝑚, 𝑥init3 = 1

𝑚, 𝑥init4 = −1 𝑚, 𝑥init5 = −4 𝑚, 𝑥init6 = −7 𝑚.

The first simulated STL formula contains 5 coupled predicates between the

agents: 𝜑 = G[2,5] |𝑥1 − 𝑥2 | < 3 ∧ ℱ[0,7] |𝑥2 − 𝑥3 | > 4 ∧ G[0,3] |𝑥3 − 𝑥4 | < 3 ∧

ℱ[3,6] |𝑥4 − 𝑥5 | < 2 ∧ G[4,7] |𝑥5 − 𝑥6 | < 3. More specifically, agents 1 and 2 are

required to be less than 3 units apart at every instant in the interval [2, 5]; agents

2 and 3 are required to be at least 4 units apart at any instant in the interval [0, 7];

agents 3 and 4 are required to be less than 3 units apart at every instant in the

interval [0, 3]; agents 4 and 5 are required to be less than 2 units apart at any

instant in the interval [3, 6]; agents 5 and 6 are required to be less than 3 units

apart at every instant in the interval [4, 7] (see Figure 6.4).

The second simulated STL formula is 𝜑 = ℱ[5,10] |𝑥1 − 𝑥5 | < 10∧G[0,5] |𝑥1 − 𝑥6 | >

7 ∧ ℱ[2,5] |𝑥5 − 𝑥4 | > 2 ∧ G[8,11] |𝑥2 − 𝑥4 | < 6∧ ℱ[0,5]G[0,2] |𝑥2 − 𝑥3 | > 1. With
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Figure 6.4: 𝜑 = G[2,5] |𝑥1 − 𝑥2 | < 3 ∧ ℱ[0,7] |𝑥2 − 𝑥3 | > 4 ∧ G[0,3] |𝑥3 − 𝑥4 | < 3 ∧
ℱ[3,6] |𝑥4 − 𝑥5 | < 2 ∧ G[4,7] |𝑥5 − 𝑥6 | < 3

respect to the previous case, where only single operators are considered, nested

formulas have been added (Figure 6.5).
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Figure 6.5: 𝜑 = ℱ[5,10] |𝑥1 − 𝑥5 | < 10 ∧ G[0,5] |𝑥1 − 𝑥6 | > 7 ∧ ℱ[2,5] |𝑥5 − 𝑥4 | > 2∧
G[8,11] |𝑥2 − 𝑥4 | < 6 ∧ ℱ[0,5]G[0,2] |𝑥2 − 𝑥3 | > 1
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6.4 3D Extension

The algorithm MA-Coupled STL_RRT* has been extended to deal with the con-

trol of autonomous agents, whose state is specified as a 2-dimensional vector,

having as components the 𝑥 and the 𝑦 position. Also in this case, the robotic

systems are supposed to evolve in time and space following a double integrator

dynamics.

For each agent, the algorithm builds a tree, 𝑇 = (𝑉, 𝐸), consisting of a set of ver-

tices {𝒛 𝑖} connected by edges. With respect to the two-dimensional case, where

only the position along 𝑥 is controlled, the 3D strategy requires as control input

a 2-dimensional vector, whose first component is 𝑢𝑥 , namely the acceleration

along 𝑥, and the second one is 𝑢𝑦 , namely the acceleration along 𝑦. The velocity

vector, moreover, contains both 𝑣𝑥 and 𝑣𝑦 , obtained respectively with the equa-

tions 𝑣𝑥(𝑡) = 𝑣𝑥(0) + 𝑢𝑥 · 𝑡 and 𝑣𝑦(𝑡) = 𝑣𝑦(0) + 𝑢𝑦 · 𝑡. Consequently, each node is

associated with a struct containing the following parameters:

• 𝑐𝑜𝑜𝑟𝑑: a 3-dimensional vector, with components given by the 𝑥 position,
the 𝑦 position and the time variable associated to the state;

• 𝑣𝑒𝑙: a 2-dimensional vector, with components given by the velocity of the
dynamical system at that node along 𝑥 and 𝑦;

• 𝑝𝑎𝑟𝑒𝑛𝑡: parent of the node;

• 𝑢: a 2-dimensional vector, with components given by the control to be
applied along 𝑥 and 𝑦 to reach the node starting from its parent;

• 𝑐𝑜𝑠𝑡: cost to reach the node starting from the root of the tree;

• 𝑝𝑜𝑠: position of the node in the array containing all the vertices of the tree.

The strategy comprehends three main components, as in the case of the previ-

ously proposed approaches: the sampling-based procedure to expand the tree,

the STL verification to check upon the satisfaction of the STL formula, and the

rewiring procedure to obtain minimum-cost trajectories. The functions involved

are the same presented in Algorithm 2 and 8, extended to deal with 3 dimen-

sions. In particular, when the reachable states are computed, the algorithm

considers all the combinations of control inputs 𝑢𝑥 and 𝑢𝑦 , discretized in the

same interval [-𝑢𝑚𝑎𝑥 𝑢𝑚𝑎𝑥].
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6.4.1 Simulations

The 3D extension has been simulated by setting the following parameters:

• (𝑥init1 = −1 𝑚, 𝑦init1 = 1 𝑚), (𝑥init2 = 0 𝑚, 𝑦init2 = −1 𝑚), (𝑥init3 = 1 𝑚,
𝑦init3 = 1 𝑚);

• 𝑜𝑏𝑠 = rectangle (left lower corner = (1.5, 1.5), length = 0.4 𝑚, height = 0.4
𝑚);

• 𝑡max = 60 𝑠;

• 𝑥max = 𝑦max = 2 𝑚;

• 𝑣𝑥max = 𝑣𝑦max = 0.3 𝑚/𝑠;

• 𝑢𝑥max = 𝑢𝑦max = 0.5 𝑚/𝑠2;

• 𝑁max = 200.

The STL formula taken into account is 𝜑 = |𝑥1 − 𝑥2 | > 0.6 ∧ |𝑥1 − 𝑥3 | > 0.6 ∧

|𝑥3 − 𝑥2 | > 0.6. More specifically, it requires the three autonomous agents to

maintain a minimum distance of 0.6 units during all the motion. The results are

highlighted in Figure 6.6.
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Figure 6.6: 𝜑 = |𝑥1 − 𝑥2 | > 0.6 ∧ |𝑥1 − 𝑥3 | > 0.6 ∧ |𝑥3 − 𝑥2 | > 0.6
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Chapter 7

Conclusions and Future Research

Directions

This chapter summarizes the thesis and presents possible research directions

for future work.

7.1 Conclusions

In this thesis, a multi-agent motion planning approach has been developed, aim-

ing at finding probabilistic optimal trajectories for multiple autonomous agents

under STL tasks.

Firstly, in Chapter 4 the problem has been solved taking into account only two

agents, subject to a coupled STL specification. The design algorithm, Coupled

STL_RRT*, samples points in the coupled state space and builds two spatio-

temporal trees, one for each agents, in a distributed manner. The procedure

is based on RRT* and exploits reachability to add states that are feasible with

respect to the dynamics of the agents. The approach has been simulated con-

sidering different types of STL formulas, proving its efficiency and capability of

returning probabilistic optimal trajectories satisfying the STL constraints (Chap-

ter 5).

In Chapter 6 the algorithm has been extended to multi-agent systems com-

prehending more than three agents. Again, three are the main components

of MA-Coupled STL_RRT*: the sampling-based procedure to expand the tree,
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the STL verification to check upon the satisfaction of an STL formula, and the

rewiring procedure to obtain minimum-cost trajectories. Simulations have been

performed, considering coupled multi-agent systems with 4 and 6 agents re-

spectively. Although the computational time increases when more and more

autonomous agents are considered, the algorithm is still able to find probabilis-

tic optimal trajectories that do not violate the STL requirements selected by the

user. The chapter presents also the 3D extension of MA-Coupled STL_RRT*,

simulated considering three autonomous agents that are controlled along 𝑥 and

𝑦, taking into account a double integrator dynamics for both components.

7.2 Future Research Directions

The approach developed in this project concentrates on autonomous agents

whose dynamics is supposed to be the one of a double integrator. In the general

case, however, dynamical systems are described by non linear differential equa-

tions, with n-dimensional state spaces. The proposed algorithm, hence, could

be extended to deal with different type of autonomous agents and dynamic con-

straints, exploiting again reachability to move the agents towards feasible states.

The exposition in Chapter 4 and 6 assumes that the agents move in an environ-

ment with only static obstacles, represented by rectangles. Indeed, this thesis

proposes an offline approach for supervision and random exploration of defined

environments, where the position of the obstacles is known beforehand. How-

ever, in real-world warehouse settings and autonomous guidance applications,

environment changes might occur. In these cases, the workspace is usually a

partially-known environment with moving non-static obstacles (such as human

beings or other agents), whose movements are typically unpredictable. In or-

der to account for dynamic obstacles and unexplored regions, hence, a possible

improvement could be the change to an online approach, amenable to real-time

computation. As a consequence, robots could be able to adapt their trajectories

while exploring, if dynamic obstacles appear along their paths.

The thesis addresses the multi-agent motion planning problem under STL spec-

ifications that are supposed to be feasible. However, it could happen that the

user specifies STL constraints that are not achievable. In these cases, the robust-

ness metric could be exploited to find solutions that minimize the violation of
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the logical formula.

To conclude, in numerous industrial applications, humans provide high-level

tasks to robots. These requirements could change, requiring to update and

adapt the STL specifications in real-time. Motion planning algorithms, hence,

need to be able to re-plan trajectories in order to satisfy the changing tasks while

autonomous agents are operating. To adapt to changing environmental and

contextual conditions, it becomes necessary to complement reactive behaviours

with replanning, by integrating sensory information [7]. This leads to the need

of developing decentralized reactive online re-plan methods, capable of coor-

dinating motion among agents, avoiding collisions and satisfying the assigned

requirements.
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