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Introduction

The interest in studying communications networks, born some decades ago, mainly

with vocal transmissions, has also involved the computer environment, in particular

the field of data transmissions among nodes of a network. Until the ’90s the research

communities thought that data traffic could be adequately described by certain

Markovian models. This supposition has been denied by the discovery and the

recognition that actual data traffic is different from telephony traffic and this fact

influenced the networking research landscape, necessitating a reexamination and a

changing of some of its basic premises.

The goal of this thesis is first to present some models which can describe the

behavior of traffic data in a network (a LAN for example) and second to explain some

efficient techniques to save energy during the data transmission. In particular it will

be presented a new technique which combines the statistic properties of the traffic

and the great energy savings coming from the introduction of the recent standard

IEEE 802.3az. In the last part of the thesis the results of the simulations obtained im-

plementing the new algorithm proposed will be showed with interesting developments.

Chapter 1 presents some models that try to describe traffic data with particu-

lar attention to the most famous one, that is, the Poisson model with the conclusion

that only a self-similar model can capture the bursty behavior of the traffic data.

Chapter 2 directs its attention toward the great topic of self-similarity: after some

considerations about the state of art, some mathematical concepts with definitions

are presented with the last part dedicated to the identification techniques for the

Hurst parameter.

Chapter 3 deals with Energy Efficient Ethernet: the two main methods on which

the standard IEEE 802.3az could put its bases are presented with a focus on the

9
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description of the LPI mode working. Finally some results obtained analyzing a real

Ethernet card with the introduction of this standard are reported.

Chapter 4 presents some useful tools for the control of data networks with the

final part dedicated to the description of the control strategy proposed with a final

flow chart which helps the visualization of the algorithm in all its steps.

Chapter 5 shows the results of the simulations obtained using the software MATLAB

and in the particular the time and energy savings reached using the EEE strategy

with the use of the prediction of future traffic.

Appendices report other simulations done and the MATLAB code used.



Chapter 1

An Overview of Traffic Models

The development of traffic models is an important research area in the field of the

communication networks. The interest towards this area is high for mainly two reasons.

First, finding a correct model that can accurately represent the characteristics of the

traffic is necessary in network simulations because it can be used in order to study

algorithms and protocols to be applied to real traffic, and to analyze how traffic

reacts to particular network conditions. Second, a good model helps for a better

understanding of the factors which characterizes the network traffic itself. In this

chapter the main traffic models used in the past are presented to have a general

overview on the topic which this thesis is going to analyze.

1.1 Preliminaries About Traffic Modeling

Data traffic can be modeled as a sequence of arrivals of discrete entities such as

packets. There are two equivalent representations: counting processes and inter

arrival time processes. A counting process {N(t)}t=0..∞ is a continuous-time, integer-

valued stochastic process, where N(t) expresses the number of arrivals in the time

interval (0, t]. An inter arrival time process is a non-negative random sequence

{An} where An = Tn − Tn−1 indicates the length of the interval separating arrivals

n− 1 and n. In the case of compound traffic, arrivals may happen in batches, that

is, several arrivals can happen at the same instant Tn. This fact can be modeled

by using an additional non-negative random sequence {Bn}n=1..∞ where Bn is the

cardinality of the n-th batch.

11



12 CHAPTER 1. AN OVERVIEW OF TRAFFIC MODELS

1.2 The Poisson and the Compound Poisson Traf-

fic Models

The Poisson model is the oldest traffic model in use and it was introduced in the

contest of telephony by A. K. Erlang. Traffic is characterized by assuming that the

packet arrivals An are independent and that they are exponentially distributed with

rate parameter λ where P{An ≤ t} = 1− e−λt.
The most important analytical properties of this kind of process are the following:

1. The superposition of independent Poisson processes with rates λ1, λ2, ...λn

results in a new Poisson process with rate λ1 + λ2 + ...+ λn.

2. The number of arrivals in disjoint intervals is statistically independent (Poisson

process is memory less).

3. Mean and variance are equal to λ.

4. The multiplexing of independent traffic streams approximates a Poisson process

if: the traffic streams can be modeled as renewal processes (that is, inter arrival

times are i.i.d.); as the number of streams increases the individual rates decrease

so as to keep the aggregate rate constant.

In the compound Poisson model, the base Poisson model is extended to deliver

batches of packets at once. The inter-batch arrival times are exponentially distributed

while the batch size is geometric. Mathematically, this model has two parameters, λ,

the arrival rate and ρ in (0, 1), the batch parameter.

Thus, the mean number of packets in a batch is 1
ρ
, while the mean inter-batch arrival

time is 1
λ
. Mean packet arrivals over time period T are Tλ

ρ
. The compound Poisson

model shares some of the analytical benefits of the pure Poisson model: the model is

still memory less and the aggregation of streams is still (compound) Poisson.

1.2.1 Limitations of the Poisson model

One basic limitation of the Poisson model is its inability to capture traffic burstiness

which characterizes data traffic. A sequence of arrival times will be bursty if the Tn

tend to form clusters, that is, if the corresponding {An} sees a mix of relatively long

and short inter arrival times. Mathematically speaking, traffic burstiness is related

to short-terms autocorrelations between the inter arrival times. In any renewal traffic

process the autocorrelation function of the {An} vanishes identically while traffic
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burstiness shows positive autocorrelation between the {An}. Thus, Poisson is not

the appropriate model in case of bursty traffic, especially when traffic burstiness

happens on multiple time scales.

Figure 1.1 (a)-(e) (taken from [10]) depicts a set of plots of the number of packets

per time unit for different choices of time units. Starting with a time unit of 100 s

(Fig.1.1(a)), each subsequent plot is obtained from the previous one by increasing

the time resolution by a factor of 10. As it can be seen all plots are very “similar” to

one another (in a distributional sense), that is, data traffic seems to look the same

in the large (min, h) as in the small (s, ms). In particular at every time scale, bursts

consist of bursty sub-periods separated by less bursty sub-periods.

Figure 1.1: Comparison between data traffic on five different time scales (a)-(e) and

synthetic traffic from an appropriately chosen compound Poisson model on the same five

scales (a’)-(e’).
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This behavior is very different from conventional telephone traffic: in fact this

traffic typically produce plots of packet counts which are indistinguishable from white

noise after aggregating over a few hundred milliseconds as illustrated in Fig.1.1 with

the sequence of plots (a’)-(e’); this sequence was obtained in the same way as the

sequence (a)-(e), except that it depicts synthetic traffic generated from a comparable

(in terms of average packet size and arrival rate) compound Poisson process. Fig.1.1

provides a simple method for distinguishing clearly between measured data and

traffic generated by old classic models and strongly suggests the use of self-similar

stochastic processes for traffic modeling purposes.

1.3 The Packet Train Model

This kind of model is a bit more complex than the Poisson one. In fact while the

Poisson model is based on the hypothesis that packet arrivals are independent and

unpredictable, the train model considers the dependence between packets moving

between the same end-nodes. The motivation which supports this kind of model is

the following. If packet arrivals are independent, then routing decision for packets

moving between the same endpoints are performed independently on routers and

this may lead to processing overhead. Otherwise if a train model is assumed, the

routing decisions can be taken only when the head of a new packet train is detected

and no overhead would incur on subsequent packets belonging to the same train.

Another important fact motivates the use of this kind of model: in a network there is

an upper bound for the dimension of files (in fact buffer sizes are bounded) and this

fact determines the fragmentation of data in multiple small packets which however

travel between the same endpoints and therefore they can be considered to belong

to the same packet train.

For completeness, some other traffic models are here cited. There are the Re-

newal Traffic Models (Bernoulli processes), the Markov Traffic Models (Markov

renewal, Markov Modulated) and the Auto-regressive Traffic Models. For a complete

explanation it is sufficient to look at the huge amount of scientific literature on these

fields (for example see [1] and [23]).



Chapter 2

The Self-Similar Model

As it was explained, the Poisson model is not able to capture traffic burstiness which

characterizes data traffic. For this reason, a good starting point for a correct analysis

of data traffic is the seminal study of Leland, Taqqu, Willinger and Wilson [10]

which demonstrated that self-similarity is an important notion in the understanding

of network traffic, also for the modeling and analysis of network performance. With

their work, the authors considered an Ethernet LAN traffic: they demonstrated that

this kind of traffic is statistically self-similar and that none of the used past models

is able to capture this behavior which has serious implications for the design, control

and analysis of these networks.

2.1 Deterministic and Stochastic Self-Similarity

Self-similarity and fractals are mathematical concepts studied mainly by Mandelbrot

in [12]. An object can be called self-similar if some of its properties are preserved

with respect to scaling in space and/or time. If an object is self-similar or fractal, its

parts, when magnified, resemble the shape of the whole.

There are two kinds of self-similarity: deterministic self-similarity in which there is a

strong form of recursive regularity and stochastic self-similarity, more general than

the previous one. An example of deterministic self-similarity is the two dimensional

(2D) Cantor set (see [14]) living on A = [0, 1] x [0, 1]: it is obtained by starting with

a solid or black unit square, scaling its size by 1/3, then placing four copies of the

scaled solid square at the four corners of A. If the same process of scaling followed by

translation is applied recursively to the resulting objects ad infinitum, the limit set

15



16 CHAPTER 2. THE SELF-SIMILAR MODEL

thus reached defines the 2D Cantor set. This process is an example of deterministic

self-similarity and it is illustrated in Figure 2.1.

Figure 2.1: 2D-Cantor set.

Stochastic self-similarity, instead, was introduced because it was necessary for

traffic modeling purposes where stochastic variability is an essential component. Fig-

ure 2.2 (taken from [14]) shows a traffic trace where there is the plot of throughput

against time with time granularity respectively 100 seconds (top left), 10 seconds (top

right), 1 second (bottom left) and 0.1 seconds (bottom right). Unlike deterministic

Figure 2.2: Stochastic self-similarity across time scales.

fractals, the objects in figure 2.2 do not possess exact resemblance of their parts
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with the whole at finer details but, here, the assumption is that the measure of

resemblance is the shape of a graph with the magnitude suitably normalized.

Moreover, traffic series can be considered as sample paths of stochastic processes.

According to this point of view, second-order statistics of these processes are able to

capture burstiness and variability. This idea, as it can be seen in the next paragraphs,

will be useful to study data traffic using math properties.

2.2 The Hurst Parameter

This paragraph has the aim to introduce an important mathematical parameter that

characterizes the stochastic processes of traffic series, that is, the Hurst parameter.

The Hurst parameter is defined in terms of the asymptotic behavior of the rescaled

range as a function of the time span of a time series as follows:

E
[R(n)

S(n)

]
= CnH as n→∞ (2.1)

where n is the time span of the observation (number of data points in a time series),

R(n) is the range of the first n values, S(n) is their standard deviation and C is a

constant.

The Hurst parameter is used as a measure of long term memory of time series

and it relates to the autocorrelations and the rate at which these decrease as the

lag between pairs of values increases. In fractal geometry, the Hurst parameter, has

been denoted by H in honor of both Harold Edwin Hurst (1880-1978) and Ludwig

Otto Hölder (1859-1973) by Benôıt Mandelbrot (1924-2010).

The Hurst parameter is an index of long-range dependence. It quantifies the relative

tendency of a time series either to regress strongly to the mean or to cluster in a

direction (see [25]).

� A value H in the range 0.5 < H < 1 indicates a time series with long-term

positive autocorrelation, meaning both that a high value in the series will

probably be followed by another high value and that the values a long time

into the future will also tend to be high.

� A value H in the range 0 < H < 0.5 indicates a time series with terms switching
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between high and low values, meaning that a single high value of the time

series will be probably followed by a low value and that the value after that

will tend to be high with this tendecy to switch between high and low values

lasting a long time into future.

� A value of H = 0.5 can indicate a completely uncorrelated series, that is, the

process is short-range dependent.

� A value of H = 1 is uninteresting since it leads to a degenerate situation.

� A value of H > 1 is prohibited if the process is stationary.

2.3 State of Art

Previous works on self-similarity may be classified into four categories.

� Measurement-based traffic modeling: traffic traces from physical net-

works are collected and analyzed to detect, identify and quantify pertinent

characteristics using also statistical inference techniques (Hurst parameter

estimation). A significant step toward the development of accurate analysis is

the introduction of wavelet-based techniques (see [4],[6],[16],[22]).

� Physical modeling: tries to find models of network traffic that relate to the

physics of how traffic is generated in an actual network. It has been studied

that in a network, hosts exchanging files whose sizes are heavy tailed (see next

section), give rise to self-similar traffic. This fact comes from some studies

that establish that the superposition of a large number of independent on/off

sources with heavy-tailed on and/or off periods leads to self-similarity in the

aggregated process whose long-range dependence is determined by the heavy

tailedness of on or off periods (see [15],[18],[22]).

� Queueing analysis: there are works that provide mathematical models of

long-range dependent traffic with a view toward facilitating performance anal-

ysis in the queueing theory sense: in fact they establish basic performance

boundaries by investigating queueing behavior with long-range dependent input

(see [5],[11],[13],[19]).
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� Traffic control: has two subcategories: resource provisioning and dimen-

sioning which can be viewed as a form of open-loop control, and closed-loop

or feedback traffic control. Due to their feedback-free nature, the works on

queueing analysis with self-similar input have direct bearing on the resource

dimensioning problem. On the feedback control side there is the work on

multiple time scale congestion control, which tries to exploit correlation struc-

ture that exists across multiple time scales in self-similar traffic for congestion

control purposes. Long-range dependence admits the possibility of exploiting

correlation at large time scales to build a predictability structure which, in

turn, can be guide congestion control actions to obtain significant performance

gains (see [8],[20],[21]).

2.4 Mathematical Background

With the idea that self-similar traffic can be studied using stochastic processes, this

paragraph presents some important mathematical concepts on stochastic processes.

Let X(t) be a covariance stationary stochastic process (or also second-order stationary

process) with mean µ := E[X(t)] (for simplicity, in the following paragraphs, µ = 0),

variance σ2 := E[(X(t)− µ)2] for all t ∈ Z and autocovariance function γ(k), k ≥ 0.

Let X(m) be the aggregate process of X at aggregation level m defined as:

X(m)(i) :=
1

m

mi∑
t=m(i−1)+1

X(t).

For each m, X(t) is partitioned into non-overlapping blocks of size m, their values are

averaged and i is used to index these blocks. Let γ(m)(k) denote the autocovariance

function of X(m). Under these assumptions, the following definitions can be given.

Definition (Second-Order Self-Similarity): X(t) is exactly second-order self-

similar with Hurst parameter H if

γ(k) =
σ2

2
((k + 1)2H − 2k2H + (k − 1)2H) (2.2)

for all k ≥ 1. X(t) is asymptotically second-order self-similar if

lim
m→∞

γ(m)(k) =
σ2

2
((k + 1)2H − 2k2H + (k − 1)2H). (2.3)
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It can be checked that Eq.2.2 implies γ(k) = γ(m)(k) for all m ≥ 1. Thus, second-

order self-similarity captures the property that the correlation structure is exactly or

asymptotically preserved under time aggregation.

2.4.1 Properties

Mathematically, self-similarity manifests itself in a number of equivalent ways:

1. (Slowly Decaying Variances) The variance of the sample mean decreases

more slowly than the reciprocal of the sample size, i.e., var(X(m)) ∝ am−β as

m→∞, with 0 < β < 1 and a is a finite positive constant;

2. (Long Range Dependence) The autocorrelations decay hyperbolically rather

than exponentially fast, implying a non-summable autocorrelation function∑∞
k=−∞ r(k) =∞;

3. The spectral density Γ(ν) = (2π)−1
∑∞

k=−∞ r(k)eikν satisfies the property

Γ(ν) ∝ c|ν|−α for ν → 0, c > 0 and 0 < α = 2H − 1 < 1, that is, the

spectral density diverges around the origin, implying ever larger contributions

by low-frequency components.

As already explained, the value of the Hurst parameter H is very important because

it characterizes the traffic itself. In fact, looking at the definition of self-similar

process:

� if H = 1
2

then r(k) = 0 and X(t) is short-range dependent by the fact that its

samples are completely uncorrelated.

� if 0 < H < 1
2

then
∑∞

k=−∞ r(k) = 0, a condition rarely encountered in applica-

tions.

� if H = 1 then r(k) = 1 for all k ≥ 1 and this case is not interesting.

� H > 1 is prohibited due to the stationary condition on X(t).

For these reasons, the range of value of interest is 1
2
< H < 1.
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2.4.2 Heavy-Tailed Distributions and Predictability

There is a strict relationship between heavy-tailed distributions and long-range

dependence which characterizes self-similarity. A random variable Z has a heavy-

tailed distribution if

P [Z > x] ∝ cx−α, x→∞ (2.4)

where 0 < α < 2 is called the tail index and c is a positive constant. That is, the

tail of the distribution, asymptotically, decays hyperbolically. This is in contrast to

light-tailed distributions as exponential or Gaussian distribution which possess an

an exponentially decreasing tail. In the networking context, the case of interest is

1 < α < 2 and a frequently used heavy-tailed distribution is the Pareto distribution

whose distribution is given by

P [Z ≤ x] = 1−
( b
x

)α
, b ≤ x (2.5)

with α the tail index and b called the location parameter.

The main characteristic of a random variable obeying a heavy-tailed distribution

is that it exhibits extreme variability: in fact it can assume large values with non

negligible probability so that sampling from such a distribution gives a lot samples

with “small” values but also it can give few samples with “very high” values.

The relationship among heavy-tailedness, long-range dependence and then self-

similarity is related to the heavy-tailedness of some network variables, as file sizes

and connection duration, which is the main cause of long-range dependence and

self-similarity in network traffic.

A simple example (see [14]) of the intrinsic predictability associated with heavy-tailed

random variables is presented here. Let Z be a heavy-tailed random variable inter-

preted as the duration of a network connection. The assumption is that a connection

has been active for τ > 0 seconds and to simplify the discussion, time is considered

discrete. The question could be: what is the probability that the connection will

persist into the future given that it has been active for τ seconds? This probability

can be expressed as:

L(τ) = 1− P [Z = τ ]

P [Z ≥ τ ]

For light tails, in particular distributions with asymptotically exponential tails
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P [Z > x] ∝ c1e
−c2x where c1, c2 are constants, this probability, for large τ , is

L(τ) ∝ e−c2 . Thus prediction is not increased by conditioning on ever longer periods

of observed activity. For heavy tails, instead, this probability L(τ)→ 1 for τ →∞.

Thus the longer the period of observed activity, the more certain that it will persist

into the future. In conclusion, in the heavy-tailed case, by conditioning the prediction

on a sufficiently long past observation of activity, the prediction error can be reduced

to an arbitrary small level.

2.4.3 Heavy-Tailed Distributions and Long Range Depen-

dence

As seen, heavy tails lead to predictability and, therefore, to long-range dependence

in network traffic. Now other definitions are introduced:

Definition(FBM):

Y (t) is called fractional Brownian motion with parameter H, 0 < H < 1, if Y (t) is

Gaussian and H-sssi (that is, self-similar with increments X(t) := Y (t)− Y (t− 1)

stationary).

Definition(FGN):

X(t) is called fractional Gaussian noise with parameter H if X(t) is the increment

process of FBM with parameter H.

These kind of processes are Gaussian self-similar processes with long-range de-

pendence. Their Gaussian structure renders them useful as aggregate traffic models

where aggregation of independent traffic sources leads to the Gaussian property.

After these definitions, it could be examined why heavy tails are considered the

root cause of long-range dependence in network traffic considering a constructive

approach (see also [14]).

The on/off model considers N independent traffic sources Xi(t), i ∈ [1, N ], where

each is 0/1 reward renewal process with i.i.d. on periods and i.i.d. off periods.

This just means that Xi(t) takes on the values 1(on periods) and 0 (off periods) on

alternating, non-overlapping time intervals called on and off periods, respectively.

Xi(t) = 1 is interpreted as there being a packet transmission. Three such on/off

sources and their aggregation are depicted in Fig.2.3.
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Let SN(t) =
∑N

i=1Xi(t) denote the aggregate traffic at time t and let YN(Tt) the

cumulative process defined as

YN(Tt) =

∫ Tt

0

( N∑
i=1

Xi(s)
)
ds

Figure 2.3: Three on/off sources X1(t), X2(t), X3(t) and their aggregation S3(t).

where T > 0 is a scale factor. Thus YN (Tt) measures the total traffic up to time

Tt. How does heavy-tailedness influence long-range dependence? Let τon be the

random variable describing the duration of the on periods and let τoff be the random

variable associated with the durations of the off periods. Let

P [τon > x] ∝ cx−α, x→∞

where 1 < α < 2 and c > 0 is a constant. As to τoff , it can be either heavy tailed or

light tailed with finite variance. It can be shown that YN(Tt) behaves like FBM in

the following sense.

Theorem (On/Off Model and FBM): YN(Tt) behaves statistically as

E(τon)

E(τon) + E(τoff )
NTt+ CN1/2THBH(t) (2.6)

for large T,N where H = (3− α)/2, BH(t) is FBM with parameter H and C > 0 is

a quantity depending only on the distributions of τon and τoff .
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Thus YN(Tt) asymptotically behaves as fractional Brownian motion fluctuating

around NTt E(τon)
E(τon)+E(τoff )

when suitably normalized. It is long-range dependent

(1
2
< H < 1) iff 1 < α < 2; that is, τon’s distribution is heavy-tailed. If neither τon

nor τoff is heavy-tailed, then YN(Tt) is short-range dependent. It is in this sense

that heavy-tailedness (of the on or off periods) is an essential component to inducing

long-range dependence in the aggregated time series.

2.5 Inference for Self-Similar Processes

As already seen, a covariance stationary self-similar process manifests itself in three

different ways:

1. Slowly decaying variances

2. Long-range dependence

3. A spectral density which diverges around the origin

It is now interesting to study the problem of estimating the degree of self-similarity

H because it is able to completely describe the dynamic of a self-similar process.

There are mainly three simple techniques for the identification of H:

� R/S-statistic

it is a technique in the time domain which exploits the so-called Hurst effect. For

a given set of observations (Xk, k = 1, 2, ..., n) with sample mean X̄(n) and sam-

ple variance S2(n), the rescaled adjusted range statistic (or R/S statistic) is given

byR(n)/S(n) = 1/S(n)[max(0,W1,W2, ...,Wn)−min(0,W1,W2, ...,Wn)], with

Wk = (X1 +X2 + ...+Xk)− kX̄(n) and k ≥ 1.

While many naturally occurring time series appear to be well represented by

the relation E[R(n)/S(n)] ∼ anH as n→∞, with Hurst parameter typically

about 0.7, observations Xk from a short-range dependent model are known to

satisfy E[R(n)/S(n)] ∼ bn0.5 as n→∞. This discrepancy is referred to as the

Hurst effect.

Coming back to the R/S analysis, this technique consists of taking logarith-
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mically spaced values n and plotting log(R(n)/S(n)) versus log(n) results in

the pox diagram of R/S. After an initial transient zone, the graph can be

approximated with a straight line of a certain slope which, if it is correct, takes

value between 1/2 and 1. This slope is the estimate Ĥ of H.

� Analysis of the variances

this technique considers the variances of the aggregated processes X(m). As it

can be shown, these variances decrease linearly (for large m) in log-log plots

against m with slopes arbitrarily flatter than -1. The so-called variance-time

plots are obtained by plotting log(var(X(m))) against log(m) and by fitting a

simple least squares line through the resulting points in the plane, ignoring the

small values for m. Values of β̂ of the asymptotic slope between -1 and 0 give

an estimate for the degree of self-similarity Ĥ = 1 + β̂/2.

� Periodogram-based analysis

it is a technique in the frequency domain. It is more refined than the two previ-

ous ones because it combines maximum likelihood estimates and the so-called

periodogram I(x) = (2πn)−1|
∑n

j=1Xje
ijx|2, 0 ≤ x ≤ π of X = (X1, X2, ..., Xn)

and its distributional properties.

In particular, for Gaussian processes, Whittle’s approximate MLE approach and

the aggregation method discussed earlier, combined, give rise to an operational

procedure for obtaining confidence intervals for the self-similarity parameter

H.

Briefly, given time series, for each of the aggregated series, this method esti-

mates the self-similarity parameter H(m) via Whittle’s method and gives the

corresponding 95%-confidence intervals of the form Ĥ(m) ± 1.96σ̂H(m) where

σ2
H(m) is given by a known central limit theorem result. Plots of H(m) versus m

will typically vary for small aggregation levels but will stabilize after a while

and fluctuate around a constant value, the final estimate of H.

Fig.2.4 (taken from [10]) reports the graphics of the methods above described:

- The first figure refers to the R/S analysis in which the slope of the line con-
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necting the points takes values between 1/2 and 1.

- The second figure refers to the variance analysis with slopes of the line between

-1 and 0.

- The third figure is the periodogram analysis.

Figure 2.4: Graphical examples of the methods described to find H. (a) is a R/S analysis,

(b) is a variance analysis and (c) is the periodogram plot.



Chapter 3

Energy Efficient Ethernet

3.1 Introduction to the ISO/OSI Model

The Open Systems Interconnection (OSI) model (ISO/IEC 7498-1) is a conceptual

model that characterizes and standardizes the internal functions of a communication

system by partitioning it into abstraction layers. The model is a product of the Open

Systems Interconnection project at the International Organization for Standardiza-

tion (ISO).

The model groups similar communication functions into one of seven logical layers.

A layer serves the layer above it and is served by the layer below it. For example, a

layer that provides error-free communications across a network provides the path

needed by applications above it, while it calls the next lower layer to send and receive

packets that make up the contents of that path. Two instances at one layer are

connected by a horizontal connection on that layer.

3.1.1 Description of OSI Layers

OSI model has seven layers, labeled 1 to 7, with layer 1 at the bottom. Each layer is

generically known as an N layer and an “N entity” (at layer N) requests services from

an “N-1 entity” (at layer N-1). The dialog between the two entities carried out via

an exchange of service messages called primitives and data messages called packet

data unit (PDU) through the service access point (SAP). In this way, a layer-N

27
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entity of system A gets to talk a peer layer-N entity of system B, as messages get

down on system A and then up on system B. When a layer-(N+1) PDU has to be

sent, it passes down through the layer-N SAP. The N layer does not simply carry

this PDU to the underlying layer but has to add some information needed for the

layer-N protocol to work. As a consequence, a protocol control information (PCI) is

put before the layer-(N+1) PDU (which in the context of layer-N is called layer-N

service data unit (SDU) to highlight that it is coming from the SAP) to build the

layer-N PDU. As said before, the service interaction through SAPs is carried out

through the exchange of primitives which usually are of four types:

1. Request: a primitive sent by layer (N+1) to layer N to request a service.

2. Confirm: a primitive returned to layer (N+1) from layer N to advise of activa-

tion of a requested service.

3. Indication: a primitive provided by layer (N+1) in reply to an indication

primitive.

4. Response: a primitive returned to the requesting (N+1)st layer by the Nth

layer to acknowledge or complete an action previously invoked by a request

primitive.

In Fig.3.1 there is a graphical representation of what it was explained.

Figure 3.1: Primitives for communications between peer protocol entities.

In the following a short description of each layer is given (see [24]).

1. The physical layer is responsible for the actual delivery of the information

over physical medium; for example, at the transmitter’s side, by employing

a modulator, a given waveform is sent over the medium when the bit is 0

and a different one is sent when the bit is 1; therefore, at the receiver’s side,
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a demodulator can reconstruct the 0/1 sequence based on the received waveform.

2. The data link layer is mainly responsible for enabling the local transfer of

information. Its intervention is necessary in order to enable the actual exchange

of bits through the physical layer. In this layer there are two sub-layers: the

medium access control (MAC) which manages the presence of multiple users

on the same medium and the logical link control (LLC) which provides the

interaction between the upper layers and the MAC as well as performing flow

and error control on a local basis.

3. The network layer is responsible for setting up, maintaining and closing the

connection between the network layer entities of different subsystems. It makes

it invisible to the upper layers how the network resources are utilized: the

network layer entity on a system A does not know whether the flow of informa-

tion is going through the systems B or C while exchanging information with

a system D. To achieve this goal, the network layer has the responsibility of

performing host addressing, that is, being able to identify all the nodes in the

network in a unique manner, and routing, that is, to identify the desirable

path the data has to follow throughout the network. Therefore, while the data

link layer is concerned with local communication exchanges (it considers single

links), the network layer has a global view (it considers the whole network).

4. The transport layer is responsible for creating a transparent virtual pipe be-

tween the two ends of the communication flow. Communication proceeds as

though only two entities existed in the network; when the communication

session is established the transport layer sets up this virtual pipe according

to the requests of the session layer. It may include features to deliver an

error-free communication, requesting the network layer to retransmit the pieces

of information which are in error. Finally the transport layer can perform

flow control, that is, it prevents the transport layer on one side from sending

information faster than the rate that the receiving transport layer on other

side can handle.

5. The session layer is responsible for establishing, suspending and tearing down in

an orderly fashion any communication session the presentation layer might need.

6. The presentation layer is responsible for providing directly to the application
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layer the session layer services as requested by the applications and for pro-

cessing the data to make them usable to the application: the encryption and

decryption of the data are usually made by this layer.

7. The application layer is the closest layer to the end user and it interacts

with software applications that implement a communicating component. The

functions of this layer typically include identifying communication partners,

determining resource availability and synchronizing communication.

In Fig. 3.2 there is a graphical representation of the ISO/OSI model.

Figure 3.2: ISO/OSI model.

3.2 Introduction to Ethernet

Data network traffic which will be considered in the chapter dedicated to the simula-

tions comes from an Ethernet LAN. Ethernet is a family of computer networking

technologies for local area networks (LANs), commercially introduced in 1980, stan-

dardized in 1985 as IEEE 802.3 and it has largely replaced competing wired LAN

technologies such as token ring, FDDI and ARCNET. The original 10BASE5 Ether-
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net used coaxial cable as a shared medium but later the coaxial cables were replaced

with twisted pair and fiber optic links in conjuction with hubs or switches.

Systems communicating over Ethernet divide a stream of data into shorter pieces

called frames. The elements which form a frame are:

� Preamble (7 byte): these bytes wake up the receiving adapters and synchronize

the oscillators with those of the sender.

� Start Frame Delimiter (SFD) (1 byte): it value is 10101011 and the series

of the two bits to 1 indicates to the receiver that some important content is

arriving.

� Destination MAC address (6 byte): this field contains the address of the desti-

nation LAN adapter; if the address does not match, the physical layer of the

protocol discards it and sends it to the successive layers.

� Source MAC address (6 byte): this field contains the address of the source

LAN adapter;

� EtherLength (or EtherType) (2 byte): this field contains the length of the

payload.

� Payload (from 46 to 1500 byte): this field contains the real data: if the data

exceed the maximum capacity, they are split into multiple packets while if the

data do not reach the minimum length of 46 bytes, padding is added.

� Frame Check Sequence (FCS) (4 byte): it is used to detect any corruption of

data in transit.

In Fig. 3.3 there is a graphical representation of an Ethernet frame.

Figure 3.3: Ethernet frame.
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Ethernet is one of the most important used wired communications technology in

all the world. Due to the increasing request of energy, the topic about the energy

consumption is becoming more and more relevant also for the field of networked

systems. Therefore the problem of how to save energy also in the contest of Ethernet

transmissions for LANs is very interesting, challenging and important. Ethernet

is a technology widely used in private and public buildings: almost all produced

computers have an Ethernet connection or more than one. There are mainly four

kind of data rates supported in Ethernet using an UTP (Unshielded Twisted Pair)

connection: 10 Mb/s (10BASE-T), 100 Mb/s (100BASE-TX), 1 Gb/s (1000BASE-T),

and 10 Gb/s (10GBASE-T) and these data rates depend on how the UTP cable is

used. One of the main characteristics of Ethernet is that for 100 Mb/s and higher

rates, there is always transmissions among the nodes of the network because, also

when there is no data to transmit, another signal called IDLE is sent to keep trans-

mitters and receivers aligned. This property of Ethernet determines the fact that the

energy consumption is very large. Typically, there is a consumption over 0.5 W for a

1000BASE-T Ethernet physical layer transceiver and over 5 W for a 10GBASE-T

one. Considering these facts, in 2006 the IEEE 802.3 Working Group started to think

about how to achieve energetic efficiency on Ethernet. After some years of hard

work, in 2010 this effort gives life to IEEE 802.3az Energy Efficient Ethernet standard.

During the building of the Standard IEEE 802.3az, several technical methods upon

which the standard had to put its bases were proposed and in particular two: ALR

and LPI. Before considering LPI, which was selected by the standard, it is worth

describing ALR (Adaptive Link Rate).

3.3 Adaptive Link Rate

This technique considers the opportunity to reduce link rate when the link itself

is not much utilized. The goal is to maximize the time spent in a low data rate

to obtain energy savings and to minimize the packet delay which could be introduced.

Here a brief description of the idea which underlies ALR policy is presented. First,

it is necessary a mechanism for initiating and agreeing upon a link data rate change

because either end of a link (a PC or a switch port) must be able to initiate a request

to change the rate and there must be an agreement between the two ends of the link.

This agreement, called also handshake, could be implemented in this way. When
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one end of the link decides to increase or decrease its data rate, it sends an ALR

REQUEST MAC frame to the other end; the receiving link partner sends an ALR

ACK or an ALR NACK frame back if it respectively agrees or does not agree with

the change of the data rate. An ALR ACK message changes the data rate and

activates a link resynchronization.

In Fig.3.4 (taken from [3]) there is an illustration of how ALR method works.

Figure 3.4: ALR working.

The policy that determines the change of the data rate is called Dual-Threshold

Policy, based on the output queue length threshold crossing. This policy considers

two thresholds to avoid undesirable oscillation between rates (hysteresis). If the

output queue length exceeds the high threshold, then there is the request to increase

the data rate and the only possible response from the other side is an ACK (it

cannot disagree). Instead, if the queue length goes down under the low threshold,

the request of reducing the data rate can be accepted or not and in this latter case

the end which does not agree sends a NACK back. Now it is this end that must

request the low data rate when its queue length is under the low threshold.

The Dual-Threshold Policy can oscillate between different data rates: in fact this

oscillation will occur if the packet arrival at the low link data rate is high enough

to cause a high threshold crossing at the low data rate but not high enough to

maintain the queue length above the low threshold at the high data rate. To study

this problem, an experiment was made using a card with link data rates of 100 Mbps

and 1 Gbps given Poisson arrivals of packets of constant length of 1500 bytes. This

system can be trivially modeled as an M/D/1 queue. Some observations can be

done: as the packet arrival rate increases when in the low link data rate, the packet
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delay also increases reaching an unacceptable level. Thus at some utilization level

less than 10 percent of 1 Gbps, the data rate should be switched from 100 Mbps to 1

Gbps and remain in the 1 Gbps high link data rate.

To prevent oscillation, a utilization-threshold policy was developed. If link uti-

lization is explicitly monitored, the effect of oscillations on packet delay can be

reduced or eliminated. This new policy of utilization monitoring is based on counting

the bytes sent in a certain interval: this further control permits to avoid all undesir-

able oscillations (see [3] for all the details).

Of course counting the number of bytes transmitted within a certain time requires

additional accumulators and registers that could increase the complexity of the

card which implements this strategy. Therefore a new heuristic policy, called ALR

time-out-threshold policy, was designed. Two new timers are defined: the first one

for the minimum time for the link to stay in the high data rate and the second one

for the minimum time the link should stay in the low data rate before switching to

the high data rate. The first timer is reset and restarted upon switching to the high

rate and the link data rate is maintained at the high rate until the timer expires,

irrespective of the queue length. When this timer has expired, if the queue length is

under the low threshold, the link data rate is switched to the low rate. The second

timer is always reset and restarted upon switching to the low data rate. Switching

to the high rate is triggered by a queue threshold crossing of the high threshold even

if the timer has not expired. This policy can be made adaptive: the initial value of

the first timer can be doubled if the second timer has not expired when the high

threshold is crossed. For the Markov model of the dual-threshold policy and other

results see [3].

3.4 Low Power Idle Mode

As already anticipated, the IEEE 802.3az standard has the function to reduce power

consumption in an Ethernet network. This standard describes a new state in the

PHY (physical layer), called low power idle (LPI) mode which is enabled to consume

only a very little quantity of power compared to the active normal state. Since

Ethernet cards are not able to send or receive traffic when they are in LPI, the

standard also specifies a protocol for treating the transitions from/to the LPI and

the normal modes. What is interesting and challenging is the fact that the standard
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does not specify the modes and the conditions upon which a network card should

enter and leave LPI and this determined a great effort of the researchers to find the

smartest way to use LPI and to save the most relevant quantity of energy.

Anyway basic EEE policy is currently the following: put Ethernet cards into the

sleeping state when there is no transmissions and awake them if new data arrive.

3.4.1 Description of EEE working

Fig.3.5 (taken from [9]) shows the EEE working. Assuming that there is a link

between two nodes of the network and that it is active, when there are no frames to

transmit, the link turns off in the time ts, enter the LPI mode and stays in this state

(quiet state) until there is one frame (frame transmission policy) or some frames

(burst transmission policy) to transmit. Therefore the link awakes in the time tw

and comes back to the active state, ready for the transmission. As it can be seen

in the figure, there is also a periodic transmission of a refresh signal of length tr to

ensure that the receiver parameters are always aligned with the channel conditions.

Figure 3.5: EEE working using LPI.

3.4.2 Frame vs Burst Transmission Policy

Here two of the most efficient and simplest algorithms to switch the PHYs into/out

of the LPI mode are presented. The first is based on the frame transmission, that is,

when a new frame has to be transmitted the network card awakens independently

of the time elapsed in the LPI mode. The great benefit of this method is that it

adds very low delay to the traffic because a transmission queue is not built while

the interface stays in the LPI mode. From another point of view, this technique of



36 CHAPTER 3. ENERGY EFFICIENT ETHERNET

transmission has a great drawback: the potential energy savings could be drastically

reduced due to the possible frequent changes between the active and the inactive

power modes of the network. In fact the frame transmission method does not care

about the number of transitions and in the worst case, there could be one transition

for packet.

This problem is tackled by the second algorithm based on the burst transmission

which awakes the device only after that a few data accumulate in the queue of the

card. This reduces the number of transitions and improves energy efficiency but

introduces another problem which must be considered, that is, the fact that there is

an increase of the delay of the packets transmission. However the latter algorithm is

one of the most promising ones because it is able to provide great energy savings

with very low computational complexity and bounded delay.

3.5 Evaluation of EEE performances

This paragraph briefly reports the main results obtained in the article [17] which

analyzes the performances of a NIC (Network Interface Card) that implements

Energy Efficient Ethernet.

The goal is to show how EEE effectively works in a real Ethernet network. In

this work the authors studied the performances of two NICs connected to the

computer. A NIC is shown in Fig.3.6.

Figure 3.6: NIC used in the experiments.
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Figure 3.7: Experimental setting.

The experimental setting is represented in Fig.3.7. There are two computers: a

sender (PC 1) and a receiver (PC 2) with a switch (with the NIC inside) that links

the computers. The third experiments done refer to the measures of traffic made on

the link between the switch and the PC 2.

The first experiment tried to study power consumption for two limit cases: no

traffic on the link and a link with full load. Table 3.1 sums up the results.

No EEE EEE No EEE EEE

100BASE-TX 208 139 215 208

1000BASE-T 525 152 541 535

Table 3.1: Measured NIC Power Consumption [mW] in the two cases: no traffic (first

and second columns) and full load (third and fourth columns).

As it can be observed from the Tab.3.1, EEE gives its benefits: in fact, when

there is no traffic, the NIC power consumption is reduced by over 70% for 1 Gb/s

and by over 30% for 100 Mb/s. This is the first important result that demonstrates

the effectiveness of EEE standard.

The second experiment tried to estimate the power consumptions during mode

transitions. Limiting the data rate to 10 Mb/s, the link load was low (1% at 1Gb/s

and 10% at 100 Mb/s), packets are spaced by 200 µs and transitions between active

and low power occurred frequently. This artificial way of generating and transmitting

Ethernet traffic allowed the authors to evaluate the effects of the transitions, which

are important to have a complete computation of the power consumptions. Table
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3.2 sums up the results of the experiment.

No EEE EEE

100BASE-TX 215 201

1000BASE-T 531 512

Table 3.2: Measured NIC Power Consumption [mW] when sending 5000 250 Byte Packets

per Second.

As it can be observed from the table, the power consumption in the two cases

(with EEE and without EEE) is nearly the same. This is another significant result:

the power consumption during transitions is close to that of the active mode. There-

fore, if packets arrive spaced in time a large number of transitions will occur leading

to a large energy consumption (see [17]).

The third experiment tried to measure the power consumption versus the link

traffic load. The authors discovered that when the load reached 6%, the power

consumption with and without EEE were similar. This means that in many practical

applications, where the load is low, the transition overhead in EEE may be significant.

In summary, from the results obtained in the experiments, the authors extracted the

following conclusions (here reported verbatim):

� The use of EEE will significantly reduce energy consumption when the NIC is

in low power mode. In the experiments the reduction was more than 70% for 1

Gb/s.

� The energy consumption during EEE mode transitions is close to that of the

active mode.

� The energy overhead caused by EEE transitions can be very significant at low

loads.

From these observations, researchers can direct their studies towards mainly two

directions in order to maximize energy savings: first trying to reduce the high power

consumption during mode transitions and second trying to use the burst transmission

as proposed in [2].



Chapter 4

Control for Self-Similar Network

Traffic

As it was shown in the first two chapters, LAN traffic is very bursty at every time

scale considered. Such behavior is very different from traditional models of network

traffic, which show burstiness at short time scales but are smooth at large time scales

because they have not the intrinsic property of long-range dependence. From a point

of view, self-similarity has a bad effect on network performance, leading to increased

delay and packet loss rate but from another one, its intrinsic long-range dependence

could be exploited for control purposes. In fact, this characteristic of this kind of

traffic implies the existence of a correlation structure, very useful for control aims.

There is, indeed, the possibility of predicting how much traffic is expected in the

network with sufficient reliability as it will be explained in the following paragraphs.

4.1 Structural Causality

As already mentioned in Chapter 2, there is a linear relationship between the tail

index α of the Pareto distribution which characterizes the files sizes exchanged in

the network and the Hurst parameter. In fact, the aggregate traffic that is induced

by hosts exchanging files with heavy-tailed sizes over a network environment is

self-similar, being more bursty the more heavy-tailed the file size distributions are

(see [14]). This relationship between the observed traffic pattern and the property of

the exchanged object sizes is called structural causality. Using an on/off model (a 0/1

39
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renewal process with heavy-tailed on or off periods) and assuming independent traffic

sources with no interactions, the relationship between α and H is the following:

H =
3− α

2
(4.1)

4.2 Predictability of Self-Similar Traffic

This paragraph presents a time domain method which exploits correlation structure

in long-range dependent traffic to predict the future. This technique is based on the

conditional expectation estimation (for all the details see [14]).

Given a wide-sense stationary stochastic process ξt with t ∈ Z and two positive

numbers T1 and T2, it can be computed the quantity a :=
∑

i∈[t−T1,t) qi where qi is a

sample path of ξt over time interval [t− T1, t). Then let

V1 :=
∑

i∈[t−T1,t)

ξi, V2 :=
∑

i∈[t,t+T2)

ξi (4.2)

where V1 and V2 are random variables that characterize the recent past and the near

future. It could be interesting in computing the conditional probability

Pr[V2 = b|V1 = a] (4.3)

where b is in the range of V2. For example, if a represented a high traffic volume, then

it could be interesting to know what the probability of encountering again another

high traffic volume in the near future would be. Let

V t
max := max

∑
i∈[t−T1,t)

qi, V t
min := min

∑
i∈[t−T1,t)

qi (4.4)

where V t
max and V t

min denote the highest and the lowest traffic volume seen so far at

time t.

Now the range between V t
min and V t

max has to be partitioned into h levels with

quantization step µ = (V t
max − V t

min)/h:

(0, V t
min + µ), [V t

min + µ, V t
min + 2µ), [V t

min + 2µ, V t
min + 3µ)...

[V t
min + (h− 2)µ, V t

min + (h− 1)µ), [V t
min + (h− 1)µ,∞).
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Two new random variables L1 and L2 are now defined:

Lk = 1⇔ Vk ∈ (0, V t
min + µ)

Lk = 2⇔ Vk ∈ [V t
min + µ, V t

min + 2µ)

...

Lk = h− 1⇔ Vk ∈ [V t
min + (h− 2)µ, V t

min + (h− 1)µ)

Lk = h⇔ Vk ∈ [V t
min + (h− 1)µ,∞)

This is like a quantization. In fact, if Lk is near to 1, then the traffic level is low,

while if Lk is near to h, the traffic level is high.

With these new definitions, the probability (4.3) becomes

Pr[L2 = l′|L1 = l] (4.5)

for l, l′ ∈ [1, h]. Therefore, the problem of predicting the future consists in finding

these conditional probabilities and their distributions.

4.2.1 Estimation of Conditional Probability Density

This paragraph describes an off-line estimation of the conditional probabilities intro-

duced in the previous paragraph.

Given a data traffic trace Xt collected in a Ethernet LAN, the first step consists in

segmenting this series into

N =
n

T1 + T2

contiguous non overlapping blocks of length T1 +T2 where n is the number of samples

of the trace (time domain is discrete).

The second step is the computation of the aggregate traffic V1, V2 for each j ∈ [1, N ]

over the sub-intervals of length T1, T2.

After the choice of the number of levels h for the quantization of the traffic, the

third step consists in counting the number of blocks hl ∈ [0, N ] such that L1(V1) = l

and then the number of those blocks hl′ ∈ [0, hl] such that L2(V2) = l′. Using this

method the conditional probability can be calculated easily as:

Pr[L2 = l′|L1 = l] =
hl′

hl
. (4.6)
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This method is proposed in [14], Cap.18, where also some interesting experimental

results are reported. In [14] two cases are studied: α = 1.05 which means H = 0.975

(very bursty traffic) and α = 1.95 which means H = 0.525 (less bursty traffic). In

the first case the conditional probability densities have this property: if the traffic

L1 is low, most likely also L2 will be low; conversely, if the traffic L1 is high, most

likely also L2 will be high. In the second case, instead, the shape of the distributions

does not change when the conditioning variable L1 is varied. This indicates that

observing the past does not help in predicting the future.

These experimental results show what has been already explained: a traffic with a

high degree of self-similarity can be predicted with reliability otherwise only some a

priori information (if there is some) can be exploited. Fig. 4.1 shows the conditional

probabilities studied in [14] in the two different cases explained.

Figure 4.1: Conditional probabilities Pr[L2|L1 = l] and Pr[L2|L1 = 8] in the two cases:

(a) corresponds to H = 0.975,(b) corresponds to H = 0.525.

4.2.2 Predictability and Time Scale

There is another important topic to consider, that is, how time scale affects pre-

dictability. In fact another study, always presented in [14], Cap. 18, shows that as

time scale is increased the conditional probability densities Pr[L2|L1 = l] become

more concentrated. In this paragraph the question about at what time scale pre-

dictability is maximized is answered.

To solve the problem a different mathematical tool is introduced, that is, entropy.
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In information theory (and in relation to the signal theory), entropy measures the

amount of uncertainty or information found in a random signal. From another point

of view, the entropy is the minimum descriptive complexity of a random variable,

which is the lower limit of the data compression without loss of information. The

connection with the thermodynamic entropy is in the compression ratio: the decrease

of temperature corresponds to the reduction of the redundancy of the signal, and

therefore the increase of the compression. The information entropy reaches a mini-

mum which, in general, is different from zero. For a discrete probability density pi,

its entropy S(pi) is defined as S(pi) = −
∑

i pilog(pi). In this case of the conditional

density, the entropy is defined as

Sl = −
h∑

l′=1

(
Pr[L2|L1 = l]

)
· log(Pr[L2|L1 = l]). (4.7)

and since there are h different entropies (one for each traffic level), also the average

entropy S̄ is defined:

S̄ =
h∑
l=1

Sl/h. (4.8)

However it can be observed that when the distribution of probability is uniform, the

entropy is maximal while when the distribution of probability is concentrated in a

single point, the entropy is minimal. Here another important result is presented:

from the studies in [14], average entropy is highest for small time scales and it drops

as T1 is increased. Naturally T1 could be increased further and further to gain small

decreases in entropy but the information may not be effectively exploitable if the time

interval is too long. Therefore, choosing T1 small, the prediction about future traffic

will not be so precise (high entropy) while for a high T1, although the prediction is

more precise, time interval is too long for exploitable information.

4.2.3 On-Line Estimation of Future Traffic

In the previous paragraphs, the analysis are done following an off-line approach while

in reality it would be interesting to predict future traffic while traffic itself is still

arriving. For this reason there is the need of an on-line prediction. This problem

can be solved using O(1) cost update operations, with an on-line estimation of the

conditional probability density. This can be done building a table which can be

called CondProb of size h x h + 1, one row for each l ∈ [1, h]. The last column of

CondProb [l][h+1] is used to keep track of hl, the number of blocks observed so far

whose traffic level maps to l. For each l′ ∈ [1, h], CondProb[l][l’] maintains the count



44 CHAPTER 4. CONTROL FOR SELF-SIMILAR NETWORK TRAFFIC

hl′ . Therefore having CondProb means having the conditional probability densities.

Then it is necessary a clock starting at time t = 0 and which goes off at times

t = T1, T1 + T2, T1 + T2 + T1, T1 + T2 + T1 + T2...

Therefore all the packets arriving during the periods

[i(T1 + T2), i(T1 + T2) + T1], i ≥ 0

are added to V1. When the clock goes off at t = i(T1 + T2) + T1, V1 is used to

compute the updated V t
max and V t

min and the quantization step µ. Now l = L1(V1) is

computed using the updated V t
max and V t

min and CondProb[l][h+1] is incremented by

1. During interval

[i(T1 + T2) + T1, (i+ 1)(T1 + T2)], i ≥ 0

a similar operation is done respect to V2. At the end of the interval, the updated V t
max

and V t
min are computed and also l′ = L2(V2) is computed. Finally CondProb[l][l’] is

incremented by 1 and V1, V2 are reset to 0 to start the process again.

Clearly, these conditional densities computed from CondProb are approximations

of the corresponding ones computed with the off-line method since in the on-online

algorithm running sums are used to compute and update V t
max and V t

min.

Convergence of On-Line Conditional Probabilities

Before using the table CondProb of the conditional probabilities, it is necessary that

the estimations on-line computed converge or stabilize otherwise the prediction of

the future traffic could not be accurate and instead could hurt the performance of

the algorithm. For this reason, it is useful to introduce a distance measure to decide

whether a particular conditional probability is stable enough to be used for a correct

prediction of the future. Let CondProbt1 and CondProbt2 be two instances of the

conditional probability density table measured at time instances t2 > t1 at least

T1 + T2 away. Then for each l ∈ [1, h], there must be verified that

||CondProbt2 [l][·]− CondProbt1 [l][·]||2 < Θ. (4.9)

where Θ > 0 is an accuracy parameter which rules the precision of the distance

between the two vectors of probabilities. If the inequality is satisfied, the l-th

conditional probability is stabilized and can be used for the prediction. In Fig.4.2

it is shown an example of the trends of the distances computed for two conditional

probabilities.
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Figure 4.2: Examples of two different conditional probabilities (taken from [14])

4.3 SAC and Underlying Congestion Control

In this section a congestion control strategy called selective aggressiveness control

(SAC) is presented (all the details in [14]). This technique is particularly interesting

because it exploits the predictability structure present in long-range dependent traffic.

In fact a certain control action ε(l) is taken using the information about the fu-

ture traffic and this action will affect the decisions of an underlying congestion control.

SAC has the aim to improve the performance of existing congestion controls. Set-

ting up a simple rate-based feedback congestion control as a reference, SAC always

respects the taken decision by this simple control (increase or decrease of traffic rate)

but it can modify the magnitude of this change. For example, if the underlying

control decides to increase the traffic rate, SAC can decide of how much increase it.

4.3.1 Underlying Congestion Control

For simplicity, a generic instance of rate-based feedback congestion control will be

employed as a reference to demonstrate the efficacy of selective aggressiveness control

under self-similar conditions.

Let λ denote packet arrival rate and let γ denote throughput. The generic feedback

congestion control has a control law of the form:

dλ

dt
=

δ, if dγ
dλ
> 0

−aλ, if dγ
dλ
< 0

(4.10)
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where δ, a are positive constants. Thus, if increasing the data rate, also the through-

put raises, then this control increases the data rate linearly; conversely, if increasing

the data rate, the throughput reduces, then this control decreases the data rate

exponentially.

Before continuing, it is necessary to better explain what the throughput γ is. Through-

put can be defined in different ways depending on the context: there is the reliable

throughput (number of bits reliably transferred per unit time) or the raw throughput

(number of bits transferred per unit time) or the power (one of the throughput

measures divided by delay). Raw throughput, denoted ν, is easy to measure (just

monitor the number of packets, in bytes, arriving at the receiver per unit time) but

it is not adequate for this kind of measures (see [14] for the motivations). Instead

the measure of throughput that will be used is

γk = (1− c)kν

that penalizes raw throughput ν by packet loss rate 0 ≤ c ≤ 1 where the severity

can be set by the parameter k ≥ 0. Therefore, the throughput that appears in (4.10)

is γk, measured at the receiver.

4.3.2 Selective Aggressiveness Control (SAC)

Assuming that future network traffic is predictable with a sufficient degree of accuracy,

there remains the question of what to do with this information. The choice of actions

depends on the networking context and what degree of freedom it allows. Usually

the only control variable available is its traffic rate λ.

Given the linear increase/exponential decrease control in (4.10), SAC tries to work

on the linear increase part such that a more aggressive bandwidth consumption is

facilitated. This selective application of aggressiveness, when coupled with predictive

capability, will hopefully lead to a more effective use of bandwidth with improved

performance.

SAC is composed of two parts, prediction (already described in the previous para-

graph “On-Line Estimation of Future Traffic”) and application of aggression that is

now described.
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Let λt denote the newly updated rate value at time t and let λt′ be the most

recently (t′ < t) updated value previous to t. SAC behaves in this way:

� If λt > λt′ then update λt ← λt + εt.

� Else do nothing.

Here εt ≥ 0 is an aggressiveness factor that is determined using the current state of

the table of conditional probabilities CondProb. It is worth to note that SAC kicks

into action only during the linear increase phase. The magnitude of εt determines the

degree of aggressiveness and it is determined as a function of the predicted network

state as captured by CondProb.

At time t, εt is determined in this way.

1. Let St be the aggregate throughput reported by the receiver via feedback over

time interval [t− T1, t].

2. Let l = L1(St).

3. Compute l̄′ = E(L2|L1 = l) =
∑h

l′=1 l
′ · Pr[L2 = l′|L1 = l].

4. Set εt = ε(l̄′).

Thus, the current traffic level St is normalized and mapped to the index l which

is used to calculate the expectation of L2 conditioned on l′. This expectation is

then used to compute ε(l̄′), called aggressiveness schedule. The idea is that if the

expected future traffic is low, then it is preferable to use a high level of aggressiveness;

conversely, if the expected future traffic is high, then it is preferable to use a low

level of aggressiveness. One schedule that can be used is the inverse schedule:

ε(l̄′) = 1/l̄′. (4.11)

Other schedules of interest include the threshold schedule with threshold θ ∈ [1, h]

and aggressiveness factor θ∗, where ε = θ∗ if l̄′ ≤ θ and 0 otherwise (for interesting

simulations results see [14]).

SAC essentially works by varying the arrival rate but it is not always possible

to change this quantity. This is the case that will be presented in the chapter

dedicated to the simulations and for this reason a new strategy is now presented.
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4.4 EEEP Strategy

The new developed algorithm merges and puts its bases on the main two topics

discussed in this thesis, that is, the self-similarity of a LAN traffic, in particular, the

property of long-range dependence with the possibility to make a prediction of the

future traffic and the recent researches about Energy Efficiency with the development

of the IEEE 802.3az standard and LPI mode.

This paragraph represents the heart of the thesis because it explains all the steps

with all the details of the working of the algorithm, which is called EEEP strategy,

that is, Energy Efficient Ethernet Prediction strategy. In Fig.4.3 it is reported the

scheme of the algorithm. As first step, some parameters have to be fixed: T , the

period for using EEE technique, T1, which, as already explained, represents the first

part of the blocks used for the prediction strategy (for simplicity T1 = T2, therefore

T1 represents half of every block), Θ, used as accuracy parameter (see previous

paragraph), LW , which determines the length of the window for the computation of

the Hurst parameter, ND, which represents how many new data in LW have to be

chosen for the computation of H.

When data traffic starts, the algorithm adopts the EEE strategy described in Chapter

3 on the period T and starts to build the On-Line table of the conditional probabilities

with updates every T1 seconds. The second step consists in calculating the distances

between corresponding rows of the table at two different instances, as described in

the previous paragraph, and, if these distances are lower than the parameter Θ, the

algorithm goes on with the third step in which there is the computation of the Hurst

parameter. If H > 0.6 (the value 0.5 is too low to apply the strategy, therefore it

is better to consider greater values), the prediction strategy can be applied. This

technique works in this way: considering the data traffic divided in blocks of length

2T1, in the first part of each block normal EEE strategy is applied. Then, if the

expected traffic in the second part of the block is lower or equal to that one measured

in the first part, the link, which has to transmit data, turns off when the first part

ends. The assumption that can be made is that the time used for the transmission

of the packets in the first part of the block is similar or lower (as value) to that

one that will be necessary to transmit the packets in the second part of the block.

Therefore, the link can be turned on just the calculated time before of the end of

second part of the block; in this part, the link will transmit (with the link always on,

not using EEE policy) all the packets that in the meantime when the link was off

have accumulated in the queue of the buffer. Clearly, when the link turns on after



4.4. EEEP STRATEGY 49

the time that it was off, other packets arrive in this last part of the block and the

algorithm, as it is implemented, decides to immediately transmit these packets in

the first part of the T period and, in the remaining part of the period, the largest

amount of packets in the queue are transmitted until the next period T .

Using this policy, there are now two situations that the algorithm can meet.

1. The queue of the packets is depleted before the end of the block: in this

case normal transmissions happen and then, when the new block starts, the

algorithm begins all the steps described again.

2. The packets in the queue cannot be all transmitted within the current block

because the time calculated is not sufficient. To avoid packets loss, the algorithm

decides to transmit these remaining packets of the queue in the first part of

the new block which restarts the use of EEE policy.

Anyway, all this strategy is not exploited if the predicted future traffic in the second

part of the block is greater than the the traffic in the first part and an EEE policy is

adopted. The prediction strategy can be applied if the traffic actually is self-similar,

that is, if the Hurst parameter is greater than 0.6. For this reason, there is the need

to control that H is effectively greater than 0.6. This is what the algorithm does

as last step. If there are new data which have to be transmitted, the algorithm

computes H using windows of LW data including LW −ND old data and ND new

data. If the computation of H gives a value greater than 0.6 the prediction strategy

can be again applied otherwise only an EEE policy will be used.

The great benefit of the prediction strategy consists in limiting the interval of

time in which the link is on. As in the chapter dedicated to the simulations it will

be discussed, this technique permits to avoid all the transitions which occur in the

EEE policy with great energy savings. In fact it was demonstrated that the power

lost in the transitions is nearly the same of that one consumed in the active state.

On the other side, there is also a drawback which characterizes this algorithm: in

fact the packets, which are not immediately transmitted because the link is off and

which are accumulated in the queue, will be transmitted with some delay which can

be important if the window T1 is large. However for applications that have not strict

time requirements, this technique can be very useful and energy efficient (with a

maximum delay of packets transmission equal to T1).

In Fig.4.3 the main steps explained in this paragraph are illustrated in the flow chart.
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Figure 4.3: Scheme of the algorithm.
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In Fig.4.4 and in Fig.4.5 there are two schematic representations of the working

of the algorithm.

Figure 4.4: Working of the algorithm on 2 periods of the first part of the block (EEE

strategy).

Figure 4.5: Working of the algorithm on second part of the block.

In Fig.4.4 there is the representation of the behavior of the algorithm on 2 periods

of the first part of a block: every T sec, the link turns on in tw sec, transmits in

ttx sec and turns off in ts sec and then it stays off until the beginning of the new period.

In Fig.4.5 there is the representation of the behavior of the algorithm in the second

part of a block which uses prediction strategy. The link stays off for great part of

the period T1, then turns on, transmits all the packets accumulated in the queue and
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here two situations are depicted: the case A in which the queue ends before of the

block and case B in which the queue ends in the subsequent block.

The case in which a block does not use prediction is not illustrated because the

behavior is the same of that one reported in Fig.4.4 for all the length of the block.

4.5 Expected Results

Before the beginning of the simulations, it can be useful to find some relations among

the used parameters to have an idea of what it can be expected.

Here, for correctness, also the inter-frame gap (IFG) will be considered. Briefly,

Ethernet devices have to allow a minimum idle period period between transmission

of Ethernet frames and this period is known as inter-frame gap: its value is equal to

96 bit which, with the frequency chosen (1 Gbit/s), can be transmitted in 0.096 µs.

Since this time is so small, for reason of simplicity, in the algorithm it will not be

considered. It will be considered here only for correct calculations. What, instead, is

very meaningful to consider, is the time which EEE strategy spends for the transi-

tions (tw and ts) which is equal to tw = 0.0165ms and ts = 0.202ms respectively.

Finally, also the packet size d is important because, clearly, if the packet size is low,

more packets can be transmitted in the same interval. An Ethernet frame can have

different dimensions depending on how many bits it brings and the minimum frame

size is fixed to m = 512 bit while the maximum size is equal to M = 12000 bit. Let

N be the number of consecutive packets which can be transmitted in the interval T .

If the link is always on, this equation can be written:

N =

⌊
f · T

d+ IFG

⌋
(4.12)

If the link adopts EEE strategy, these two relations can be written:

N =

⌊
f · (T − Ttrans − perc · T/100)

d+ IFG

⌋
(4.13)

perc = 100 ·
(T − Ttrans − N(d+IFG)

f
)

T
(4.14)
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where Ttrans = tw + ts and perc represents the percentage of the time T in which

the link is off. Since the average value of packets transmitted in T is N̄ = 13 and

the average value of the packets size with IFG is d̄+ IFG = 5780 bit, using the last

relation, the percentage of time in which the link will be off is expected to be about

perc = 70.6%.
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Chapter 5

Simulations Results

This chapter is dedicated to the simulations realized with the software MATLAB

in order to show the results obtained implementing the algorithm explained in the

previous chapter. First of all, it is necessary to work on traffic traces which show

self-similar characteristics. There are two ways to obtain this kind of traces: the first

way is measuring data traffic on a real network while the second way is generating

traffic in artificial mode. In this thesis the first way is considered but it can be very

useful to consider also the artificial generation of network traffic.

5.1 Artificial Generation of the Network Traffic

This paragraph briefly describes how to generate artificial network traffic, well studied

in [7]. An artificial traffic generator with parameters which can be modified to obtain

different self-similarity degrees, can be built using chaotic systems. To see some

general properties of this kind of systems and how these systems are related to the

self-similar conditions, see [7].

Here a map to generate the samples of a self-similar process is presented. This

map is defined as f : [0, 1]→ [0, 1] and it is built splitting a piece-wise Markov map 1

into an infinite set of intervals [zi, zi−1[, with z0 = 1, zi < zi−1 and zi → 0 for i→∞
as:

1f is a piece-wise affine Markov map, with respect to the quantization intervals, if f , restricted

to any interval Xj , is affine and if, for any Xj1 and Xj2, either f(Xj1) ∩Xj2 = ∅ or Xj2 ⊆ f(Xj1).

55
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f(x) =

x−z1
1−z1 , x ∈ [z1, 1[

zi−1 + (x− zi) zi−2−zi−1

zi−1−zi , x ∈ [zi, zi−1[, i ≥ 2
(5.1)

where zi = (i+1)2H−3 with H, the Hurst parameter which can be properly varied.

Then, the final artificial traffic source can be obtained using a non-linear quantization

function Q : [0, 1]→ {0, 1} with Q(y) = 0 if y ∈ [0, z1[ and Q(y) = 1 if y ∈ [z1, 1[: in

this way the source will be off in the interval [z∞, z1[ and it will be on in the interval

[z1, z0[. To explore the topic in the detail see [7].

5.2 Real Traffic Data

This paragraph presents some analysis made on two kinds of traffic series. These traffic

traces were collected at some of the most important USA laboratories, measuring

data traffic in some links of the networks which researchers had available.

5.2.1 AuckVIII Series

This first kind of series was used to test one of the inference technique presented,

that is, the variances analysis in order to find the Hurst parameter. Briefly, in

this set called AuckVIII, there are 24 traffic traces each with 72000 data in which

packets are collected with a time granularity of 50 ms. These 24 traces represent the

traffic measured every hour of the day. In Fig.5.1 is reported the trend of the Hurst

parameter as function of the hours of the day.

As it can be seen from the figure 5.1, traffic during the day maintains its self-

similar behavior with an average Hurst parameter equal to 0.83. It is interesting to

note the peak at 7 am: maybe the behavior of the network is very bursty. In fact,

with the beginning of the working day, the network is supposedly more used than

the night hours in which the average traffic is low with only some peaks sometimes.



5.2. REAL TRAFFIC DATA 57

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

1

Time[hours]

H
ur

st
 p

ar
am

et
er

 H

H as function of the hours of the day

Figure 5.1: Hurst parameter as function of the hours of the day.

5.2.2 San Diego Series

This second kind of series was used to test the algorithm presented above. In this set,

called Sandiego, there are 6 traces each with 300000 data collected every millisecond.

As the previous set, files contains the number of packets with the corresponding

bytes received by a host in the network.

In this thesis the analyses are mainly made on a single trace. In Fig.5.2 it is

reported the complete trace considered with all packets received and the correspond-

ing variance analysis to find the Hurst parameter.
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Figure 5.2: Complete trace (left) with variance analysis (right).

Since all the traffic was known, simulations do not create the building of the

table of conditional probabilities On-Line but they built it before the start of the
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algorithm. With this particular trace, the choice of the number of quantization levels

to classify the traffic fell on 8.

Here it is reported the table of the conditional probabilities and the corresponding

vector of average values which is used by the algorithm to decide if applying the

prediction strategy or not. Position (i, j) of the table indicates the probability that

L2 = j given that L1 = i. In the last column there are the average values for each

row: this indicates that, given the traffic level l of the first part of the block, on

average, the level of traffic l′ is expected to appear in the second part.

1 2 3 4 5 6 7 8 E[L2|·]
1 0.12 0.52 0.32 0.04 0 0 0 0 2.3

2 0.0372 0.3716 0.4730 0.0980 0.0135 0.0068 0 0 2.7

3 0.0189 0.2346 0.4756 0.2331 0.0283 0.0063 0.0031 0 3.0

4 0.0054 0.0790 0.4251 0.3678 0.1035 0.0191 0 0 3.5

5 0 0.0504 0.2941 0.3866 0.1849 0.0756 0.0084 0 4.0

6 0 0 0.1143 0.1714 0.2 0.2286 0.2286 0.0571 5.5

7 0 0 0.0526 0.0526 0.2632 0.2632 0.2632 0.1053 6.0

8 0 0 0 0 0 0.5 0.5 0 6.5

Table 5.1: Table of conditional probabilities.

In Fig.5.3 the trend of the eight conditional probabilities is reported.
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5.3 Parameter tuning for EEEP

Before the beginning of the algorithm, it is necessary to choose some parameters as

the flow chart in the previous chapter well explains.

T is already fixed because measures are collected with a period of 1 ms: there-

fore EEE strategy will be applied every millisecond. Also the frequency of the data

flow is fixed and it is equal to 1Gbit/s.

The parameters which have to be chosen are:

� T1, that is, the length of the window for the prediction strategy,

� LW , that is, the number of data considered for Hurst parameter computation,

� ND, that is, how many new data have to be considered in LW for the compu-

tation of H.

The choice of T1 can be made considering the analysis previously done on two

other traces. The number of data considered for both traces is 200000. The EEEP

strategy was simulated choosing different values of T1 and, for each T1, different

increments of time respect the useful time calculated for the packets transmission are

considered. This is motivated by the fact that fewer the samples used for prediction,

the less accurate this prediction is and hence the need of increase the calculated time.

In Tab.5.2 and Tab.5.3 there are some useful data collected from simulations which

can give some indications for the choice of T1.

These tables have 5 columns: in the first one there are various values of T1 chosen. In

the second one there are the percentages of increment of the useful time calculated

for the transmission of packets in the second part of the blocks when prediction

strategy is adopted. In the third one there are the percentages of blocks for which

the useful time calculated (with its increment) is not sufficient to transmit all the

packets. Finally, in the fourth and in the fifth ones are reported, respectively, the

time gains and the energy gains (in percentage) respect to the only EEE strategy.

In Tab. 5.2 and in Tab. 5.3 there are reported the results of one trace using eight

values for T1.
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Windows Increments of Blocks with useful Time Energy

Sizes T1 (ms) useful time (%) time not sufficient (%) gains (%) gains (%)

50 ms + 0 42.74 29.92 23.41

(2000 blocks) + 10 22.22 28.77 22.5

82 % of blocks + 20 9.4 27.72 21.68

use prediction + 30 3.85 26.52 20.75

+ 40 1.89 25.42 19.89

+ 50 0.85 24.31 19.02

+ 60 0.24 23.19 18.14

+ 70 0.06 22.04 17.24

+ 80 0 20.93 16.37

100 ms + 0 43.26 29.82 23.32

(1000 blocks) + 10 18.26 28.72 22.46

82 % of blocks + 20 5.64 27.64 21.63

use prediction + 30 1.84 26.5 20.74

+ 40 0.49 25.37 19.89

+ 50 0.12 24.27 18.98

+ 60 0 23.14 18.11

Table 5.2: Windows from 50ms to 100ms

Some considerations can be done observing the tables: it can be said that, in

general, increasing the useful time for the transmission of packets of certain per-

centages, the number of blocks which are not able to transmit packets in the useful

time computed decreases with the corresponding decreases of time and energy gains.

Another consideration is that, for short windows, in order to correct transmit all the

packets of all the blocks, it is necessary to increase the predicted useful time of high

percentages while for long windows it is sufficient only, for example in the case of

5000 ms, a 20 %. It seems that long windows are safer regarding the time predicted

for the transmission (only few increments of time to obtain correct transmission)

but they have a great drawback, that is, they introduce great delay to the packets

waiting in the queue. Finally, the lowest time and energy gains belong to the window

of 2500 ms: probably this behavior is due to the fact that less of 60 % of blocks

use prediction strategy and therefore the benefits which this strategy brings are not

exploited. These results are referred to the first trace analyzed while those ones of

the other trace, since they are similar, are reported in Appendix A. Therefore, after
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Windows Increments of Blocks with useful Time Energy

Sizes T1 (ms) useful time (%) time not sufficient (%) gains (%) gains (%)

200 ms + 0 46.56 28.83 22.55

(500 blocks) + 10 15.78 27.76 21.71

79 % of blocks + 20 4.83 26.67 20.87

use prediction + 30 1.02 25.6 20.04

+ 40 0.25 24.53 19.19

+ 50 0 23.46 18.35

500 ms + 0 37.32 25.98 20.32

(200 blocks) + 10 11.27 25 19.56

71 % of blocks + 20 3.52 24.04 18.8

use prediction + 30 0.7 23.07 18.06

+ 40 0 22.09 17.28

1000 ms + 0 37.5 26.28 20.56

(100 blocks) + 10 9.72 25.3 19.79

72 % of blocks + 20 1.39 24.31 19.02

use prediction + 30 0 23.33 18.25

2000 ms + 0 48.89 33.28 26.04

(50 blocks) + 10 15.56 32.1 25.11

90 % of blocks + 20 2.22 30.92 24.19

use prediction + 30 0 29.73 23.26

2500 ms + 0 56.52 21.23 16.61

(40 blocks) + 10 21.74 20.47 16.02

58 % of blocks + 20 0 19.73 15.43

use prediction

5000 ms + 0 38.89 32.93 25.76

(20 blocks) + 10 5.56 31.73 24.82

90 % of blocks + 20 0 30.53 23.88

use prediction

Table 5.3: Windows from 200ms to 5000ms
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Figure 5.4: Time and energy gains (%) using different windows sizes. Blue, red, black

lines correspond respectively to +0 %, +10 %, +20 % of increment of useful time.

these observations, the choice of T1 fell on T1 = 100ms in order not to bring much

delay to the packets.

Another decision to make is the choice of LW and ND. In fact there is the need to

control, computing the Hurst parameter, that the arriving traffic data maintain the

self-similarity properties. As done for the choice of T1, it can be useful to study the ef-

fects that different choices of LW and ND have in other traffic traces. In the following

figures, six values of LW are tested: LW = 100000, 50000, 20000, 10000, 5000, 2000

and, moreover, for each LW chosen, various values of ND are tried. Each of

the following figures represents the trend of H, computed on LW data of which

ND are new and the overlapped graphics of different colors (overlapped because

it is better for a comparison) are the trends of H considering different choices for ND.

Some considerations can be drawn: for high values of LW , H has a quite regu-

lar trend and it fluctuates in a short range of values while for short windows, H

varies a lot with an abrupt trend. Another observation is that, once chosen LW , H

behaves in the same way regardless of how many new data are considered (although

trend is more sensible to few new data). Therefore, using a high values for LW ,

the probability that the trend of H presents similar values during the simulations is

high while it is the opposite for short windows and, moreover, the time used for the

computation of H is high for high windows, the opposite for short ones. To achieve

a good compromise, the choice fell on LW = 20000 and ND = 1000 in order not to

have so much data (time for the computation of H low) and to control the traffic

quite frequently.
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Figure 5.5: Window length = 100000 data (on the left) and 50000 data (on the right)
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Figure 5.6: Window length = 20000 data (on the left) and 10000 data (on the right)
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Figure 5.7: Window length = 5000 data (on the left) and 2000 data (on the right)
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To sum up the found results, in the simulations these parameters will be used:

T = 1ms

f = 106 bit/ms

T1 = 100ms

LW = 20000 data

ND = 1000 data

5.4 Simulations of EEEP Strategy on San Diego

Series

After the choice of all the parameters for the correct working of the algorithm,

simulations with the software MATLAB can start. The trace considered has 300000

data which represent the number of the transmitted packets every millisecond with

the corresponding bits. In the simulations only 200000 samples are considered

because MATLAB is not able to handle great amount of data. The following figures

show the behavior of the algorithm during the packets transmission, focusing on a

block which uses the prediction strategy previously described.
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Figure 5.8: Example of a block which uses EEEP strategy.
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Figure 5.9: Example of a block which uses EEEP strategy. First part of the block (on the

left), second part of the block (on the right).
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Figure 5.10: Example of a block which uses EEEP strategy. Zoom of the second part of

the block.

As it can be observed from Fig.5.9, the block of length 200 ms is divided into two

parts: the first part of length 100 ms only uses the EEE strategy (every millisecond

the link turns on, transmits the packets in the buffer, turns off and wait for the

next millisecond), while in the second part (100 ms) the link is off and does not

transmit packets until just before the end of the block when it turns on and start

to transmit the packets accumulated in the queue (to note the great amount of

transmitted packets in the last milliseconds before the end of the block at 200 ms).

In Fig.5.10 it is interesting to observe that the block is not able to transmit all the

packets accumulated in the queue by the end of the block and it has the necessity to

transmit the remaining packets in the new one (in red the milliseconds used in the
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Figure 5.11: Example of a block which does not use EEEP strategy.

new block to transmit the remaining packets of the queue). Finally in Fig.5.11 it

is reported a block that does not use prediction strategy but it only uses EEE strategy.

In Fig.5.12 the trend of the Hurst parameter, computed every ND data (start-

ing from 20000 data) on windows of LW data, is reported.
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Figure 5.12: Hurst parameter trend.

Finally, the most interesting figures are those about time and energy performance

of the whole algorithm. For a comparison in these figures also two other functions

are reported: there is the function which represents the link always on (no efficiency

strategy) and the function which represents the link which only uses the EEE strategy.

Figures 5.13, 5.14, 5.15, 5.16 report these functions with their zooms.
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Figure 5.13: Time spent when the link is on.
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Figure 5.14: Zoom of the time spent when the link is on.
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Figure 5.15: Energy spent when the link is on.
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Figure 5.16: Zoom of the energy spent when the link is on.
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In Fig.5.13 there is the representation of the spent time by the link to stay on.

The blue line is the case of the link always on: after 200000 ms = 200 s, the link

stayed on for 200 s. The red line refers to the EEE case where the link stays on only

for 59.16 s with a time gain of 70.4 % respect the “always on” case. Finally, the

black line is that one which represents the algorithm above described and here the

link, after 200 s, stays on only for 42.23 s with a time gain of 78.9 % respect to the

“always on” case and of 28.6 % respect to the EEE case.

Fig.5.14 is particularly meaningful. In fact, it can be observed the time spent

relatively to the first block (it is a zoom of Fig.5.13). The presented algorithm shows

its benefits when the link, after the first part of the block, turns off and avoids all

the time which EEE strategy spends on transitions (tw and ts). After 200 ms, the

link using the EEE strategy spends 60.31 ms on while it only spends 37.69 ms using

the EEEP strategy with a gain of 37.5 % respect to EEE case.

The same considerations can be done for the two figures about the spent energy by

the link when it is on. It is supposed to use a particular Intel card where the power

consumption is 0.697 W when the link is on (also considering the transitions) and

0.053 W when it is off. Fig.5.15 shows that, after 200 seconds, if the link is always

on, the spent energy is 139.4 J; if the link adopts EEE strategy, the spent energy is

48.7 J with a gain of 65.1 % respect to the “always on” case; if the link adopts EEE

+ Prediction strategy the spent energy is 37.8 J with a gain of 72.9 % respect to the

“always on” case and a gain of 22.4 % respect to the EEE strategy.

Fig.5.16 shows the energy trend for the three cases. After 200 ms, the link “always

on” spends 139.4 mJ, the link using EEE strategy spends 49.44 mJ and the link

adopting EEEP strategy spends 34.88 mJ with a gain of 29.5 % respect to the EEE

case. As it can be seen in particular in this figure, energy gains are lower than the

time gains because the great benefits of the algorithm come from the fact that the

link stays completely off for a long interval in the block. For the energy case, when

the link is off, anyway it spends a few tens of milliWatt (not zero) and for this reason

the benefits are lower than the time case.

In conclusion, EEE strategy is very useful to reduce energy consumptions and,

combined with the use of the prediction of the future traffic, can become even more

effective with more time and energy savings.
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For completeness in Tab.5.4 some data about the simulation with the window

of 100 ms are reported.

Block Packets Packets Useful Packets Packets Time

# arrived in trans. in time for trans. in not for

the first part the first part trans. the second part trans. trans.

1 1450 1450 8 1367 164 2

2 1363 1527 9 1337 0 0

3 1206 1206 8 1113 0 0

4 1108 1108 / 1228 0 0

5 1194 1194 8 1140 0 0

6 1107 1107 / 1231 0 0

7 1223 1223 7 1174 0 0

8 1187 1187 6 1149 72 1

9 1121 1193 / 1265 0 0

10 1338 1338 8 1344 0 0

11 1445 1445 9 1270 0 0

12 1233 1233 7 1187 57 2

13 1219 1276 9 1379 0 0

14 1498 1498 10 1407 0 0

15 1424 1424 9 1278 0 0

16 1250 1250 7 1256 0 0

17 1173 1173 7 1144 116 2

18 1271 1387 9 1322 0 0

19 1168 1168 / 1220 0 0

20 1217 1217 7 1141 23 1

21 1117 1140 / 1225 0 0

22 1149 1149 / 1335 0 0

Table 5.4: Analysis of the first 22 blocks.

Each row of the table represents a block of traffic of 200 ms. Consecutive rows

correspond to consecutive blocks. This table has six columns: in the first one there

are the packets arrived in the first 100 ms of every block and in the second one the

transmitted packets in the same 100 ms with EEE policy. It is interesting to note

the in some blocks the transmitted packets are more than the arrived packets (for
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example the second block): this is because in the previous block there are some

packets (whose number is reported in the fifth column) that the link is not able

to transmit in time; in fact, if the useful time calculated and reported in the third

column is not sufficient for the transmission of the packets arrived in the second

part, these packets are transmitted in the new subsequent block with a required time

reported in the sixth column. The fourth column reports the number of packets

which the link is able to transmit in the second 100 ms of every block. The symbol

“/” which sometimes appears in the third column means that the prediction strategy

is not applied in the following 100 ms of that block.

To conclude this analysis the following data are reported: of 1000 blocks of length

200 ms, 815 used the prediction strategy (81.5 %) and of these 815 blocks, 208

had packets which had to be transmitted in the subsequent block (25.5 %). Then,

the maximum number of these packets is 578 and the maximum time used in the

subsequent block to transmit these packets is 6 ms (use of 6 % of the window of 100

ms).

Of course one could adopt a more aggressive strategy without allowing any useful

time extension and this would lead to higher savings at the cost of possible higher

delays (in this case more blocks would exceed their reserved time for transmission).

Finally, in Appendix A the results of other simulations are reported with a fi-

nal discussion on the computational complexity of the proposed algorithm while in

Appendix B MATLAB code is reported.
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Conclusions

To sum up the structure of this thesis, it can be divided in four parts.

The first one discusses some models for data networks (Chapter 1) and focuses,

in particular, on the model of the self-similarity describing all the mathematical

properties, with special attention towards the correlation structure among samples

very far (long range dependence) which permits to make a prevision of the future

traffic with a certain reliability depending on the value of the Hurst parameter

(Chapter 2).

The second part of this thesis concerns the more recent study of energy savings, also

in the field of data transmission in a LAN and analyses the recent introduction of

the standard IEEE 802.3az and, in particular, the LPI mode, which will be used for

the implementation of the algorithm proposed.

The third and the fourth part represent the original contribution and thus the

more interesting. The third part at the beginning explains some control tools used

while at the end deals with the definition of the control strategy proposed which

collects all the elements previously described with a final flow chart which summarizes

the strategy.

The fourth part concerns the simulations made with the software MATLAB in

which the strategy proposed is analyzed in all its details. Basically it can be estab-

lished that the use of EEE strategy brings great energy savings with a gain of more

than the 70 % respect the case of the link always on. Further gains can be obtained

exploiting the statistical properties of the traffic trace using the prediction. With

the use of this powerful approach energy savings increase: it can be said that this

thesis proposes a more energy efficient technique with interesting results that can be

implemented on a real Ethernet card.
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Appendix A

Other simulations

Windows Increments of Blocks with useful Time Energy

Sizes T1 (ms) useful time (%) time not sufficient (%) gains (%) gains (%)

50 ms + 0 47.70 34.87 27.2

(2000 blocks) + 10 27.01 33.62 26.22

93.5 % of blocks + 20 12.78 32.41 25.28

use prediction + 30 4.76 31.24 24.37

+ 40 1.76 30.03 23.43

+ 50 0.53 28.86 22.51

+ 60 0.16 27.62 21.55

+ 70 0.05 26.42 20.61

+ 80 0.05 25.25 19.70

+ 90 0 24.04 18.75

100 ms + 0 49.35 34.73 27.09

(1000 blocks) + 10 21.61 33.51 26.14

93 % of blocks + 20 8.82 32.32 25.21

use prediction + 30 2.37 31.15 24.30

+ 40 0.65 29.93 23.35

+ 50 0.22 28.78 22.45

+ 60 0.11 27.58 21.52

+ 70 0 26.36 20.57

Table A.1: Windows from 50ms to 100ms
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Windows Increments of Blocks with useful Time Energy

Sizes T1 (ms) useful time (%) time not sufficient (%) gains (%) gains (%)

200 ms + 0 48.72 35.07 27.36

(500 blocks) + 10 19.36 33.88 26.43

94 % of blocks + 20 6.38 32.67 25.49

use prediction + 30 0.64 31.48 24.56

+ 40 0 30.28 23.62

500 ms + 0 45.66 32.29 25.19

(200 blocks) + 10 13.29 31.18 24.32

86.5 % of blocks + 20 4.62 30.06 23.45

use prediction + 30 0 28.97 22.60

1000 ms + 0 47 37.42 29.20

(100 blocks) + 10 15 36.17 28.22

100 % of blocks + 20 3 34.91 27.23

use prediction + 30 0 33.65 26.25

2000 ms + 0 54.76 31.35 24.46

(50 blocks) + 10 11.90 30.27 23.62

84 % of blocks + 20 2.38 29.20 22.78

use prediction + 30 0 28.11 21.93

2500 ms + 0 65.62 29.98 23.39

(40 blocks) + 10 12.5 28.95 22.57

80 % of blocks + 20 6.25 27.93 21.79

use prediction +30 0 26.91 20.99

5000 ms + 0 50 33.50 26.13

(20 blocks) + 10 11.11 32.35 25.24

90 % of blocks + 20 0 31.20 24.34

use prediction

Table A.2: Windows from 200ms to 5000ms
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Figure A.1: Window length = 100000 data (on the left) and 50000 data (on the right)
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Figure A.2: Window length = 20000 data (on the left) and 10000 data (on the right)
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Figure A.3: Window length = 5000 data (on the left) and 2000 data (on the right)
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The previous tables and figures are those ones obtained analyzing another trace

of traffic respect that one reported in Chapter 5. The tables, as already explained,

are useful to understand the behavior of the algorithm choosing different values for

T1 while the figures show the trend of the Hurst parameter with different values for

LW and ND. The considerations previously done in Chapter 5 are the same and

therefore here will not be reported.

In the following table, instead, there are some other data which give an idea of the

working of the algorithm in all the windows considered. There are six columns: the

first one contains the different values for T1 chosen. The second one reports the

average number of packets which have to be transmitted in the subsequent block

and in the third the average time used to transmit these packets. In the fourth one

there are also the percentages of time used in a window of length T1 to transmit the

packets in the second column. Finally in the last two ones there are the time and

energy gains respect the EEE policy. It can be noted that the gains are also high

although windows sizes change.

Windows Average packets Average time Perc. of Time Energy

Size trans. in the for trans. window gain gain

T1 follow. block in the follow. block used % %

50 ms 63 1.57 ms 3.1 % 26.92 % 21.06 %

100 ms 116 2.04 ms 2 % 27.86 % 21.8 %

200 ms 204 2.79 ms 1.4 % 27.75 % 21.7 %

500 ms 466 5.26 ms 1.1 % 25.48 % 19.94 %

1000 ms 977 9.95 ms 1 % 25.8 % 20.19 %

2000 ms 1957 18.42 ms 0.9 % 32.47 % 25.41 %

2500 ms 1990 18.69 ms 0.8 % 20.77 % 16.25 %

5000 ms 3169 29.43 ms 0.6 % 32.45 % 25.39 %

Table A.3: Different windows simulations.
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Another interesting analysis concerns the computational burden of the proposed

algorithm. For computing the time that the software MATLAB used in the various

simulations, the commands tic and toc were used. In the following table there are

some time measured varying the window size T1 and the parameters LW and ND.

Size T1 LW ND Time

50 ms 20000 1000 5.94 s

100000 10000 5.06 s

100000 50000 4.77 s

100 ms 20000 1000 5.43 s

100000 10000 4.52 s

100000 50000 4.25 s

200 ms 20000 1000 5.19 s

100000 10000 4.22 s

100000 50000 4.16 s

500 ms 20000 1000 4.83 s

100000 10000 3.92 s

100000 50000 3.67 s

1000 ms 20000 1000 4.77 s

100000 10000 3.93 s

100000 50000 3.69 s

2000 ms 20000 1000 4.99 s

100000 10000 4.11 s

100000 50000 3.83 s

5000 ms 20000 1000 5.01 s

100000 10000 4.04 s

100000 50000 3.78 s

Table A.4: Time taken by the algorithm to work in MATLAB.

As it can be noted, the time taken by the algorithm to work seems to decrease

as the length of the window increases. Another interesting thing is that, fixing the

window, using different values of LW and ND, the computational time decreases

of more than 1 second with the increase of LW and ND. This fact is easy to
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understand: in fact, with longer windows and with more new data considered, a

smaller number of times there is the Hurst parameter computation and this brings a

great time savings.

In Fig.A.4 there is the graphical representations of the computational burden of

the algorithm when it runs in MATLAB.
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Figure A.4: Graphical representation of the computational burden of the algorithm.



Appendix B

Matlab Code

In this appendix the implementation of the algorithm proposed using the software

MATLAB is reported.

1 clear all

2 clc

3 close all

4

5 %% data

6

7 % inputs

8 finestra = 100;

9 LW = 20000;

10 ND = 1000;

11 f = 10^6; % bit/millisec (1 Gbit/s, 1 bit/nanosec)

12 perc = 0;

13 tsleep = 0.202;

14 twake = 0.0165;

15 ttrans = tsleep + twake;

16 enactive = 0.697; % Watt spent when link is on + transistions

17 enquiet = 0.053; % Watt spent when link is off

18

19 % open the file

20 fid = fopen(’20040130 -1 -1 - T1ms.txt’,’r’);

21

22 % save in v

81
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23 v = fscanf(fid ,’%d’ ,[2 inf]);

24

25 %close the file

26 fclose(fid);

27

28 % total data

29 tot = 300000;

30

31 % data considered

32 N = 200000;

33

34 % packets vector

35

36 p = zeros (65,tot);

37

38 p(1,:) = v(2,:);

39

40 % bits vector

41 bit = v(1,:)*8;

42

43 % packets counters

44 nump = 2;

45 numpac = 2;

46

47 % transmitted packets

48 ptrasm = zeros(1,length(p(1,1:N)));

49

50 % useful time variables

51 tpass = 0;

52 tpasspred = 0;

53 tp = 0;

54 tp1 = 0;

55 tp2 = 0;

56

57 % wasted time in the window

58 waste = finestra*ttrans;

59

60 % transmission times vector
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61 T = zeros(1,N);

62

63 % Traffic volume

64 V = 0;

65

66 % window index

67 ind = 1;

68

69 % blocks indices

70 l = 1;

71 j = 0;

72

73 % times vector when the link turns on

74 sicurezza = zeros(1,N/(2* finestra));

75

76 % traffic levels in the first part of the blocks

77 L1 = zeros(1,N/(2* finestra));

78

79 % useful boolean variables

80 pred = false;

81 fine = false;

82

83 % queue variables

84 cod = 1;

85 row = 1;

86 coda = zeros (1 ,100000);

87

88 % variables for Hurst parameter control

89

90 ts = 1;

91 Hu = zeros(1,(N-LW)/ND + 2);

92 Hu(1) = 0.7;

93 ph = zeros(7,LW);

94 varianza = zeros (1,7);

95 agg = [5 ,10 ,50 ,100 ,500 ,1000];

96 agg1 = [1,agg];

97 logagg1 = log10(agg1);

98
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99 %% table construction

100

101 % maximum and minimum traffic

102

103 Vmin = sum(p(1,1: finestra));

104 Vmax = sum(p(1,1: finestra));

105

106 for c = 1: finestra :(tot - finestra)

107 Vol = sum(p(1,c:c+finestra -1));

108 if Vol > Vmax

109 Vmax = Vol;

110 end

111 if Vol < Vmin

112 Vmin = Vol;

113 end

114 end

115

116 % quantization levels

117

118 d = 8;

119 mu = (Vmax - Vmin)/d;

120 primaparte = true;

121 e = 1;

122 blocks = zeros(d,d+1);

123

124 Liv1 = zeros(1,tot /(2* finestra));

125 Liv2 = zeros(1,tot /(2* finestra));

126 luno = 1;

127

128 % table building

129

130 for g = 1: finestra :(tot - finestra + 1)

131

132 Vol = sum(p(1,g:g+finestra -1));

133

134 if(primaparte)

135 if Vol < Vmin + mu

136 Liv1(luno) = 1;
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137 end

138 if Vol >= Vmin + mu && Vol < Vmin + 2*mu

139 Liv1(luno) = 2;

140 end

141 if Vol >= Vmin + 2*mu && Vol < Vmin + 3*mu

142 Liv1(luno) = 3;

143 end

144 if Vol >= Vmin + 3*mu && Vol < Vmin + 4*mu

145 Liv1(luno) = 4;

146 end

147 if Vol >= Vmin + 4*mu && Vol < Vmin + 5*mu

148 Liv1(luno) = 5;

149 end

150 if Vol >= Vmin + 5*mu && Vol < Vmin + 6*mu

151 Liv1(luno) = 6;

152 end

153 if Vol >= Vmin + 6*mu && Vol < Vmin + 7*mu

154 Liv1(luno) = 7;

155 end

156 if Vol >= Vmin + 7*mu

157 Liv1(luno) = 8;

158 end

159

160 blocks(Liv1(luno) ,9) = blocks(Liv1(luno) ,9) + 1;

161

162 else

163

164 if Vol < Vmin + mu

165 Liv2(luno) = 1;

166 end

167 if Vol >= Vmin + mu && Vol < Vmin + 2*mu

168 Liv2(luno) = 2;

169 end

170 if Vol >= Vmin + 2*mu && Vol < Vmin + 3*mu

171 Liv2(luno) = 3;

172 end

173 if Vol >= Vmin + 3*mu && Vol < Vmin + 4*mu

174 Liv2(luno) = 4;
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175 end

176 if Vol >= Vmin + 4*mu && Vol < Vmin + 5*mu

177 Liv2(luno) = 5;

178 end

179 if Vol >= Vmin + 5*mu && Vol < Vmin + 6*mu

180 Liv2(luno) = 6;

181 end

182 if Vol >= Vmin + 6*mu && Vol < Vmin + 7*mu

183 Liv2(luno) = 7;

184 end

185 if Vol >= Vmin + 7*mu

186 Liv2(luno) = 8;

187 end

188

189 blocks(Liv1(luno),Liv2(luno)) = blocks(Liv1(luno),Liv2(

luno)) + 1;

190

191 end

192

193 e = e + 1;

194

195 if (mod(e,2) == 0)

196 primaparte = false;

197 else

198 primaparte = true;

199 luno = luno + 1;

200 end

201

202 end

203

204 % conditional probability matrix

205

206 CondProb = blocks (: ,1:8);

207

208 for q = 1:8

209 if blocks(q,9) == 0

210 CondProb(q,:) = zeros (1,8);

211 continue;
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212 end

213 CondProb(q,:) = CondProb(q,:)./ blocks(q,9);

214 end

215

216 % trend of the conditional probability densities

217

218 figure (1)

219 for u = 1:8

220 hold on

221 plot3(u*ones (1,8) ,1:8, CondProb(u,1:8))

222 grid on

223 end

224 xlabel(’Traffic level L1’,’FontSize ’ ,14)

225 ylabel(’Traffic level L2’,’FontSize ’ ,14)

226 zlabel(’P(L2|L1 = l)’,’FontSize ’ ,14)

227 title(’Conditional probability densities ’,’FontSize ’ ,14)

228

229

230 medio = zeros (1,8);

231

232 % average value for each line

233

234 for t = 1:8

235 for i = 1:8

236 medio(t) = medio(t) + i*CondProb(t,i);

237 end

238 end

239

240 %% bits division in the packets

241

242 cou = 1;

243 for t=1:N

244 while(cou < p(1,t)+1)

245 if cou == p(1,t)

246 p(cou+1,t) = bit(t) - sum(p(2:cou ,t));

247 break

248 end

249 p(cou+1,t) = round(bit(t)/p(1,t));
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250 cou = cou + 1;

251 end

252 cou = 1;

253 end

254

255

256 %% packets transmissions

257

258 for t = 1:N

259

260 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

261 % H COMPUTATION

262

263 % Hurst parameter control

264 if t == LW + (ts -1)*ND

265

266 % data used for H computation

267 ph(1,:) = p(1, 1 + (ts -1)*ND : LW + (ts -1)*ND);

268

269 % partial sum

270 y = 0;

271

272 % row index

273 z = 1;

274

275 % computation

276 for h = 1 : length(agg)

277 for w = 1 : LW / agg(h)

278 for k = 1+(w-1)*agg(h) : agg(h)+(w-1)*agg(h)

279 y = y + ph(1,k);

280 end

281 ph(z+1,w) = y / agg(h);

282 y = 0;

283 end

284 z = z + 1;

285 end
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286

287 % variances of the aggregate series

288 for n = 1 : length(agg1)

289 varianza(n) = var(ph(n, 1 : LW/agg1(n)));

290 end

291

292 logvarianza = log10(varianza);

293

294 % least squares line

295 coeff = polyfit(logagg1 ,logvarianza ,1);

296 Hu(ts+1) = 1 + coeff (1) /2;

297

298 ts = ts + 1;

299

300 end

301

302 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

303 % EEE + PREDICTION STRATEGY

304

305 % queue building for the packets arrived when the link is

off

306

307 if Hu(ts) > 0.6 && pred == true && 2*j*finestra -

finestra < t && t <= 2*j*finestra - sicurezza(j)

308 ptrasm(t) = 0;

309 count = p(1,t);

310 if p(1,t) == 0

311 coda(1,cod) = 0;

312 cod = cod + 1;

313 end

314 while(count > 0)

315 coda(1,cod) = p(count+1,t);

316 count = count - 1;

317 cod = cod + 1;

318 end

319 continue;

320 end

321
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322 % when the link turns on, there is the transmission of

the packets

323 % arrived at instant t and in the queue

324

325 if Hu(ts) > 0.6 && pred == true && 2*j*finestra -

sicurezza(j) < t && t <= 2*j*finestra

326

327 while(tp < 1)

328

329 if p(2,t) == 0

330 break

331 end

332

333 % immediate transmissions of the packets which

arrive at

334 % instant t

335 ptrasm(t) = ptrasm(t) + 1;

336 tp = tp + p(numpac ,t)/f;

337 numpac = numpac + 1;

338

339 % start with the transmissions of packets in the

queue

340 if numpac == p(1,t)+2

341

342 T(t) = T(t) + tp;

343

344 while(tpasspred < 1 - tp)

345

346 if (tpasspred + coda(row)/f < 1 - tp)

347 ptrasm(t) = ptrasm(t) + 1;

348 tpasspred = tpasspred + coda(row)/f;

349 row = row + 1;

350

351 % queue ends

352 if row == cod

353 fine = true;

354 pred = false;

355 row = 1;
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356 cod = 1;

357

358 coda = zeros (1 ,100000);

359 tpasspred = 0;

360 break

361 end

362 else

363 T(t) = T(t) + tpasspred;

364 tpasspred = 0;

365 break

366 end

367 end

368 break

369 end

370 end

371 numpac = 2;

372 tp = 0;

373 continue

374 end

375

376 % when queue ends normal transmission

377

378 if Hu(ts) > 0.6 && fine == true && 2*j*finestra -

sicurezza(j) < t && t <= 2*j*finestra

379

380 while(tp1 < 1)

381

382 if p(2,t) == 0

383 break

384 end

385

386 ptrasm(t) = ptrasm(t) + 1;

387 tp1 = tp1 + p(numpac ,t)/f;

388 numpac = numpac + 1;

389

390 if numpac == p(1,t)+2

391 T(t) = T(t) + tp1;

392 tp1 = 0;
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393 numpac = 2;

394 break

395 end

396 end

397

398 if t == 2*j*finestra

399 fine = false;

400 end

401 continue

402 end

403

404 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

405 % EEE STRATEGY

406

407 while(tpass < 1 - ttrans)

408

409 if p(2,t) == 0

410 break

411 end

412

413 ptrasm(t) = ptrasm(t) + 1;

414 tpass = tpass + p(nump ,t)/f;

415 nump = nump + 1;

416

417 if nump == p(1,t)+2

418

419 T(t) = tpass + ttrans;

420

421 % counter for volume traffic arrived up to t

422 V = V + ptrasm(t);

423

424 % if the queue is not empty

425 if row < cod

426 while (tp2 < 1 - T(t))

427

428 if (tp2 + coda(row)/f < 1 - T(t))

429

430 ptrasm(t) = ptrasm(t) + 1;
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431 tp2 = tp2 + coda(row)/f;

432 row = row + 1;

433 if row == cod

434 row = 1;

435 cod = 1;

436

437 coda = zeros (1 ,100000);

438 break

439 end

440 else

441 T(t) = T(t) + tp2;

442 tp2 = 0;

443 break

444 end

445 end

446 end

447

448 tpass = 0;

449 nump = 2;

450

451 % when the first part of the block ends , the

volume traffic is

452 % assigned to a quantization level and there is

the decision if

453 % it is appropriate to apply the prediction

strategy

454

455 if ind == finestra

456 if V < Vmin + mu

457 L1(l) = 1;

458 end

459 if V >= Vmin + mu && V < Vmin + 2*mu

460 L1(l) = 2;

461 end

462 if V >= Vmin + 2*mu && V < Vmin + 3*mu

463 L1(l) = 3;

464 end

465 if V >= Vmin + 3*mu && V < Vmin + 4*mu
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466 L1(l) = 4;

467 end

468 if V >= Vmin + 4*mu && V < Vmin + 5*mu

469 L1(l) = 5;

470 end

471 if V >= Vmin + 5*mu && V < Vmin + 6*mu

472 L1(l) = 6;

473 end

474 if V >= Vmin + 6*mu && V < Vmin + 7*mu

475 L1(l) = 7;

476 end

477 if V >= Vmin + 7*mu

478 L1(l) = 8;

479 end

480

481 % if in the second part of the block there is

less traffic or

482 % equal traffic respect to the first part of

the block use of

483 % the prediction strategy

484

485 if L1(l) >= round(medio((L1(l))))

486 tempoL1 = 0;

487 for i = 1 + 2*(l-1)*finestra : finestra +

2*(l-1)*finestra

488 tempoL1 = tempoL1 + T(i);

489 end

490

491 % useful time

492 useful = tempoL1 - waste;

493

494 % there is the possibility to add a

percentage to the

495 % useful time

496

497 sicurezza(l) = useful + perc*useful /100;

498 sicurezza(l) = ceil(sicurezza(l));

499 pred = true;
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500

501 ind = 0;

502 V = 0;

503

504 else

505

506 sicurezza(l) = 0;

507 pred = false;

508 ind = - finestra;

509

510 end

511

512 l = l + 1;

513 j = j + 1;

514

515 end

516 break;

517 end

518 end

519

520 ind = ind + 1;

521 if ind == 0

522 V = 0;

523 end

524

525 end

526

527 %% Time analysis

528

529 % time plot using link always on

530

531 tempo1 = zeros (1,2*N);

532 tempo1 (1:N) = 1:N;

533 tempo1(N+1:2*N) = N*ones(1,N);

534

535 figure (2)

536 plot(tempo1)

537 axis ([0 ,2*N,0,N+50000])
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538 grid on

539 xlabel(’Time (ms)’, ’FontSize ’ ,14)

540 ylabel(’Time (ms)’, ’FontSize ’ ,14)

541 title(’Time used when the link is on’, ’FontSize ’ ,14)

542 hold on

543

544 % time plot using link with only EEE strategy

545

546 Teff = bit/f + ttrans*ones (1 ,300000);

547 tempo2 = zeros(1,length(T));

548

549 tempo2 (1) = Teff (1);

550 for i = 2: length(T)

551 tempo2(i) = tempo2(i-1) + Teff(i);

552 end

553

554 tempo2(N+1:2*N) = tempo2(N)*ones(1,N);

555

556 plot(tempo2 ,’r’)

557

558 hold on

559

560 % time plot using link with EEE + prediction strategy

561

562 tempo3 = zeros(1,length(T));

563

564 tempo3 (1) = T(1);

565 for a = 1:(N/(2* finestra))

566 for i = 1 + 2*(a-1)*finestra : finestra + 2*(a-1)*

finestra - 1

567 tempo3(i+1) = tempo3(i) + T(i+1);

568 end

569 if sicurezza(a) == 0

570 for i = finestra + 2*(a-1)*finestra : 2*a*finestra - 1

571 tempo3(i+1) = tempo3(i) + T(i+1);

572 end

573 if 2*a*finestra + 1 == N + 1

574 break;
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575 end

576 tempo3 (2*a*finestra + 1) = tempo3 (2*a*finestra) + T(2*

a*finestra + 1);

577 continue

578 end

579 tempo3(finestra + 1 + 2*(a-1)*finestra : 2* finestra + 2*(

a-1)*finestra - round(sicurezza(a))) = tempo3(

finestra + 2*(a-1)*finestra)*ones(1,finestra -round(

sicurezza(a)));

580 tempo3 (2* finestra + 2*(a-1)*finestra - round(sicurezza(a)

) + 1 : 2* finestra + 2*(a-1)*finestra) = tempo3 (2*

finestra + 2*(a-1)*finestra - round(sicurezza(a))) +

(1: round(sicurezza(a)));

581 if 2*a*finestra + 1 == N + 1

582 break;

583 end

584 tempo3 (2*a*finestra + 1) = tempo3 (2*a*finestra) + T(2*a*

finestra + 1);

585 end

586

587 tempo3(N+1:2*N) = tempo3(N)*ones(1,N);

588

589 plot(tempo3 ,’k’)

590 grid on

591

592 legend(’Link always on’,’EEE’,’EEE + Prediction ’)

593

594 %% Energy analysis (Intel card)

595

596 % energy plot using link always on

597

598 energia1 = zeros (1,2*N);

599 energia1 (1:N) = enactive *(1:N);

600 energia1(N+1:2*N) = energia1(N)*ones(1,N);

601 figure (3)

602 plot(energia1)

603 axis ([0 ,2*N,0,N+50000])

604 grid on
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605 xlabel(’Time (ms)’, ’FontSize ’ ,14)

606 ylabel(’Energy spent (mJ)’, ’FontSize ’ ,14)

607 title(’Energy spent ’, ’FontSize ’ ,14)

608 hold on

609

610 % energy plot using link with only EEE strategy

611

612 energia2 = (enactive*Teff + enquiet *(ones(1,length(Teff)) -

Teff));

613 for i = 2: length(T)

614 energia2(i) = energia2(i-1) + energia2(i);

615 end

616

617 energia2(N+1:2*N) = energia2(N)*ones(1,N);

618

619 plot(energia2 ,’r’)

620 hold on

621

622 % energy plot using link with EEE + prediction strategy

623

624 energia3 = zeros(1,length(T));

625

626 energia3 (1) = enactive*T(1) + enquiet *(1-T(1));

627 for a = 1:(N/(2* finestra))

628 for i = 1 + 2*(a-1)*finestra : finestra + 2*(a-1)*

finestra - 1

629 energia3(i+1) = energia3(i) + enactive*T(i+1) +

enquiet *(1-T(i+1));

630 end

631 if sicurezza(a) == 0

632 for i = finestra + 2*(a-1)*finestra : 2*a*finestra - 1

633 energia3(i+1) = energia3(i) + enactive*T(i+1) +

enquiet *(1-T(i+1));

634 end

635 if 2*a*finestra + 1 == N + 1

636 break;

637 end

638 energia3 (2*a*finestra + 1) = energia3 (2*a*finestra) +
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enactive*T(2*a*finestra + 1) + enquiet *(1-T(2*a*

finestra + 1));

639 continue

640 end

641 energia3(finestra + 1 + 2*(a-1)*finestra : 2* finestra +

2*(a-1)*finestra - round(sicurezza(a))) = energia3(

finestra + 2*(a-1)*finestra) + enquiet *(1 : finestra -

round(sicurezza(a)));

642 energia3 (2* finestra + 2*(a-1)*finestra - round(sicurezza(

a)) + 1 : 2* finestra + 2*(a-1)*finestra) = energia3

(2* finestra + 2*(a-1)*finestra - round(sicurezza(a)))

+ enactive *(1 : round(sicurezza(a)));

643 if 2*a*finestra + 1 == N + 1

644 break;

645 end

646 energia3 (2*a*finestra + 1) = energia3 (2*a*finestra) +

enactive*T(2*a*finestra + 1) + enquiet *(1-T(2*a*

finestra + 1));

647 end

648

649 energia3(N+1:2*N) = energia3(N)*ones(1,N);

650

651 plot(energia3 ,’k’)

652 grid on

653

654 legend(’Link always on’,’EEE’,’EEE + Prediction ’)

655

656 %% Packets transmitted

657

658 figure (4)

659 stem(ptrasm (118001:118250) ,’.’)

660 grid on

661 xlabel(’Time (ms)’, ’FontSize ’ ,14)

662 ylabel(’Packets transmitted ’, ’FontSize ’ ,14)

663 title(’Packets transmitted in a block using EEE + prediction

strategy ’, ’FontSize ’ ,14)

664

665 %%
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666 figure (5)

667 stem(ptrasm (601:800) ,’.’)

668 grid on

669 xlabel(’Time (ms)’, ’FontSize ’ ,14)

670 ylabel(’Packets transmitted ’, ’FontSize ’ ,14)

671 title(’Packets transmitted in a block using EEE + prediction

strategy ’, ’FontSize ’ ,14)

672 axis ([0 ,200 ,0 ,250])

673

674 %% Hurst parameter

675

676 figure (6)

677 plot(Hu)

678 grid on

679 xlabel(’Windows ’, ’FontSize ’ ,14)

680 ylabel(’Hurst parameter ’, ’FontSize ’ ,14)

681 title(’Trend of the Hurst parameter ’, ’FontSize ’ ,14)

682

683 %% Final analysis

684

685 ana = zeros(N/(2* finestra) ,10);

686

687 for i = 1:N/(2* finestra)

688 %

689 ana(i,1) = sum(p(1, 1 + 2*(i-1)*finestra : finestra + 2*(

i-1)*finestra));

690 ana(i,2) = sum(ptrasm(1, 1 + 2*(i-1)*finestra : finestra

+ 2*(i-1)*finestra));

691 ana(i,3) = L1(i);

692 ana(i,4) = medio(L1(i));

693 ana(i,5) = sicurezza(i);

694 ana(i,6) = sum(p(1, 2*i*finestra - finestra + 1 : 2*i*

finestra - sicurezza(i))); % in coda

695 ana(i,7) = sum(p(1, 2*i*finestra - sicurezza(i) + 1 : 2*i

*finestra )); % arrivano quando è accesa

696 ana(i,8) = sum(ptrasm(1, 2*i*finestra - sicurezza(i) + 1

: 2*i*finestra )); % trasmessi

697 ana(i,9) = ana(i,6) + ana(i,7) - ana(i,8); % mancanti
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da trasmettere

698 if sicurezza(i) == 0

699 ana(i,9) = 0;

700 end

701 if i == N/(2* finestra)

702 break

703 end

704 ana(i,10) = length(find(( ptrasm(1, 1 + 2*i*finestra :

finestra + 2*i*finestra) - p(1, 1 + 2*i*finestra :

finestra + 2*i*finestra))> 0));

705

706 end

707

708 % gain of time and gain of energy respect to EEE

709 gt = (tempo2(N) - tempo3(N))/tempo2(N)*100

710 ge = (energia2(N) - energia3(N))/energia2(N)*100

711

712 % number of blocks

713 bl = N/(2* finestra)

714

715 % blocks which use prediction strategy

716 pr = length(find(ana(:,5) ~=0 ))

717 pepr = pr/bl*100

718

719 % blocks which have to transmit their packets in the

following block

720 sf = length(find(ana (:,10) ~=0 ))

721 pesf = sf/pr*100

722

723 % max number of packets transmitted in the following block

and

724 % max number of time used to transmit old packets in the new

block

725 pack = find(ana(:,9) > 0);

726 pout = max(ana(pack ,9))

727 tco = max(ana(pack ,10))

728

729 % percentage of the window used to transmit packets in the
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new block (max case)

730 peco = tco/finestra *100
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