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Chapter 1

Introduction

Augmented Reality (AR) is a family of technologies that aim at providing
experiences of the real world that are augmented with computer-generated infor-
mation. The term can describe technologies involving different perceptual senses
but the most successful approaches usually exploit vision. Traditional visual AR
applications make use of a screen that displays the view of a camera, on top of this
view, software overlays elements that are not present in the scene and keeps them
in position within the real-world environment by tracking the movement of the
device or other real-world elements.

Applications of this technology are countless, ranging from the medical field
with technologies for supporting surgeons and nurses, to the video games, industrial
design, education or entertainment. The video game industry, in particular, has
recently brought Augmented Reality to the masses with AR games playable on
smartphones (e.g. Pokémon Go [29]).

One important limitation of traditional AR applications is that the software
can be aware only of what is inside the view of the camera. To tackle this limita-
tion OPTAR aims at combining Augmented Reality with OpenPTrack, a system
developed at UCLA REMAP (Center for Research in Engineering Media And
Performance) that integrates people tracking, skeleton tracking, pose recognition
and object tracking using a network of RGB-D cameras based on ROS (Robot
Operating System).

The system aims to be a platform that allows to easily develop artistic and
interactive installations, because of this it was decided to use Android devices
as the user interface, exploiting Unity3D and Google ARCore for the phone-side
application development.

The integration of these two independent systems requires the estimation of
the registration between them. By knowing the transformation between the two
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2 CHAPTER 1. INTRODUCTION

systems, OPTAR will be able to transfer the tracking information produced by
OpenPTrack to the mobile device and at the same time inform OpenPTrack of the
movements of the mobile device tracked by Google ARCore.

This thesis tackles the problem of estimating the registration by exploiting
visual features seen in the environment by both the mobile camera and the fixed
cameras of the OpenPTrack system. The system extracts the features from the
images received from the different cameras and matches them to find common
elements that are visible by both the fixed cameras and the smartphone.

The fixed cameras used by OpenPTrack are depth cameras, either Kinect, Zed
or Realsense. Thanks to depth information it is possible to know the 3D position
of the elements seen by the system. Using this information it is then possible to
estimate the pose of the mobile camera using a PnP algorithm.

Once the phone pose is known in both the OpenPTrack and ARCore systems it
is naturally possible to compute the registration between the two.

A crucial issue is that the registration between the two systems is not constant.
The understanding of the world of Google ARCore changes and improves with
time and, because of this, its frame of reference moves with respect to the fixed
coordinate system of OpenPTrack.

This forces us to update the registration estimate continuously as time pro-
gresses.

Moreover, the PnP estimations of the phone pose are not perfect but naturally
affected by noise. To get a more stable and reliable estimate of the phone position
we employed an approach based on a Kalman filter. However, the rate at which the
PnP estimations are computed is quite low, it is in the order of one estimation per
second. This low frequency would make the estimations produced by the Kalman
filter unreliable, to solve this issue we update the filter at a higher rate using the
information produced by the ARCore tracking, effectively fusing the two estimation
approaches.

An important characteristic of the proposed system is that it supports the use
of multiple phones at the same time. An analysis of the number of devices the
system is capable of handling has not been performed, but it has been tested with
up to 4 devices without noticeable performance degradation.

To present the system, first of all, chapter 2 will describe the methods, tools, and
techniques that have been used. The first two sections will introduce OpenPTrack,
Google ARCore. Section 2.3 will discuss, in general terms, the integration of AR
applications with fixed camera systems. Section 2.4 will provide a theoretical
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description of the Kalman Filter. Section 2.5 will introduce the PnP problem and
some approaches to its solution.

Chapter 3 will thoroughly describe the proposed method. Section 3.1 will
give an overview of OPTAR’s high-level structure. Section 3.2 will detail the
functionalities and the implementation of the Unity Android application. Section
3.3 will instead detail the internals of the ROS component of OPTAR.

Chapter 4 will describe the experimental analysis that has been performed.
Section 4.1 will detail the setup of the quantitative evaluation that has been
performed and present the results that were obtained. Section 4.2 instead describes
and discusses a demonstrative application that has been developed, presenting
some first practical conclusions.

Finally, chapter 5 first discusses the overall performance of the system. Then,
section 5.1 presents some proposals for the improvement of OPTAR.
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Chapter 2

Related Works

This chapter provides an outline of the systems used in this thesis and of some
related works that tackle issues similar to those faced by OPTAR.

Sections 2.1 and 2.2 describe the two systems on which OPTAR is based:
OpenPTrack and Google ARCore.

Section 2.3 explores previous approaches to the integration of Augmented Reality
with fixed camera systems available in the literature.

Section 2.4 provides an introduction to the Kalman Filter and its application
to pose tracking.

Section 2.5 describes the PnP problem and the approaches to its solution.

5



6 CHAPTER 2. RELATED WORKS

2.1 OpenPTrack
OpenPTrack is a multi-camera system for people tracking, object detection

and pose tracking. The system has been developed as a collaboration between
the University of Padua, UCLA REMAP (Center for Research in Engineering,
Media And Performance)[2] and Open Perception[1] with the specific objective
of supporting applications in education, art, and culture. OpenPTrack aims to
support creative coders in the arts, culture, and educational sectors who wish to
experiment with real-time person tracking as an input for their projects.

The system makes use of multiple RGB-D cameras connected through a ROS
network. The original 2013 release supported the Microsoft Kinect and Mesa
Imaging Swissranger SR4500, and provided only the people tracking functionality.
Later versions added the support for the new Kinect for Xbox One (also known as
Kinect v2 ) and implemented pose and object tracking. The pose tracking is based
on OpenPose [7] [16] while the object tracking is based on YOLO [33].

To simplify the process of setting up a multi-camera system OpenPTrack
provides a calibration pipeline for determining the relative poses of the fixed
cameras and establishing a common reference frame. The procedure is based on
the calibration_toolkit ROS package [5].

To perform the calibration the user must move a calibration checkerboard in
front of the cameras. By combining the checkerboard pose estimates from the
different cameras the system is capable of determining the relative poses of the
sensors and performing the calibration.

The original central core of OpenPTrack is the person tracking. Differently
from other components of the system the person tracking is based on a custom
algorithm. As described in [27], the algorithm runs independently for each camera,
then the multiple detections are fused together by a central tracking node. The
detection algorithm first exploits the pointcloud to determine clusters of points
that are candidates to be people detections, these detections are then accepted or
rejected based on a HOG classifier applied to the RGB image. To further improve
the results an AdaBoost classifier is applied to the depth image.

The tracking node, which fuses the different position detections, uses an Un-
scented Kalman Filter to perform the position tracking and exploits theMahalanobis
distance to associate new detections to the already established tracks.

The other components of OpenPTrack, namely the pose and object tracking,
follow the same detection/tracker logic. The detections are obtained using either
OpenPose or YOLO and then fused by a central tracking node.

6



2.1. OPENPTRACK 7

Figures 2.1 and 2.2 show two examples of the position and pose tracking
performed by OpenPTrack.

Figure 2.1: OpenPTrack position tracking
View of the OpenPTrack position tracking within the ROS RViz visualizer. This setup

used two Kinect v2 sensors

Figure 2.2: OpenPTrack pose tracking
View of the OpenPTrack pose tracking within the ROS RViz visualizer. This setup used

three Kinect v2 sensors
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8 CHAPTER 2. RELATED WORKS

2.2 Google ARCore
Google ARCore is a framework for the development of Augmented Reality

applications on smartphones. The software requires Android 7.0 or later to function
and is currently officially supported only by a limited number of devices[15]. A
version for iOS devices is also available, but it only provides an interface to Apple
ARKit and does not implement ARCore’s main features.

On Android platforms, ARCore is distributed as a regular application, down-
loadable from the Google Play Store. Google then provides four different SDKs for
the development of AR applications in four different environments: Unity, Unreal
Engine, Android NDK, and the Android Java SDK. These SDKs are interfaces to
the functionalities provided by the ARCore application, which acts as a library.

While the ARCore application is automatically updated via the regular Google
Play Store system, the different SDKs are provided to the developer in different
versions to be included in the AR application. This project uses the Unity SDK,
version 1.7.0.

2.2.1 Google ARCore Fundamental Concepts
To provide Augmented Reality functionalities ARCore employs a Simultaneous

Localization And Mapping (SLAM) approach [14]. The application continuously
processes the camera feed to detect visually distinct features present the in scene.
By tracking the position of these feature points within the camera images, and
combining this knowledge with odometry estimations produced by the Inertial
Measurement Unit (IMU) of the device, the software is capable of estimating the
smartphone pose within the surrounding environment.[14]

The framework provides the developer the means to embed virtual 3D content
within its internal representation of the world. From this, it is possible to generate
an Augmented Reality view. By aligning the virtual-world camera with the real
camera pose, provided by the SLAM system, it is possible to display the virtual
world from the point of view of the real-world camera. By overlaying the rendering
of the virtual image on the view obtained from the real camera the virtual content
appears to be part of the real world.

A central aspect of Google ARCore is that its understanding of the geometry
of the real world can change. This is due to the evolution of the map built by
the underlying SLAM algorithm. When ARCore establishes that its internal
representation of the real world can be enhanced it is free to move or rotate the
origin of its coordinate frame, together with the location of the feature points it is
tracking.

8



2.2. GOOGLE ARCORE 9

These movements will potentially change the correspondence between virtual-
world poses and real-world poses, making the virtual objects move with respect to
the pose they are intended to occupy in the real world.

To resolve this issue Google ARCore introduces the concepts of Trackables and
Anchors[14]. Trackables are real-world features that ARCore is capable of tracking,
the position of these entities can be tracked across mapping changes. In practice,
Trackables can be either visually distinct feature points or planes.

Anchors are, instead, virtual world poses that are linked to the pose of a
Trackable. As the pose estimate for a Trackable changes, the pose of the Anchor
will also change. By attaching virtual world objects to Anchors it is possible to
maintain the relative pose between a virtual object and a Trackable. This can,
for example, allow placing a virtual object on a painting. The system can easily
keep track of the painting pose, regardless of the changes in the mapping. By
representing the painting as a Trackable, and anchoring the virtual object to it, the
application will be able to maintain constant the pose of the object relative to the
painting. This results in a very effective illusion.

2.2.2 OpenPTrack Integration Issues
The concept of Trackables and Anchors does not perfectly fit the use case of this

project. The integration of the tracking data produced by OpenPTrack requires to
represent in the virtual space objects that are not bounded to fixed feature points.
There is not a fixed correspondence between the position of single persons in the
scene and specific fixed features.

The different entities tracked by OpenPTrack are all in the same reference frame.
This is why what the proposed system tries to estimate is the transformation
between the fixed coordinate frame of OpenPTrack and the coordinate system of
ARCore.

9
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2.3 Integration of Augmented Reality and Fixed
Camera Systems

The literature does not provide many examples of integration of Augmented
Reality with fixed camera systems. For the most part, Augmented Reality systems
have been implemented using just mobile devices performing an independent pose
tracking.

An example of registration of a moving camera with a network of fixed cameras is
presented in [18] by Imre, Guillemaut, and Hilton, one of the proposed applications
is a scene augmentation demo. However, the setup is considerably different from
that of this thesis. First of all, the work of Imre et al. proposes a complete
integration of the mobile camera tracking with the fixed camera system, the camera
pose is tracked directly in the coordinate frame of the fixed camera system. The
approach proposed here for OPTAR instead aims at integrating, Google ARCore
and OpenPTrack, two independent systems.

In the system by Imre et al. the mobile camera does not perform any mapping.
The pose is estimated using only feature points that are visible from the fixed
cameras. This implies that the mobile camera can only move in a very constrained
area. This because the view of the mobile camera must always include feature
points seen by the fixed cameras. Instead, in the approach proposed with OPTAR,
the mobile camera can move more freely, as it does not need to constantly refer to
the feature points seen by the fixed camera system.

Secondly, while OPTAR uses a network of RGB-D cameras, the work from
Imre et al. uses regular cameras and relies on stereo triangulation to recover the
3D position of the feature points. This naturally requires the use of a greater
number of cameras with respect to those used in this work. As an example, the
experiments performed on OPTAR presented in this work (see section 4.2) only
two fixed cameras, the setup presented by Imre et al. uses seven.

Moreover, the work of Imre et al. does not mention which hardware was
used and what level of performance was achieved in terms of the rate of the pose
estimation. Also, there is no mention of the network setup used to connect the
mobile camera. This is important, as in this work a crucial limitation has been the
rate of the exchange of image and feature information between the mobile camera
and the fixed system, which had to be performed over WiFi.

Still, the fundamental approaches of the two methods to the estimation of the
pose of the mobile camera make use of the same two fundamental techniques. In
both cases, the camera pose is determined by solving a Perspective-n-Point (PnP)

10
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problem and then the result is filtered exploiting a Kalman Filter (an introduction
to Kalman Filtering and PnP is provided in the following sections). However, while
Imre et al. use the camera pose estimate directly, in OPTAR it is used to compute
the transformation between the static coordinate frame of OpenPTrack and the
coordinate frame of Google ARCore.

11
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2.4 The Kalman Filter
As already mentioned in chapter 1 a fundamental technique exploited by this

work is the Kalman Filter. In particular, the filter is applied to the estimation of
the smartphone pose, using the measurements provided by Google ARCore and
those generated via PnP camera pose estimation.

In the literature there are numerous sources that discuss and explain Kalman
Filtering, most a notably the paper from Bishop & Welch[40]. This section will
provide an introduction to the filter, in particular, with a focus on the filtering of
3D poses.

2.4.1 The System Model
The Kalman Filter addresses the problem of estimating the internal state of a

discrete linear system by observing a series of noisy measurements. The state is
represented as a vector x ∈ Rn and its evolution is governed by the linear stochastic
difference equation

xk = Akxk−1 +Bkuk−1 + wk−1 (2.1)
With uk being the control input and wk ∈ Rn the process noise. The n× n matrix
A controls the zero-input response of the system, it is called the transition matrix.

The measurement z ∈ Rm is instead defined as

zk = Hxk + vk (2.2)

The vector vk represents the measurement noise, and H is an m× n matrix, the
measurement matrix.

The process and measurement noise wk and vk are assumed to be independent
and Gaussian.

wk ∼ N(0, Qk)
vk ∼ N(0, Rk)

(2.3)

It is important to notice how the covariance matrices Q and R can change at
each time step. In this thesis, this detail will be significant as it is exploited to fuse
measurements generated by different sources.

2.4.2 The Discrete Kalman Filter Algorithm
The update algorithm of the Kalman Filter follows a two-steps process that

resembles a feedback control approach. For each time step, the filter first predicts
the new state of the system from the previous one, then, this estimate is corrected
with the new measurement data.

12



2.4. THE KALMAN FILTER 13

The prediction step is performed by assuming the noise wk to be null and
applying equation 2.1, which becomes

x̂−
k = Akx̂k−1 +Bkuk−1 (2.4)

Where x̂k−1 is the previous state estimate.

Afterwards, the correction step computes the difference between the actual
measurement and the measurement that would have been obtained if the real state
of the system was the predicted one. This difference is called innovation. The
innovation value is then used to correct the predicted state. The entity of this
correction is controlled by the Kalman Gain Kk.

x̂k = x̂−
k +Kk(zk −Hx̂−

k ) (2.5)

The Kalman Gain Kk is determined so to minimize the error covariance Pk of
the a posteriori state estimate x̂k. The optimal Kk can be determined to be

Kk = P−
k H

T (HP−
k H

T +R)−1 (2.6)

Where P−
k is the error covariance of x̂−

k , the a priori error covariance.
As Pk is needed to perform the correction step, its value has to be estimated,

along with the rest of the system state. This estimation is performed following
the same prediction-correction logic of the state estimation, using the following
formulas:

P−
k = APk−1A

T +Q

Pk = (1−KkH)P−
k

(2.7)

By following the predict-update logic the filter can update the state estimate
recursively, without looking back at past data at each step. This guarantees an
extreme efficiency of the filtering process.

2.4.3 Tuning of Process and Measurement Noise Covari-
ance

The Q and R matrices play a crucial role in controlling the filter behaviour.
This because, by tuning the covariances values, it is possible to inform the filter of
how reliable either the measurements or the predicted state are. In practice R and
Q influence the computed value of the Kalman Gain Kk, amplifying or reducing
the entity of the state correction.

13
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The process noise represents all the dynamics of the state evolution that are not
represented in the model defined by the prediction equation 2.1. Consequently, the
process noise covariance indicates how frequent and extensive are the deviations of
the real state from the predicted state.

The role of the process noise can be seen by taking as an example the estimation
of the 1-dimensional position of a point. The state model could be defined as
x = (x, ẋ)T , where ẋ is the speed at which the point is moving. Equation 2.1 could
then be adapted as

x̂−
k =

[
1 T
0 1

]
x̂k−1 + wk−1 (2.8)

This model only represents the movement of the object at a constant velocity.
Any change in velocity is a deviation from the base model. Changes in velocity
are therefore represented by the process noise, which can represent any arbitrary
change in the state.

The measurement noise, instead, represents the deviation of the measurements
from the real value of the quantity they are observing.

Varying the values of Q and R changes the response of the filter to the innovation.
Having a higher process covariance will increase the impact of the innovation
as changes in the state will be deemed more plausible. A higher measurement
covariance will instead decrease the impact of the innovation in the state correction.

Prediction equations (time update)
x̂−

k = Akx̂k−1 +Bkuk−1

P−
k = APk−1A

T +Q

Correction equations (measurement update)
Kk = P−

k H
T (HP−

k H
T +R)−1

x̂k = x̂−
k +Kk(zk −Hx̂−

k )

Pk = (1−KkH)P−
k

Table 2.1: Kalman Filter equations

Summary of the Kalman Filter predict and update equations

14



2.4. THE KALMAN FILTER 15

This because the variation in the measurements will be deemed to be likely due to
observation noise.

As already mentioned, the R matrix does not need to be constant during the
operation of the filter. It can be varied so to reflect the actual changes in the
observation noise. In the use case of this project, this possibility will be exploited,
enabling to feed into the filter measurements produced by different sources having
very different characteristics.

2.4.4 Pose Filtering
Applying the Kalman Filter to the tracking of the 3D pose of an object requires

the joint modeling of the evolution of position and orientation. This section will
analyze the problem of applying Kalman Filtering to pose tracking. In the presented
case only pose estimates are available as input and no direct measurement of velocity
or acceleration is performed.

2.4.4.1 Position Filtering

The filtering of the position can be performed following the same logic of the
example in the previous section, in a way similar to [35]. First of all, the state model
has to be extended to represent the position in 3D space. Differently from the
example in the previous section, this formulation will also include the acceleration
component in the system state, similarly to the formulation in [12].

The state is defined as
x = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)T (2.9)

The prediction equation is instead

x̂−
k =



1 0 0 T 0 0 T 2

2 0 0
0 1 0 0 T 0 0 T 2

2 0
0 0 1 0 0 T 0 0 T 2

2
0 0 0 1 0 0 T 0 0
0 0 0 0 1 0 0 T 0
0 0 0 0 0 1 0 0 T
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


x̂k−1 (2.10)

The measurement matrix is simply

H =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (2.11)

15



16 CHAPTER 2. RELATED WORKS

The prediction equation by itself only models an object moving with constant
acceleration, changes in the acceleration are represented by the process noise, which
has to be characterized appropriately.

In the model presented here, the process noise represents random changes in the
acceleration as a discrete Wiener Process. A Wiener Process is the representation
of the accumulation of uniform random independent increments of a value[4]. In
the filter formulation this corresponds in random increments in the acceleration
that occur between one timestep and the next one. In practice, this formulation
represents the first two derivatives of the position within the system state, while
the derivatives beyond the second order are represented as noise. The logic for this
is that it would be meaningless to represent them within the state as they change
too rapidly to be modeled.

wk = Gnk

nk ∼ N(0, σ2
n)

G =


T 2

2
T
1

 (2.12)

Within the Kalman Filter formulation, this modeling is expressed via the process
noise covariance, which can be computed as

Q = E[wkw
T
k ]

= GE[nkn
T
k ]GT

= GGTE[nkn
T
k ]

= GGTσ2
n

(2.13)

2.4.4.2 Orientation Filtering

Applying the Kalman Filter to the orientation is more problematic. The
most straightforward way of modeling the orientation is using the Euler Angles
representation, which means representing an orientation with the yaw, pitch and
roll angles along the object axes. By using this representation it is possible to use
the same modeling devised for the position filtering, using yaw, pitch, and roll in
place of x, y and z. However, this representation suffers from the issue of the gimbal
lock, the loss of one degree of freedom due to the alignment of the rotation axes
of the euler angles. In practice, this means that in specific configurations, which
depend on the chosen Euler Angles convention, the represented pose is unable to
rotate along one of its three major axes. This makes Euler Angles unsuitable for
most applications.
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To overcome the limitations of the Euler Angles the usual approach is to
represent the orientation using unit quaternions. However, the update operations
required by the quaternion representation are not linear and cannot be performed
by the regular Kalman Filter.

Instead, the integration of a constant angular velocity for a ∆t time is performed
as:

qt = e
1
2 ω∆tq0 (2.14)

Where qt is the orientation after time ∆t, ω is a vector representing the angular
velocities along the x,y and z axes and q0 is the initial orientation.

There are several examples in the literature that make use of the Extended
Kalman Filter to tackle this issue [26][21][25]. Indeed, the Extended Kalman Filter
allows to perform the prediction step using non-linear operations, however, this
is not enough for the use case of this thesis. Differently from other works, the
system developed in this thesis does not have access to direct measurements of
angular velocity or acceleration. To include in the model the angular velocity or
acceleration, the filter would need to represent them as process noise, in the way
this is done for the position. However, the non-linear relationship of 2.14 cannot
be represented with an Additive Gaussian noise as in 2.12.

For this reason, and because the occurrence of gimbal lock issues is limited in
the case of handheld devices, this work will use the Euler Angles representation.
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2.5 The Perspective-n-Point (PnP) Problem
The Perspective-n-Point (PnP) problem is the problem of estimating the pose of

a camera from two sets of corresponding 3D and 2D points, representing respectively
points in the scene and their projection on the camera image.

The solutions to this problem can be categorized in iterative approaches and
linear approaches[38]. Iterative approaches solve the problem by minimizing an
optimization variable, usually the reprojection error, using non-linear least squares
optimization. Linear approaches usually follow the linear programming paradigm
by representing the problem as a system of linear constraints.

While iterative methods provide the best quality estimates, they are inherently
slower than their counterparts. Moreover, a limitation of the iterative methods is
their need for an initialization value from which to start the optimization procedure.
Also, depending on the initialization value, the optimization may converge to a
local minimum or maximum and consequently settle on an incorrect solution.

Among the linear approaches, the most simple and generic is the direct linear
transform (DLT )[37]. The algorithm does not only perform the pose estimation,
but it also computes both the extrinsic and intrinsic camera calibration parameters.

The algorithm defines two equations for each corresponding pair of points,
generating a system of 2n linear equations. The unknowns of the system are the
12 components pij of the camera matrix P , once the full calibration is known it is
possible to decompose it in its intrinsic and extrinsic components, determining the
pose of the camera.

For each pair (u, v) and (Xi, Yi, Zi) of an image point and a world-frame point
the following two equations are defined:

ui = p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23

vi = p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23

(2.15)

To estimate the 12 parameters the algorithm requires at least six pairs of points.
To produce more accurate results it is possible to provide more pairs and solve
the system with a least-squares iterative algorithm. However, as the algorithm
does not make use of any preexisting knowledge of the intrinsics of the camera, the
quality of its estimates results to be lower with respect to other methods.

Indeed, the intrinsic camera calibration is usually already known, as it will be
in the system developed in this work. More specialized approaches are available
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that make use of this information. Estimating the pose of an already calibrated
camera requires a minimum of 4 3D-2D point correspondences, the problem is well
studied and there are numerous approaches to its solution. Methods are available
for estimating the pose using just 3 correspondences [13] (this is known as the
P3P problem and returns up to 4 possible solutions), 4 correspondences [17] or 5
correspondences [39]. Nevertheless, methods that use a limited number of points
are highly vulnerable to the influence of noisy measurements, methods that are
capable of exploiting greater numbers of correspondences are more stable and
reliable.

2.5.1 EPnP: Efficient Perspective-n-Point
A notable approach is EPnP [19], it is a non-iterative solution to the PnP

problem. The algorithm, with an O(n) computational complexity, is extremely
more efficient than the other most notable solutions, which have complexities of
O(n4) [32] or O(n8) [3]. Moreover, the accuracy of EPnP’s estimates is on the
same level of iterative methods like [20], while being significantly faster and not
requiring an initialization input pose.

Most PnP algorithms solve the problem through the computation of the distance
of all the points from the camera. The EPnP algorithm instead simplifies the
problem by representing all of the 3D points as linear combinations of 4 virtual
control points (cw

1 , c
w
2 , c

w
3 , c

w
4 ).

Following this formulation, the i-th 3D point (Xw
i , Y

w
i , Z

w
i )T , represented in the

world coordinate frame, can be defined to asX
w
i

Y w
i

Zw
i

 =
4∑

j=1
αijc

w
j (2.16)

To reach the solution to the problem, the algorithm aims at determining the
position of the control points in the camera reference frame. Once the control
points coordinates are known in both the world and camera reference frames it is
possible to easily determine the camera pose. Equation 2.16 can be converted to
the camera reference frame as X

c
i

Y c
i

Zc
i

 =
4∑

j=1
αijc

c
j (2.17)

From this equation, indicating the intrinsic calibration camera matrix as K, we
can express the relation between each 2D image point and its corresponding 3D
point in the camera coordinate frame as
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wi

ui

vi

1

 = K

X
c
i

Y c
i

Zc
i

 =

fu 0 uc

0 fv vc

0 0 1

 4∑
j=1

αij

c
c
x,j

cc
y,j

cc
z,j

 (2.18)

This relationship can be expressed with the two linear equations

4∑
j=1

(αijfuc
c
x,j + αij(uc − ui)cc

z,j) = 0

4∑
j=1

(αijfvc
c
y,j + αij(vc − vi)cc

z,j) = 0
(2.19)

Having n pairs of 2D-3D points this corresponds to a system of 2n equations in
the 12 unknowns cc

ij. This equation can also be expressed in matrix form as

Mx = 0 (2.20)

With x = (cc
1

T , cc
2

T , cc
3

T , cc
4

T )T and M being an 2n× 12 matrix.
As explained in [19], this particular system can be solved in O(n) time. As also

the other steps of the are at least O(n) this results to be the overall complexity of
the algorithm.
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Chapter 3

The Proposed Method

This chapter will provide a detailed description of the proposed method. The
first section provides a description of the high-level structure of the system. First
by providing an overview of the communication network connecting the mobile
AR devices and the computers, then, by introducing the distinction between the
Android side of the system and the ROS side of the system.

The chapter follows by discussing separately the Android Unity application and
the ROS side of the system.

Section 3.2 describes the smartphone application, defining the package structure
and the implementation of the most important functionalities.

Section 3.3 details the implementation of the ROS side. First by defining
the nodes and topics that compose the ROS network, and then by describing
the implementation of the procedure for the smartphone pose estimation and the
registration estimation.
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3.1 The General Structure
Estimating the registration between Google ARCore and OpenPTrack consists

in determining the geometric transformation between the coordinate frames used
by the two systems. The method proposed by this thesis performs this estimation
by matching the smartphone pose in one system with the smartphone pose in
the other. The pose in the ARCore reference frame is provided by ARCore itself,
while the pose in the ROS OpenPTrack coordinate frame has to be estimated
independently.

This latter estimate is computed by exploiting common visual features seen by
both the phone and the fixed cameras. From the correspondence between the phone
pose in the two systems, it is naturally possible to compute the transformation
between the ROS and ARCore coordinate frames, simply as:

Ar = Pr ∗ P−1
a (3.1)

Where Ar is the transformation from the ARCore frame to the ROS one, Pr is the
pose in the ROS frame, and Pa is the pose in the ARCore frame.

To determine the aforementioned common visual features the system extracts
ORB descriptors [34] from the fixed and mobile cameras’ images, these descriptors
are then matched to find features that are present in both images.

Once the matches have been determined it is possible to estimate the phone
pose by solving a PnP problem (an introduction to the PnP problem is provided
in section 2.5). The 3D positions of the matches in the ROS coordinate frame are
computed exploiting the depth information provided by the fixed cameras.

The PnP pose estimation of the smartphone is performed independently for
each fixed camera. The estimates produced using the single fixed cameras are then
aggregated and coupled with the corresponding ARCore poses to compute the
transformation between the ARCore and OpenPTrack coordinate frames.

However, the pose estimates computed using PnP can be noisy. Because of
this, the proposed method applies a Kalman filter to these phone pose estimates,
allowing to reduce the effect of noisy measurements. The filter, however, requires
the rate of its input to be high enough to represent the motion of the phone, and the
rate at which the PnP pose estimates are produced is not sufficient. To provide an
adequate input to the filter, additional pose estimates are generated, by using the
last computed registration to transform the pose estimates produced by ARCore
into the OpenPTrack coordinate frame.

Figure 3.1 represents the high-level structure of the system. Each smartphone is
represented by a node and each fixed camera has a corresponding "pose estimator"
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node. The PnP and ARCore pose estimates are collected by a single "registration
estimator" node which computes the registration estimates for all the smartphones.

Figure 3.1: High-level system structure
Representation of the general system structure, with two AR devices and three fixed

cameras

The Android application has been developed with Unity3D and C#, because
of this it cannot interface directly with the ROS network. The communications
are instead handled by RosSharp, which in turn uses the WebSocket [11] protocol
to deliver messages to ROS. The WebSocket interface for ROS is provided by the
rosbridge_suite package [9].

The feature extraction is performed on the smartphones, to reduce the la-
tency involved with the network transmission, and to avoid situations of network
saturation in the presence of multiple AR devices.

In support of the described system, there are some minor functionalities that
had to be implemented.

The most notable is a simple NTP [24] client/server system, built upon the
ROS messaging infrastructure. The need for it emerged from the synchronization
issues between the smartphones and the ROS computers. Due to the difficulties
of interfacing Android with existing local-network NTP services, the issue was
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addressed by implementing a simple custom system composed of a ROS server
node and a client class within the Unity application.

The following sections will describe in more detail the various components of
the system. By addressing first the smartphone side and then the different ROS
nodes.
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3.2 The Android Unity Package
The Android component of OPTAR is tasked with extracting features from the

smartphone camera feed and delivering them to the ROS side, which will compute
the registration. Once the registration has been computed, the smartphone must
be able to receive it, together with the tracking data produced by OpenPTrack.

These functionalities have been implemented as a Unity package, so to allow
an easy development of different AR applications based on OPTAR. The code has
actually been split into two packages, the Optar package contains the scripts that
are solely related to the Augmented Reality functionalities, the OpenPTrackCommons
package contains the scripts meant for interfacing with ROS and OpenPTrack.

The most important Unity scripts defined by the two packages are now intro-
duced. A complete list of the scripts is instead provided in figures 3.2 and 3.3.
An application wanting to use the functionalities offered by OPTAR will need to
instantiate at least one of each of the following scripts as a Unity MonoBehaviour.

OptarController handles the initialization of the ARCore tracking and establishes
the connection with the ROS network.

CameraFeaturesPublisher is tasked with extracting the ORB features from the
camera feed and sending them to the ROS side of the system. More details
are provided in section 3.2.1.

ArcorePosePublisher periodically publishes the current smartphone pose on a
ROS topic specific to this device. By default, it will publish 30 times per
second.

HeartbeatPublisher periodically publishes a message containing the device ID
on a topic common for all devices. By default, it will publish once per second.
The heartbeat topic is used to monitor the presence of active AR devices.

PoseManager keeps track, using the ARCore API, of the movements of the origin
of the ARCore coordinate frame. This tracking is not always possible, so this
does not solve the fundamental issue of the registration not being a constant
transformation.

NtpClient establishes a connection with the NTP server node within the ROS
network, and provides to the other scripts an interface for getting synchronized
timestamps.

The Optar package provides a Unity Prefab with these scripts already defined
and configured in it. By using the Prefab it is possible to easily set up the
components needed to use OPTAR within a new application.
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Once these scripts have been defined it is possible to use the CentroidReceiver
and SkeletonsReceiver scripts from the OpenPTrackCommons package to receive
the centroid and pose tracking data from OpenPTrack. To listen to the ROS
transforms provided via \tf it is possible to use the TfListener script.

OpenPTrackCommons/scripts
messages

..
CentroidReceiver.cs
CentroidsVisualizer.cs
FacesManager.cs
GenericPublisher.cs
GenericSubscriber.cs
NtpClient.cs
OptLogger.cs
SafeGenericSubscriber.cs
SetupCentroidParticleSystem.cs
SetupCentroidSphere.cs
SkeletonsReceiver.cs
SkeletonsVisualizer.cs
TfListener.cs
Utils.cs

Figure 3.2: The OpenPTrackCommons package
The folder structure of the OpenPTrackCommons Unity package

Optar/Scripts
messages

..
ArcoreCameraPublisher.cs
ArcorePosePublisher.cs
CameraFeaturesPublisher.cs
HeartbeatPublisher.cs
MarkerTracker.cs
OptarController.cs
PoseManager.cs

Figure 3.3: The Optar package
The folder structure of the Optar Unity package
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3.2.1 Feature Extraction and Publishing
The ORB features extraction is performed in the CameraFeaturesPublisher

script. The script periodically retrieves the current camera image through the
ARCore API, coupled with the current camera pose and the current ROS timestamp.
Once this data is acquired it spawns a new thread to perform the data processing
outside of the Unity UI thread.

Within this new thread, the ORB features are extracted using the OpenCV
interface provided by the OpenCV+Unity package [31]. The provided C# interface
matches almost exactly the original C++ one.

The features are extracted by first detecting the best keypoints according to
the Harris score, and then computing the corresponding ORB descriptors. The
OpenCV ORB detector performs the search on multiple scales by scaling down
the image. The number of extracted features, the number of scale levels and the
scale factor are exposed as parameters of the MonoBehaviour object. As such, they
can be tuned from the Unity Inspector and accessed by the application logic. By
default, the number of features is set to 1000, the number of levels to 10 and the
scale factor to 1.18.

Once the features have been extracted, a message containing the keypoints,
the descriptors, the camera pose, the camera parameters, and the timestamp, is
published to the ROS network. The message format also allows to attach an image,
this is only used for debugging purposes, to send an extremely low-resolution
camera image. During normal operation, the image field is left empty.

Not considering the camera image, the size of a message containing 1000 features
is about 59KB. Of this, 60000 bytes are taken by the keypoints and the descriptors.
By default, each device sends a message every second, giving a rate of 59KB/sec
per phone, which can be safely handled by modern WiFi networks.

The thread tasked with the feature extraction and the message sending is
protected by a mutex, so, in case the device is not able to execute the procedure
within the required period of time, the next computation is delayed, making the
publication rate drop safely.
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3.3 The ROS Infrastructure
The ROS side of the system is tasked with receiving the features from the

mobile devices, extracting the features from the fixed cameras and computing the
registration for the different ARCore devices.

The ROS network is articulated in one node for each fixed camera, tasked with
the estimation of the smartphone poses via PnP, one main node which computes
the registration for all the AR devices and two other support nodes.

ardevices_pose_estimator_single_camera_raw is the node type used for es-
timating the poses via PnP. All of the nodes of this type will publish the
estimates on a common topic.

ardevices_registration_estimator receives all of the PnP and ARCore pose
estimates and computes the registration estimates for all the AR devices.

ntp_server is the server-side node for the simple NTP system used to synchronize
the clocks of the mobile devices.

ardevices_poses_republisher receives the AR devices poses on their respective
topics, aggregates them into an array and publishes them at a regular 30fps
rate. At the same time, it publishes themarker topic for the RViz visualization
of the phones

An example of a possible resulting network is depicted in figure 3.4.

Figure 3.4: The ROS network
Representation of the Optar ROS node/topic network, with two mobile devices and two
fixed cameras. The links not directly related to the registration estimation have been

represented as dotted lines.
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3.3.1 Single Camera PnP Pose Estimation
Each one of the ardevices_pose_estimator_single_camera_raw nodes gener-

ates PnP-based pose estimates for every running AR device using its corresponding
fixed camera. Each node continuously receives as an input the greyscale and depth
images from the fixed camera, together with the camera parameters. At the same
time, it receives, from all the AR devices, their camera images and parameters
coupled with the corresponding ARCore pose.

To handle multiple mobile devices the node listens to the heartbeat topic.
When a new device is detected, the node constructs a handler that will listen to
the topics specific to the device and perform the pose estimations. The handler
will stop when no messages are received for a predefined timeout time (by default
5 seconds).

To synchronize the image messages coming from the fixed and mobile cameras
the node takes advantage of the functionalities offered by the message_filters [10]
ROS package, specifically of the ApproximateTime policy for the Synchronizer
class.

For each new message received from a mobile device, the node executes the
following steps.

1. The contents of the message are extracted, in particular, the ORB feature
descriptors are converted from their raw representation to the OpenCV types
cv::KeyPoint and cv::Mat.

2. The ORB features are extracted from the fixed camera image.

3. The fixed-camera features are matched to the mobile-camera ones.

4. The matches are filtered, imposing a threshold on the matched descriptors
distance. Redundant matches are removed.

5. The 3D position of the matches is computed exploiting the depth image from
the fixed camera.

6. If there are enough matches the mobile camera pose is estimated using the
solvePnPRansac() method provided by OpenCV.

7. A number of different heuristics are applied to discard bad estimates.

A more detailed description of the most critical of these steps is provided in the
following sections.
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3.3.1.1 Feature Matching

The matching of the computed ORB features is performed by employing the
cv::BFMatcher class from OpenCV, which performs a brute-force matching between
the two feature sets.

The matches are then filtered by imposing a maximum threshold on the descrip-
tor distance between each matched couple. The OpenCV ORB implementation
employs a pattern of 256 point couples, resulting in a 256-bit descriptor. The
distance between two descriptors is computed as the Hamming distance between
the two. By default, the distance threshold has been set to 30.

The feature extraction is computed at multiple scales, consequently, multiple
descriptors may be computed for the same image feature, both on the fixed camera
and mobile camera sides. This implies there could be redundant matches, linking
the same two image location more than once. At the same time, there could be
contradicting matches, linking the same point in one image to different locations in
the other one. Both of these details can compromise the quality of the smartphone
pose estimation. The PnP computation requires the points to be unique and
well distributed in the space. Moreover, contradicting matches obviously imply a
contradictory input for the PnP algorithm.

To address these issues redundant matches are merged into a single one, and
the contradictory ones are removed.

The procedure for this has been implemented as follows:

Algorithm 1: Removal of redundant and contradictory feature matches
Let M be the set of all the matches
Letting x be a match xposArcore is the position of x in the mobile camera
image, xposRos is the position in the fixed camera image

Let t be the maximum distance for two keypoints to be considered the same

foreach m ∈ M do
MsameOrigin = { n ∈ M | disteucl(nposArcore,mposArcore) < t};
if ∀ m ∈MsameOrigin disteucl(nposRos,mposRos) < t then

mmerged = m;
mmerged.dist = sum(MsameOrigin.dist)/|MsameOrigin|;
Mfiltered.push(mmerged);

end
M = M \MsameOrigin

end
return Mfiltered
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3.3.1.2 Matches 3D Position Computation

An important issue arises in the computation of the 3D position of the matches.
The position can be computed exploiting the depth information provided by the
fixed camera, simply applying the following formulas:

X = (xI − cx) ∗ d(xI , yI)/fx

Y = (yI − cy) ∗ d(xI , yI)/fy

Z = d(xI , yI)
(3.2)

Where (X, Y, Z) is the 3D position, (xI , yI) is the feature position in the fixed
camera image, (cx, cy) is the principal point position, d(xI , yI) is the depth value,
fx and fy are the focal lengths of the fixed camera. The regular and depth images
received from the fixed camera are assumed to be already rectified and registered.

What makes this computation problematic is the fact that the depth information
for a specific image position is not always available. The depth often cannot be
determined along the borders of objects. Moreover, in the case of Kinect cameras,
depth also cannot be determined on surfaces that don’t reflect reliably the infrared
light emitted by the sensor. An example of this behaviour is shown in figure 3.5.

Figure 3.5: Example of Kinect image data
On the left a depth image obtained with a Kinect v2, on the right the corresponding

registered conventional camera image.

The keypoints used for extracting the image features are mostly located on
the edges and corners of objects, so it is quite frequent not to have the depth
information for them. To solve this issue the system has to determine the depth by
analyzing the area around the feature point.

Another issue is that, even if the depth information is available at the required
position, it may not represent the correct depth of the feature. That is because if
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the feature is located on the edge of an object, the depth that is needed is that of
the foreground object, not of the background. Even a slight error in the keypoint
positioning in the image could result in a large error in the associated depth.

To tackle both of the described issues, the system determines the depth for the
feature points employing a custom approach. The procedure starts by searching
the depth image for the non-zero pixel that is closest to the feature point. Then, it
defines a circular ring that extends 10 pixels outward, starting from the non zero
pixel it just found. Within this area, it then searches for the lowest-value non-zero
pixel. The retrieved value will be used as the depth for the feature. This allows to
first reach an area where the depth is correctly defined and then to search for a
pixel representing the foreground object. A depiction of a possible search area for
the depth a feature point is provided in figure 3.6.

Figure 3.6: Feature point depth determination
Detail of the robotic manipulator in the depth image of figure 3.5, with a representation
of the search area for the determination the depth of a feature point. The feature point is
indicated by the red cross, and it is located in a zero-depth area. The depth selection
algorithm would select the lowest non-zero pixel in the yellow ring-shaped area between
the two red circles. This would effectively select the depth of the foreground object.
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The limit of this approach is that if the depth of the foreground object can not
be detected by the sensor, the algorithm will select the depth of the background.
An example of this situation can be seen in figure 3.5, where the depth of the upper
end of the robotic manipulator is not detected by the sensor. As the end effector
is likely to be a feature point, this situation could result in the wrong estimation
of the 3D pose of a point used for the PnP pose estimation. This could cause a
wrong estimation of the AR device pose and affect the registration accuracy.

3.3.1.3 PnP Pose Estimation

By matching 2D positions of the features detected in the mobile camera image
with the 3D positions of the features extracted from the fixed camera feed it is
possible to estimate the pose of the smartphone using a PnP algorithm.

To perform this operation the proposed system makes use of the solvePnPRansac
function provided by OpenCV. This function combines the EPnP algorithm de-
scribed in section 2.5.1 with the RANSAC technique to perform a pose estimation
that is robust, even in the presence of noisy measurements.

The pose estimation performed by cv::solvePnPRansac can still sometimes
produce inaccurate results. This can be caused by the presence of false matches,
by a wrong depth measurement or by an unfavorable spatial distribution of the
matched points in the mobile camera image (as mentioned in section 2.5 the points
should be well distributed in the image to obtain accurate results).

To mitigate the effects of these incorrect estimates a number of different heuris-
tics have been employed.

• A minimum number of RANSAC inliers is imposed. The number of RANSAC
inliers indicates the number of matches that confirm the current pose estimate.
A minimum number of 4 points is required to obtain an estimate, by default
the proposed algorithm requires at least 8 inliers.

• The mean re-projection error for the RANSAC inliers is computed. Estimates
that exceed a maximum threshold are discarded. By default, this threshold
is set to 2 pixels.

• Minimum and maximum thresholds are imposed on the height above the
ground of the pose estimate. As the smartphone is assumed to be handheld
its height from the ground can be bounded. Estimates indicating a height
outside of these bounds are discarded. By default, the maximum height is
set to 2.5 meters, the minimum to zero.
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• Finally, the angle between the optical axes of the mobile and fixed cameras
is computed. If the angle is greater than a specific threshold, the estimate is
discarded. This because it is unlikely for estimates implying very different
viewpoints between the two cameras to be correct. By default, the threshold
is set to 45 degrees.

3.3.1.4 Configuration Parameters

All of the parameters previously mentioned are available to be tuned dynamically
while the system is running, using the functionalities offered by the ROS dynamic_-
reconfigure [6] package. A view of the configuration window is presented in figure
3.7.

The most critical parameters are presented here:

• The pnp_iterations, pnp_confidence, pnp_reprojection_error param-
eters directly control the PnP RANSAC algorithm offered by OpenCV as
cv::solvePnPRansac().

• The orb_max_points, orb_scale_factor, and orb_levels_number param-
eters control the fixed camera features extraction performed by the OpenCV
class cv::ORB.

• The minimum_matches_number, reprojection_discard_threshold, and phone_-
orientation_diff_thresh are the parameters are described in section 3.3.1.3.

• The matching_threshold parameter controls the matching of the ORB
features as described in section 3.3.1.1.
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Figure 3.7: Single-camera pose estimation parameters
Tunable parameters for the ardevices_pose_estimator_single_camera_raw node as seen

in the dynamic_reconfigure GUI.
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3.3.2 Registration Estimator
The registration estimation for all the running AR devices is performed by the

ardevices_registration_estimator node. It receives, from the single camera
nodes, the PnP-based pose estimates, coupled with the corresponding ARCore
poses. Already from this information, it is possible to compute the registration
between the ROS and ARCore systems, but, to reduce the impact of the noise in
the pose estimates, it is necessary to filter the received information.

A possible approach could be to filter the final registration estimate, which, in
ideal conditions, should be constant. In practice the registration is not constant, it
changes as the ARCore representation of the world evolves. As the movements of
the origin of the ARCore coordinate frame are not bound by inertial constraints
and do not follow a predictable trajectory, the estimation of its position results to
be problematic. For this reason, the chosen approach is to apply a Kalman Filter
to the smartphone pose.

An important issue with this approach is that the rate at which the PnP pose
estimates are produced is too low and irregular to characterize the motion of the
smartphone. For this reason, it is not possible to perform an effective filtering using
only the information by the PnP estimation performed by the single camera nodes.

To solve this issue the Kalman filter is updated using the ARCore pose estimate,
converted to the ROS frame using the last computed registration. Figure 3.8
outlines this filtering approach.

(Ppnp,Parcore)

Kalman Filter

Parcore

low rate

high rate T

Ppnp,ROS

Parcore,ROS

Pfiltered,ROS

Parcore

Registration
Tarcore➛ROS

Figure 3.8: Pose Filtering
Representation of the filtering of the smartphone pose and the subsequent registration

estimation

To handle the presence of multiple AR devices the node is structured similarly to
the ardevices_pose_estimator_single_camera_raw node (described in section
3.3.1). The presence of AR devices is monitored via the heartbeats topic. If a
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new device is detected the node constructs a handler object, which will listen to
the topics specific to the device and update the pose and registration estimates.
The handler is destroyed if no messages are received for a certain timeout time.

3.3.2.1 Kalman Filtering

To filter the smartphone pose the Kalman Filter has to handle both the position
and the orientation of the device. This section will describe the details of the Kalman
Filter that was implemented. More details on Kalman Filtering are provided in
section 2.4.

Due to the difficulties involved with employing the Kalman filter with quater-
nions the orientation filtering has been performed using Euler Angles. In the case
of Euler Angles, the orientation filter can maintain the same structure used for
the position filtering. Indeed, the pose filter has not been implemented as a single
Kalman Filter but as two simpler identical ones, one for the position and one for
the orientation.

Following the approach described in 2.4.4 the state vector for each of the two filters
has been defined as:

Xt =
[
xt yt zt ẋt ẏt żt ẍt ÿt z̈t

]T
(3.3)

In the case of the position filter, x, y and z represent the position coordinates, In
the case of the orientation filter, they instead represent the three components of
the Euler Angles representation.

The transition matrix defined as:

At =



1 0 0 ∆t 0 0 ∆t2

2 0 0
0 1 0 0 ∆t 0 0 ∆t2

2 0
0 0 1 0 0 ∆t 0 0 ∆t2

2
0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(3.4)

Where ∆t is the time since the last update. As ∆t is not constant the matrix must
be updated at each time step.
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The measurement matrix is simply:

H =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (3.5)

The process noise covariance matrix has been defined as:

Qt = GtG
T
t σ

2
p (3.6)

Where σ2
p is a tunable parameter and Gt is re-computed at each time step as:

Gt =



∆t2

2 0 0
∆t 0 0
1 0 0
0 ∆t2

2 0
0 ∆t2 0
0 1 0
0 0 ∆t2

2
0 0 ∆t
0 0 1


(3.7)

Finally, the measurement noise covariance matrix is defined as:

R =

σ
2
m 0 0
0 σ2

m 0
0 0 σ2

m

 (3.8)

With σ2
m also being a tunable parameter.

The filter has to accept measurements coming from two very different sources.
Different both in their error distribution and in the rate of their output. To
compensate for these differences the measurement covariance σ2

m parameter is kept
different for the two sources. The covariance is kept considerably higher for the
ARCore measurements, both to compensate for their higher rate and to give more
weight to the PnP measurements.

The following default values were chosen for the position filter:

σ2
p = 10−6

σ2
m = 10

(3.9)
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While these were chosen for the orientation filter:

σ2
p = 10−5

σ2
m = 10

(3.10)

The measurement covariances are kept different between the two sources by mul-
tiplying the σ2

m values by two different factors. By default, the PnP factor is set
to 1, while the ARCore factor is 20. These parameters are available to be tuned
during the system execution via the ROS dynamic_reconfigure package as shown
in figure 3.9.

Figure 3.9: Registration estimation parameters
Tunable parameters for the ardevices_registration_estimator node as seen in the

dynamic_reconfigure GUI.
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Chapter 4

Experimental Evaluation

This chapter will present the results of the experiments that were performed to
test the system performance.

Section 4.1 details the quantitative experiments that have been performed. First
with a description of the test setup and then with an analysis of the collected data.

Section 4.2 describes a demo application that was developed to display the
system capabilities.
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4.1 Quantitative Analysis
The system has been tested on an OpenPTrack setup composed of two Kinect

v2 cameras, respectively connected to two desktop computers, one equipped with
an Intel i7-8700 CPU and an NVIDIA GeForce GTX1070 graphics card, the other
with an Intel i7-7700 CPU and an NVIDIA GeForce GTX1060 graphics card. A
Nokia 7 Plus was used as the AR device.

The two Kinect cameras have been positioned about 4 meters apart, at about 2.3
meters from the ground, with their visuals directed at roughly 45 degrees between
each other. Figure 4.1(a) depicts the test setup with the two Kinect cameras.

This setup has been deployed in the laboratory depicted in figure 4.1(b), an
environment rich of visual features, but also containing some objects that are
problematic for the depth measurement, as was described in section 3.3.1.2.

To monitor the system performance, the estimated smartphone pose in the
ROS coordinate frame has been evaluated against a pose tracking produced using
AprilTag[30] fiducial markers.

To do so, the smartphone was fixed to a rigid cardboard sheet having two 16x16
cm AprilTags on its two sides. The transformation between the AprilTag markers
and the phone was manually measured.

The tracking of the AprilTag markers has been performed making use of the
apriltag_ros package from AprilRobotics. Two tracking nodes have been used, one
on each of the two computers, both the nodes tracked both the tags.

(a)
(b)

Figure 4.1: The test setup
On the left an a photograph of the setup used for the testing, the two Kinect cameras

have been highlighted in red. On the right the view of the Kinect that appears on the left
in figure (a).
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Three separate test runs have been performed using this setup, all three main-
taining OPTAR’s default parameter configuration. These three test runs were
respectively 357, 624, and 813 seconds long, for a total duration of 1794 seconds,
about half an hour. For each one of the tests, the tracking results have been saved
to file, from these files the pose estimates produced by the two systems have been
matched by their timestamps. As the rate of production of the AprilTag estimates
is substantially lower compared to that of the estimates produced by OPTAR
(about 5Hz for AprilTag, 30Hz for OPTAR), each AprilTag estimate has been
matched to the temporally closest OPTAR estimate. A maximum time difference
of 20ms has been imposed for a match to be accepted.

The error in the position estimate has been computed as the Euclidean distance
of the OPTAR estimate from the ground truth provided by AprilTag. The error in
the orientation estimate has instead been computed as the angle between the two
orientations.

The metrics chosen to indicate the system performance are the mean error,
which gives an intuitive representation of the accuracy, and the Root Mean Square
Error (RMSE) which gives more weight to data points affected by a more significant
error.

The system performance has been consistent among the different tests. Table
4.1 presents the aggregate results obtained by analyzing all of the collected tracking
data. The mean position error that results from these tests is about half a meter,
but it can be observed that this error can vary considerably during the operation
of the system. The system is capable of obtaining a very accurate registration, but
this is sometimes lost due to inaccurate estimates computed by the PnP algorithm
or to movements of the ARCore coordinate frame.

This behaviour can be observed in figure 4.2, which shows the evolution of
the position and orientation error in a section of one of the tests. The plot shows
how the tracking error increases abruptly at t = 151 and then again at t = 238 to
then return at a lower level between t = 520 and t = 530. Figure 4.3 shows the
trajectory estimated by OPTAR and the one estimated with AprilTag in the final

testing time 1793s
data points 2833
position mean error 0.494m
position RMSE 0.690m
orientation mean error 0.05789rad
orientation RMSE 0.10649rad

Table 4.1: Aggregate results of the tests performed while moving the smartphone
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Figure 4.2: Pose estimation position and orientation error
Plot of the position and orientation error of the smartphone pose estimation, with the
default parameter configuration, except for minimum and maximum height that were set

respectively to 0.6m and 2.0m

part of figure 4.2 when the tracking has been accurate.

For what concerns the orientation, from table 4.1 and figure 4.2 it can be noted
how, in this case, the tracking is particularly accurate and stable, except for the
very narrow spikes in the error visible in the plot.

Finally, the system has also been tested while keeping the smartphone still.
The results of this test can be seen in figure 4.4 and table 4.3.

As expected, the results are slightly better compared to those of table 4.2, in
particular, the position estimate accuracy is considerably improved. Moreover, the
sudden increases in the position estimation error seen in figure 4.2 are not present
in these results.

This is an indication of how unfavorable viewpoints and the movements of
the ARCore coordinate frame are the cause of the degradation of the system
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performance. Indeed, in this static configuration, the understanding of the world
of Google ARCore does not evolve, and the smartphone never encounters new,
potentially unfavorable, viewpoints.

Figure 4.3: Estimated and detected trajectory
Plot of the trajectory followed by the AprilTag between second 350 and second 450 of
figure 4.2. The plot depicts both the trajectory detected by apriltag_ros, and the one

estimated via the proposed method.

testing time 561
data points 871
position mean error 0.318m
position RMSE 0.447m
orientation mean error 0.04802rad
orientation RMSE 0.07373rad

Table 4.2: Results of the test in figure 4.2
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Figure 4.4: Position and orientation error in a stationary trial
In this experiment the smartphone was kept still, in a position in which it could get PnP

pose estimates. The parameters were kept at their default values

testing time 340s
data points 9831
position mean error 0.314m
position RMSE 0.358m
orientation mean error 0.05633rad
orientation RMSE 0.14253rad

Table 4.3: Results of the test in figure 4.4

46



4.2. QUALITATIVE ASSESSMENT 47

4.2 Qualitative Assessment

In parallel to the quantitative analysis detailed in the previous section, an
Android demo application has been developed to observe the practical capabilities
of the system.

The application uses the Optar Unity package to display the OpenPTrack
centroid and skeleton tracking within Google ARCore.

The application was tested using the same configuration of section 4.1. From
the experiments, it can be concluded that, even if the tracking of the smartphone
position is relatively accurate, this by itself is often not enough to produce a
convincing Augmented Reality experience.

The smartphone pose estimate has to be extremely accurate to obtain a con-
vincing overlaying of the virtual objects on the real world. As shown in fig. 4.5(a)
the superimposition can be accurate in certain moments, but even an offset of
10cm like in fig. 4.5(c) can completely disrupt the sense of realism.

(a) (b) (c)

Figure 4.5: Example of Skeleton tracking in AR
Three screenshots of the OpenPTrack skeleton tracking seen through the Unity ARCore

smartphone application
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However, what distinguishes this system from conventional AR applications is
the capability to track entities that are outside of the handheld device visual. This
tracking does not need to be as accurate as the one meant to provide the actual
AR overlaying functionalities, the accuracy of the application is enough to provide
this functionality satisfactorily.

Other than the registration accuracy, another factor that negatively impacts
the performance of the application is the latency with which the tracking data is
received. The observed latency is usually about one second, with peaks that can
reach even ten seconds.

The cause for this seems to be a constant latency from the tracking performed by
OpenPTrack, combined with communication issues in the WebSocket bridge between
ROS and Unity. WebSockets communicate exclusively via TCP and the packets
are text-based. This implies the packets have to be processed and converted to text
and also that they are delivered in order. The result is that the communication
is sometimes halted, supposedly to wait for lost packets. While this happens the
messages are held in a queue and then delivered in rapid succession when the
communication resumes. This behavior has been observed in practice.

From these observations, we can conclude that OPTAR is a useful tool to
enhance AR systems, but an application cannot rely exclusively on it to generate
the Augmented Reality rendering. Instead, an effective approach would be to
combine the OpenPTrack data with detections obtained locally on the AR device.
For example, the AR skeleton tracking could be improved using the Augmented
Faces functionality provided by Google ARCore since version 1.7.0. By matching the
face pose provided by ARCore with the skeleton tracking received from OpenPTrack
it should be possible to obtain better results than those of this demo.

4.2.1 Multiple Smartphones
For what concerns the capabilities of the system in terms of the number of

mobile devices used simultaneously, a separate test was performed with up to four
smartphones.

The setup used two Kinect v2 cameras and four Galaxy S9+ smartphones.
In this test the PnP pose computation for the smartphones was performed on

the computers directly connected to the fixed cameras. So each computer was
running four PnP pose estimation nodes.

No noticeable degradation was noticed in the system performance. For what
concerns the network, this is expected. As discussed in section 3.2.1 each smartphone
requires a bandwidth of about 59KB/s. For four devices this amounts to roughly
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240KB/s which is perfectly manageable by modern WiFi networks. Moreover,
the computers were able to support the PnP computation and the fixed-cameras
feature extraction without important slow-downs.
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Chapter 5

Conclusions

This work introduced OPTAR, a system for integrating Google ARCore Android
Unity applications with OpenPTrack. The system aims at estimating the registration
between the two systems, which is the geometric transformation between their
reference frames.

This estimation is performed by matching the AR device pose estimates provided
by Google ARCore with pose estimates independently computed by OPTAR within
the OpenPTrack coordinate frame. By knowing the device pose in both the reference
frames it is possible to compute the registration.

The AR device pose estimate in the OpenPTrack reference frame is computed
by exploiting visual features seen by both the smartphone and the fixed RGB-D
cameras of the OpenPTrack system. From matching these features it is possible to
compute the pose by solving a PnP problem.

The pose estimate for the smartphone produced by OPTAR frame has been fil-
tered using a Kalman Filter, which, to operate reliably, fuses the pose measurements
estimated via PnP with pose measurements produced by Google ARCore.

The system can support the operation of multiple AR devices simultaneously,
which implies estimating a different registration for each device.

A demo Android application was developed to allow a qualitative evaluation
of the system. The application uses the computed registration to visualize the
skeleton tracking performed by OpenPTrack in Augmented Reality.

As discussed in section 4.1, a quantitative evaluation of the accuracy of the
system has also been performed. The pose tracking for a single smartphone
produced with the proposed system was compared with the tracking of the same
pose obtained by using AprilTag fiducial markers attached to the smartphone.

From these tests, it can be concluded that OPTAR is capable of estimating the
registration between the OpenPTrack and Google ARCore reference frames satis-
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factorily, even if the pose estimate can, in certain situations, deviate considerably
from the true value for short lengths of time.

It must be noted that the system accuracy depends heavily on the environment
in which it is deployed. The best conditions for the system to work are well-
textured environments, possibly with no objects that are not properly visible by
the depth camera (see section 3.3.1.2). This because if a feature point is located on
a foreground object of which the depth camera cannot measure the distance, the
algorithm of section 3.3.1.2 may erroneously select the depth of the background
in place of that of the object. This results in a wrong 3D position of the feature
point and potentially in a wrong PnP estimate. Consequently, objects that are
not visible by the depth cameras that are far from their background may have a
high negative impact in the tracking accuracy, while if the object is close to its
background the impact is potentially less significant.

An additional requirement is that the fixed cameras should not be too far from
the scene and the handheld camera. The setup discussed in section 4.2 implies that
the smartphone almost never gets farther than five meters from a fixed camera. The
reasons for this constraint on the distance are that it is more difficult to determine
matches among the features if their scale is too different and that the keypoint
position accuracy is lower for more distant points.

Also, the PnP estimation cannot work if the angle between the fixed camera
and the smartphone is too large. Because of this, the fixed cameras cannot be
facing downward at a high angle.

Also the network performance is important. As discussed in section 4.2, the
communication bridge between the smartphones and the ROS system is particularly
sensitive to packet loss. This naturally becomes more and more critical as the
network capacity gets lower and more smartphones are used simultaneously.

If these requirements are satisfied the system accuracy is sufficient for tracking
the position of the smartphone, and, at the same time, for the smartphone to
represent the tracking data from OpenPTrack in its reference frame. However, as
shown in section 4.2 the accuracy is not enough to render the tracking data within
the Augmented Reality view by overlaying. To obtain a convincing AR rendering it
is necessary to integrate the information provided by OpenPTrack with local AR
techniques operating directly on the camera feed.

Regarding the support for the usage of multiple smartphones simultaneously,
the system has been proved to work with up to four devices at the same time.

The system was not tested with more than four devices, but, as described
in section 3.2.1, in normal conditions each phone publishes a 60KB message per
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second, requiring a bandwidth of 60KB/s. For this reason, it can be assumed that
the system can support more than four devices simultaneously.

Eventually, increasing the number of devices, the network will saturate. Colli-
sions between the packets will increase, leading to an overall degradation of the
system performance. However, it will still be possible to operate the devices on
separate WiFi channels, thus further increasing the number of devices usable at
the same time.

The number of supported devices is also limited by the computational power
of the computers performing the PnP pose estimation and the feature extraction
for the fixed cameras. However, the system has been designed to be scalable, as
the different ROS nodes of which it is composed can be executed on different
computers.
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5.1 Future Work
This section will present some proposals for the improvement of system perfor-

mance and accuracy, and for reducing the reliance of the system on the requirements
imposed on the setup and on the environment.

5.1.1 Feature Map
First of all, an enhancement to the system that may have a significant impact

is the implementation of a "Feature Map". This would consist in using the features
detected by the fixed cameras, and possibly also the handheld camera, to create
a 3D map of the feature points. The PnP pose estimation of the smartphone
pose would then be performed using the points from the 3D map instead of those
extracted directly from the fixed camera feeds. A map like this one would resemble
what is implemented in SLAM systems like, for example, ORB-SLAM [28].

This would offer various advantages with respect to the current system, improv-
ing its accuracy and reliability while, at the same time, reducing the requirements
imposed on both the setup configuration and the environment.

The first of these advantages is that the matching of the mobile camera features
would not be performed against one fixed camera at a time. Instead, it would
be possible to compute a PnP pose estimate using features detected by different
fixed cameras. As the number of points available for the PnP pose estimation is
increased this would result in an increased system accuracy. As more 3D points
are available it would also be possible to enforce more stringent requirements on
the quality of the feature points, thus further increasing the system accuracy.

Moreover, by contributing to the map also the features detected by the AR
device it could be possible to perform PnP pose estimates also from viewpoints
that are very different from those of the fixed cameras. For example, every time
a feature produced by the AR device is matched to a feature in the map, the
descriptor from the AR device could be used to enrich that of the map’s descriptor.
This would progressively make the features represented in the map recognizable
also from viewpoints that are farther and farther from those of the fixed cameras.

Also, as the map has been built, it would be available to any new AR device
that is starting up. Because of this, the estimation of the pose of new devices would
be both faster and easier, as the AR device viewpoint would not need to be similar
to that of a fixed camera. It would also be possible to save the feature map built
in a specific session to be used in future ones.

An issue that would need to be addressed would be how to differentiate static
features from features located on moving objects. A first solution to this could
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Figure 5.1: Proposed System Structure with Feature Map
High-level representation of the proposed system based on the feature map. The map
receives directly the features produced by the fixed cameras on the right, which are

integrated in the existing map. The features detected by the AR devices are first used to
produce the pose estimates, then they are sent to be included in the feature map, with

indications of the quality of the pose estimate they led to. The pose estimate for the AR
devices is produced combining the features in the map with the features seen in the

current view of the mobile device.

be to build the map while keeping the scene free of moving objects and then run
the system disabling the updating of the map. A static map like this one could be
complemented with features generated online as it is done in the current system
implementation.

5.1.2 Pose Filtering Enhancements
Another component of the system that could be improved is the filtering of the

AR devices’ poses. Currently, the filtering is based on a linear Kalman Filter that
uses Euler Angles to represent the orientation.

First of all, Euler Angles have well-known issues, in particular, singularity issues
(gimbal lock). OPTAR does not suffer heavily from this, as the handheld devices
poses rarely have high pitch angles, but the issue is still present.

Secondly, but not less importantly, the Kalman Filter assumes the measurement
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noise to be Gaussian, and, from qualitative observations, this does not seem to
be the case in this situation. In particular, the issue is that wildly wrong PnP
estimates can move the filtered smartphone pose considerably far from its true
value. While the impact of this problem is reduced by the heuristics described in
section 3.3.1.3 it is not completely resolved. A possible approach to this problem
could be using more sophisticated filtering methods, for example by following the
approaches described by Masreliez [22] [23] or using different filtering techniques
such as the Particle Filter.

5.1.3 Experimentation with Different RGB-D Cameras
The proposed system has only been tested with Kinect v2 cameras as fixed

sensors, but it has been designed to be device-agnostic. The only requirement is
that the right ROS input topics are provided, delivering rectified greyscale camera
images, rectified and registered depth images and the current camera intrinsic
parameters.

This should allow testing the system with other RGB-D cameras, potentially
reducing issues such as the missing depth information problem described in section
3.3.1.2. Using higher resolution cameras, would also improve the precision of the
feature positioning and potentially allow the creation of setups in which the fixed
cameras are positioned farther from the AR devices.

In particular, it would be fairly straightforward to test the system with stereo
cameras such as Zed [36] and RealSense [8], which are supported by OpenPTrack.

5.1.4 Reducing ARCore Reference Frame Movement
Lastly, a component that could be improved is the PoseManager object within

the Unity application, briefly mentioned in section 3.2.
By keeping track of multiple Trackables within Google ARCore it should be

possible to further reduce the perceived movement of the ARCore reference frame.

56



BIBLIOGRAPHY 57

Bibliography

[1] Openperception. URL: http://www.openperception.org/.

[2] Ucla center for research in engineering media and performance (remap). URL:
https://remap.ucla.edu/.

[3] Adnan Ansar and Konstantinos Daniilidis. Linear pose estimation from points
or lines. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(5):578–589, 2003.

[4] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation
with applications to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2004.

[5] Filippo Basso, Riccardo Levorato, and Emanuele Menegatti. Online calibration
for networks of cameras and depth sensors. In OMNIVIS: The 12th Workshop
on Non-classical Cameras, Camera Networks and Omnidirectional Vision-2014
IEEE International Conference on Robotics and Automation (ICRA 2014),
2014.

[6] Blaise Gassend, Michael Carroll. ROS dynamic_reconfigure package. URL:
https://wiki.ros.org/dynamic_reconfigure.

[7] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
OpenPose: realtime multi-person 2D pose estimation using Part Affinity
Fields. In arXiv preprint arXiv:1812.08008, 2018.

[8] © Intel Corporation. Realsense camera, 28-06-2019. URL:
https://www.intel.com/content/www/us/en/architecture-and-
technology/realsense-overview.html.

[9] Christopher Crick, Graylin Jay, Sarah Osentosiki, Benjamin Pitzer,
Odest Chadwicke Jenkins, and Christopher Crick. Rosbridge: Ros for non-ros
users. In in Proceedings of the 15th International Symposium on Robotics
Research (ISRR, 2011.

57



58 BIBLIOGRAPHY

[10] Dirk Thomas, Josh Faust, Vijay Pradeep. ROS message_filters package. URL:
https://wiki.ros.org/message_filters.

[11] Ian Fette and Alexey Melnikov. The websocket protocol. Technical report,
2011.

[12] Sonja Gamse, Fereydoun Nobakht-Ersi, and Mohammad Sharifi. Statistical
process control of a kalman filter model. Sensors, 14(10):18053–18074, 2014.

[13] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Com-
plete solution classification for the perspective-three-point problem. IEEE
transactions on pattern analysis and machine intelligence, 25(8):930–943, 2003.

[14] Google. Google ARCore fundamental concepts. URL: https://developers.
google.com/ar/discover/concepts.

[15] Google. Google ARCore supported devices. URL: https://developers.
google.com/ar/discover/supported-devices.

[16] Mattia Guidolin, Marco Carraro, Stefano Ghidoni, and Emanuele Menegatti.
A limb-based approach for body pose recognition using a predefined set of
poses. 06 2018.

[17] Radu Horaud, Bernard Conio, Olivier Leboulleux, and Bernard Lacolle. An
analytic solution for the perspective 4-point problem. In Proceedings CVPR’89:
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 500–507. IEEE, 1989.

[18] HE Imre, Jean-Yves Guillemaut, and ADM Hilton. Moving camera registration
for multiple camera setups in dynamic scenes. In Proceedings of the 21st British
Machine Vision Conference, 2010.

[19] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate
o (n) solution to the pnp problem. International journal of computer vision,
81(2):155, 2009.

[20] C-P Lu, Gregory D Hager, and Eric Mjolsness. Fast and globally convergent
pose estimation from video images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(6):610–622, 2000.

[21] João Luís Marins, Xiaoping Yun, Eric R Bachmann, Robert B McGhee, and
Michael J Zyda. An extended kalman filter for quaternion-based orientation
estimation using marg sensors. In Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal Role of

58



BIBLIOGRAPHY 59

Robotics in the the Next Millennium (Cat. No. 01CH37180), volume 4, pages
2003–2011. IEEE, 2001.

[22] C Masreliez. Approximate non-gaussian filtering with linear state and obser-
vation relations. IEEE Transactions on Automatic Control, 20(1):107–110,
1975.

[23] Cl Masreliez and R Martin. Robust bayesian estimation for the linear model
and robustifying the kalman filter. IEEE transactions on Automatic Control,
22(3):361–371, 1977.

[24] David L Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on communications, 39(10):1482–1493, 1991.

[25] Faraz M Mirzaei and Stergios I Roumeliotis. A kalman filter-based algorithm
for imu-camera calibration: Observability analysis and performance evaluation.
IEEE transactions on robotics, 24(5):1143–1156, 2008.

[26] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Proceedings 2007 IEEE
International Conference on Robotics and Automation, pages 3565–3572. IEEE,
2007.

[27] Matteo Munaro, Alex Horn, Randy Illum, Jeff Burke, and Radu Bogdan
Rusu. Openptrack: people tracking for heterogeneous networks of color-depth
cameras. In IAS-13 Workshop Proceedings: 1st Intl. Workshop on 3D Robot
Perception with Point Cloud Library, pages 235–247, 2014.

[28] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam:
a versatile and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015.

[29] Niantic, Nintendo. Pokémon GO. URL: https://www.pokemongo.com/.

[30] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011
IEEE International Conference on Robotics and Automation, pages 3400–3407.
IEEE, 2011.

[31] Paper Plane Tools. OpenCV plus Unity. URL: https://assetstore.unity.
com/packages/tools/integration/opencv-plus-unity-85928.

[32] Long Quan and Zhongdan Lan. Linear n-point camera pose determination.
IEEE Transactions on pattern analysis and machine intelligence, 21(8):774–
780, 1999.

59



60 BIBLIOGRAPHY

[33] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv
preprint arXiv:1612.08242, 2016.

[34] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R Bradski. Orb:
An efficient alternative to sift or surf. In ICCV, volume 11, page 2. Citeseer,
2011.

[35] Dan Simon. Kalman filtering. Embedded systems programming, 14(6):72–79,
2001.

[36] Stereolabs. Zed camera, 28-06-2019. URL: https://www.stereolabs.com/.

[37] Ivan E Sutherland. Three-dimensional data input by tablet. Proceedings of
the IEEE, 62(4):453–461, 1974.

[38] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag, Berlin, Heidelberg, 1st edition, 2010.

[39] Bill Triggs. Camera pose and calibration from 4 or 5 known 3d points. In
Proceedings of the Seventh IEEE International Conference on Computer Vision,
volume 1, pages 278–284. IEEE, 1999.

[40] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

60


