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Abstract 

Building sector in Europe is responsible for the 40% of the total energy consumption and it 

produces the 36% of all energy-related greenhouse gas emissions. Improving the efficiency 

of all types of buildings (residential ones, schools, hotels, offices…) is a crucial point for 

reaching goals established by EU in terms of reduction of energy consumption and CO2. 

This thesis contributes to improve the possibility of studying this sector, providing a method 

for obtaining a large amount of information about the structure analysed from the analysis 

of its energy consumption. Results obtained from the application of methodology proposed 

in this study can be used to improve knowledge about building’s behaviour. This fact 

produces benefits to users, house companies and manager of district heating networks.  

The methodology proposed consists of a set of different tools useful to analyse the building’s 

behaviour in terms of energy consumption. Starting just from hourly measured value of 

energy demand and hourly values of outdoor temperature, this algorithm can obtain a large 

set of information about building’s activity. Energy demand over a year is studied divided by 

hour (creating 24 different analyses, one per each hour of the day) and all together. There 

is the creation of the energy signature curve (ESC) with the consequent individuation of the 

change point temperature (CPT), coefficient of global heat losses (𝑄𝑡𝑜𝑡), losses in DHW 

circuit. There is the splitting of global consumption into the component related to space 

heating (SH) and domestic hot water (DHW) heat loads. In addition to that, also a method 

to obtain information about thermal inertia of the structure is proposed. 

Furthermore, there is the study of boxplots of consumption considering average yearly 

profile of the entire week and Saturdays, Sundays, and workdays separately. There is the 

analysis of summer consumption, where only DHW heat load is present. About DHW profile, 

a detailed analysis in summer period is performed. It was possible to find similarities among 

different days and to individuate hours of minimum, maximum and peak load, calculating 

boundary values in terms of demand between these three zones. A method for improving 

accuracy of DHW profile in winter using the detailed analysis performed in summer is 

proposed and applied.  

All the analysis is implemented in MATLAB, and everything is tested into two different case 

studies. The first one is about 51 buildings connected in a district heating network (DHN) in 

Tartu. In this dataset every building presents a complete yearly demand measurements 

(8760 values) and no other information are known. The second case study examines 26 

buildings belonging to a DHN in historic centre of Verona. The particularity of this second 

case is that every building has a partial dataset, where consumptions of just few months in 

winter season are available. For this reason, it was necessary to develop a method to also 

analyse this case. 

In the final part there is the presentation of results of three buildings from Tartu’s dataset 

and two from the Verona’s one. They are the most significant cases among all analysed 

structures. In that chapter there are, also, comments and considerations about all possible 

information that can be obtained. In general, thanks to this methodology it is possible to 

obtain a large set of useful data about the building. In the appendix it is reported the used 

code. It is completely automatic and can be applied to every building. 
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Chapter 2: Introduction. 

This work is focused on building sector. Energy savings in buildings are critical for the 

European Union's (EU) power system, as they have significant economic and environmental 

implications, as emerged from the study conducted by Thonipara A. et al. Currently, 

buildings account for 40% of the total energy consumption in the EU, according to the 

performance of buildings directive redacted by the European Commission. This means that 

they are the primary energy consumer in Europe, representing the largest share of energy 

consumption.  

Continuing talking about numbers, according to a Eurostat’s study from 2018, residential 

buildings alone account for around 25% of total energy consumption and about 20% of 

greenhouse gas emissions. If all buildings in Europe are taken into consideration, the 

percentage of energy-related greenhouse gas emissions raises up to 36%. As a result, 

achieving a highly energy-efficient building stock is one of the main goals of the current 

energy policies in the EU.  

Among all the technical systems in buildings, space heating (SH) and domestic hot water 

(DHW) are the most significant energy consumers. According to the research work of 

Pezzutto S. et al., SH and DHW together account for over 20% of the total energy utilization 

in the EU, with SH being responsible for approximately 85% of the heat demand in the EU 

and DHW accounting for the remaining 15%. According to another study from the European 

Commission from 2019, heating, cooling, and domestic hot water account for 80% of the 

energy consumed by citizens. Therefore, improving energy efficiency in SH and DHW 

systems is crucial for achieving the EU's energy targets. From these considerations it was 

born the idea to focus the attention of the work proposed in this thesis on the buildings 

sector. 

In addition to that, there is the problem that most buildings in the EU are currently energy 

inefficient. In fact, around 35% of the building stock is over 50 years old, and almost 75% of 

buildings are not energy efficient, according to the study about energy efficiency in buildings, 

conducted by European Parliament in 2021. Additionally, only a small percentage of 

buildings (approximately 1%) are renovated each year, indicating a slow rate of progress in 

achieving energy efficiency targets.  

From these data it was decided to give a contribution on the analysis of building sector, in 

particular existing buildings. The goal is to provide tools and to develop a method that 

starting from few easily obtainable data is able to give detailed information about building’s 

behaviour and consumption. The other aim is to guarantee a large field of applicability, 

avoiding creating a method too specific for a certain type of building. 

A big part of the analysis is about obtaining, and study domestic hot water and space heating 

heat loads for every building. The information obtained from the code developed in this 

thesis can be used to identify potential opportunities for further improvements of building 

sector, to help house companies, DHN manager and users to administrate building in a 

better way and can be useful to provide insights into the key factors affecting the adoption 

of energy-efficient practices in this sector. 
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The contribution of this thesis to the state of art regarding these issues regards various 

aspects. First, there is the union of different tools and method developed for different 

buildings and climates than the ones analysed in the proposed case studies. Second, there 

is the development of a methodology to improve the existing model for splitting SH and DHW 

using an innovative approach to DHW profile. Third, there is the adaptation and application 

of these methods to a partial database, a case not considered in literature. Fourth, there is 

a wide discussion of all possible outputs and information obtainable from the tools applied. 

Fifth, there are other smaller improvements, highlighted in the following chapters.  

The thesis is articulated into 9 chapters. The first and the second ones are dedicated to the 

abstract and the general introduction of the work. Here there are presented some 

information about building sector and the general aim of the work. 

In chapter 3 there is the literature review. Here there is the review and the presentation of 

scientific articles and studies that talk about tools used to build up the code for the analysis. 

This chapter is divided into two main parts. The first one provides a general brief about 

distinct types of approach in modelling heat load of the building, focusing the attention on 

the statistical one, used in this thesis. The second part presents articles that talk about every 

single tool used in this analysis. 

Chapter 4 is dedicated to the presentation of the methodology followed for the analysis of 

building with an entire year database. There are explained all equations and mathematical 

tools used for the analysis. Chapter 5 is about the same topic, but in case there is a building 

with incomplete database, where only few months of measurements are available. 

In chapter 6 there is a concise description of case studies analysed, Tartu and Verona. Here 

some general information about the district heating and the meters used to obtain data are 

given.  

Results and comments are present in chapter 7. In this site there are the presentations of 

three buildings of Tartu and two of Verona. There is the explanation of all outputs of the 

code, and it was provided an interpretation of results for every building. Decided to present 

just some buildings. The decision was to show one standard building for both databases 

and to present some exceptional cases worthy of attention. 

Chapter 8 and 9 are dedicated to a brief show of future possibility and to conclusions of the 

work. After them there is the appendix, where it is possible to find every function and, also, 

the general code implemented in MATLAB to perform the analysis. They are subdivided into 

two categories: the first one refers to the complete database code and the second one to 

the partial database. 
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Chapter 3: Literature review 

In this chapter it will be presented the state of art of tools for buildings’ energy consumptions 

analysis.  

In this work it was presented a relevant number of tools and methodologies for studying 

thermal energy demand in buildings and it is necessary to present a global overview to 

understand the starting point and to appreciate the improvement done in this work.  

In the following paragraphs there is a literature review for every tool used in the thesis. In 

the first section it will be a discussion about models for estimating buildings’ thermal energy 

consumption. In the second section it enters more in detail about the aspects studied in this 

thesis.  

 

3.1 Models for estimating building’s thermal energy consumption. 

The use of models is a fundamental activity in the study of buildings when we talk about 

energy consumption. There are many types of models, built for studying every aspect of a 

building: from energy efficiencies to the phase of construction, passing through the detection 

of faults or the energy consumption. In this work the interest is about thermal energy 

consumption of buildings, so the attention is focused on this topic. 

According to the work of review of Tanveer Ahmad et al. over 50% of the studies are focused 

on the models for estimating the entire energy consumption of the building (electricity, 

heating, cooling and others) and only 35% of works are about heating and cooling energy 

demand. The explanation of this phenomenon is because there is more commercial interest 

in models which can forecast the entire demand of a building than a partial models.  

Having a dedicated model for heating and cooling, however, is better in all cases when there 

is a necessity, for example, to study the behaviour of an envelope in case of an operation of 

retrofitting. With the constant growth of ZEB or NZEB buildings, which present a lower 

demand for space heating compared to domestic hot water demand or respect to other types 

of building, it is important to have a model for the analysis of the energy demand specific for 

domestic hot water production. 

In this work the models implemented are all used for analysis of data, but the results 

obtained can be used also for forecasting building behaviours in years different from the one 

considered or as shown in the partial database analysis section (chapter 5), to forecast 

energy demand and building behaviour in the same year but in a different season. So, in 

simple terms, all models and tools implemented and discussed in this thesis are building 

thermal energy prediction models. 

Simulation tools have been developed since the 1990s to estimate building energy usage 

and these different methods can be subdivided into: engineering; Artificial Intelligence 

based; hybrid and data-driven approaches.  

When it comes to forecasting building loads, the regression model is commonly used due to 

its ease of development and interpretation. Existing literature provides a basis for 
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categorizing models based on type, forecast horizon, and scale. There are many interesting 

works about this topic: the article of Catalina et al. is only one of the many examples of 

regression model for the evaluation and the prediction of heating energy demand based on 

the main factors that influence a building's heat consumption. In this thesis it was used a 

regression model for the analysis of the energy demand. 

There are three different approaches for estimating energy consumption of a building: the 

so called “white-box” approach (engineering), the “grey-box” approach (hybrid) or the “black-

box” approach (data-driven and AI-based). In this section of the thesis, it will be presented 

these three types of methods, with particular attention to the “black-box” models, because 

all tools applied in this work are belonging to this category. 

 

3.1.1 “White box” models  

This is also called, as said before, “engineering approach.” The engineering approach uses 

thermodynamic equations to predict energy consumption based on the physical behaviour 

of building components and their interactions with the environment. This method is known 

as the "white box" approach since the inner logic is clear.  

This method considers the physics of the building, so there is the necessity of detailed 

building information to simulate the inner relations utilized to predict energy use or for 

analysing the demand. All models are based on the solving of equations describing the 

physical behaviour of the heat transfer. The fundamental law, common to all the studies, is 

the energy conservation law: 

𝑄𝑖𝑛 + 𝑄𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑄𝑜𝑢𝑡 + 𝑄𝑠𝑡𝑜𝑟𝑒𝑑  [3.1] 

Where 𝑄𝑖𝑛 is the flux entering in the system, 𝑄𝑠𝑜𝑢𝑟𝑐𝑒  the heat flux produced by a heat source, 

𝑄𝑜𝑢𝑡 he heat flux leaving the system and 𝑄𝑠𝑡𝑜𝑟𝑒𝑑 the heat flux stored inside the system.  In 

this approach are studied in detail the phenomena of conduction through walls, the 

convection, the longwave and shortwave radiation, and the ventilation, for the incoming heat 

flux, but also losses and generation of heat. 

All these equations are put together and solved with software (for example EnergyPlus or 

TRNSYS). There are many of them to aim this goal and there are many reviews and 

comparisons among them. Just to name a few, works of Wall M., McDowell Timothy et al. 

or Wolosyzn Monika et al. But, as discussed in the review of the last authors mentioned, 

some of them are not so good in considering moisture effect. It is important to choose the 

appropriate software, together with the appropriate equations. 

This is only one of the critical aspects in the usage if withe-box models. The leitmotiv is that 

for developing this type of models to study the energy consumption of existing buildings can 

be time-consuming and requires expertise.  

In general, the main disadvantage of the physical approach is that it requires a detailed 

understanding of the physical behaviour, which can be expensive and difficult to obtain for 

all the mechanisms occurring inside and outside the building geometry. This method (and 

grey-box has the same problems) may not be practical for these buildings where there are 

difficulties in obtaining information about building envelope specifications and mechanical 

systems.  
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Regarding white box approach there are models for every aspect of the building: space 

heating, natural ventilation, air conditioning system, passive solar, photovoltaic panel, 

hygrothermal effects, financial issue, occupants’ behaviour, climate environment, etc. 

Currently, there are three primary thermal building models in use: multizone, zonal, and 

Computational Fluid Dynamics (CFD) methods. It's difficult to determine which of these 

models is superior to the others as each has its own strengths and limitations, and the 

selection of a particular model depends on the specific problem being addressed. The 

detailed description of these approaches are beyond the scope of this thesis, but the 

analysis and review of Aurélie Foucquier et al. does a perfect analysis of these approaches. 

It is important to highlight the fact that all of them share the problems described before. 

As a point to underline, all building simulation techniques require input parameters such as 

meteorological data, geometrical data, thermo-physical variables, and occupancy and 

equipment scenarios, among others. However, these parameters are subject to uncertainty, 

and in addition to that, there are uncertainties induced by the assumptions made to simplify 

the thermal mechanisms occurring in buildings. Therefore, evaluating the accuracy of 

building models is challenging due to these uncertainties, making it difficult to obtain a 

comprehensive overview of heat transfer in buildings without accumulating too much 

uncertainty. 

The conclusion is that this approach is not always feasible, in contrast to statistical tools, 

which can generate models based solely on measurements, as shown in a few lines. 

 

3.1.2 “Black box” models 

In contrast to the with-box model, the AI-based approach, or the data-driven approach (also 

called “statistical” approach) is considered a "black-box" method since it estimates energy 

consumption without knowledge of the building's internal structure. They do not require any 

physical information such as heat transfer equations or thermal parameters.  

Instead, they rely on a function based on training data that describes the behaviour of the 

system. These methods are useful when physical features of a building are unknown. 

Statistical tools, including learning methods, can build prediction models without much 

knowledge of building geometry or physical phenomena. However, they rely heavily on data, 

and collecting data can be difficult in certain cases. Another problem is that they depend 

also on the quality of data: having an incomplete dataset, with many holes and values not 

saved could be a large problem for the goodness of the model. 

The statistical techniques most used for building energy forecasting, according to the review 

analysis of Tanveer Ahmad et al. and the work of the already mentioned Aurélie Foucquier, 

are linear multiple regression (CDA), artificial neural network (ANN), genetic algorithm (GA), 

and support vector machine (SVM). These techniques are part of the field of artificial 

intelligence. 

As already said for white-box models, the detailed description of every single method it was 

mentioned in this paragraph is useless for the aim of this work. It was provided a detailed 

description of every method and equation it was used in the analysis of thermal energy 

demand of the building in the chapter 4.  
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It must be specified more in detail only the approach of the multiple linear regression or 

conditional demand analysis (CDA) because the Energy Signature Curve method used for 

the analysis of the demand belongs to this category.  

The conditional demand analysis (CDA) is a technique used in building forecasting that 

applies a linear multivariate regression approach. The use of linear regression in energy 

consumption prediction for buildings was first introduced by Galton in 1886. In 1980, Parti 

and Parti proposed a new method that used linear regression, called the conditional demand 

analysis, for energy consumption prediction in buildings. The approach involved deducing 

energy demand by summing up several end-use consumptions with a noise term. By using 

this method, they were able to predict residential end-use consumption on a monthly and 

yearly basis using household invoices in San Diego. 

The linear multivariate regression technique predicts a variable Y (in the examined case Y 

is the thermal energy demand of the building) by using a linear combination of input variables 

(X1, X2, . . ., Xp) plus an error term (Ei). 

𝑌𝑖 =  𝛼0 +  𝛼1 ∗ 𝑥𝑖1 +  𝛼2 ∗ 𝑥𝑖2 + ⋯ +  𝛼𝑃 ∗ 𝑥𝑖𝑃 + 𝐸𝑖 ,   𝑖 ∈ [1, 𝑛]   [3.2] 

 

The other terms that appear in the general law are: 𝛼, the regression coefficients, 𝑝 is the 

number of variables used in the model and 𝑛 is the number of elements in the sample data. 

The CDA technique is a versatile tool that can be applied for both predicting and mining 

data. One of its significant benefits is its user-friendliness, making it ideal for beginners who 

do not require any specialized knowledge or parameter tuning. It has, also, the advantages 

of every black-box model: it doesn’t require physical information about the building.  

However, the traditional method of multiple linear regression has a significant limitation in 

dealing with non-linear problems, which restricts its forecasting flexibility and creates 

difficulties in managing correlations between variables. One way to overcome these 

challenges is to use a feature selection approach as a preliminary step. 

Regarding its application field, multivariable regression is a common technique used in the 

building sector to predict energy consumption and to compare energy demand between 

different time periods (Markel Eguizabal, Roberto Garay-Martinez et al.). It is also utilized 

for forecasting indoor air conditions (Lam Joseph C. et al.), controlling HVAC equipment, 

managing system reliability, and overseeing system management (Freire Roberto Z. et al.).  

By not requiring physical information about the structure in analysis, it is possible to apply a 

CDA at any scale, from single building to regional level (work of Lafrance and Perron on 

residential electricity demand in the region of Quebec, in Canada or the research of 

Tiedermann about the annual end-use consumption in the region of British Columbia, in 

Canada) and even to national level, as shown by Aydinalp-Koksal and Ugursa that used 

CDA to estimate residential consumption in the entire nation of Canada. 

Other examples of the application of the regression-based method for analysis and 

prediction of heat load con be found in the works by Catalina T. et al. for example, where 

they investigated the modelling of monthly heating demand for residential buildings.  
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To mention other studies, a Comparisons between the energy signature method and the Eta 

method based on statistical regression models can be found in the article published by 

Bauer M. et al., which found a high degree of predictability for both heating and cooling loads 

when treated simultaneously. 

The flexibility in terms of application of the regression model offers the possibility to use in 

even in other sectors, aside from residential one. The banking sector, for example, was 

studied by Aranda et al., who applied regression models to predict annual energy use.  

Overall, it is clear that the regression algorithm is widely utilized due to its ease of use and 

accuracy. 

The primary challenge associated with this method is the requirement for a large amount of 

data to ensure accurate predictions. Additionally, non-collinearity between variables is 

essential for optimal results. These facts are highlighted is the research work of Aydinalp-

Koksal Merih et al. where a comparison between AI and engineering method for modelling 

energy consumption is discussed. 

For the analysis of the demand in the cases study analysed in this study the CDA is a perfect 

tool. It was entered more in detail in the explanation in chapter 4. 

 

3.1.3 “Grey-box” models 

The hybrid approach, known as the "grey-box" method, combines the strengths of both the 

white-box and black-box methods to overcome their limitations. In particular, as described 

in the previous paragraphs, white-box methods assume that all building characteristics, 

including thermal and geometric properties, are well-defined. While this may be true for 

newly designed buildings, collecting such extensive information for existing structures can 

be challenging. Nonetheless, this data is critical for establishing effective monitoring 

strategies.  

Additionally, these approaches require an elevated level of accuracy in describing all 

physical mechanisms. Although most thermal phenomena are well-understood, some are 

based on assumptions and are difficult to model accurately, such as natural ventilation, 

which is often described using empirical equations. 

Black-box methods, on the other hand, are primarily limited by their dependence on copious 

amounts of data. Additionally, it can be difficult to interpret statistical results in physical 

terms, and data mining techniques are specific to individual buildings, requiring new 

modelling for each new structure. In contrast, white box methods, which utilize general heat 

transfer equations, can be applied more generally. 

One way to overcome the limitations of each technique is by combining them through a 

hybrid approach, known as "grey box “, methods.  

By retaining some physical meaning, interpretability of the problem is maintained, and 

building characteristics can be determined through optimization techniques like AI genetic 

algorithms. This removes the need for all physical and geometric input parameters, resulting 

in a more flexible and adaptable approach.  
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Overall, the advantages of one method can offset the drawbacks of the other, resulting in a 

more comprehensive and effective modelling strategy. 

According to the work of Aurélie Foucquier et al., there are several strategies to implement 

this type of method. As it happened in the case of white-box and black-box, it will not be 

described in detail all these strategies, because it is not useful in this thesis. It will be 

synthetized only the general characteristic of every strategy. 

The first approach involves using machine learning to estimate physical parameters, often 

by coupling a nodal model with genetic algorithms (the case of the model for the 

consumption of a building in Tunisia made by Znouda et al.). Another approach involves 

using statistics to create a learning model that describes the building's behaviour. This 

learning model is based on a physical approach and can be used to make predictions. 

A third approach involves using statistical methods in areas where physical models are not 

effective or accurate enough. For example, end-uses are difficult to account for in physical 

models but can be better considered using statistical techniques. In this case, physical and 

statistical methods can be combined to create a complete system (as an example, the work 

of Siddarth et al., which used a genetic algorithm to create a database for the implementation 

of a regression model). 

The hybrid method offers several advantages, such as requiring a limited amount of data 

and not needing fixed input parameters at the beginning of the simulation, only bounds on 

physical parameters are required. Additionally, it still provides a physical interpretation.  

However, there are still some drawbacks to consider, such as the need for free parameters 

for statistical tools and the computation time needed for both physical and statistical codes. 

Moreover, since it combines two different scientific domains, the grey box method may bring 

some difficulties for users to understand, but it should be of great scientific interest. 

 

3.2 Tools for buildings energy consumption analysis 

After the general introduction to the diverse types of approach in the modelling of energy 

consumption in buildings, now it enters more in details explaining the literature background 

of tools used in the analysis. Even in this case, the detailed description of the tools is not 

provided, because it is presented in the chapter 4. The intention of this paragraph is to 

propose a literature review and provide some references to the method used in the analysis 

of thermal energy demand od the building. 

 

3.2.1 Energy Signature Curve 

This is a powerful instrument to evaluate the energy demand of a building. It belongs to the 

statistical tools, so there is no necessity of physical parameters of the building or any specific 

information about end of use, users’ behaviour, schedules, or any other information.  

Energy Signature Curve (ESC) is a linear regression method, developed for estimating ad 

forecasting the demand of a building, with particular attention to the space heating demand 

in winter period. The first time this method was proposed was in 1986 by J. D. Balcomb and 
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it was firstly developed as a passive solar design tool. After that it was adapted for the 

analysis of energy demand in buildings. 

The idea at the base of this method is that it is a well-established fact that outdoor 

temperature is the most significant factor affecting SH heat use (this is shown in many 

articles, just to mention a few works: Nicol JF. et al. about the thermal comfort of people 

inside a building or Schneider S. et al. talking about a demand load curve model for the 

Swiss national territory). 

There is, also, a seasonal variation in DHW use that is also related to outdoor temperature 

(it is evident in the study of Gerin O. et al. that there is a seasonal variation in DHW energy 

consumption, in particular in winter consumption is 12% higher than the average and in 

summer it is 13% lower).  

However, an hourly analysis has shown that there is no significant correlation between DHW 

use and outdoor temperature. This fact is shown in the article of Ivanko D. et al., where they 

built a model for the prediction of DHW consumption in hotels in Norway and shown that 

outdoor air temperature has almost no influence on DHW energy demand, the main variable 

in this case is the number of guests in the hotel.  

Therefore, the regression model between total heat use and outdoor temperature is mainly 

influenced by SH, and the residual of this model accounts for DHW heat use. 

The Energy Signature Curve (ESC) is a useful tool for analysing heat use in buildings and 

its relationship with outdoor temperature (the work presented in the doctoral thesis of Linda 

Petersen is noticeably clear in this field and this is one of the bases for the construction of 

the ESC in the method used in this study).  

The ESC typically consists of two parts for buildings with heating seasons and no cooling, 

separated by a critical outdoor temperature known as the Change Point Temperature (CPT).  

In the figure 1 there is an example of Energy Signature Curve. The CPT (Critical Point 

Temperature) is a pivotal outdoor temperature that establishes the threshold between the 

onset and conclusion of the heating period.  

Once the CPT is reached, the use of space heating (SH) within the building is restricted. 

The portion of the graph preceding the CPT represents the SH season, during which the SH 

Figure 1 An example of ESC 
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system is responsible for a significantly greater amount of heat use than the domestic hot 

water (DHW) system. This is also called the Temperature dependent part of the ESC 

because energy consumption depends on outdoor temperature. 

The function after the CPT illustrates the warm season, during which SH is not necessary, 

and the primary source of heat use is the DHW system. This il also called the temperature 

independent part of the plot due to the fact that, being DHW the highest energy consumption 

of the period, there is almost no dependence on outdoor temperature. However, depending 

on the type of system in use, a small amount of heat may still be required to operate the SH 

system during this period. 

Usually, when examining an energy signature diagram, simple regression models are 

employed to comprehend the energy usage patterns within a building. Since the energy 

signature diagram is influenced by the beginning and ending of the heating season, as 

specified before, it is often divided into temperature dependent and temperature 

independent sections, which are frequently described by the equations presented in various 

publications, among others the already mentioned ones. The equations are similar trough 

all studies of ESC, and their general form is: 

𝑌 =  𝛼0 +  𝛼1 ∗ 𝑥1 + 𝛼2 ∗ 𝑥2 + ⋯ +  𝛼𝑃 ∗ 𝑥𝑃 + 𝐸   𝑖𝑓 𝑇𝑡 < 𝐶𝑃𝑇   [3.3] 

𝑌 =  𝛼0 + 𝐸   𝑖𝑓 ≥ 𝐶𝑃𝑇   [3.4] 

Where E is a random error, 𝛼0, 𝛼1, 𝛼2, … are coefficient of regression and they described 

the expected change in the variable Y when there is a unitary change in input variables 𝑥𝑖 

and the rest of predictors remain constant. From the expression of the equation, it is clear 

the fact that ESC is a statistical model, in particular a CDA model. 

It is important to underline the fact that CPT depends strongly on the building, especially on 

the users’ behaviour, the climate, and the location. In some particular cold climate, it is 

possible that SH is necessary even in summer, so the biggest part of the ESC is a 

temperature dependent part. 

The individuation of the CPT is a crucial part for a good ESC calculation. For certain 

buildings, either the last day of the heating season or the CPT is already known. In cases 

where the CPT is known, an Energy Signature Curve can be constructed using the least 

square method for two parts of the model, as depicted in Figure 1.  

Alternatively, if the CPT is not known, the piecewise regression method is one of the 

methods that can be employed to identify it. This is not, by the way, the unique possibility to 

find CPT.  

Furthermore, several publications have indicated that the selection of the CPT is often based 

on the intuition and experience of researchers, but this will introduce inaccuracies and this 

method becomes too much related to the experience and the intuition of the user.  

Another method was proposed by Linda Petersen in her doctoral thesis. Starting from the 

work of Aronsson, she proposes to find CPT checking where there is a significant the slope 

of interpolation line of experimental points, starting from temperature independent zone. It 

will be described better this approach in the chapter 4, because it was implemented this 

method in this analysis. 
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It is important to highlight the fact that in some publications the separation between 

temperature dependent zone and temperature independent is found not in temperature but 

in the demand. This is the case of the work by Lumbreras M, Garay-Martinez R. et al. about 

data-driven model for heat load prediction. In their study it was necessary the creation of a 

model to estimate the heat demand of the building in analysis. To calibrate the model, a 

reference heat load called QREF is used to split the data into two parts. It is shown an example 

of separation of heat consumption with a demand change point in the figure 2. 

The data below QREF is considered to be independent of weather conditions (th4e 

correspondent Temperature independent part), while the data above this point is assumed 

to have a linear correlation with the climatic variables (it corresponds to the temperature  

dependent part). To determine QREF, an iterative process is followed using different heat 

load thresholds, ranging from 0 to 0.5 *QMAX, where QMAX is the maximum heat load. 

It is shown that this substation of the change point temperature with a change point value of 

heat load produces impressive results when multiple variables are taken as input 

parameters. In the studied mentioned the regression model to estimate building 

consumption was built using outdoor temperature, but also other weather parameters such 

as the global solar irradiance on the horizontal plane, the wind speed, and the wind direction. 

In models that use only outdoor temperature ad an input variable the CPT is ok for 

subdividing ESC in the two zones. In this work it was used CPT and not the change point in 

demand. 

 

 

3.2.2 DHW + SH splitting. 

This is one of the crucial points of the work presented in this thesis. Few studies propose a 

complete procedure to split DHW and SH consumption. The method proposed usually are 

made for specific building categories or are not studied with a large database of building. 

Figure 2 Experimental data (black) vs model 
estimation (red) in case there is a change point 
in heat load (blue line) 
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This part of the analysis is particularly important because according to the European 

Directive 2018/844, it is necessary to analyse the energy performance of buildings based 

on calculated or measured energy use. This analysis should take into account the typical 

energy use for space heating (SH), domestic hot water (DHW), and other technical systems 

in a building. These guidelines are specified in the document mentioned before. This 

approach is crucial for developing energy-saving solutions in all technical components of the 

building. 

The importance of splitting DHW and SH consumption from the global thermal energy 

demand is evident since smart heat meters are not typically available in buildings (fact 

explained in the work of Volkova A. et al.), and many buildings use only one heat meter for 

the total heat use, which cannot measure SH and DHW heat use separately. It is important 

to highlight the fact that according to the European Commission rules about smart grids 

promotion strategy, by 2024 it is expected that almost 77% of European consumers will have 

a smart meter for electricity and about 44% will have one for gas, but now we are far from 

these results. 

Since SH and DHW systems have different operating regimes and influencing factors, it is 

necessary to analyse their heat use independently. It is crucial to have distinct statistical 

data for the use of domestic hot water (DHW) and space heating (SH) to address several 

issues, such as accurately sizing SH and DHW systems, designing efficient energy 

management and control systems, improving existing standards, predicting models, and 

energy use profiles, have information about building’s behaviour and have better data for 

studying an eventual retrofit intervention. Therefore, dividing the total heat demand into SH 

and DHW components is a vital task. 

Regarding the method for doing this operation, a number of research teams are investigating 

the issue of how to extract data on SH (space heating) and DWH (domestic hot water) usage 

from measurements of total heat consumption. However, this is a complex problem, and 

different researchers have different criteria for what constitutes a satisfactory outcome, 

meaning that there is no single standard method for conducting such data analysis. In the 

next lines it will be presented the most relevant method founded in the literature analysis. 

One method that has been suggested for separating the total heat demand in a building into 

SH and DWH usage is presented in the work by Bacher P. et al. This research uses data 

collected at 10-minute intervals from a single-family house in Denmark. The method 

assumes that DWH usage generates short-lived spikes in the time series, while SH usage 

changes more slowly over the course of the day in response to factors such as climate and 

user behaviour.  

To estimate SH usage, the authors propose using a non-parametric kernel smoother. Any 

values that are significantly higher than the kernel smoother are then considered to be 

spikes in DWH usage. This is an interesting idea and the intuition to use sudden spikes as 

an indicator of the presence of DHW consumption is used in other works, for example in the 

second part of the analysis of Dmytro I. about the splitting of SH and DHW consumption in 

a hotel in Norway. However, this method has not been validated using data collected 

separately for SH and DWH usage. As a result, it is difficult to assess its accuracy and 

reliability. 



 19 
 

The work of Burzynski et al. explores the issue of separating weekly heat use into DHW and 

SH. The authors of this paper assume that the period during which the outdoor temperature 

exceeds the base temperature corresponds only to DHW heat use. This is an assumption 

used in many articles that talk about ESC analysis, as discussed in the previous paragraph.  

Using this assumption, they were able to identify DHW heat use for several warm weeks 

throughout the year. They then proposed using monthly variation factors for DHW heat use 

to extrapolate from warm months to other months of the year. These factors are available 

for UK dwellings in "The government's standard assessment procedure for energy rating of 

dwellings", but the problem is that this document is absent in some nation.  

There is, also, the issue that they are standard value, fact that produces inaccuracies in the 

analysis of a single specific building. In addition to this, these factors are not available in the 

literature for other types of buildings aside from dwellings. It is worth noting that in some 

buildings, SH heat use can occur even during warm months. 

For all these reasons, they are methods usable in few situations and not in every type of 

building.  

In the work of Marszal A.J. et al., it is presented a method for estimating the hourly space 

heating and daily DHW heat use profile. This study uses hourly values of the total heat 

demand in the building and involves several steps.  

Firstly, the daily total heat use profile for an average summer day is calculated because 

there is the hypothesis that in summer SH consumption is extremely low or totally absent.  

Secondly, non-DHW use is determined as the minimum of the total heat use profile for an 

average summer day or the average for hours from 0:00 to 4:00. This step, together with 

the first one, is very good for the estimation of losses in the DHW circuit and it was used this 

procedure in the analysis described in chapter 4. 

Finally, the DHW profiles are calculated by subtracting the non-DHW heat use from the value 

of the heat use at each hour of the day. This is the most problematic point: in other seasons 

Figure 3 Flow chart of the methodology by Marszal A.P. et al. 
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we aren’t sure that the load founded in the step 2 is the only non-DHW load, because there 

is a strong relevance of SH heat load. 

Figure 2 presents the flow chart of the methodology. It will be a reconnection to this article 

when there will be a discussion about DHW circuit losses estimation. 

The results of this study demonstrate that the method produces satisfactory outcomes when 

DHW use during the summer is at least at the same level as space heating. However, this 

method does not account for DHW heat use during other periods, aside from the warm 

season. 

There are some alternative approaches for identifying SH and DHW heat use, which involve 

the use of building simulation tools. For instance, one such methodology is discussed in the 

work of Neu. O. et al. which employs an occupant-focused approach and a time-of-use 

survey (TUS). The authors apply Markov Chain Monte Carlo techniques to TUS activity data 

to develop activity-specific profiles for occupancy and domestic equipment use. They 

assume that heat demand is influenced by household size, the type of day, and the season. 

The DHW heat use profiles combine probability distributions for specific TUS activities with 

the average daily DHW heat demand. This is an interesting method, but it requires additional 

information about the use of the building, the number of occupants, the type of occupants… 

to create an accurate model of the specific building in analysis. In most of the cases, 

especially for privacy problem, this type of information is not available, and the application 

of the method becomes very hard. 

Since this moment it was presented only statistical approaches, but it is possible to split 

DHW and SH even with hybrid methods. This is the case, for example, of the work done by 

Verhaert I. et al. which proposed a method to estimate DHW consumption based on tap 

patterns. They used building performance simulation archetype models to estimate the SH 

and DHW heat use in a building. 

They measured volumetric flow rates and water temperatures in 20 different buildings to 

characterize DHW use. Stochastic simulations were then executed on the measured data 

to obtain representative DHW use profiles, which can be used as input for simulation tools 

like IDA ICE, EnergyPlus, and TRNSYS.  

However, developing a complex model for all the components in a building is usually 

required for such simulation tools, and these models are often only suitable for a particular 

building. Furthermore, these models have been shown to be less accurate than data-based 

methods as shown in the comparison analysis done by Tronchin L. et al., where it is said 

that these calculation codes do not give a comparable results of energy consumption in 

buildings.  

Other authors suggest using statistical models and heat use profiles of typical buildings 

obtained from building stock databases to estimate the SH and DHW heat use. For example, 

a Neural Networks model is proposed in the research of Aydinalp. M. et al. to estimate the 

SH and DHW heat use in typical Canadian households, which uses data from the 1993 

Survey of Household Energy Use (SHEU) database. 

Such models can be used to separate the SH and DHW heat use in typical buildings, but 

their accuracy for individual buildings may be uncertain. This method doesn’t consider the 

specific operation of the particular building in analysis, and this may conduce to not 
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consistent results. The availability of appropriate databases is also required to develop such 

models and this type of data is rarely available. 

Talking about linear regression models, it was already said that they have been used in 

several studies to predict heat demand in buildings. A good example of that can be found in 

the already mentioned work of Linda Petersen or in the analysis of energy management in 

neighbourhoods done by Sorensen A.L. et al. They use linear regression models to separate 

DHW heat delivery from the total heat delivery.  

In Sorensen’s article, a linear regression model for total heat delivery was developed by 

taking various factors such as outdoor temperature, hour of the day, weekdays, and holidays 

into account. When estimating DHW heat delivery, the outdoor temperature was set to the 

approximate break-point temperature of the model, resulting in a DHW daily load profile with 

hourly mean values. 

In their work, Riachi Y. et al., investigate the hourly energy loads of space heating (SH) and 

domestic hot water (DHW) in buildings. They use various factors to estimate the hourly DHW 

heat use, including water volume usage, building activity, and type of DHW system. The 

study also models hourly SH loads by considering outdoor temperatures, building setpoint 

temperatures, night setbacks, and weekends. So, it is still present the problem of knowing 

detailed information especially about users’ behaviour but, as already discussed, they are 

hard to find. 

The review of literature reveals that the issue of separating the total heat consumption of a 

building into SH and DHW components remains unresolved, especially for larger buildings 

with limited knowledge of user behaviour. Most of the existing methods are simplified and 

focus only on obtaining average daily profiles for a given year. Some methods can provide 

general models of SH and DHW heat use for a particular category of buildings, but not for 

an individual building. Other methods only solve the problem for several warm months, 

assuming that the SH is not operating during the summer. Several approaches require 

extensive knowledge of user behaviour, building physical properties, and system 

parameters, which limits their application. Additionally, most of the research work analysed 

heat use in residential buildings, whereas non-residential buildings, including hotels, have 

received less attention.  

For solving these problems, Dmytro I. et al. wrote an article that introduces a technique for 

separating the total heat consumption measured hourly into two parts: space heating (SH) 

and domestic hot water (DHW) heating. The first step of this approach involves creating a 

SH heating model using total heat use data, which relies on an energy signature curve (ESC) 

and singular spectrum analysis (SSA). The idea at the basis of the SSA analysis is the same 

as the intuition had by Bacher P. et al.: DHW demand produces a peak in the global heat 

load demand and by performing a SSA analysis it is possible to find these peaks. The 

second step involves extracting a DHW heating model from the difference between the SH 

heating model and the total heat use data.  

To test this method, the researchers applied it to one year of hourly data collected from a 

hotel in Eastern Norway, where they also measured the SH and DHW heat use separately. 

By comparing the results of the total heat use splitting with the actual measurements, they 

found that this method is helpful for obtaining valuable information about the SH and DHW 

heat use in a building with only one heat meter.  
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The starting point of this work is what proposed in this article, because it offers the solution 

to the main issues of the procedure for splitting SH and DHW and because it was searching 

for a method that can work with zero knowledge about building or occupants’ habits, exactly 

the case of the dataset of Tartu and Verona, analysed in the case studies section, in chapter 

6. 

 

3.2.3 Detailed DHW consumption analysis 

After the operation of splitting the global heat demand in the space heating and domestic 

hot water heat load consumption, it emerged the necessity to analyse the DHW profile more 

in depth. To anticipate some arguments discussed in chapter 5, one of the main problems 

to solve after the splitting of the two parts of heat consumption is the accuracy of the DHW 

model. It will be discussed better this point in the following chapters, for now it is important 

to know the fact that it became necessary to have a tool to perform a detailed DHW 

consumption analysis. 

On the other hand, even if the starting point is a database with the subdivision between SH 

and DHW done by smart meter, an analysis of DHW consumption profile is extremely 

significant. In many European countries a lot of focus has been placed on investigating the 

performance of space heating systems, while domestic hot water (DHW) heat use has been 

considered a minor aspect of energy needs for heating, especially in countries with cold 

climates.  

However, with the introduction of passive house technologies and improvements in building 

envelopes, space heating needs in buildings are decreasing, while DHW heat use remains 

relatively unchanged. For example, a study in Denmark conducted by T. Peters et al. 

focused on achieving low heat use in passive buildings through highly insulated, resource-

efficient, and airtight designs, but did not consider DHW use. However, the study found that 

energy demand for DHW use was almost twice as high as for space heating, underlining the 

importance to not neglect this type of energy load. 

In another study done by J. Hirvonen et al. about buildings in Finland, DHW heat use was 

assessed by using profiles obtained from measured DHW demand as input in simulation 

software. The results showed that in modern buildings, DHW heat use was the most 

significant component of heat use (it is shown that in two well-insulated buildings taken into 

consideration the DHW produces the 52% and the 63% of the total energy consumption), 

while in older buildings, it contributed 24% to 30% of total energy use. Unambiguous 

evidence that the DHW consumption plays a significant role in every building, and its 

importance becomes higher and higher with the improvement of building insulation and a 

consequently energy demand for space heating reduction. There is the evidence of this fact 

in many articles, it can be mentioned the work of S. Attia et al. which provides an interesting 

overview of the phenomenon of the nZEB buildings in Europe, raising interesting common 

goals and design suggestions. 

A tool that can provide a detailed analysis of DHW consumption is fundamental to promote 

the shifting of the focus of energy-saving measures in buildings from improving space 

heating to improving DHW systems. To fully realize the potential for energy savings in DHW 
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systems, research, and innovation in the field of DHW energy performance are becoming 

more relevant and valuable. 

It is important to acknowledge that DHW systems are associated with issues related to 

sanitation and health safety, in different modality than space heating. When we talk about 

DHW systems, o0ne of the most serious question to deal with is he appearance of the 

Legionella bacterium, which can cause different forms of pneumonia and even death. The 

conditions that promote Legionella growth include water temperatures ranging from 25°C to 

42°C, stagnant water, and nutrients. Therefore, many countries, including Italy, have 

developed regulations aimed at minimizing the risk of Legionella disease. All the rules for 

preventing the birth and development of the bacteria are collected in the document “Linee 

guida per la prevenzione ed il controllo della legionellosi” provided by the Italian government. 

Just a few data: in the storage tank water temperature must be always higher than 60°C and 

higher than 50°C at the basis of each recirculation column. Thus, ensuring the safety of 

energy-efficient solutions is a critical factor in DHW systems.  

To simplify calculations, some methods suggest assuming a constant DHW use. This is the 

case, for example, of many standard design methods for building. In the literature can be 

found specific values of DHW consumption for every type of building (residential single 

house, condominium, hotel, hospital, …) However, practical experience shows that these 

standards do not reflect the real DHW use in buildings. This concept is the conclusion of the 

research work by T.A. Koiv et al. In fact, they underline the necessity of new calculation 

formulas for determining the DHW design flow rates for instantaneous heat exchangers and 

the fact that there is a significant difference between design flow rates obtained from 

standard method EVS 835 and their empirical law: with their own formula flows are two times 

smaller. 

This is just an example of the problems caused by oversimplification of DHW consumption: 

oversizing of DHW system components, leading to extra financial and energy losses. 

To solve this problem the solution is a detailed analysis of DHW consumption, and the DHW 

heat use profiles are a crucial tool for predicting the amount of DHW heat use in buildings. 

By analysing these profiles, it is possible to observe the variations in energy use over 

different time periods. DHW heat use profiles provide valuable information such as peak 

energy loads and other energy load characteristics of the building. 

The analysis of performance of DHW systems is a complex issue that involves various areas 

such as economic, sanitary, behavioural, and technical aspects. DHW heat use profiles are 

helpful in identifying energy-efficient solutions in all these areas. For instance, economic 

analysis can be performed to evaluate DHW pricing and its correlation with income and 

water prices. An example of this type of analysis is the work done by Reynaud A. et al., 

where they talk about the impact of individual metering for DHW consumption, finding that 

this method of measuring demand, instead of collective metering, has a high impact on the 

price elasticity and produces different values. 

Technical solutions can be designed to address sanitary problems, but they require 

knowledge of when and how much DHW water is used. Additionally, distinct types of DHW 

heating systems can be investigated to reduce DHW energy use by combining traditional 

and renewable energy solutions. In the article written by H. Ahmad there is a good example 

of this type of discussion. The scope of his research is to present different technologies for 
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the domestic hot water generation and to present the difference in performances among 

them in terms of efficiency, CO2 emissions and greenhouse gases emissions.  

Building simulation software tools such as EnergyPlus, TRNSYS, TRANSOL, etc. also 

require DHW profiles to simulate DHW systems' performance accurately. Accurate DHW 

profiles are essential for effective demand-side management, energy conservation 

measures, and legislation improvement. For all these reasons is important to perform a 

detailed DHW consumption analysis even if no splitting operation was done before. 

However, due to differences in building characteristics, data quality, and calculation 

requirements, there is no universal method for performing appropriate analysis. Numerous 

scientific works have been dedicated to developing and analysing DHW energy profiles. 

For example, one study measured volumetric flow rates, cold and supply temperatures to 

characterize DHW use in variously sized buildings and used stochastic simulations to obtain 

representative DHW use profiles for end-users. This is the case of the already mentioned 

work by Verhaert I. et al. Some methods for DHW profile development are based on 

operating schedules for primary DHW energy users and occupant activities (time of shower, 

cooking, cloth washer, dish washer). There are many standards that offer schedules and 

typical profiles useful for analysing DHW use in new and existing apartment buildings. Just 

to mention an example, the document “Building America House Simulation Protocols” a 

document from 2014 written by national renewable energy laboratory (NREL) and provides, 

aside from profiles for the DHW study, also instruments for the analysis of building envelope, 

space conditioning equipment, distribution system, appliances, lightning for both new 

constructions and existing homes. 

There are other studies that uses the occupant activities to perform a detailed analysis and 

a precise simulation of the DHW load consumption. This is the case of the studies by N. 

Good et al. and by D. Fischer et al. In the first mentioned article they can build high resolution 

profiles for DHW and other loads by taking into consideration the number of activities and 

appliances that use this type of load. To create a such precise profile, it is necessary to know 

the exact number of appliances in the building, the number of occupants and their habits in 

terms of time of use. In the Fisher et al. work the reference loads for DHW are taken from 

standard VDI 4655, with the cons, highlighted by the autos themselves, that there is no 

possibility of capturing the random nature and the effect of removing irregularities that may 

arise when multiple households are simulated simultaneously. 

There is no shortage of examples of use AI-based method. They are used to generate in an 

automatic way DHW profiles, as it happens in the simulations done by L. G. Swan et al., 

where a neural network technique was applied. 

The majority of the research reviewed focuses on apartments and households, where it is 

easier to obtain the necessary parameters. However, in non-residential buildings, acquiring 

detailed information on occupant activities and equipment operation can be a time-

consuming and costly task. This limited availability of input data makes it challenging to 

apply these methods in practice. This difficulty in finding data makes difficult even the 

operation of validation of these models for this type of building, another problem that affects 

the applicability in frequent practice, as emerged in the analysis done by Ivanko D. et al. 
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Researchers have also acknowledged the challenges of comparing actual DHW energy use 

profiles with standards and verifying them. For instance, in one study, the actual DHW 

profiles in apartments were compared to the profile proposed by the American Society of 

Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). The study conducted by 

J. Wiehagen et al. found that the primary difference between the actual and ASHRAE-

derived data is that water use is less evenly distributed in the actual data, with higher peaks 

and lower troughs, and much less use in the early morning hours. This is a typical problem 

when there is the necessity to deal with DHW data: standard profiles differ too much from 

the actual consumption and the differences between one building and another one is 

significant. There are other examples of studies that proves the thesis mentioned in the lines 

above. The authors Vine E. at al. conclude their work of comparison between standard 

profiles for DHW consumption and experimental demand suggesting using real profiles 

obtained by experimental points in the analysis of buildings. 

Starting from the problems emerged in the previous discussions, Ivanko D. et al. proposed 

a new method for the analysis of DHW consumption profiles of nursing homes in Norway, 

with the objective to improve upon the current methods used for analysing DHW heat usage. 

They want, also, to increase the knowledge of non-residential structures such as nursing 

homes, hospitals, hostels, and schools that, as established in the previous lines, have not 

received as much attention from researchers. 

In this analysis it will be followed the method proposed in this article, expanding the 

applicability field, and testing it into new databases and with different profiles. With this 

method the authors were able to evaluate the comparability of DHW profiles between 

seasons and days of the week and determine the timing of peak DHW heat usage. To test 

these methods, they utilized one-year hourly measurements collected from three nursing 

homes located in Eastern Norway. In this work, as it will be explained later, it was considered 

a lor of several types of building.  

Through this process, they were able to identify unified DHW profiles with similar usage 

characteristics for each month and day of the week. Using these profiles, they estimated the 

timing of peak, average, and low DHW heat usage, so do I. after this type of analysis they 

proposed, also, a comparison between DHW profile obtained from data deep processing 

and standard profiles from the national guidelines of Norway: SN/TS 3031:2016 and the 

international standard NS-EN 12831-3:2017. As emerged in previous study, standard 

profiles do not give an accurate representation of DHW profile in real buildings’ operation. 

In particular, it emerged the fact that the European standard, NS-EN 12831-3, overestimated 

the daily DHW heat use by 1.65 times, and the Norwegian standard, SN/TS 3031, 

overestimated it by 3.5 times. The magnitude and timing of the peak heat use in the buildings 

was also different from the standards.  

This is a clear evidence that a detailed DHW consumption profiles analysis based on real 

experimental data is necessary to understand the real behaviour of the building. It is 

impossible to blindly trust standards because they could give some important inaccuracies. 

It retained, for these reasons, an especially important point to focus the attention in this study 

on the DHW profile analysis and to use the information obtained not only to improve the 

model of DHW and SH splitting, but also to use to understand in a clearer way the behaviour 

of users and of the building. 
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3.2.4 DHW boxplot analysis 

The next tool proposed in this thesis is an instrument to check the DHW profile consumption 

during summer. Being a tool focused on the analysis of DHW profile, the literature review 

for this point is strongly connected to the previous argument, when it was talked about the 

detailed DHW consumption analysis in the point 3.2.3 of this chapter.  

It is behind the scope of this thesis to discuss the born and the evolution of the boxplot itself, 

it is not useful and a uselessly high time-consuming operation. In this section, so, it will be 

shown an example of the instrument it was used, and it was mentioned just some articles 

where there is an application of this boxplot. It is important to underline the fact that, due to 

his extremely easy implementation and the extreme general field of possible uses, the 

boxplot is commonly used in a multitude of articles and studies, from the most different 

arguments of research. 

Boxplot belongs to the statistical tools. For this reason, it is commonly used to understand 

experimental profiles and to obtain some interesting information from its analysis. An 

interesting use of the analysis of boxplot is presented in the work of Lomet A. et al., where 

they did a statistical modelling for real domestic hot water consumption forecasting. To make 

these forecasts they studied the consumption profiles of various individual residences using 

boxplots of volume consumption for each month (an example of average consumption profile 

and boxplot con be found in the figure 4 and 5).  

This model was developed to solve the main problem of other methods, such as neural 

networks, grey box modelling approaches or regression models: strong computational time 

and detailed information about the residents like their number, age or social profile that is 

often not available. It must be underlined an important question emerged in this article: a 

boxplot analysis can give essential information about weekly periodicity, random fluctuations 

and the different profiles of consumption following the residence, the season, and the day 

of the week. 

Another use of this analysis, boxplot, and average profiles of DHW consumption, is 

presented in the already mentioned article by Anna Marszal-Pomianowska et al. Here there 

is the suggestion to study DHW profile consumption using an average profile created in 

summer months.  

Figure 4 An example of average DHW consumption 
profile used in article by Lomet A et al. 

Figure 5 an example of boxplot used for DHW consumption 
studies in the article of Lomet A. 
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Just to mention the potential of the boxplot analysis: it can be used both for studying water 

demand in a single building, but also for an entire city, providing in both cases useful and 

consistent information. In the study conducted by J. C. Evarts, they used a boxplot 

representation for observing the water consumption of the Halifax Regional Municipality.  

Another important application of this type of method can be found in the work by R. Hendron 

and J. Burch, where they use, among others, boxplot for putting together DHW profile 

consumption from diverse types of building and time of the year for creating a Standardized 

Domestic Hot Water Event Schedules for Residential Buildings.  

For the interest of the analysis presented in this thesis it will not proceed over with the 

presentation of possible using of boxplot analysis, because it would be impossible to cover 

all the infinite possibility this instrument offers. For this analysis, it was used boxplot and 

average profiles analysis of DHW consumption just to identify summer season, where 

consumption is lower and more similar among different moths, and to notice if there is the 

presence of some outliers in the experimental database. As it happened for the previous 

paragraphs, it will be explained in detail and it will be provided examples and results of this 

type of analysis in the next chapters, in particular in chapter 4 and 7. 

 

3.2.5 Boxplot of energy consumption 

Even in this case, the same considerations did for the boxplot analysis of DHW consumption 

profiles are true. It will not go further with the repetition of concept already expressed. It will 

be provided, by the way, an example of the use of boxplot analysis for the global energy 

consumption.  

The object of interest is the work conducted by Tereshchenko T. et al. about the analysis of 

energy signatures and planning of heating and domestic hot water energy use in buildings 

in Norway. Their goal was to present a more advanced approach to plan and analyse energy 

consumption for domestic hot water and heating in LEBs, utilizing the energy signature 

method. The relevant point is that they used the boxplot analysis for dealing with outliers. 

In fact, it is crucial to determine the factors behind the common and atypical energy usage 

patterns in every data analysis. So, they did an investigation into the tailed data presented 

in the experimental points and to gain a better understanding of the energy usage patterns, 

a boxplot was utilized. It is reported below, in the figure 6, one of the boxplots taken from 

Figure 6 Boxplot Energy demand vs Time of the day 
taken from Tereshchenko et al. study 
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the article, to highlight its extreme power into the identification of mean values and, even 

more important, the outliers (represented as dots in the upper part of the plot in figure 6). In 

addition to that it can show the maximum, median and minimum energy use, and density of 

data points.  

It will be provided an analysis of global energy consumption with this tool even in the method 

it was used for the analysis of case studies. As it happened for the previous tools, a detailed 

description of method and results is given in chapter 4 and 7. 

 

3.2.6 Analysis of temperature lag 

This tool was introduced to consider the inertia of the system. It can be noticed that the 

previous tools are belonging to the area of statistical approaches. They suffer of a problem 

of low physical interpretation of the system. It could be hard to use these statistical data-

based model in some physical methods because it would be hard to observe some 

parameters of interest.  

It can be found an interesting work in these terms in the article by Karen Byskov Lindberg 

et al., where the authors discuss the hourly load modelling of non-residential building stock. 

They improve the single regression model for building consumption estimation developed 

by Petersen (already mentioned in the previous paragraphs) by adding other variables as 

input parameters, together with outdoor temperature. They also use wind speed and solar 

radiation and expand the sample of investigation. Using the conclusions of the work done 

by Stokke G. et al. about demand in residential sector, they consider a non-linear effect of 

temperature in the part of the ESC (see paragraph 3.2.1) that exceeds the changing point 

temperature (no need for more heat) or reaches very low temperatures (the technical heat 

system is not able to deliver more heat), creating an S-shaped curve. To consider this 

phenomenon they added a quadratic term of temperature to the regression formula.  

But the most important thing highlighted in this work is the implementation of a moving 

average of outdoor temperature. In fact, due to the presence of thermal mass in the building, 

which causes a delay in temperature response, a 24-hour moving average of the outdoor 

temperature was incorporated into the model. The model with TMA shows an increment by 

0.6% to the index R2, passing from 75.4% of the single regression model, with only outdoor 

temperature as an input variable, to a value of 76% with both outdoor temperature and TMA.  

Seen in this term the improvement may be not so interesting. But if we consider the work of 

the already mentioned Tereshchenko et al., we found a peculiar implementation of TMA. 

Here The purpose of the TMA analysis was to investigate the impact of outdoor temperature 

lag, in terms of the hour of the day, on building energy consumption. Building structures 

have varying levels of thermal inertia, with some being capable of storing heat for later use 

in improving indoor thermal conditions. To determine the extent of the effect of temperature 

lag on energy consumption, the outdoor temperature was shifted every hour for a period of 

48 hours, and correlations between the variables were examined.  

The analysis revealed that the common practice of using 24 or 48-hour lag periods to define 

and describe building inertia is misleading. The results indicated that the appropriate lag 

period is dependent on the building's construction type and time constant parameter.  
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Starting from these conclusions, it was implemented a similar analysis in these case studies, 

trying to understand how every single building react to the thermal inertia. As usual, it was 

presented the procedure followed in the chapter 4 of this thesis. 

 

3.2.7 Parameters for testing accuracy of models 

Regarding parameters and indicators for evaluating the accuracy of the tools proposed the 

choice was easy. In all articles mentioned before that used statistical methods in their 

analysis there is the presence of the factor R2 to evaluate the goodness of the model. The 

most accurate and complete expression and explanation of this parameter can be found in 

the article by Lumbreras M, Garay-Martinez R. et al. regarding data-driven model for heat 

load prediction. In this article there is an entire paragraph dedicated to the explanation of 

the tools for the analysis of results.  

To assess the precision and effectiveness of the model, it was evaluated numerically using 

the coefficient of determination, R2. This value quantifies the percentage of the variance in 

the data that can be predicted by the model's predictors. The R2 variable is computed using 

the following formula: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑌𝑌
    [3.5] 

𝑆𝑆𝐸 = ∑(𝑋𝑖 − 𝑌𝑖)
2     [3.6] 

𝑁

𝑖=1

 

𝑆𝑆𝑌𝑌 =  ∑(𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋))
2

    [3.7]

𝑁

𝑖=1

 

where Yi is the value obtained from the prediction model, Xi represents the measured 

experimental data and N is the number of observations. 

In the same article, they propose another indicator. This is necessary because their model's 

practicality lies in its ability to forecast heating demand and optimize the heat generation 

process. The DH operator is responsible for managing the heat production process across 

the entire DH network, so it is essential to evaluate the model's accuracy in energy terms. 

Solely relying on the R2 value can result in an overfitted or biased model. For the current 

application, fluctuations caused by the high thermal inertia of the DH network need to be 

considered, and the analysis focuses on overall energy outcomes, as said by authors. 

So, they introduce another parameter: the yearly energy consumption deviation (YEC). The 

expression is reported in the equation [3.8]. A 0% indicates a perfect match between 

measurement and prediction.  

𝑌𝐸𝐶 = 100 ∗ 
|∑ 𝑋𝑖 − ∑ 𝑌𝑖 

𝑁
𝑖=1  𝑁

𝑖=1 |

∑ 𝑋𝑖 
𝑁
𝑖=1

    [3.8] 

This parameter is a sort of MAPE (mean absolute percentage error). It is used to estimate 

the error present when there is the estimation of the entire year consumption. It takes into 

account the general deviation of modelled points from the experimental data. This is an 
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extremely useful instrument when we talk about model for forecasting or for modelling 

building consumption.  

In this application, instead, it was decided to implement only R2 because it would be 

meaningless apply YEC when it was built the model for DHW and SH splitting. The reason 

why this happens is explained in detail in the chapter 4. 

With the literature analysis and the insertion of references for this last tool it is concluded 

the literature review. It must be emphasized the fact that in this site there are proposed some 

articles per argument and there’s the possibility to include a lot of other articles. 

Nevertheless, in this review they are presented only the most relevant articles and the ones 

that contain information about the law and the principles that have been implemented in the 

analysis. In each paragraph it is highlighted what research are used in the effective analysis, 

by inserting a reference to the chapter 4 or the chapter 7. 
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Chapter 4: Description of method with a complete 

database 

after a chapter dedicated to the literature review, in this site it will be discussed the 

application and the method followed for the analysis of energy consumption. In this chapter 

It will be analysed buildings with a complete database. By saying that it is meant that there 

must be data from meters collected with hourly resolution for an entire year. The only data 

used in these tools is the hourly global energy consumption. It will be described better the 

characteristic of the case study in the chapter 6, but for now it must be said that the only 

component to the demand of thermal energy is the Domestic Hot Water (DHW) and the 

Space Heating (SH). In addition to that, every building taken in analysis is part of a district 

heating network.  

It will be analysed in the next chapter, the number 5, the case of an incomplete database.  

The paragraphs presented in this chapter correspond to the different tools implemented for 

the analysis. In every section it will be described step by step the formula and the reasonings 

behind every passage and it will be underlined what is taken from literature and what are 

the contributes from the author of this work. It was not possible to make a detailed list at the 

beginning of the thesis because modifications and improvements are done in distinct parts 

of the whole analysis and in different tools. 

The steps are: Data pre-processing; Hourly data splitting; Energy Signature Curve 

reconstruction, including discussion about the choice of every parameters useful for the 

construction; Boxplot of energy consumption; Analysis of temperature lag; Implementation 

of Confidence Intervals; DHW boxplot analysis; Splitting of DHW and SH energy 

consumption; Detailed DHW consumption analysis, with all the sub-steps present in this part 

of the examination.  

 

4.1 Data pre-processing 

This is a crucial phase of the entire analysis. It is impossible to obtain satisfactory results if 

the starting dataset contains errors, missing values, or inaccuracies. The pre-processing 

phase includes all the operations that must be done in the initial datasheet. For this phase 

it was used the program Excel, but any software that gives the possibility to deal with tables 

Is ok. 

It will be described in the chapter 6 the characteristics of the case study of Tartu, the one 

analysed that present a complete dataset for every building. In this site it was wanted just to 

show all phases and operation of the work, so it was decided to take a building as an 

example. It is considered building named “10922” just for take some images and table, 

useful to better understand the steps of the analysis.  

To understand what operations, must be done in this step it is wanted to show you an 

example of datasheet, in the figure 7. This is taken from the building “10922”, as said before. 

This thing will not be specified in the following part of the explanation. 
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In this file we can notice some relevant and some useless information. Starting from the left 

there is the name of the meter. Every building in this case study had its own meter. This is 

also used to identify the building because for privacy reasons it was impossible to know 

addresses, location, or any other sensitive information. 

On the second column there is the voice “ENERGY.” Here we can find, expressed in MWh 

the cumulative thermal energy consumption of the building. This is a particularly important 

data. It could be missing in some dataset (it is evident, for example, in the analysis of the 

chapter 5, the section about incomplete datasheet). This is not a problem, because it can 

be calculated with the following law: 

𝐸 = 𝑚 ∗ 𝑐𝑝 ∗ (𝑇𝑓𝑙𝑜𝑤 − 𝑇𝑟𝑒𝑡𝑢𝑟𝑛)    [4.1] 

Where E is the energy, m is the mass of the fluid, Tflow is the temperature of the flow and 

Treutrn is the return temperature of the fluid, after the heat exchange. Particular attention must 

be done to the units of measure. In the analysis it was kept kWh as a measure of energy 

consumption, to have a clearer vision of the results and because it is the common unit used 

when we talk about building energy consumption.  

If data is taken from this datasheet, it must be reminded the fact that the mass is absent, but 

in the third column is present the “VOLUME.” Here we can find the cumulative water 

consumption expressed in m3. It is possible to obtain mass from this data by applying the 

definition of density of water, expressed in the law [4.2]. Because we are talking about 

temperature of water around between 40°C and 80°C, the value considered for density is 

980 kg/ m3.  

𝑚 = 𝑉 ∗  𝜌    [4.2] 

For double checking the fairness of data it was compared the hourly energy obtained by 

subtracting two following hours taken from the cumulative energy consumption column 

(“ENERGY”) with the result of the application of the equation [4.1] hour per hour. The two 

values are the same. 

Proceeding to the right there is the column “HOURS.” This is a progressive number which 

increases by one every hour. It is a relatively useful information, because the knowledge 

about day and hour of the day comes from the last column to the right named 

“READ_DATE.” This is an especially essential information and allowed me to select any 

days with missing values or with double identical values.  

There was, in fact, some days that presented some errors in the reading of meters. It was 

found days with 25 hours, because there were two close lines identical. So, it was cancelled 

duplicate. They are extremely dangerous because, when it was calculated the hourly energy 

Figure 7 Example of a complete database (building 10922) 
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consumption as a difference between two following values of the line “ENERGY” there is 

the creation of 0 in case the difference is done between two following identical values. These 

0 create big inaccuracies in the demand profile with consequent problems in the following 

steps of the analysis. 

Proceeding to the right there is the column “POWER1”. These data represent the mean 

hourly thermal power of the plant expressed in kW. It is evident that this data, in numerical 

terms, is equal to the energy per hour expressed in kWh, previously mentioned.  

On its right there are the columns called “FLOW,” where the is the information about the 

hourly water consumption expressed in l, “FLOW_TEMP” and “RETURN_TEMP” which 

represent the temperature of water, in °C, before and after the thermal exchange with the 

building. These values are used for the evaluation of the thermal energy per hour.  

The other columns, “HOT_WATER,” “SEC_FLOW” and “SEC_RETURN” are representing 

temperatures in different zones of the water circuit, but they are not used in this analysis. In 

the figure 8 it is possible to find the scheme of the plant, with the position of all meters that 

collected data mentioned in this paragraph.  

 

Clearly this scheme has as reference Tartu’s building. In other types of datasets there could 

be different measurements. This figure (8) is shown for clearness of exposition. The 

fundamental input for the analysis, by the way in the hourly global energy consumption. If 

this data is not available, it can be calculated by using flow consumption per hour and 

difference between inlet temperature and outlet temperature. 

On the other hand, the other input is the outdoor temperature. The only request is that there 

must be a database with hourly value of this variable. It can be easily found from 

meteorological station close to the building in analysis or it can be measured with a specific 

meter near the building itself. If these data are missing, it is possible to use daily mean 

temperature values, but the analysis will be less accurate. 

 

 

Figure 8 Location and lay out of the smart energy meters in the District 
Heating in Tartu. 
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4.2 Hourly data splitting 

This is the first operation of the analysis. This step and the followers were implemented in 

MATLAB R2020b. All the functions used and the general scripts for this step and the 

following ones can be found in the appendix of the thesis. As it was said this thing happens 

for every step, so it will not be repeated this concept for every paragraph. 

It is relevant to underline the fact that from this point of the analysis, the implemented script 

in MATLAB is completely automatic, so there is no necessity of intervention after the pre-

processing operation. This means that this algorithm can be applied in a fast and 

uncomplicated way. It is, also, general, so the tools implemented can be applied to every 

building even outside from the considered dataset. In other words, it can be used to study 

buildings in every climate zone, as long as a completed year dataset and weather data are 

available. 

The concept at the base of the hourly data splitting operation is to subdivide the global 

energy demand into smaller vector for a better analysis of the consumption. It was created 

24 vectors, one for each hour of the day. Each vector contains 365 values. Each value 

represents the global energy consumption of the hour indicated by the name of the vector 

per each day of the year. For example, the vector called “ENERGY_0AM” is composed by 

the global thermal energy consumption of the hour that goes from 0.00am to 1.00 am of the 

1st of January, then the same hour of the 2nd of January and so on. In the equation below 

there is a clearer representation. 

𝐸𝑁𝐸𝑅𝐺𝑌0𝐴𝑀 = [𝐷𝐸𝑀𝐴𝑁𝐷 0𝐴𝑀1𝐽𝐴𝑁 , 𝐷𝐸𝑀𝐴𝑁𝐷 0𝐴𝑀2𝐽𝐴𝑁 , … 𝐷𝐸𝑀𝐴𝑁𝐷 0𝐴𝑀31𝐷𝐸𝐶  ]   [4.3] 

It was done this operation for every hour of the day. These vectors are the starting point for 

the operation of DHW and SH heat lead consumption splitting. This procedure, in fact, is 

done both for hourly vectors and for the global vector containing the 8760 values of demand 

for the year.  

The scope of the hourly data splitting is to identify hours with an eventual particular 

consumption. It was developed this type of analysis starting from the considerations done 

regarding the same dataset in the article of Lumbreras M., Garay-Martinez R. et al. From 

their work, in fact, it emerged that some buildings could present a night setback or a 

reduction in the demand in specific hours of the day. The operation of hourly data splitting 

offers the possibility to find if particular heat loads happen always in the same hours of the 

day. 

Regarding this argument, it is possible to find, for example, moments of the day of typical 

maximum consumption or if there is an operation of the plant different from the usual. This 

is the case of the partial dataset analysis, where thanks to this tool it was possible to find 

hours where the space heating plant was on operation and when it was turned off. For seeing 

the results and the comments of this fact, check the paragraph 7.3 in the chapter 7. 

Another important possibility given by this tool is that it represents the initial operation for 

the evaluation of the thermal losses in the hot water circuit. This fact is explained in the sub-

paragraph 4.9.1.  
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4.3 Energy Signature Curve reconstruction 

It was discussed about the meaning of Energy Signature Curve and its literature background 

in the literature review in paragraph 3.2.2. In this site it will be explained all mathematical 

passages and algorithms used for the construction of the curve. As it was said in the 

previous paragraph, this operation is done both for hourly energy vector and for the global 

energy vector, with all consumption values of the year.  

The scope of building the energy signature line is obtaining a model for the estimation of the 

space heating component of the demand. From this curve it is possible to obtain this part of 

the thermal demand, as happened in the study conducted by Ivanko D. et al., already 

mentioned in the literature review. The focus on this passage can be found in the paragraph 

4.9 of the current chapter.  

The first operation is the calculation of the Daily Mean Temperature (DMT). This is an 

optional operation. The analysis, in fact, can be done also with hourly values of outdoor 

temperature. It was decided in this site to use DMT for operating with hourly energy vector, 

and to use hourly values of outdoor temperature for the global curve. Some authors use 

DMT, for example the already mentioned Petersen L., and others use hourly values. 

DMT was calculated by considering the average value of 24-hourly outdoor temperature day 

per day, as showed in the equation 4.4. So, there is the creation of a 365-values vector 

named “DMT”. 

𝐷𝑀𝑇𝑖 =
(𝑇𝑜𝑢𝑡 0𝑎𝑚 𝑖 + 𝑇𝑜𝑢𝑡 1𝑎𝑚 𝑖 + 𝑇𝑜𝑢𝑡 2𝑎𝑚 𝑖 + ⋯ + 𝑇𝑜𝑢𝑡 23𝑝𝑚 𝑖)

24
    [4.4]  

At this point there is the first phase of the ESC reconstruction, which is the individuation of 

the CPT.  

 

4.3.1 Determination of CPT 

Determination of the Change Point Temperature is a crucial point in the ESC analysis. As 

shown in literature review, in many applications this point is found by experience of the 

authors or by previous data regarding the building or the location in analysis. All these 

methods are effective, but with the problem of the necessity of an expert or availability of 

data regarding the begin and the end of the heating season. These data are usually hard to 

find, especially if we are talking about buildings where information about users’ behaviour is 

absent for privacy reasons. In addition to that, the length of the heating season is dependent 

on the climate as well as the type of building, isolation thickness, control system, consumers, 

and more. 

For solving these problems, in this analysis it was used a mathematical approach for the 

determination of the CPT. With this method no extra information are needed, except for the 

already mentioned as input parameters. Guidelines and general steps for the method are 

taken from the work of Petersen L. about a method for load modelling of heat and electricity 

demand. This is a compete statistical approach. 
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Role of the change point temperature is to find the point of switch between two different 

regimes in the behaviour of the heating plant of the building. The temperature independent 

part (on the right of the figure 10) and the temperature dependent one (on the left of the 

figure 10). In the first part there is the presence of only DHW, in the other side there is the 

sum of DHW and SH.  

 

 

To perform an accurate regression analysis, it is crucial to distinguish between temperature 

dependent and temperature independent consumption. It can be done even with other 

methods, such as a piecewise regression, maybe by implementing an automatic for the 

operation. There were some attempts to create the ESC without the separation in two zones 

made with CPT using various method: BEAST algorithm developed by Zhao et al. or the tool 

for creating a continue interpolation curve by optimization toolbox in MATLAB, but none of 

them give satisfactory results.  

In figure 9 there is the example of a test done with the algorithm of automatic piecewise 

regression, and it is evident that even if for the temperature dependent part, the interpolation 

is good, for the temperature independent part it is completely wrong.  

The only way to perform a good ESC rebuilding is to identify CPT, better if this operation is 

done in a mathematical automatic way. It was report here the general expression of the 

regression equation [4.5] for the clearness of exposition.  

𝐸𝑖 =  𝛼𝑖 +  𝛽𝑖 ∗ 𝐷𝑀𝑇𝑖 + 𝑒𝑖   [4.5] 

Where Ei is the global energy consumption of the considered hour (for example between 

0.00 am and 1.00 am) at the i-day measured in kWh, 𝛼𝑖 is a coefficient obtained from linear 

regression of experimental data expressed in kWh, 𝛽𝑖 is a coefficient obtained from linear 

regression of experimental data expressed in kWh/°C, 𝐷𝑀𝑇𝑖 is the daily mean temperature 

of the considered i-day and 𝑒𝑖 is residual (the error in the fit). 

Researchers, as established in Petersen’s work, have developed a mathematical 

methodology for determining the division between temperature dependent and non-

dependent seasons, i.e., for determining CPT. The slope of the regression equation in 

equation [4.5], represented by the β value, indicates the degree to which the heat load 

Figure 10 An example of ESC curve. In green the T-independent part, in 
red the T-dependent part 

Figure 9 An example of test for the piecewise regression with 
the yearly global demand between 0.00 am and 1.00 am. 
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decreases as the mean daily temperature increases. The α and β values are determined via 

the least squares method. 

To identify the temperature dependent season, it was calculated β values for temperatures 

decreasing from the maximum temperature registered in the dataset (for Tartu’s analysis in 

it around 23°C, but this value depends on the location in analysis) to the minimum 

temperature registered in the dataset (even this value depends on the location, for Tartu’s 

analysis it is around -18°C) in increments of 0.1°C. The objective is to identify the 

temperature range where the β value remains relatively constant, fluctuating only within a 

few percentage points. The CPT, so it means the beginning of the temperature dependent 

season, is located in the region where β passes from relatively constant value to a rapid 

decreasing.  

β, in fact, is almost constant when there is no correlation (or a low correlation) between 

thermal consumption and outdoor temperature but begins to be lower and lower (in relative 

terms, in absolute terms it becomes higher) when the correlation between demand and 

temperature becomes stronger (it means we are in the temperature dependent region). In 

figure 11 it can be easily seen that CPT is around 11.5°C.  

The first part of the curve on the right does not count as variation: in this zone a low number 

of experimental points are considered, and this fact produces the instability in β value that 

can be notice in this plot. 

This operation is performed for demand of every hour of the day and for the global demand. 

Once all CPTs are identified, their values must be inserted in the special place of the general 

script (it is the section “CPT definition” in the general script “ESC_10922” that can be found 

in the appendix of the thesis).  

Even if the operation is done for every hour, this is not necessary. It implemented this 

function just for controlling the similarity between CPT of different hours. It is confirmed, after 

various simulations using different buildings, that CPT value is similar for every hour. This 

fact is correct: CPT represents the temperature at which space heating plant is turned off. 

Because control of the space heating plant depends on outdoor temperature, it has perfectly 

sense that there is the same behaviour during different hour of the day. 

 

 

Figure 11 example of β variation with increasing temperature 
intervals 
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 4.3.2 Splitting of two zones in ESC 

At this point, change point temperature value is known. This means that experimental points 

can be easily divided into the temperature dependent part and the temperature independent 

part.  

This operation is done by the function “ESC_DIVISION” that can be found in the appendix. 

The result is the individuation of the red zone and the green zone showed in figure 10. 

The other operation done in this step is the linear interpolation of the two zones. Each 

interpolation is performed independently from the other. In this way, of course, there is no 

continuity in CPT, as you can see from the figure 11. This problem is addressed in the next 

paragraph. 

 

4.3.3 Reconstruction of ESC 

At this point, the next goal is to build an ESC continue in CPT. The red line and the green 

line in figure 12 are good interpolation of their respectively experimental points. For obtaining 

the continuity in CPT, the first step is writing the equation of the linear regression model in 

the temperature dependent part and the temperature independent part, as provided by the 

work of Tereshchenko T. et al. (equations [4.6]) 

𝐸 =  𝛼1 +  𝛽1 ∗ 𝑥     𝑖𝑓 𝑥 ≤ 𝐶𝑃𝑇                

𝐸 =  𝛼2 +  𝛽2 ∗ 𝑥     𝑖𝑓 𝑥 ≥ 𝐶𝑃𝑇      [4.6] 

Where E in the global energy demand, 𝛼1 is a coefficient obtained from linear regression of 

experimental data expressed in kWh of the temperature independent part (𝛼2 has the same 

meaning but for the temperature dependent part), 𝛽1 is a coefficient obtained from linear 

regression of experimental data expressed in kWh/°C, of the temperature independent part 

(𝛽2 has the same meaning but for the temperature dependent part) and 𝑥 is the outdoor 

temperature. 

By imposing continuity in x=CPT, E must be equal in this point, so: 

𝛼1 +  𝛽1 ∗ 𝐶𝑃𝑇 =  𝛼2 + 𝛽2 ∗ 𝐶𝑃𝑇    [4.7] 

Figure 12 Example of ESC without continuity in CPT. It is evident from the 
behaviour of red line and green line. 
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Obtaining one parameter from this equation: 

𝛼2 =  𝛼1 + 𝐶𝑃𝑇 ∗ (𝛽1 − 𝛽2 )    [4.8] 

By replacing 𝛼2 in the equations [4.6] it is possible to obtain a mathematical expression of 

the ESC before CPT and after CPT. It assumes the shape of a piecemeal function. [4.9] 

𝐸 =  𝛼1 +  𝛽1 ∗ 𝑥       𝑖𝑓 𝑥 ≤ 𝐶𝑃𝑇                

𝐸 =  𝛼1 +  𝐶𝑃𝑇 ∗ (𝛽1 − 𝛽2 ) + 𝛽2 ∗ 𝑥         𝑖𝑓 𝑥 ≥ 𝐶𝑃𝑇   [4.9] 

By implementing these equations, it was obtained a valid representation of ESC, continue 

in CPT as it can be seen in figure 13. It is important to underline the fact that with the 

application of these equations, there is no changes in regression coefficients. This means 

the interpolation stays good. It is only an operation of shifting up for the temperature 

independent part. The function for doing this operation is called “ESC_CONT_CPT” and can 

be found in the appendix of the thesis. 

 

4.3.4 Accuracy parameters 

In this last section of the ESC construction, it was faced the problem of accuracy of the 

model. As introduced in literature review, for checking the goodness of the model it was 

used the parameter R2, defined by equations [3.5, 3.6, 3.7]. It is calculated for the 

temperature independent part and the temperature dependent part independently one from 

each other.  

This parameter is and indicator of how close the estimation is, is done by linear regression 

model to the real experimental data. In the results section (Chapter 7) it will be presented 

detailed values for this parameter. In this paragraph it is only mentioned that, in general, this 

model of ESC gives particularly reliable results in terms of approximation to real data. Values 

for R2 are between 0.75 and 0.85 for Tartu’s simulations. 

 

 

 

Figure 13 An example of ESC with continuity in CPT 
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4.4 Boxplot of energy consumption 

An analysis of global energy consumption with the boxplot tool is an interesting choice for 

many reasons. First of all, it provides clear values of the maximum, median and minimum 

energy use, and density of data points. Then it is a useful instrument for the detection of 

outliers. Last, but not least, if performed by subdividing demand into weekdays, Saturdays, 

and Sundays it can provide some useful information about different patterns that occur in 

different days of the week. Because of this fact, it is possible to obtain information about 

users’ behaviour and, also, some general clues about the use of the building, information 

not always known. 

4.4.1 Separation of weekends and weekdays 

The first step of this analysis consists in the subdivision of the global demand into weekdays, 

Saturdays, and Sundays. This is done by checking what is the first day of the year (in the 

analysed dataset all measurements came from 2019, so it was a Tuesday) and 

implementing the operation shown in the section “boxplot analysis” of the general script 

“ESC_10922” that can be found in the appendix. 

 

4.4.2 Creation of the boxplot 

After the subdivision, the boxplots are created using the function “boxplot” from the 

MATLAB’s database. In figure 14 it is possible to notice an example of boxplot. For every 

building four different boxplots are crated: the first for Saturdays, then Sundays, then rest of 

the weekdays and the last one is for the global demand analysis. 

Indicated with red lines there are mean values for each hour of the day. For example, in 

correspondence of number 13 in the “HOURS” axis, there is the median value for global 

energy demand of all weekdays (if we consider the example on the figure 14) for the hour 

between 13.00 pm and 14.00 pm. Upper and lower values of the blue boxes are, 

Figure 14 Example of boxplot. In this case it represents thermal energy consumption during 
weekdays 
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respectively, the 75% and the 25% percentiles. the whiskers extend to the most extreme 

datapoints the algorithm considers to be not outliers, and the outliers are plotted individually 

with a “+” if they are present. 

4.5 Analysis of temperature lag 

This part of the method consists in the implementation of an analysis of energy consumption 

versus a temperature moving average. The moving average is an operation that, starting 

from a vector of elements, produces a new vector with the same number of elements of the 

initial one, but where numbers are mean values of a window of elements of the first one. In 

simple terms, it consists in substituting every element with the average value calculated 

among n values around the considered element. For doing this type of analysis with outdoor 

temperature values, it was followed indication provided in the article by Tereshchenko T. et 

al., as explained in the literature review paragraph about this topic (3.2.6).  

The MATLAB implementation is explained in the following lines. First, it was calculated 

temperature moving average vector, shifting the window for mean value calculation of 1 hour 

per each step, for 48 hours. In this way it was created 48 temperature moving average 

vectors. The first one is identical to the original outdoor temperature vector. The second one, 

in each i-element it has the mean between i and i-1 element. The third one has the mean 

among i, i-1 and i-3 elements of the original outdoor temperature vector and so on. It was 

used function “movmean” already present in MATLAB’s database for the implementation.  

After that it was performed a linear interpolation of measured demand points using the 

created TMA vectors as temperature values. Thanks to this operation it was obtain 48 𝛽 

values (see equation 4.9) for the regression coefficients. As demand values for this type of 

demand it was considered only points before CPT, to be sure of being in the temperature 

dependent part of the heat consumption.  

By plotting these 48 𝛽 values versus hour lag (a vector that goes from 1 to 48 and indicates 

how many elements are considered for the TMA calculation, i.e., the number of previously 

outdoor temperatures considered) it is possible to obtain for each building a plot. The 

maximum value of 𝛽 (in absolute term because they are always negative) indicates the 

better fit between TMA and heating energy use. This is a good indication for accounting the 

thermal inertia of the building, because better correlation is obtained when previous values 

of outdoor temperatures are considered.  

Figure 93 An example of plot showing the effect of temperature lag on energy consumption of the building. 
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It was reported an example of this type of plot in figure 93, highlighting the point of largest 

correlation. For the building in examine it is possible to say that the thermal inertia acts with 

an effect of 7 hours. This is a useful information in case a more detailed model for heat 

consumption is implemented. Usually in addition to the variable Tout, also in the regression 

model is inserted a term that depends on the TMA of 24 previous hours. Thanks to this 

analysis it is possible to improve this type of model, saying that it is better to consider 7-

hours TMA instead of 24-hours TMA for this specific building in analysis (but this value 

depends on the building’s construction type and time constant parameter typical of the 

structure itself). 

 

4.6 Implementation of Confidence Intervals 

Confidence intervals are especially useful for outliers’ detection and as a filter in case data 

measured present a high dispersion. This is particularly useful not only for excluding points 

that could lead to possible errors and problematic results, but also with the goal to make 

easier any future work on these data. From many studies, in fact, it emerged that 

clusterization algorithms (programs that automatically create standard profiles from a large 

set of data) do not work well if data present high dispersion. This is evident in the analysis 

of Tereshchenko et al., just to mention one article. Their role as outliers’ filters will play a 

vital role in the Verona’s datasets analysis. 

Their implementation follows guidelines given by Tereshchenko et al. in their already 

mentioned article about the analysis of energy signatures in buildings in Norway. Another 

article that provides useful formula and information for using in an appropriate and effective 

way confidence intervals is the work by Altman D.G. et al., that talks about the use of 

confidence intervals for data analysis in medical applications. However, being a statistical 

instrument, it can be used to study any type of data, in particular in cases when there is the 

necessity to examine one or two groups of individuals with respect to a single variable. 

The goal of the application of this tool is the construction of two parallel lines, one above 

and the other below the regression line, which represents the interpolation of experimental 

data. In this way there is the creation of a region where measured points are expected to 

be. Now it will be discussed about how it is possible to determine the equation of the two 

lines of confidence interval’s boundaries.  

The general method for the construction of confidence intervals is quite simple. Each 

confidence interval is calculated by adding and subtracting a multiple of the estimated 

statistic's standard error (SE) or a transformed version of it.  

The multiple is determined by the theoretical distribution of the statistic, such as the t-

distribution for regression or the Normal distribution for correlation. To obtain the multiple, 

we need to identify the value that corresponds to including the central 100(1-a) % of the 

theoretical distribution, where "a" represents the level of significance. For instance, a 95% 

confidence interval is obtained by finding the value that cuts off 2.5% from each tail of the 

distribution. In this case we are using a level of significance equal to 5%.  

There are many sites and tables in literature of the t and Normal distributions that can 

provide appropriate values. In the script implemented for the CI analysis, these values are 

obtained using MATLAB’s database, in particular the function “tcdf” for obtaining values 
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regarding t-Student’s distribution. Relevant variables are t(1-a/2) or N(1-a/2). For the t distribution 

the degrees of freedom, which depend on the sample size, must be known. 

Starting from the degrees of freedom, its expression is given in equation [4.10]. in this 

expression, n is the sample size. 

𝑛𝑓𝑟𝑒𝑒 𝑑𝑒𝑔 = 𝑛 − 2     [4.10] 

Another necessary parameter for the evaluation of confidence intervals lines is the residual 

standard deviation of y (in this case this letter represents experimental points of global 

energy demand) about the regression line. Its expression can be found in equation [4.11]: 

𝑆𝑟𝑒𝑠 =  √
(𝑛 − 1) ∗ (𝑆𝑦

2 − 𝑏2 ∗ 𝑆𝑥
2)

𝑛𝑓𝑟𝑒𝑒 𝑑𝑒𝑔
       [4.11] 

Where n is the sample size, Sy is the standard deviation of the global energy demand, Sx is 

the standard deviation of the outdoor temperature, b is the sloping coefficient of the linear 

regression line, obtained in the previous paragraphs and ndeg free is the variables of degrees 

of freedom of the sample data. 

As said before, value t(1-a/2) is obtained from the MATLAB’s database, using the function 

“tcdf” (which implements the cumulative distribution function of a t-Student’s distribution, 

using as input parameters the significance level a, and the number of degrees of freedom. 

So, the equation for this parameter is not an equation, but an expression for software 

implementation [4.12]: 

t
(1−

a
2

)
= tcdf (1 −

a

2
 , 𝑛deg 𝑓𝑟𝑒𝑒)    [4.12]  

As highlighted by Tereshchenko et al. in their study, The shape of many sample distributions 

when we are talking about buildings’ energy demand can be approximated by a normal 

distribution. A convenient aspect of normal population distribution is that we can apply 95% 

confidence interval to describe desired population range. So, this is also the case of this 

analysis. It was applied the same reasoning in the presented analysis. 

In the equation [4.13] there is the expression, point per point, of the higher (if the law is read 

with sign “+”) or lower (if equation is read with sign “- “) confidence interval.  

𝐶. 𝐼. = 𝑌𝑖 ± 𝑆𝑟𝑒𝑠 ∗  t
(1−

a
2

)
∗  √1 +

1

𝑛
+  

(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)

(𝑛 − 1) ∗ 𝑆𝑥
2

     [4.13] 

Where Yi is the predicted value of energy use, obtained from the linear regression model, 

Sres residual standard deviation of y about the regression line, t(1−
a

2
) is the value from 

Student’s criteria, n is the sample size, xi are the actual values of the independent variable 

(in this case it represents the outdoor temperature), xmean is the mean value of the 

independent variable (outdoor temperature), Sx is the standard deviation of the independent 

variable (outdoor temperature). 
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Thanks to equation [4.13] it is possible to draw confidence intervals lines for every 

experimental points distribution. It is represented in a plot where global energy demand is 

plotted versus outdoor temperature (figure 15). Any comments about results of the C.I. 

application will be done in chapter 7. 

It is important to underline the fact that this type of analysis is done only in the temperature 

dependent part. This happens because in the temperature dependent part, points outside 

from confidence intervals may represent special point of use, particular days, or particular 

hours of the day. The application is, for this reason, much more interesting in the 

temperature dependent part, rather than the temperature independent part, where the 

demand is much more regular. 

 

4.7 DHW mean profiles analysis. 

This type of analysis is interesting not only for seeing the typical users’ profile during certain 

month, but also for obtaining an estimation of losses into hot water circuit. The aim of this 

step is to have a confirm of what are the months where heat demand is temperature 

independent. As said in previous analysis, the temperature independent part of the demand 

happens when outdoor temperature is higher than CPT. This happens, of course, during 

summertime. This means that in summertime there is the presence of only DHW 

consumption.  

With a representation of mean profiles for heat demand during summer, it is possible to note 

if there are differences between summer (months of June, July and august) and May and 

September. Months of summer are not the same for every building or for every location. This 

analysis helps also to identify which months belong to summertime. It could happen that in 

some cold climates also during June it is necessary space heating. This will produce a higher 

mean monthly profile than, for example, July. 

By not knowing the intended use of the building in analysis, subdivide weeks into weekdays 

and weekend could give some clues about that. In residential buildings usually profiles in 

summer, due to the fact that they represent only DHW heat load demand, are similar for 

weekdays or weekends. If a building is used as office space or as commercial building, for 

example, it is possible to identify some differences in profiles of weekdays and weekend, 

just because during these last days there is no activities in the building. 

Figure 15 An example of plot with Confidence Intervals implementation 
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So, the first step is to identify months of May, June, July, August, and September. It was 

done this operation in the section “DHW mean profile analysis” of the general script 

“ESC_10922” in the appendix. This procedure is very simple because all databases start 

from the 1st of January, so just select values of interest from the global energy vector by 

inserting the number of day of the year where each month starts and finishes. For May, for 

example, in every year (apart from in case of leap year) it starts from day 121 and ends with 

day 151. 

The second step is to identify in each month weekend and weekdays. The operation is very 

similar to the one described few lines above. By knowing that the 1st of January of 2019 

(year of the database) is a Tuesday, it is possible to implement an algorithm that can 

automatically select weekend and weekdays within each month.  

After the selection of the month and the subdivision in weekend and weekday, a mean profile 

for each hour of the day is calculated. An example of the results of this operation can be 

seen below, in the figures 16 and 17. For example, in correspondence of the index “18” in 

the time axis in figure 16, mean value for all weekdays (that have also called workdays) is 

represented for May (above) and for June (below). Same concept but for weekends is 

represented in figure 17. 

It can be noticed a high difference between mean profiles in June and in May for the example 

proposed in figures 16 and 17. This is just an example and, as happened before, comments 

Figure 17 An example of DHW mean plot analysis of workdays of May and June 

Figure 16 An example of DHW mean plot analysis of weekends of May and June 
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on results and real case studies are done in chapter 7. Apart from that, this is a clear 

example of the relevant information that can be obtained from the application of this tool. 

 

4.8 Splitting of DHW and SH energy consumption. 

All tools presented until this point provide certainly interesting information, but they are also 

preparatory for this phase. In this paragraph it will be explained how it is possible to split the 

global energy demand obtained from measures into a component of DHW and the other of 

SH.  

The starting point is the energy signature curve, continue in CPT, built in paragraph 4.3 of 

the current chapter. For the following passages it was used as references the work by 

Dmytro I. et al. about the DHW and SH splitting in a hotel in Norway. From their work, it 

emerged that ESC represent an incredibly good model for the space heating consumption. 

In fact, as it happens for the space heating, when outdoor temperature decreases, heat 

demand for heating up the indoor environment increase. When outdoor temperature 

becomes higher than a certain value (CPT), space heating is useless, and it is turned off.  

However, as the model considers the total heat use, which includes domestic hot water 

(DHW), a shifting coefficient was introduced to adjust for this. The shifting coefficient was 

determined by analysing the behaviour of the space heating (SH) system during warm 

seasons, when the outdoor temperature exceeds the critical performance temperature 

(CPT). During these warm seasons, there were times when the SH heat use was zero, and 

the research of Tereshchenko et al. demonstrated that the minimum value of the energy 

signature curve (ESC) coincided with these periods. 

Together with the study of Ivanko D. et al. conducted in a hotel, a previous study by the 

same authors proved same results for two other buildings. For this reason, it was used the 

minimum value of the ESC as the coefficient of shifting, and this enabled me to derive a 

reliable model of SH heat use by extracting this coefficient from the ESC. From these 

considerations, the equation for the model of SH is the [4.14]: 

𝐸𝑆𝐻 = 𝑓(𝑥) − min(𝑓(𝑥))     [4.14] 

Where 𝑓(𝑥) represents the point obtained by ESC model and x in the independent variable, 

i.e., the outdoor temperature.  

The total heat use values, which exceed the modelled SH heat use, provide insights into the 

trend of DHW heat use. This fact is highlighted also in the work by Bacher P. et al. This work 

was already mentioned because their intuition to use heating spikes in the global energy 

demand for splitting domestic hot water and space heating. In this analysis, DHW 

consumption is obtained by a subtraction between the experimental point (global energy 

demand) measured from smart meters and ESH obtained by ESC model shifted down.  

However, in all buildings taken in analysis, there is a DHW system with continuous 

circulation where hot water is delivered continuously, because they are connected to a 

district heating network. For this reason, the system losses must be added to the DHW heat 

use obtained from the residuals. These losses can be calculated as illustrated in the 

following sub-paragraph. 
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4.8.1 Evaluation of DHW circuit losses 

For the evaluation of DHW circuit losses it was followed the method proposed by Marszal 

A. P. et al. in the first part of their analysis regarding a simple methodology to estimate the 

mean hourly and the daily profiles of domestic hot water demand from hourly total heating 

readings. This article was mentioned in the literature review, and also, it is reported the 

general flowchart of their methodology in figure 3. In this site it will be explained better all 

passages that were followed. 

Starting from the annual heat demand profile, it was selected summer period. This could be 

identified by using considerations from the paragraph 4.7 of the current chapter. It is 

important to select only summer period because it is fundamental to have only DHW 

consumption in the building. If there is presence of SH there is a great overestimation of the 

losses in the circuit.  

For all buildings it was selected June, July, and August as month of summer period. By 

analysing the energy demand profile versus time, it is possible to note that even in some 

days of May and of September SH is still turned off. It was preferred to not consider these 

periods for avoiding the risk of considering some days with SH heat load consumption and, 

as a consequence, obtain some errors in the creation of mean summer profiles of 

consumption. 

Days selected goes from day number 152 to day number 243 (from 1st of June to the 31 of 

August). In figure 18 it is evident that between these two days demand is much different 

than the rest of the year. 

After summertime days selection, the next phase consists in creating one mean profile for 

summer consumption. Hour by hour, mean values of global heat consumption are obtained. 

At this point a mean profile for summertime period is available.  

After this operation there are two possible methods that can be followed. The method 1 

consists in finding the minimum value of demand of the profile created in the previous step. 

This minimum value is assumed to be the DHW circuit losses value. The method 2, on the 

other hand, calculates DHW circuit losses value using a mean between 0.00 am and 4.00 

Figure 18 An example of yearly demand plotted vs day of the year and a 
representation of DHW losses value. 
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am of the demand of mean summertime period profile. It was implemented both method in 

the script and it is possible to choose what is the value for losses by modifying the special 

value in the function “SHDHW_split_function” that can be found in the appendix.  

The idea at the base of method 1 is that in correspondence of the minimum value of standard 

summertime period profile people are not at home. Due to their absence, heat load 

consumption for domestic hot water must be zero. This fact means that if there is a value 

different from zero, it must represents losses. There is high probability that people are 

absent from home in a certain moment of the day based on various studies about 

Europeans’ behaviour. One example comes from the author K. Winqvist, who investigated 

how Europeans spend their time everyday life. He found that on a daily basis, individuals 

typically spend approximately 17 hours in their homes. However, this number varies based 

on age, with those aged over 65 spending around 20 hours at home daily, while the youngest 

group aged between 15-24 spends around 14 hours at home daily. 

The idea at the base of method 2, on the other hand, is that the other moment of the day 

when there is no DHW consumption is during the night, when people sleep. So, for that 

reason the period between 0.00 am and 4.00 am is considered. During this time window, in 

fact, more than 90% of Europeans sleep, as reported by the study of K. Winqvist, mentioned 

above.  

According to the results of the study by Marszal A. P. et al. and based on simulations done 

on the Tartu’s database, there are no substantial differences in using method 1 or method 

2. With method 2 values obtained are slightly higher than method 1 values. This means 

there is the consideration of higher losses. The effect on the splitting between DHW and SH 

is not so relevant, due to the fact that the difference between them is small. It is important 

to underline the fact that in case of a mean summertime period demand profile with high 

differences in night hours these values could be very different. But it was never found this 

case in the analysis and because it is considering mean values of 3 months of demand, this 

case is almost impossible with common type of building. There could be this problem in 

building with high use of hot water and in specific hours of the day, for example, of some 

particular factories. However, with this type of building other type of considerations must be 

done.  

After this sub paragraph dedicated to the evaluation of DHW circuit losses it is possible to 

go further with the splitting. Value obtained from the previous step is reported as a red line 

in the plot of figure 18. 

 

4.8.2 Last operations for DHW and SH splitting. 

After the evaluation of DHW circuit losses (called Eloss), the equations used for obtaining 

DHW energy consumption are the one presented in [4.15]. 

𝐸𝐷𝐻𝑊 = {
𝐸𝑇𝐻 − 𝐸𝑆𝐻 + 𝐸𝑙𝑜𝑠𝑠 , 𝐸𝑇𝐻 > 𝐸𝑆𝐻

𝐸𝑙𝑜𝑠𝑠, 𝐸𝑇𝐻 ≤ 𝐸𝑆𝐻
     [4.15] 
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Where 𝐸𝐷𝐻𝑊 is the heat load for DHW, 𝐸𝑇𝐻 is the experimental point, the global thermal 

energy demand, 𝐸𝑆𝐻 is the heat load for SH, obtained in the previous lines, from equation 

[4.14], 𝐸𝑙𝑜𝑠𝑠 is the value for losses into the DHW circuit. 

After that there is the necessary operation of balancing 𝐸𝐷𝐻𝑊 and 𝐸𝑆𝐻. The balance of SH 

heat usage was adjusted based on the DHW heat usage model. The SH heat usage model 

was recalculated by subtracting the DHW heat usage obtained from equation [4.15] from 

the measured total heat usage (𝐸𝑇𝐻).  

To ensure that both DHW and SH heat usage values were positive, a condition was 

introduced. If one of the parameters (DHW or SH heat usage) became negative, the 

negative value was compensated for by the other parameter. The parameter that was 

negative, after this operation becomes zero. For instance, if the modelled DHW heat usage 

was negative for a particular point, it was compensated for by SH heat usage, and vice 

versa. This approach ensured that all restored DHW and SH heat usage values are positive, 

and their sum is balanced to equal the total heat usage. 

While the proposed method could provide a reasonable estimate of the trend in SH heat 

usage, it has limitations. ESC relies on linear functions, which means that it cannot 

accurately capture sudden spikes or rapid fluctuations in SH heat usage. Additionally, due 

Figure 19 An example of plot where global demand is splitted into DHW and SH 
consumption. 

Figure 20 An example of global demand splitted into SH and DHW 
consumption. Plot is energy demand versus DMT. 
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to the fact that DHW heat load consumption is obtained from subtraction between 

experimental demand and model for SH, it suffers also from inaccuracies of SH’s model. 

Results at this point of analysis are presented in figures 19 and 20. 

 

4.9 Detailed DHW consumption analysis 

As explained is the literature review part about this topic, a detailed DHW consumption 

analysis is performed not only for the interesting results that this tool gives, but also to 

improve the model for DHW and SH splitting. In fact, one of the problems emerged after the 

operation of splitting is the higher number and intensity of oscillation in DHW demand in 

winter period. Due to the causes of this type of consumption, i.e., users’ behaviour first of 

all, the demand pattern should be similar in summer and in winter season. An example of 

this fact can be found in figure 19. If red line is observed, it is clear that in winter variation 

among different days is much higher.  

To improve the model, the necessity is to find a way to reduce these oscillations. The idea 

is to perform a detailed analysis on DHW profile consumption in summer. The hypothesis at 

the basis is that in summer there is only DHW consumption. This is a reasonable 

consideration, because in summertime period (from June to August) we are in the 

temperature independent part of the energy signature curve, so it means no space heating 

plant is in operation. 

This type of analysis on DHW consumption in summer is useful for many purposes. First, it 

offers a useful method to find similarities between different days. In this way it is possible to 

group similar days into a single profile and treat them as they were the same day. Second, 

after this operation it offers a method to find hour of the day where there is minimum, 

medium, or peak consumption. Using these values, then, it is possible to build a standard 

profile for DHW consumption in summer for each group previously identified.  

Thanks to this standard profile in summertime period, It was possible to translate this profile 

into winter period, by upscaling it by a factor obtained comparing mean value of DHW in 

summer and in winter. Thanks to this profile there is a standard value for DHW consumption 

hour per hour in winter period. By comparing this value with the one obtained from the 

previous operation of splitting it is possible to filter values that present a high difference with 

standard profile’s values. With this method, in simple terms, it is possible to improve the 

previous model of splitting and offer the possibility to correct values for DHW consumption 

and, as a consequence, of SH consumption for a better adaptation to experimental values.  

What have been presented in this introduction part is just the general passages of the 

method. For finding similar days and for identifying hours of minimum, medium and peak 

consumption it was followed the research work conducted by Ivanko D. et al. They did the 

same DHW hourly analysis, but the application was restricted to three nursing homes in 

Norway. It was applied in many buildings, from different datasets and case studies (also with 

different intended use) and then it was developed a method to use this information for 

improving DHW and SH splitting, as described before. The implementation of the general 

this part of analysis can be found in the script named “DHW_model_10922_v3” in the 

appendix. In the following sub paragraphs, it will be explained in detail every step and all the 

mathematical law it was used. 
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4.9.1 Step 1: Similarity in DHW heat use profiles in different days of the 

week 

The goal of this first step is to identify with an analytical approach which days can be 

considered similar in terms of DHW heat load consumption. In previous analysis it was 

subdivided days of the week in weekend and weekdays or, as happened in paragraph 4.4, 

subdividing weekend also into Saturdays and Sundays. This was done because in general 

there is a different in consumption between weekdays, where it is more likely that occupants 

are away from home (or inside the building in case it is an office) and weekends, when it is, 

on the contrary, more likely to find people at home (or outside the building in case it is an 

office or a commercial activity).  

However, this subdivision does not consider the intended use of the specific building in 

analysis. With this method it is possible to identify similar days in terms of DHW profile of 

consumption, for the single specific building in analysis. It is solved the problem of a general 

subdivision, based on probabilistic considerations, which could be not true when we talk 

about a single building. 

The starting point consists in considering summertime global heat demand. As discussed 

before, in this part of the year there is only DHW consumption. This method requires profile 

of DHW consumption for working. It was decided to not use DHW profiles obtained from 

splitting because the scope of this method is to improve their accuracy and to filter some 

unusual (too high or too low) values. 

After this consideration, there is an operation of selection of division of days of the week. 

Starting from the vector that contains experimental values for global thermal energy use, it 

was created 7 matrixes, one for each day of the week (Monday, Tuesday …) of the 

summertime period. Each column of each matric represent the corresponding day of the 

week of summertime period indicated by the number of columns. For example, the matrix 

called “DHW_saturday” is a 24x14 matrix. The column number 4 represents the 24 hourly 

value consumption of the Saturday of the 4th week of summertime period in 2019. It is 

important to note the fact that in case this script is implemented for other years, a correction 

on the first day of summer must be done. The period taken in exam, in fact, goes from the 

1st of June to the 31st of August. In 2019 both these days are Saturday, but in 2020, for 

example, they are both Mondays. At the end of this operation there 7 matrixes 24xN, where 

N represents number of weeks in the summertime period that have the considered day. 

There are six 24x13 matrixes and one 24x14, the Saturday’s one. 

After that, it begins the operation of comparing days. This is a completely statistical 

operation, with all pros and cons of this type of approach. For doing that there is the 

implementation of the Student’s t-test and Fisher criterion.  

The Student's t-test was utilized to determine whether the mean values of DHW heat use 

from two different days of the week were equivalent. To accomplish this, experimental 

values contained in matrixes created before were used. The value used for the evaluation 

of similarity with Student’s t-test is expressed in equation [4.16]: 
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𝑇𝑐𝑎𝑙 =  
�̅�𝑝𝑟𝑜𝑜𝑓1 −  �̅�𝑝𝑟𝑜𝑜𝑓2

√
𝑆𝑝𝑟𝑜𝑜𝑓1

2

𝑛𝑝𝑟𝑜𝑜𝑓1
+

𝑆𝑝𝑟𝑜𝑜𝑓2
2

𝑛𝑝𝑟𝑜𝑜𝑓2

     [4.16] 

Where �̅�𝑝𝑟𝑜𝑜𝑓1 and �̅�𝑝𝑟𝑜𝑜𝑓2 are the mean values of the first day considered and the second 

day considered (in fact this test is performed considering 2 days for each calculation), 

𝑆𝑝𝑟𝑜𝑜𝑓1 and 𝑆𝑝𝑟𝑜𝑜𝑓2 are the standard deviation of the first and the second day considered, 

𝑛𝑝𝑟𝑜𝑜𝑓1 and 𝑛𝑝𝑟𝑜𝑜𝑓2 are the number of values in the first day and the second day (it is always 

24, because data sample has always all values). All parameters were calculated by using 

functions “mean” and “std” already present in MATLAB’s database. 

The calculated t-value, 𝑇𝑐𝑎𝑙, was compared with the critical value, 𝑇𝑐𝑟, which can be obtained 

from literature for different degrees of freedom and significance level, 𝑎. There are many 

possibilities in literature to find 𝑇𝑐𝑟 values. It was decided to use the paragraph “critical values 

of the Student’s t distribution” from the book Exploratory Data Analysis of NIST. This 

comparison may result in three potential scenarios, as outlined below: 

• If 𝑇𝑐𝑎𝑙 ≤  𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑜𝑓2 − 2, 𝑎 = 0.05) then mean values of the first and the 

second sample are similar. 

• If 𝑇𝑐𝑎𝑙 ≥  𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑜𝑓2 − 2, 𝑎 = 0.01) mean values of the first and the second 

sample have relevant difference, so they are not similar. 

• If 𝑇𝑐𝑎𝑙 ≥  𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑜𝑓2 − 2, 𝑎 = 0.05) and 𝑇𝑐𝑎𝑙 ≤  𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑜𝑓2 −

2, 𝑎 = 0.01) mean values of the first sample and the second one may be similar, but 

it is impossible to say with this analysis and final decision should be done by 

researchers.  

To avoid any possibility of error it was decided to not consider the last point, keeping the 

focus of the analysis on the first two possibilities. This point, anyway, is explained better in 

the next lines. 

The other method used to evaluate similarity between two different days is the Fisher’s 

criterion. The parameter calculated is 𝑓𝑐𝑎𝑙 and its expression is reported on the equation 

[4.17]. 

𝑓𝑐𝑎𝑙 =  
max (𝑆𝑝𝑟𝑜𝑜𝑓1

2 , 𝑆𝑝𝑟𝑜𝑜𝑓2
2 )

min (𝑆𝑝𝑟𝑜𝑜𝑓1
2 , 𝑆𝑝𝑟𝑜𝑜𝑓2

2 )
      [4.17] 

Where 𝑆𝑝𝑟𝑜𝑜𝑓1 and 𝑆𝑝𝑟𝑜𝑜𝑓2 are the standard deviation of the first and the second day 

considered, as happened before. Even in this case there is a comparison between the 

calculated 𝑓𝑐𝑎𝑙 and a standard value called 𝑓𝑐𝑟 to check the possible similarity. Values for 𝑓𝑐𝑟 

can be found in the literature. In this analysis it was found these values on the F distribution 

tables in the site of SOCR (Statistics Online Computational Resource). In this case there 

are two possible scenarios: 

• If 𝑓𝑐𝑎𝑙 ≤  𝑓𝑐𝑟 (𝑛𝑝𝑟𝑜𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑜𝑓2 − 2, 𝑎 = 0.05) then the variances of the first and the 

second samples are similar. 
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• If 𝑓𝑐𝑎𝑙 >  𝑓𝑐𝑟 (𝑛𝑝𝑟𝑜𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑜𝑓2 − 2, 𝑎 = 0.05) ,then the variances of the first and the 

second samples have significant difference. 

The function “stud_fish” present in the appendix is only for calculating 𝑇𝑐𝑎𝑙 and 𝑓𝑐𝑎𝑙. These 

parameters were calculated for every day contained in every matrix, one week per time. It 

was repeated the implementation of the function “stud_fish” for every week of the 

summertime period, from the 1st to the 13th. At the end of this operation there are 13 matrixes 

for 𝑇𝑐𝑎𝑙 and 13 for 𝑓𝑐𝑎𝑙. Each matrix is 6x6. On rows there are days from Monday to Saturday, 

on column from Tuesday to Sunday. In this way there are no Monday-Monday or Tuesday-

Tuesday… calculation because, working within the same week, it is obvious that Monday is 

equal to Monday, being the same day. An example of matrix for 𝑇𝑐𝑎𝑙 is reported on figure 

21. There are, also, name of days for clarity of exposition. 

The two profiles are deemed similar if both the Student's t-test and Fisher's exact test yield 

consistent outcomes. In this case they can be considered as a unique day in terms of pattern 

of consumption. However, if either test indicates that there are significant differences in 

mean values or variances between the two sample profiles, it can be inferred that the profiles 

are dissimilar and must be analysed independently.  

As said before, the initial statistical sample, which includes data of DHW consumption during 

summertime period, was divided into different weeks to analyse them once per time. For 

each week, it is necessary to conduct a comprehensive comparison of all possible 

combinations of daily DHW profiles using both the Student’s t-test and Fisher's exact test. 

This entails comparing the profiles of each day of the week against one another, such as 

Monday vs. Thursday, Monday vs. Wednesday, Saturday vs. Sunday, and so on. While 

there is the function “stud_fish” for calculating 𝑇𝑐𝑎𝑙 and 𝑓𝑐𝑎𝑙, the function “match” performs 

the comparison between values calculated and critical values (𝑇𝑐𝑟 and 𝑓𝑐𝑟 ).  

Subsequently, once the statistical tests have been performed on all possible combinations 

of days, it is possible to determine the number of weeks in which the DHW profiles of the 

selected pairs of days are considered similar. In order to conduct further analysis, the 

percentage of matches between the DHW profiles for each combination of days of the week 

can be calculated using the following formula [4.18]: 

𝑛𝑖,𝑗 = 𝑁𝑖,𝑗 ∗
100

𝑁𝑡𝑜𝑡𝑎𝑙
      [4.18] 

Figure 21 An example of matrix with Tcal values. Name of day are reported. 
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Where 𝑛𝑖,𝑗 is the number of matches in percentage, 𝑁𝑖,𝑗 is the number of weeks where the 

day i is similar to the day j and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of weeks in the sample analysed, 

in this case 13. i was the day of the week of the first comparable profile (from 1 to 7). j was 

the day of the week of the second comparable profile (from 1 to 7). For higher clearness, an 

example of matrix of matches can be found in the figure 22. 

Being percentage, all numbers in this matrix are between 0 and 100. On the diagonal there 

are, of course, all 100 because for every week, within the week in analysis, Monday is equal 

to Monday. This means that there are 13 weeks where Monday is equal to Monday, and by 

applying equation 4.18 can be found that the value for 𝑛1,1 is always 100. For making another 

example we can consider 𝑛5,2. This number give us the number of weeks where the Friday 

is similar to Tuesday. If there are 9 weeks where both 𝑇𝑐𝑎𝑙 and 𝑓𝑐𝑎𝑙 for Friday-Tuesday pass 

their respectively test, here we can find that 𝑛5,2 = 69.23 %. 

Using the matching matrix, we can identify groups of weekdays with comparable patterns of 

DHW heat usage. Specifically, weekdays with 𝑛𝑖,𝑗 ≥ 100 − 𝑒𝑟𝑟𝑜𝑟 should be considered 

similar in terms of their DHW heat usage and analyzed together as a group. The error value 

takes into account the precision of statistical tests such as Student's t-test, Fisher's exact 

test, as well as the percentage of days in a year when the building is not operational, such 

as holidays. To estimate the error, the accuracy of the Student's t-test, Fisher's exact test, 

and the percentage of days in a summer when the building's operation was atypical (such 

as holidays) were taken into account.  

The precision of Student's t-test and Fisher's exact test is considered to be 5%. Furthermore, 

considering the number of atypical days in DHW heat usage, the acceptable error value was 

estimated to be 14% in the research of Ivanko D. et al. However, their analysis considered 

an entire year, while in this case there is the consideration of only summertime period. For 

the lower number of weeks considered and for the increasing probability of having users on 

holiday, creating atypical profiles in DHW consumption, it was increased the value of error. 

By checking various analysis on different buildings, it was assumed that a reasonable value 

for error is 25%. This means that, using this criterion, it is possible to identify the days of the 

week in the building with statistically similar patterns in over 75% of the analysed weeks. 

By analysing the matrix of matches it is possible to subdivide days into groups. Within the 

group, days can be considered similar, so it is reasonable to assume that they have the 

same pattern. This operation must be done by analysing match matrix by hand. The small 

Figure 22 The form of matrix of matches 
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number of weeks considered may create some doubt on the creation of group. For this 

reason, a check by hand is necessary.  

It is important to say that if there is a doubt, but the value 𝑛𝑖,𝑗 is close to the limit imposed 

by error, it is possible to insert this day in the group where there are a major number of days 

similar to it. To keep the analysis simple, it was decided to create maximum two groups per 

each building, but it can be implemented the possibility to have even more or less groups. 

For me, two is a good number for the purpose of this analysis. 

At this point, matrixes that contain samples of different days of the week, the ones mentioned 

in the introduction of this paragraph, named “DHW_monday” etc… are inserted in group one 

or group two according to the considerations done from the previous analysis. This first step 

of detailed analysis is concluded by calculating mean profile for every group. Mean profile 

is obtained calculating mean values hour per hour between all samples in the corresponding 

group. At the end, there is the creation of a 24-values mean profile for both group 1 and 

group 2. The graphical representation of these average profiles is in the example of the 

figure 23. 

 

4.9.2 Step 2: Determination of zones with minimum, medium, and peak 

consumption. 

Identifying hours with minimum maximum and peak consumption is useful not only as a 

starting point for the operation of flattening of DHW profile in winter, but also for energy 

management in buildings. To effectively manage energy usage in buildings, in fact, it is 

crucial to identify the time zones with peak load, minimum load, and average heat load 

during the day. This operation could simplify the management of heating plants or could 

provide essential information to the manager of the district heating network, allowing him, 

for example, to regulate better heat production.  

To address this challenge, we propose a statistical grouping approach for the hourly heat 

use of the DHW system, based on the method presented by Nakhodov et al., originally used 

for identifying tariff zones in the power system. This method was, then, improved and its 

applicability for the minimum, medium and peak hours identification is proven in the article 

by Dmytro I. et al. They have adapted this method for analysing DHW heat use in buildings, 

enabling them to categorize hours of DHW heat use into multiple groups, each with a 

statistically distinct mean value.  

Figure 23 An example of an average profile of the group 1, obtained after checking similarity between different days. 
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The process involves an iterative procedure and analysis of mean values using the already 

mentioned Student's t-test. In this case, the DHW heat use profile is considered a statistical 

sample, containing 24 elements (hours) with DHW heat use values ej in each hour (where j 

represents the element number in the sample). This sample is the average consumption 

profile for group 1 or group 2 (the analysis is conducted for both groups) built in the previous 

paragraph. The detailed algorithm for this method is expressed in the next lines. The 

analysis is conducted for one group per time. 

Step 2.1: Order elements in data sample 

The initial dataset contains element of average DHW consumption during summertime 

period for the considered group. This means there are twenty-four values, but they are in 

chronological order. The first operation consists in sorting this vector form the smallest value 

to the biggest one. The elements in the vector are now called Ei where E i+1 > Ei due to the 

effect of sorting operation. For doing this step it was used the function “sort,” present in 

MATLAB’s database. 

Step 2.2: Tcal calculation 

Now the starting point is the ordered vector E. In the code it is possible to find it with the 

name “DHW_mean_group1_E” if we are considering group 1’s analysis. Starting from it, 

step 2.2 consists in determining Tcal values trough a sort of iterative procedure. This iterative 

procedure is used to generate two statistical subsamples, R1 and R2, with varying numbers 

of elements, based on the sample E.  

At each iteration, R1 contained M elements while R2 contained M+1 elements, with the 

elements in both subsamples taken consistently from the initial sample E. There is an 

increase in the number of elements in R1 and R2 by one with each iteration, with M ranging 

from 1 to 23. After that, the value of the Student's t-test for R1 and R2 at each iteration is 

calculated, using the equation [4.16]. In this case, of course, subscripts “1” and “2” reported 

in the elements of the equation do not represent two different days, but the vector R1 and 

R2 for each iteration. At the end, there is the presence of a 23-elements vector for both 

group 1 and group 2, which contains Tcal numbers.  

As an example, to explain better this step: 

• In iteration 1: R1= [E1]; R2= [E1 E2]; M= 1; Tcal1; 

• In iteration 2: R1= [E1 E2]; R2= [E1 E2 E3]; M= 2; Tcal2; 

• In iteration 23: R1= [E1 E2 … E23]; R2= [E1 E2 … E24]; M= 23; Tcal23; 

The code for the implementation of all passages necessary to do this operation can be found 

in the function “time_interval.” 

Step 2.3: Eventual merging of close hours using Student’s t-test. 

 At this point, the result of the previous operations is a vector that contains all Tcal values. 

There are twenty-three numbers. According to the discussion conducted by Dmytro I. et al., 

if a sample of hourly DHW heat use is ordered and monotonous, the numerical values of its 

elements increase evenly. This is the case of this analysis: in step 2.1, the initial sample was 

sorted by ascending order. If this happens, the t-criteria series obtained by the iterative 

procedure will also be monotonous. This means that the values of t-criteria obtained by 
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equation [4.16] will decrease monotonically with each subsequent iteration (Tcal1 > Tcal2 > ... 

> TcalM). 

However, if the ordered sample of hourly DHW heat use is uneven, the monotonic decrease 

of the calculated values of the t-criteria will be interrupted by periodic sudden growth (it 

happens that Tcali < Tcali+1). Continuing to use information from the analysis of Dmytro et al., 

identifying the points of growth of the calculated values of the t-criteria can help determine 

between which hours there is a noticeable statistical difference in DHW heat use. This 

assumption allows me to divide the hours in the profile of DHW heat use into several groups, 

with each group being a sample of data where DHW heat use data varies monotonously. To 

avoid any possibility of misunderstanding, from this moment it will be called these groups of 

monotonously data variation “set.” In this way there is no confusion with group 1 and group 

2, which refer to similar days put together. 

The neighbouring sets of hourly DHW heat use can be checked for the possibility of further 

merging. For this purpose, the data samples of two neighbouring sets are checked using 

Student's t-test, another time (refers to the equation [4.16]). As a result, the calculated value 

of the t-criteria, Tcal, can be compared with the critical value, Tcr. The possible scenarios are 

reported in the sub-paragraph 4.9.1 of the current chapter. As happened before, even in this 

case it was considered only the first two possibilities. If the resulted Tcal belongs to the last 

case, it was considered the merging not possible.  

It is important to underline the fact that Tcal analysed in this phase are different to the one 

contained into Tcal 23-elements vector obtained in the previous step. They are used only to 

identify the corresponding index M where there is a sudden growth, so it means in 

correspondence of this M there is a possible difference between data before and after this 

index. Values calculated in this step refer to other data. In particular, when it was applied 

the equation [4.16] to evaluate Tcal in this step, subscripts “1” and “2” refer to all E values 

before the M and after the M (until the next growth), where M is the index when the abrupt 

growth happens.  

As an example, we can analyse the plot contained in figure 24. Here there is the 

representation of the 23-elements Tcal vector obtained from the iterative procedure 

highlighted in step 2.2. It can be seen that there is a monotonous decrease from the first 

value up to value number 3. This means that M=3 is the first index of abrupt growth. At this 

point, it was performed Student’s t-test using equation [4.16] but as sample 1 there are all 

corresponding values of demand from E1 to E3 and for the sample 2 there are value of 

demand from E3 to E5 (E values are the ones contained into the sorted vector of average 

demand of the corresponding group). 
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 After this splitting process, there is the creation of a matrix which contains in each column 

values of average demand of the corresponding group sorted E before the index of period 

growth M. Considering the previous example, in the first column there is E values from the 

1st to the 3rd, in the second column from the 3rd  to the 5th, in the third column from the 6th to 

the 16th and so on.  

For the merging of the two sets of experimental DHW consumption data it was used the 

comparison between Tcal and Tcr. In case of positive result from the Student’s t-test, the 

merging of two sets is possible. For the merging, there is the creation of a unique set. If both 

initial sets have a value in the considered index, the mean values are taken, on the contrary, 

only the value of the set that contains a value for the index considered is taken for the 

merged set. For example, if there is a possible merging between set 1 which has 5 values 

and set 2 which has 2 values, the merged set contains 5 values. The first and the second 

are mean values between set1(1), set2(1) and set1(2), set2(2) and the other 3 values are 

taken from the set 1 alone.  

Once there is a merging in the sets based on the conditions explained above, a new 

ensemble of sets is created. To account for these changes, it was repeated the calculations 

of step 2.3 from the beginning with the new ensemble of sets in the sample. It was continued 

to iteratively calculate step 2.3 until the t-test indicated that no additional sets could be 

merged, and the total number of sets could not be reduced any further. 

The operation of splitting mean values contained in E vectors according to the values of Tcal 

obtained from step 2.2 is performed with the function “Tcal_splitting.” The merging process 

explained in the step 2.3 is done with function “iterative_merging_process.”  

It is important to underline the fact that it was decided to also insert a control to account the 

difference between two matrixes created in two following iterations. In fact, even if Student’s 

t-test suggests a merging, if the relative error between matrixes that come from two following 

iteration is small, iteration process can be stopped. It was decided to consider a tolerance 

of 2%. This is useful to avoid a too long iteration. After this tolerance value, in fact, there is 

no more benefits in continuing the merging operation, it is only a time consumption. 

Step 2.4 Identification of critical values, the boundaries of minimum, medium and 

peak zones. 

At this point, the result is a matrix, where in each column there is experimental average 

consumption of DHW in summertime period of the considered group analysed, where there 

is no possibility of merging close columns. Thanks to the sorting operation done in step 2.1, 

Figure 24 An example of Tcal plot versus index of iteration M. 
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the first column represents the lowest values, and the last column represents the highest 

values of demand that occur in an average day in summertime. So, by using these columns 

is possible to obtain values that represent boundaries between minimum and medium load 

and between medium and peak load. The equation for determining them (𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥) 

are reported in [4.19] and [4.20]. 

𝐸𝑚𝑖𝑛 =  �̅�𝑐𝑜𝑙,1 + 𝑇𝑐𝑟,1(𝑀𝑐𝑜𝑙1 + 1 − 2, 𝑎 = 0.01)√
𝑆𝑐𝑜𝑙,1

2

𝑀𝑐𝑜𝑙,1
      [4.19] 

𝐸𝑚𝑎𝑥 =  �̅�𝑐𝑜𝑙,𝑘−1 + 𝑇𝑐𝑟,𝑘−1(𝑀𝑐𝑜𝑙,𝑘−1 + 1 − 2, 𝑎 = 0.01)√
𝑆𝑐𝑜𝑙,𝑘−1

2

𝑀𝑐𝑜𝑙,𝑘−1
      [4.20] 

In the equations, �̅�𝑐𝑜𝑙,1 and �̅�𝑐𝑜𝑙,𝑘−1 represents mean values of column 1 and the second-

last column of matrix after merging operation, 𝑇𝑐𝑟,1 and 𝑇𝑐𝑟,𝑘−1 are the critical values for 

Student’s t-test of the column 1 and the second last one, with degrees of freedom and 

significance level, a, indicated in brackets, 𝑆𝑐𝑜𝑙,1 and 𝑆𝑐𝑜𝑙,𝑘−1 are standard deviations of the 

first and he second last column and 𝑀𝑐𝑜𝑙,1 and 𝑀𝑐𝑜𝑙,𝑘−1 represent the number of elements.  

The time periods during which the DHW heat use was below the minimum threshold Emin 

should be considered as a zone with the lowest DHW heat use. If the DHW heat use was 

between Emin and Emax, it could be assumed that during these periods, the DHW heat use 

was in a zone of average heat use. The time periods with DHW heat use higher than Emax 

should be considered within the zone of the maximum heat use. 

The last phase of this part of the analysis consists in representing the mean DHW 

consumption profile for both group 1 and group 2 found before, an example can be found in 

figure 23, but with the subdivision into minimum, medium and peak consumption hours using 

Emin and Emax values. An example of this plot is reported in figure 25. 

From many analyses done by applying this model, it was found that it could happen that Emin 

and Emax values are too low or too. In particular, if Emin value is too low it could be that no 

Figure 25 An example of average DHW consumption profile in summer, with subdivision in hours with 
minimum, medium, and peak demand. 
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hours have consumption lower than it. On the contrary, if Emax is too high, no hours have a 

demand higher than that, resulting that there are no peak hours, even if by observing the 

pattern it is clear that they are present. it was observed that it happened especially if 

experimental demand is low. This error could be produced by inaccuracies in the model, 

especially in the merging operation process and in the Student’s t-test. There is, also, a 

dependence on the number of values in the first and in the second last column after merging 

process. There is no control on that numbers, because they depend on merging process 

and on the values in the initial dataset.  

For this reason, it was decided to implement a correction: if no values are below Emin, Emin 

value is increased by 7%. On the other hand, if no hourly mean demand values are above 

Emax, Emax value is decreased by 7%. The choice of 7% is linked to analyses done in about 

30 buildings, seeing that in some cases it was necessary this small correction for an accurate 

representation of the hourly profiles. 

All passages reported in this last step are implemented in MATLAB using function 

“min_med_peak_v2” that can be found among other codes that it was used. 

 

4.9.3 Step 3: creation of the summer standard profile. 

The idea at this point is to create a standard demand profile using information about Emin 

and Emax values and by knowing which hours present minimum consumption, which ones 

have medium consumption and which one present peak demand. This information is 

obtained from the previous analysis. Using this knowledge, it was built a standard profile of 

DHW consumption in summer for both group 1 and group 2. So, at the moment we know 

which days of the week are similar in terms of DHW consumption profile and we know we 

can consider them as a unique day. We know, also, in which hours there is minimum, 

medium, or peak consumption. 

For the creation of the standard profile the following procedure has been followed. 

• For hours of minimum consumption, namely they have a demand lower than Emin, in 

the standard profile the demand in these hours is fixed equal to Emin. 

• For hours of medium consumption, namely they have a demand between Emin and 

Emax, in the standard profile the demand in these hours is fixed equal to (Emin+ Emax)/2. 

Figure 26 Passage from DHW average consumption profile to DHW standard profile. Both refers top summer period. 
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• For hours of peak consumption, namely they have a demand higher than Emax, in the 

standard profile the demand in these hours is fixed equal to Emax.  

The passage from average DHW consumption in summertime period to standard 

summertime profile is represented in figure 26. This operation was done to simplify the 

analysis when there is the passage to the winter standard profile and have values as 

standard as possible. There is no interest in specific value hour per hour, but it wants to 

know if the considered hour presents minimum, medium, or peak consumption.  

 

4.9.4 Step 4: creation of the winter standard profile 

This step consists in using the standard profile in summertime period to create the same 

thing but in winter. As emerged in many studies (work of Dmytro I. et al., Lomet A. et al., 

Gerin O. et al. are just few examples mentioned before) and from analyses done, there is a 

difference between DHW consumption in summer and in winter. Even if it was assumed that 

this type of load is temperature independent, because of lower temperature of inlet cold 

fresh water during winter season. However, the cold inlet water temperature has a slow 

response to the outdoor temperature. Further, this effect leads to seasonal variation of the 

DHW heat use in the buildings.  

To adapt standard summer profile to winter consumption and create, in this way, a good 

reference for DHW demand in this period, it was decided to upscale summer consumption 

profile by a certain factor. This factor is the difference in % between mean values of DHW 

consumption during summer and during winter. Data for DHW consumption in winter are 

taken trough the operation of splitting between DHW and SH heat load demand described 

before. By considering mean values of consumption in a long time period, it was able to be 

Figure 27 Difference between summer standard profile and winter standard profile. It is evident 
the fact that all values have just been upscaled by a factor. 
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independent from hourly variation of the demand. In this was it was possible to exclude, for 

example, too high values caused by sudden spikes of DHW consumption.  

 All the necessary operations can be found in the corresponding part of the general script 

“DHW_model_10922_v3”. At the end, it is possible to plot the winter profile. An example of 

this result can be found in figure 27. During this phase it was had, also, separate winter 

consumption from the rest of the year and demand was subdivided into days of the week. 

In this way it is possible to apply winter standard profile of group 1 or group 2 according to 

the membership of the considered day to one group or the other. For example, by keep 

dived Monday, Tuesday, etc. it is possible to use standard profile of group 1 on Monday if 

Monday belongs to group 1 and standard profile of group 2 on Sunday, if Sunday belongs 

to group 2. This operation is necessary for the general applicability of the script. In fact, the 

only thing that must be changed is which days belong to group 1 and which to the group 2.  

 

4.9.5 Step 5: Flattening DHW profile 

This is the last step of detailed DHW consumption analysis. In this phase it was compared 

winter DHW demand obtained from splitting operation with standard profile in winter built in 

the previous sub-paragraph. This step is composed by different operations. 

First of all, it was calculated the difference between every hourly experimental point in winter 

period (from January to May and from September to December) and the standard profile of 

this season. This operation is done for every day. The operations were done using matrixes 

that have 37 columns of 24 values per each column. 37 because every column corresponds 

to the considered day in winter season. For example, in the matrix called 

“E_DHW_Y_FRI_win” there are the experimental hourly values of 37 Fridays of winter 

season. In particular, there are 21 weeks from January 1st to May 31st and 16 weeks from 

September 6th to December 31st. This fact is true if year considered is 2019, if there is a 

different year in analysis, it must be changed the first day of the year in the script 

implementation.  

After percentage difference evaluations, it was found that the maximum difference between 

standard values and real values is in the range of 70%. It is significant to underline the fact 

that this is the maximum difference. The mean difference between DHW splitted demand 

points in winter period and standard demand profile in winter season goes between 0 and 

15%, as it was found in the analysis of various buildings. This highlight the fact that the 

standard profile for winter is a good approximation for average consumption and it can be 

used for flattening demand in points where hourly consumption is much different from the 

standard consumption.  

From these considerations, it was calculated a new profile for DHW consumption in winter. 

It checked one by one the difference between the DHW hourly consumption obtained from 

splitting operation in analysis and the standard hourly demand for the same hour of the same 

day. It was decided a percentage, in the analysis it was fixed 30%. All values that present a 

difference in percentage higher that 30% are subjected to correction. It is important to 

emphasize the fact that 30% is taken considering that the maximum difference is around 

70%, the mean around 10% and it was taken an average between them. This percentage 

can be easily changed. In the chapter dedicated to future work (chapter 8) It will be explained 
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better how this tolerance percentage can be determined in a more precise way. For now, 

with available data and information, the only possibility is to assume a value based on the 

experience of the researcher. 

The correction applied to these values consists in a reduction by a percentage of the value. 

Even this percentage must be chosen by experience of the researcher. In future work 

section it will be explained that both “tolerance” percentage and this “decrease” percentage 

could be implemented in an iteration loop to find the best values for describing better the 

profile of the building. However, this operation requires at least a period where demand is 

measured already splitted, between DHW and SH. As said before, it will be focused the 

attention on this point in chapter 8. At the moment, it was decided to fix this correction 

percentage, called “decrease,” at 25%. 

After this operation of correction, it was rebuilt the whole hear DHW consumption, assuming 

for winter demand corrected values and for summer demand the experimental demand (in 

fact, as demonstrated before, in summer there is only DHW consumption).  

The last operation consists in balancing SH demand. In fact, by changing DHW values also 

SH of the correspondent hour must be changed, to preserve the global demand equal to the 

one measured from meter. It was calculated the value subtracted to the DHW point with a 

percentage difference higher than tolerance, then, after obtaining new correct value for 

DHW, it was added the difference value to SH demand. In this way the value subtracted 

from DHW goes to SH and the global heat consumption hour per hour is preserved and is 

still equal to experimental value.  

 

After that, it was plotted new values for SH and DHW of the year in chronological order, 

together with values obtained from splitting operation. In this way, a comparison between 

them is possible. It was plotted every day of the week distinguished one from the other and 

then the entire year. It is possible to see in figure 28 and 29 that this operation is a success. 

Figure 28 An example of DHW and SH demand before and after flattening operation. In this 
figure only Fridays of the year are represented. Here there is only winter season. Red line is 
the boundary between May 31st and September 6th. 
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With this operation the detailed analysis of DHW heat consumption is conclude and also the 

entire analysis of a building with complete database. Tools presented here gave information 

about heat consumption of the building, in particular SH and DHW heat load, patterns of 

typical use, correction possibilities, clues about intended use, atypical days consumption, 

and more. Comments, considerations, and possibility to use these data are explained in 

chapter 7, where it will be presented some results of the case studies analysed. The next 

chapter will talk about how a similar analysis can be performed in case of there is a partial 

database of the building’s heat demand. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 An example of DHW and SH demand of the entire year. Here there is the 
representation of values before and after correction operation. It can be noticed that 
after correction DHW demand profile is more regular, as it would be. 
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Chapter 5: Description of method with partial database. 

After the analysis conducted on a complete year database, it is wanted to apply similar tools 

also in case database is not completed. There is, in fact, the possibility to analyse even 

partial databases with reliable results. In practice, it is much easier to measure consumption 

for a limited period than an entire year. It common, in addition to that, finding hour where 

meter did not work for any reason, maybe it was an error or maybe it was simply turned off. 

As it will be shown in this chapter, it is possible to analyse these cases by reconstructing 

energy signature curve and it is possible to split DHW and SH heat load consumption. 

However, as it will be shown in the next paragraphs, it is impossible to perform the detailed 

DHW analysis in summertime period because in the analysed database there were no data 

about summer consumption. It is important to underline that this is a common case in 

practice. In fact, demand is usually measured during wintertime period to obtain information 

about consumption. Results obtained from this analysis are consistent with the ones from 

the previous analysis.  

This analysis was applied to a different dataset. The case study related to this partial 

database discussion is the district heating network of the historic centre of Verona. This 

means climate are completely different from Tartu, with different rules and mode of 

operation. This fact becomes relevant especially when it was evaluated DHW circuit losses, 

in the sub-paragraph 5.7.1 of the current chapter.  

It begins the illustration of the workflow followed from the data pre-processing operation, as 

done in the previous chapter. All figures and examples made in this chapter, useful to explain 

better the method, are taken from the analysis of condominium number 10 of the Verona’s 

dataset. 

 

5.1 Data pre-processing. 

Pre-processing operation is even more important when there is an analysis of partial 

dataset. Due to the smaller number of experimental points available, in fact, their quality 

becomes more important. For this reason, particular attention must be done in this phase, 

above all when there is a partial database. With partial database it was meant that not an 

entire year of experimental measurements is available. In the case analysed in this site, the 

Verona’s database, only winter season was available. In most building period of 

measurements goes from end of November to the end of February.  

In addition to that, in this database there were a lot of missing values, probably due to 

meter’s fault or because it was turned off. By not doing an appropriate pre-processing, a lot 

of zeros would be present in the experimental global demand values, creating big 

inaccuracies. They are, in fact, not a representation of the building’s behaviour, but only 

caused by measurements error. In this paragraph it will be shown the operations done in 

the initial dataset for improving quality of data. 

First of all, it was controlled that the database begins with a complete day. There were cases 

where first values were, for example, 13 hours of a day. This is a problem, because it makes 

impossible an accurate hourly division, as performed in paragraph 4.2 of the previous 

chapter and as it is described in paragraph 5.2 of the current chapter. As it will be explained 
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later, in building located in mild climate, as it happens for Verona, hourly division in an 

essential operation for understanding building’s behaviour. In case there was an incomplete 

day as first values of the dataset, it was decided to not consider it and delete it from the 

experimental values. 

 The next operation consists in calculating hourly thermal consumption. it was used the 

same equation implemented for analysis of complete database, which can be found in [4.1]. 

In case there were more than one values of the interested data per hour, it was decided to 

consider always mean values. In Verona’s database, for example, there are 3 values per 

hour for each variable. The first one represents the maximum in the hour, the second one 

the minimum and the last one the average. This happens for volume of water used, for 

power, inlet temperature of water and return temperature of water. In figure 30 there is an 

example of database, in red the values it was considered are highlighted.  

Another operation of pre-processing consists in individuating the period of measurements. 

It is typical that measures are taken during a singular winter season. This means that 2 

different years are considered: from November to December and from January to February, 

in this case. This is important when temperature dataset is considered. To draw plot of 

demand versus outdoor temperature, in fact, data about outdoor temperatures are 

necessary. In case of partial database with a heating season between two different year, 

two years of dataset for outdoor temperature are needed. Lucky, these types of data are 

usually quite simple to find.  

The next step consists in empty values remotion. This operation is performed in MATLAB, 

where it was implemented a function for the remotion of all empty values from the vector 

that contains data about hourly energy consumption. It uses the fact that when an empty 

box of a table is imported in MATLB, it is read as a “NaN” value. So, it was done a NaN 

remotion from the energy vector. 

It was decided to follow two different approaches in this remotion. The first one consists in 

removing only NaN values. In this way there is the creation of a vector with only real 

experimental data about hourly consumption. The vector with hourly consumption data pre-

processed in this way is called “ENERGY_N_NaN.” The problem is that in this way it is 

impossible to split data on hourly base. Even if this is still possible, there would be big 

differences between hours, where some hours may have vast number of values and other 

a smaller number, by creating some problems in accuracies of the model.  

For this reason, it was decided to also implement another method. In this case there is a 

remotion of all days that contains at least one NaN value. The vector with hourly 

consumption data pre-processed in this second way is called “ENERGY_D_NaN.” By 

applying this method there are less experimental day available, but there is the certainty that 

all days included in the dataset are complete and without errors in measurement operation. 

For the entire analysis it will be used as a starting point, data that come out after this second 

Figure 30 An example of Verona's dataset. In red average values are highlighted. Only few variables are reported here, not the complete set. 
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method of pre-processing. Data from the first approach are still available and they were used 

mostly to control if the considerations done with dataset from the second approach are 

consistent with a larger number of experimental values (from the first approach).  

With these operations, the phase of data pre-processing is over. At the end of this step, 

vectors which contain hourly heat consumption pre-processed and a vector that has hourly 

outdoor temperature are available. From this moment, the data analysis begins. 

 

5.2 Weekdays and Weekend splitting. 

This is a special step, necessary in some buildings and optional or useless in others. From 

many analyses and previously considerations described on the previous chapter, it is clear 

that in some buildings there could be a significant difference in terms of heat consumption 

between workdays and weekend. So, for buildings used as offices or school, quite different 

profiles of consumption occur during workdays or weekends. By considering all together, 

there is the creation of big inaccuracies. During weekends in this type of buildings, in fact, 

no consumption is present, so demand is zero or almost zero. So, subdividing workdays and 

weekends it is essential for obtaining a good model of the real building’s behaviour. 

For all these reasons, it was decided to implement a function that can split days between 

weekdays and weekends. It is called "NaN_removal_v2” and can be found among other 

functions and codes used in the analysis. As input, it uses the vectors with hourly energy 

values, a vector of one variables of the dataset to use for controlling when there is a NaN 

number, and a number which represents the first day of the dataset (Monday=1, 

Tuesday=2…).  

It is easy to decide when subdivide workdays and weekends and when, on the other hand, 

consider all days together because in Verona’s dataset there is the information about the 

intended use of the building in analysis. In case this information is absent, the choice can 

be done by plotting experimental demand versus time and seeing if there are periodical 

decreases in demand, clue of a weekend lower demand. In addition to that, it emerged from 

analyses conducted on the buildings that errors in measures are common during weekends, 

maybe because the building is closed, or the plants are turned off. 

 

5.3 Hourly data splitting. 

The operation done in this phase is similar to the one done for the complete database, 

explained in paragraph 4.2. For this reason, it will not be explained in detail all passages 

because it would be a repetition of what already said in the mentioned paragraph. It was, 

also, used the same function, the one called “HOUR_split.”  

The only difference is that this time it was performed the hourly data division not only on 

global heat load demand, but also on outdoor temperature values. It was also calculated 

vector for daily mean temperature. It was decided to represent points of experimental 

demand versus daily mean temperature and not hourly outdoor temperature to keep the 

same approach followed for the analysis with complete database. However, it was 

performed hourly division also on temperature values, because for following phases it is 
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necessary a separation between demand in various hour of the day, and together with it 

also of outdoor temperatures. 

As said before, for the entire analysis it was used the vectors that contains only complete 

days of hourly demand values. This means starting data for this operation have been pre-

processed with method number two. Thanks to this operation, the subdivision into hours of 

the day is quite easy.  

 

5.4 Profile splitting and interpolation. 

One of the main aspects of this type of database, and in particular with all mild climate, is 

that space heating in winter season is not always in function, on the contrary to what 

happened in colder climate, Tartu for example. There are, in fact, some hours where space 

heating is not in operation. It is not fair, for that reason, consider a unique demand profile 

during winter season. It happens that not in every time there is SH + DHW, but in some 

hours there is only DHW consumption, if present, or only losses in the circuit if there is no 

request for DHW.  

In addition to that, rules of municipality of Verona must been considered. For 2019-2020, 

the years of measurements, municipal rules said that in historical centre, space heating can 

stay in operation for maximum 14 hours and its period of working must goes from 5.00 am 

to 23.00 pm. It also said that the period of the year where space heating is allowed goes 

from October 15th, 2019, to April 14th, 2020. Some considerations about that: days in the 

dataset analysed belong to this period and from analysis of hourly energy demand, hours 

where space heating is turned on are evident.  

Using this information, it was developed an algorithm to automatically split hours into two 

diverse groups: hours when space heating is on operation and when it is off operation. The 

division is done by tracing a line between the upper part of the profile of demand and the 

lower part. This operation is done by interpolating all data. Thanks to this particular 

behaviour of demand, the interpolation line is a good boundary for two zones. An example 

of plot with hourly demand versus outdoor temperature and boundary line is reported in 

figure 31. 

Figure 31 An example of Hourly energy demand versus T. Red line represents 
the boundary between moments when SH is in operation and when it is 
turned off. 
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After that, it was represented every hourly vector versus corresponding daily mean 

temperature, inserting in the plot also this boundary line. Thanks to this operation it is 

possible to find when space heating is on, i.e., demand is above the boundary lines and 

when space heating is turned off, i.e., demand values are below red boundary lines. In the 

example of figure 32 there are the plot of two different hours. It is clear that between 0.00 

am and 1.00 am (the so called “ENERGY_0am”, the same name as in previous analysis, as 

explained in paragraph 4.2 of chapter 4) space heating is not in operation. On the other 

hand, between 5.00 am and 6.00 am (“ENERGY_5am”) space heating is turned on.  

By working with experimental data, it could happen that some hours have some points above 

and some points below this boundary line. For this reason, it was decided to consider a 

percentage of tolerance. Vectors which have a certain % of points above the boundary line 

are considered hours of SH on, on the contrary they are considered hours without space 

heating. That level of percentage depends on the configuration of heat demand profile of 

the building and on how clear is the separation between hours with SH or without SH. In 

general, it was decided to keep it around 70%. The percentage value is correct when there 

is maximum 14 vectors in the matrix containing hours with SH on, because this is the rule 

of Verona’s municipality.  

After this point there is the creation of two matrixes: one for SH on period and the other for 

SH off period. In the first matrix each column represents one hourly demand vector, in case 

of in that hour SH in turned on. For example, if the matrix for SH on is 35x14, it means that 

there are 14 hours of the day where SH is in operation and that per each hour there er 35 

measured values of hourly heat consumption.  

In almost every building of this dataset number of experimental points is low, much less than 

365 values of a complete year. This is due to the restricted period analysed and to the errors 

of meters.  

At this point, the following passage is about interpolation of experimental data. From this 

point and for the rest of the analysis, group where SH is in operation is analysed separately 

from the group where SH is turned off. This means that in this phase two different 

interpolations are necessary, one for each group. In addition to that, in the previous passage 

there was the divisions of hourly outdoor temperature vectors with the same procedure. This 

operation is necessary to represent in an accurate way global heat demand hour per hour 

with corresponding values of outdoor temperatures.  

Figure 32 Representation of demand in hour between 0.00 am and 1.00 am (left) and between 5.00 am and 6.00 am (right). It is evident 
the difference in terms of size of heat load consumption, due to the presence or the absence of SH. 
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In this phase it was used function “polyfit” from MATLAB’s database to perform a linear 

interpolation of first degree of global heat demand with SH on and, separately, with SH off. 

The fitting lines have the same equation as [4.6] but in this case only the part < CPT is 

considered. In fact, there is no possibility to analyse summer consumption part of the 

demand because it is absent in the initial dataset. An example of the results of this operation 

can be found in figure 33, where green points represent demand of that hours with SH on 

and blue points, on the contrary, when SH is not in operation. 

Up to this point, coefficients for interpolation of green and blue points are known and they 

are the starting values for the next parts of the method. They are, in fact, essential for the 

individuation of the CPT and the estimation of summer heat consumption, as illustrated in 

the next paragraphs. 

 

5.5 Application of Confidence Intervals. 

In this phase, the same laws described in paragraph 4.6 of chapter 4 were implemented. 

Literature base is the same and the code used for implementation is the same. The only 

difference between functions CI, CI_v2 and CI_v3 is about graphical things, such as title or 

axis’ labels. Equations used for the calculation of upper and lower CI is the same as reported 

in [4.13] where parameters used are the same reported in [4.11], [4.12], and the paragraph 

4.6 in general. 

On this phase it was applied confidence intervals on both green points (SH on) and blue 

points (SH off) of the figure 33. This operation is important to have an idea of presence of 

outliers in the original dataset. In this first part on analysis confidence intervals have a role 

of visual analysis. In the second part it will be used them to exclude points outside 

confidence intervals and by doing this operation it was found more regular and consistent 

results. An example of application of confidence intervals is reported in figure 34. Here there 

is the same dataset as figure 33, with application of CI on experimental values with SH in 

operation on the left and without SH on the right. 

Figure 33 An example of interpolation of experimental points of global heat 
demand when SH is in operation (green) and when it is turned off (blue). 
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Also, for this case comments on results are done in chapter 7. Here it is important to 

underline the fact that, as can be seen in figure 34, application of CI gives interesting 

information about heat use of the building. In particular, it is evident that points of higher 

demand are outside confidence interval, which mean they belong to particular profile of 

operation. In the comment section it will be used this information to also explain this special 

regime of work for heating plants. With these considerations it is over the part of explanation 

of CI implementation.  

 

5.6 Reconstruction of Energy Signature Curve. 

This is the crucial phase of the analysis of partial database. As explained before, in fact, 

there is no presence of summer consumption. However, to obtain a good representation of 

building’s consumptions even in summer and to apply the model for splitting DHW and SH 

consumption it is necessary to also find the temperature independent part of the ESC. Even 

if it would not be an absolutely precise representation, in this section it was proposed a 

statistical way to estimate that part of the energy signature curve.  

In addition to that it will be discussed a method for the evaluation of CPT in this case. In fact, 

it is impossible the application of the method described in 4.3.1 because the temperature 

independent part of the demand is unknown. To solve this problem, it was decided to 

determine CPT in a statistical way, using, of course, only the available data about outdoor 

temperatures and heat load consumption.  

The general idea at the basis of this procedure is to determine CPT firstly by analysis of 

wintertime period of global energy demand, and then use this value of temperature and 

interpolating curve found in the previous step to obtain a value called change point demand 

(CPD). This is the demand of the building when there in an outdoor temperature equals to 

CPT. This point also represents, in a theorical building, the constant part of the demand 

during summertime period. This fact is also highlighted in many studies, the work of Milić V. 

et al. about screening of thermal characteristics in a resident district, just to mention one of 

them.  

Figure 34 An example of application of CI in two different group of experimental points. This is the same building, but on the left, 
there are values when SH is in operation, on the right values where SH is turned off. 
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In fact, assuming that the ESC part on the right of CPT is perfectly temperature independent, 

in a plot where global heat demand versus outdoor temperature is represented, this zone 

has the shape of a perfectly horizontal line. For studying the building in this case, it was 

assumed that on the right of CPT demand is perfectly temperature independent, so it is a 

horizontal line. An example of theorical ESC line is reported below, in figure 35. 

So, the first step consists in the determination of CPT. It would be possible to consider the 

maximum temperature registered in the heating season as CPT, but this could lead to 

possible errors. In fact, it is possible that in one single day temperature was particularly high, 

but this do not make us sure that this is the real CPT. To exclude this exceptional value of 

temperature and, consequentially, of demand, it was decided to not consider from the 

database values present in the upper tail of distribution. This is a pure statistical operation, 

with the goal to exclude points where temperature would be too high because these points 

would have too high influence on CPT values. If, for example, during a particular hot day, 

outdoor temperature is over 20°C, taking this maximum value as CPT would be a clear error. 

By not considering these extraordinary outdoor temperature values it is possible to obtain a 

better estimation of the real CPT.  

So, the next step consists in identifying which values must not be considered. To do that, it 

was controlled that outdoor temperatures follow a normal distribution. By having this type of 

distribution, it is ok to assume that all points with CDF (cumulative distribution function) 

>95% are extraordinary points. They stay, in fact, in the upper tail of normal probability 

distribution function. In this phase it was implemented three different controls to be sure that 

outdoor temperatures reflect a normal distribution.  

The first one compares a histogram of outdoor temperature values with the normal 

distribution with the same standard deviation and mean value as temperature distribution. 

An example of this plot can be found in figure 36. 

Figure 35 Theoretical ESC curve. 
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The second tool it was used for this control is the comparison between CDF on outdoor 

temperature and CDF of normal distribution. This plot is also useful to identify which is the 

temperature value that has CDF equal to 95%. This is, as explained before, the boundary 

of temperatures: value higher than that are not considered. This means that temperature 

values which has CDF equal to 0.95 is the CPT needed. An example of this plot is reported 

in figure 37.  

 

The last tool for controlling the normal distribution of outdoor temperature is the function 

“normplot” present in MATLAB’s database. If the red line drawn by this function follows blue 

straight line, the distribution is normal. An example of that is in figure 38 and it is clear that 

the normal distribution is confirmed. 

It is important to clarify the fact that all these operations are done on temperature, even if 

CPT depends on building operation, because this is a sort of filter for particular and 

extraordinary value of outdoor temperatures that could produce inaccuracies in the CPT 

estimation and could lead to underestimating summer consumption. By excluding these 

higher temperature points, also the lowest part of temperature dependent part of demand 

curve is not considered. With this fact the consumption during summer is possibly a little 

overestimated, but this phenomenon is preferable to underestimation or to a completely 

meaningless CPT definition. 

Figure 36 An example of outdoor temperature distribution, in green, and normal 
PDF with the same mean value and standard deviation. 

Figure 37 CDF of outdoor temperature in red and CDF of normal 
distribution in blue 

Figure 38 An example of output from the function "normplot" in 
MATLAB. 
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Thanks to these considerations, it is possible to calculate CPT as the temperature values 

that has a CDF equal to 0.95. As explained, in this way all extraordinary temperature values 

are excluded. After its determination it was used this value to calculate CPD, assuming that 

this is the global heat demand of the building when the temperature is equal to change point 

temperature. This value of demand is calculated by using interpolation line and its 

coefficients, found in the paragraph 5.4 of the current chapter. The expression of CPD is 

expressed in the equation below, the [5.1]: 

𝐶𝑃𝐷 =  𝛼𝑆𝐻,𝑜𝑛 +  𝛽𝑆𝐻,𝑜𝑛 ∗ 𝐶𝑃𝑇      [5.1] 

Where CPD is the change point demand, also equal to consumption in summer, 𝛼𝑆𝐻,𝑜𝑛 and 

𝛽𝑆𝐻,𝑜𝑛 are the interpolation coefficients of the fitting line for the part of hours with space 

heating in operation and CPT is the change point temperature.  

CPD is also the value of heat consumption during summer, and it was assumed constant, 

so that there is no dependence of temperature in this case. It was assumed that in every 

other hour and day of the year, demand is equal to CPD. This is, of course, a clear 

simplification, but it is the only feasible way to operate if other data are missing.  

Of course, this would not be a detailed representation of consumption during the rest of the 

year, but only an estimation to perform the SH and DHW splitting in days and hours where 

global energy demand is measured (winter period). As maximum temperature it was 

considered the maximum temperature of 2020. For the summer season it was decided to 

use temperature values for 2020 from March to November. This means that a year for the 

buildings of this dataset goes from November 2019 to November 2020. In figure 39 it is 

reported an example ESC reconstructed and with a red line CPT is highlighted.  

From figure 37 it is clear that it would be an error using the maximum value of temperature 

registered in the winter season as CPT. It can be seen that, in this case, this value is around 

20°C, while CPT is 14.3°C. Of course, the second one is a more reasonable value for CPT, 

also according to other studies and from the previous analysis on Tartu database. This is an 

evidence that the proposed method is sensible. 

After this phase there are all the elements to proceed with the SH and DHW demand 

splitting, described in the next paragraph. 

Figure 39 An example of ESC reconstructed using the method described in 
this paragraph. CPT is highlighted with a red line. 
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5.7 Splitting of DHW and SH energy consumption. 

The DHW and SH heat consumption splitting is performed in an equivalent way to the one 

done in the previous chapter. Literature references are the same, i.e., the study conducted 

by Dmytro I. et al. about the DHW and SH splitting in a hotel in Norway. It is important to 

underline the fact that all following operations, as already specified, are done with hours 

where SH is in operation. 

The only substantial difference stays in the method for the determination of losses into the 

DHW water circuit. By not having the summer consumption profile, in fact, it is impossible to 

apply method developed by Marszal A. P. et al., previously used and explained in section 

4.9.1 of chapter 4. It is explained how losses for DHW circuit are determined in section 5.7.1 

of the current chapter. In the next lines it will be explained the method used for obtaining a 

division between DHW and SH heat load consumption. 

First, it was created the vector that contains values of outdoor temperature for the summer 

period, as described in the previous paragraph. After that it was taken from the vector that 

contains experimental values when SH is on during winter, only points with corresponding 

outdoor temperature lower than CPT. Then it was created, using function “polyval,” the 

demand in winter period using the regression line found before. Up to this point all is set up 

for starting. Results of this operation of selection and evaluation are presented in the blue 

points of the example in figure 40. 

After this phase, as noticed in paragraph 4.9, ESC is shifted up by a coefficient. To obtain a 

model for SH heat load consumption it is necessary to move down the curve by this 

coefficient. This value is calculated in the same way as happened before, using the same 

considerations. In this way, a model for SH can be found by using ESC, and it is represented 

by equation [5.2], where 𝑓(𝑥) represents the points of the ESC and 𝐸𝑆𝐻 is the hourly energy 

demand for space heating.  

𝐸𝑆𝐻 = 𝑓(𝑥) − min(𝑓(𝑥))     [5.2] 

After this operation of shifting, the new ESC curve is obtained. In the example in figure 40, 

it is represented by purple line for winter period and green line for summer period. In this 

Figure 40 An example of experimental points, ESC and ESC shifted down by shifting 
coefficient. 
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case, differently to what happened in chapter 4, ESC is continue for construction in CPT, so 

no operations to assure continuity are necessary. 

After that, experimental values of demand are represented din chronological order. This is 

an important operation, useful to have a different representation of consumption and to 

calculate SH and DHW heat load consumptions. Due to the fact that there are so many 

values in a year where demand is equal to CPD, it was decided to represent only a part of 

the entire year in the plot implemented in the code to obtain a clearer representation of 

demand profile. An example of that can be found in figure 41. 

To perform DHW and SH splitting by following the method explained in the paragraph 4.9 it 

is necessary to have an estimation of the losses in the DHW circuit. Even in these buildings, 

in fact, they are connected to a district heating network, and this produces losses. Knowing 

these losses is crucial for a good DHW estimation. The following sub-paragraph is dedicated 

to the evaluation of these losses. 

 

5.7.1 Evaluation of DHW circuit losses. 

DHW circuit losses are necessary to know to calculate DHW heat load consumption. In 

chapter 4 it had calculated them by considering the mean profile of consumption during 

summer and using two methods, the ones explained by Marszal A. P. et al. in their article. 

The idea at the basis of the first method was that the minimum value of average summer 

consumption corresponds to losses. On the other hand, according to the second approach, 

losses must be calculated considering average consumption during night hours. If database 

is partial, summer consumption is absent, and these methods cannot be applied. So, it was 

developed a new way to evaluate these losses, by using available data. 

The idea is to use hours when SH is not in operation. By analysing which hours belong to 

this category in many buildings and considering, also, rules from Verona’s municipality, a 

major part of these hours is during night. While there could be some differences between 

buildings in terms of hours of operation of the space heating plant, in general it was found 

that during night SH is always turned off. This is due to the fact that most of users are 

Figure 41 An example of energy demand plotted in chronological way. 
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sleeping if we are considering a residential building or they are not present inside the 

building, if we are talking about offices or schools, for example. 

Starting from these considerations, it was decided to use energy demand between 0.00 am 

and 4.00 am of hours without SH to estimate losses in DHW circuit. In fact, as proven by 

statistical survey K. Winqvist, more than 90% of Europeans sleep in this time range. So, 

because users are sleeping, they do not use DHW for purposes like showers or dishwasher. 

For this reason, the first operation that has be done in this phase is to select hourly vectors 

that contain energy demand between 0.00 am and 4.00 am. 

After that, it was imposed a filter on temperature. In fact, it was decided to consider only the 

highest values of temperature. It was noticed that for these hours the fitting line has a 

decreasing behaviour. This fact could be caused by the seasonal difference in DHW losses 

and their dependence to outdoor temperature. It is possible to notice that, as should be, 

when outdoor temperature is lower, demand in these hours is higher. This is because DHW 

must be available at a certain temperature and if outdoor temperature is lower, energy to 

heat up water up to the wanted value of temperature is higher, according to an equation 

similar to [4.1]. Considering the entire experimental values of these hours leads to a big 

overestimation of losses during summer period, because in this case outdoor temperatures 

are higher, so losses are lower. This approach is consistent with analysis of buildings, as it 

will be explained in the results chapter (7). 

To consider only highest outdoor temperature it was decided to use the normal distribution 

filter. It was checked that even these values of temperature follow a normal distribution. Of 

course, this is verified because also temperature values when SH is in operation follow a 

normal distribution, as showed in the previous paragraph. After the normal distribution 

check, it was considered for losses evaluation only outdoor temperatures with CDF > 90%. 

This percentage is decided based on the analysis of many datasets. 90% allows to consider 

the highest values of temperature but without the risk to have too few points. It is not shown 

an example of tools for normal distribution checking because they are the same used in the 

previous paragraph. 

𝐸𝑙𝑜𝑠𝑠 = 𝑚𝑒𝑎𝑛(𝐸𝑒𝑥𝑝,90%)    [5.3] 

Figure 4236 An example of DHW losses evaluation using experimental 
points of hours when SH is turned off. 
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Where 𝐸𝑙𝑜𝑠𝑠 is the value for losses in the DHW circuit and 𝐸𝑒𝑥𝑝,90% are a vector that contains 

all experimental points in the considered period with corresponding outdoor temperature 

with CDF higher that 90%. 

After that, considering these points of the hottest part of the period without SH, it was found 

an estimation for losses by considering mean value between them. After that it was 

represented both boundary for outdoor temperature considered (red line in figure 42) and 

value for losses in DHW circuit (green line in figure 42). 

Thanks to this method for the evaluation of DHW circuit losses it is possible to proceed with 

SH and DHW splitting. Passages are the same conducted for the complete database, 

described in paragraph 4.9. As a recap, first ESH is obtained by shifting down the ESC by a 

value called shifting coefficient. This is equal to the minimum demand in summer period, in 

this case it is equal to CPD. The equation of this step is reported in [5.4]. It is similar to 

equation [5.2], but for clearness of exposition here it was substituted the minimum value of 

ESC with CPD. 

𝐸𝑆𝐻 = 𝑓(𝑥) − 𝐶𝑃𝐷     [5.4] 

Where 𝑓(𝑥) is the reconstructed ESC equation and CPD is the change point demand (the 

value of global energy demand corresponding to CPT and assumed to be summertime 

period constant consumption of the building). 

After that there is the determination of EDHW. There are reported below, in equations [5.4], 

formulas used for the determination of this heat load consumption.  

𝐸𝐷𝐻𝑊 = {
𝐸𝑇𝐻 − 𝐸𝑆𝐻 + 𝐸𝑙𝑜𝑠𝑠 , 𝐸𝑇𝐻 > 𝐸𝑆𝐻

𝐸𝑙𝑜𝑠𝑠, 𝐸𝑇𝐻 ≤ 𝐸𝑆𝐻
     [5.5] 

Where 𝐸𝐷𝐻𝑊 is the heat load for DHW, 𝐸𝑇𝐻 is the experimental point, the global thermal 

energy demand, 𝐸𝑆𝐻 is the heat load for SH, obtained in the previous lines, from equation 

[5.4], 𝐸𝑙𝑜𝑠𝑠 is the value for losses into the DHW circuit. 

Then, there is the balancing phase, to be sure that in every moment the sum of DHW and 

SH heat load consumption is equal to experimental measurements. After that, the last 

operation consists in a correction process to have all values, both hourly SH heat load and 

hourly DHW heat load not negative. If there is a negative value in one of them, it becomes 

zero and that part of the load is given to the other hourly load. These same operations were 

done also for the complete database, in paragraph 4.9. An example of results is reported in 

figure 43. In this image there are both splitted demand versus outdoor temperature and 

splitted demand versus time. Comments and considerations on chapter 7. 

Figure 43 An example of results after splitting operation. Demand vs time on the left and Demand vs T out on the right. 
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It is relevant to underline the fact that all this analysis provides satisfactory results for the 

part of the year where experimental data are available. After CPT, in figure 43 where red 

line becomes horizontal, this type of analysis does not have sense and so results given. It 

would be meaningless try to estimate in a precise way demand in this zone because there 

are zero information about summer consumptions, so the estimation would be too 

inaccurate. However, results for the experimental values analysis are consistent.  

 

5.8 Analysis with outliers’ remotion. 

Due to the high dispersion of experimental values in the analysed partial datasets (belonging 

to Verona’s case study), it was decided to repeat the previous analysis but after an outliers’ 

remotion. It was used confidence intervals, whose implementation is described in paragraph 

5.5 of the current chapter, to identify outliers. For this part of the analysis, in fact, it was 

considered only points inside confidence interval. Results obtained follow a more regular 

profile, but in this way some information about extraordinary heat demand are lost. Although, 

this is an interesting operation to see if this strange demand points influence the general 

profile of consumption and what is they influence.  

The only difference between this part of analysis and the previous step is the initial phase. 

In this site, in fact, it was used only measured data inside confidence intervals, both for hours 

of SH operation and for hours without SH. The phase of points selection happens after SH 

on and SH off period identification. In figure 44 it was reported considered values in green 

and excluded values in blue. It can be noticed that remotion has an effect mostly on highest 

values of demand. As a results, there is the absence of extraordinary peaks of demand 

consideration. 

All other phases are not repeated here, because they are the same described in previous 

paragraphs. Comparison between results with and without outliers’ remotion is done in 

chapter 7, when it will be discussed results of Verona’s partial databases analysis. 

 

 

Figure 44 An example of outliers’ remotion conducted with Confidence Intervals. 
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Chapter 6: Case studies. 

In this chapter it will be provided a general description of the two datasets where it was 

applied tools described in the previous chapters. A total of 26 buildings from Verona and 51 

buildings from Tartu were analysed. For Tartu’s dataset it was applied method described in 

chapter 4, because every building has an entire year dataset, while for analysing Verona’s 

buildings it was applied method for partial database, as described in chapter 5. The next two 

paragraphs talk about Tartu and Verona ad provide as much information as possible, paying 

attention to observe privacy rules. 

 

6.1 Tartu. 

This dataset is about some buildings located in Tartu, a city in the east side of Estonia. 

These data were already used in other publications. Some previous work about the same 

buildings were conducted by Lumbreras M., Garay-Martinez R. et al. where they built a data-

driven model for heat load prediction or by Eguiarte O., Garay-Martinez R. et al. about a 

data-driven assessment for the supervision of district heating networks. In this paragraph it 

will be used information taken from these works because they provide a good description of 

Tartu’s dataset configuration.  

First, it is important to specify that all buildings are connected with a district heating network. 

The DH network in Tartu, Estonia is operated and owned by GREN, delivering heat between 

temperature ranges of 75/45ºC as minimum temperatures and 110/60ºC as maximum water 

temperatures to over 1500 consumers, producing up to 500GWh yearly. Approximately 40-

60 new connections are made to the grid annually, with 49% of consumers being collective 

housing, 33% industry and commercial buildings, and 18% individual housing. 

The dataset used in this thesis is related to the subnetwork and consumer substations within 

the Tarkon-Tuglase area, in the northwest of Tartu. The network covers a distance of 5.34 

km, serving over 54 consumers with ongoing connections. In fact, as said before, it was 

analysed 54 different buildings, the ones with available measurements from this zone. The 

delivered heat ranges up to 4.3 MW and is used for residential, commercial, educational, 

Figure 45 Map of district heating network in Tarkon area, in Tartu, Estonia. 
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and office buildings. The total consumption is around 8.2 GWh. In figure 45 there is the map 

of the Tarkon’s district heating subnetwork. Connections are represented with red lines and 

light blue dots are for users. 

Hourly measures come from smart energy meters located in each building. Every meter has 

constantly measured different variables of the system and has sent them to the DH operator, 

GREN hour per hour. As showed in the pre-processing step in paragraph 4.1, every smart 

meters has measured the cumulative energy delivered to the building (so, hourly energy use 

is calculated by subtracting the current hour's reading from the previous hour's reading), the 

cumulative volume of water consumed, the hour of the day, the hourly power, hourly flow, 

water inlet temperature, return temperature, hot water user temperature, secondary hot 

water flow temperature and secondary return temperature. A scheme of location and layout 

of the smart energy meters in the district heating network of Tartu is reported in figure 46. 

Letters T indicate temperature meters, while “m” is the flow sensor. Five different 

temperatures (in °C) and volumetric flow (in m3/h) are measured. For this study, the total 

heat consumption is calculated using T1, T2, m, and the specific heat of water. 

Each building is assigned an ID code for identification purposes, which is unrelated to the 

building's physical location. This measure is taken to protect users' privacy and prevent 

identification issues. However, as highlighted several times during the discussion, this fact 

makes impossible to know any information about physical parameters or users’ behaviour 

of buildings in analysis.  

The energy meter used in the buildings is the Multical® 603 from Kamstrup, technical 

parameters and documentation are available in the manufacturer’ website reported in 

references. Its accuracy surpasses the European directive (EN-1434e1:2015) for this 

purpose, and the measuring error stays under 5% in all variables recorded. Each substation, 

which is each smart meter, corresponds to one building. The studied substations encompass 

various thermal zones based on their ultimate use. Residential apartments, offices, 

educational buildings, and commercial buildings are included. 

The other important variable to consider is the outdoor temperature. Its measurements, 

together with other climatic variables, were obtained from a weather station managed by the 

University of Tartu. It was used only outdoor temperature, but in the weather variables 

dataset there were also global solar irradiance on a horizontal plane (GT) measured in watts 

Figure 4637 Scheme of smart meter and sensors’ location in DHN of Tartu. 
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per square meter, wind speed (WS) measured in meters per second, and wind direction 

(WD) measured in degrees.  

It was used weather data already pre-processed by Lumbreras M., Garay-Martinez R. et al. 

They combine the heat load and weather data sources, a calendar-based process. The 

weather data was obtained at a frequency of 15 minutes but was resampled to hourly 

intervals to match the frequency of the data from the smart energy meters. This resulted in 

8760 readings representing each hour of the year. Both data sources were coupled using 

the exact date and time (month, day, and hour) for the year 2019.  

The authors also did an operation of identification and remotion of outliers and reading errors 

contained in both datasets (from smart meters and from weather data). Reading errors are 

directly removed from the original dataset, resulting in a reduction in the total number of data 

points available. To identify outliers, quartiles of each variable are calculated using boxplots. 

The interquartile range (IQR) is used as a criterion. This is a good method, also used in 

other studies, for example by the authors Li Aihua et al. or Schwertman N. et al. For daily 

data, there was also a remotion of incomplete days (i.e., those with less than 24 measures), 

and there is no need to calculate missing values. 

 

7.2 Verona 

This is the second case study analysed in this thesis. This case is hugely different from the 

Tartu’s database. First, climate is vastly different. Tartu has a colder climate, with almost no 

influence of relative humidity of air. Verona, on the other hand, has a milder climate and 

relative humidity is extremely important in terms of comfort conditions. However, for the 

purpose of this investigation, relative humidity influence is not taken into account, while 

higher outdoor temperature is a relevant data for the heat load consumption of the buildings. 

This fact plays a significant role especially for establishing the beginning and the end of the 

heating season, which is the operation of the space heating plant and its intensity. In 

particular, colder climates have more consumption than milder climates, of course. 

Regarding CPT, instead, not big differences were noticed during the analysis. This is due to 

the fact that CPT depends on the outdoor temperature: when it becomes higher that a certain 

value, space heating is no more necessary, and it is turned off. Fort this reason, CPT is 

similar in both climates. 

Another significant difference between the two case studies is the experimental data 

available. As said on many occasions during the previous chapters, Verona’s database 

contains data about winter demand only. This means summer part of consumption is 

completely absent in every analysed building. This fact makes the application of certain 

tools. For example, the detailed analysis of DHW summer consumption profiles or the 

analysis of DHW boxplots are unfeasible.  

In addition to that, Verona’s database was not already pre-processed, in contrast to Tartu’s 

database. As explained in the previous paragraph, in fact, in Tartu’s values authors of 

previous studies already performed a good operation of outliers’ remotion and incomplete 

days’ remotion. In Verona’s case, instead, there were a lot of missing values and some 

extraordinarily high points of heat demand. In this case the operation of pre-processing was 

extremely important to obtain convincing results. All operations done in this data for this 
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purpose are described in paragraphs 5.1 (empty values and reading errors remotion) and 

5.8 (outliers’ remotion with confidence intervals). 

However, in Verona’s database, some information about the intended use of buildings and 

their physical parameters, in certain cases, were available. The following description of 

Verona’s district heating network and information about buildings are taken from the analysis 

performed in the same dataset by Quaggiotto D. in his PhD thesis.  

Experimental measurements come from the district heating network of Verona Centro Città. 

Verona, with a population of 259,610 inhabitants, is the largest city municipality in the Veneto 

region. As stated by Quaggiotto D., Verona’s climate characteristics are taken from UNI 

10349-1:2016. The degree-days is 2,469; climatic zone is E; external design temperature is 

-5°C (notice the highest temperature compared with Tartu); the annual heating period is 

composed by 183 days. 

In figure 47 there is a satellite photograph that shows Verona's district heating networks, 

which consist of five networks with a total length of 220 km and 1318 user substations. The 

thermal load peak is 170 MW. Two of the networks, Forte Procollo and Borgo Trento, are 

not hydraulically connected but can exchange heat via a heat exchanger. These two 

networks are not subjects of analysis. 

The focus of this case study is on the district heating network (DHN) of Verona Centro Città, 

as depicted in figure 48. The DHN operates with a constant supply temperature and variable 

flow rate, and serves 247 users with space heating and, in some instances, domestic hot 

water. The network covers a distance of approximately 25 km, with a volume of 652 m3. The 

total volume of the substations connected to the network is about 3.2 Mm3, and they require 

around 70 GWh/year of heat, with a load peak of about 38 MW. 

In figure 48, the user substations are depicted as blue dots, while the supply stations are 

represented by three green dots. The primary supply station, CCC, utilizes five CHP units, 

heat pumps (which are supplied by the cooling circuit of the CHP), and three auxiliary gas 

Figure 47 Satellite's photo of Verona's district heating network. Taken from Quaggiotto D.'s work. 
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boilers to produce and supply heat. The other two supply stations, CRV and CSD, have 

three auxiliary and reserve gas boilers, with CRV also recovering heat from a foundry. They 

have different priorities in terms of heating supply during the year, due to their differences in 

power capacity created by distinct types of generators. However, primary supply stations 

are not analysed in this work, so no more information is necessary. 

Regarding the buildings analysed, there are some information available. There are 26 

buildings where consumption data are available, but information about year of construction, 

floor area and other general information are available for 16 of them. They are reported in 

the table in figure 49. For every building it is available the intended use. In fact, it is indicated 

in the name of the dataset. The analysis was performed for: 12 condominiums, one gym, 2 

hotels, 2 offices, one police station, one rehab centre, 5 schools and 2 train stations. 

Figure 48 Plan of the DHN of Verona Centro Città. red lines are pipes, blue dots are users and green dots the 
primary supply stations. 

Figure 49 Table with general information about 16 buildings of the Verona's 
dataset. 
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As specified some lines ago, Verona Centro Città's DHN is connected to 247 user 

substations, but only 26 of these have been monitored. Monitoring for these 26 substations 

was conducted from October to November 2019 until March 2020 by Gizero Energie, a 

specialized energy monitoring company. The monitoring included measurements of 

maximum, minimum, and mean power in kW for each hour, water flow in m3/h, and supply 

and return temperatures in °C. For some substations, pressure data in the supply and return 

pipes was also provided, but they are not of interest for this analysis. All of these 

measurements corresponded to the primary circuit of the heat exchanger installed at each 

user. 

Ultrasonic compact energy meters were installed to measure energy consumption in the 

district heating systems. These meters operate on the principle of transit time measurement 

and do not have any moving parts, which prevents mechanical wear of the metering 

components. They also have low-pressure losses, a low start flowrate, and good tolerance 

to suspended particulates in the water flow. Overall, the use of ultrasound technology 

ensures stable and accurate measuring results. 

For the knowledge of general information about buildings it must be thanked AGSM Energia 

Spa, the energy supplier, which provided key information for these buildings, such as the 

call sign, ID number, address, heating and DHW heat exchanger sizes in kW, year of plant 

installation, and invoiced energy demand for 2017. The measured data and nominal data 

were analysed in the work by Quaggiotto to evaluate the level of reliability of the energy 

supplier's information. After his pre-processing operations, higher quality datasets were 

obtained, and this is the starting point of this analysis. 
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Chapter 7: results and comments. 

After the illustration of the tools used for the analysis of complete and partial databases and 

the presentation of real case studies done in the previous chapters, in this one it will be 

illustrated analyses’ results and provide some comments and explanations about them. As 

said before, it was analysed a total of 77 buildings (51 form Tartu and 26 from Verona).  

From their results it was found some similar characteristics and behaviour among them and 

also some cases where the method followed does not produce satisfactory results. In this 

chapter It will not be presented all buildings, it would be too time consuming and useless, 

especially for buildings that have similar behaviour. In next lines there will be shown the 

most interesting buildings for each dataset, in terms of results or considerations. In each title 

the building’s name and the corresponding case study are indicated. The presentation 

begins by presenting some cases of Tartu’s buildings, each one with a complete dataset. 

In each paragraph it will be shown results of the implemented code for the analysis, providing 

explanations, interpretations, and considerations where they are necessary. 

 

7.1 Building “10922” in Tartu. 

In building 10922, but this is true for every building with complete dataset due to the fact that 

the method used is the one presented in chapter 4, there are a total of 28 figures as code’s 

output. Starting from the first ones, figures from 1 to 24 represent a different hourly vector 

analysis. This mean that figure 1 of the output represents the analysis for every experimental 

point where demand is between 0.00am and 1.00 am. It is the so called “ENERGY_0am” 

vector mentioned in chapter 4, paragraph 4.2 as a result of one of the first operations done 

in the dataset. In figure 50 reported below, it was reported the “figure 1” that comes from the 

output of the code. It is unnecessary to report all 24 figures, so it was insert only the first one 

as an example. 

Figure 5038 Image 1 of the output of the building 10922's analysis. 
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In figure 50 there all plots previously mentioned during the explanation of method. Starting 

from the upper left corner we can find the energy demand plotted versus outdoor 

temperature, only of the hour between 0.00 am and 1.00 am. By analysing also other hours 

the pattern is similar, there is always a temperature dependent part and a temperature 

independent part. In this building no particular consumption is noticed in specific hours: more 

or less the general pattern is the same for every hour. This happens because Tartu has a 

cold climate, where the necessity for space heating is present all over the day in winter 

season and sometimes also during hotter months of the year.  

This fact can be noticed also by observing values of demand. This is the consumption of the 

building, and the maximum is almost 150 kWh, that means, because it is referred to one 

hour of measurement, the maximum power registered in the building is 150 kW. This is a 

high value, even if this is not a specific consumption, so it is possible that the demand is 

high because the building is particularly big.  

Moving to the right we found the coefficient beta plot, for estimating CPT point, as described 

in paragraph 4.3.1. After that there is the separation between temperature independent part 

and temperature dependent part, with the separate interpolation of both groups of points. 

Proceeding in the central part of the figure there is the ESC and, in the centre, the application 

of confidence interval in the temperature dependent part of the ESC. It is possible to notice 

that almost every point is inside a 95% confidence interval, so it means that demand in this 

building is regular all over the year. No extraordinary points of demand are noticed.  

It is important to underline the fact that usually in colder climates demand appears more 

regular. This happens because space hating demand is higher and present during every 

hour of winter season. For these reasons peak of demand, typically caused by abrupt 

requests for DHW, are confused among these high SH consumption points. This fact 

emerges in Verona’s analysis, where demand peak caused by DHW are much more evident, 

and where municipality rules impede the continuous operation of SH plant. 

After this plot there is the representation of the ESC shifted down by the shifting coefficient. 

In this way the green line on the 6th plot represents the model for space heating consumption. 

It has a shape like that in every analysed building: space heating demand is zero with high 

outdoor temperatures (>CPT) and it increases when outdoor temperatures decrease. In all 

real cases, the right side of CPT is not perfectly temperature independent. A small effect of 

reduction of demand is still present due to reduction also in DHW heat load when outdoor 

temperature increase. This happens because, even if more or less the temperature at which 

hot water is requested from the users is constant all over the year, water that arrives from 

the aqueduct has a higher temperature because the external environment is hotter during 

summer. This fact produces a decrease in energy demanded to heat up domestic water. 

On the lower side if the figure there is the chronological representation of the demand. Here 

it is evident the difference between winter and summer. The separation between two periods 

is sudden, there is no smooth passage. Furthermore, difference in terms of consumption 

size is relevant between the two periods. This highlights the fact that space heating has an 

especially significant role in this building and gives an important contribution in terms of 

power required and total energy consumed during the year from the building. From this plot, 

and the successive information about DHW and SH consumptions, it is possible to say that 

with high probability thermal insulation of this building is not at the top. In well insulated 
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buildings, in fact, there is less need for high space hating power, while domestic hot water 

consumption becomes more relevant. Here space heating is much bigger than DHW. 

However, it is important to keep in mind that a high space heating demand is still explainable 

by the cold climate, with outdoor temperatures up to -15°C.  

In the same plot, in red, heat losses in DHW circuit are highlighted. As explained in 

paragraph 4.9.1, they are equal to the average consumption during night-time in summer. 

Compared to winter consumption, summer consumption seems to be much more regular 

and, also, much lower. Summer consumption represents only DHW heat load, so we can 

assume its consumption follows a quite regular pattern, without sudden spikes. This fact, 

combined with the high consumption, can suggest the fact that the building in analysis is a 

big building with the necessity to keep SH during all hours. By analysing the other hours of 

the day, it is possible to notice that DHW mean value is higher between 20.00 pm and 22.00 

pm, and has a small peak also in the morning, between 8.00am and 9.00 am. All these clues 

could lead to the interpretation that this is a big residential building. This thesis is made 

stronger also by the difference in profile patterns between workdays and weekends, as 

explained in the following lines.  

By proceeding with the last two plots, we can find the splitted demand versus time and 

splitted demand versus outdoor temperature. Starting from the first one, here it is evident 

the fact that in summer there is only DHW consumption. This is tight, due to the fact that 

during the hottest part of the year, the ESC becomes temperature independent, so the heat 

load consumption is almost constant, and it is only for DHW. During the rest of the year SH 

becomes and important heat load. Because it was calculated from a linear model, and this 

fact is evident in the last plot, where SH heat load consumption follows a line during winter, 

SH has a small relevance in peaks of consumption.  

However, this fact is consistent with physical behaviour of the building: in case of sudden 

peaks in demand, it is more likely that the cause is DHW than SH. This happens because 

DHW is decided by users, and it is necessary a big amount of power to heat up water up to 

the desired temperature in relatively small time. Imagine having a shower: the hot water 

must be available in a few seconds, and it must be provided for the entire shower’s duration. 

However, it is possible to notice that even in summer, when there is only DHW consumption, 

there no relevant peaks of demand during the day. There are some hours where mean 

consumption is higher, as mentioned before. This fact could be due to, for example, the 

generous size of the building: if there are many apartments, especially if inhabited by users 

with different habits, the peak in load consumption due to a shower of one user cannot be 

noticed in the overall demand profile of the entire building. Nevertheless, it is important to 

specify that this is just the most likely interpretation of the building’s intended use, but it is 

not the only one.  

It is hard to say something about physical characteristics of the building because its floor 

area is unknown. Without his information, it is impossible to calculate specific heat 

consumption and, of course, this value cannot be compared with typical values for buildings 

in the same geographical area. If floor area of the building would be known, a lot of further 

considerations could be done.  

It would be possible to obtain information also about losses of the building, in particular by 

knowing power of heating system hour per hour it would be possible to determine the sum 
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of losses for transmission, ventilation and infiltration. However, to calculate them, internal 

temperatures hour per hour are necessary. This is a crucial data, without indoor temperature 

value for losses cannot be calculated. It would be possible to estimate indoor temperatures, 

using standard values for similar buildings in the same area, but this estimation would be 

too inaccurate. Previous research works used this technique, for example the study by Milić 

V. et al. or by Eriksson M. et al., but they started from a certain data of indoor temperature.  

Another information to obtain regards the slope of the temperature dependent part of the 

energy signature curve, i.e., the model for SH heat load consumption. This data provides an 

interesting estimation of the total heat loss coefficient. Of course, it represents a specific 

value, measured in (kW/°C). Its expression can be found in equation [7.1].  

𝑄𝑡𝑜𝑡 = 𝑄𝑡𝑟𝑎𝑛𝑠 + 𝑄𝑣𝑒𝑛𝑡 + 𝑄𝑖𝑛𝑓𝑖𝑙𝑡     [7.1] 

This expression is reported in the previously mentioned studies. In this equation 𝑄𝑡𝑜𝑡 

represents the specific total heat loss coefficient (in kW/°C), 𝑄𝑡𝑟𝑎𝑛𝑠 are losses for 

transmission, 𝑄𝑣𝑒𝑛𝑡 losses for ventilation and 𝑄𝑖𝑛𝑓𝑖𝑙𝑡 losses for infiltration. It is impossible to 

separate 𝑄𝑡𝑜𝑡 into these three components without making strong hypothesis and 

approximations about heat loss coefficients, users’ behaviour, physical and geometrical 

parameters of the building. It was decided to not approximate them because no information 

in this field is known, and the inaccuracies would be too much.  

However, for every building the coefficient 𝑄𝑡𝑜𝑡 is known and by its quantity it gives an idea 

of the insulation degree of the building. With high values, it means that the building is poor 

insulated, if outdoor temperature increases a little, losses increase a lot if the coefficient is 

high. On the contrary, with well insulated buildings, this coefficient is little. These 

considerations are valid for every building analysed in this thesis.  

For the building in exam here, the 10922 in Tartu, 𝑄𝑡𝑜𝑡 =  −4.6 𝑘𝑊/°𝐶. Taken alone does 

not give much information, but compared with values from other buildings in the same 

dataset it is possible to understand, for example, which is the one with the highest coefficient 

and find in this way where to focus the attention for an eventual retrofitting intervention. 

Going further, it is possible to check if every building has the same coefficient of if there are 

significant differences among them. Another important consideration about this data is a 

comparison between this coefficient obtained for different hours of the day in the same 

building. By performing an hourly splitted analysis, in fact, it is possible to compare values 

of  𝑄𝑡𝑜𝑡 calculated in all the 24 hours of the day. In the table reported in figure 51 there are 

values for 𝑄𝑡𝑜𝑡 for the 24 different models obtained by analysing the hourly splitted energy 

values. In figure 52 there are the same values plotted for clearness of illustration. 

The value mentioned before for 𝑄𝑡𝑜𝑡 (-4.6 kW/°C) was obtained by considering complete 

yearly model of the building. The output of the analysis of all 8760 experimental values for 

demand considered together is presented in figure 53 and discussed in the following lines. 

In this site it is relevant to underline the fact that the value found for the complete model is 

an average value between 𝑄𝑡𝑜𝑡 reported in table in figure 51. It can be noticed that there are 

few hours where this coefficient is higher in absolute terms, and this means that there is a 

stronger dependence on temperature for SH consumption, i.e., for global losses.  
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The higher values are in the morning, with a peak between 9.00 am and 10.00 am. This 

means that in this time range, losses for transmission, ventilation and infiltration are higher. 

Due to the fact that materials of the building or its geometrical parameters cannot change 

between different hours, this variation could be caused by users’ behaviour. In particular, 

there could be an influence of inhabitants on aeration of environments or simply on indoor 

temperature, by regulation of thermostat. This is only a hypothesis and cannot be confirmed 

because no information on this sense is known.  

In addition to that, variation in the total heat loss coefficient is small (between complete 

model value and peak hour value there is a difference of around 9%) so, it could be produced 

by inaccuracies of the models and distribution of experimental data points. Another 

explanation could be given by the working hours of the SH plant. Despite it is in operation 

during all hours in winter period, of course there are moments when the power delivered by 

the system is lower, because there is less power need from users. So, the peak in 𝑄𝑡𝑜𝑡 can 

be caused by the increase in power delivered by SH plant after a period where there was 

less necessity of energy. There is also a possible influence of DHW consumption that could 

lead to some inaccuracies. 

The previous explanation could also give an interpretation of the smaller values (in absolute 

term) for 𝑄𝑡𝑜𝑡 in night period. Values are lower, highlighting less dependence of consumption 

to outdoor temperatures for these hours. This could be explained by the fact that during 

night users sleep, so indoor temperature could be lower than day value. For this reason, 

space heating plant can provide less energy. In equations [7.2] and [7.3] there are reported 

the expression for 𝑄𝑡𝑜𝑡 as written by Eriksson M. et al. in their work.  

Figure 51 Table with 𝑄𝑡𝑜𝑡  hourly values for building 10922 in Tartu. 

Figure 52 Plot with 𝑄𝑡𝑜𝑡 hourly values vs hour of the day for building 
10922 in Tartu. 



 91 
 

𝑄𝑡𝑜𝑡 =  
𝑃𝐷𝐻𝑁 + 𝑃𝑖ℎ𝑔 + 𝑃𝑠𝑜𝑙𝑎𝑟 − 𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊 − 𝑃𝐷𝐻𝑊

𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡
=  

𝑃𝑡𝑜𝑡

∆𝑇
      [7.2] 

In the previous law, 𝑄𝑡𝑜𝑡 is the already mentioned specific total heat loss coefficient (in 

kW/°C), 𝑃𝐷𝐻𝑁 is the delivered space heating power from the DHN, 𝑃𝑖ℎ𝑔 is the power for 

internal heat gain, 𝑃𝑠𝑜𝑙𝑎𝑟 the power of solar heat gain, 𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊 the value of losses in DHW 

circuit, 𝑃𝐷𝐻𝑊 power delivered for domestic hot water (DHW), 𝑇𝑖𝑛 the indoor temperature and 

𝑇𝑜𝑢𝑡 the outdoor temperature. In case we are considering demand during night, of course 

solar heat gain disappears and so DHW, for the hypothesis explained in paragraph 4.9.1, 

regarding DHW loss calculation method. During the night, 𝑄𝑡𝑜𝑡 has the expression reported 

in equation 7.3. 

𝑄𝑡𝑜𝑡 =  
𝑃𝐷𝐻𝑁 + 𝑃𝑖ℎ𝑔 − 𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊

𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡
      [7.3] 

𝑄𝑡𝑜𝑡 is determined from experimental hourly values of demand, which is a representation of 

the hourly global heat consumption and with outdoor temperature values, assuming that 𝑇𝑖𝑛 

is constant during the hours, with a possible reduction during night-time.  

A critical issue must be specified regarding previous equations. They are mentioned in many 

studies that talk about ESC models and obtainable data with them. In addition to the already 

mentioned works by Eriksson M. et al., Milić V. et al., it was analysed also work by Rhodin 

P. et al. In these studies, a physical interpretation of the slope of the temperature dependent 

part of the ESC line (what here is called 𝑄𝑡𝑜𝑡) can be found, and it is the one that it was 

illustrated in these lines. However, parameters that appear in the equations [7.2] and [7.3] 

have a specific meaning and they cannot be confused with 𝐸𝑆𝐻 and 𝐸𝐷𝐻𝑊 that it was found 

in the results of the splitting procedure. 

To understand this difference, it is necessary a comparison between two different 

expressions of the ESC. The first one is the energy signature curve expression that it was 

used in chapter 4 for describing the energy necessary for space heating (equation [7.4] 

comes from a simple passage of the term min(𝑓(𝑥)) from the second member to the first 

member of the equation [4.14]). The second one (equation [7.5]) is obtained by multiplying 

both members of equation [7.2] by difference of temperatures 𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡. 

𝐸𝑆𝐻 + min(𝑓(𝑥)) = 𝑓(𝑥) = 𝐸𝑆𝐶(𝑥)      [7.4] 

𝑄𝑡𝑜𝑡 ∗ (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) =  𝑃𝐷𝐻𝑁 + 𝑃𝑖ℎ𝑔 + 𝑃𝑠𝑜𝑙𝑎𝑟 − 𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊 − 𝑃𝐷𝐻𝑊 = 𝐸𝑆𝐶(𝑥)    [7.5]  

In the previous equations, 𝐸𝑆𝐶(𝑥) are the points of the energy signature curve. By 

comparing the two formulas there is a similarity between terms. As described in articles 

mentioned before, the sum of 𝑃𝐷𝐻𝑊 and 𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊 is the so called “shifting coefficient” 

mentioned in paragraph 4.9. This fact is evident also by observing figure 53, where it was 

reported an example of an ESC curve taken from the articles, where they are indicated with 

terms 𝑃𝑑ℎ𝑤 and 𝑃𝑑ℎ𝑤𝑐. To be precise, in the mentioned articles there is the hypothesis of 

constant DHW consumption during the year. It is a simplification choice that it is not done in 

this analysis, otherwise it would be useless to perform splitting between SH and DHW 

consumption because results would be obvious. As a first approximation, and for exposition 

clearness of the parallelism, it is possible to assume that the sum of 𝑃𝐷𝐻𝑊 and 𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊 is 

equal to the shifting coefficient for the entire year. 
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So, as previously said, the sum of these two terms is equal to min(𝑓(𝑥)), the so-called 

shifting coefficient, as highlighted in equation [7.6]. Thanks to this consideration, it is 

possible to say that what in the model is called 𝐸𝑆𝐻, in this discussion it represents the sum 

of 𝑃𝑆𝐻 + 𝑃𝑖ℎ𝑔 + 𝑃𝑠𝑜𝑙𝑎𝑟, as reported in equation [7.7]. Of course, 𝑇𝑏 is the change point 

temperature (CPT). Thanks to this parallelism, it is possible to give a more detailed physical 

interpretation to the results of the model.  

min(𝑓(𝑥)) =  𝑃𝑙𝑜𝑠𝑠,𝐷𝐻𝑊 + 𝑃𝐷𝐻𝑊      [7.6] 

𝐸𝑆𝐻 = 𝑃𝐷𝐻𝑁 + 𝑃𝑖ℎ𝑔 + 𝑃𝑠𝑜𝑙𝑎𝑟       [7.7]  

Equation [7.6] is in accordance with the equations used to build DHW demand, reported in 

[4.15]. However, the 𝐸𝑆𝐻 value reported in equation [7.7] is not the final SH consumption 

obtained from the model. It is the 𝐸𝑆𝐻 before the rebalancing phase and before the correction 

of negative values. In poor words, it represents point of the ESC shifted down. This fact 

would be true if, as happened in the mentioned research, experimental points used to create 

the building’s model are referred to demand of the building. However, in this case, the 

situation is unluckier. In fact, experimental points are measured on the DHN side of the 

building’s heat exchange. This means that we have measurements of directly 𝑃𝐷𝐻𝑁. In reality 

we cannot say anything about real demand of the building, because all analysis is conducted 

using these data. So, equation [7.7] is true only if demand is known, but this is not the case.  

From this consideration it is possible to conclude that information about solar heat gain 

(𝑃𝑠𝑜𝑙𝑎𝑟) or internal heat gain (𝑃𝑖ℎ𝑔) are impossible to obtain from datasets. They could be 

estimated, but there is no necessity now.  

Because we are considering night period, the considerations are done taking into account 

equation [7.3]. Solar heat gain disappears, and internal heat gain is still present. However, 

no differences should be noticed in our model, because, for the reasons illustrated before, 

none of them are considered. 

Figure 53 An example of ESC curve taken from Eriksson et al. article, 
useful to check similarities in terms of names and parameters with the 
method implemented in this analysis. 
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It is possible to notice that, if there is a change in the indoor temperature (imagine that during 

night indoor temperature is lower), the temperature difference at denominator becomes 

smaller. If this happens, also heat delivered by SH plant becomes lower. Assuming that 

internal heat gains and losses in the water circuit do not change, also numerator tends to 

decrease. If this happens, 𝑄𝑡𝑜𝑡 should remain almost constant, as said before. From results 

reported in figure 51, it is possible to notice that the difference between values of 𝑄𝑡𝑜𝑡 during 

the night hours and the value for the complete model there is a difference about 15%.  

This difference could be explained by approximations due to the statistical approach of the 

model or by the decrease in thermal losses caused by a difference in indoor temperature 

(and a decrease in difference between indoor and outdoor temperature, too). To see if 𝑇𝑖𝑛 

plays a role in the determination of 𝑄𝑡𝑜𝑡 as slope of the temperature dependent part of the 

ESC it was tried to plot demand vs difference between indoor and outdoor temperature, 

instead of only outdoor temperature. It was performed an interpolation of experimental points 

of global heat demand, but the same results were obtained, so there is no influence of 𝑇𝑖𝑛 

in this particular operation. In addition to that, a difference in the order of 15% is still 

acceptable and perfectly coherent with also similar cases present in the studies of Rohdin 

P. and Milic V. Without more information it is difficult to give a more accurate interpretation 

of this fact. 

The information obtained from this discussion and from the ESC model of the building is 

extremely useful for many purposes. Compared to relying solely on specific energy use in 

kWh/m2, a typical parameter when there is the analysis of a building, this model provides 

additional valuable information. This includes the building's total loss term, 𝑄𝑡𝑜𝑡, as well as 

change point temperature and heat for DHW, losses in water circuit and SH heat load 

consumption.  

As a further consideration about results, it is important to spend some words for the DHW 

heat load consumption during the year. One of the results of the analysis is, as already 

mentioned, the vector that contains hourly DHW heat consumption. To check if results 

obtained are feasible, it was decided to sum all these values to obtain the total heat 

consumption for domestic hot water in one year of operation. it was decided, also, to 

calculate the heat consumption pro-capita for DHW for one year. It was used the equation 

reported in [7.8]. 

𝐸𝐷𝐻𝑊,𝑠𝑡𝑑 = 𝑚𝐷𝐻𝑊 ∗ 𝑐𝑝𝑤𝑎𝑡𝑒𝑟 ∗ (𝑇𝑢𝑠𝑒𝑟 − 𝑇𝑎𝑞𝑢𝑒) ∗ 365      [7.8] 

In the previous law, 𝐸𝐷𝐻𝑊,𝑠𝑡𝑑 is the standard consumption pro-capita for DHW, 𝑚𝐷𝐻𝑊 is the 

standard value for mass consumed per person per day (in case of residential building) and 

it was assumed it equals to 40 l/(day * person), 𝑐𝑝𝑤𝑎𝑡𝑒𝑟 is the specific heat of water, 4.186 

kJ/(kg * K), 𝑇𝑢𝑠𝑒𝑟 is the temperature at which domestic hot water must be available, it was 

assumed 46°C (this data was taken from the dataset since it is available, but this is a 

standard data) and 𝑇𝑎𝑞𝑢𝑒 is the temperature at which water is available from the aqueduct 

(it was assumed 3°C because Tartu has a cold climate).  

With that law it was calculated the DHW consumption in one-year pro-capita and this 

standard value it is equal to 730 kWh/person. With this value and the total DHW consumption 

of the building (𝐸𝐷𝐻𝑊) in one year it was performed a division to calculate the number of 

people, using equation [7.9]. 
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𝑁𝑝𝑒𝑜𝑝𝑙𝑒 =
𝐸𝐷𝐻𝑊

𝐸𝐷𝐻𝑊,𝑠𝑡𝑑
       [7.9] 

For this specific building it results from calculation that there are around 220 people living 

there. This is in accordance with the considerations done before, where it was said that this 

should be a big residential building. However, it is a pretty high number of people, assuming 

3 people living in an apartment, there would be more than 70 apartments. It could be, of 

course. Proceeding with the analysis of results, it will be shown that with the correction 

procedure of DHW demand in winter described in paragraph 4.9, the number of people 

decreases up to 190 (so around 60 apartments). 

Regarding the other hours of the day, no particular differences are present. Profiles are quite 

similar one to each other and any eventual points of interest are described in the previous 

lines. The next figure shown in this site is the figure number 27 in the output of the code. In 

this paragraph, it is reported in figure 54. It represents the same identical plots and data 

shown for hourly values, but this time the vector considered is the 8760-elements vector 

which contains all hours of the year. Meaning of every element is the same as described for 

the figure 50. As can be seen, there are much more points, and the reading is more 

complicated. However, the presence of a higher number of experimental values contributes 

to reduce variations and oscillations in the demand profile. By considering plot number 8, in 

fact, DHW demand (the red line) seems to be more similar between winter and summer than 

before, even if high differences in terms of oscillation of profiles are still present.  

Talking about some peculiar things about this analysis, confidence interval plot shows that 

almost every experimental point is inside the 95% CI area. There are only some exceptions, 

due to the normal times where there a request for a particular energy. An important zone of 

points outside the CI is present in the lower-right area of the plot. However, these points 

represent hours with DHW consumption only, without space heating, even if there are low 

Figure 54 Results of the analysis of the 8760-elements vector of demand for building 10922 in Tartu. 
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temperatures. This is a perfectly normal event: sometimes there is no necessity for SH even 

if temperatures are low, so only DHW or losses in the DHW circuit are present.  

From the analysis of singular hourly vectors, almost all these points of lower demand are 

present in night hours (between 21.00 pm and 5.00 am). In figure 55 it was reported CI plots 

of the mentioned hours of the building in analysis to show this fact. This characteristic of 

demand is consistent with the previous interpretation of the reason why these points are 

outside from the confidence intervals. During night, in fact, users sleep, and space heating 

becomes less important, when temperatures are not so low. Of course, if the outdoor 

temperature is many degrees below zero, thermal losses is truly relevant and space heating 

is necessary to keep good indoor comfort condition. These points of zero demand could also 

be explained by the presence of low outdoor temperatures that could occur in some days 

when SH plant is already turned off.  

Figure 55 Hours between 0.00 am and 6.00 am (from top left). With red circles the hours without SH are highlighted. 



 96 
 

Let us proceed with other results of the code. The next image from outputs is the number 

25, reported here in the figure 56. Here there are the boxplots of energy consumption divided 

into workdays, Saturdays, Sundays and total. For this particular building it can be said that 

no big differences are present between weekends and weekdays. Looking at red lines 

(median values for each hour of the day) it is clear that during night there is the highest 

consumption. This fact is consistent with the previous considerations about no space heating 

at night in some periods and it will be explained why.  

It is evident form plots reported in figure 55 that days without space heating demand are low 

and they are all situated in the higher temperatures zone. So, they are too low to have a 

relevant effect in median consumption. In the boxplot of figure 56 they are represented by 

the lowest boundary of the blue box and not by the median red line. This is the reason why 

they have small influence, but why consumption is higher during night? 

As said before, due to the way these data are collected, there is no consideration of both 

internal heat gain and solar gain. As a consequence of this fact, when temperatures are low, 

and this happens for most of the time in winter season, higher heat energy is necessary also 

during night. This energy is higher than the one requested during the day because at night 

there is no effect of solar gain. On the other hand, during the day the solar gain plays a key 

role giving free extra energy to the indoor environment. It must be considered, also, that 

during the day outdoor temperatures are higher than night, so thermal losses are lower, with 

a consequence of lower demand. In simpler words, during the day the sun provides extra 

energy and makes the outdoor temperature higher. So, the thermal energy required from 

the building to the DHN (the parameter measured and collected in the dataset) is lower than 

the night-time demand.  

During workdays, the south-west plot in figure 56, no particular peaks are noticed during the 

day. There is a local maximum at index 12, so between 12.00 am and 13.00 pm, maybe for 

the lunch time. In this period, assuming in a consistent way that this is a residential building, 

Figure 56 Boxplots of yearly energy consumption divided into saturdays, sundays, work-days and total of building 10922 in Tartu. 
Image 25 of the output of the code. 
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some people return from work to eat at home and some extra energy is required for the dish 

washing. After that local peak demand median values return lower until 19.00 pm, when they 

start increasing. This phenomenon could be explained by a combination of sun 

disappearance (no more solar heat gain), users return from work (they could increase 

setpoint temperature in the indoor environment), high probability of showers and dish 

washing.  

Regarding the Sunday plot, it can be seen that during morning consumption is, in general 

smoother compared to workdays, ant the peak between 7.00 am and 8.00 am is lower, 

probably because during Sunday people sleep more and there is less necessity of hot indoor 

environment from the early morning. The heating of indoor space is, in this way, distributed 

between more hours and the solar heat gain plays a key role also in this morning load. 

Saturday is remarkably similar to Sunday, without relevant differences. 

The next image taken from the outputs is about summer consumption. In figure 57 there is 

the image 28 from the output of the code. There are 10 plots. On the left there are workdays 

and on the right weekends. Each line represents a different month. It is clear that in May 

and in September heat consumption is much higher than the other summer months (June, 

July, August). This happens because, having Tartu a cold climate, in May and in September 

space heating is still necessary. Just to have an idea of the impact of this type of 

consumption we can look at the difference between May and June. During central hour of 

the day columns are almost two times higher in May than in June and this difference 

becomes much larger during night hours. In this period, in fact, May’s columns are more 

than 3,5 times higher than June’s columns. This fact is consistent with the previous 

considerations about space heating consumption at night.  

By considering a single month it is much more evident the difference between weekend and 

workdays, confirming previously information. In May, for example, it is evident that during 

Figure 57 Global consumption in summer months (from May to September) divided in workdays and weekends for building 10922. It 
is the image 28 among code's outputs. 
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morning the profile is smoother than June. During summer months the difference in profile 

between workdays and weekends is much less evident and to study them in a more accurate 

way it is necessary a deeper analysis. With this figure, in fact, outputs of the first part of the 

analysis are out.  

In the figure below, number 94, it was reported results for the analysis of correlation between 

TMA and energy consumption. The meaning of this exam is reported in paragraph 4.5. for 

this building it is possible to say that the thermal inertia is quite high. Form this analysis it 

emerged that the highest correlation is in correspondence of the 28th previous hour. Among 

the analysed buildings this is the one with the highest inertia. This fact is probably due to 

the large dimensions of the structure.  

From this point, all figures proposed are referred to the detailed analysis of DHW profile 

during summer and the last part of the analysis about the operation of smoothing of the 

DHW profile in winter. 

As a first result of this part of the analysis, it is reported the match matrix. This is the results 

of all comparisons between different days of the weekend performed with Student’s t-test 

and Fisher criterion. The matrix is reported in figure 58. It can be seen that values are not 

black or white. In fact, the similarities between different days are not so clear. This is due to 

the small number of weeks considered, the uncertainty of methods and the fact that during 

summer it is more likely that building has some extraordinary periods of work (because users 

are on holiday, for example). All these reasons and their implications were discussed in 

paragraph 4.9.1.  

The day that has higher difference with the others is Friday (number 5). So, it was decided 

to insert it in group 1 and the other days in group2. For this building, all following results are 

obtained considering the groups composed like that. In figure 59 there is the outputs of the 

Figure 58 Match matrix for the building 10922 in Tartu. 

Figure 94 Effect of temperature lag on energy use of building 10922, Tartu. 
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paragraphs 4.9.1 and 4.9.2. on the left there are all plots referred to group 1 days and on 

the right the ones referred to group 2. The first plots are the average profile during summer 

months (from June to August). Some minor differences can be noticed, but more or less the 

pattern look remarkably similar. This is because in summer there is only DHW consumption, 

so the differences that occur between workdays and weekends described before do not 

happen.  

Proceeding with plots, we can find Tcal plots. They are parameters useful for method 

implementation and to separate hours of the day in minimum, medium and peak 

consumption period, but they are not linked to any physical meaning.  

Last plots are more interesting. First, it can be seen that hours with minimum consumption 

of DHW are belonging to night period. So, it was correct to assume that during night there 

is no consumption of DHW from users because most of them are sleeping. Regarding this 

point, it is also clear that there are no particular differences between considering minimum 

value of consumption or the mean value among these hours. This means that both method 

one and method two described in paragraph 4.9.1 for the evaluation of losses in DHW circuit 

are correct.  

Going further, hours with medium consumption are the most diffused during the average 

day profile. This is reasonable. Another relevant fact is that peak consumption hours are 

few, only 3,4 hours in an entire day. This fact is reasonable too. Regarding them, it can be 

noticed that they are especially during the morning (between 10.00 am and 11.00 am) and 

during dinner time (between 20.00 pm and 22.00 pm). First peaks can be explained by 

morning showers or early lunch, while evening peaks are easily explained by showers of 

users and hot water necessity for dish washing, as discussed before.  

Another interesting fact is that there is small gap between peak consumption and minimum 

consumption. Demand goes from approximately 8 kWh for minimum demand and 13 kWh 

Figure 59 Results from the splitting of hours into minimum, medium and peak periods in building 10922, Tartu. 
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for the maximum peak. One thing to say about that is that, as highlighted before, DHW 

demand is much smaller than SH demand. In addition to that, an interpretation of this smooth 

profile during the day, without peak much higher than minimum, is that with a lot of users 

and apartments, especially if they have different routines, jobs and habits, there is a 

flattening of demand profile. Abrupt demand from one user cannot be seen in average 

consumption because we are considering data of the entire building. This fact makes the 

hypothesis that this is a large residential building stronger.  

Talking about numbers, Emin is 8.62 kWh for the group 1 and 9.05 kWh for the group 2, while 

Emax is 12.31 kWh for the group 1 and 12.77 kWh for the group 2. As said before, and now 

confirmed by numbers too, there is a truly minor difference between group 1 and group 2 

days. It is important to underline the fact that this is just a case, of course differences 

between workdays and weekends depend a lot on the intended use of the building.  

The next figure, the number 60, shows standard profile for summer and for winter built with 

method illustrated in paragraph 4.9.3 and 4.9.4. There are not so many things to say about 

them. They are useful for the operation of correction of DHW profile in winter and all the 

considerations done in the previous lines are valid for them too.  

From the differences in the columns’ height, it is possible to say that the difference between 

average DHW in summer and in winter is about 50%. For winter season, Emin is 13.15 kWh 

for the group 1 and 13.71 kWh for the group 2, while Emax is 18.77 kWh for the group 1 and 

19.33 kWh for the group 2. Difference is quite big, but it depends on mean values for DHW 

in winter, so it depends on the model used for splitting operation. This is the best result 

obtainable with this approach. However, after correction operation, both total energy 

consumption for DHW and oscillations in consumption profile are reduced.  

In the last image from code’s outputs there are values corrected of DHW consumption, 

reported here in figure 61. Starting from the upper-left plot there are Mondays, Tuesdays, 

Wednesdays, and so on. Red lines represent the limit of summer, before and after that there 

are winter months of 2019 (year taken in analysis). Regarding information provided by these 

plots, comments done before are still valid. In this site the more regularity of DHW demand 

in highlighted. It is clear that oscillations of demand during winter period are much less and 

with minor intensity. Mean values of DHW in winter is still quite to high compared to mean 

Figure 60 Standard profiles in winter and in summer for days of group 1 (left) and group 2(right) in building 10922, Tartu. 



 101 
 

value in summertime, but this is the results of the method. By applying techniques to change 

this value there would be a complete change in physical concept at the basis of the method.  

Of course, if DHW demand is modified for making it more regular and more like the summer 

demand, SH heat load consumption changes too. In correspondence of points where DHW 

measured value has a substantial difference with winter standard profile and, as a 

consequence, its value is corrected, the demand subtracted by DHW is added to SH. It 

happens that SH points are no more distributed perfectly along a line but follow a freer 

distribution. However, the general path is still a line, in accordance with hypothesis of ESC 

model. This fact can be noticed in the last plot of figure 61.  

As said some lines ago, with modified value of DHW consumption there is a reduction of the 

total energy destinated to this purpose. Therefore, by applying equation [7.8] and [7.9] it is 

possible to calculate new number of people. With the parameters of correction implemented 

in the method and described in paragraph 4.9.5, it results that in the building there should 

be 190 people. This value is consistent with the conclusion that the building in analysis is a 

large residential structure, too. As explained in future work paragraph, chapter 8, if just a 

little more information would be available, accuracy of the model could increase a lot. With 

this method, by knowing just the number of occupants it would be possible to calculate the 

standard consumption of the building and applying the correction procedure to make the 

DHW total consumption obtained from splitting plus correction operations equal to standard 

consumption calculated with equation [7.8]. Of course, standard consumption is not equal 

to real consumption of the building, but it remains a big step forward compared to the actual 

model.  

With this figure outputs of the implemented tools are out. A lot of information can be 

extrapolated starting from just hourly total consumption for one year. All these 

Figure 61 Representations of DHW and SH before and after correction of DHW profiles. From top left there are: Mondays, Tuesdays, 
Wednesdays, Thursdays, Fridays, Saturdays, and Sundays. Last two plots are about 8760-values hourly vector of year consumption. 
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considerations can be used for many purposes: from improving DHN operation to study and 

apply retrofitting interventions. Detailed explanation of this analysis’ potential is provided in 

conclusions’ chapter (the number 9). The following buildings from Tartu’ databased are not 

subjected to this detailed analysis of results because most considerations are true also for 

them. In the following paragraphs it was decided to present just the most relevant cases, if 

they are present, and it was wanted to highlight just their peculiarity.  

 

7.2 Building “10051” in Tartu. 

The next building from Tartu’s dataset it was wanted to show is building 10051. The decision 

fell on it because in summer it has neither DHW nor SH consumption. By using this building, 

it was proved that this analysis provides satisfactory results even if it is impossible to obtain 

information from DHW consumption in summer, because it is absent. However, detailed 

DHW summer consumption profile analysis and correction of winter DHW profile as 

described in paragraph 4.9 cannot be performed. For this reason, it will be shown here only 

results from the first part of the analysis. It is relevant to anticipate that, due to the absence 

of DHW consumption in summer, and the impossibility to correct DHW profile in winter, so 

it presents some oscillations. 

There are not so many differences among hourly vectors. It is reported here, in figures 62 

and 63, outputs for both a night hour and a day hour.  

Meanings of plots are described in the previous paragraph, 7.1, so it will not be repeated 

them here. In the second plot it is possible to notice that it is quite easy to determine CPT 

by observing variation of beta parameter (𝛽). Its constant behaviour, and equal to 0, after 

CPT is due to the fact that neither SH nor DHW is present in summer period, this means 

that when SH disappears also DHW is absent. Because both are null for every outdoor 

temperature in this zone, their interpolation gives always zero as parameter 𝛽 (see equation 

Figure 62 Figure from the output of the building 10051's analysis. Hour between 5.00 am and 6.00 am. 



 103 
 

4.6). Because of this fact, the temperature independent part of the ESC is always a 

horizontal line. 

Talking about confidence intervals, even in this case they are applied only on the 

temperature dependent part of the demand. The only points outside the confidence area are 

the zero-consumption hours. The explanation for them is the same given in the previous 

analysis in 7.1. Even in this case, and ad it happens for every building in Tartu’s database, 

the original dataset was already pre-processed.  

This building was already studied in the article of Lumbreras M, Garay-Martinez R. et al., 

together with other buildings of this dataset. However, for this particular building also the 

intended use is provided: it is an apartment building. From the maximum value of demand 

(around 30 kWh) it is possible to say that this is smaller than the previous building (10922). 

Nevertheless, number of apartments in the structure is quite high because no relevant peaks 

of demand is present in some hours. As explained before, in a single house or in a group 

with a few numbers of apartments, peaks, especially due to DHW, are much more evident. 

With many apartments, peak caused by a single user are less evident.  

Another reason consumption seems to be so regular is that DHW load is not provided by 

DHN, so it is not measured by meters. With Tartu’s dataset it is possible to understand if 

DHW is provided by DHN or not by analysing data from meters. As described in paragraph 

6.1, there is one sensor which measures the temperature of hot water available to users. By 

looking at data for building 10051 it can be noticed that this temperature is always 0, for 

every moment of the year. The conclusion is that no water is circulating in this pipe, meaning 

that DHW is provided in a separate way (for example a gas boiler or solar collectors).  

By taking into account this fact, it is clear that the operation of splitting between DHW and 

SH is meaningless. However, other conclusions discussed in this paragraph are valid and 

demonstrate the fact that the analysis proposed can give useful considerations even if some 

Figure 63 Figure from the output of the building 10051's analysis. Hour between 13.00 pm and 14.00 pm. 
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of the tools cannot be applied (in this case the method for SH and DHW splitting and the 

detailed analysis of DHW profile).  

By analysing other hours of the day, average consumption during the winter season is higher 

during night than during day. This, as happened for the previous building, can be imputed 

to the absence of solar heat gain during night hours and the lower outdoor temperature. 

Thermal losses are higher and extra energy is not available, so the energy provided by the 

DHN must be higher.  

Another important parameter obtainable from the analysis is the already mentioned 𝑄𝑡𝑜𝑡. In 

the previous paragraph a detailed explanation of its meaning is provided. For this building, 

𝑄𝑡𝑜𝑡 = −0.99 𝑘𝑊ℎ/°𝐶. Coefficient of global thermal losses is much lower than the previous 

building. Because this value represents the slope of the interpolation line on the temperature 

dependent part of the ESC model for the building, a different value for 𝑄𝑡𝑜𝑡 means that the 

two lines are not parallel. If they are not parallel, it means that one the demand of one 

building is more dependent to outside temperature than the other.   This is true, but it is 

important to keep in mind that we are not considering specific values. This means that 𝑄𝑡𝑜𝑡 

is extremely related to the dimensions of the building.  

To have the possibility to make a comparison between different buildings, it is necessary to 

establish a criterion for creating specific values of demand. The most useful one would be 

dividing hourly consumptions by the floor area of the building. This criterion would give us 

also the possibility to compare their losses coefficient and consumption with standard value 

reported in literature. Unluckily floor area information is not available. Another possibility 

could be using number of occupants or number of apartments. This would be nice, but for 

some building this value cannot be calculated because it is obtained with equation 7.9, but 

not always DHW load is available (this is the case of building 10051). To have the chance 

to make a sort of comparison it was decided to create specific profiles of demand by dividing 

every measured value by the maximum value of demand. By applying this criterion, it 

emerged that building 10922 and 10051 have a remarkably similar response to variation of 

outdoor temperature in terms of heat consumption and they present an almost identical 

specific ESC in the temperature dependent part of the curve. 

Regarding at 𝑄𝑡𝑜𝑡, it is possible to create also for this building a table like the one presented 

for building 10922 in figure 51. In this case, values for 𝑄𝑡𝑜𝑡 are much more similar than 

building 10922. This is surely due to the smaller dimension of the building, which could lead 

to a more stable value. In figure 64 and 65 it was reported the table that contains 𝑄𝑡𝑜𝑡 values 

per each hour of the day and their representation in a plot with the same axis as figure 52, 

to make a fair comparison.  

Even in this case, but this is a general trend for this type of building, higher values of 𝑄𝑡𝑜𝑡 

are present during day hours. Even in this case difference between 𝑄𝑡𝑜𝑡 values are in the 

order of 10%, as happened for building 10922. All possible explanations for this 

phenomenon are presented in the previous paragraph (7.1) and it would be just a repetition 

to present them also in this site. 
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As said before, last two plots in figures 62 and 63 are useless for this building. Because 

there is no energy provided for DHW purpose by DHN, splitting demand is a meaningless 

operation. As a consequence of that, DHW part of load does not exist in reality, so it must 

be not considered. However, this fact offers the possibility to do some considerations about 

the model for SH.  

Because no DHW is present, all experimental points refer to SH consumption. Talking about 

CPT, it is evident that the mathematical approach proposed to determine it is correct even 

in this case. In fact, all points different from 0 are included in the temperature dependent 

part of the ESC. In addition to that the accuracy of representing SH consumption with the 

regression line can be controlled. The parameter that can give information about that is R2. 

For this building, R2 is between 0.72 and 0.82 for every analysed hour. For the complete 

model, with all hourly values of the entire year, R2 for the temperature dependent part is 

0.82. This fact confirms that using this type of model to estimate SH consumption, as it was 

done in the applied methodology, is correct.  

In figure 66 it was reported analysis’ output for the global hourly demand. No other specific 

considerations are necessary for this image. All interesting points were highlighted in the 

previous lines. 

Figure 64 Table with 𝑄𝑡𝑜𝑡  hourly values for building 10051 in Tartu. 

Figure 65 Plot with 𝑄𝑡𝑜𝑡 hourly values vs hour of the day for 
building 10051 in Tartu. 
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By continuing the analysis, in figure 67 it was reported the boxplot of global energy 

consumption. Because DHW is absent, this is an extremely useful tool to understand the 

SH profile during winter in residential building in Tartu’s zone. As can be seen, hypothesises 

about SH operation are still valid. During the day, the demand is lower because there are 

both the effect solar heat gain and higher temperatures. In weekends consumption during 

the morning hours is smoother and it remains high for more time because, an average, users 

sleep more than workdays and stay at home, not going to work. The minimum in SH 

consumption during the workdays happens between 15.00 pm and 16.00 pm. This fact is 

probably due to the presence of SH for the previous hours and the absence of users from 

home. Peaks are between 5.00 am and 8.00 am, probably because there is the necessity 

of provide energy to increase indoor temperature when users wake up. Unfortunately, no 

information about indoor setpoints is available, so it is possible just to make hypothesises 

based on average behaviour of users.  

Regarding boxplot of DHW consumption in summer very few words can be said. There is 

no demand for DHW or SH so, as shown in figure 68, demand is always zero. It is important 

to notice that in this building, also in May there is no consumption. It is probably due to a 

different users’ behaviour, or a different type of residence compared to building 10922, 

where also in May there was SH consumption, even if it was small.  

Figure 66 Results of the analysis of the 8760-elements vector of demand for building 10051 in Tartu. 
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It can be seen some SH demand during September, but because these plots consider 

average demand during the entire month, it is possible that SH demand is present only in 

few days. In fact, by analysing September values it emerged that SH was turned on between 

17.00 pm and 18.00 pm on the September 20th. So, the small demand present in the 

September’s plot is caused by these last 10 days of the month. For this reason, this plot has 

no useful information. 

Figure 67 Boxplots of yearly energy consumption divided into saturdays, sundays, work-days and total of building 10051 in Tartu.  

Figure 68 Global consumption in summer months (from May to September) divided in workdays and weekends for building 10051. 
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In the figure below, number 95, it was reported results for the analysis of correlation between 

TMA and energy consumption. The meaning of this exam is reported in paragraph 4.5. for 

this building it is possible to say that the thermal inertia is quite high. However, the analysis 

in this case does not give satisfactory results, as it can be seen in the plot, where no 

consistent minimum points are evident.  

 

As explained before, the remaining part of the analysis is useless and meaningless in this 

building. However, the fact that useful information can be obtained by applying these tools 

emerged from the presentation of results done in this paragraph. For this reason, it is 

possible to say that the fact of having no information during summertime does not impede 

the application of the method. Nevertheless, it is important to keep in mind to interpretate 

results to avoid completely wrong conclusions. 

 

7.3 Building “10686” in Tartu. 

After a standard example as building 10922 and a case where there is no DHW provided by 

DHN, here it was wanted to show results of the analysis of a building with a much more 

variable experimental dataset. Until this point, it was presented buildings with regular 

datasets, so that almost every experimental measurement stays inside the confidence area. 

In this paragraph it will be shown outputs of the code when it is used in a building with much 

more dispersive heat load and with incredibly low energy consumption during summer.  

Figure 94 Effect of temperature lag on energy use of building 10051, Tartu. 

Figure 69 Hourly energy demand versus outdoor temperature in building 
10686, Tartu 
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For this building, both SH and DHW are provided by DHN, so the complete analysis can be 

performed. In figure 69 it was reported the global energy demand versus outdoor 

temperature for every hour of the year, to have an idea of degree of dispersion of 

experimental points. It is important to underline that these data, like the others in Tartu’s 

database, were already pre-processed, so dispersion cannot be imputed to shoddy quality 

of starting data.  

Figure 69 Hourly demand vs T out for the entire year in building 10686 in 
Tartu. 

Figure 70 Figure from the output of the building 10686's analysis. Hour between 5.00 am and 6.00 am. 

Figure 71 Figure from the output of the building 10686's analysis. Hour between 22.00 pm and 23.00 pm. 
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By observing hourly demand vector, it is possible to give an interpretation of this dispersion. 

Points of higher demand, in fact, do not appear randomly but they happen during a precise 

hour of the day. In particular it emerged that lowest point of demand occur always between 

5.00 am and 6.00 am, while peaks of demand are between 22.00 pm and 23.00 pm. it is 

reported in figures below the outputs of hourly analysis for the hour between 5.00 am and 

6.00 (figure 70) am and between 22.00 pm and 23.00 pm (figure 71) to show the huge 

difference in terms of points of consumption.  

Analysing figure 71 it is possible to notice the importance of utilising confidence intervals. In 

the figure is reported the results of the analysis with all 365 values for the year considered. 

However, when there is a substantial difference between period with SH and without SH, as 

happens in this particular case, the interpolation of the temperature dependent part could 

be less precise. As emerged from the plot and also by value of R2, regression line is not 

good representation of what happens in reality. Value of R2 is 0.37, extremely low value 

compared with other values from different hours. In general, they stay between 0.5 and 0.71. 

Lower values are always caused by wrong interpolation due to the high influence of points 

with zero demand. In fact, even if they are relatively low in terms of number (less than 20) 

they have high weight when interpolation is done because of their low values of demand. 

For this reason, it was decided to perform, just for checking purpose, an analysis by 

excluding these points in the interpolation of the temperature dependent part of the curve. 

The result is reported in figure 72. In this way, R2 increases to 0.45, indicating an 

improvement in accuracy of the fitting. However, improvement is not so high. 

Talking about figure 70, about hour between 5.00 am and 6.00 am, the behaviour is different 

compared to the others seen until this point. Values of heat load consumption are much 

lower, closer and it is difficult to individuate a straight line. This fact emerges also from the 

analysis of 𝛽 plot, where oscillations are much more evident and present. The interesting 

part of the line, where the decrease should be evident because of the passage from a 

temperature independent zone to a temperature dependent presents a descent slower than 

usual behaviour. Also, the magnitude of 𝛽 is much different from other hours of the day. In 

general, it is always lower than -0.8 for all hour of the day, except for this specific hour, 

where the maximum value is higher than -0.4. This highlight the fact that the demand in this 

hour is much less dependent to outdoor temperature than other hours, suggesting that SH 

is not so relevant, or it is limited to a certain value. 

Talking about this last point, it emerged also from analysis of Lumbreras M. and Martinez-

Garay R. that this building presents a so-called night setback. It consists of the limitation of 

Figure 72 Results of interpolation and confidence interval after remotion of points far from confidence line in building 10686 
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energy provided to the building caused by a limit imposed by the manager of the district 

heating network. This is a usual operation to save some energy by limiting heat provided to 

the building. It is done in hours when there is small demand, especially during the night, 

when users are sleeping. It is possible only for small amount of time because a prolonged 

application could cause discomfort. It is done in this hour because thermal inertia of the 

building can guarantee an adequate indoor temperature, until the reactivation of the SH 

plant for the morning heat supply at 6.00 am (data emerged from the analysis of other hours’ 

profiles). 

Regarding order of magnitude of heat demand, maximum global heat consumption here is 

about 55 kWh. It means this is a building with a larger size than 10051 but much smaller 

than 10922.  

With highly dispersed data it is difficult to provide an accurate value for the global heat losses 

coefficient 𝑄𝑡𝑜𝑡. Furthermore, by having significant differences between hours of the day, 

𝑄𝑡𝑜𝑡 values also reflect these discrepancies. In figure 73 it was reported the table with hourly 

values for 𝑄𝑡𝑜𝑡 and in figure 74 there is the plot where its trend is drawn. The same axis 

proportion as the previous similar plot (figures 65 and 52) are maintained, to have the 

possibility to make a comparison.  

It is interesting that there are not big differences in values of 𝑄𝑡𝑜𝑡. As said before, biggest 

discrepancies in these values can be notice in correspondence of hours with more particular 

behaviour. Hours of major interest are the one between 5.00 am and 7.00 am and between 

22.00 pm and 23.00 pm, as highlighted in previous lines. It can be seen that in the morning, 

when the night setback occurs and the energy provided is presumably limited by the DHN 

Figure 73 Table with 𝑄𝑡𝑜𝑡  hourly values for building 10686 in Tartu. 

Figure 39 Plot with 𝑄𝑡𝑜𝑡 hourly values vs hour of the day for 
building 10686 in Tartu. 
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manager, 𝑄𝑡𝑜𝑡 is higher (lower in absolute terms), underlining the fact that energy 

consumption has less dependence to outdoor temperature. Vice versa, during the peak hour 

at night, 𝑄𝑡𝑜𝑡 assumes the lowest value (the highest in absolute term) highlighting a high 

dependence on outdoor temperature. However, these are just particular hours of operation 

during the day (only 2 hours among 24), so it would be not fair to consider them as a 

representation of the building’s behaviour. It can be seen that the other hours present almost 

the same value for 𝑄𝑡𝑜𝑡, much more similar to the one obtained from 8760-elements vector 

analysis (an entire year). In this case it emerged that 𝑄𝑡𝑜𝑡 = −1.19 𝑘𝑊ℎ/°𝐶.  

Even in this case, 𝑄𝑡𝑜𝑡 depends on the dimension of the building, so it is impossible to directly 

compare this value with other 𝑄𝑡𝑜𝑡 from different buildings. However, it was calculated even 

in this case the specific global heat losses coefficient by dividing it by the maximum load. 

After that, it was compared the line created using specific 𝑄𝑡𝑜𝑡 and specific demand at 0°C 

to have an idea of the losses’ behaviour of different buildings. The expression used for the 

calculation of specific 𝑄𝑡𝑜𝑡 and the specific regression line are written in equations [7.10], 

[7.11] and [7.12].  

𝑄𝑡𝑜𝑡,𝑠𝑝𝑒𝑐 =
𝑄𝑡𝑜𝑡

max(𝑒𝑛𝑒𝑟𝑔𝑦)
       [7.10] 

𝛼𝑠𝑝𝑒𝑐 =
𝛼𝑡𝑜𝑡

max(𝑒𝑛𝑒𝑟𝑔𝑦)
             [7.11] 

𝐸𝑚𝑜𝑑𝑒𝑙 =  𝑄𝑡𝑜𝑡,𝑠𝑝𝑒𝑐 ∗ 𝑇𝑜𝑢𝑡 + 𝛼𝑠𝑝𝑒𝑐       [7.12] 

In the previous equations 𝑄𝑡𝑜𝑡,𝑠𝑝𝑒𝑐 is the specific global heat losses coefficient, 𝑄𝑡𝑜𝑡 is the 

global heat losses coefficient, max(𝑒𝑛𝑒𝑟𝑔𝑦) is the peak of experimental values of heat 

consumption, 𝛼𝑠𝑝𝑒𝑐 is the specific interception of y-axis (demand when 𝑇𝑜𝑢𝑡 is 0°C), 𝛼𝑡𝑜𝑡 is 

the interception of y-axis (demand when 𝑇𝑜𝑢𝑡 is 0°C), 𝐸𝑚𝑜𝑑𝑒𝑙 is the value of demand obtained 

from the regression model, 𝑇𝑜𝑢𝑡 is the outdoor temperature. For the following comparison 

between different buildings, it was always considered 𝑄𝑡𝑜𝑡 and 𝛼𝑡𝑜𝑡 from the results of the 

8760-elements vector (the entire yearly demand) analysis.  

Figure 75 Comparison between specific interpolation lines of the 
temperature dependent part for buildings 10922, 10051 and 10686 in 
Tartu. 
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Results of this analysis are reported in figure 75. It is clear the fact that, using this criterion, 

building 10922 and 10051 has a similar behaviour, as said in the previous paragraph, while 

consumption of building 10686 has less dependence on outdoor temperature. This is an 

indicator of a probable better thermal insulation of building 10686. In case of retrofitting 

possibility, it would be better to focus the attention before on buildings 10922 and 10051, 

and after on 10686. 

Continuing talking about results, in figure 76 it was reported the output of the 8760-elments 

vector. Here there is the analysis and the splitting between SH and DHW performed for the 

whole demand of the year. It is evident the high irregularity of the demand profile. 

Oscillations are much more evident and with higher intensity than previously analysed 

buildings. However, the proposed method gives consistent results even in this case. From 

the last plots, in fact, it is possible to notice that sudden peaks of demand are covered by 

DHW heat load. This is the most likely interpretation of abrupt growth in demand. Especially 

for summer consumption, it would be strange to have peak of space heating consumption 

during summer days, where outdoor temperature is over 20°C. Summer peaks are clearly 

caused by sudden DHW heat request.  

Talking about confidence intervals, it emerges that there are many points outside the 

confidence zone. By analysing single hour vector almost, as described before, it is evident 

that almost every value in the upper zone of the plot belongs to the period between 22.00 

pm and 23.00 pm, the peak hour, while a major part of points below the lower confidence 

line happens between 5.00 am and 7.00 am, the period with minimum consumption. So, by 

considering points inside the confidence zone it is possible to obtain a fair interpretation of 

the building’s behaviour during most of the time of its operation.  

Because there is summer consumption it is possible the estimation of number of people 

living in the building. Assuming that it is a residential building, hypothesis very probable 

Figure 76 Results of the analysis of the 8760-elements vector of demand for building 10686 in Tartu. 
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because of conclusions emerged from the analysis of the following part of the outputs, 

presented in the next lines, it can be used the method illustrated in paragraph 7.1 to have 

an idea of the number of people. By using equation [7.9] and with the DHW heat 

consumption obtained from this first part of the analysis, there is an estimation of 63 people 

living there. By assuming an average value of 3 people per apartment, there would be 21 

single dwellings. This data is consistent with the ones found previously and it is reasonable 

with the dimensions of the heat demand. Even in this case after smoothing operation number 

of estimated people decreases because annual DHW heat load decreases. 

Figure 77 Demand splitted vs T out of 8760-elements demand analysis in building 10686 in 
Tartu. 

Figure 78 Boxplots of yearly energy consumption divided into Saturdays, Sundays, workdays and total of building 10686 in Tartu. 
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It is clear by observing the last plot in figure 76, in fact, that DHW load is quite accurate, but 

between summer and winter there is a global increase in this type of load. it is possible to 

distinguish a sort of base load both in summer and in winter, highlighted in figure 77 with a 

blue circle. In addition to those points and the extraordinary high values of DHW heat 

consumption (peaks), there is a zone, highlighted with yellow circle, of intermediate 

consumption. It is higher than baseload, but lower than peaks and it is concentrated in 

temperatures close to the CPT. This zone is created by the model used for estimating SH 

and the fact that near CPT space heating demand is lower. This means that higher points 

of demand in temperature near CPT are caused by DHW.  

After the hourly vector analysis, in the following lines it will be provided some comments 

about boxplots of global heat load and about summer profile. Starting from the first one, in 

figure 78 there are the plots divided in Saturdays, Sundays, workdays and the complete 

week. In these plots it is evident the presence of outliers, highlighted with red cross (+). 

Hours where they are much present is the minimum consumption period, between 5.00 am 

and 7.00 am. This period represents the minimum consumption moment for every day, no 

distinctions are made between weekends or workdays. It is possible to notice that there is a 

higher number of outliers during the workdays, but this is just because there are more days 

considered to draw this plot (for every week there are only 1 Saturday, 1 Sunday but 5 

workdays). The maximum consumption hour is between 22.00 pm and 23.00 pm, as said in 

the previous analysis. Even in this case, no differences are present between workdays and 

weekends.  

Regarding the other hours of the day, during the night there is a similar consumption 

between workdays and weekends. The only notable difference occurs between 2.00 am and 

3.00 am, where during weekends consumption is lower. Because this building is subjected 

to night setback, as emerged also in the already mentioned analysis of Lumbreras M., 

Garay-Martinez R. et al., it could be possible that this reduction of heat provided during 

Figure 79 Global consumption in summer months (from May to September) divided in workdays and weekends for building 10686. 



 116 
 

weekends is caused by DHN management. Another difference can be noticed in 

correspondence of hour between 12.00 am and 13.00 pm, where load in weekends is lower 

than workdays. Regarding the rest of the hours, it was not found any other interesting points.  

Talking about summer profiles’ analysis, there are some peculiarities in this building 

compared to the ones analysed before. In this case there are less evident differences 

between May, September, and the rest of the summer. Demand in September is globally 

higher than other months, but the difference is not as evident as happened for building 

10922. This could be explained by the fact that building 10686 is smaller than 10922, so the 

space heating demand, in absolute term, is lower. Talking about May, the average demand 

during this month is quite like June and other summer months. The only difference in terms 

of magnitude of consumption can be found during night hours. It is important to highlight 

that, because this is a smaller building, influence of behaviour of a single user on the profile 

of DHW heat load is much more evident. This is the case, for example, of the consumption 

between 12.00 am and 14.00 pm in July, where demand is higher than the same period in 

June and August. Considering these differences, the period between June and August was 

used for the analysis of the DHW profile in summer period. Because there is the presence 

of differences even among these months, it is expected that this analysis could be less 

accurate than the previous buildings.  

In the figure below, number 95, it was reported results for the analysis of correlation between 

TMA and energy consumption. The meaning of this exam is reported in paragraph 4.5. for 

this building it is possible to say that the thermal inertia is quite low compared to the other 

two buildings analysed. From the result reported in figure 95 it is evident that the maximum 

correlation between energy consumption and splitted outdoor temperature (using TMA) 

occurs at 7 hours. However, it is important to underline that, as happened in previous cases, 

the coefficient correspondent to this hour does not differ too much from the 𝛽 calculated with 

the interpolation between outdoor temperature and hourly energy demand, calculated in 

previous passages.  

 

From the analysis of the match matrix, it emerged that Sunday and Saturday can be 

considered as similar day. The other days present low similarities with Student’s t-test and 

Fischer’s criterion, but to keep analysis simple and because difference in profiles is not so 

evident in absolute terms, it is possible to maintain even in this case 2 group of days. The 

first one is composed by Saturdays and Sundays (group 1) and the second one by the other 

Figure 95 Effect of temperature lag on energy use of building 10686, Tartu. 
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days of the week (group 2). In figure 80 results of the group separation and the individuation 

of minimum, medium and peak hours have been reported.  

Even in these plots there are information previously found such as the minimum 

consumption between 5.00 am and 6.00 am and the night peak between 22.00 pm and 

23.00 pm. in this building profiles are more variable because of a smaller number of users, 

so the smoothing effect of DHW heat demand created by large amount of people is less 

present. It is important to underline that for the workdays, in group 2, hours highlighted as 

peak hours present a consumption similar to some hours of medium consumption during 

weekends. This happens because the division between minimum, medium and peak hours 

take into account the distribution of load in the analysed day and does not consider other 

days. So, the right interpretation is to consider purple hours in group 2 plot as peak hours 

for workdays, but not with an absolute meaning. They are calculated, in fact, to have an idea 

of values for minimum, medium and peak consumption for the considered days. In the next 

part of the analysis, in fact, to each day of the week is applied the profile of the corresponding 

group. 

Even in this case moments where consumption is higher, which represent points of highest 

DHW heat demand, are in the morning, during lunch time and during the evening for dinner 

and after dinner. Talking about boundary values, Emin is 2.21 kWh for the group 1 and 2.16 

kWh for the group 2, while Emax is 4.03 kWh for the group 1 and 2.88 kWh for the group 2. It 

emerged a higher consumption of DHW between 22.00 pm and 23.00 pm during weekends. 

To interpretate in a fair way these data it is important to keep in mind that this analysis is 

conducted only on summer demand. There is a high probability that some users are on 

holiday in this period, with a consequent modification of the building’s behaviour in terms of 

demand and energy consumed. When there are a lot of people this effect is less relevant, 

but following previous estimation, in structure 10686 there are about 20 apartments, so even 

Figure 80 Results from the splitting of hours into minimum, medium and peak periods in building 10686, Tartu 
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an extraordinary behaviour of one of them could cause a big variation on the entire demand 

profile.  

In figure 81 it was reported standard profiles in winter and in summer for DHW demand. The 

difference in terms of mean value is about 40% even in this case, as happened for building 

10922. This is mainly caused by the model used for estimating SH consumption and the 

extraordinary points of consumption in the CPT zone (yellow circle in figure 77).  

With the correction performed with standard profiles, situation becomes much better in terms 

of consistency of DHW profiles between summer and winter. In figure 82 there are results 

of the correction and filtering analysis. Looking at the last two plots, it emerged that DHW 

profile in winter is much more regular and like the demand in summer. SH, on the other 

hand, changes for compensating modifications of DHW profile, but it continues to follow a 

linear behaviour. It is just more randomize and it does not have any more the interpolation 

line as upper limit, as happened in the previous analysis. The discrepancies between old 

profiles and corrected profiles depends on tolerance and decreasing factors. Unlucky there 

are no possibilities to determine in an accurate way these parameters for the reasons 

described in paragraph 7.1, so only an estimation based on experience is possible. Even for 

this building it was decided to consider 0.3 for tolerance and 0.25 for decrease, to have a 

corrective operation comparable with building 10922. 

With new DHW heat consumption, number of people becomes about 52. Number of 

apartments is 17. There is always a reduction in these values because with corrective 

operation DHW profile is always lower. The goal is, in fact, to reduce oscillations in winter 

demand and make DHW consumption in this period more like the one present in summer.  

Figure 81 Standard profiles in winter and in summer for days of group 1 (left) and group 2(right) in building 10686, Tartu. 
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In figure 83 it was reported last plot of figure 82 highlighting the different zone of DHW 

consumption, as done in figure 77. This operation was done to highlight the fact that with 

corrective operation the high density of DHW points in the yellow circle zone is much lower. 

This is a good sign: it means that DHW with temperatures a little higher or a little lower than 

CPT does not change much, as it is reasonable to think.  

 

Figure 82 Representations of DHW and SH before and after correction of DHW profiles. From top left there are: Mondays, Tuesdays, 
Wednesdays, Thursdays, Fridays, Saturdays, and Sundays. Last two plots are about 8760-values hourly vector of year consumption. 
Building 10686 in Tartu. 

Figure 83 Splitted demand versus Tout of building 10686 in Tartu. In different tones of blue there 
are SH demands before and after correction and in different tones of orange DHW loads before 
and after correction. Circles in yellow and in light blue are the same present in figure 77. 
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It was decided to show this building to demonstrate that the method proposed, and the tools 

used can give useful and consistent information also with dataset with high irregularities. 

However, more regular is the dataset, more accurate will be final information, but it is 

important to have an algorithm that can work well with diverse types of building. With this 

building it finishes the presentation of Tartu’s dataset results. Among the enormous number 

of buildings analysed it was decided to show you a standard example (10922) and two 

particularly challenging cases: the first one without summer consumption (10051) and the 

second one with high dispersion of experimental values (10686). From the results it emerged 

that the method proposed works effectively in all cases.  

 

7.4 Building “Condominium 10” in Verona. 

From this paragraph it begins the analysis of Verona’s dataset. The peculiarity, as said many 

times during the thesis, is that all buildings present a partial database, with only winter global 

heat consumption data available and, in general, more information about buildings are 

available. Even in this case it will be presented a quite standard case, the condominium 10, 

and then it will be shown some particular buildings, such as a school and a train station to 

highlight some peculiarities. For this analysis and the following ones, it was used 

methodology described in chapter 5. Most considerations and outputs are like the ones 

presented in paragraph 7.1, so it is not spent so much time in their description. There are 

presented only most interesting issues about every building.  

Some general considerations valid for every building in this dataset are necessary. First, 

Verona has a quite different climate than Tartu. As highlighted during the explanation of 

methodology, in the Italian city outdoor temperatures are higher both in winter and in 

summer. In winter minimum temperature registered for the considered year (12 months, 

from November 2019 to November 2020), is -3.4°C, while in Tartu there were temperatures 

below -20°C. In summer maximum temperature is 35.5°C, much higher than Tartu, but this 

data is less relevant because no experimental data are available for this season. For this 

reason, as a general expectation global heat demand is lower in Verona. Space heating has 

less importance in the global heat demand than what happened in Tartu because thermal 

losses are less due to higher outdoor temperatures.  

Another thing that all building has in common is that the results have meaning just for the 

part of the year where experimental points are available. Because heat consumption in 

summer is unknown, it would be meaningless try to estimate it. Too many variables enter in 

the game and the high dependence of DHW load consumption to users’ number and 

behaviour (information unknown for most of the building) makes impossible an accurate 

estimation for summer period. So, all temperature independent part of the ESC drawn in 

summer period, for temperatures higher than CPT, are to be considered just tools for 

implementing the analysis methodology and not fair estimation of real building’s 

consumption during this period.  

Another common thing is about municipality’s rules about space heating. Due to higher 

temperatures during winter season, there is no necessity to keep SH plant in operation for 

all hours of the day. So, as mentioned in paragraph 5.4, Verona’s municipality established 

that there is a maximum of 14 hours of operation for the SH pant during the day and its 

operation must happen between 5.00 am and 23.00 pm. These rules contribute to contain 
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pollution and keep decent quality of the air. Especially in historic centre of the city, due to 

the high density of houses, the age of buildings (and, as a consequence, of their heating 

systems) and the traffic, air pollution is a relevant problem in Verona. Due to these issues, 

it was born the necessity of interventions to improve air quality. The regulation of space 

heating is a part of these rules. Consequentially, by analysing plot of global hourly demand 

versus outdoor temperature, it is possible to notice two distinct zones. An upper area for the 

moments when both SH and DHW are provided to the building and a lower zone where SH 

is absent. 

Furthermore, even in this dataset data of buildings’ demand come from the measurements 

conducted in substations of DHN. For this reason, it is not measured the real demand of the 

building, but only the energy provided by the network. By happing this, the fact described in 

paragraph 7.1 is true. Even in this case, in fact, solar heat gain and internal gains are not 

considered in the available data. However, this is less notable because of the shutdown of 

SH during night-time and the less energy required for heating up the building.  

The first output of the code is reported in figure 84. Here there is the representation of all 24 

hourly demand vectors. In red it is represented a line drawn between the two zone of the 

global demand profile, the one with SH in operation and the other one without SH. It is 

evident what are the hours with and without SH. It can be noticed that between 22.00 pm 

and 5.00 am and from 9.00 am to 11.00 am measured demand is below the red line, so no 

SH is in operation during this period. By summing all these hours, it results that SH stay 

turned off for 10 hours during the day. This means that there is a total of 14 hours of space 

heating plant operation, in full compliance with the municipality’s rules. Also, limitations 

regarding hours of operation are respected because SH is turned off between 23.00 pm and 

5.00 am. 

Figure 84 Hourly energy demands representations versus Tout. In red the boundary line between zone with SH and without SH. 
condominium 10 in Verona. 
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In addition to that it is possible to obtain some information about the behaviour of the space 

heating plant. It is clear, in fact, that between 5.00 am and 6.00 am there is a peak in 

demand. This is reasonable because building must be heated up after 8 hours without space 

heating. So, a large amount of energy is necessary to reach setpoint temperature in indoor 

environment. A similar thing happens between 11.00 am and 12.00 am, where it is 

necessary to provide heat after 2 hours without space heating. Thanks to the small amount 

of time without heating system in operation (so building’s thermal inertia can contribute to 

keep high indoor temperature) and to the presence of solar heat gain, on average energy 

required during this hour is lower than the demand between 5.00 am and 6.00 am. However, 

also in this case demand is quite high, but it must be considered that between 11.00 am and 

12.00 am there could be DHW consumption. Consumptions during other hours follows a 

quite similar pattern, and no other peaks are evident.  

It is evident that there are no relevant differences between weekends and workdays. This is 

perfectly in accordance with the fact that the analysed building is a residential structure. In 

paragraph 7.5, where it is presented a school, the difference between workdays and 

weekends is extremely important and by not considering this fact the analysis could lead to 

very inaccurate, not to say completely wrong, results. 

In figure 85 it is reported the second image of the analysis’ output. Starting from the upper 

left part of the figure the first plot shows the hourly energy demand versus outdoor 

temperature, splitted into two different regions. The upper part represents moments when 

SH is in operation, the lower part when there is no space heating. Vertical red line indicates 

the CPT. Proceeding on the right there are two plots about confidence intervals. They are 

referred to SH on period and SH off period. Experimental demand is quite regular, in fact 

many values are inside the confidence area. Higher values of demand are representation of 

peaks that happen between 5.00 am and 6.00 am and between 11.00 am and 12.00 am, as 

described in the previous lines.  

Figure 85 Hours with and without SH separation. Application of confidence intervals, check for normal distribution of temperature 
and ESC reconstruction in condominium 10, Verona. 
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Going further, in the central line of the figure there are 3 plots that show results of the 

distribution type control of outdoor temperatures. As it is clear from the graphs, outdoor 

temperature follows a normal distribution. These plots are also useful to apply a filter to 

these values. In fact, as explained in the methodology, it was considered only the 95% right 

tail for the estimation of CPT. It was found that for this building the change point temperature 

is 14.3 °C. it is a reasonable result, also in line with the previously found ones in Tartu’s 

database. In fact, despite lower temperatures in winter and a difference in climate, outdoor 

temperature at which space heating plant is turned off must be quite similar.  

In the last plot there is the representation of the ESC, with reconstruction of summer 

demand, just to methodology purpose, and the temperature dependent part interpolated by 

a straight line. The same interpretation given in 7.1 can be applied to this part. For this 

reason, it is possible to say that 𝑄𝑡𝑜𝑡 is the global heat losses coefficient. In condominium 

10, 𝑄𝑡𝑜𝑡 =  −1.05 𝑘𝑊ℎ/°𝐶. In analogous way to what it was done for Tartu, it is possible to 

create a specific 𝑄𝑡𝑜𝑡 to compare buildings in the same location. In the following paragraphs 

it will be done this operation.  

Unfortunately, without summer consumption data it is impossible to estimate total DHW 

consumption during the year, so it cannot be estimated the number of people living inside 

the condominium with equation [7.9]. it is, also, impossible to perform a detailed analysis of 

the summer DHW demand profile and the correction operation on DHW profile. 

In figure 86 the third image from the code’s output is presented. Starting from the upper left 

part the first plot shows the energy consumption versus outdoor temperature, highlighting 

the ESC curve shifting down. The shifting coefficient is the demand in correspondence of 

change point temperature and for this building it is equal to 21.26 kWh. After that there is a 

chronological representation of the demand when SH is turned on.  

Figure 86 Third image from the output. ESC shifted, chronological demand representation, normal distribution control for Tout at 
night, losses evaluation and representation of splitted demand. Condominium 10, Verona. 
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After that, a control on outdoor temperature at night, when SH is not in operation. This is 

performed because for losses evaluation it is necessary to consider only a part of the lower 

point of demand, and to select that part it was decided to apply a statistical approach based 

on normal distribution, as described in paragraph 5.7.1. This method works if outdoor 

temperatures analysed follow a normal distribution, so these graphs are important to verify 

this.  

In the next plot there is the representation of the experimental values without SH and in red 

it is highlighted the CPT, while in green there is the estimation of losses into the DHW circuit. 

Talking about numbers, in this building value of losses for DHW circuit is 2.42 kWh. 

Comparing this value with peak load it emerged that losses are about 3.5% of the maximum 

peak load (4.1% if instead of maximum peak it was considered an average of peak points). 

in Tartu’s analysis it was found that losses in DHW circuit are about 4.5% - 5% of maximum 

load, so the estimation did in this analysis is consistent with that calculation. 

The following plots are another representation of global demand versus outdoor temperature 

or versus time and in the last two plots there is the splitted demand both versus time and 

versus outdoor temperature. From the analysis of this last part, it is evident that SH is not 

so important and follows a quite regular behaviour. DHW consumption is much more 

important, and it is the responsible of peaks.  

However, it is important to combine this information with the one obtained from the analysis 

of figure 84. In fact, due to the linear model used to estimate SH heat load it is not possible 

to consider sudden peak in this type of demand. So, this model gives reliable results for the 

hours with average consumption but could give some inaccuracies in peak hours. During 

these moments, in fact, most of demand is imputed to DHW. It could be possible that there 

is a peak in demand of hot tap water during these hours but for the reasons explained before, 

it is more likely that the best interpretation is that most of the peak is caused by the starting 

of operation of SH system.  

Because these peaks in consumption after hours where SH plant was not in operation are 

common in buildings of this dataset, it was decided to find a way to obtain a more precise 

model for the building. The attention is focused on the most common profile of demand of 

every building, i.e., hours with and without SH but of minimum and medium consumption 

(without peaks). For this reason, it was applied the same analysis but considering only 

demand points inside confidence interval. In this way it was removed almost every peak of 

demand that happen between 5.00 am and 6.00 am and between 11.00 am and 12.00 am. 

In this way, the model created considers only hours with most common profile of 

consumption during the days. The outputs are remarkably similar to the previous one 

because code applied is the same. 

In figure 87 there are the same plot as figure 85, but without values outside from confidence 

interval. In the first plot it was highlighted in green points considered for this analysis and in 

blue excluded values. In this figure only experimental values with SH turned on are 

represented. Plots whit experimental data and confidence intervals (plots 2 and 3 of figure 

85) are not reported here because it would be useless, as CI was already applied. Even in 

this site there is the control of normal distribution for outdoor temperature. The last plot 

represents the reconstructed ESC, as happened before. 
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In numerical terms, CPT is almost the same as the previous one, it is equals to 14.4°C 

(without CI filter was 14.3°C). Also change point demand (CPD) remains almost unchanged. 

In this analysis it is equal to 20.61 kWh, while before it was 21.26 kWh. In terms of coefficient 

of global heat losses, it emerged an interesting consideration. With remotion of values 

outside the confidence interval, 𝑄𝑡𝑜𝑡 =  −0.89 𝑘𝑊ℎ/°𝐶. With all values considered, 𝑄𝑡𝑜𝑡 =

 −1.05 𝑘𝑊ℎ/°𝐶. By removing extraordinary points, most of them are peak values, the 

dependence of energy consumption on outdoor temperature is reduced. This is reasonable: 

without points outside the confidence interval, peaks of consumption are missing, so there 

are values more regular to interpolate and, also, lower in terms of energy demand. However, 

this value is a better representation of the building’s behaviour during most of the hours of 

the day.  

Figure 87 Output of analysis without values outside the confidence interval. from top left: representation of demand values with SH 
turned on and CI, control for normal distribution of Tout, reconstruction of new ESC. Condominium 10, Verona. 

Figure 88 5th image from the output. ESC shifted, chronological demand representation, normal distribution control for Tout at 
night, losses evaluation and representation of splitted demand. CI filter. Condominium 10, Verona. 
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The last output of the code in exam is presented in figure 88. There are the same plots as 

figure 86 but with the filter of confidence interval. No particular differences can be noticed in 

the first plots. The value for losses in DHW circuit remains the same because in this part of 

the analysis CI filter is not applied. The most significant difference can be found in the last 

two plots. Here, compared to figure 86, DHW demand is more regular. No high peaks are 

identified in demand, of course.  

To conclude, analysis with CI is better for modelling most common behaviour of the building 

but, of course, it does not take into account of sudden peaks in demand caused by big DHW 

request or the starting of operation of SH plant after hours of stop.  

As last output, in figure 96 reported below, we can find the analysis of correlation between 

TMA and energy consumption. In this building the pattern of 𝛽 coefficient is less regular than 

previous buildings, but it is recognizable a local absolute maximum value in correspondence 

of hour 5 (and even 28). It is reasonable to consider a sort of similarity between the 5th 

previous hour and the 28th previous one because they are almost 24 hours apart, so it means 

it is more or less the same moment of the day. In case of necessity of a more detailed model 

it would be it would be good to consider both hours. 

 

 

7.5 Building “School 2” in Verona. 

In this example it was analysed a school. It is an interesting case because school is much 

different than a residential building in terms of energy consumption. First, there is high 

influence of day of the week. Of course, during Saturday and Sunday school is closed, no 

people are inside. For this reason, demand during these days is null. In addition to that, 

students are at school during the morning and, sometimes, the first hours of the afternoon. 

During evening and night-time no people are present in the structure so there is no necessity 

for space heating or hot water.  

Another important thing regards the distribution of SH and DHW load. In fact, in a school 

there are not showers, dishwashers, washing machines or kitchens. For this reason, DHW 

load in a school is way less than in a residential building. According to standard values 

(values taken from school output specification document from the Department of Education 

of UK), the average daily hot water consumption is 2.3 litres per person for primary school 

and 4 litres per person for secondary school with showers. Assuming that there are no 

Figure 96 Effect of temperature lag on energy use of condominium 10, Verona. 
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showers in Verona’s school, the average consumption is about 2 litres per person per day, 

compared to the 40 litres per person per day of a residential building.  

According to these considerations, it was implemented a little modification to adapt the 

general model presented in chapter 5 to the case of a school analysis. It will be explained in 

the following lines in what consists of this edit.  

From figure 86 a lot of information about operation of the building can be obtained. In the 

figure, and in the analysis, it was considered only workdays, excluding weekends. In fact, 

demand was almost zero for the entire day and by considering them there would be a lot of 

points at null demand. They can produce some inaccuracies in the model’s construction 

because they do not represent point of operation, but simply moments when the plant is 

completely turned off. For this reason, weekends are not considered in the analysis.  

Another important fact to underline is that even if it would be unknown the intended use of 

the building, it would be easy to notice that it is not a residential building. This fact can be 

understood by observing period when there is consumption. In this building from 17.00 pm 

to 4.00 am there is neither DHW nor SH heat load, as demand is always null. A residential 

building, especially in winter, cannot stay 11 consecutive hours without heat provided 

keeping good comfort conditions. After this period without heating a big peak in demand is 

measured between 4.00 am and 8.00 am. This is due to the fact that after eleven hours 

without heat provided is necessary a big amount of energy to increase indoor temperature 

up to setpoint value. After that there is a period of average consumption, until people leave 

the building, around 17.00 pm. There is no information about the type of school. So, it is 

probable that students are present also during afternoon if it is a primary school or a 

kindergarten.  

Figure 86 Hourly energy demands representations versus Tout. In red the boundary line between zone with SH and without SH. 
School 2 in Verona. 
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Another crucial difference between this building and a residential one, for example 

condominium 10 analysed before, regards moments without SH. In the previous case, a 

small amount of demand was still present, due to DHW consumption or losses into DHW 

circuit. Here consumption during these hours is almost null for a major part of the time. Of 

course, this can be imputed to the absence of people from the building. 

However, even in hours of heat consumption there are points of null demand. By analysing 

dataset can be found that they are caused by days of extraordinary operation. In fact, it was 

cancelled weekends from database, but during wintertime there are holidays, where 

students are not at school, and some days (Christmas, boxing day, January 1st) where no 

people are present for sure. These days created null demand values even in hours where, 

in normal operation, there is SH and DHW heat load.  

The next output of the code is presented in figure 87. Meaning of every single plot is 

explained in the previous paragraph about condominium 10. In this site it will be highlighted 

peculiarities of this specific building. Starting from the first plot in the upper left zone, it is 

possible to notice that blue points are much more regular than before. They represent hours 

without SH consumption and, presumably without DHW too. Green points are more disperse 

than before: the influence of high peak hours is especially important. High peaks are even 

more present than the previous case due to the larger number of hours without SH (when 

the plant starts indoor temperature will be much lower than setpoint value).  

From confidence interval’s analysis it can be noticed that points in the upper zone are 

generated by peak moments, while values in the lower zone are caused by previously 

mentioned days of extraordinary operation. Even in this case outdoor temperature follows a 

normal distribution, but this happens for every building analysed in this zone because 

temperature values are the same for every structure, because the area of interest is the 

historic centre of Verona.  

Figure 87 Hours with and without SH separation. Application of confidence intervals, check for normal distribution of temperature 
and ESC reconstruction in school 2, Verona. 
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In the last plot (number 8 in figure 87) there is the representation of one edit that it was done 

for this case. By analysing the reconstructed ESC represent in plot 7, in fact, it is clear that 

blue line, the energy signature curve, is influenced by the null demand values. However, 

these points consider moment when heating plant is turned off an no people are in the 

building, so it is not correct to consider them part of the regular behaviour of the building. 

For this reason, it was decided to not consider values that are below a certain level of 

demand (as a boundary it was used CPD, represented by the blue line in the temperature 

independent part of the plot number 7).  

In simpler words, it was decided to divide temperature dependent part and temperature 

independent part not with a temperature value but with a demand value. While in previous 

cases there be not so many differences between using CPD or CPT, in this case using a 

change point demand gives the possibility to consider only point where the heating system 

is in operation for the construction of the temperature dependent part of the ESC. In this way 

there is a better consideration of thermal losses and the real behaviour of the building when 

it is in operation.  

To build the new temperature independent part of ESC it was recalculated demand when 

outdoor temperature is equal to CPT, and it was assumed that it is constant for every 

moment. To resume the steps of this new part of the analysis implemented here, once the 

plot number 7 is obtained it was used CPD value to exclude all experimental points < CPD. 

After that it was calculated a new interpolation line considering only new set of measured 

value. After that it was recalculated CPD using regression line equation and assuming 

Tout=CPT. However, there is not a substantial change in 𝑄𝑡𝑜𝑡 value. By considering all points 

of demand there is 𝑄𝑡𝑜𝑡 =  −1.24 𝑘𝑊ℎ/°𝐶, while excluding null demand points the result is 

𝑄𝑡𝑜𝑡 =  −1.26 𝑘𝑊ℎ/°𝐶. There is a minor difference, so this phase is optional. This is a good 

result because it means this model is not so sensitive to null demand points.  

Figure 88 Third image from the output. ESC shifted, chronological demand representation, normal distribution control for Tout at 
night, losses evaluation and representation of splitted demand. School 2, Verona. 
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Analysing the next figure (number 88) there is a peculiarity respect to the previous building. 

The meaning of each plot is explained in the previous paragraph, so it will not be dwelled on 

these descriptions. Something interesting can be said regarding the evaluation of losses into 

DHW circuit. It was used values of consumption when SH was not in operation, as done for 

the previous analysis. However, in this case these points of demand were particularly low, 

and losses are accordingly low. In numerical terms, losses in DHW circuit are equal to 0.85 

kWh. Compared to the peak load, they are about 2.5%, so slightly low, in relative terms, 

then previous analysed buildings.  

Another relevant aspect is about demand splitted. As can be observed from the last two 

plots, there is an inconsistency in DHW profile. Because it is a school, in fact, it is unrealistic 

that DHW heat load increases when outdoor temperatures are close to CPT. As explained 

before, in fact, in a school DHW demand is much lower than in a residential building, so too 

high values for it are unlikely. For a better vision of this phenomenon, it was reported in 

figure 89 the last plot (number 9) of figure 88, and with a yellow circle it was underlined the 

problematic zone of DHW profile.  

To solve this issue the idea was to modify the implementation of the model. In particular, 

one possibility was to do not shift down the ESC during the creation of the SH model. 

However, this idea could not be correct. By doing this thing, there would be no more 

dependency of demand on outdoor temperature. Better, the linear dependence is kept, but 

all values are shifted up by a coefficient that has no physical meaning.  

So, the zone on the yellow circle in figure 89 can be explained by the demand itself and it is 

a demonstration that the method is consistent. It is possible to notice, in fact, that there are 

points with the same value of DHW demand also in the left part of the plot, with lower 

temperatures. It seems to be lower because there are less measured values in this zone. In 

addition to that, by doing some calculations it is possible to check if the value obtained for 

DHW consumption is likely or not.  

Figure 89 Splitted demand versus T out, School 2, Verona. 
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Assuming that there is an average consumption of 3 litres per person per day, that people 

are at school for 8 hours, and that the difference between temperature of water available at 

users and temperature of water from the aqueduct is about 30°C, it is possible to determine 

a sort of average standard energy consumed for DHW purpose. This value is about 0.013 

kWh per person every hour. Considering an average hourly value of DHW calculated from 

the splitting model of 6.21 kWh, there would be about 480 people at school, which is a 

reasonable number for a school in historic centre of a big city like Verona. It is important to 

specify that these data are just to have a general idea, without detailed information it is 

impossible to obtain more accurate results. To conclude, the points highlighted with a yellow 

circle in figure 89 are consistent with the results of the analysis and the intended use of the 

building. 

Figure 90 Output of analysis without values outside the confidence interval. from top left: representation of demand values with SH 
turned on and CI, control for normal distribution of Tout, reconstruction of new ESC. School 2, Verona. 

Figure 91 5th image from the output. ESC shifted, chronological demand representation, normal distribution control for Tout at 
night, losses evaluation and representation of splitted demand. CI filter. School 2, Verona. 
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To conclude, in figures 90 and 91 it was provided results of the analysis with confidence 

interval filters. In this way, point of peak of demand and most of the values with null 

consumption are not considered and the profile of both SH and DHW follows more regular 

shape. Even in this case are true considerations done for in the previous building (paragraph 

7.4) about the same issue. Mean values of DHW is almost the same as the previous one, 

but by considering only points inside confidence interval there are no more sudden peak or 

extraordinary high values for DHW.  

With the school analysis it was also discussed the applicability of the model in the analysis 

of a building with a very irregular demand and with a profile hardly different than a residential 

building. Most of the other buildings in the dataset are condominiums, with a behaviour 

similar to the one discussed in paragraph 7.4. There are, also, schools and offices, which 

have similar demand profile in terms of behaviour of users, both are empty during weekends 

and during nights, both have relatively low DHW consumption per user, so from analysis it 

emerged that also offices, where the analysis was possible, present profiles and 

characteristics like the school discussed in 7.5. It is said “where the analysis was possible” 

because some building suffers of lack of data. Too much reading errors or missing data are 

present, for example, in hotel 1.  

Last output showed here is the analysis of correlation between energy consumption and 

shifted outdoor temperature, represented by different values of TMA. The graph is reported 

in figure 97. For this school it is evident that the hours with the highest correlation are the 7th 

and the 8th before the one considered. The thermal inertia of the building is quite high, but it 

is necessary to keep in mind the particular behaviour of the school in terms of operation of 

space heating plant.  

Regarding other types of structures, for example rehab centre or train station, the profile of 

experimental data makes the analysis impossible. As can be observed in figure 92, the 

measured data present no recognizable trend. The linear interpolation does not present 

consistent results. Observing that plot, it would be possible that the DHN provides only DHW 

to the building, because the profile of experimental values is clear temperature independent, 

but this is just a hypothesis.  

 

 

Figure 97 Effect of temperature lag on energy use of school 2, Verona. 
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Figure 92 Measured values of demand versus Tout for the rehab centre in Verona. 
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Chapter 8: Future work and possibilities. 

Thanks to the large field of applicability of the developed method and the high number of 

information obtainable from it, the future possibilities are limitless. It would be impossible to 

present all possible scenarios of future work, so it was decided to discuss just a few things, 

giving priority to the more feasible in the next period.  

The first necessary operation is to apply this model in a dataset where DHW and SH heat 

consumptions are measured in a separate way. It would be extremely useful to have the 

possibility to check the accuracy of the model in terms of splitting operation. It would be 

possible to determine exactly the level of accuracy of the implemented tools, both in case of 

complete database and partial data. It would be enough to have just few weeks of separate 

measurements if a complete year is unfeasible. The best situation would be to have some 

weeks in summer and some weeks in winter. In this way the detailed analysis of DHW in 

summer could become more accurate and this information can be used to correct the DHW 

in the rest of the year, as explained in chapter 4.  

Furthermore, thanks to the information about DHW consumption in winter, it would be 

possible to determine precisely values of tolerance and decreasing mentioned in paragraph 

4.9.5 in an iterative way. In this way the method developed for correcting and flattening DHW 

profile in winter becomes more precise. The idea at the basis of this work is to try, starting 

from 0 and increasing by 0.01 at each iteration, different values of tolerance and decreasing 

numbers. After that, they could be used to correct winter profile and the error between 

corrected DHW profile and measured DHW consumption can be calculated hour per hour. 

Values of tolerance and decreasing numbers which minimize error are the most adapt to 

describe the behaviour of the building. In this way with the knowledge of few weeks of 

separate consumption in winter it is possible to create a model for obtaining DHW and SH 

in a more accurate way.  

Talking about other possibilities, data that come from the application of the model have a 

large potential and can be used to describe well the energy performance of buildings. An 

advantage of this method is that no physical or geometrical information are necessary, so 

one of the most interesting possible applications is the study of historic buildings. This 

approach yields more comprehensive insights compared to relying solely on specific energy 

use in kWh/m2, the most common data used in energy analysis of buildings. By providing 

information on the building's total loss term (𝑄𝑡𝑜𝑡), change point temperature (CPT), losses 

in DHW circuit (𝐸𝑙𝑜𝑠𝑠) and consumption for SH and DHW heat loads, this model provides a 

more complete picture of the building’s behaviour.  

These data can be used in future works, for example, for the examination of renovation 

effects, such as changes in 𝑄𝑡𝑜𝑡 and CPT before and after a renovation project. Also, these 

tools can be applied to check SH and DHW consumption before and after retrofitting 

operations. About this issue, these data can be used to decide which building has the highest 

necessity of retrofitting by identifying the one with worst thermal performances. They can be 

also used to see what the dominant consumption in the building is, in order to focus the 

attention of possible improvement and interventions on the most relevant type of heat load.  

The use of this method has another advantage: it can effectively filter out the variations that 

result from different occupants' energy usage behaviours in the building. As a result, it 
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becomes possible to design effective packages of measures based on the technical 

performance of the buildings, rather than solely on how the current occupants use them. 

Thanks to this characteristic of the implemented tools, further works can use information 

obtained from this analysis to support housing companies' decision-making processes and 

provide valuable input for the national renovation strategy. Furthermore, from a housing 

company's perspective, this is a convenient way to identify malfunctions such as control 

problems and obtain an overview of the building stock.  

Moreover, analysis’ outputs could be also implemented in a DHN management software. It 

could be possible to obtain a detailed model of consumption for every building by starting 

only from information about global heat delivered in the corresponding substation. Thanks 

to the automaticity and the low computing time of the model, it is possible to easily implement 

this analysis in every building connected to the DHN. In this way it would be known for every 

hour the amount of DHW and SH necessary for every building, improving quality of service 

or making easier operations such as night setback for the manager of DHN. Because this 

analysis is conducted in a year and the demand depends on Tout, it is possible to use these 

data also to make forecasting. In this way, from manager perspective, it is possible to know, 

basing on day of the year and outdoor temperature, what is the DHW and SH load in every 

building connected to the grid. 

As said in the first lines of the chapter, possibilities are endless. For users there is the 

possibility to know what the operation of the building in terms of DHW and SH is, to check 

losses in the circuit, to know where to act for possible interventions etc. For manager of the 

DHN there is the possibility to use these tools to build a detailed model of users and to know 

hour per hour SH and DHW heat load that must be provided. For housing companies, data 

available for energy audit are more precise and higher quality, without using more complex 

meters.  
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Chapter 9: Conclusions. 

This thesis proposed a series of tools useful for the study of energy consumption in building. 

The strength of the proposed methodology is that it uses only global energy consumption 

and outdoor temperature, both with hourly resolution, as input for the entire analysis. There 

are data easily to obtain with the implementation of a simple meter in the building for energy 

consumption data and outdoor temperature values can be obtained from the closest weather 

station. The goal of the thesis was to obtain the highest possible amount of information 

regarding the building by knowing only these two inputs. The guideline that it was followed 

for the development of this methodology was the automaticity of the code and the possibility 

to apply it to a large variety of different building. 

The outputs of the analysis include a detailed analysis hour per hour of global consumption 

of the building, with individuation of peak moments, extraordinary values, and eventually null 

demand hours. In addition to that the energy signature curve of the building, including 

information about the global heat losses coefficient 𝑄𝑡𝑜𝑡, change point temperature CPT, 

losses in DHW circuit. Furthermore, splitting hour per hour of global demand into SH and 

DHW heat load components. Then, a detailed analysis on consumption in workdays, 

Saturdays, and Sundays. In addition to that, a detailed analysis of DHW summer profile with 

the individuation of similar days (in terms of consumption) and of hours with minimum, 

medium, and peak heat load. Moreover, the development of a method to flatten DHW profile 

in winter to make it more like the summer one and, so, more convincing. It was also built a 

similar model to applicate in case of building with partial database (only some months during 

winter). 

The tools were tested on two different case studies: Tartu and Verona. Both of them present 

data form buildings connected to a district heating network. However, differences are quite 

large. Tartu has a colder climate than Verona which means lower outdoor temperatures and 

higher heat required. Level of information about buildings was almost the same, with the 

only difference that in Verona intended use was known. Other types of geometrical, physical 

or occupants’ information was unknown in both cases. The other significant difference is 

that every building in Verona presents a partial database, with only some month during 

winter season available. For this reason, in Tartu the complete method of analysis was 

applied, while in Verona it must be implemented only a partial part, developed for incomplete 

databases. 

A detailed analysis of the outputs for the most relevant buildings is discussed in chapter 7. 

To resume, the method proposed gives consistent results in most of analysed building. It 

works very well in provides accurate information especially in buildings with quite regular 

behaviour in terms of heat load (residential buildings among others, where SH follows 

regular pattern and also DHW). In buildings with different intended use, for example schools 

or offices, it gives consistent results, but some trick is necessary. The most important to 

keep in mind is that, especially for the splitting operation between SH and DHW, the model 

provides consistent results for the most common profile of the building, but it struggles when 

there are moments of extraordinary peak operation. However, with a good interpretation of 

results it is possible to obtain consistent information even in this case. 

Unlucky, it was not possible to check the performance of the method by applying it in a 

dataset where SH and DHW were measured in a separate way. However, thanks to the 
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method developed for the correction procedure of DHW profile, it is easy to adapt it to every 

building and to the specific operation of the examined structure.  

One step of the future work is about the check of model’s performances with this type of 

dataset. Furthermore, a different model for DHW and SH splitting could be introduced, to 

check differences between these approaches and see what is the most suitable one. In 

particular, one of the crucial issues is that there is a model for SH consumption, while DHW 

is calculated by subtracting SH from the measured hourly global demand. Implementing a 

model for estimating DHW consumption hour per hour could be one possibility to improve 

performances of the model.  
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Appendix. 

A1 Complete database (Tartu case study) 

“CI.m” 

%function per il CI 
function [y_CI_up,y_CI_down]=CI(coeff_DEF_SH_0AM,T_SH_0AM,Demand_SH_0AM,i) 

  
%valutazione punti con il modello lineare 
SH_value_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
n_lib_deg=length(SH_value_0AM)-2; 

  
%caclolo parametri necessari 
Se_SH_0AM=sqrt((n_lib_deg+1)*((std(Demand_SH_0AM)^2)-

(coeff_DEF_SH_0AM(1)^2)*std(T_SH_0AM))/(n_lib_deg)); 
%usare il valore di porbabilità cumulata (cumulative density function) 
%nella t-student per includere tutti i valori all'interno della probabilità 
%scelt, il 95% solitamente basta. Avendo un alto numero di gradi di libertà 
%coincide con la distribuzione gaussiana. 
t_stud_value=tcdf(0.95,n_lib_deg); 
prod_factor=sqrt(1+(1/length(SH_value_0AM))+(((T_SH_0AM-

mean(T_SH_0AM)).^2)/(length(SH_value_0AM)*(std(T_SH_0AM)^2)))); 

  
%calcolo y degli intervalli di confidenza 
y_CI_up=SH_value_0AM+Se_SH_0AM.*t_stud_value.*prod_factor; 
y_CI_down=SH_value_0AM-Se_SH_0AM.*t_stud_value.*prod_factor; 

  
fontSize=18; 

  
%grafico 
figure(i) 
subplot(3,3,5) 
% pos=[0.65 0.2 0.3 0.3]; 
% subplot('Position',pos) 
plot(T_SH_0AM,y_CI_up,'g') 
grid on 
hold on 
plot(T_SH_0AM,y_CI_down,'g') 
plot(T_SH_0AM,Demand_SH_0AM,'.b') 
plot(T_SH_0AM,SH_value_0AM,'r') 
hold off 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('CONFIDENCE INTERVAL AND FITTING', 'FontSize', fontSize); 
legend('UPPER CI 95%','LOWER CI 95%','experimental points','model') 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
end 

 

“CI_year.m” 

%function per il CI year 
function [y_CI_up,y_CI_down]=CI_year(coeff_DEF_SH_0AM,T_SH_0AM,Demand_SH_0AM,i) 

  
%valutazione punti con il modello lineare 
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SH_value_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
n_lib_deg=length(SH_value_0AM)-2; 

  
%caclolo parametri necessari 
Se_SH_0AM=sqrt((n_lib_deg+1)*((std(Demand_SH_0AM)^2)-

(coeff_DEF_SH_0AM(1)^2)*std(T_SH_0AM))/(n_lib_deg)); 
%usare il valore di porbabilità cumulata (cumulative density function) 
%nella t-student per includere tutti i valori all'interno della probabilità 
%scelt, il 95% solitamente basta. Avendo un alto numero di gradi di libertà 
%coincide con la distribuzione gaussiana. 
t_stud_value=tcdf(0.95,n_lib_deg); 
prod_factor=sqrt(1+(1/length(SH_value_0AM))+(((T_SH_0AM-

mean(T_SH_0AM)).^2)/(length(SH_value_0AM)*(std(T_SH_0AM)^2)))); 

  
%calcolo y degli intervalli di confidenza 
y_CI_up=SH_value_0AM+Se_SH_0AM.*t_stud_value.*prod_factor; 
y_CI_down=SH_value_0AM-Se_SH_0AM.*t_stud_value.*prod_factor; 

  
fontSize=18; 

  
%grafico 
figure(i) 
% pos=[0.65 0.2 0.3 0.3]; 
% subplot('Position',pos) 
subplot(3,3,5) 
plot(T_SH_0AM,y_CI_up,'g') 
grid on 
hold on 
plot(T_SH_0AM,y_CI_down,'g') 
plot(T_SH_0AM,Demand_SH_0AM,'.b') 
plot(T_SH_0AM,SH_value_0AM,'r') 
hold off 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('CONFIDENCE INTERVAL AND FITTING', 'FontSize', fontSize); 
legend('UPPER CI 95%','LOWER CI 95%','experimental points','model') 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
end 

 

“ESC_10922.m” 

%ESC DEFINITIVO 
close all 
clear all 
clc  

  
%IMPORTARE I DATI DAL FILE EXCEL DESIDERATO 
ENERGY=xlsread('10922 no doppi.xlsx','O2:O8760');                           

%importare dati non doppi, processare in excel prima 
HOURS=xlsread('10922 no doppi.xlsx','P2:P8760'); 

  
%% CREAZIONE VETTORI DIVISI PER ORA 

  
%ENERGY 0AM 
[ENERGY_0AM]=HOUR_split(ENERGY,1);                                          %0AM 

è la ora 1 del giorno, var_0AM=1 
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%ENERGY 1AM 
[ENERGY_1AM]=HOUR_split(ENERGY,2);                                          %1AM 

è la ora 2 del giorno, var_0AM=2 

  
%ENERGY 2AM 
[ENERGY_2AM]=HOUR_split(ENERGY,3);                                          %1AM 

è la ora 3 del giorno, var_0AM=3 

  
%ENERGY 3AM 
[ENERGY_3AM]=HOUR_split(ENERGY,4);                                          %1AM 

è la ora 4 del giorno, var_0AM=4 

  
%ENERGY 4AM 
[ENERGY_4AM]=HOUR_split(ENERGY,5);                                          %1AM 

è la ora 5 del giorno, var_0AM=5 

  
%ENERGY 5AM 
[ENERGY_5AM]=HOUR_split(ENERGY,6);                                          %1AM 

è la ora 6 del giorno, var_0AM=6 

  
%ENERGY 6AM 
[ENERGY_6AM]=HOUR_split(ENERGY,7);                                          %1AM 

è la ora 7 del giorno, var_0AM=7 

  
%ENERGY 7AM 
[ENERGY_7AM]=HOUR_split(ENERGY,8);                                          %1AM 

è la ora 8 del giorno, var_0AM=8 

  
%ENERGY 8AM 
[ENERGY_8AM]=HOUR_split(ENERGY,9);                                          %1AM 

è la ora 9 del giorno, var_0AM=9 

  
%ENERGY 9AM 
[ENERGY_9AM]=HOUR_split(ENERGY,10);                                         %1AM 

è la ora 10 del giorno, var_0AM=10 

  
%ENERGY 10AM 
[ENERGY_10AM]=HOUR_split(ENERGY,11);                                        %1AM 

è la ora 11 del giorno, var_0AM=11 

  
%ENERGY 11AM 
[ENERGY_11AM]=HOUR_split(ENERGY,12);                                        %1AM 

è la ora 12 del giorno, var_0AM=12 

  
%ENERGY 12AM 
[ENERGY_12AM]=HOUR_split(ENERGY,13);                                        %1AM 

è la ora 13 del giorno, var_0AM=13 

  
%ENERGY 13PM 
[ENERGY_13PM]=HOUR_split(ENERGY,14);                                        %1AM 

è la ora 14 del giorno, var_0AM=14 

  
%ENERGY 14PM 
[ENERGY_14PM]=HOUR_split(ENERGY,15);                                        %1AM 

è la ora 15 del giorno, var_0AM=15 

  
%ENERGY 15PM 
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[ENERGY_15PM]=HOUR_split(ENERGY,16);                                        %1AM 

è la ora 16 del giorno, var_0AM=16 

  
%ENERGY 16PM 
[ENERGY_16PM]=HOUR_split(ENERGY,17);                                        %1AM 

è la ora 17 del giorno, var_0AM=17 

  
%ENERGY 17PM 
[ENERGY_17PM]=HOUR_split(ENERGY,18);                                        %1AM 

è la ora 18 del giorno, var_0AM=18 

  
%ENERGY 18PM 
[ENERGY_18PM]=HOUR_split(ENERGY,19);                                        %1AM 

è la ora 19 del giorno, var_0AM=19 

  
%ENERGY 19PM 
[ENERGY_19PM]=HOUR_split(ENERGY,20);                                        %1AM 

è la ora 20 del giorno, var_0AM=20 

  
%ENERGY 20PM 
[ENERGY_20PM]=HOUR_split(ENERGY,21);                                        %1AM 

è la ora 21 del giorno, var_0AM=21 

  
%ENERGY 21PM 
[ENERGY_21PM]=HOUR_split(ENERGY,22);                                        %1AM 

è la ora 22 del giorno, var_0AM=22 

  
%ENERGY 22PM 
[ENERGY_22PM]=HOUR_split(ENERGY,23);                                        %1AM 

è la ora 23 del giorno, var_0AM=23 

  
%ENERGY 23PM 
[ENERGY_23PM]=HOUR_split_11PM(ENERGY,24);                                   %1AM 

è la ora 24 del giorno, var_0AM=24 
ENERGY_23PM(365,1)=ENERGY_0AM(1,1); 

  
%% calcolo della mean daily temperature  
T=xlsread('Clima_Hour_2019 ex.xlsx','I2:I8760'); 
DMT=[]; 
scr=1; 

  
for j=1:364 
    

dailyMT=(T(scr,1)+T(scr+1,1)+T(scr+2,1)+T(scr+3,1)+T(scr+4,1)+T(scr+5,1)+T(scr+6

,1)+T(scr+7,1)+T(scr+8,1)+T(scr+9,1)+ 

T(scr+10,1)+T(scr+11,1)+T(scr+12,1)+T(scr+13,1)+T(scr+14,1)+T(scr+15,1)+T(scr+16

,1)+T(scr+17,1)+T(scr+18,1)+T(scr+19,1)+T(scr+20,1)+T(scr+21,1)+T(scr+22,1)+T(sc

r+23,1))/24; 
    DMT(j,1)=dailyMT; 

     
    scr=scr+24; 
end 

  
j=365; 
 

dailyMT=(T(scr,1)+T(scr+1,1)+T(scr+2,1)+T(scr+3,1)+T(scr+4,1)+T(scr+5,1)+T(scr+6

,1)+T(scr+7,1)+T(scr+8,1)+T(scr+9,1)+ 

T(scr+10,1)+T(scr+11,1)+T(scr+12,1)+T(scr+13,1)+T(scr+14,1)+T(scr+15,1)+T(scr+16

,1)+T(scr+17,1)+T(scr+18,1)+T(scr+19,1)+T(scr+20,1)+T(scr+21,1)+T(scr+22,1))/23; 
 DMT(j,1)=dailyMT; 
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%% plot Tdailymean (DMT) vs ENERGY_0AM 
%SE OK POSSIBILE IMPLEMENTARE LA CREAZIONE DI 24 FIGURE, UNA PER OGNI ORA 
%DEL GIORNO 

  
fontSize = 18; 
markerSize = 20; 

  
figure (1) 
subplot(3,3,1) 
plot(DMT,ENERGY_0AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 0AM', 'FontSize', fontSize); 
title('ENERGY 0AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (2) 
subplot(3,3,1) 
plot(DMT,ENERGY_1AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 1AM', 'FontSize', fontSize); 
title('ENERGY 1AM vs DMT', 'FontSize', fontSize); 

  

% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (3) 
subplot(3,3,1) 
plot(DMT,ENERGY_2AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 2AM', 'FontSize', fontSize); 
title('ENERGY 2AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (4) 
subplot(3,3,1) 
plot(DMT,ENERGY_3AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 3AM', 'FontSize', fontSize); 
title('ENERGY 3AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (5) 
subplot(3,3,1) 
plot(DMT,ENERGY_4AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 4 AM', 'FontSize', fontSize); 
title('ENERGY 4 AM vs DMT', 'FontSize', fontSize); 
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% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (6) 
subplot(3,3,1) 
plot(DMT,ENERGY_5AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 5AM', 'FontSize', fontSize); 
title('ENERGY 5AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  

figure (7) 
subplot(3,3,1) 
plot(DMT,ENERGY_6AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 6AM', 'FontSize', fontSize); 
title('ENERGY 6AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (8) 
subplot(3,3,1) 
plot(DMT,ENERGY_7AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 7AM', 'FontSize', fontSize); 
title('ENERGY 7AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (9) 
subplot(3,3,1) 
plot(DMT,ENERGY_8AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 8AM', 'FontSize', fontSize); 
title('ENERGY 8AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (10) 
subplot(3,3,1) 
plot(DMT,ENERGY_9AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 9AM', 'FontSize', fontSize); 
title('ENERGY 9AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (11) 
subplot(3,3,1) 
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plot(DMT,ENERGY_10AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 10AM', 'FontSize', fontSize); 
title('ENERGY 10AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (12) 
subplot(3,3,1) 
plot(DMT,ENERGY_11AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 11AM', 'FontSize', fontSize); 
title('ENERGY 11AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (13) 
subplot(3,3,1) 
plot(DMT,ENERGY_12AM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 12AM', 'FontSize', fontSize); 
title('ENERGY 12AM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (14) 
subplot(3,3,1) 
plot(DMT,ENERGY_13PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 13PM', 'FontSize', fontSize); 
title('ENERGY 13PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (15) 
subplot(3,3,1) 
plot(DMT,ENERGY_14PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 14PM', 'FontSize', fontSize); 
title('ENERGY 14PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (16) 
subplot(3,3,1) 
plot(DMT,ENERGY_15PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 15PM', 'FontSize', fontSize); 
title('ENERGY 15PM vs DMT', 'FontSize', fontSize); 
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% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (17) 
subplot(3,3,1) 
plot(DMT,ENERGY_16PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 16PM', 'FontSize', fontSize); 
title('ENERGY 16PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (18) 
subplot(3,3,1) 
plot(DMT,ENERGY_17PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 17PM', 'FontSize', fontSize); 
title('ENERGY 17PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (19) 
subplot(3,3,1) 
plot(DMT,ENERGY_18PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 18PM', 'FontSize', fontSize); 
title('ENERGY 18PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (20) 
subplot(3,3,1) 
plot(DMT,ENERGY_19PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 19PM', 'FontSize', fontSize); 
title('ENERGY 19PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (21) 
subplot(3,3,1) 
plot(DMT,ENERGY_20PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 20PM', 'FontSize', fontSize); 
title('ENERGY 20PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (22) 
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subplot(3,3,1) 
plot(DMT,ENERGY_21PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 21PM', 'FontSize', fontSize); 
title('ENERGY 21PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (23) 
subplot(3,3,1) 
plot(DMT,ENERGY_22PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 22PM', 'FontSize', fontSize); 
title('ENERGY 22PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (24) 
subplot(3,3,1) 
plot(DMT,ENERGY_23PM,'*') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 23PM', 'FontSize', fontSize); 
title('ENERGY 23PM vs DMT', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%% CALCOLO ESC (energy signature curve) 
%nella function ESC_BETA ci sono già i comandi per la creazione del 
%grafico.  

  
% ENERGY_0AM 
[BETA_0AM,TEMP_0AM]=ESC_BETA(ENERGY_0AM,DMT,1); 

  
%ENERGY_1AM 
[BETA_1AM,TEMP_1AM]=ESC_BETA(ENERGY_1AM,DMT,2); 

  
%ENERGY_2AM 
[BETA_2AM,TEMP_2AM]=ESC_BETA(ENERGY_2AM,DMT,3); 

  
%ENERGY_3AM 
[BETA_3AM,TEMP_3AM]=ESC_BETA(ENERGY_3AM,DMT,4); 

  
%ENERGY_4AM 
[BETA_4AM,TEMP_4AM]=ESC_BETA(ENERGY_4AM,DMT,5); 

  
%ENERGY_5AM 
[BETA_5AM,TEMP_5AM]=ESC_BETA(ENERGY_5AM,DMT,6); 

  

%ENERGY_6AM 
[BETA_6AM,TEMP_6AM]=ESC_BETA(ENERGY_6AM,DMT,7); 

  
%ENERGY_7AM 
[BETA_7AM,TEMP_7AM]=ESC_BETA(ENERGY_7AM,DMT,8); 
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%ENERGY_8AM 
[BETA_8AM,TEMP_8AM]=ESC_BETA(ENERGY_8AM,DMT,9); 

  
%ENERGY_9AM 
[BETA_9AM,TEMP_9AM]=ESC_BETA(ENERGY_9AM,DMT,10); 

  
%ENERGY_10AM 
[BETA_10AM,TEMP_10AM]=ESC_BETA(ENERGY_10AM,DMT,11); 

  
%ENERGY_11AM 
[BETA_11AM,TEMP_11AM]=ESC_BETA(ENERGY_11AM,DMT,12); 

  
%ENERGY_12AM 
[BETA_12AM,TEMP_12AM]=ESC_BETA(ENERGY_12AM,DMT,13); 

  
%ENERGY_13PM 
[BETA_13PM,TEMP_13PM]=ESC_BETA(ENERGY_13PM,DMT,14); 

  
%ENERGY_14PM 
[BETA_14PM,TEMP_14PM]=ESC_BETA(ENERGY_14PM,DMT,15); 

  
%ENERGY_15PM 
[BETA_15PM,TEMP_15PM]=ESC_BETA(ENERGY_15PM,DMT,16); 

  
%ENERGY_16PM 
[BETA_16PM,TEMP_16PM]=ESC_BETA(ENERGY_16PM,DMT,17); 

  
%ENERGY_17PM 
[BETA_17PM,TEMP_17PM]=ESC_BETA(ENERGY_17PM,DMT,18); 

  
%ENERGY_18PM 
[BETA_18PM,TEMP_18PM]=ESC_BETA(ENERGY_18PM,DMT,19); 

  
%ENERGY_19PM 
[BETA_19PM,TEMP_19PM]=ESC_BETA(ENERGY_19PM,DMT,20); 

  
%ENERGY_20PM 
[BETA_20PM,TEMP_20PM]=ESC_BETA(ENERGY_20PM,DMT,21); 

  
%ENERGY_21PM 
[BETA_21PM,TEMP_21PM]=ESC_BETA(ENERGY_21PM,DMT,22); 

  
%ENERGY_22PM 
[BETA_22PM,TEMP_22PM]=ESC_BETA(ENERGY_22PM,DMT,23); 

  
%ENERGY_23PM 
[BETA_23PM,TEMP_23PM]=ESC_BETA(ENERGY_23PM,DMT,24); 

  
 %% CPT definition 
 %analize beta plot to find it. Where beta starts decreasing 
 CPT_0AM=11.5; 
 CPT_1AM=11.6; 
 CPT_2AM=11.5; 
 CPT_3AM=11.7; 
 CPT_4AM=11.5; 
 CPT_5AM=11.7; 
 CPT_6AM=11.9; 
 CPT_7AM=11.8; 
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 CPT_8AM=11.3; 
 CPT_9AM=11.3; 
 CPT_10AM=10.9; 
 CPT_11AM=11.3; 
 CPT_12AM=11.2; 
 CPT_13PM=11.3; 
 CPT_14PM=11.3; 
 CPT_15PM=11.7; 
 CPT_16PM=11.6; 
 CPT_17PM=11.4; 
 CPT_18PM=11.6; 
 CPT_19PM=11.5; 
 CPT_20PM=11.5; 
 CPT_21PM=11.5; 
 CPT_22PM=11.8; 
 CPT_23PM=11.7; 
 %% SPLITTING DHW E SH+DHW 

  
 %ENERGY 0AM 
[T_SH_0AM,Demand_SH_0AM,T_DHW_0AM,Demand_DHW_0AM,coeff_DEF_SH_0AM,coeff_DEF_DHW_

0AM]=ESC_DIVISION(CPT_0AM,ENERGY_0AM,DMT,1); 

  
%ENERGY 1AM 
[T_SH_1AM,Demand_SH_1AM,T_DHW_1AM,Demand_DHW_1AM,coeff_DEF_SH_1AM,coeff_DEF_DHW_

1AM]=ESC_DIVISION(CPT_1AM,ENERGY_1AM,DMT,2); 

  
%ENERGY 2AM 
[T_SH_2AM,Demand_SH_2AM,T_DHW_2AM,Demand_DHW_2AM,coeff_DEF_SH_2AM,coeff_DEF_DHW_

2AM]=ESC_DIVISION(CPT_2AM,ENERGY_2AM,DMT,3); 

  
%ENERGY 3AM 
[T_SH_3AM,Demand_SH_3AM,T_DHW_3AM,Demand_DHW_3AM,coeff_DEF_SH_3AM,coeff_DEF_DHW_

3AM]=ESC_DIVISION(CPT_3AM,ENERGY_3AM,DMT,4); 

  
%ENERGY 4AM 
[T_SH_4AM,Demand_SH_4AM,T_DHW_4AM,Demand_DHW_4AM,coeff_DEF_SH_4AM,coeff_DEF_DHW_

4AM]=ESC_DIVISION(CPT_4AM,ENERGY_4AM,DMT,5); 

  
%ENERGY 5AM 
[T_SH_5AM,Demand_SH_5AM,T_DHW_5AM,Demand_DHW_5AM,coeff_DEF_SH_5AM,coeff_DEF_DHW_

5AM]=ESC_DIVISION(CPT_5AM,ENERGY_5AM,DMT,6); 

  
%ENERGY 6AM 
[T_SH_6AM,Demand_SH_6AM,T_DHW_6AM,Demand_DHW_6AM,coeff_DEF_SH_6AM,coeff_DEF_DHW_

6AM]=ESC_DIVISION(CPT_6AM,ENERGY_6AM,DMT,7); 

  
%ENERGY 7AM 
[T_SH_7AM,Demand_SH_7AM,T_DHW_7AM,Demand_DHW_7AM,coeff_DEF_SH_7AM,coeff_DEF_DHW_

7AM]=ESC_DIVISION(CPT_7AM,ENERGY_7AM,DMT,8); 

  
%ENERGY 8AM 
[T_SH_8AM,Demand_SH_8AM,T_DHW_8AM,Demand_DHW_8AM,coeff_DEF_SH_8AM,coeff_DEF_DHW_

8AM]=ESC_DIVISION(CPT_8AM,ENERGY_8AM,DMT,9); 

  
%ENERGY 9AM 
[T_SH_9AM,Demand_SH_9AM,T_DHW_9AM,Demand_DHW_9AM,coeff_DEF_SH_9AM,coeff_DEF_DHW_

9AM]=ESC_DIVISION(CPT_9AM,ENERGY_9AM,DMT,10); 

  
%ENERGY 10AM 
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[T_SH_10AM,Demand_SH_10AM,T_DHW_10AM,Demand_DHW_10AM,coeff_DEF_SH_10AM,coeff_DEF

_DHW_10AM]=ESC_DIVISION(CPT_10AM,ENERGY_10AM,DMT,11); 

  
%ENERGY 11AM 
[T_SH_11AM,Demand_SH_11AM,T_DHW_11AM,Demand_DHW_11AM,coeff_DEF_SH_11AM,coeff_DEF

_DHW_11AM]=ESC_DIVISION(CPT_11AM,ENERGY_11AM,DMT,12); 

  
%ENERGY 12AM 
[T_SH_12AM,Demand_SH_12AM,T_DHW_12AM,Demand_DHW_12AM,coeff_DEF_SH_12AM,coeff_DEF

_DHW_12AM]=ESC_DIVISION(CPT_12AM,ENERGY_12AM,DMT,13); 

  
%ENERGY 13PM 
[T_SH_13PM,Demand_SH_13PM,T_DHW_13PM,Demand_DHW_13PM,coeff_DEF_SH_13PM,coeff_DEF

_DHW_13PM]=ESC_DIVISION(CPT_13PM,ENERGY_13PM,DMT,14); 

  
%ENERGY 14PM 
[T_SH_14PM,Demand_SH_14PM,T_DHW_14PM,Demand_DHW_14PM,coeff_DEF_SH_14PM,coeff_DEF

_DHW_14PM]=ESC_DIVISION(CPT_14PM,ENERGY_14PM,DMT,15); 

  
%ENERGY 15PM 
[T_SH_15PM,Demand_SH_15PM,T_DHW_15PM,Demand_DHW_15PM,coeff_DEF_SH_15PM,coeff_DEF

_DHW_15PM]=ESC_DIVISION(CPT_15PM,ENERGY_15PM,DMT,16); 

  
%ENERGY 16PM 
[T_SH_16PM,Demand_SH_16PM,T_DHW_16PM,Demand_DHW_16PM,coeff_DEF_SH_16PM,coeff_DEF

_DHW_16PM]=ESC_DIVISION(CPT_16PM,ENERGY_16PM,DMT,17); 

  
%ENERGY 17PM 
[T_SH_17PM,Demand_SH_17PM,T_DHW_17PM,Demand_DHW_17PM,coeff_DEF_SH_17PM,coeff_DEF

_DHW_17PM]=ESC_DIVISION(CPT_17PM,ENERGY_17PM,DMT,18); 

  
%ENERGY 18PM 
[T_SH_18PM,Demand_SH_18PM,T_DHW_18PM,Demand_DHW_18PM,coeff_DEF_SH_18PM,coeff_DEF

_DHW_18PM]=ESC_DIVISION(CPT_18PM,ENERGY_18PM,DMT,19); 

  
%ENERGY 19PM 
[T_SH_19PM,Demand_SH_19PM,T_DHW_19PM,Demand_DHW_19PM,coeff_DEF_SH_19PM,coeff_DEF

_DHW_19PM]=ESC_DIVISION(CPT_19PM,ENERGY_19PM,DMT,20); 

  
%ENERGY 20PM 
[T_SH_20PM,Demand_SH_20PM,T_DHW_20PM,Demand_DHW_20PM,coeff_DEF_SH_20PM,coeff_DEF

_DHW_20PM]=ESC_DIVISION(CPT_20PM,ENERGY_20PM,DMT,21); 

  
%ENERGY 21PM 
[T_SH_21PM,Demand_SH_21PM,T_DHW_21PM,Demand_DHW_21PM,coeff_DEF_SH_21PM,coeff_DEF

_DHW_21PM]=ESC_DIVISION(CPT_21PM,ENERGY_21PM,DMT,22); 

  
%ENERGY 22PM 
[T_SH_22PM,Demand_SH_22PM,T_DHW_22PM,Demand_DHW_22PM,coeff_DEF_SH_22PM,coeff_DEF

_DHW_22PM]=ESC_DIVISION(CPT_22PM,ENERGY_22PM,DMT,23); 

  
%ENERGY 23PM 
[T_SH_23PM,Demand_SH_23PM,T_DHW_23PM,Demand_DHW_23PM,coeff_DEF_SH_23PM,coeff_DEF

_DHW_23PM]=ESC_DIVISION(CPT_23PM,ENERGY_23PM,DMT,24); 
%% Equation CONTINUE IN X=CPT, from mathematical model with imposed continuity 

  
%ENERGY 0AM 
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[Demand_NOR_SH_0AM,Demand_NOR_DHW_0AM,R2_nor_SH_0AM,R2_nor_DHW_0AM]=ESC_CONT_CPT

(coeff_DEF_SH_0AM,coeff_DEF_DHW_0AM,T_SH_0AM,T_DHW_0AM,CPT_0AM,Demand_SH_0AM,Dem

and_DHW_0AM,1); 

  
%ENERGY 1AM 
[Demand_NOR_SH_1AM,Demand_NOR_DHW_1AM,R2_nor_SH_1AM,R2_nor_DHW_1AM]=ESC_CONT_CPT

(coeff_DEF_SH_1AM,coeff_DEF_DHW_1AM,T_SH_1AM,T_DHW_1AM,CPT_1AM,Demand_SH_1AM,Dem

and_DHW_1AM,2); 

  
%ENERGY 2AM 
[Demand_NOR_SH_2AM,Demand_NOR_DHW_2AM,R2_nor_SH_2AM,R2_nor_DHW_2AM]=ESC_CONT_CPT

(coeff_DEF_SH_2AM,coeff_DEF_DHW_2AM,T_SH_2AM,T_DHW_2AM,CPT_2AM,Demand_SH_2AM,Dem

and_DHW_2AM,3); 

  

%ENERGY 3AM 
[Demand_NOR_SH_3AM,Demand_NOR_DHW_3AM,R2_nor_SH_3AM,R2_nor_DHW_3AM]=ESC_CONT_CPT

(coeff_DEF_SH_3AM,coeff_DEF_DHW_3AM,T_SH_3AM,T_DHW_3AM,CPT_3AM,Demand_SH_3AM,Dem

and_DHW_3AM,4); 

  
%ENERGY 4AM 
[Demand_NOR_SH_4AM,Demand_NOR_DHW_4AM,R2_nor_SH_4AM,R2_nor_DHW_4AM]=ESC_CONT_CPT

(coeff_DEF_SH_4AM,coeff_DEF_DHW_4AM,T_SH_4AM,T_DHW_4AM,CPT_4AM,Demand_SH_4AM,Dem

and_DHW_4AM,5); 

  
%ENERGY 5AM 
[Demand_NOR_SH_5AM,Demand_NOR_DHW_5AM,R2_nor_SH_5AM,R2_nor_DHW_5AM]=ESC_CONT_CPT

(coeff_DEF_SH_5AM,coeff_DEF_DHW_5AM,T_SH_5AM,T_DHW_5AM,CPT_5AM,Demand_SH_5AM,Dem

and_DHW_5AM,6); 

  
%ENERGY 6AM 
[Demand_NOR_SH_6AM,Demand_NOR_DHW_6AM,R2_nor_SH_6AM,R2_nor_DHW_6AM]=ESC_CONT_CPT

(coeff_DEF_SH_6AM,coeff_DEF_DHW_6AM,T_SH_6AM,T_DHW_6AM,CPT_6AM,Demand_SH_6AM,Dem

and_DHW_6AM,7); 

  
%ENERGY 7AM 
[Demand_NOR_SH_7AM,Demand_NOR_DHW_7AM,R2_nor_SH_7AM,R2_nor_DHW_7AM]=ESC_CONT_CPT

(coeff_DEF_SH_7AM,coeff_DEF_DHW_7AM,T_SH_7AM,T_DHW_7AM,CPT_7AM,Demand_SH_7AM,Dem

and_DHW_7AM,8); 

  
%ENERGY 8AM 
[Demand_NOR_SH_8AM,Demand_NOR_DHW_8AM,R2_nor_SH_8AM,R2_nor_DHW_8AM]=ESC_CONT_CPT

(coeff_DEF_SH_8AM,coeff_DEF_DHW_8AM,T_SH_8AM,T_DHW_8AM,CPT_8AM,Demand_SH_8AM,Dem

and_DHW_8AM,9); 

  
%ENERGY 9AM 
[Demand_NOR_SH_9AM,Demand_NOR_DHW_9AM,R2_nor_SH_9AM,R2_nor_DHW_9AM]=ESC_CONT_CPT

(coeff_DEF_SH_9AM,coeff_DEF_DHW_9AM,T_SH_9AM,T_DHW_9AM,CPT_9AM,Demand_SH_9AM,Dem

and_DHW_9AM,10); 

  
%ENERGY 10AM 
[Demand_NOR_SH_10AM,Demand_NOR_DHW_10AM,R2_nor_SH_10AM,R2_nor_DHW_10AM]=ESC_CONT

_CPT(coeff_DEF_SH_10AM,coeff_DEF_DHW_10AM,T_SH_10AM,T_DHW_10AM,CPT_10AM,Demand_S

H_10AM,Demand_DHW_10AM,11); 

  

%ENERGY 11AM 
[Demand_NOR_SH_11AM,Demand_NOR_DHW_11AM,R2_nor_SH_11AM,R2_nor_DHW_11AM]=ESC_CONT

_CPT(coeff_DEF_SH_11AM,coeff_DEF_DHW_11AM,T_SH_11AM,T_DHW_11AM,CPT_11AM,Demand_S

H_11AM,Demand_DHW_11AM,12); 

  
%ENERGY 12AM 
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[Demand_NOR_SH_12AM,Demand_NOR_DHW_12AM,R2_nor_SH_12AM,R2_nor_DHW_12AM]=ESC_CONT

_CPT(coeff_DEF_SH_12AM,coeff_DEF_DHW_12AM,T_SH_12AM,T_DHW_12AM,CPT_12AM,Demand_S

H_12AM,Demand_DHW_12AM,13); 

  
%ENERGY 13PM 
[Demand_NOR_SH_13PM,Demand_NOR_DHW_13PM,R2_nor_SH_13PM,R2_nor_DHW_13PM]=ESC_CONT

_CPT(coeff_DEF_SH_13PM,coeff_DEF_DHW_13PM,T_SH_13PM,T_DHW_13PM,CPT_13PM,Demand_S

H_13PM,Demand_DHW_13PM,14); 

  
%ENERGY 14PM 
[Demand_NOR_SH_14PM,Demand_NOR_DHW_14PM,R2_nor_SH_14PM,R2_nor_DHW_14PM]=ESC_CONT

_CPT(coeff_DEF_SH_14PM,coeff_DEF_DHW_14PM,T_SH_14PM,T_DHW_14PM,CPT_14PM,Demand_S

H_14PM,Demand_DHW_14PM,15); 

  

%ENERGY 15PM 
[Demand_NOR_SH_15PM,Demand_NOR_DHW_15PM,R2_nor_SH_15PM,R2_nor_DHW_15PM]=ESC_CONT

_CPT(coeff_DEF_SH_15PM,coeff_DEF_DHW_15PM,T_SH_15PM,T_DHW_15PM,CPT_15PM,Demand_S

H_15PM,Demand_DHW_15PM,16); 

  
%ENERGY 16PM 
[Demand_NOR_SH_16PM,Demand_NOR_DHW_16PM,R2_nor_SH_16PM,R2_nor_DHW_16PM]=ESC_CONT

_CPT(coeff_DEF_SH_16PM,coeff_DEF_DHW_16PM,T_SH_16PM,T_DHW_16PM,CPT_16PM,Demand_S

H_16PM,Demand_DHW_16PM,17); 

  
%ENERGY 17PM 
[Demand_NOR_SH_17PM,Demand_NOR_DHW_17PM,R2_nor_SH_17PM,R2_nor_DHW_17PM]=ESC_CONT

_CPT(coeff_DEF_SH_17PM,coeff_DEF_DHW_17PM,T_SH_17PM,T_DHW_17PM,CPT_17PM,Demand_S

H_17PM,Demand_DHW_17PM,18); 

  
%ENERGY 18PM 
[Demand_NOR_SH_18PM,Demand_NOR_DHW_18PM,R2_nor_SH_18PM,R2_nor_DHW_18PM]=ESC_CONT

_CPT(coeff_DEF_SH_18PM,coeff_DEF_DHW_18PM,T_SH_18PM,T_DHW_18PM,CPT_18PM,Demand_S

H_18PM,Demand_DHW_18PM,19); 

  
%ENERGY 19PM 
[Demand_NOR_SH_19PM,Demand_NOR_DHW_19PM,R2_nor_SH_19PM,R2_nor_DHW_19PM]=ESC_CONT

_CPT(coeff_DEF_SH_19PM,coeff_DEF_DHW_19PM,T_SH_19PM,T_DHW_19PM,CPT_19PM,Demand_S

H_19PM,Demand_DHW_19PM,20); 

  
%ENERGY 20PM 
[Demand_NOR_SH_20PM,Demand_NOR_DHW_20PM,R2_nor_SH_20PM,R2_nor_DHW_20PM]=ESC_CONT

_CPT(coeff_DEF_SH_20PM,coeff_DEF_DHW_20PM,T_SH_20PM,T_DHW_20PM,CPT_20PM,Demand_S

H_20PM,Demand_DHW_20PM,21); 

  
%ENERGY 21PM 
[Demand_NOR_SH_21PM,Demand_NOR_DHW_21PM,R2_nor_SH_21PM,R2_nor_DHW_21PM]=ESC_CONT

_CPT(coeff_DEF_SH_21PM,coeff_DEF_DHW_21PM,T_SH_21PM,T_DHW_21PM,CPT_21PM,Demand_S

H_21PM,Demand_DHW_21PM,22); 

  
%ENERGY 22PM 
[Demand_NOR_SH_22PM,Demand_NOR_DHW_22PM,R2_nor_SH_22PM,R2_nor_DHW_22PM]=ESC_CONT

_CPT(coeff_DEF_SH_22PM,coeff_DEF_DHW_22PM,T_SH_22PM,T_DHW_22PM,CPT_22PM,Demand_S

H_22PM,Demand_DHW_22PM,23); 

  

%ENERGY 23PM 
[Demand_NOR_SH_23PM,Demand_NOR_DHW_23PM,R2_nor_SH_23PM,R2_nor_DHW_23PM]=ESC_CONT

_CPT(coeff_DEF_SH_23PM,coeff_DEF_DHW_23PM,T_SH_23PM,T_DHW_23PM,CPT_23PM,Demand_S

H_23PM,Demand_DHW_23PM,24); 

  
%% calcolo di R2 per la valutazione delle performance dei modelli 
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%ENERGY 0AM 
R2_0AM=ones(1,2); 
R2_0AM(1,1)=R2_nor_SH_0AM; 
R2_0AM(1,2)=R2_nor_DHW_0AM; 

  
%ENERGY 1AM 
R2_1AM=ones(1,2); 
R2_1AM(1,1)=R2_nor_SH_1AM; 
R2_1AM(1,2)=R2_nor_DHW_1AM; 

  
%ENERGY 2AM 
R2_2AM=ones(1,2); 
R2_2AM(1,1)=R2_nor_SH_2AM; 
R2_2AM(1,2)=R2_nor_DHW_2AM; 

  
%ENERGY 3AM 
R2_3AM=ones(1,2); 
R2_3AM(1,1)=R2_nor_SH_3AM; 
R2_3AM(1,2)=R2_nor_DHW_3AM; 

  
%ENERGY 4AM 
R2_4AM=ones(1,2); 
R2_4AM(1,1)=R2_nor_SH_4AM; 
R2_4AM(1,2)=R2_nor_DHW_4AM; 

  
%ENERGY 5AM 
R2_5AM=ones(1,2); 
R2_5AM(1,1)=R2_nor_SH_5AM; 
R2_5AM(1,2)=R2_nor_DHW_5AM; 

  
%ENERGY 6AM 
R2_6AM=ones(1,2); 
R2_6AM(1,1)=R2_nor_SH_6AM; 
R2_6AM(1,2)=R2_nor_DHW_6AM; 

  
%ENERGY 7AM 
R2_7AM=ones(1,2); 
R2_7AM(1,1)=R2_nor_SH_7AM; 
R2_7AM(1,2)=R2_nor_DHW_7AM; 

  
%ENERGY 8AM 
R2_8AM=ones(1,2); 
R2_8AM(1,1)=R2_nor_SH_8AM; 
R2_8AM(1,2)=R2_nor_DHW_8AM; 

  
%ENERGY 9AM 
R2_9AM=ones(1,2); 
R2_9AM(1,1)=R2_nor_SH_9AM; 
R2_9AM(1,2)=R2_nor_DHW_9AM; 

  
%ENERGY 10AM 
R2_10AM=ones(1,2); 
R2_10AM(1,1)=R2_nor_SH_10AM; 
R2_10AM(1,2)=R2_nor_DHW_10AM; 

  
%ENERGY 11AM 
R2_11AM=ones(1,2); 
R2_11AM(1,1)=R2_nor_SH_11AM; 
R2_11AM(1,2)=R2_nor_DHW_11AM; 
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%ENERGY 12AM 
R2_12AM=ones(1,2); 
R2_12AM(1,1)=R2_nor_SH_12AM; 
R2_12AM(1,2)=R2_nor_DHW_12AM; 

  
%ENERGY 13PM 
R2_13PM=ones(1,2); 
R2_13PM(1,1)=R2_nor_SH_13PM; 
R2_13PM(1,2)=R2_nor_DHW_13PM; 

  
%ENERGY 14PM 
R2_14PM=ones(1,2); 
R2_14PM(1,1)=R2_nor_SH_14PM; 
R2_14PM(1,2)=R2_nor_DHW_14PM; 

  
%ENERGY 15PM 
R2_15PM=ones(1,2); 
R2_15PM(1,1)=R2_nor_SH_15PM; 
R2_15PM(1,2)=R2_nor_DHW_15PM; 

  
%ENERGY 16PM 
R2_16PM=ones(1,2); 
R2_16PM(1,1)=R2_nor_SH_16PM; 
R2_16PM(1,2)=R2_nor_DHW_16PM; 

  
%ENERGY 17PM 
R2_17PM=ones(1,2); 
R2_17PM(1,1)=R2_nor_SH_17PM; 
R2_17PM(1,2)=R2_nor_DHW_17PM; 

  
%ENERGY 18PM 
R2_18PM=ones(1,2); 
R2_18PM(1,1)=R2_nor_SH_18PM; 
R2_18PM(1,2)=R2_nor_DHW_18PM; 

  
%ENERGY 19PM 
R2_19PM=ones(1,2); 
R2_19PM(1,1)=R2_nor_SH_19PM; 
R2_19PM(1,2)=R2_nor_DHW_19PM; 

  
%ENERGY 20PM 
R2_20PM=ones(1,2); 
R2_20PM(1,1)=R2_nor_SH_20PM; 
R2_20PM(1,2)=R2_nor_DHW_20PM; 

  
%ENERGY 21PM 
R2_21PM=ones(1,2); 
R2_21PM(1,1)=R2_nor_SH_21PM; 
R2_21PM(1,2)=R2_nor_DHW_21PM; 

  
%ENERGY 22PM 
R2_22PM=ones(1,2); 
R2_22PM(1,1)=R2_nor_SH_22PM; 
R2_22PM(1,2)=R2_nor_DHW_22PM; 

  
%ENERGY 23PM 
R2_23PM=ones(1,2); 
R2_23PM(1,1)=R2_nor_SH_23PM; 
R2_23PM(1,2)=R2_nor_DHW_23PM; 
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%% boxplot analysis 
%con la funzione boxplot è possibile creare un grafico a scatole. Linea 
%centrale è la mediana, la linea superiore e inferiore sono 
%rispetttivamente il 75 e il 25 percentile mentre gli outliers sono 
%indicati con dei '+'.  

  
%creazione della matrice contenenti tutti i weekeend dell'anno divisa per 
%ore (ogni colonna è un'ora) e quella con tutti i weekedaysù 

  
%non sappiamo per cosa sia utilizzato questo edificio, conviene dividere 
%anche sabato e domenica. 

  
%il primo gennaio 2019, quando sono stati raccolti i dati, era di martedì. 
%5 dato per sabati 
%6 dato per le domeniche 
%tutto il resto per i restanti weekdays. 

  
%inizializzazione delle matrici 
SUNDAY=ones(52,24); 
SATURDAY=ones(52,24); 
WEEKDAYS=[]; 

  
%correzione per ENERGY 23 PM (manca l'ultimo valore, l'ho considerato 
%uguale al gionro precedente. L'ultimo gionro è un martedì, quindi come 
%carico sarà simile al lunedì in quanto entrambi giorni lavorativi e 
%successivi. 

  

ENERGY_23PM(365,1)=ENERGY_23PM(364,1); 

  
%creazione matrice contenente tutte e 24 le ore (colonne) ognuna con il 
%consumo orario di un giorno dell'anno (ongi riga corrisponde ad un giorno 
%del 2019 

  
ENERGY_GLO=[ENERGY_0AM,ENERGY_1AM,ENERGY_2AM,ENERGY_3AM,ENERGY_4AM,ENERGY_5AM,EN

ERGY_6AM,ENERGY_7AM,ENERGY_8AM,ENERGY_9AM,ENERGY_10AM,ENERGY_11AM,ENERGY_12AM,EN

ERGY_13PM,ENERGY_14PM,ENERGY_15PM,ENERGY_16PM,ENERGY_17PM,ENERGY_18PM,ENERGY_19P

M,ENERGY_20PM,ENERGY_21PM,ENERGY_22PM,ENERGY_23PM];  

  

  
%SABATO 
for k=1:24 
    l=1; 
    for i=5:7:365 
        SATURDAY(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%DOMENICA 
for k=1:24 
    l=1; 
    for i=6:7:365 
        SUNDAY(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 

     
end 

  
%WEEK-DAYS 
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%CI SONO PRIMA TUTTI I MARTEDì, POI TUTTI I MERCOLEDì ECC.. TANTO PER LA 
%CREAZIONE DEL BOXPLOT NON è IMPORTANTE L'ORDINE DEI GIONRI, BASTA AVERE I 
%DATI CORRETTAMENTE POSIZIONATI NELLE RIGHE E CORRETTAMENTE DIVISI PER ORE 
for k=1:24 
    l=1; 
    for i=1:7:365 
        WEEKDAYS(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 

     
    for i=2:7:365 
        WEEKDAYS(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 

     
    for i=3:7:365 
        WEEKDAYS(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 

     
    for i=4:7:365 
        WEEKDAYS(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 

     
    for i=7:7:365 
        WEEKDAYS(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 

     
end 

  

  

  

  
figure (25) 
subplot(2,2,1) 
boxplot(SATURDAY,'PlotStyle','traditional') 
grid on 
xlabel('HOURS', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('SATURDAY', 'FontSize', fontSize); 

  
subplot(2,2,2) 
boxplot(SUNDAY,'PlotStyle','traditional') 
grid on 
xlabel('HOURS', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('SUNDAY', 'FontSize', fontSize); 

  
subplot(2,2,3) 
boxplot(WEEKDAYS,'PlotStyle','traditional') 
grid on 
xlabel('HOURS', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('WEEKDAYS', 'FontSize', fontSize); 

  
subplot(2,2,4) 
boxplot(ENERGY_GLO,'PlotStyle','traditional') 
grid on 
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xlabel('HOURS', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('TOTAL', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%% uso di confidence interval (CI) per la rimozione di outliers. 
%dal grafico a scatole  emerso che in questo edificio non ci sono 
%particolari punti outliers. implementare comunque per altri edifici. 

  
%ENERGY 0AM 
[y_CI_up_0AM,y_CI_down_0AM]=CI(coeff_DEF_SH_0AM,T_SH_0AM,Demand_SH_0AM,1); 

  
%ENERGY 1AM 
[y_CI_up_1AM,y_CI_down_1AM]=CI(coeff_DEF_SH_1AM,T_SH_1AM,Demand_SH_1AM,2); 

  
%ENERGY 2AM 
[y_CI_up_2AM,y_CI_down_2AM]=CI(coeff_DEF_SH_2AM,T_SH_2AM,Demand_SH_2AM,3); 

  
%ENERGY 3AM 
[y_CI_up_3AM,y_CI_down_3AM]=CI(coeff_DEF_SH_3AM,T_SH_3AM,Demand_SH_3AM,4); 

  
%ENERGY 4AM 
[y_CI_up_4AM,y_CI_down_4AM]=CI(coeff_DEF_SH_4AM,T_SH_4AM,Demand_SH_4AM,5); 

  
%ENERGY 5AM 
[y_CI_up_5AM,y_CI_down_5AM]=CI(coeff_DEF_SH_5AM,T_SH_5AM,Demand_SH_5AM,6); 

  
%ENERGY 6AM 
[y_CI_up_6AM,y_CI_down_6AM]=CI(coeff_DEF_SH_6AM,T_SH_6AM,Demand_SH_6AM,7); 

  
%ENERGY 7AM 
[y_CI_up_7AM,y_CI_down_7AM]=CI(coeff_DEF_SH_7AM,T_SH_7AM,Demand_SH_7AM,8); 

  
%ENERGY 8AM 
[y_CI_up_8AM,y_CI_down_8AM]=CI(coeff_DEF_SH_8AM,T_SH_8AM,Demand_SH_8AM,9); 

  
%ENERGY 9AM 
[y_CI_up_9AM,y_CI_down_9AM]=CI(coeff_DEF_SH_9AM,T_SH_9AM,Demand_SH_9AM,10); 

  
%ENERGY 10AM 
[y_CI_up_10AM,y_CI_down_10AM]=CI(coeff_DEF_SH_10AM,T_SH_10AM,Demand_SH_10AM,11); 

  
%ENERGY 11AM 
[y_CI_up_11AM,y_CI_down_11AM]=CI(coeff_DEF_SH_11AM,T_SH_11AM,Demand_SH_11AM,12); 

  
%ENERGY 12AM 
[y_CI_up_12AM,y_CI_down_12AM]=CI(coeff_DEF_SH_12AM,T_SH_12AM,Demand_SH_12AM,13); 

  
%ENERGY 13PM 
[y_CI_up_13PM,y_CI_down_13PM]=CI(coeff_DEF_SH_13PM,T_SH_13PM,Demand_SH_13PM,14); 

  

%ENERGY 14PM 
[y_CI_up_14PM,y_CI_down_14PM]=CI(coeff_DEF_SH_14PM,T_SH_14PM,Demand_SH_14PM,15); 

  
%ENERGY 15PM 
[y_CI_up_15PM,y_CI_down_15PM]=CI(coeff_DEF_SH_15PM,T_SH_15PM,Demand_SH_15PM,16); 
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%ENERGY 16PM 
[y_CI_up_16PM,y_CI_down_16PM]=CI(coeff_DEF_SH_16PM,T_SH_16PM,Demand_SH_16PM,17); 

  
%ENERGY 17PM 
[y_CI_up_17PM,y_CI_down_17PM]=CI(coeff_DEF_SH_17PM,T_SH_17PM,Demand_SH_17PM,18); 

  
%ENERGY 18PM 
[y_CI_up_18PM,y_CI_down_18PM]=CI(coeff_DEF_SH_18PM,T_SH_18PM,Demand_SH_18PM,19); 

  
%ENERGY 19PM 
[y_CI_up_19PM,y_CI_down_19PM]=CI(coeff_DEF_SH_19PM,T_SH_19PM,Demand_SH_19PM,20); 

  
%ENERGY 20PM 
[y_CI_up_20PM,y_CI_down_20PM]=CI(coeff_DEF_SH_20PM,T_SH_20PM,Demand_SH_20PM,21); 

  
%ENERGY 21PM 
[y_CI_up_21PM,y_CI_down_21PM]=CI(coeff_DEF_SH_21PM,T_SH_21PM,Demand_SH_21PM,22); 

  
%ENERGY 22PM 
[y_CI_up_22PM,y_CI_down_22PM]=CI(coeff_DEF_SH_22PM,T_SH_22PM,Demand_SH_22PM,23); 

  
%ENERGY 23PM 
[y_CI_up_23PM,y_CI_down_23PM]=CI(coeff_DEF_SH_23PM,T_SH_23PM,Demand_SH_23PM,24); 
%% calcolo di ESC totale, non solo quella divisa in ore 
%nella ESC totale applicare anche il calcolo del CI 

  
figure (27) 
%grafico punti sperimentali 
subplot(3,3,1) 
plot(T,ENERGY,'.') 
grid on 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('ENERGY USE vs T', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%RICREARE LE FUNCTION PERCHè SONO SCRITTE METTENDO COME LIMITE 365 
%calcolo BETA per ESC 
[BETA_year,TEMP_year]=ESC_BETA_year(ENERGY,T,27); 

  
%vedere il valore di CPT dal grafico 
CPT_year=14.1;      %variazione di circa il 3% dal valore precedente 

  
%divisione punti 
[T_SH_year,Demand_SH_year,T_DHW_year,Demand_DHW_year,coeff_DEF_SH_year,coeff_DEF

_DHW_year]=ESC_DIVISION_year(CPT_year,ENERGY,T,27); 

  
%imposizione continuità del modello in CPT 
[Demand_NOR_SH_year,Demand_NOR_DHW_year,R2_nor_SH_year,R2_nor_DHW_year]=ESC_CONT

_CPT_year(coeff_DEF_SH_year,coeff_DEF_DHW_year,T_SH_year,T_DHW_year,CPT_year,Dem

and_SH_year,Demand_DHW_year,27); 

  
%calcolo di CI per individuazione outliers 
%va benissimo, coincide con lo studio. CI serve per l'individuazione di 
%eventuali ouliers nella coda del profilo di domanda, non nei punti vicino 
%a CPT dove sicuramente ci saranno punti al dì fuori perchè rappresentano 
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%il consumo di DHW quando SH è spento nei mesi invernali. 
[y_CI_up_year,y_CI_down_year]=CI_year(coeff_DEF_SH_year,T_SH_year,Demand_SH_year

,27); 
%% TMA dependency control, corrected 
%TMA determination from 1 to 48 hours before. only with SH part of demand 
BETA=[]; 
i=1; 
for k=1:48 
    TMA_hour=movmean(T_SH_year,[0 k]); 
    pol_hour=polyfit(TMA_hour,Demand_SH_year,1); 
    control_beta=pol_hour(1,1); 
    BETA(i)=control_beta; 
    i=i+1; 
end 

  
guida_1=1:length(BETA); 

  
figure (26) 
subplot(2,1,1) 
plot(T,ENERGY,'.') 
hold on 
plot(T_SH_year,Demand_NOR_SH_year,'.') 
grid on 
xlabel('T OUTDOOR', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('T OUTDOOR vs ENERGY USE', 'FontSize', fontSize); 

  
subplot(2,1,2) 
plot(guida_1,BETA) 
grid on 
xlabel('Lag of Temperature MA (hours)', 'FontSize', fontSize); 
ylabel('Correlation between ENERGY and TMA', 'FontSize', fontSize); 
title('TMA vs ENERGY USE', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 
%% DHW mean profiles analysis 
%non dipende dalla Tout ma solamente dall'utilizzo dell'edificio e dal 
%numero di utenti al suo interno. Non è possibile usare la regressione 
%lineare con la T per ottenere un modello accettabile. Più utile usare dei 
%profili tipo 

  
%FATTA PER MAGGIO-SETTEMBRE ma a maggio e settembre ci sono già influenze 
%di SH, come si può vedere dall'aumento del consumo e dal cambio di profilo 
%rispetto a giugno, luglio e agosto 

  
%Maggio  

  
%weekend 
for k=1:24 
    l=1; 
    for i=124:7:151 
        MAY_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=125:7:151 
        MAY_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 
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%work days 
for k=1:24 
    l=1; 
    for i=121:7:151 
        MAY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=122:7:151 
        MAY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
     end 

     
      for i=123:7:151 
        MAY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
      end 

     
       for i=126:7:151 
        MAY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
       end 

     
        for i=127:7:151 
        MAY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 
MAY_MEAN_END=mean(MAY_DHW_END); 
MAY_MEAN_WORK=mean(MAY_DHW_WORK); 
time=[1:24]; 
figure (28) 
subplot(5,2,1) 
bar(time,MAY_MEAN_WORK) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WORK-DAYS', 'FontSize', fontSize); 
legend('May') 

  
subplot(5,2,2) 
bar(time,MAY_MEAN_END) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WEEKEND', 'FontSize', fontSize); 
legend('May') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%giugno 

  
%weekend 
for k=1:24 
    l=1; 
    for i=152:7:181 
        JUNE_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
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     for i=153:7:181 
        JUNE_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%work days 
for k=1:24 
    l=1; 
    for i=154:7:181 
        JUNE_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=155:7:181 
        JUNE_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
     end 

     
      for i=156:7:181 
        JUNE_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
      end 

     
       for i=157:7:181 
        JUNE_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
       end 

     
        for i=158:7:181 
        JUNE_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 
JUNE_MEAN_END=mean(JUNE_DHW_END); 
JUNE_MEAN_WORK=mean(JUNE_DHW_WORK); 
time=[1:24]; 
figure (28) 
subplot(5,2,3) 
bar(time,JUNE_MEAN_WORK) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WORK-DAYS', 'FontSize', fontSize); 
legend('June') 

  
subplot(5,2,4) 
bar(time,JUNE_MEAN_END) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WEEKEND', 'FontSize', fontSize); 
legend('June') 

  

%LUGLIO 
%WEEKEND 
for k=1:24 
    l=1; 
    for i=187:7:212 
        JULY_DHW_END(l,k)=ENERGY_GLO(i,k); 



 161 
 

        l=l+1; 
    end 
     for i=188:7:212 
        JULY_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%WORK-DAYS 
for k=1:24 
    l=1; 
    for i=182:7:212 
        JULY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=183:7:212 
        JULY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
     end 

     
      for i=184:7:212 
        JULY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
      end 

     
       for i=185:7:212 
        JULY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
       end 

     
    for i=186:7:212 
        JULY_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 
JULY_MEAN_END=mean(JULY_DHW_END); 
JULY_MEAN_WORK=mean(JULY_DHW_WORK); 
time=[1:24]; 
figure (28) 
subplot(5,2,5) 
bar(time,JULY_MEAN_WORK) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WORK-DAYS', 'FontSize', fontSize); 
legend('July') 

  
subplot(5,2,6) 
bar(time,JULY_MEAN_END) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WEEKEND', 'FontSize', fontSize); 
legend('July') 

  
%AGOSTO 
%WEEKEND 
for k=1:24 
    l=1; 
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    for i=215:7:243 
        AUGUST_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=216:7:243 
        AUGUST_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%WORK-DAYS 
for k=1:24 
    l=1; 
    for i=213:7:243 
        AUGUST_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=214:7:243 
        AUGUST_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
     end 

     
      for i=217:7:243 
        AUGUST_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
      end 

     
       for i=218:7:243 
        AUGUST_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
       end 

     
    for i=219:7:243 
        AUGUST_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 
AUGUST_MEAN_END=mean(AUGUST_DHW_END); 
AUGUST_MEAN_WORK=mean(AUGUST_DHW_WORK); 
time=[1:24]; 
figure (28) 
subplot(5,2,7) 
bar(time,AUGUST_MEAN_WORK) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WORK-DAYS', 'FontSize', fontSize); 
legend('August') 

  
subplot(5,2,8) 
bar(time,AUGUST_MEAN_END) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WEEKEND', 'FontSize', fontSize); 
legend('August') 

  
%SETTEMBRE 
%WEEKEND 
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for k=1:24 
    l=1; 
    for i=244:7:273 
        SEPTEMBER_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=250:7:273 
       SEPTEMBER_DHW_END(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%WORK-DAYS 
for k=1:24 
    l=1; 
    for i=245:7:273 
        SEPTEMBER_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
     for i=246:7:273 
        SEPTEMBER_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
     end 

     
      for i=247:7:273 
        SEPTEMBER_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
      end 

     
       for i=248:7:273 
        SEPTEMBER_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
       end 

     
    for i=249:7:273 
        SEPTEMBER_DHW_WORK(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 
SEPTEMBER_MEAN_END=mean(SEPTEMBER_DHW_END); 
SEPTEMBER_MEAN_WORK=mean(SEPTEMBER_DHW_WORK); 
time=[1:24]; 
figure (28) 
subplot(5,2,9) 
bar(time,SEPTEMBER_MEAN_WORK) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WORK-DAYS', 'FontSize', fontSize); 
legend('September') 

  
subplot(5,2,10) 
bar(time,SEPTEMBER_MEAN_END) 
grid on 
axis([1 24 0 50]); 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('WEEKEND', 'FontSize', fontSize); 
legend('September') 
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%% Calcolo SH e DHW 
%T dependent part dell'ESC è traslata verso l'alto anche del consumo di 
%DHW. L'obiettivo ora è di calcolare questo shifting coefficient per 
%ottenere solo i valori di SH e DHW separati 

  
%la parte di DHW coincide con il minimo valore di ESC 
Dem_mod_SHDHW_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
Dem_mod_DHW_0AM=polyval(coeff_DEF_DHW_0AM,T_DHW_0AM); 
E_SH_model_0AM=Dem_mod_SHDHW_0AM-min(Dem_mod_DHW_0AM); 

  
%ENERGY 0AM 
[val_1_0AM,val_2_0AM,E_loss_0AM,E_SH_balanced_0AM,E_DHW_balanced_0AM]=SHDHW_spli

t_function(Demand_NOR_SH_0AM,Demand_NOR_DHW_0AM,T_SH_0AM,T_DHW_0AM,DMT,ENERGY_GL

O,CPT_0AM,ENERGY_0AM,1); 

  
%ENERGY 1AM 
[val_1_1AM,val_2_1AM,E_loss_1AM,E_SH_balanced_1AM,E_DHW_balanced_1AM]=SHDHW_spli

t_function(Demand_NOR_SH_1AM,Demand_NOR_DHW_1AM,T_SH_1AM,T_DHW_1AM,DMT,ENERGY_GL

O,CPT_1AM,ENERGY_1AM,2); 

  
%ENERGY 2AM 
[val_1_2AM,val_2_2AM,E_loss_2AM,E_SH_balanced_2AM,E_DHW_balanced_2AM]=SHDHW_spli

t_function(Demand_NOR_SH_2AM,Demand_NOR_DHW_2AM,T_SH_2AM,T_DHW_2AM,DMT,ENERGY_GL

O,CPT_2AM,ENERGY_2AM,3); 

  
%ENERGY 3AM 
[val_1_3AM,val_2_3AM,E_loss_3AM,E_SH_balanced_3AM,E_DHW_balanced_3AM]=SHDHW_spli

t_function(Demand_NOR_SH_3AM,Demand_NOR_DHW_3AM,T_SH_3AM,T_DHW_3AM,DMT,ENERGY_GL

O,CPT_3AM,ENERGY_3AM,4); 

  
%ENERGY 4AM 
[val_1_4AM,val_2_4AM,E_loss_4AM,E_SH_balanced_4AM,E_DHW_balanced_4AM]=SHDHW_spli

t_function(Demand_NOR_SH_4AM,Demand_NOR_DHW_4AM,T_SH_4AM,T_DHW_4AM,DMT,ENERGY_GL

O,CPT_4AM,ENERGY_4AM,5); 

  
%ENERGY 5AM 
[val_1_5AM,val_2_5AM,E_loss_5AM,E_SH_balanced_5AM,E_DHW_balanced_5AM]=SHDHW_spli

t_function(Demand_NOR_SH_5AM,Demand_NOR_DHW_5AM,T_SH_5AM,T_DHW_5AM,DMT,ENERGY_GL

O,CPT_5AM,ENERGY_5AM,6); 

  
%ENERGY 6AM 
[val_1_6AM,val_2_6AM,E_loss_6AM,E_SH_balanced_6AM,E_DHW_balanced_6AM]=SHDHW_spli

t_function(Demand_NOR_SH_6AM,Demand_NOR_DHW_6AM,T_SH_6AM,T_DHW_6AM,DMT,ENERGY_GL

O,CPT_6AM,ENERGY_6AM,7); 

  
%ENERGY 7AM 
[val_1_7AM,val_2_7AM,E_loss_7AM,E_SH_balanced_7AM,E_DHW_balanced_7AM]=SHDHW_spli

t_function(Demand_NOR_SH_7AM,Demand_NOR_DHW_7AM,T_SH_7AM,T_DHW_7AM,DMT,ENERGY_GL

O,CPT_7AM,ENERGY_7AM,8); 

  
%ENERGY 8AM 
[val_1_8AM,val_2_8AM,E_loss_8AM,E_SH_balanced_8AM,E_DHW_balanced_8AM]=SHDHW_spli

t_function(Demand_NOR_SH_8AM,Demand_NOR_DHW_8AM,T_SH_8AM,T_DHW_8AM,DMT,ENERGY_GL

O,CPT_8AM,ENERGY_8AM,9); 

  
%ENERGY 9AM 
[val_1_9AM,val_2_9AM,E_loss_9AM,E_SH_balanced_9AM,E_DHW_balanced_9AM]=SHDHW_spli

t_function(Demand_NOR_SH_9AM,Demand_NOR_DHW_9AM,T_SH_9AM,T_DHW_9AM,DMT,ENERGY_GL

O,CPT_9AM,ENERGY_9AM,10); 
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%ENERGY 10AM 
[val_1_10AM,val_2_10AM,E_loss_10AM,E_SH_balanced_10AM,E_DHW_balanced_10AM]=SHDHW

_split_function(Demand_NOR_SH_10AM,Demand_NOR_DHW_10AM,T_SH_10AM,T_DHW_10AM,DMT,

ENERGY_GLO,CPT_10AM,ENERGY_10AM,11); 

  
%ENERGY 11AM 
[val_1_11AM,val_2_11AM,E_loss_11AM,E_SH_balanced_11AM,E_DHW_balanced_11AM]=SHDHW

_split_function(Demand_NOR_SH_11AM,Demand_NOR_DHW_11AM,T_SH_11AM,T_DHW_11AM,DMT,

ENERGY_GLO,CPT_11AM,ENERGY_11AM,12); 

  
%ENERGY 12AM 
[val_1_12AM,val_2_12AM,E_loss_12AM,E_SH_balanced_12AM,E_DHW_balanced_12AM]=SHDHW

_split_function(Demand_NOR_SH_12AM,Demand_NOR_DHW_12AM,T_SH_12AM,T_DHW_12AM,DMT,

ENERGY_GLO,CPT_12AM,ENERGY_12AM,13); 

  
%ENERGY 13PM 
[val_1_13PM,val_2_13PM,E_loss_13PM,E_SH_balanced_13PM,E_DHW_balanced_13PM]=SHDHW

_split_function(Demand_NOR_SH_13PM,Demand_NOR_DHW_13PM,T_SH_13PM,T_DHW_13PM,DMT,

ENERGY_GLO,CPT_13PM,ENERGY_13PM,14); 

  
%ENERGY 14PM 
[val_1_14PM,val_2_14PM,E_loss_14PM,E_SH_balanced_14PM,E_DHW_balanced_14PM]=SHDHW

_split_function(Demand_NOR_SH_14PM,Demand_NOR_DHW_14PM,T_SH_14PM,T_DHW_14PM,DMT,

ENERGY_GLO,CPT_14PM,ENERGY_14PM,15); 

  
%ENERGY 15PM 
[val_1_15PM,val_2_15PM,E_loss_15PM,E_SH_balanced_15PM,E_DHW_balanced_15PM]=SHDHW

_split_function(Demand_NOR_SH_15PM,Demand_NOR_DHW_15PM,T_SH_15PM,T_DHW_15PM,DMT,

ENERGY_GLO,CPT_15PM,ENERGY_15PM,16); 

  
%ENERGY 16PM 
[val_1_16PM,val_2_16PM,E_loss_16PM,E_SH_balanced_16PM,E_DHW_balanced_16PM]=SHDHW

_split_function(Demand_NOR_SH_16PM,Demand_NOR_DHW_16PM,T_SH_16PM,T_DHW_16PM,DMT,

ENERGY_GLO,CPT_16PM,ENERGY_16PM,17); 

  
%ENERGY 17PM 
[val_1_17PM,val_2_17PM,E_loss_17PM,E_SH_balanced_17PM,E_DHW_balanced_17PM]=SHDHW

_split_function(Demand_NOR_SH_17PM,Demand_NOR_DHW_17PM,T_SH_17PM,T_DHW_17PM,DMT,

ENERGY_GLO,CPT_17PM,ENERGY_17PM,18); 

  
%ENERGY 18PM 
[val_1_18PM,val_2_18PM,E_loss_18PM,E_SH_balanced_18PM,E_DHW_balanced_18PM]=SHDHW

_split_function(Demand_NOR_SH_18PM,Demand_NOR_DHW_18PM,T_SH_18PM,T_DHW_18PM,DMT,

ENERGY_GLO,CPT_18PM,ENERGY_18PM,19); 

  
%ENERGY 19PM 
[val_1_19PM,val_2_19PM,E_loss_19PM,E_SH_balanced_19PM,E_DHW_balanced_19PM]=SHDHW

_split_function(Demand_NOR_SH_19PM,Demand_NOR_DHW_19PM,T_SH_19PM,T_DHW_19PM,DMT,

ENERGY_GLO,CPT_19PM,ENERGY_19PM,20); 

  
%ENERGY 20PM 
[val_1_20PM,val_2_20PM,E_loss_20PM,E_SH_balanced_20PM,E_DHW_balanced_20PM]=SHDHW

_split_function(Demand_NOR_SH_20PM,Demand_NOR_DHW_20PM,T_SH_20PM,T_DHW_20PM,DMT,

ENERGY_GLO,CPT_20PM,ENERGY_20PM,21); 

  
%ENERGY 21PM 
[val_1_21PM,val_2_21PM,E_loss_21PM,E_SH_balanced_21PM,E_DHW_balanced_21PM]=SHDHW

_split_function(Demand_NOR_SH_21PM,Demand_NOR_DHW_21PM,T_SH_21PM,T_DHW_21PM,DMT,

ENERGY_GLO,CPT_21PM,ENERGY_21PM,22); 
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%ENERGY 22PM 
[val_1_22PM,val_2_22PM,E_loss_22PM,E_SH_balanced_22PM,E_DHW_balanced_22PM]=SHDHW

_split_function(Demand_NOR_SH_22PM,Demand_NOR_DHW_22PM,T_SH_22PM,T_DHW_22PM,DMT,

ENERGY_GLO,CPT_22PM,ENERGY_22PM,23); 

  
%ENERGY 23PM 
[val_1_23PM,val_2_23PM,E_loss_23PM,E_SH_balanced_23PM,E_DHW_balanced_23PM]=SHDHW

_split_function(Demand_NOR_SH_23PM,Demand_NOR_DHW_23PM,T_SH_23PM,T_DHW_23PM,DMT,

ENERGY_GLO,CPT_23PM,ENERGY_23PM,24); 
%% global splitting 
%ENERGY GLOBAL 
[val_1_year,val_2_year,E_loss_year,E_SH_balanced_year_corr,E_DHW_year_corr]=SHDH

W_split_function_year(Demand_NOR_SH_year,Demand_NOR_DHW_year,T_SH_year,T_DHW_yea

r,T,ENERGY_GLO,CPT_year,ENERGY,27); 

  
%% control dependence on indoor temperature and influence on Qtot 
T_in_day=22;    %from extimation of residential buildings, cold climate 
T_in_night=18; 

  
T_in_day_vector=ones(1,length(T_SH_17PM)); 
T_in_day_vector(:)=T_in_day; 

  
T_in_night_vector=ones(1,length(T_SH_0AM)); 
T_in_night_vector(:)=T_in_night; 

  
DELTA_T_0AM=T_in_night-T_SH_0AM; 
DELTA_T_17PM=T_in_day-T_SH_17PM; 

  
coeff_delta_0AM=polyfit(DELTA_T_0AM,Demand_SH_0AM,1); 
coeff_delta_17PM=polyfit(DELTA_T_17PM,Demand_SH_17PM,1); 
%no differences between considering delta T or just Tout 
%% Total energy for DHW 
DHW_year_energy=sum(E_DHW_year_corr); 
DHW_year_energy_smooth=sum(E_DHW_Y_NEW_line); 
DHW_year_standard=(40*4.186*(46-3)/3600)*365; 
people_inside=DHW_year_energy/DHW_year_standard; 
people_inside_smooth=DHW_year_energy_smooth/DHW_year_standard; 

 

“ESC_BETA.m” 

%function per costruire e calcolare ESC usando i vetttori di partenza 
function [BETA,TEMP]=ESC_BETA(ENERGY_0AM,DMT,h) 
 Temp=22;   %messo 22, si perdono i punti più a desra, ma tanto sono sicuro che 

il CPT non è lì. in questo modo evito warning (ho sempre più di 2 punti per fare 

il polyfit) 
 f=1; 
 vectorE=[]; 
 L=1; 
 for mod=0.1:0.1:40 
     T_int=Temp-mod; 
     for j=1:365 
         valueE=ENERGY_0AM(j,1); 
         valueT=DMT(j,1); 
         if valueT>T_int 
             vectorE(f,1)=valueE; 
             vectorT(f,1)=valueT; 
             f=f+1; 
         end 
     end 
    poli=polyfit(vectorT,vectorE,1); 
    BETA(L,1)=poli(1,1); 
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    TEMP(L,1)=T_int; 
    L=L+1; 
 end 

  
figure(h) 
markerSize = 20; 
fontSize = 18; 
subplot (3,3,2); 
 plot(TEMP,BETA,'.','MarkerSize', markerSize) 
grid on; 
ylabel('BETA', 'FontSize', fontSize); 
title('BETA VS T VARIATION', 'FontSize', fontSize) 
end 

 

“ESC_BETA_year.m” 

%function ESC BETA per l'anno completo 
function [BETA,TEMP]=ESC_BETA_year(ENERGY,T,h) 
 Temp=25; 
 f=1; 
 vectorE=[]; 
 L=1; 
 for mod=0.1:0.1:40 
     T_int=Temp-mod; 
     for j=1:8759 
         valueE=ENERGY(j,1); 
         valueT=T(j,1); 
         if valueT>T_int 
             vectorE(f,1)=valueE; 
             vectorT(f,1)=valueT; 
             f=f+1; 
         end 
     end 
    poli=polyfit(vectorT,vectorE,1); 
    BETA(L,1)=poli(1,1); 
    TEMP(L,1)=T_int; 
    L=L+1; 
 end 

  
figure(h) 
markerSize = 20; 
fontSize = 18; 
subplot (3,3,2); 
plot(TEMP,BETA,'.','MarkerSize', markerSize) 
grid on; 
ylabel('BETA', 'FontSize', fontSize); 
title('BETA VS T VARIATION', 'FontSize', fontSize) 
end 

 

“ESC_CONT_CPT” 

%function per la creazione di ESC con continuità in CPT, con coefficienti 
%uguali a quelli trovati dal fit nei due tratti separati. confrontandola 
%con altri metodo di fitting è la soluzione migliore per la creazione della 
%curva voluta. 

  
function 

[Demand_NOR_SH_0AM,Demand_NOR_DHW_0AM,R2_nor_SH,R2_nor_DHW]=ESC_CONT_CPT(coeff_D

EF_SH_0AM,coeff_DEF_DHW_0AM,T_SH_0AM,T_DHW_0AM,CPT_0AM,Demand_SH_0AM,Demand_DHW_

0AM,i) 
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Demand_NOR_SH_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
Demand_NOR_DHW_0AM=coeff_DEF_SH_0AM(2)+CPT_0AM*(coeff_DEF_SH_0AM(1)-

coeff_DEF_DHW_0AM(1))+coeff_DEF_DHW_0AM(1).*T_DHW_0AM; 
value_DHW=polyval(coeff_DEF_DHW_0AM,T_DHW_0AM); 
%calcolo di R2 

  
 SSE_SH=sum((Demand_SH_0AM-Demand_NOR_SH_0AM).^2); 
 SSYY_SH=sum((Demand_SH_0AM-mean(Demand_SH_0AM)).^2); 
 SSE_DHW=sum((Demand_DHW_0AM-value_DHW).^2); 
 SSYY_DHW=sum((Demand_DHW_0AM-mean(Demand_DHW_0AM)).^2); 
R2_nor_SH=1-(SSE_SH/SSYY_SH); 
R2_nor_DHW=1-(SSE_DHW/SSYY_DHW); 

  

figure(i) 
subplot(3,3,4) 
% pos1=[0.1 0.1 0.5 0.5]; 
% subplot('Position',pos1) 
fontSize = 18; 

  
plot(T_SH_0AM,Demand_NOR_SH_0AM,'r') 
hold on 
grid on 
%plot(DMT,ENERGY_0AM,'.') 
plot(T_SH_0AM,Demand_SH_0AM,'.r') 
plot(T_DHW_0AM,Demand_DHW_0AM,'.g') 
plot(T_DHW_0AM,Demand_NOR_DHW_0AM,'g') 
hold off 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 0AM', 'FontSize', fontSize); 
title('ENERGY vs DMT, math model, Continuity CPT', 'FontSize', fontSize); 
end 

 

“ESC_CONT_CPT_year.m” 

%continuità in CPT per l'anno completo 

  
function 

[Demand_NOR_SH_0AM,Demand_NOR_DHW_0AM,R2_nor_SH,R2_nor_DHW]=ESC_CONT_CPT_year(co

eff_DEF_SH_0AM,coeff_DEF_DHW_0AM,T_SH_0AM,T_DHW_0AM,CPT_0AM,Demand_SH_0AM,Demand

_DHW_0AM,i) 

  
Demand_NOR_SH_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
Demand_NOR_DHW_0AM=coeff_DEF_SH_0AM(2)+CPT_0AM*(coeff_DEF_SH_0AM(1)-

coeff_DEF_DHW_0AM(1))+coeff_DEF_DHW_0AM(1).*T_DHW_0AM; 
value_DHW=polyval(coeff_DEF_DHW_0AM,T_DHW_0AM); 
%calcolo di R2 

  
 SSE_SH=sum((Demand_SH_0AM-Demand_NOR_SH_0AM).^2); 
 SSYY_SH=sum((Demand_SH_0AM-mean(Demand_SH_0AM)).^2); 
 SSE_DHW=sum((Demand_DHW_0AM-value_DHW).^2); 
 SSYY_DHW=sum((Demand_DHW_0AM-mean(Demand_DHW_0AM)).^2); 
R2_nor_SH=1-(SSE_SH/SSYY_SH); 
R2_nor_DHW=1-(SSE_DHW/SSYY_DHW); 

  
figure(i) 
% pos1=[0.1 0.1 0.5 0.5]; 
% subplot('Position',pos1) 
subplot(3,3,4) 
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fontSize = 18; 

  
plot(T_SH_0AM,Demand_NOR_SH_0AM,'b') 
hold on 
%plot(DMT,ENERGY_0AM,'.') 
plot(T_SH_0AM,Demand_SH_0AM,'.r') 
plot(T_DHW_0AM,Demand_DHW_0AM,'.g') 
plot(T_DHW_0AM,Demand_NOR_DHW_0AM,'b') 
grid on 
hold off 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('DEMAND', 'FontSize', fontSize); 
title('ENERGY vs DMT, math model, Continuity CPT', 'FontSize', fontSize); 
end 

 

“ESC_DIVISION.m” 

%function per divisione punti 

  
function 

[T_SH,Demand_SH,T_DHW,Demand_DHW,coeff_DEF_SH,coeff_DEF_DHW]=ESC_DIVISION(CPT,EN

ERGY_0AM,DMT,k) 

  
scor=1; 
 scor2=1; 
 T_SH=[]; 
 Demand_SH=[]; 
 T_DHW=[]; 
 Demand_DHW=[]; 

  
 for j=1:365 
     Tvar=DMT(j,1); 
     Dvar=ENERGY_0AM(j,1); 

      
     if Tvar<CPT 
         T_SH(1,scor)=Tvar; 
         Demand_SH(1,scor)=Dvar; 
         scor=scor+1; 

          
     else T_DHW(1,scor2)=Tvar; 
         Demand_DHW(1,scor2)=Dvar; 
         scor2=scor2+1; 
     end 
 end 
fontSize = 18; 
markerSize = 20; 

  
figure(k) 
 subplot(3,3,3) 
  plot(T_SH,Demand_SH,'r.') 
  hold on 
  plot(T_DHW,Demand_DHW,'g.') 

   
  grid on 

   

   
  coeff_DEF_SH=polyfit(T_SH,Demand_SH,1); 
  coeff_DEF_DHW=polyfit(T_DHW,Demand_DHW,1); 
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  value_SH=polyval(coeff_DEF_SH,T_SH); 
  value_DHW=polyval(coeff_DEF_DHW,T_DHW); 

   
  plot(T_SH,value_SH,'r') 
  plot(T_DHW,value_DHW,'g') 
  xlabel('DMT', 'FontSize', fontSize); 
ylabel('DEMAND', 'FontSize', fontSize); 
title('DEMAND vs DMT', 'FontSize', fontSize); 
  hold off 

   
end 

 

“ESC_DIVISION_year.m” 

%function per dividere SH e DHW con l'intero anno 

  
function 

[T_SH,Demand_SH,T_DHW,Demand_DHW,coeff_DEF_SH,coeff_DEF_DHW]=ESC_DIVISION_year(C

PT,ENERGY,T,k) 

  
scor=1; 
 scor2=1; 
 T_SH=[]; 
 Demand_SH=[]; 
 T_DHW=[]; 
 Demand_DHW=[]; 

  
 for j=1:8759 
     Tvar=T(j,1); 
     Dvar=ENERGY(j,1); 

      
     if Tvar<CPT 
         T_SH(1,scor)=Tvar; 
         Demand_SH(1,scor)=Dvar; 
         scor=scor+1; 

          
     else T_DHW(1,scor2)=Tvar; 
         Demand_DHW(1,scor2)=Dvar; 
         scor2=scor2+1; 
     end 
 end 
fontSize = 18; 

  
figure(k) 
 subplot(3,3,3) 
  plot(T_SH,Demand_SH,'r.') 
  hold on 
  plot(T_DHW,Demand_DHW,'g.') 

   
  grid on 

   

   
  coeff_DEF_SH=polyfit(T_SH,Demand_SH,1); 
  coeff_DEF_DHW=polyfit(T_DHW,Demand_DHW,1); 

   
  value_SH=polyval(coeff_DEF_SH,T_SH); 
  value_DHW=polyval(coeff_DEF_DHW,T_DHW); 
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  plot(T_SH,value_SH,'r') 
  plot(T_DHW,value_DHW,'g') 
  xlabel('DMT', 'FontSize', fontSize); 
ylabel('DEMAND', 'FontSize', fontSize); 
title('DEMAND vs DMT', 'FontSize', fontSize); 
  hold off 

   
end 

 

“HOUR_split.m” 

%function per trovare il vettore con 365 valori (1 anno) della 
%corrispondente ora del giorno 

  
function [ENERGY_0AM]=HOUR_split(ENERGY,var_0AM) 
ENERGY_0AM=[];                                                               

%vettore energia ore 0 am 
scor=1; 
for j=1:365 
    ENERGY_0AM(scor,1)=ENERGY(var_0AM); 

     
    scor=scor+1; 
    var_0AM=var_0AM+24; 
end 
end 

 

“iterative_merging_process.m” 

%function for mergiging elements inside the group 
function 

[DHW_split_it11,it_DHW_split_last_new]=iterative_merging_process(DHW_split_g2) 
%% iterative merging process 

  
%cicle for automatic iterative procedure 

  
%the first division is necessary 
[DHW_split_it2]=iterative_merging_v3(DHW_split_g2); 

  
%start comparing the difference between 2 succesive iteration 
it_DHW_split_last=DHW_split_it2; 
it_DHW_split_pre=DHW_split_g2; 

  
it_number=1; %number of iterations 

  
for sc=1:10  %maximum number of iteration possibile. the cicle ends when we 

reach 10 iterations or when we reach 2% of tolerance 

     
    %matrix dimensions must agree 
    it_size_pre=size(it_DHW_split_pre); 
    it_size_last=size(it_DHW_split_last); 

     
    it_col_pre=it_size_pre(1,2); 
    it_col_last=it_size_last(1,2); 

     
    if it_col_pre==it_col_last 
    it_difference=abs(it_DHW_split_last-it_DHW_split_pre); 
    [it_maximum1,it_index1]=max(it_difference); 
    [it_maximum2,it_index2]=max(it_maximum1); 
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    else 
        if it_col_pre>it_col_last 
            it_difference_num=it_col_pre-it_col_last; 
            it_raw=it_size_pre(1,1); 
            it_corr=zeros(it_raw,it_difference_num); 
            it_DHW_split_last=[it_DHW_split_last,it_corr]; 

             
           it_difference=abs(it_DHW_split_last-it_DHW_split_pre); 
           [it_maximum1,it_index1]=max(it_difference); 
           [it_maximum2,it_index2]=max(it_maximum1); 
        end 
    end 

     
    it_raw_max=it_index1(1,it_index2); 
    it_max_index=[it_raw_max,it_index2];  %indexes of the maximum elements of 

the matrix "it_difference" 

     
    %do iteration if this element is higher thana certain percentual of the 
    %elements in the matrix (for example 1%) 

     
    %selection of maximum value between two matrix at the index: 
    it_index_pre=it_DHW_split_pre(it_raw_max,it_index2); 
    it_index_last=it_DHW_split_last(it_raw_max,it_index2); 
    it_vector_combined=[it_index_pre,it_index_last]; 
    it_maximum_value=max(it_vector_combined); 

     
    it_percentage=(it_maximum2*100)/(it_maximum_value); 

     
    %insert below the tolerance level (I put 1%) 

     
    if it_percentage>=1  %tolerance level 
        [it_DHW_split_last2]=iterative_merging_v3(it_DHW_split_last); 
        it_number=it_number+1; 
        it_DHW_split_pre=it_DHW_split_last; 
        it_DHW_split_last=it_DHW_split_last2; %deve essere input della prossima 

iterazione 
    end 

     

  
end 
%per come è fatta l'iterazione devo tenerla così. alla fine, però, bisgona 
%rimuovere tutte le colonne finali che hanno solo 0 come elementi 

  
sizee_split_last2=size(it_DHW_split_last2); 
col_last2=sizee_split_last2(1,2); 
raw_last2=sizee_split_last2(1,1); 
isu=1; 
it_DHW_split_last_new=[]; 

  
for k=1:col_last2 
    it_vettore=it_DHW_split_last2(:,k); 
    it_control=zeros(raw_last2,1); 

     
    if it_DHW_split_last2(1,k)~=0 
       it_DHW_split_last_new(:,isu)=it_vettore; 
       isu=isu+1; 
    end 

     
end 
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%iterative procedure in brutal force way. Now the cicle works, this is not 
%useful 
[DHW_split_it3]=iterative_merging_v3(DHW_split_it2); 
[DHW_split_it4]=iterative_merging_v3(DHW_split_it3); 
[DHW_split_it5]=iterative_merging_v3(DHW_split_it4); 
[DHW_split_it6]=iterative_merging_v3(DHW_split_it5); 
[DHW_split_it7]=iterative_merging_v3(DHW_split_it6); 
[DHW_split_it8]=iterative_merging_v3(DHW_split_it7); 
[DHW_split_it9]=iterative_merging_v3(DHW_split_it8); 
[DHW_split_it10]=iterative_merging_v3(DHW_split_it9); 
[DHW_split_it11]=iterative_merging_v3(DHW_split_it10); 

  

end 

 

“iterative_merging_v3.m” 

%function for iterative merging v 3 

  
%funziona ma diverge: per la sua stessa costruzione va a considerare alcuni 
%gruppi più volte, quindi diverge. cambiare completamente impostazione e 
%passare ad una dove il confronto tra gruppi è fatto nella modalità 1-2 poi 
%3-4 e così via.. (non più 1-2, 2-3...) 
%oppure mantenere la stessa impostazione, ma dopo il primo salvare solo il 
%secondo vettore nel caso in cui nello step prima si sia fatto il merging: 
%se 2-3 sono stati uniti nel gruppo 23, il passaggio dopo risulta che 3-4 
%vanno tenuti separati, salvare solo il vettore 4. in questo modo non 
%divergerà. 

  
function [DHW_split_it2]=iterative_merging_v3(DHW_split) 
%% itertive mergening con script per provare se va 
number=2; 
sizee_split=size(DHW_split); 
ending=sizee_split(1,2); 

  
%definition Tcr 
Tcr_1_005=6.314;  %if n1+n2=3 
Tcr_2_005=2.92;  %if n1+n2=4 
Tcr_3_005=2.353; %if n1+n2=5 
Tcr_4_005=2.132; %if n1+n2=6 
Tcr_5_005=2.015; %if n1+n2=7 
Tcr_6_005=1.943; %if n1+n2=8 
Tcr_7_005=1.895; %if n1+n2=9 
Tcr_8_005=1.860; %if n1+n2=10 
Tcr_9_005=1.833; %if n1+n2=11 
Tcr_10_005=1.812; %if n1+n2=12 
Tcr_11_005=1.796; %if n1+n2=13 
Tcr_12_005=1.782; %if n1+n2=14 
Tcr_13_005=1.771; %if n1+n2=15 
Tcr_14_005=1.761; %if n1+n2=16 
Tcr_15_005=1.753; %if n1+n2=17 
Tcr_16_005=1.746; %if n1+n2=18 
Tcr_17_005=1.740; %if n1+n2=19 
Tcr_18_005=1.734; %if n1+n2=20 
Tcr_19_005=1.729; %if n1+n2=21 
Tcr_20_005=1.725; %if n1+n2=22 
Tcr_21_005=1.721; %if n1+n2=23 
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DHW_split_it2=[]; %matrix of DHW_split. It contains group merged from the first 

iteration 
%DHW_split_it2=zeros(1,1); 

  
%cicle for controlling all colomns of DHW_split 
for it=number:ending 
%vector 1 
sizee_split=size(DHW_split); 
LUN1=sizee_split(1,1); 
col_A=(it-1);   %number of the colomn i am considering 
vector1=[]; 
for i=1:LUN1 
    if DHW_split(i,col_A)~=0 
        vector1(i,1)=DHW_split(i,col_A); 
    else 
    end 
end 

  
%vector 2 
LUN2=sizee_split(1,1); 
col_B=it;   %number of the colomn i am considering 
vector2=[]; 
for i=1:LUN2 
    if DHW_split(i,col_B)~=0 
        vector2(i,1)=DHW_split(i,col_B); 
    else 
    end 
end 

  
% Student's t-test 

  
%E: mean values 
vector1_E=mean(vector1); 
vector2_E=mean(vector2); 

  
%n: number of elements  
vector1_n=length(vector1); 
vector2_n=length(vector2); 

  
%S: standard deviation 
vector1_S=std(vector1); 
vector2_S=std(vector2); 

  
%Tcal calculation 
Tcal_iteration1=abs((vector1_E-

vector2_E)/(sqrt(((vector1_S^2)/vector1_n)+((vector2_S^2)/vector2_n)))); 

  
%choose the rigth value for Tcr 
sum_n=vector1_n+vector2_n; 
if sum_n==3 
    Tcr=Tcr_1_005; 
end 
if sum_n==4 
    Tcr=Tcr_2_005; 
end 
if sum_n==5 
    Tcr=Tcr_3_005; 
end 
if sum_n==6 
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    Tcr=Tcr_4_005; 
end 
if sum_n==7 
    Tcr=Tcr_5_005; 
end 
if sum_n==8 
    Tcr=Tcr_6_005; 
end 
if sum_n==9 
    Tcr=Tcr_7_005; 
end 
if sum_n==10 
    Tcr=Tcr_8_005; 
end 
if sum_n==11 
    Tcr=Tcr_9_005; 
end 
if sum_n==12 
    Tcr=Tcr_10_005; 
end 
if sum_n==13 
    Tcr=Tcr_11_005; 
end 
if sum_n==14 
    Tcr=Tcr_12_005; 
end 
if sum_n==15 
    Tcr=Tcr_13_005; 
end 
if sum_n==16 
    Tcr=Tcr_14_005; 
end 
if sum_n==17 
    Tcr=Tcr_15_005; 
end 
if sum_n==18 
    Tcr=Tcr_16_005; 
end 
if sum_n==19 
    Tcr=Tcr_17_005; 
end 
if sum_n==20 
    Tcr=Tcr_18_005; 
end 
if sum_n==21 
    Tcr=Tcr_19_005; 
end 
if sum_n==22 
    Tcr=Tcr_20_005; 
end 
if sum_n==23 
    Tcr=Tcr_21_005; 
end 

  
%control for possible merging and creation of a new DHW_split matrix 

  

%put vector 1 and vector 2 at the same dimension 
if vector1_n~=vector2_n 
    somma_n=[vector1_n,vector2_n]; 
    LUN_A=max(somma_n); 
    LUN_B=min(somma_n); 
    LUN_zeros=LUN_A-LUN_B; 
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    corr_mat=zeros(LUN_zeros,1); 
    if vector1_n<vector2_n 
        vector1=[vector1;corr_mat]; 
    else 
        vector2=[vector2;corr_mat]; 
    end 
end 

  
%save vector1 and vector2 (or vector mean in ther matrix DHW_split_it2 
i=1; 
p=1; 
LUN_vector=[vector1_n,vector2_n]; %combining length of the vectors to find the 

maximum one 
LUN=max(LUN_vector);    %find the length of the cicle for  

  
sizee_split2=size(DHW_split_it2);   %for the first iteration this is 0 
scorr=sizee_split2(1,2)+1; 
control=0; 

  
%operation for merging groups 
 if Tcal_iteration1<=Tcr    %if they are not perfectly equal this cicle doesn't 

start 
     for fk=1:LUN 
         if vector1(fk)~=0 && vector2(fk)~=0 
         vector_union=[vector1(fk),vector2(fk)]; 
         vector_union_mean=mean(vector_union); 
         DHW_split_it2(i,scorr)=vector_union_mean; 
         i=i+1; 
         control=3; 
        else 
            vector_union=[vector1(fk),vector2(fk)]; 
            vector_union_max=max(vector_union); 
            DHW_split_it2(i,scorr)=vector_union_max; 
            i=i+1; 
            control=4; 
        end 
     end 

      
 %operation if groups must be stay separate 
 else  
    lung_matrix=sizee_split2(1,1); 
    larg_matrix=sizee_split2(1,2); 
    lung_vector1=length(vector1); 
    lung_vector2=length(vector2); 

     
    if lung_vector1<lung_matrix 
        diff=lung_matrix-lung_vector1; 
        zero_corr=zeros(diff,1); 
        vector1=[vector1;zero_corr]; 
    end 

     
    if lung_vector2<lung_matrix 
        diff=lung_matrix-lung_vector2; 
        zero_corr=zeros(diff,1); 
        vector2=[vector2;zero_corr]; 
    end 

     
    if lung_vector1>lung_matrix 
        diff=lung_vector1-lung_matrix; 
        zero_corr=zeros(diff,larg_matrix); 
        DHW_split_it2=[DHW_split_it2;zero_corr]; 
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    end    
    %it isn't necessary the same control for vector2: I put vector1 and 
    %vector2 at the same dimensions. 

     
    %code for not repeating the vector if in the previous case there was no 
    %merging. problem with vector1 

     
    colonna=sizee_split2(1,2); 

     
    if colonna~=0 
        DHW_split_it2=[DHW_split_it2,vector2]; 

     
    else DHW_split_it2=[DHW_split_it2,vector1]; %if we are at the beginning 

(colonna=0) put two vector, without control of equality with last vector in 

DHW_split_it2 
         DHW_split_it2=[DHW_split_it2,vector2]; 
    end 

     

         

     
end     

      
end  

  
end 

 

“match.m” 

%function per il calcolo della matrice match 
function 

[MATCH]=match(Tcr_46_005,fcr_46_005,W1_T_cal,W1_f_cal,W2_T_cal,W2_f_cal,W3_T_cal

,W3_f_cal,W4_T_cal,W4_f_cal,W5_T_cal,W5_f_cal,W6_T_cal,W6_f_cal,W7_T_cal,W7_f_ca

l,W8_T_cal,W8_f_cal,W9_T_cal,W9_f_cal,W10_T_cal,W10_f_cal,W11_T_cal,W11_f_cal,W1

2_T_cal,W12_f_cal,W13_T_cal,W13_f_cal) 

  
MATCH=zeros(7,7);   %definition of match matrix 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W1_T_cal(j,i); 
        value2=W1_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 

  
f=1; 
for j=1:6 
    for i=f:6 
        value1=W2_T_cal(j,i); 
        value2=W2_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 
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    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W3_T_cal(j,i); 
        value2=W3_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W4_T_cal(j,i); 
        value2=W4_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W5_T_cal(j,i); 
        value2=W5_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W6_T_cal(j,i); 
        value2=W6_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W7_T_cal(j,i); 
        value2=W7_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
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    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W8_T_cal(j,i); 
        value2=W8_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W9_T_cal(j,i); 
        value2=W9_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W10_T_cal(j,i); 
        value2=W10_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W11_T_cal(j,i); 
        value2=W11_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W12_T_cal(j,i); 
        value2=W12_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
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end 
f=1; 
for j=1:6 
    for i=f:6 
        value1=W13_T_cal(j,i); 
        value2=W13_f_cal(j,i); 
        if value1 <= Tcr_46_005 && value2 <= fcr_46_005 
            MATCH((i+1),j)= MATCH((i+1),j)+1; 
        end 

         
    end 
    f=f+1; 
end 
end 

 

“min_med_peak_v2.m” 

%function for the identification of min med peak values 

  
function 

[DHW_E_min,DHW_E_max]=min_med_peak_v2(it_DHW_split_last_new,DHW_mean_group1,posi

tion1) 
%% identification of peak, average and minimum heat use 

  
%Assign the value of the last split matrix obtained 
%(comment the unwanted matrix) 
%DHW_split_merged=DHW_split_it11;  %if you want to use brutal force method 
DHW_split_merged=it_DHW_split_last_new;  %if you want to use iterative procedure 

method 

  
%identification of group 1 and penultimate group 
colonna1=DHW_split_merged(:,1); %group 1 

  
sizee_split=size(DHW_split_merged); 
k_1=sizee_split(1,2)-1; 
colonnak1=DHW_split_merged(:,k_1); %k-1 group (penultimate) 

  
%zero remotion 
altezza=sizee_split(1,1); 
i=1; 
j=1; 
group1=[]; 
groupk1=[]; 
for fk=1:altezza 
    if colonna1(fk)~=0 
        group1(i,1)=colonna1(fk); 
        i=i+1; 
    end 

     
    if colonnak1(fk)~=0 
        groupk1(j,1)=colonnak1(fk); 
        j=j+1; 
    end 
end 

  
%mean values 
group1_E=mean(group1); 
groupk1_E=mean(groupk1); 

  
%number of elements 
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group1_M=length(group1); 
groupk1_M=length(groupk1); 

  
%selection of Tcr 
%definition Tcr 
Tcr_1_001=31.821; %M=2 elements 
Tcr_2_001=6.965 ; %M=3 
Tcr_3_001=4.541;  %M=4 
Tcr_4_001=3.747;  %M=5 
Tcr_5_001=3.365;  %M=6 
Tcr_6_001=3.143;  %M=7 
Tcr_7_001=2.998;  %M=8 
Tcr_8_001=2.896;  %M=9 

  
%choose the right value of Tcr 
%group1 
if group1_M==2 
    Tcr_group1=Tcr_1_001; 
end 
if group1_M==3 
    Tcr_group1=Tcr_2_001; 
end 
if group1_M==4 
    Tcr_group1=Tcr_3_001; 
end 
if group1_M==5 
    Tcr_group1=Tcr_4_001; 
end 
if group1_M==6 
    Tcr_group1=Tcr_5_001; 
end 
if group1_M==7 
    Tcr_group1=Tcr_6_001; 
end 
if group1_M==8 
    Tcr_group1=Tcr_7_001; 
end 
if group1_M==9 
    Tcr_group1=Tcr_8_001; 
end 

  
%groupk1 
if groupk1_M==2 
    Tcr_groupk1=Tcr_1_001; 
end 
if groupk1_M==3 
    Tcr_groupk1=Tcr_2_001; 
end 
if groupk1_M==4 
    Tcr_groupk1=Tcr_3_001; 
end 
if groupk1_M==5 
    Tcr_groupk1=Tcr_4_001; 
end 
if groupk1_M==6 
    Tcr_groupk1=Tcr_5_001; 
end 
if groupk1_M==7 
    Tcr_groupk1=Tcr_6_001; 
end 
if groupk1_M==8 
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    Tcr_groupk1=Tcr_7_001; 
end 
if groupk1_M==9 
    Tcr_groupk1=Tcr_8_001; 
end 

  
%standard deviation 
group1_S=std(group1); 
groupk1_S=std(groupk1); 

  
%definition limit values 
DHW_E_min=group1_E+Tcr_group1*sqrt(((group1_S)^2)/(group1_M));     %Emin 
DHW_E_max=groupk1_E+Tcr_groupk1*sqrt(((groupk1_S)^2)/(groupk1_M)); %Emax 

  

%with too low values we have high sensitivity to standard deviation. A 
%small variation in this value may cause an error into the definition of 
%Emin and Emax. For this reason it is inserted a correction. decrease Emax 
%by 7% or increase Emin by 7% if no values are higher than Emax or lower 
%than Emin. This is an error due to data and their standard deviation 

  
counter_max=0; 
counter_min=0; 

  
for h=1:24 
    if DHW_mean_group1(h,1)>DHW_E_max 
        counter_max=counter_max+1; 
    end 
    if DHW_mean_group1(h,1)<DHW_E_min 
        counter_min=counter_min+1; 
    end 
end 

  
if counter_max==0 
    DHW_E_max=DHW_E_max-0.07*DHW_E_max; 
end 

     
if counter_min==0 
    DHW_E_min=DHW_E_min-0.07*DHW_E_min; 
end 

  

  

  
%plot typical day of group 1 with minimum value and peak value 

  
plot_vector_Emin=zeros(1,24); 
plot_vector_Emin=plot_vector_Emin+DHW_E_min; 
plot_vector_Emax=zeros(1,24); 
plot_vector_Emax=plot_vector_Emax+DHW_E_max; 

  
%plot divided by color 
variable=0; 
j=1; 
k=1; 
l=1; 
min_load=[]; 
medium_load=[]; 
peak_load=[]; 

  
index_min=[]; 
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index_medium=[]; 
index_peak=[]; 

  
for f=1:24 
    variable=DHW_mean_group1(f,1); 

     
    if variable <= DHW_E_min 
        min_load(j,1)=variable; 
        index_min(j,1)=f; 
        j=j+1; 
    end 

     
    if variable> DHW_E_min && variable< DHW_E_max 
        medium_load(k,1)=variable; 
        index_medium(k,1)=f; 
        k=k+1; 
    end 

     
    if variable>= DHW_E_max 
        peak_load(l,1)=variable; 
        index_peak(l,1)=f; 
        l=l+1; 
    end 
end 

  
%creation of the vector with  

  

%complete vectors "index_min, index_medium and index_peak" with 0 where 
%there are no different numbers 

  
color1=[0,0.4470, 0.7410]; 
color2=[0.8500, 0.3250, 0.0980]; 
color3=[0.4940, 0.1840, 0.5560]; 

  
time=1:24; 

  
fontSize=18; 

  
figure (30) 
subplot('Position',position1) 
%bar(time,DHW_mean_group1_E) %plot if you want ordered day 
bar(index_min,min_load,'FaceColor',color1)   %plot with real day profile 
hold on 
bar(index_medium,medium_load,'FaceColor',color2) 
bar(index_peak,peak_load,'FaceColor',color3) 
plot(time,plot_vector_Emin,'color',color2) 
plot(time,plot_vector_Emax,'color',color3) 
hold off 
grid on 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('DHW average consumption', 'FontSize', fontSize); 
legend('Min load summer','Medium load summer','Peak load 

summer','Emin','Emax','location','SouthEast') 

  
end 
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“NEW_PROFILE.m” 

%function for creating SH and DHW vectors with new modified values day per 
%day 
function[NEW_MON_Y_DHW_WIN,NEW_MON_Y_SH_WIN]=NEW_PROFILE(DIFF_MON_WIN,E_DHW_Y_MO

N_win,E_SH_Y_MON_win,tolerance,decrease,o) 

  
size_mon_win=size(DIFF_MON_WIN); 
limit_4=size_mon_win(1,2); 
NEW_MON_Y_DHW_WIN=E_DHW_Y_MON_win; 
NEW_MON_Y_SH_WIN=E_SH_Y_MON_win; 

  
for k=1:limit_4 
    control_day=E_DHW_Y_MON_win(:,k); 
    control_diff_vec=DIFF_MON_WIN(:,k); 

     
    for j=1:24 
        control_value=control_day(j); 
        control_diff=control_diff_vec(j); 

         
        if control_diff>=tolerance 
            value_new=control_value-decrease*control_value; 
            NEW_MON_Y_DHW_WIN(j,k)=value_new; 
            NEW_MON_Y_SH_WIN(j,k)=NEW_MON_Y_SH_WIN(j,k)+decrease*control_value; 
        end 

         
    end 
end 

  
%GRAPHICAL VARIABLES 
E_SH_Y_MON_win_plot=E_SH_Y_MON_win(:)';   %data from splitting model SH 
E_DHW_Y_MON_win_plot=E_DHW_Y_MON_win(:)'; %data from splitting model DHW 

  
fontSize=13; 

  
limit_5=length(E_SH_Y_MON_win_plot); 
guide=1:limit_5; 

  
NEW_MON_Y_SH_WIN_plot=NEW_MON_Y_SH_WIN(:)'; 
NEW_MON_Y_DHW_WIN_plot=NEW_MON_Y_DHW_WIN(:)'; 

  
SEPARATION_LINE_X=[504 504];                    %line for separation between 

firts 21 weeks and other 16 weeks (there is summer between days before and after 

this line) 
SEPARATION_LINE_Y=[0 max(E_SH_Y_MON_win_plot)]; 

  
axis_limit=[0 limit_5 0 150]; 

  
figure(32) 
subplot(3,3,o) 
plot(guide,E_SH_Y_MON_win_plot,'b') 
hold on 
plot(guide,E_DHW_Y_MON_win_plot,'color','#D95319') 
plot(guide,NEW_MON_Y_SH_WIN_plot,'c') 
plot(guide,NEW_MON_Y_DHW_WIN_plot,'color','#EDB120') 
plot(SEPARATION_LINE_X,SEPARATION_LINE_Y,'r') 
hold off 
grid on 
axis(axis_limit) 
xlabel('TIME', 'FontSize', fontSize); 
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ylabel('DEMAND', 'FontSize', fontSize); 
title('WINTER DEMAND', 'FontSize', fontSize); 
legend('SH from splitting','DHW from splitting','SH modified','DHW 

modified','summer line','location','NorthEast') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 
end 

 

“NEW_PROFILE_YEARLY.m” 

%FUNCTION for creation of yearly vector for DHW and SH dividied per day 
function 

[E_SH_Y_MON_NEW,E_DHW_Y_MON_NEW]=NEW_PROFILE_YEARLY(NEW_MON_Y_SH_WIN,E_SH_Y_MON,

NEW_MON_Y_DHW_WIN,E_DHW_Y_MON) 

  
%SH 
E_SH_Y_MON_NEW=[]; 
for k=1:21 
    vector_corr=NEW_MON_Y_SH_WIN(:,k); 
    E_SH_Y_MON_NEW=[E_SH_Y_MON_NEW,vector_corr]; 
end 
for k=22:36 
    vector_corr=E_SH_Y_MON(:,k); 
    E_SH_Y_MON_NEW=[E_SH_Y_MON_NEW,vector_corr]; 
end 
for k=22:37 
    vector_corr=NEW_MON_Y_SH_WIN(:,k); 
    E_SH_Y_MON_NEW=[E_SH_Y_MON_NEW,vector_corr]; 
end 
%DHW 
E_DHW_Y_MON_NEW=[]; 
for k=1:21 
    vector_corr=NEW_MON_Y_DHW_WIN(:,k); 
    E_DHW_Y_MON_NEW=[E_DHW_Y_MON_NEW,vector_corr]; 
end 
for k=22:36 
    vector_corr=E_DHW_Y_MON(:,k); 
    E_DHW_Y_MON_NEW=[E_DHW_Y_MON_NEW,vector_corr]; 
end 
for k=22:37 
    vector_corr=NEW_MON_Y_DHW_WIN(:,k); 
    E_DHW_Y_MON_NEW=[E_DHW_Y_MON_NEW,vector_corr]; 
end 

  
end 

 

“plot_winter_profile.m” 

%function for plotting winter profile of group1 and group2 

  
function 

[]=plot_winter_profile(index_min_group1,index_med_group1,index_max_group1,DHW_WI

N_STD_PROFILE_group1,DHW_E_min_WIN_group1,DHW_E_max_WIN_group1,g) 

  
%selection min, med and max values from standard profile in winter 
limit_1=length(index_min_group1); 
limit_2=length(index_med_group1); 
limit_3=length(index_max_group1); 

  
min_group1_win=[]; 
med_group1_win=[]; 
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max_group1_win=[]; 

  
for i=1:limit_1 
    index=index_min_group1(i); 
    min_group1_win(i)=DHW_WIN_STD_PROFILE_group1(index); 
end 

  
for i=1:limit_2 
    index=index_med_group1(i); 
    med_group1_win(i)=DHW_WIN_STD_PROFILE_group1(index); 
end 

  
for i=1:limit_3 
    index=index_max_group1(i); 
    max_group1_win(i)=DHW_WIN_STD_PROFILE_group1(index); 
end 

  
%GRAPHICAL VARIABLES 
color1=[0,0.4470, 0.7410]; 
color2=[0.8500, 0.3250, 0.0980]; 
color3=[0.4940, 0.1840, 0.5560]; 

  
time=1:24; 

  
fontSize=18; 

  
plot_vector_Emin_win=zeros(1,24); 
plot_vector_Emin_win=plot_vector_Emin_win+DHW_E_min_WIN_group1; 
plot_vector_Emax_win=zeros(1,24); 
plot_vector_Emax_win=plot_vector_Emax_win+DHW_E_max_WIN_group1; 

  
%PLOT 
figure(31) 
subplot(3,2,g) 
plot(time,plot_vector_Emin_win,'color',color2) 
hold on 
plot(time,plot_vector_Emax_win,'color',color3) 
bar(index_min_group1,min_group1_win,'FaceColor',color1)   %plot with real day 

profile 
bar(index_med_group1,med_group1_win,'FaceColor',color2) 
bar(index_max_group1,max_group1_win,'FaceColor',color3) 
grid on 
hold off 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('STANDARD USE', 'FontSize', fontSize); 
title('DHW STANDARD PROFILE WINTER', 'FontSize', fontSize); 
legend('Emin','Emax','Min load winter','Medium load winter','Peak load 

winter','location','SouthEast') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
end 

 

“SHDHW_split_function.m” 

%function for splitting DHW and SH, considering hourly vectors 

  
function 

[val_1_0AM,val_2_0AM,E_loss_0AM,E_SH_balanced_0AM_corr,E_DHW_0AM_corr]=SHDHW_spl
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it_function(Demand_NOR_SH_0AM,Demand_NOR_DHW_0AM,T_SH_0AM,T_DHW_0AM,DMT,ENERGY_G

LO,CPT_0AM,ENERGY_0AM,L) 

  
Demand_shifted_SH=Demand_NOR_SH_0AM-min(Demand_NOR_DHW_0AM); 
Demand_shifted_DHW=Demand_NOR_DHW_0AM-min(Demand_NOR_DHW_0AM); 

  
ESC1_0AM=polyfit(T_SH_0AM,Demand_shifted_SH,1); 
ESC2_0AM=polyfit(T_DHW_0AM,Demand_shifted_DHW,1); 

  
val_1_0AM=polyval(ESC1_0AM,T_SH_0AM); 
val_2_0AM=polyval(ESC2_0AM,T_DHW_0AM); 

  
%Put values in chronological order with a cicle for 
i=1; 
value_ESC_0AM=[]; 

  
for k=1:365 
    if DMT(k)<CPT_0AM 
        value_ESC_0AM(i)=polyval(ESC1_0AM,DMT(k)); 
        i=i+1; 
    else 
        value_ESC_0AM(i)=polyval(ESC2_0AM,DMT(k)); 
        i=i+1; 
    end 
end 

  

  
%DHW circuit losses evaluation. They are calculated as mean values during 
%night consumption in summertime. 

  
%selecte summer period (june-august) of the yearly demand 
for k=1:24 
    l=1; 
    for i=152:1:243 
        DHW_losses_data(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%Dailymean profile of summer consumption 
DHW_losses_sum_pro_0AM=mean(DHW_losses_data); 

  
%Losses determination 

  
E_loss_0AM_mean=mean(DHW_losses_sum_pro_0AM(1:4));  %mean between 0:00 a 4:00 

  
E_loss_year=min(DHW_losses_sum_pro_0AM);             %with minimum value 

  
E_loss_0AM=min(ENERGY_0AM);                         %Choose here what method use 

for losses evaluation 

  
%E SH evaluation 
E_SH_0AM=value_ESC_0AM-min(value_ESC_0AM); 

  
%E DHW evaluation 
E_DHW_0AM=[]; 
i=1; 
for k=1:365 
    if ENERGY_0AM(k)>E_SH_0AM(k) 
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        E_DHW_0AM(i)=ENERGY_0AM(k)-E_SH_0AM(k)+E_loss_0AM; 
        i=i+1; 
    else 
        E_DHW_0AM(i)=E_loss_0AM; 
        i=i+1; 
    end 
end 

  
%Balancing E SH 
E_SH_balanced_0AM=ENERGY_0AM-E_DHW_0AM.'; 

  
%Correction for values <0 
E_SH_0AM_corr=E_SH_0AM; 
E_SH_balanced_0AM_corr=E_SH_balanced_0AM; 
E_DHW_0AM_corr=E_DHW_0AM; 

  
for k=1:365 
    if E_SH_balanced_0AM(k)<0 
       E_DHW_0AM_corr(k)=E_DHW_0AM_corr(k)+E_SH_balanced_0AM(k); 
       E_SH_balanced_0AM_corr(k)=0; 
    end 
    if E_DHW_0AM(k)<0 
        E_SH_balanced_0AM_corr(k)=E_SH_balanced_0AM_corr(k)+E_DHW_0AM(k); 
        E_DHW_0AM_corr(k)=0; 
    end 
end 

  

fontSize=18; 

  
figure(L) 
subplot(3,3,6) 
plot(T_SH_0AM,val_1_0AM,'g') 
hold on 
grid on 
plot(DMT,ENERGY_0AM,'.b') 
plot(T_SH_0AM,Demand_NOR_SH_0AM,'r') 
plot(T_DHW_0AM,val_2_0AM,'g') 
plot(T_DHW_0AM,Demand_NOR_DHW_0AM,'r') 
hold off 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('ESC complete', 'FontSize', fontSize); 
legend('ESC shifted','Measured heat use 0AM','ESC of total heat use') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
guida=1:365; 
E_loss_0AM_plot(1:365)=E_loss_0AM; 
subplot(3,3,7) 
plot(guida,ENERGY_0AM,'b') 
hold on 
grid on 
plot(guida,E_loss_0AM_plot,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('DHW losses evaluation', 'FontSize', fontSize); 
legend('Demand','value for DHW losses') 
hold off 

  
subplot(3,3,8) 
plot(guida,ENERGY_0AM,'b') 
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hold on 
grid on 
plot(guida,E_SH_balanced_0AM_corr,'g') 
plot(guida,E_DHW_0AM_corr,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('chronological demand balanced and correct', 'FontSize', fontSize); 
legend('Measured Demand','SH demand balanced >0','DHW demand >0') 
hold off 

  
subplot(3,3,9) 
plot(DMT,ENERGY_0AM,'.b') 
hold on 
grid on 
plot(DMT,E_SH_balanced_0AM_corr,'.g') 
plot(DMT,E_DHW_0AM_corr,'.r') 
xlabel('DMT (°C)', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('Demand splitted', 'FontSize', fontSize); 
legend('Measured Demand','SH demand','DHW demand') 
hold off 
end 

 

“SHDHW_split_function_year.m” 

%function per la divisione tra DHW e SH per la domanda globale 

  
function 

[val_1_0AM,val_2_0AM,E_loss_0AM,E_SH_balanced_0AM_corr,E_DHW_0AM_corr,E_DHW_0AM]

=SHDHW_split_function_year(Demand_NOR_SH_0AM,Demand_NOR_DHW_0AM,T_SH_0AM,T_DHW_0

AM,T,ENERGY_GLO,CPT_0AM,ENERGY_0AM,L) 

  
Demand_shifted_SH=Demand_NOR_SH_0AM-min(Demand_NOR_DHW_0AM); 
Demand_shifted_DHW=Demand_NOR_DHW_0AM-min(Demand_NOR_DHW_0AM); 

  
ESC1_0AM=polyfit(T_SH_0AM,Demand_shifted_SH,1); 
ESC2_0AM=polyfit(T_DHW_0AM,Demand_shifted_DHW,1); 

  
val_1_0AM=polyval(ESC1_0AM,T_SH_0AM); 
val_2_0AM=polyval(ESC2_0AM,T_DHW_0AM); 
%attenzione: i valori in val non sono in ordine cronologico ma di 
%temperatura, per ottenerlo in ordine cronologico valutarlo sul DMT con 
%ciclo for 
i=1; 
value_ESC_0AM=[]; 

  
for k=1:8759 
    if T(k)<CPT_0AM 
        value_ESC_0AM(i)=polyval(ESC1_0AM,T(k)); 
        i=i+1; 
    else 
        value_ESC_0AM(i)=polyval(ESC2_0AM,T(k)); 
        i=i+1; 
    end 
end 

  
%ok, adesso ci siamo! ora si può usare il modello :) 
%calcolo delle perdite nel circuito DHW. Avendo solo le ore 0 AM dei gionri 
%ho deciso di considerare il valore minimo durante l'anno 

  



 190 
 

%determinazione losses nel circuito DHW. Possono essere calcolate come il 
%valore medio del consumo di calore durante la notte. 

  
%selezione periodo giugno-agosto della domanda totale: 
for k=1:24 
    l=1; 
    for i=152:1:243 
        DHW_losses_data(l,k)=ENERGY_GLO(i,k); 
        l=l+1; 
    end 
end 

  
%profilo medio giornaliero di domanda estiva: 
DHW_losses_sum_pro_0AM=mean(DHW_losses_data); 

  
%determinazione E losses 0 AM 

  
E_loss_0AM_mean=mean(DHW_losses_sum_pro_0AM(1:4));  %ottenuto con media da 0:00 

a 4:00 

  
E_loss_year=min(DHW_losses_sum_pro_0AM);             %ottenuto con il valore 

minimo 

  
%E_loss_0AM=min(ENERGY_0AM);                         %avendo solo 1 ora, 

considero il valore minimo, non vado a costruire il profilo perchè è basato su 

tutto l'anno 
E_loss_0AM=E_loss_0AM_mean; 

  
%calcolo di E SH 
E_SH_0AM=value_ESC_0AM-min(value_ESC_0AM); 

  
%calcolo di E DHW 
E_DHW_0AM=[]; 
i=1; 
for k=1:8759 
    if ENERGY_0AM(k)>E_SH_0AM(k) 
        E_DHW_0AM(i)=ENERGY_0AM(k)-E_SH_0AM(k)+E_loss_0AM; 
        i=i+1; 
    else 
        E_DHW_0AM(i)=E_loss_0AM; 
        i=i+1; 
    end 
end 

  
%bilanciamento di E SH 
E_SH_balanced_0AM=ENERGY_0AM-E_DHW_0AM.'; 

  
%processo di correzione valori <0 
E_SH_0AM_corr=E_SH_0AM; 
E_SH_balanced_0AM_corr=E_SH_balanced_0AM; 
E_DHW_0AM_corr=E_DHW_0AM; 

  
for k=1:8759 
    if E_SH_balanced_0AM(k)<0 
       E_DHW_0AM_corr(k)=E_DHW_0AM_corr(k)+E_SH_balanced_0AM(k); 
       E_SH_balanced_0AM_corr(k)=0; 
    end 
    if E_DHW_0AM(k)<0 
        E_SH_balanced_0AM_corr(k)=E_SH_balanced_0AM_corr(k)+E_DHW_0AM(k); 
        E_DHW_0AM_corr(k)=0; 
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    end 
end 

  
fontSize=18; 

  
figure(L) 
subplot(3,3,6) 
plot(T_SH_0AM,val_1_0AM,'g') 
hold on 
grid on 
plot(T,ENERGY_0AM,'.b') 
plot(T_SH_0AM,Demand_NOR_SH_0AM,'r') 
plot(T_DHW_0AM,val_2_0AM,'g') 
plot(T_DHW_0AM,Demand_NOR_DHW_0AM,'r') 
hold off 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('ESC complete', 'FontSize', fontSize); 
legend('ESC shifted','Measured heat use 0AM','ESC of total heat use') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
guida=1:8759; 
E_loss_0AM_plot(1:8759)=E_loss_0AM; 
subplot(3,3,7) 
plot(guida,ENERGY_0AM,'b') 
hold on 
grid on 
plot(guida,E_loss_0AM_plot,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('Losses DHW circuit', 'FontSize', fontSize); 
legend('Demand','value for DHW losses') 
hold off 

  
completo=[val_1_0AM,val_2_0AM]; 
% subplot(3,3,1) 
% plot(guida,ENERGY_0AM,'b') 
% hold on 
% grid on 
% plot(guida,E_SH_balanced_0AM,'g') 
% plot(guida,E_DHW_0AM,'r') 
% hold off 
% xlabel('time (day)', 'FontSize', fontSize); 
% ylabel('Demand 0AM', 'FontSize', fontSize); 
% title('cronological Demand balanced but <0', 'FontSize', fontSize); 
% legend('Measured Demand','SH demand balanced','DHW demand') 

  
subplot(3,3,8) 
plot(guida,ENERGY_0AM,'b') 
hold on 
grid on 
plot(guida,E_SH_balanced_0AM_corr,'g') 
plot(guida,E_DHW_0AM_corr,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('cronological Demand balanced and correct', 'FontSize', fontSize); 
legend('Measured Demand','SH demand balanced >0','DHW demand >0') 
hold off 

  
subplot(3,3,9) 
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plot(T,ENERGY_0AM,'.b') 
hold on 
grid on 
plot(T,E_SH_balanced_0AM_corr,'.g') 
plot(T,E_DHW_0AM_corr,'.r') 
xlabel('DMT (°C)', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('Demand splitted', 'FontSize', fontSize); 
legend('Measured Demand','SH demand','DHW demand') 
hold off 
end 

 

“std_profile_v1” 

%function for the creation of the standard summer profile 
function 

[DHW_STD_PROFILE_group1,index_min,index_med,index_max]=std_profile_v1(DHW_mean_g

roup1,DHW_E_min_group1,DHW_E_max_group1,g) 
%% creation of the standard profile for summer 
limit_1=length(DHW_mean_group1); 
i=1; 
j=1; 
f=1; 
l=1; 
DHW_STD_PROFILE_group1=[]; 
index_min=[]; 
index_med=[]; 
index_max=[]; 

  
min_load_STD_group1=[]; 
medium_load_STD_group1=[]; 
peak_load_STD_group1=[]; 

  
for k=1:limit_1 
    control_E=DHW_mean_group1(k); 

     
    if control_E<=DHW_E_min_group1 
        DHW_STD_PROFILE_group1(i)=DHW_E_min_group1; 
        i=i+1; 
        min_load_STD_group1(j,1)=DHW_E_min_group1; 
        index_min(j,1)=k; 
        j=j+1; 
    end 

     
    if control_E>DHW_E_min_group1 && control_E<=DHW_E_max_group1 
        DHW_STD_PROFILE_group1(i)=(DHW_E_min_group1+DHW_E_max_group1)/2; 
        i=i+1; 
        medium_load_STD_group1(f,1)=(DHW_E_min_group1+DHW_E_max_group1)/2; 
        index_med(f,1)=k; 
        f=f+1; 
    end 

     
    if control_E>DHW_E_max_group1 
        DHW_STD_PROFILE_group1(i)=DHW_E_max_group1; 
        i=i+1; 
        peak_load_STD_group1(l,1)=DHW_E_max_group1; 
        index_max(l,1)=k; 
        l=l+1; 
    end 
end 
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%GRAPHICAL VARIABLES 
color1=[0,0.4470, 0.7410]; 
color2=[0.8500, 0.3250, 0.0980]; 
color3=[0.4940, 0.1840, 0.5560]; 

  
axis_limit=[0 25 0 20]; 

  
time=1:24; 

  
fontSize=18; 

  
plot_vector_Emin=zeros(1,24); 
plot_vector_Emin=plot_vector_Emin+DHW_E_min_group1; 
plot_vector_Emax=zeros(1,24); 
plot_vector_Emax=plot_vector_Emax+DHW_E_max_group1; 

  
%PLOT 
figure(31) 
subplot(3,2,g) 
plot(time,plot_vector_Emin,'color',color2) 
hold on 
plot(time,plot_vector_Emax,'color',color3) 
bar(index_min,min_load_STD_group1,'FaceColor',color1)   %plot with real day 

profile 
bar(index_med,medium_load_STD_group1,'FaceColor',color2) 
bar(index_max,peak_load_STD_group1,'FaceColor',color3) 
grid on 
hold off 
axis(axis_limit) 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('STANDARD USE', 'FontSize', fontSize); 
title('DHW STANDARD PROFILE SUMMER', 'FontSize', fontSize); 
legend('Emin','Emax','Min load summer','Medium load summer','Peak load 

summer','location','SouthEast') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
end 

 

“stud_fish.m” 

%function for application of Student's t-test and Fisher criterion 
%to apply for every week 
function 

[W1_T_cal,W1_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,k) 
%WEEK 1 
W1_E_proof=[]; 
W1_n_proof=[]; 
W1_S_proof=[]; 

  
%E proof 
W1_E_proof(1,1)=mean(DHW_monday(:,k)); 
W1_E_proof(1,2)=mean(DHW_tuesday(:,k)); 
W1_E_proof(1,3)=mean(DHW_wednesday(:,k)); 
W1_E_proof(1,4)=mean(DHW_thursday(:,k)); 
W1_E_proof(1,5)=mean(DHW_friday(:,k)); 
W1_E_proof(1,6)=mean(DHW_saturday(:,k)); 
W1_E_proof(1,7)=mean(DHW_sunday(:,k)); 
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%n proof 
W1_n_proof(1,1:7)=24; 

  
%S proof 
W1_S_proof(1,1)=std(DHW_monday(:,k)); 
W1_S_proof(1,2)=std(DHW_tuesday(:,k)); 
W1_S_proof(1,3)=std(DHW_wednesday(:,k)); 
W1_S_proof(1,4)=std(DHW_thursday(:,k)); 
W1_S_proof(1,5)=std(DHW_friday(:,k)); 
W1_S_proof(1,6)=std(DHW_saturday(:,k)); 
W1_S_proof(1,7)=std(DHW_sunday(:,k)); 

  
%Tcal 
f=2; 
W1_T_cal=[]; 

  
for j=1:(7-1) %ok perchè sicuramente sono sempre 7 i giorni 

     
     for i=f:7 
          W1_T_cal(j,(i-1))=(W1_E_proof(1,j)-

W1_E_proof(1,i))/(sqrt(((W1_S_proof(1,j))^2/24)+((W1_S_proof(1,i))^2/24))); 
     end 

      
     f=f+1; 
end 

  
W1_T_cal=abs(W1_T_cal); 

  
%definition critical values Student's t-test 
%from https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm 
Tcr_46_005=2.687; 
Tcr_46_001=3.277; 

  
%% FISHER'S CRITERION 
%fcal 
f=2; 
W1_f_cal=[]; 

  
for j=1:(7-1) %ok perchè sicuramente sono sempre 7 i giorni 

     
     for i=f:7 
         vector(1,1)=(W1_S_proof(1,j))^2; 
         vector(1,2)=(W1_S_proof(1,i))^2; 
          W1_f_cal(j,(i-1))=(max(vector))/(min(vector)); 
     end 

      
     f=f+1; 
end 

  
%definition critical value Fisher criterion 
%from https://socr.umich.edu/Applets/F_Table.html 

  
fcr_46_005=1.9838; 

  
end 
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“T_cal_splitting.m” 

%function for splitting components of groups into vlues according to Tcal. 

  
function [DHW_split_g2]=Tcal_splitting(Tcal_vector_1,DHW_mean_group1_E) 
%% splitting in different group according to values in Tcal 

  
%inserire nuovi vettori 
% Tcal_vector_1=Tcal_vector_2; 
% DHW_mean_group1_E=DHW_mean_group2_E; 
% DHW_mean_group1=DHW_mean_group2; 

  
%1 split < 
i=1; 
DHW_split_g2=[]; 
col=1; 
Dimension_k=[]; 
p=1; 
fk=1; 
t=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)<Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
%ciclo if: se è più lungo il vettore Dimension_k uso quello come lunghezza 
%e aggiungo zeri alla matrice DHW_split, altrimenti devo procede come 
%descritto finora. inserire questa parte anche negli scrip precedenti. 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 

  
%2 split > 
if i<23 
Dimension_k=[]; 
p=1; 
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%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)>Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  
%3 split < 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)<Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
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    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  
%4 split > 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)>Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  

  
%5 split < 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)<Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
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        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  

%6 split > 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)>Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
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    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  

  
%7 split < 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)<Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  
%8 split > 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)>Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 
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Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  
%9 split < 
if i<23 
Dimension_k=[]; 
p=1; 
%k=1; 
for j=fk:23 
    if i<23 
    if Tcal_vector_1(i+1)<Tcal_vector_1(i) 
        Dimension_k(p)=DHW_mean_group1_E(t); 
        i=i+1; 
        p=p+1; 
        t=t+1; 
        fk=fk+1; 
    else 
    end 
    end 
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  
%10 split > 
if i<23 
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Dimension_k=[]; 
p=1; 
fk=fk-1; 
for j=fk:23 
    if i<23 

         
        if Tcal_vector_1(i+1)>Tcal_vector_1(i) 
            Dimension_k(p)=DHW_mean_group1_E(t); 
            i=i+1; 
            p=p+1; 
            t=t+1; 
           fk=fk+1; 
        else 
        end 
    else 
        lun=length(Dimension_k); 
        Dimension_k(lun+1)=DHW_mean_group1_E(24); 

         
    end 

     
end 
Dimension_k(p)=DHW_mean_group1_E(t); %insertive succesive value 

  
Dimension_k=Dimension_k';  

  
sizee_split=size(DHW_split_g2); %definition of length of matrix and vector 
s_split=sizee_split(1,1); 
s_Dimension=length(Dimension_k); 

  
if s_split>=s_Dimension 
    vector_zeros_L=s_split-length(Dimension_k); 
    vector_zero=zeros(vector_zeros_L,1); 
    Dimension_k_mod=cat(1,Dimension_k,vector_zero); 
    DHW_split_g2=[DHW_split_g2,Dimension_k_mod]; 
else 
    raw=s_Dimension-s_split; 
    colomn=sizee_split(1,2); 
    matrix=zeros(raw,colomn); 
    DHW_split_2=cat(1,DHW_split_g2,matrix); 
    DHW_split_g2=[DHW_split_2,Dimension_k]; 
end 
end 

  
%insert also control i<23: in this way the stap is done only if we have not 
%inserted all DHW_mean_group1_E values. 

  
%do the t_test amond two different neighboring groups (adiacent coloumns of 
%the matrix DHW_split) and compare Tcal with critical vallues to see if it 
%is possible to merge neighboring groups: 

  
end 

 

“time_interval.m” 

%function for the application of the step 2.2, the iterative process for 
%calculating R1 and R2 from the initial E samples. 

  
function 

[Tcal_vector_1,Tcal_vector_2]=time_interval(DHW_mean_group1_E,DHW_mean_group2_E) 
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%iterative process for the creation of R1 and R2 
size1=size(DHW_mean_group1_E); 
size2=size(DHW_mean_group2_E); 
Tcal_vector_1=[]; 

  
for i=1:size1(1,2) 
    dayy=DHW_mean_group1_E(:,i); 

     
    for M=1:23 
        %creation of vector R1 and R2 for every iteration 
        R1=zeros(M,1); 
        R2=zeros((M+1),1); 

         
        %insert elements in R1 and R2 
        for k=1:M 
            R1(k,1)=dayy(k,1); 
        end 
        for o=1:(M+1) 
            R2(o,1)=dayy(o,1); 
        end 

         
        %find E mean 1 and 2 
        E_mean_R1=mean(R1); 
        E_mean_R2=mean(R2); 

         
        %find S1 and S2 
        S_R1=std(R1); 
        S_R2=std(R2); 

         
        %find n of elements in 1 and 2 
        n_R1=length(R1); 
        n_R2=length(R2); 

         
        %calculate and save Tcal 
        Tcal_vector_1(M,i)=abs((E_mean_R1-

E_mean_R2)/(sqrt(((S_R1)^2/(n_R1))+((S_R2)^2/(n_R2))))); 
        %Tcal_vector_1(M,i)=(E_mean_R1-

E_mean_R2)/(sqrt(((S_R1)^2/(n_R1))+((S_R2)^2/(n_R2)))); 
    end 
end 

  
Tcal_vector_2=[]; 
for i=1:size1(1,2) 
    dayy=DHW_mean_group2_E(:,i); 

     
    for M=1:23 
        %creation of vector R1 and R2 for every iteration 
        R1=zeros(M,1); 
        R2=zeros((M+1),1); 

         
        %insert elements in R1 and R2 
        for k=1:M 
            R1(k,1)=dayy(k,1); 
        end 
        for o=1:(M+1) 
            R2(o,1)=dayy(o,1); 
        end 

         
        %find E mean 1 and 2 
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        E_mean_R1=mean(R1); 
        E_mean_R2=mean(R2); 

         
        %find S1 and S2 
        S_R1=std(R1); 
        S_R2=std(R2); 

         
        %find n of elements in 1 and 2 
        n_R1=length(R1); 
        n_R2=length(R2); 

         
        %calculate and save Tcal 
        Tcal_vector_2(M,i)=abs((E_mean_R1-

E_mean_R2)/(sqrt(((S_R1).^2/(n_R1))+((S_R2).^2/(n_R2))))); 
        %Tcal_vector_2(M,i)=(E_mean_R1-

E_mean_R2)/(sqrt(((S_R1).^2/(n_R1))+((S_R2).^2/(n_R2)))); 
    end 
end 

  

  
end 

     

 

“DHW_model_10922_v3.m” 

%script analysis and model of DHW 
%the summer demand is supposed to be only DHW, infact it is the part 
%T-independent of the ESC. From this profile the goal is to obtain a sort 
%of model also for the rest of the year and to use it to smooth the demand 
%and to improve the SH + DHW splitting. 

  
%from: 
%Development and analysis of hourly DHW heat use profiles in nursing homes in 

Norway 

  
%% step 1: Comparing similarity of DHW heat use profiles in different days of 

the week 

  
%selection and division of days of the week 

  
%considered only summer period. From a graphical analysis it is evidente, 
%for this building, that the summer period goes: 
%from monday 20 may to sunday 15 september. It is possible that these are 
%data for the specific year of 2019, so to obtain a more general value we 
%assume the summer period is from june to august: 
%from saturday 1 june to saturday 31 august. 

  
time=1:24; 

  
%SATURDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_saturday=ones(24,14); 
f=3624;     %the first hour of the day in summer period 
for j=1:14 
    for i=1:24 
        DHW_saturday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
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    f=f+144; 
end 

  
%SUNDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_sunday=ones(24,13); 
f=3648;     %the first hour of the day in summer period 
for j=1:13 
    for i=1:24 
        DHW_sunday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
    f=f+144; 
end 

  
%MONDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_monday=ones(24,13); 
f=3672;     %the first hour of the day in summer period 
for j=1:13 
    for i=1:24 
        DHW_monday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
    f=f+144; 
end 

  
%TUESDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_tuesday=ones(24,13); 
f=3696;     %the first hour of the day in summer period 
for j=1:13 
    for i=1:24 
        DHW_tuesday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
    f=f+144; 
end 

  
%WEDNESDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_wednesday=ones(24,13); 
f=3720;     %the first hour of the day in summer period 
for j=1:13 
    for i=1:24 
        DHW_wednesday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
    f=f+144; 
end 

  
%THURSDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_thursday=ones(24,13); 
f=3744;     %the first hour of the day in summer period 
for j=1:13 
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    for i=1:24 
        DHW_thursday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
    f=f+144; 
end 

  
%FRIDAY 
%change the value of colomn according to the calendar of the considered 
%year 
DHW_friday=ones(24,13); 
f=3768;     %the first hour of the day in summer period 
for j=1:13 
    for i=1:24 
        DHW_friday(i,j)=ENERGY(f); 
        f=f+1; 
    end 
    f=f+144; 
end 

  

  
%% STUDENT'S T-TEST AND FISHER CRITERION (SAME WEEK, DIFFERENT DAYS) 

  
%WEEK 1 
[W1_T_cal,W1_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,1); 
%WEEK 2 
[W2_T_cal,W2_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,2); 
%WEEK 3 
[W3_T_cal,W3_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,3); 
%WEEK 4 
[W4_T_cal,W4_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,4); 
%WEEK 5 
[W5_T_cal,W5_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,5); 
%WEEK 6 
[W6_T_cal,W6_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,6); 
%WEEK 7 
[W7_T_cal,W7_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,7); 
%WEEK 8 
[W8_T_cal,W8_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,8); 
%WEEK 9 
[W9_T_cal,W9_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,

DHW_friday,DHW_saturday,DHW_sunday,9); 
%WEEK 10 
[W10_T_cal,W10_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursda

y,DHW_friday,DHW_saturday,DHW_sunday,10); 
%WEEK 11 
[W11_T_cal,W11_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursda

y,DHW_friday,DHW_saturday,DHW_sunday,11); 
%WEEK 12 
[W12_T_cal,W12_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursda

y,DHW_friday,DHW_saturday,DHW_sunday,12); 
%WEEK 13 
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[W13_T_cal,W13_f_cal]=stud_fish(DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursda

y,DHW_friday,DHW_saturday,DHW_sunday,13); 

  
%definition critical values Student's t-test 
%from https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm 
Tcr_46_005=2.687; 
Tcr_46_001=3.277; 

  
%definition critical value Fisher criterion 
%from https://socr.umich.edu/Applets/F_Table.html 

  
fcr_46_005=1.9838; 

  
%% conclusion of the tests: comparison with critical values 
[MATCH]=match(Tcr_46_001,fcr_46_005,W1_T_cal,W1_f_cal,W2_T_cal,W2_f_cal,W3_T_cal

,W3_f_cal,W4_T_cal,W4_f_cal,W5_T_cal,W5_f_cal,W6_T_cal,W6_f_cal,W7_T_cal,W7_f_ca

l,W8_T_cal,W8_f_cal,W9_T_cal,W9_f_cal,W10_T_cal,W10_f_cal,W11_T_cal,W11_f_cal,W1

2_T_cal,W12_f_cal,W13_T_cal,W13_f_cal); 
%choose the value for Tcr with k=0.01 for a major similiraty spectrum 

  
%insert diagonal values 
fk=13; %insert here number of the weeks 
for j=1:7 
    MATCH(j,j)=fk; 
end 

  
%found percentage 
MATCH=MATCH.*(100/fk); 

  
%% Analysis of MATCH matrix 
%according to the article and by considering the fact that we are using a 
%smaller sample of values, the acceptable error is 25% (in article is 14%) 

  
%from this we can assume that there are 2 profiles: 
%friday 
%rest of the day 

  
%mathematical approach to the division of the profiles of DHW.  
%select the profiles you want to use for the analysis 

  
%combining together days included in the same profile 
DHW_group1=DHW_friday;                      %insert here the days of the week 

belonging to group 1 
DHW_group2=[DHW_monday,DHW_tuesday,DHW_wednesday,DHW_thursday,DHW_saturday,DHW_s

unday]; %insert here the days of the week belonging to group 2 
%include eventually extra groups 

  
%calculating mean profiles 
DHW_mean_group1=[]; 
DHW_mean_group2=[]; 
size1=size(DHW_group1); 
size2=size(DHW_group2); 
s_split=1; 
for i=1:24 
    DHW_mean_group1(s_split,1)=mean(DHW_group1(i,:)); 
    s_split=s_split+1; 
end 

  
s_split=1; 
for i=1:24 
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    DHW_mean_group2(s_split,1)=mean(DHW_group2(i,:)); 
    s_split=s_split+1; 
end 

  
%plot of the results from the division 
%add plots if there are more profiles or if there is the possibility to 
%have also winter consumption. 

  
figure (30) 
subplot(4,2,1) 
bar(time,DHW_mean_group1) 
grid on 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('Group1 DHW average consumption', 'FontSize', fontSize); 
legend('Summer') 

  
subplot(4,2,2) 
bar(time,DHW_mean_group2) 
grid on 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('AVG E USE', 'FontSize', fontSize); 
title('Group2 DHW average consumption', 'FontSize', fontSize); 
legend('Summer') 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%% step 2: Determining the time zones with peak, minimum, and average heat load 

for daily profiles of DHW heat use. 
%division the hours of DHW heat use into several groups with statistically 
%different mean values within each group. 

  
%STEP 2.1 Sorting the elements of the sample in the order of their increase 

  
%group 1 
DHW_group1_E=zeros(24,13); 
DHW_group2_E=zeros(24,79); 

  
for j=1:13 
    coloumn=DHW_group1(:,j); 
    coloumn_sorted=sort(coloumn); 
    DHW_group1_E(:,j)=coloumn_sorted; 
end 

  
%group2 
for j=1:79 
    coloumn=DHW_group2(:,j); 
    coloumn_sorted=sort(coloumn); 
    DHW_group2_E(:,j)=coloumn_sorted; 
end 

  
%STEP 2.2 Identifying the initial groups for the elements that could be 

considered statistically similar 
%with average profile in group 1 and group 2 

  
%Find the average of the sorted group1 and group2 
DHW_mean_group1_E=zeros(24,1); 
DHW_mean_group2_E=zeros(24,1); 
s_split=1; 
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for i=1:24 
    DHW_mean_group1_E(s_split,1)=mean(DHW_group1_E(i,:)); 
    s_split=s_split+1; 
end 

  
s_split=1; 
for i=1:24 
    DHW_mean_group2_E(s_split,1)=mean(DHW_group2_E(i,:)); 
    s_split=s_split+1; 
end 

  
DHW_mean_group1_E=sort(DHW_mean_group1); 
DHW_mean_group2_E=sort(DHW_mean_group2); 
%function for finding Tcal group1 and Tcal group 2 
[Tcal_vector_1,Tcal_vector_2]=time_interval(DHW_mean_group1_E,DHW_mean_group2_E)

; 

  
%At this point we have the vector Tcal_vector containing Tcal between 
%different R1 and R2 groups. the next step is to use these values to divide 
%the sample into multiple groups and check the possibility to merge them. 
%The goal is to obtain the lowest number of group as possibile within each 
%sample. 

  
%plot Tcal group1 
figure (30) 
subplot (4,2,3) 
plot(time(1:23),Tcal_vector_1) 
grid on 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('Tcal', 'FontSize', fontSize); 
title('Tcal group 1', 'FontSize', fontSize); 

  
%plot Tcal group 2 
figure (30) 
subplot (4,2,4) 
plot(time(1:23),Tcal_vector_2) 
grid on 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('Tcal', 'FontSize', fontSize); 
title('Tcal group 2', 'FontSize', fontSize); 

  
%% splitting in different group according to values in Tcal 
%fucntion for the division of the DHW_mean_E vectors into groups according 
%to the values of Tcal. in this case we have 2 groups (data obtained from 
%the previous part of the analysis), so we apply the function to group1 and 
%group2.function: "Tcal_splitting" 

  
[DHW_split_group1]=Tcal_splitting(Tcal_vector_1,DHW_mean_group1_E); 
[DHW_split_group2]=Tcal_splitting(Tcal_vector_2,DHW_mean_group2_E); 

  
%% iterative merging process 
[DHW_split_it11_group1,it_DHW_split_lastnew_group1]=iterative_merging_process(DH

W_split_group1); 
[DHW_split_it11_group2,it_DHW_split_lastnew_group2]=iterative_merging_process(DH

W_split_group2); 

  
%% identification of peak, average and minimum heat use 
position1=[0.13 0.1 0.34 0.35]; %only for graphical purpose 
position2=[0.55 0.1 0.34 0.35]; 
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[DHW_E_min_group1,DHW_E_max_group1]=min_med_peak_v2(it_DHW_split_lastnew_group1,

DHW_mean_group1,position1); 
[DHW_E_min_group2,DHW_E_max_group2]=min_med_peak_v2(it_DHW_split_lastnew_group2,

DHW_mean_group2,position2); 

  
%completed the analysis for the summer profile of DHW consumption.  

  
%% creation of the standard profile for summer 

  
[DHW_STD_PROFILE_group1,index_min_group1,index_med_group1,index_max_group1]=std_

profile_v1(DHW_mean_group1,DHW_E_min_group1,DHW_E_max_group1,1); 
[DHW_STD_PROFILE_group2,index_min_group2,index_med_group2,index_max_group2]=std_

profile_v1(DHW_mean_group2,DHW_E_min_group2,DHW_E_max_group2,2); 

  
%% creation of winter DHW standard profile 

  
%mean values of DHW consumption during winter. Keep the division of the days of 

the week done in 
%this analysis also for winter season. 

  
%creation of group1 and group2 for the whole year using DHW consumption 
%from the previous analysis 

  
%SPLITTING DHW AND SH DEMAND INTO DAYS OF THE WEEK 
E_SH_Y_MON=[]; 
E_SH_Y_TUE=[]; 
E_SH_Y_WED=[]; 
E_SH_Y_THU=[]; 
E_SH_Y_FRI=[]; 
E_SH_Y_SAT=[]; 
E_SH_Y_SUN=[]; 
E_DHW_Y_MON=[]; 
E_DHW_Y_TUE=[]; 
E_DHW_Y_WED=[]; 
E_DHW_Y_THU=[]; 
E_DHW_Y_FRI=[]; 
E_DHW_Y_SAT=[]; 
E_DHW_Y_SUN=[]; 

  
limit_2=length(E_SH_balanced_year_corr); 
E_DHW_year_corr_tra=E_DHW_year_corr'; 

  
%TUE 
start=1; 
finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_TUE=[E_SH_Y_TUE,vector_E_SH]; 
       E_DHW_Y_TUE=[E_DHW_Y_TUE,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
end 

  
%WED 
start=25; 
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finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_WED=[E_SH_Y_WED,vector_E_SH]; 
       E_DHW_Y_WED=[E_DHW_Y_WED,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
end 

  

%THU 
start=49; 
finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_THU=[E_SH_Y_THU,vector_E_SH]; 
       E_DHW_Y_THU=[E_DHW_Y_THU,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
end 

  
%FRI 
start=73; 
finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_FRI=[E_SH_Y_FRI,vector_E_SH]; 
       E_DHW_Y_FRI=[E_DHW_Y_FRI,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
end 

  
%SAT 
start=97; 
finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_SAT=[E_SH_Y_SAT,vector_E_SH]; 
       E_DHW_Y_SAT=[E_DHW_Y_SAT,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
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end 

  
%SUN 
start=121; 
finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_SUN=[E_SH_Y_SUN,vector_E_SH]; 
       E_DHW_Y_SUN=[E_DHW_Y_SUN,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
end 

  
%MON 
start=145; 
finish=start+23; 
for k=1:limit_2 
    if finish<=limit_2 
       vector_E_SH=E_SH_balanced_year_corr(start:finish); 
       vector_E_DHW=E_DHW_year_corr_tra(start:finish); 

        
       E_SH_Y_MON=[E_SH_Y_MON,vector_E_SH]; 
       E_DHW_Y_MON=[E_DHW_Y_MON,vector_E_DHW]; 

        
       start=start+168; 
       finish=finish+168; 
    end 
end 

  
%% MEAN VALUE FOR STAD PROFILE OF GROUP 1 and GROUP 2 
mean_std_profile_group1=mean(DHW_STD_PROFILE_group1); 
mean_std_profile_group2=mean(DHW_STD_PROFILE_group2); 
%% SELECT WINTER SEASON 
%for the winter season the period considered is from week 1 to week 21 and 
%from week 37 to week 52.  

  
E_SH_Y_MON_win=[]; 
E_SH_Y_TUE_win=[]; 
E_SH_Y_WED_win=[]; 
E_SH_Y_THU_win=[]; 
E_SH_Y_FRI_win=[]; 
E_SH_Y_SAT_win=[]; 
E_SH_Y_SUN_win=[]; 
E_DHW_Y_MON_win=[]; 
E_DHW_Y_TUE_win=[]; 
E_DHW_Y_WED_win=[]; 
E_DHW_Y_THU_win=[]; 
E_DHW_Y_FRI_win=[]; 
E_DHW_Y_SAT_win=[]; 
E_DHW_Y_SUN_win=[]; 

  
%TUE 
for k=1:21 
    control_day_SH=E_SH_Y_TUE(:,k); 
    control_day_DHW=E_DHW_Y_TUE(:,k); 
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    E_SH_Y_TUE_win=[E_SH_Y_TUE_win,control_day_SH]; 
    E_DHW_Y_TUE_win=[E_DHW_Y_TUE_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_TUE(:,k); 
    control_day_DHW=E_DHW_Y_TUE(:,k); 
    E_SH_Y_TUE_win=[E_SH_Y_TUE_win,control_day_SH]; 
    E_DHW_Y_TUE_win=[E_DHW_Y_TUE_win,control_day_DHW]; 
end 

  
%WED 
for k=1:21 
    control_day_SH=E_SH_Y_WED(:,k); 
    control_day_DHW=E_DHW_Y_WED(:,k); 
    E_SH_Y_WED_win=[E_SH_Y_WED_win,control_day_SH]; 
    E_DHW_Y_WED_win=[E_DHW_Y_WED_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_WED(:,k); 
    control_day_DHW=E_DHW_Y_WED(:,k); 
    E_SH_Y_WED_win=[E_SH_Y_WED_win,control_day_SH]; 
    E_DHW_Y_WED_win=[E_DHW_Y_WED_win,control_day_DHW]; 
end 

  
%THU 
for k=1:21 
    control_day_SH=E_SH_Y_THU(:,k); 
    control_day_DHW=E_DHW_Y_THU(:,k); 
    E_SH_Y_THU_win=[E_SH_Y_THU_win,control_day_SH]; 
    E_DHW_Y_THU_win=[E_DHW_Y_THU_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_THU(:,k); 
    control_day_DHW=E_DHW_Y_THU(:,k); 
    E_SH_Y_THU_win=[E_SH_Y_THU_win,control_day_SH]; 
    E_DHW_Y_THU_win=[E_DHW_Y_THU_win,control_day_DHW]; 
end 

  
%FRI 
for k=1:21 
    control_day_SH=E_SH_Y_FRI(:,k); 
    control_day_DHW=E_DHW_Y_FRI(:,k); 
    E_SH_Y_FRI_win=[E_SH_Y_FRI_win,control_day_SH]; 
    E_DHW_Y_FRI_win=[E_DHW_Y_FRI_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_FRI(:,k); 
    control_day_DHW=E_DHW_Y_FRI(:,k); 
    E_SH_Y_FRI_win=[E_SH_Y_FRI_win,control_day_SH]; 
    E_DHW_Y_FRI_win=[E_DHW_Y_FRI_win,control_day_DHW]; 
end 

  
%SAT 
for k=1:21 
    control_day_SH=E_SH_Y_SAT(:,k); 
    control_day_DHW=E_DHW_Y_SAT(:,k); 
    E_SH_Y_SAT_win=[E_SH_Y_SAT_win,control_day_SH]; 
    E_DHW_Y_SAT_win=[E_DHW_Y_SAT_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_SAT(:,k); 
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    control_day_DHW=E_DHW_Y_SAT(:,k); 
    E_SH_Y_SAT_win=[E_SH_Y_SAT_win,control_day_SH]; 
    E_DHW_Y_SAT_win=[E_DHW_Y_SAT_win,control_day_DHW]; 
end 

  
%SUN 
for k=1:21 
    control_day_SH=E_SH_Y_SUN(:,k); 
    control_day_DHW=E_DHW_Y_SUN(:,k); 
    E_SH_Y_SUN_win=[E_SH_Y_SUN_win,control_day_SH]; 
    E_DHW_Y_SUN_win=[E_DHW_Y_SUN_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_SUN(:,k); 
    control_day_DHW=E_DHW_Y_SUN(:,k); 
    E_SH_Y_SUN_win=[E_SH_Y_SUN_win,control_day_SH]; 
    E_DHW_Y_SUN_win=[E_DHW_Y_SUN_win,control_day_DHW]; 
end 

  
%MON 
for k=1:21 
    control_day_SH=E_SH_Y_MON(:,k); 
    control_day_DHW=E_DHW_Y_MON(:,k); 
    E_SH_Y_MON_win=[E_SH_Y_MON_win,control_day_SH]; 
    E_DHW_Y_MON_win=[E_DHW_Y_MON_win,control_day_DHW]; 
end 
for k=37:52 
    control_day_SH=E_SH_Y_MON(:,k); 
    control_day_DHW=E_DHW_Y_MON(:,k); 
    E_SH_Y_MON_win=[E_SH_Y_MON_win,control_day_SH]; 
    E_DHW_Y_MON_win=[E_DHW_Y_MON_win,control_day_DHW]; 
end 

  
%% MEAN VALUES IN WINTER SEASON 
mean_MON_DHW_win=mean(E_DHW_Y_MON_win(:)); 
mean_MON_SH_win=mean(E_SH_Y_MON_win(:)); 
mean_TUE_DHW_win=mean(E_DHW_Y_TUE_win(:)); 
mean_TUE_SH_win=mean(E_SH_Y_TUE_win(:)); 
mean_WED_DHW_win=mean(E_DHW_Y_WED_win(:)); 
mean_WED_SH_win=mean(E_SH_Y_WED_win(:)); 
mean_THU_DHW_win=mean(E_DHW_Y_THU_win(:)); 
mean_THU_SH_win=mean(E_SH_Y_THU_win(:)); 
mean_FRI_DHW_win=mean(E_DHW_Y_FRI_win(:)); 
mean_FRI_SH_win=mean(E_SH_Y_FRI_win(:)); 
mean_SAT_DHW_win=mean(E_DHW_Y_SAT_win(:)); 
mean_SAT_SH_win=mean(E_SH_Y_SAT_win(:)); 
mean_SUN_DHW_win=mean(E_DHW_Y_SUN_win(:)); 
mean_SUN_SH_win=mean(E_SH_Y_SUN_win(:)); 

  
%% DIFFERENCE IN % BETWEEN MEAN VALUES IN SUMMER AND IN WINTER 
diff_MON=(mean_MON_DHW_win-mean_std_profile_group2)/mean_MON_DHW_win; 
diff_TUE=(mean_TUE_DHW_win-mean_std_profile_group2)/mean_TUE_DHW_win; 
diff_WED=(mean_WED_DHW_win-mean_std_profile_group2)/mean_WED_DHW_win; 
diff_THU=(mean_THU_DHW_win-mean_std_profile_group2)/mean_THU_DHW_win; 
diff_FRI=(mean_FRI_DHW_win-mean_std_profile_group1)/mean_FRI_DHW_win; 
diff_SAT=(mean_SAT_DHW_win-mean_std_profile_group2)/mean_SAT_DHW_win; 
diff_SUN=(mean_SUN_DHW_win-mean_std_profile_group2)/mean_SUN_DHW_win; 

  
%% CREATION OF STANDARD PROFILE FOR WINTER 

  
%determination of mean per cent difference between values in winter and in 
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%summer in group1 and group2 
mean_diff_perc_group2=(diff_MON+diff_TUE+diff_WED+diff_THU+diff_SAT+diff_SUN)/6; 
mean_diff_perc_group1=diff_FRI; 

  
%creation of new standard profile for winter: hourly values of the standard 
%profile are increased by mean per cent difference between summer and 
%winter of the corresponding group 
vector_diff_group1=DHW_STD_PROFILE_group1.*mean_diff_perc_group1; 
vector_diff_group2=DHW_STD_PROFILE_group2.*mean_diff_perc_group2; 

  
DHW_WIN_STD_PROFILE_group1=DHW_STD_PROFILE_group1+vector_diff_group1; 
DHW_WIN_STD_PROFILE_group2=DHW_STD_PROFILE_group2+vector_diff_group2; 

  
DHW_E_min_WIN_group1=DHW_E_min_group1+mean_diff_perc_group1*DHW_E_min_group1; 
DHW_E_max_WIN_group1=DHW_E_max_group1+mean_diff_perc_group1*DHW_E_max_group1; 

  
DHW_E_min_WIN_group2=DHW_E_min_group2+mean_diff_perc_group2*DHW_E_min_group2; 
DHW_E_max_WIN_group2=DHW_E_max_group2+mean_diff_perc_group2*DHW_E_max_group2; 

  
%% PLOT NEW WINTER STANDARD PROFILE 

  
plot_winter_profile(index_min_group1,index_med_group1,index_max_group1,DHW_WIN_S

TD_PROFILE_group1,DHW_E_min_WIN_group1,DHW_E_max_WIN_group1,3) 
plot_winter_profile(index_min_group2,index_med_group2,index_max_group2,DHW_WIN_S

TD_PROFILE_group2,DHW_E_min_WIN_group2,DHW_E_max_WIN_group2,4) 

  
%% FLATTENING WINTER DHW PROFILE USING STANDARD WINTER PROFILE AS A GUIDE 

  
%create a matrix full of standard profiles in every colomn 
MATRIX_STANDARD_WIN_group1=[]; 
for k=1:37 
    

MATRIX_STANDARD_WIN_group1=[MATRIX_STANDARD_WIN_group1,DHW_WIN_STD_PROFILE_group

1']; 
end 

  
MATRIX_STANDARD_WIN_group2=[]; 
for k=1:37 
    

MATRIX_STANDARD_WIN_group2=[MATRIX_STANDARD_WIN_group2,DHW_WIN_STD_PROFILE_group

2']; 
end 

  
%matrix with difference in % between value of DHW consumption in winter 
%obtained from splitting model and standard porfile created for winter 
%season. 
DIFF_MON_WIN=(E_DHW_Y_MON_win-MATRIX_STANDARD_WIN_group2)./E_DHW_Y_MON_win; 
DIFF_TUE_WIN=(E_DHW_Y_TUE_win-MATRIX_STANDARD_WIN_group2)./E_DHW_Y_TUE_win; 
DIFF_WED_WIN=(E_DHW_Y_WED_win-MATRIX_STANDARD_WIN_group2)./E_DHW_Y_WED_win; 
DIFF_THU_WIN=(E_DHW_Y_THU_win-MATRIX_STANDARD_WIN_group2)./E_DHW_Y_THU_win; 
DIFF_FRI_WIN=(E_DHW_Y_FRI_win-MATRIX_STANDARD_WIN_group1)./E_DHW_Y_FRI_win; 
DIFF_SAT_WIN=(E_DHW_Y_SAT_win-MATRIX_STANDARD_WIN_group2)./E_DHW_Y_SAT_win; 
DIFF_SUN_WIN=(E_DHW_Y_SUN_win-MATRIX_STANDARD_WIN_group2)./E_DHW_Y_SUN_win; 

  

%check what are the highest % differences 
MAX_DIFF_MON_ABS=max(max(DIFF_MON_WIN)); 
MAX_DIFF_TUE_ABS=max(max(DIFF_TUE_WIN)); 
MAX_DIFF_WED_ABS=max(max(DIFF_WED_WIN)); 
MAX_DIFF_THU_ABS=max(max(DIFF_THU_WIN)); 
MAX_DIFF_FRI_ABS=max(max(DIFF_FRI_WIN)); 
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MAX_DIFF_SAT_ABS=max(max(DIFF_SAT_WIN)); 
MAX_DIFF_SUN_ABS=max(max(DIFF_SUN_WIN)); 

  
%check the mean % differences between winter profile from splitting and 
%standard winter profile 

  
MEAN_DIFF_MON=mean(mean(DIFF_MON_WIN)); 
MEAN_DIFF_TUE=mean(mean(DIFF_TUE_WIN)); 
MEAN_DIFF_WED=mean(mean(DIFF_WED_WIN)); 
MEAN_DIFF_THU=mean(mean(DIFF_THU_WIN)); 
MEAN_DIFF_FRI=mean(mean(DIFF_FRI_WIN)); 
MEAN_DIFF_SAT=mean(mean(DIFF_SAT_WIN)); 
MEAN_DIFF_SUN=mean(mean(DIFF_SUN_WIN)); 
%% propose a way for flattening DHW profile in winter 
tolerance=0.3; 
decrease=0.25; 
[NEW_MON_Y_DHW_WIN,NEW_MON_Y_SH_WIN]=NEW_PROFILE(DIFF_MON_WIN,E_DHW_Y_MON_win,E_

SH_Y_MON_win,tolerance,decrease,1); 
[NEW_TUE_Y_DHW_WIN,NEW_TUE_Y_SH_WIN]=NEW_PROFILE(DIFF_TUE_WIN,E_DHW_Y_TUE_win,E_

SH_Y_TUE_win,tolerance,decrease,2); 
[NEW_WED_Y_DHW_WIN,NEW_WED_Y_SH_WIN]=NEW_PROFILE(DIFF_WED_WIN,E_DHW_Y_WED_win,E_

SH_Y_WED_win,tolerance,decrease,3); 
[NEW_THU_Y_DHW_WIN,NEW_THU_Y_SH_WIN]=NEW_PROFILE(DIFF_THU_WIN,E_DHW_Y_THU_win,E_

SH_Y_THU_win,tolerance,decrease,4); 
[NEW_FRI_Y_DHW_WIN,NEW_FRI_Y_SH_WIN]=NEW_PROFILE(DIFF_FRI_WIN,E_DHW_Y_FRI_win,E_

SH_Y_FRI_win,tolerance,decrease,5); 
[NEW_SAT_Y_DHW_WIN,NEW_SAT_Y_SH_WIN]=NEW_PROFILE(DIFF_SAT_WIN,E_DHW_Y_SAT_win,E_

SH_Y_SAT_win,tolerance,decrease,6); 
[NEW_SUN_Y_DHW_WIN,NEW_SUN_Y_SH_WIN]=NEW_PROFILE(DIFF_SUN_WIN,E_DHW_Y_SUN_win,E_

SH_Y_SUN_win,tolerance,decrease,7); 

  
%% reconstruction of yearly demand with modified values 
[E_SH_Y_MON_NEW,E_DHW_Y_MON_NEW]=NEW_PROFILE_YEARLY(NEW_MON_Y_SH_WIN,E_SH_Y_MON,

NEW_MON_Y_DHW_WIN,E_DHW_Y_MON); 
[E_SH_Y_TUE_NEW,E_DHW_Y_TUE_NEW]=NEW_PROFILE_YEARLY(NEW_TUE_Y_SH_WIN,E_SH_Y_TUE,

NEW_TUE_Y_DHW_WIN,E_DHW_Y_TUE); 
[E_SH_Y_WED_NEW,E_DHW_Y_WED_NEW]=NEW_PROFILE_YEARLY(NEW_WED_Y_SH_WIN,E_SH_Y_WED,

NEW_WED_Y_DHW_WIN,E_DHW_Y_WED); 
[E_SH_Y_THU_NEW,E_DHW_Y_THU_NEW]=NEW_PROFILE_YEARLY(NEW_THU_Y_SH_WIN,E_SH_Y_THU,

NEW_THU_Y_DHW_WIN,E_DHW_Y_THU); 
[E_SH_Y_FRI_NEW,E_DHW_Y_FRI_NEW]=NEW_PROFILE_YEARLY(NEW_FRI_Y_SH_WIN,E_SH_Y_FRI,

NEW_FRI_Y_DHW_WIN,E_DHW_Y_FRI); 
[E_SH_Y_SAT_NEW,E_DHW_Y_SAT_NEW]=NEW_PROFILE_YEARLY(NEW_SAT_Y_SH_WIN,E_SH_Y_SAT,

NEW_SAT_Y_DHW_WIN,E_DHW_Y_SAT); 
[E_SH_Y_SUN_NEW,E_DHW_Y_SUN_NEW]=NEW_PROFILE_YEARLY(NEW_SUN_Y_SH_WIN,E_SH_Y_SUN,

NEW_SUN_Y_DHW_WIN,E_DHW_Y_SUN); 

  
%% Creation of whole year demand (put together all days of the week) 
%this year starts from tuesday) 

  
E_DHW_Y_NEW=[]; 
E_SH_Y_NEW=[]; 

  
for k=1:52 
    control_vector=E_SH_Y_TUE_NEW(:,k); 
    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
    control_vector=E_SH_Y_WED_NEW(:,k); 
    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
    control_vector=E_SH_Y_THU_NEW(:,k); 
    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
    control_vector=E_SH_Y_FRI_NEW(:,k); 



 216 
 

    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
    control_vector=E_SH_Y_SAT_NEW(:,k); 
    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
    control_vector=E_SH_Y_SUN_NEW(:,k); 
    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
    control_vector=E_SH_Y_MON_NEW(:,k); 
    E_SH_Y_NEW=[E_SH_Y_NEW,control_vector]; 
end 

  
for k=1:52 
    control_vector=E_DHW_Y_TUE_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
    control_vector=E_DHW_Y_WED_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
    control_vector=E_DHW_Y_THU_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
    control_vector=E_DHW_Y_FRI_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
    control_vector=E_DHW_Y_SAT_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
    control_vector=E_DHW_Y_SUN_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
    control_vector=E_DHW_Y_MON_NEW(:,k); 
    E_DHW_Y_NEW=[E_DHW_Y_NEW,control_vector]; 
end 

  
E_DHW_Y_NEW_line=E_DHW_Y_NEW(:)'; 
E_SH_Y_NEW_line=E_SH_Y_NEW(:)'; 

  
%% plot representaiton 

  
%graphical variables 
limit_4=length(E_DHW_Y_NEW_line); 
limit_5=length(E_SH_balanced_year_corr); 
time_1=1:limit_4; 
time_2=1:limit_5; 

  
fontSize=13; 

  
figure (32) 
subplot(3,3,8) 
plot(time_2,E_DHW_year_corr,'color','#D95319') 
hold on 
plot(time_2,E_SH_balanced_year_corr,'b') 
plot(time_1,E_DHW_Y_NEW_line,'color','#EDB120') 
plot(time_1,E_SH_Y_NEW_line,'c') 
hold off 
grid on 
xlabel('TIME', 'FontSize', fontSize); 
ylabel('DEMAND', 'FontSize', fontSize); 
title('SPLITTED DEMAND VS TIME', 'FontSize', fontSize); 
legend('DHW from splitting','SH from splitting','DHW modified','SH 

MODIFIED','location','NorthEast') 

  
%% last plot Demand vs T out 
%manca solo l'ultimo grafico: le 4 domande ottenute ma vs la temperatura 

  
%graphical parameters 
T_NEW=T(1:length(E_SH_Y_NEW_line)); 
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figure (32) 
subplot(3,3,9) 
plot(T,E_DHW_year_corr,'.','color','#D95319') 
hold on 
plot(T,E_SH_balanced_year_corr,'.b') 
plot(T_NEW,E_DHW_Y_NEW_line,'.','color','#EDB120') 
plot(T_NEW,E_SH_Y_NEW_line,'.c') 
hold off 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('DEMAND', 'FontSize', fontSize); 
title('SPLITTED DEMAND VS T out', 'FontSize', fontSize); 
legend('DHW from splitting','SH from splitting','DHW modified','SH 

MODIFIED','location','NorthEast') 

 

A2: Partial database (Verona case study) 

“CI_v2.m” 

%function per il CI 
function [y_CI_up,y_CI_down]=CI_v2(coeff_DEF_SH_0AM,T_SH_0AM,Demand_SH_0AM,i,k) 

  
%valutazione punti con il modello lineare 
SH_value_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
n_lib_deg=length(SH_value_0AM)-2; 

  

%caclolo parametri necessari 
Se_SH_0AM=sqrt((n_lib_deg+1)*((std(Demand_SH_0AM)^2)-

(coeff_DEF_SH_0AM(1)^2)*std(T_SH_0AM))/(n_lib_deg)); 
%usare il valore di porbabilità cumulata (cumulative density function) 
%nella t-student per includere tutti i valori all'interno della probabilità 
%scelt, il 95% solitamente basta. Avendo un alto numero di gradi di libertà 
%coincide con la distribuzione gaussiana. 
t_stud_value=tcdf(0.95,n_lib_deg); 
prod_factor=sqrt(1+(1/length(SH_value_0AM))+(((T_SH_0AM-

mean(T_SH_0AM)).^2)/(length(SH_value_0AM)*(std(T_SH_0AM)^2)))); 

  
%calcolo y degli intervalli di confidenza 
y_CI_up=SH_value_0AM+Se_SH_0AM.*t_stud_value.*prod_factor; 
y_CI_down=SH_value_0AM-Se_SH_0AM.*t_stud_value.*prod_factor; 

  
fontSize=18; 
axis_limit=[-5 20 0 60]; 

  
%grafico 
figure(i) 
subplot(3,3,k) 
% pos=[0.65 0.2 0.3 0.3]; 
% subplot('Position',pos) 
plot(T_SH_0AM,y_CI_up,'g') 
grid on 
hold on 
plot(T_SH_0AM,y_CI_down,'g') 
plot(T_SH_0AM,Demand_SH_0AM,'.b') 
plot(T_SH_0AM,SH_value_0AM,'r') 
hold off 
axis(axis_limit) 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('CONFIDENCE INTERVAL AND FITTING', 'FontSize', fontSize); 
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legend('UPPER CI 95%','LOWER CI 95%','experimental points','model') 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
end 

 

“CI_v3.m” 

%function per il CI 
function [y_CI_up,y_CI_down]=CI_v3(coeff_DEF_SH_0AM,T_SH_0AM,Demand_SH_0AM,i,k) 

  
%valutazione punti con il modello lineare 
SH_value_0AM=polyval(coeff_DEF_SH_0AM,T_SH_0AM); 
n_lib_deg=length(SH_value_0AM)-2; 

  
%caclolo parametri necessari 
Se_SH_0AM=sqrt((n_lib_deg+1)*((std(Demand_SH_0AM)^2)-

(coeff_DEF_SH_0AM(1)^2)*std(T_SH_0AM))/(n_lib_deg)); 
%usare il valore di porbabilità cumulata (cumulative density function) 
%nella t-student per includere tutti i valori all'interno della probabilità 
%scelt, il 95% solitamente basta. Avendo un alto numero di gradi di libertà 
%coincide con la distribuzione gaussiana. 
t_stud_value=tcdf(0.95,n_lib_deg); 
prod_factor=sqrt(1+(1/length(SH_value_0AM))+(((T_SH_0AM-

mean(T_SH_0AM)).^2)/(length(SH_value_0AM)*(std(T_SH_0AM)^2)))); 

  
%calcolo y degli intervalli di confidenza 
y_CI_up=SH_value_0AM+Se_SH_0AM.*t_stud_value.*prod_factor; 
y_CI_down=SH_value_0AM-Se_SH_0AM.*t_stud_value.*prod_factor; 

  
fontSize=18; 

  
axis_limit=[-5 20 0 60]; 

  
%grafico 
figure(i) 
subplot(3,3,k) 
% pos=[0.65 0.2 0.3 0.3]; 
% subplot('Position',pos) 
plot(T_SH_0AM,y_CI_up,'g') 
grid on 
hold on 
plot(T_SH_0AM,y_CI_down,'g') 
plot(T_SH_0AM,Demand_SH_0AM,'.b') 
plot(T_SH_0AM,SH_value_0AM,'r') 
hold off 
axis(axis_limit) 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('CONFIDENCE INTERVAL AND FITTING', 'FontSize', fontSize); 
legend('UPPER CI 95%','LOWER CI 95%','experimental points','model') 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
end 
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“DMT_calc.m” 

%function for DMT calculation 

  
function [DMT,T]=DMT_calc(HOURS_D_NaN) 
DMT=[]; 
scr=1; 

  
T=HOURS_D_NaN;      %vector T contains T out with removal of entire days with at 

least one NaN value 
limit=length(T); 

  
for j=1:364 
    if (scr+23)<= limit 
    

dailyMT=(T(scr,1)+T(scr+1,1)+T(scr+2,1)+T(scr+3,1)+T(scr+4,1)+T(scr+5,1)+T(scr+6

,1)+T(scr+7,1)+T(scr+8,1)+T(scr+9,1)+ 

T(scr+10,1)+T(scr+11,1)+T(scr+12,1)+T(scr+13,1)+T(scr+14,1)+T(scr+15,1)+T(scr+16

,1)+T(scr+17,1)+T(scr+18,1)+T(scr+19,1)+T(scr+20,1)+T(scr+21,1)+T(scr+22,1)+T(sc

r+23,1))/24; 
    DMT(j,1)=dailyMT; 

     
    scr=scr+24; 
    end 
end 

  
end 

 

“ESC_School2.m” 

%script for the analysis of incomplete dataset (less than 8760 values). inm 
%particular this is made for buildings where only heating season 
%consumption is known (from november to march). 

  
%based on Verona DHN dataset 

  
%close: 
close all 
clear all 
clc 

  
%data reading 
ENERGY=xlsread('dataset_School2.xlsx','R2:R8760');                           

%importare dati non doppi, processare in excel prima 
HOURS=xlsread('dataset_School2.xlsx','Q2:Q8760');                            

%vettore che contiene dati della temperatura 
CONTROL_POWER=xlsread('dataset_School2.xlsx','G2:G8760');                    

%for controlling where is NaN in the original dataset 

  
%% processing dataset: delete only NaN values 
%delete every NaN element from the ENERGY vestor. in the original dataset 
%there are some empty raws: probabily meter was off or there were some 
%errors in the data reading. 

  
%do the same operation in the vector HOURS to be suyre that the Tout 
%corresponds to the value of demand in the considered hour. 
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% 

[ENERGY_N_NaN,HOURS_N_NaN,ENERGY_D_NaN,HOURS_D_NaN]=NaN_removal(ENERGY,HOURS,CON

TROL_POWER); 

  
%starting: insert number of the first day in the database: 
%(monday=1; tuesday=2; wednesday=3... sunday=7); 
starting=1; 

  
[ENERGY_N_NaN,HOURS_N_NaN,ENERGY_D_NaN_test,HOURS_D_NaN_test,NUMBER_DAY,ENERGY_D

_NaN_ORDER,WEEKEND_N_NaN_E_COL,WEEKDAYS_N_NaN_E_COL,WEEKEND_N_NaN_T_COL,WEEKDAYS

_N_NaN_T_COL]=NaN_removal_v2(ENERGY,HOURS,CONTROL_POWER,starting); 

  
%% TEST CONSIDERING ONLY WEEKDAYS (NO WEEKEND) 
ENERGY_D_NaN=WEEKDAYS_N_NaN_E_COL; 
HOURS_D_NaN=WEEKDAYS_N_NaN_T_COL; 

  
% ENERGY_D_NaN=ENERGY_D_NaN_test; 
% HOURS_D_NaN=HOURS_D_NaN_test; 

  
%it is much better to consider only weekdays, most conistent results 

  
%% HOUR SPLITTING (energy) 
%(possible only with ENERGY_D_NaN 
[ENERGY_0AM]=HOUR_split(ENERGY_D_NaN,1); 
[ENERGY_1AM]=HOUR_split(ENERGY_D_NaN,2); 
[ENERGY_2AM]=HOUR_split(ENERGY_D_NaN,3); 
[ENERGY_3AM]=HOUR_split(ENERGY_D_NaN,4); 
[ENERGY_4AM]=HOUR_split(ENERGY_D_NaN,5); 
[ENERGY_5AM]=HOUR_split(ENERGY_D_NaN,6); 
[ENERGY_6AM]=HOUR_split(ENERGY_D_NaN,7); 
[ENERGY_7AM]=HOUR_split(ENERGY_D_NaN,8); 
[ENERGY_8AM]=HOUR_split(ENERGY_D_NaN,9); 
[ENERGY_9AM]=HOUR_split(ENERGY_D_NaN,10); 
[ENERGY_10AM]=HOUR_split(ENERGY_D_NaN,11); 
[ENERGY_11AM]=HOUR_split(ENERGY_D_NaN,12); 
[ENERGY_12AM]=HOUR_split(ENERGY_D_NaN,13); 
[ENERGY_13PM]=HOUR_split(ENERGY_D_NaN,14); 
[ENERGY_14PM]=HOUR_split(ENERGY_D_NaN,15); 
[ENERGY_15PM]=HOUR_split(ENERGY_D_NaN,16); 
[ENERGY_16PM]=HOUR_split(ENERGY_D_NaN,17); 
[ENERGY_17PM]=HOUR_split(ENERGY_D_NaN,18); 
[ENERGY_18PM]=HOUR_split(ENERGY_D_NaN,19); 
[ENERGY_19PM]=HOUR_split(ENERGY_D_NaN,20); 
[ENERGY_20PM]=HOUR_split(ENERGY_D_NaN,21); 
[ENERGY_21PM]=HOUR_split(ENERGY_D_NaN,22); 
[ENERGY_22PM]=HOUR_split(ENERGY_D_NaN,23); 
[ENERGY_23PM]=HOUR_split(ENERGY_D_NaN,24); 

  
%% HOUR SPLITTING (temperature) 
%(possible only with HOURS_D_NaN 
[T_0AM]=HOUR_split(HOURS_D_NaN,1); 
[T_1AM]=HOUR_split(HOURS_D_NaN,2); 
[T_2AM]=HOUR_split(HOURS_D_NaN,3); 
[T_3AM]=HOUR_split(HOURS_D_NaN,4); 
[T_4AM]=HOUR_split(HOURS_D_NaN,5); 
[T_5AM]=HOUR_split(HOURS_D_NaN,6); 
[T_6AM]=HOUR_split(HOURS_D_NaN,7); 
[T_7AM]=HOUR_split(HOURS_D_NaN,8); 
[T_8AM]=HOUR_split(HOURS_D_NaN,9); 
[T_9AM]=HOUR_split(HOURS_D_NaN,10); 
[T_10AM]=HOUR_split(HOURS_D_NaN,11); 
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[T_11AM]=HOUR_split(HOURS_D_NaN,12); 
[T_12AM]=HOUR_split(HOURS_D_NaN,13); 
[T_13PM]=HOUR_split(HOURS_D_NaN,14); 
[T_14PM]=HOUR_split(HOURS_D_NaN,15); 
[T_15PM]=HOUR_split(HOURS_D_NaN,16); 
[T_16PM]=HOUR_split(HOURS_D_NaN,17); 
[T_17PM]=HOUR_split(HOURS_D_NaN,18); 
[T_18PM]=HOUR_split(HOURS_D_NaN,19); 
[T_19PM]=HOUR_split(HOURS_D_NaN,20); 
[T_20PM]=HOUR_split(HOURS_D_NaN,21); 
[T_21PM]=HOUR_split(HOURS_D_NaN,22); 
[T_22PM]=HOUR_split(HOURS_D_NaN,23); 
[T_23PM]=HOUR_split(HOURS_D_NaN,24); 

  
%% daily mean temperature 
[DMT,T]=DMT_calc(HOURS_D_NaN); %vector T contains T out with removal of entire 

days with at least one NaN value, same as HOURS_D_NaN 

  
%% Check which points are below the most common pattern: 
fit=polyfit(T,ENERGY_D_NaN,1); 
eval=polyval(fit,T); 
%ok if the line stay in the middle between 2 profiles, otherwise fine a 
%line from the plot and insert coefficient by hand in the coefficient 
%polynomial "fit" 

  
%% plot DMT vs ENERGY_hour (0AM, 1AM...) 
%creation of 1 figure per vector, usa as base for further considerations 

  
fontSize = 13; 
markerSize = 20; 
axis_limit_1=[-5 20 0 max(ENERGY_D_NaN)]; 

  
figure (1) 
subplot(6,4,1) 
plot(DMT,ENERGY_0AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 0AM', 'FontSize', fontSize); 
title('ENERGY 0AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,2) 
plot(DMT,ENERGY_1AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 1AM', 'FontSize', fontSize); 
title('ENERGY 1AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
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set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,3) 
plot(DMT,ENERGY_2AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 2AM', 'FontSize', fontSize); 
title('ENERGY 2AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,4) 
plot(DMT,ENERGY_3AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 3AM', 'FontSize', fontSize); 
title('ENERGY 3AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,5) 
plot(DMT,ENERGY_4AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 4 AM', 'FontSize', fontSize); 
title('ENERGY 4 AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,6) 
plot(DMT,ENERGY_5AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 5AM', 'FontSize', fontSize); 
title('ENERGY 5AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
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set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,7) 
plot(DMT,ENERGY_6AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 6AM', 'FontSize', fontSize); 
title('ENERGY 6AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,8) 
plot(DMT,ENERGY_7AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 7AM', 'FontSize', fontSize); 
title('ENERGY 7AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,9) 
plot(DMT,ENERGY_8AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 8AM', 'FontSize', fontSize); 
title('ENERGY 8AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,10) 
plot(DMT,ENERGY_9AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 9AM', 'FontSize', fontSize); 
title('ENERGY 9AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
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set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,11) 
plot(DMT,ENERGY_10AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 10AM', 'FontSize', fontSize); 
title('ENERGY 10AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,12) 
plot(DMT,ENERGY_11AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 11AM', 'FontSize', fontSize); 
title('ENERGY 11AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,13) 
plot(DMT,ENERGY_12AM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 12AM', 'FontSize', fontSize); 
title('ENERGY 12AM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,14) 
plot(DMT,ENERGY_13PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 13PM', 'FontSize', fontSize); 
title('ENERGY 13PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
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set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,15) 
plot(DMT,ENERGY_14PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 14PM', 'FontSize', fontSize); 
title('ENERGY 14PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,16) 
plot(DMT,ENERGY_15PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 15PM', 'FontSize', fontSize); 
title('ENERGY 15PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,17) 
plot(DMT,ENERGY_16PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 16PM', 'FontSize', fontSize); 
title('ENERGY 16PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,18) 
plot(DMT,ENERGY_17PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 17PM', 'FontSize', fontSize); 
title('ENERGY 17PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
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set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,19) 
plot(DMT,ENERGY_18PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 18PM', 'FontSize', fontSize); 
title('ENERGY 18PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,20) 
plot(DMT,ENERGY_19PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 19PM', 'FontSize', fontSize); 
title('ENERGY 19PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,21) 
plot(DMT,ENERGY_20PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 20PM', 'FontSize', fontSize); 
title('ENERGY 20PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,22) 
plot(DMT,ENERGY_21PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 21PM', 'FontSize', fontSize); 
title('ENERGY 21PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
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set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,23) 
plot(DMT,ENERGY_22PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 22PM', 'FontSize', fontSize); 
title('ENERGY 22PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
figure (1) 
subplot(6,4,24) 
plot(DMT,ENERGY_23PM,'.') 
grid on 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('ENERGY 23PM', 'FontSize', fontSize); 
title('ENERGY 23PM vs DMT', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 
axis(axis_limit_1) 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%% calcolo di ESC totale, non solo quella divisa in ore 

  
figure (27) 
%grafico punti sperimentali 
subplot(3,3,1) 
plot(T,ENERGY_D_NaN,'.') 
grid on 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('ENERGY USE vs T', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 
hold off 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%plot of complete year using n NaN (removal only NaN, not entire days) 
figure (28) 
%grafico punti sperimentali 
subplot(3,3,1) 
plot(HOURS_N_NaN,ENERGY_N_NaN,'.') 
grid on 
xlabel('T', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('ENERGY USE vs T', 'FontSize', fontSize); 
hold on 
plot(T,eval,'r'); 



 228 
 

hold off 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%% Profile separation 
% Verona is different from Tartu: there is a milder climate, so it isn't 
% necessary to keep SH on for the entire day. There are rules from comune 
% di Verona with hours for the SH plant operation. thanks to hours 
% splitting we can simply find 2 profiles: 
%-SH on: creation of ESC and considerations done for Tartu 
%-SH off: useful for DHW losses considerations (typical is at night time) 

  
%find the correspinding group for each hour with an analysis from the plot. 

  
%separation line is the interpolation line of the complete dataset. points 
%aboce are SH on, points below when SH is off. 

  
%splitting by hand, observing the plot 
%SH on (%14 h of SH on, ok with Municipality of Verona's rules for 
%2019-2020) 
ENERGY_SH_ON=[ENERGY_4AM,ENERGY_5AM,ENERGY_6AM,ENERGY_9AM,ENERGY_10AM,ENERGY_11A

M,ENERGY_12AM,ENERGY_13PM,ENERGY_14PM,ENERGY_15PM,ENERGY_16PM,ENERGY_17PM,ENERGY

_18PM,ENERGY_19PM]; 

  
%SH off 
ENERGY_SH_OFF=[ENERGY_0AM,ENERGY_1AM,ENERGY_2AM,ENERGY_3AM,ENERGY_7AM,ENERGY_8AM

,ENERGY_20PM,ENERGY_21PM,ENERGY_22PM,ENERGY_23PM]; 

  
%Automatic splitting 
percentage=0.55;  %try different tolerance (between 50-85) to find the best 

rapresentation  

  
COMPLETE_ENERGY=[ENERGY_0AM,ENERGY_1AM,ENERGY_2AM,ENERGY_3AM,ENERGY_4AM,ENERGY_5

AM,ENERGY_6AM,ENERGY_7AM,ENERGY_8AM,ENERGY_9AM,ENERGY_10AM,ENERGY_11AM,ENERGY_12

AM,ENERGY_13PM,ENERGY_14PM,ENERGY_15PM,ENERGY_16PM,ENERGY_17PM,ENERGY_18PM,ENERG

Y_19PM,ENERGY_20PM,ENERGY_21PM,ENERGY_22PM,ENERGY_23PM]; 
COMPLETE_T=[T_0AM,T_1AM,T_2AM,T_3AM,T_4AM,T_5AM,T_6AM,T_7AM,T_8AM,T_9AM,T_10AM,T

_11AM,T_12AM,T_13PM,T_14PM,T_15PM,T_16PM,T_17PM,T_18PM,T_19PM,T_20PM,T_21PM,T_22

PM,T_23PM]; 

  
[ENERGY_SH_ON_A,ENERGY_SH_OFF_A,T_SH_ON_A,T_SH_OFF_A]=SH_ONOFF(COMPLETE_ENERGY,C

OMPLETE_T,percentage,fit); 

  
%% FITTING SH ON PROFILE AND SH OFF PROFILE 
COMPLETE_T_COL=COMPLETE_T(:);   %trasforming matrix into vector 
COMPLETE_ENERGY_COL=COMPLETE_ENERGY(:); 
ENERGY_SH_ON_A_COL=ENERGY_SH_ON_A(:); 
ENERGY_SH_OFF_A_COL=ENERGY_SH_OFF_A(:); 
T_SH_ON_A_COL=T_SH_ON_A(:); 
T_SH_OFF_A_COL=T_SH_OFF_A(:); 

  
fit_SH_ON=polyfit(T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,1); 
fit_SH_OFF=polyfit(T_SH_OFF_A_COL,ENERGY_SH_OFF_A_COL,1); 

  
eval_SH_ON=polyval(fit_SH_ON,T_SH_ON_A_COL); 
eval_SH_OFF=polyval(fit_SH_OFF,T_SH_OFF_A_COL); 

  
axis_limit=[-5 20 0 60]; 



 229 
 

  
figure(29) 
subplot(3,3,1) 
plot(T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,'g.') 
hold on 
plot(T_SH_OFF_A_COL,ENERGY_SH_OFF_A_COL,'b.') 
plot(T_SH_ON_A_COL,eval_SH_ON,'g') 
plot(T_SH_OFF_A_COL,eval_SH_OFF,'b') 
grid on 
axis(axis_limit) 
xlabel('T out', 'FontSize', fontSize); 
ylabel('ENERGY 0AM', 'FontSize', fontSize); 
title('ENERGY vs T out', 'FontSize', fontSize); 
legend('Demand SH on','Demand SH off'); 

  

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  

  
%% CI APPLICATION 
[y_CI_up_on,y_CI_down_on]=CI_v2(fit_SH_ON,T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,29,2)

; 
[y_CI_up_off,y_CI_down_off]=CI_v3(fit_SH_OFF,T_SH_OFF_A_COL,ENERGY_SH_OFF_A_COL,

29,3); 

  
%% ESC reconstruction 
%consider last values, find a mean values between them and interpolate. it 
%is necessary the vector that contains temperature of Verona in the whole 
%year. we reconstruct the summer demand with constant values.  

  
%create vector with Tout from the complete year 

  
%for choosing CPT build frequence distribution of T out and cancel tails of 
%the distribution (in particular higher tail). Use typical 95% of 
%tolerance 

  
LUNG_T_ON=length(T_SH_ON_A_COL); 
LUNG_T_OFF=length(T_SH_OFF_A_COL); 

  
[DIST_T_SH_ON_ASS,X_T_SH_ON]=hist(T_SH_ON_A_COL,24); 
[DIST_T_SH_OFF_ASS,X_T_SH_OFF]=hist(T_SH_OFF_A_COL,24); 
DIST_T_SH_ON=DIST_T_SH_ON_ASS/LUNG_T_ON; 
DIST_T_SH_OFF=DIST_T_SH_OFF_ASS/LUNG_T_OFF; 

  
%norm pdf mean and std from T dataset 
MEAN_T_SH_ON=mean(T_SH_ON_A_COL); 
STD_T_SH_ON=std(T_SH_ON_A_COL); 
MIN_T_SH_ON=min(T_SH_ON_A_COL); 
MAX_T_SH_ON=max(T_SH_ON_A_COL); 
vector_norm=MIN_T_SH_ON:0.1:MAX_T_SH_ON; 
NORM_T_SH_ON=normpdf(vector_norm,MEAN_T_SH_ON,STD_T_SH_ON); 
NORM_CDF_T_SH_ON=normcdf(vector_norm,MEAN_T_SH_ON,STD_T_SH_ON); 

  

%build vector of CDF for DIST_T_SH_ON 

  
figure(29) 
subplot(3,3,4) 
plot(vector_norm,NORM_T_SH_ON,'b') 
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grid on 
hold on 
% plot(X_T_SH_ON,DIST_T_SH_ON,'g') 
bar(X_T_SH_ON,DIST_T_SH_ON,'g') 
hold off 
xlabel('T out', 'FontSize', fontSize); 
ylabel('probability', 'FontSize', fontSize); 
title('PDF T OUT', 'FontSize', fontSize); 
legend('normal PDF','T PDF'); 

  
figure(29) 
subplot(3,3,5) 
plot(vector_norm,NORM_CDF_T_SH_ON) 
hold on 
%cdfplot(T_SH_ON_A_COL) 
ecdf(T_SH_ON_A_COL,'Bounds','on') 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('probability', 'FontSize', fontSize); 
title('CDF T OUT', 'FontSize', fontSize); 
legend('normal CDF','T data CDF','Location','southeast'); 

  
figure(29) 
subplot(3,3,6) 
normplot(T_SH_ON_A_COL) 

  
%3 different ways to prove that T out distribution follows normal 
%distribution (with PDF; CDF and with normplot test (iof data are normal, 
%plot is linear, as it happens here) 

  
%find T where CDF=0.95 
[CDF_DATA_SH_ON,T_CDF_DATA_SH_ON]=ecdf(T_SH_ON_A_COL);  %find CDF value of 

empirical T profile 

  
limit=length(CDF_DATA_SH_ON); 
j=limit; 
save_T=[]; 
i=1; 
for k=limit:(-1):1 
    control_P=CDF_DATA_SH_ON(j); 
    control_T=T_CDF_DATA_SH_ON(j); 
    if control_P>=0.95 
        save_T(i)=control_T; 
        i=i+1; 
        j=j-1; 
    else 
        j=j-1; 
    end 
end 

  
limit_2=length(save_T); 
CPT=save_T(1,limit_2); 

  
%insert CPT into plot of Demand vs Tout 
vector_Y_CPT=[0,max(ENERGY_SH_ON_A_COL)]; 
vector_X_CPT=[CPT,CPT]; 

  
figure(29) 
subplot(3,3,1) 
plot(vector_X_CPT,vector_Y_CPT,'r') 
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hold off 
legend('Demand SH on','Demand SH off','fitting SH on','fitting SH off','CPT'); 

  
%find interception between CPT and fitting of SH on 
CPD=polyval(fit_SH_ON,CPT); %change point demand 

  
%find the maximum temperature of the year: 
%(considered year 2020) 

  
TEMPERATURE_2020=xlsread('weather data verona 2020.xlsx','B3:B8763'); 
MAX_T=max(TEMPERATURE_2020); 
SUMMER_Y=[CPD,CPD]; 
SUMMER_X=[CPT, MAX_T]; 

  
%% use CPD to delete part of 0 demand to create a better model 
limit_1= length(ENERGY_SH_ON_A_COL); 
ENERGY_SH_ON_A_COL_mod=[]; 
T_SH_ON_A_COL_mod=[]; 
i=1; 
for k=1:limit_1 
    control_E=ENERGY_SH_ON_A_COL(k); 
    control_T=T_SH_ON_A_COL(k); 
    if control_E>=CPD 
        ENERGY_SH_ON_A_COL_mod(i)=control_E; 
        T_SH_ON_A_COL_mod(i)=control_T; 
        i=i+1; 
    end 
end 

  
%% interpolation line from Tmin to CPT 
T_min=min(T_SH_ON_A_COL); 
T_SH_ON_vector_X=[T_min, CPT]; 
T_SH_ON_vector_Y=[polyval(fit_SH_ON,T_min), CPD]; 

  

  
%PLOT complete demand, only SH on 
figure(29) 
subplot(3,3,7) 
plot(T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,'g.') 
hold on 
plot(T_SH_ON_vector_X,T_SH_ON_vector_Y,'b') 
plot(vector_X_CPT,vector_Y_CPT,'r') 
plot(SUMMER_X,SUMMER_Y,'b') 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('Complete rebuilt consumption profile', 'FontSize', fontSize); 
legend('experimental data SH on','interpolation','CPT','rebuilt summer 

profile'); 

  
%% interpolation of modified vector of demand and plot 
fit_SH_on_mod=polyfit(T_SH_ON_A_COL_mod,ENERGY_SH_ON_A_COL_mod,1); 
CPD_mod=polyval(fit_SH_on_mod,CPT); 
val_SH_on_mod=polyval(fit_SH_on_mod,T_SH_ON_A_COL_mod); 

  
T_min_mod=min(T_SH_ON_A_COL_mod); 
T_SH_ON_vector_X_mod=[T_min_mod, CPT]; 
T_SH_ON_vector_Y_mod=[polyval(fit_SH_on_mod,T_min_mod), CPD_mod]; 

  
SUMMER_Y_mod=[CPD_mod,CPD_mod]; 
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SUMMER_X_mod=[CPT, MAX_T]; 

  
%R2 calcualtion 
SSE_SH_mod=sum((ENERGY_SH_ON_A_COL_mod-val_SH_on_mod).^2); 
SSYY_SH_mod=sum((ENERGY_SH_ON_A_COL_mod-mean(ENERGY_SH_ON_A_COL_mod)).^2); 
R2_nor_SH_mod=1-(SSE_SH_mod/SSYY_SH_mod); 
fit_SH_on_mod_prova=fitlm(T_SH_ON_A_COL_mod,ENERGY_SH_ON_A_COL_mod,'linear'); 
fit_SH_on_prova=fitlm(T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,'linear'); 

  

  
%PLOT complete demand, only SH on modified values 
figure(29) 
subplot(3,3,8) 
plot(T_SH_ON_A_COL_mod,ENERGY_SH_ON_A_COL_mod,'g.') 
hold on 
plot(T_SH_ON_vector_X_mod,T_SH_ON_vector_Y_mod,'b') 
plot(vector_X_CPT,vector_Y_CPT,'r') 
plot(SUMMER_X_mod,SUMMER_Y_mod,'b') 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('Complete rebuilt consumption profile without low demand', 'FontSize', 

fontSize); 
legend('experimental data SH on, no low values','interpolation','CPT','rebuilt 

summer profile'); 
%% Calcolo SH e DHW 
%T dependent part of the ESC is increased by a costant coefficient. The 
%goal is to calculate it in order to move down the ESC to the x axis. 

  
%Build T vector for summer period (T_SHW_year) 
%from 11 march to 26 november 2020 (dates depend on dataset in analysis) 

  
T_DHW_year=xlsread('weather data verona 2020.xlsx','B1682:B7945'); %but for DHW 

we need only summer part (higher than CPT) 
limit_5=length(T_DHW_year); 
i=1; 
T_DHW_year_summer=[]; 
for k=1:limit_5 
    control_T=T_DHW_year(k); 
    if control_T>=CPT 
        T_DHW_year_summer(i)=control_T; 
        i=i+1; 
    end 
end 

  
T_DHW_year=T_DHW_year_summer';  %correction on the vector "T_DHW_year": insert 

only values >= CPT 

  
T_SH_year=T_SH_ON_A_COL; %but we need value up to CPT, no higher   
limit_6=length(T_SH_year); 
i=1; 
T_SH_year_winter=[]; 
ENERGY_SH_ON_winter=[]; %even for experimental points it is necessary a vector 

with no points higher than CPT (sam elength as T vector) 
for k=1:limit_6 
    control_T=T_SH_year(k); 
    control_E=ENERGY_SH_ON_A_COL(k); 
    if control_T<=CPT 
        T_SH_year_winter(i)=control_T; 
        ENERGY_SH_ON_winter(i)=control_E; 
        i=i+1; 
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    end 
end 
T_SH_year=T_SH_year_winter; 

  
lung=length(T_DHW_year); 
Demand_NOR_SH_year=polyval(fit_SH_on_mod,T_SH_year); %values obtained from model 

for SH 
Demand_NOR_DHW_year=ones(1,lung); 
Demand_NOR_DHW_year(:,:)=CPD_mod;                    %values from model for DHW 

  
T_year=[T_SH_year';T_DHW_year]; %complete vector with T data 
%% 
figure(40) 
subplot(3,3,1) 
plot(T_SH_year,Demand_NOR_SH_year) 
hold on 
plot(T_DHW_year,Demand_NOR_DHW_year) 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('ENERGY', 'FontSize', fontSize); 
title('ENERGY vs T out', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%vector with energy consumption for the year:  
%winter: ENERGY_SH_ON_winter (real data from meter but with T<= CPT) 
%summer: Demand_NOR_DHW_year (simulated data for the rest of the year) 

  
ENERGY_year=[ENERGY_SH_ON_winter,Demand_NOR_DHW_year];  %complete vector with E 

data (experimental) 

  
figure(40) 
subplot(3,3,1) 
plot(T_year,ENERGY_year,'.b') 
hold on 

  
%% 
% Demand_shifted_SH=Demand_NOR_SH_year-min(Demand_NOR_DHW_year);  %shifting 

demand down 
% Demand_shifted_DHW=Demand_NOR_DHW_year-min(Demand_NOR_DHW_year); 

  
Demand_shifted_SH=Demand_NOR_SH_year;  %test senza shiftare giù 
Demand_shifted_DHW=Demand_NOR_DHW_year; 

  
figure (40) 
subplot(3,3,1) 
plot(T_SH_year,Demand_shifted_SH) 
plot(T_DHW_year,Demand_shifted_DHW) 
hold off 
legend('Demand winter','Demand summer','experimental points','Demand winter 

down','Demand summer down'); 

  
ESC1_year=polyfit(T_SH_year,Demand_shifted_SH,1); 
ESC2_year=polyfit(T_DHW_year,Demand_shifted_DHW,1); 

  
val_1_year=polyval(ESC1_year,T_SH_year); 
val_2_year=polyval(ESC2_year,T_DHW_year); 

  
%% 



 234 
 

%Put values in chronological order with cicle for 
%in this construction they are in chronological order. from 
%november-november 
limit_8=length(ENERGY_year); 
time_vector=1:limit_8; 

  
%to have a more clear plot and analysis it is possibile to remove some 
%points from summer consumption (itis constant, so no problem) 
%I choose 900 values to consider 
ENERGY_year_lim=ENERGY_year(1:900); 
limit_9=length(ENERGY_year_lim); 
time_vector_lim=1:limit_9; 

  
figure(40) 
subplot(3,3,2) 
plot(time_vector_lim,ENERGY_year_lim,'b') 
grid on 
xlabel('Time', 'FontSize', fontSize); 
ylabel('ENERGY', 'FontSize', fontSize); 
title('ENERGY Demand', 'FontSize', fontSize); 
legend('energy demand for 900 hours') 

  
%% Losses DHW evaluation 
%Losses in the DHW circuit: not possible to apply method used for Tartu 
%(summer consumption during night is unknown) but it is possible to 
%estimate losses using moment when SH is off during winter. Consider night 
%time: between 0.00 am and 4.00 am  

  
%create vector with demand values from 0.00 am to 4.00 am 
ENERGY_night=[ENERGY_0AM;ENERGY_1AM;ENERGY_2AM;ENERGY_3AM]; 
TEMPERATURE_night=[T_0AM;T_1AM;T_2AM;T_3AM]; 

  
%Removal of 5% tail of lowest temperature, then for losses considered mean 
%values of night time when SH is off (only for points considered, after 
%remotion) 

  
[CDF_E_SH_OFF,VALUES_CDF_E_SH_OFF]=ecdf(TEMPERATURE_night);  %find CDF value of 

empirical Demand night profile 

  
limit=length(CDF_E_SH_OFF); 
j=limit; 
save_T_night=[]; 
i=1; 
for k=limit:(-1):1 
    control_P=CDF_E_SH_OFF(j); 
    control_T=VALUES_CDF_E_SH_OFF(j); 
    if control_P>=0.90 
        save_T_night(i)=control_T; 
        i=i+1; 
        j=j-1; 
    else 
        j=j-1; 
    end 
end 

  

limit_2=length(save_T_night); 
T_DHW_losses_limit=save_T_night(1,limit_2); %T out limit for considering losses 

(demand higher than that is ok to consider) 

  
%fitting of night data 
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fit_SH_OFF_night=polyfit(TEMPERATURE_night,ENERGY_night,1); 
values_SH_OFF_night=polyval(fit_SH_OFF_night,TEMPERATURE_night); 

  
%vector for plotting values of T_DHW_losses_limit 
vector_T_DHW_losses_limit_x=[T_DHW_losses_limit,T_DHW_losses_limit]; 
vector_T_DHW_losses_limit_y=[0,max(ENERGY_night)]; 

  
%DHW circuit losses during summer estimation (mean value in the hottest 
%part of the SH off period at night) 
DHW_ENERGY_for_losses=[]; 
limit=length(TEMPERATURE_night); 
k=limit; 
i=1; 
for j=limit:(-1):1 
    control_E=ENERGY_night(j); 
    control_T=TEMPERATURE_night(j); 
    if control_T>=T_DHW_losses_limit 
        DHW_ENERGY_for_losses(i)=control_E; 
        i=i+1; 
    else 
    end 
end 

  
DHW_losses=mean(DHW_ENERGY_for_losses); %losses as mean value of highest demand 

point during winter night time 
DHW_losses_x=[T_DHW_losses_limit, max(TEMPERATURE_night)]; %vector for plotting 

lines 
DHW_losses_y=[DHW_losses, DHW_losses]; 

  
%norm pdf mean and std from T out at night dataset 
MEAN_T_SH_OFF=mean(TEMPERATURE_night); 
STD_T_SH_OFF=std(TEMPERATURE_night); 
MIN_T_SH_OFF=min(TEMPERATURE_night); 
MAX_T_SH_OFF=max(TEMPERATURE_night); 
vector_norm_night=MIN_T_SH_OFF:0.1:MAX_T_SH_OFF; 
NORM_CDF_T_SH_OFF=normcdf(vector_norm_night,MEAN_T_SH_OFF,STD_T_SH_OFF); 

  
axis_limit=[-6 13 0 65];  %set axes limit to have same dimensions as plot before 

  
figure (40) 
subplot(3,3,5) 
plot(TEMPERATURE_night,ENERGY_night,'.k') 
hold on 
plot(TEMPERATURE_night,values_SH_OFF_night,'b') 
plot(vector_T_DHW_losses_limit_x,vector_T_DHW_losses_limit_y,'r') 
plot(DHW_losses_x,DHW_losses_y,'g') 
grid on 
hold off 
axis(axis_limit_1); 
xlabel('T out', 'FontSize', fontSize); 
ylabel('ENERGY AT NIGHT', 'FontSize', fontSize); 
title('ENERGY AT NIGHT vs T out', 'FontSize', fontSize); 
legend('Demand between 0.00 am - 4.00 am','fitting','T limit for DHW losses 

estimation','DHW losses'); 

  

%% 
figure (40) 
subplot(3,3,3) 
plot(VALUES_CDF_E_SH_OFF,CDF_E_SH_OFF) 
hold on 
plot(vector_norm_night,NORM_CDF_T_SH_OFF) 
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grid on 
xlabel('T out at night', 'FontSize', fontSize); 
ylabel('Probability', 'FontSize', fontSize); 
title('T out AT NIGHT', 'FontSize', fontSize); 
legend('T out night','Normal distribution'); 

  
figure(40) 
subplot(3,3,4) 
normplot(TEMPERATURE_night) 

  
%% 
E_loss_year=DHW_losses; 

  
%put in chronological order points obtained from ESC model 
i=1; 
value_ESC_year=[]; 
limit_10=length(T_year); 

  
for k=1:limit_10 
    if T_year(k)<=CPT 
        value_ESC_year(i)=polyval(ESC1_year,T_year(k)); 
        i=i+1; 
    else 
        value_ESC_year(i)=polyval(ESC2_year,T_year(k)); 
        i=i+1; 
    end 
end 

  
%calcolo di E SH 
% E_SH_year=value_ESC_year-min(value_ESC_year); 
E_SH_year=value_ESC_year; %non la sposto in giù 

  
%calcolo di E DHW 
E_DHW_year=[]; 
i=1; 
limit_3=length(ENERGY_year); 
for k=1:limit_3 
    if ENERGY_year(k)>E_SH_year(k) 
        E_DHW_year(i)=ENERGY_year(k)-E_SH_year(k)+E_loss_year; 
        i=i+1; 
    else 
        E_DHW_year(i)=E_loss_year; 
        i=i+1; 
    end 
end 

  
%% 
%Balnacing E_SH and E_SHW 
E_SH_balanced_year=ENERGY_year-E_DHW_year; 

  
%Correction process for values <0 
%"corr" vector are balanced + all positive vectors 
E_SH_year_corr=E_SH_year; 
E_SH_balanced_year_corr=E_SH_balanced_year; 
E_DHW_year_corr=E_DHW_year; 

  
limit_4=length(E_SH_balanced_year); 

  
for k=1:limit_4 
    if E_SH_balanced_year(k)<0 
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       E_DHW_year_corr(k)=E_DHW_year_corr(k)+E_SH_balanced_year(k); 
       E_SH_balanced_year_corr(k)=0; 
    end 
    if E_DHW_year(k)<0 
        E_SH_balanced_year_corr(k)=E_SH_balanced_year_corr(k)+E_DHW_year(k); 
        E_DHW_year_corr(k)=0; 
    end 
end 

  
%% 
fontSize=18; 

  
figure(40) 
subplot(3,3,6) 
plot(T_SH_year,val_1_year,'g') 
hold on 
grid on 
plot(T_year,ENERGY_year,'.b') 
plot(T_SH_year,Demand_NOR_SH_year,'r') 
plot(T_DHW_year,val_2_year,'g') 
plot(T_DHW_year,Demand_NOR_DHW_year,'r') 
hold off 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('ESC complete', 'FontSize', fontSize); 
legend('ESC shifted','Measured heat use 0AM','ESC of total heat use') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
guida=1:limit_3; 
E_loss_year_plot(1:limit_3)=E_loss_year; 
subplot(3,3,7) 
plot(guida,ENERGY_year,'b') 
hold on 
grid on 
plot(guida,E_loss_year_plot,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand 0AM', 'FontSize', fontSize); 
title('minimum value of demand at 0AM', 'FontSize', fontSize); 
legend('Demand at 0AM','value for DHW losses') 
hold off 
%creation of smaller values for more clear plot (900 values) 
guida_lim=1:900; 
E_SH_balanced_year_corr_lim=E_SH_balanced_year_corr(1:900); 
E_DHW_year_corr_lim=E_DHW_year_corr(1:900); 

  
subplot(3,3,8) 
plot(guida_lim,ENERGY_year_lim,'b') 
hold on 
grid on 
plot(guida_lim,E_SH_balanced_year_corr_lim,'g') 
plot(guida_lim,E_DHW_year_corr_lim,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand 0AM', 'FontSize', fontSize); 
title('cronological Demand balanced and correct', 'FontSize', fontSize); 
legend('Measured Demand','SH demand balanced >0','DHW demand >0') 
hold off 

  
subplot(3,3,9) 
plot(T_year,ENERGY_year,'.b') 
hold on 
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grid on 
plot(T_year,E_SH_balanced_year_corr,'.g') 
plot(T_year,E_DHW_year_corr,'.r') 
xlabel('DMT (°C)', 'FontSize', fontSize); 
ylabel('Demand 0AM', 'FontSize', fontSize); 
title('Demand splitted', 'FontSize', fontSize); 
legend('Measured Demand','SH demand','DHW demand') 
hold off 

  
%model is ok, but DHW consumption is higher than SH. this is ok because it 
%is evident that slope of SH model is low and by not knowing data i estimate 
%DHW consumption in summer but when heating season was not finished 

  
%maybe it is possibile to estimate DHW consumption during summer from 
%points with SH off. Try to use these values to built a new ESC with 
%significantly lower DHW consumption in summer 

  
%% Improvement with outlier removal? 
%identify when points of extremely high demand happens 
%% TMA dependency control, corrected 
%TMA determination from 1 to 48 hours before. only with SH part of demand 
% T_SH_ON_A_COL,ENERGY_SH_ON_A_COL 
BETA=[]; 
i=1; 
for k=1:48 
    TMA_hour=movmean(T_SH_ON_A_COL,[k 0]); 
    pol_hour=polyfit(TMA_hour,ENERGY_SH_ON_A_COL,1); 
    control_beta=pol_hour(1,1); 
    BETA(i)=control_beta; 
    i=i+1; 
end 

  
guida_1=1:length(BETA); 

  
figure (26) 
subplot(2,1,1) 
plot(T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,'.') 
grid on 
xlabel('T OUTDOOR', 'FontSize', fontSize); 
ylabel('ENERGY USE', 'FontSize', fontSize); 
title('T OUTDOOR vs ENERGY USE', 'FontSize', fontSize); 

  
subplot(2,1,2) 
plot(guida_1,BETA) 
grid on 
xlabel('Lag of Temperature MA (hours)', 'FontSize', fontSize); 
ylabel('Correlation between ENERGY and TMA', 'FontSize', fontSize); 
title('TMA vs ENERGY USE', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 
%% new script but this time consider initial vector without data outside CI (too 

high data) 
%select and remove data outside confidence interval 
%starting from vector "ENERGY_SH_ON_A_COL" 

  
ENERGY_OK_VALUES=[]; 
TEMPERATURE_OK_VALUES=[]; 
i=1; 
limit_11=length(ENERGY_SH_ON_A_COL); 
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for k=1:limit_11 
    control_E=ENERGY_SH_ON_A_COL(k); 
    control_T=T_SH_ON_A_COL(k); 
    control_CI_up=y_CI_up_on(k); 
    control_CI_down=y_CI_down_on(k); 
    if control_E>=control_CI_down && control_E<=control_CI_up 
        ENERGY_OK_VALUES(i)=control_E; 
        TEMPERATURE_OK_VALUES(i)=control_T; 
        i=i+1; 
    end 
end 

  
figure (41) 
subplot(3,3,1) 
plot(T_SH_ON_A_COL,ENERGY_SH_ON_A_COL,'.b') 
hold on 
plot(TEMPERATURE_OK_VALUES,ENERGY_OK_VALUES,'.g') 
plot(T_SH_ON_A_COL,y_CI_up_on,'g') 
plot(T_SH_ON_A_COL,y_CI_down_on,'g') 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('Energy', 'FontSize', fontSize); 
title('CI on ENERGY', 'FontSize', fontSize); 
legend('experimental points','values inside CI','UPPER 95% CI','LOWER 95% CI'); 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%% ESC reconstruction 
%consider last values, find a mean values between them and interpolate. it 
%is necessary the vector that contains temperature of Verona in the whole 
%year. we reconstruct the summer demand with constant values.  

  
%create vector with Tout from the complete year 

  
%for choosing CPT build frequence distribution of T out and cancel tails of 
%the distribution (in particular higher tail). Use typical 95% of 
%tolerance 

  
LUNG_T_ON_CI=length(TEMPERATURE_OK_VALUES); 
LUNG_T_OFF_CI=length(T_SH_OFF_A_COL); 

  
[DIST_T_SH_ON_ASS_CI,X_T_SH_ON_CI]=hist(TEMPERATURE_OK_VALUES,24); 
[DIST_T_SH_OFF_ASS,X_T_SH_OFF]=hist(T_SH_OFF_A_COL,24); 
DIST_T_SH_ON_CI=DIST_T_SH_ON_ASS_CI/LUNG_T_ON_CI; 
DIST_T_SH_OFF=DIST_T_SH_OFF_ASS/LUNG_T_OFF_CI; 

  
%norm pdf mean and std from T dataset 
MEAN_T_SH_ON_CI=mean(TEMPERATURE_OK_VALUES); 
STD_T_SH_ON_CI=std(TEMPERATURE_OK_VALUES); 
MIN_T_SH_ON_CI=min(TEMPERATURE_OK_VALUES); 
MAX_T_SH_ON_CI=max(TEMPERATURE_OK_VALUES); 
vector_norm_CI=MIN_T_SH_ON_CI:0.1:MAX_T_SH_ON_CI; 
NORM_T_SH_ON_CI=normpdf(vector_norm_CI,MEAN_T_SH_ON_CI,STD_T_SH_ON_CI); 
NORM_CDF_T_SH_ON_CI=normcdf(vector_norm_CI,MEAN_T_SH_ON_CI,STD_T_SH_ON_CI); 

  

%build vector of CDF for DIST_T_SH_ON 

  
figure(41) 
subplot(3,3,2) 
plot(vector_norm_CI,NORM_T_SH_ON_CI,'b') 
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grid on 
hold on 
% plot(X_T_SH_ON,DIST_T_SH_ON,'g') 
bar(X_T_SH_ON_CI,DIST_T_SH_ON_CI,'g') 
hold off 
xlabel('T out', 'FontSize', fontSize); 
ylabel('probability', 'FontSize', fontSize); 
title('PDF T OUT (CI on)', 'FontSize', fontSize); 
legend('normal PDF','T PDF'); 

  
figure(41) 
subplot(3,3,3) 
plot(vector_norm_CI,NORM_CDF_T_SH_ON_CI) 
hold on 
%cdfplot(T_SH_ON_A_COL) 
ecdf(TEMPERATURE_OK_VALUES,'Bounds','on') 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('probability', 'FontSize', fontSize); 
title('CDF T OUT (CI on)', 'FontSize', fontSize); 
legend('normal CDF','T data CDF','Location','southeast'); 

  
figure(41) 
subplot(3,3,4) 
normplot(TEMPERATURE_OK_VALUES) 

  
%3 different ways to prove that T out distribution follows normal 
%distribution (with PDF; CDF and with normplot test (iof data are normal, 
%plot is linear, as it happens here) 

  
%find T where CDF=0.95 
[CDF_DATA_SH_ON_CI,T_CDF_DATA_SH_ON_CI]=ecdf(TEMPERATURE_OK_VALUES);  %find CDF 

value of empirical T profile 

  
limit=length(CDF_DATA_SH_ON_CI); 
j=limit; 
save_T_CI=[]; 
i=1; 
for k=limit:(-1):1 
    control_P=CDF_DATA_SH_ON_CI(j); 
    control_T=T_CDF_DATA_SH_ON_CI(j); 
    if control_P>=0.95 
        save_T_CI(i)=control_T; 
        i=i+1; 
        j=j-1; 
    else 
        j=j-1; 
    end 
end 

  
limit_2=length(save_T_CI); 
CPT_CI=save_T_CI(1,limit_2); 

  
%insert CPT into plot of Demand vs Tout 
vector_Y_CPT_CI=[0,max(ENERGY_OK_VALUES)]; 
vector_X_CPT_CI=[CPT_CI,CPT_CI]; 

  
figure(41) 
subplot(3,3,1) 
plot(vector_X_CPT_CI,vector_Y_CPT_CI,'r') 
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hold off 
legend('Demand SH on','Demand SH off','fitting SH on','fitting SH off','CPT'); 

  
%find new fitting coefficient 
fit_SH_on_CI=polyfit(TEMPERATURE_OK_VALUES,ENERGY_OK_VALUES,1); 

  
%find interception between CPT and fitting of SH on 
CPD_CI=polyval(fit_SH_on_CI,CPT_CI); %change point demand 

  
%find the maximum temperature of the year: 
%(considered year 2020) 

  
TEMPERATURE_2020=xlsread('weather data verona 2020.xlsx','B3:B8763'); 
MAX_T=max(TEMPERATURE_2020); 
SUMMER_Y=[CPD_CI,CPD_CI]; 
SUMMER_X=[CPT_CI, MAX_T]; 

  
%interpolation line from Tmin to CPT 
T_min=min(T_SH_ON_A_COL); 
T_SH_ON_vector_X=[T_min, CPT_CI]; 
T_SH_ON_vector_Y=[polyval(fit_SH_on_CI,T_min), CPD_CI]; 

  

  
%PLOT complete demand, only SH on 
figure(41) 
subplot(3,3,5) 
plot(TEMPERATURE_OK_VALUES,ENERGY_OK_VALUES,'g.') 
hold on 
plot(T_SH_ON_vector_X,T_SH_ON_vector_Y,'b') 
plot(vector_X_CPT_CI,vector_Y_CPT_CI,'r') 
plot(SUMMER_X,SUMMER_Y,'b') 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('Complete rebuilt consumption profile (CI on)', 'FontSize', fontSize); 
legend('Data with CI processing','interpolation','CPT','rebuilt summer 

profile'); 

  
%% Calcolo SH e DHW 
%T dependent part of the ESC is increased by a costant coefficient. The 
%goal is to calculate it in order to move down the ESC to the x axis. 

  
%Build T vector for summer period (T_SHW_year) 
%from 11 march to 26 november 2020 (dates depend on dataset in analysis) 

  
T_DHW_year_CI=xlsread('weather data verona 2020.xlsx','B1682:B7945'); %but for 

DHW we need only summer part (higher than CPT) 
limit_5=length(T_DHW_year_CI); 
i=1; 
T_DHW_year_summer_CI=[]; 
for k=1:limit_5 
    control_T=T_DHW_year_CI(k); 
    if control_T>=CPT_CI 
        T_DHW_year_summer_CI(i)=control_T; 
        i=i+1; 
    end 
end 

  
T_DHW_year_CI=T_DHW_year_summer_CI';  %correction on the vector "T_DHW_year": 

insert only values >= CPT 
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T_SH_year_CI=TEMPERATURE_OK_VALUES; %but we need value up to CPT, no higher   
limit_6=length(T_SH_year_CI); 
i=1; 
T_SH_year_winter_CI=[]; 
ENERGY_SH_ON_winter_CI=[]; %even for experimental points it is necessary a 

vector with no points higher than CPT (sam elength as T vector) 
for k=1:limit_6 
    control_T=T_SH_year_CI(k); 
    control_E=ENERGY_OK_VALUES(k); 
    if control_T<=CPT_CI 
        T_SH_year_winter_CI(i)=control_T; 
        ENERGY_SH_ON_winter_CI(i)=control_E; 
        i=i+1; 
    end 
end 
T_SH_year_CI=T_SH_year_winter_CI; 

  
lung=length(T_DHW_year_CI); 
Demand_NOR_SH_year_CI=polyval(fit_SH_on_CI,T_SH_year_CI); %values obtained from 

model for SH 
Demand_NOR_DHW_year_CI=ones(1,lung); 
Demand_NOR_DHW_year_CI(:,:)=CPD_CI;                    %values from model for 

DHW 

  
T_year_CI=[T_SH_year_CI';T_DHW_year_CI]; %complete vector with T data 

  

%% 
figure(42) 
subplot(3,3,1) 
plot(T_SH_year_CI,Demand_NOR_SH_year_CI) 
hold on 
plot(T_DHW_year_CI,Demand_NOR_DHW_year_CI) 
grid on 
xlabel('T out', 'FontSize', fontSize); 
ylabel('ENERGY', 'FontSize', fontSize); 
title('ENERGY vs T out (CI on)', 'FontSize', fontSize); 

  
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
%vector with energy consumption for the year:  
%winter: ENERGY_SH_ON_winter (real data from meter but with T<= CPT) 
%summer: Demand_NOR_DHW_year (simulated data for the rest of the year) 

  
ENERGY_year_CI=[ENERGY_SH_ON_winter_CI,Demand_NOR_DHW_year_CI];  %complete 

vector with E data (experimental) 

  
figure(42) 
subplot(3,3,1) 
plot(T_year_CI,ENERGY_year_CI,'.b') 
hold on 

  
%% 
% Demand_shifted_SH_CI=Demand_NOR_SH_year_CI-min(Demand_NOR_DHW_year_CI);  

%shifting demand down 
% Demand_shifted_DHW_CI=Demand_NOR_DHW_year_CI-min(Demand_NOR_DHW_year_CI); 

  
Demand_shifted_SH_CI=Demand_NOR_SH_year_CI;  %no shifting down 
Demand_shifted_DHW_CI=Demand_NOR_DHW_year_CI; 
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figure (42) 
subplot(3,3,1) 
plot(T_SH_year_CI,Demand_shifted_SH_CI) 
plot(T_DHW_year_CI,Demand_shifted_DHW_CI) 
hold off 
legend('Demand winter','Demand summer','experimental points','Demand winter 

down','Demand summer down'); 

  
ESC1_year_CI=polyfit(T_SH_year_CI,Demand_shifted_SH_CI,1); 
ESC2_year_CI=polyfit(T_DHW_year_CI,Demand_shifted_DHW_CI,1); 

  
val_1_year_CI=polyval(ESC1_year_CI,T_SH_year_CI); 
val_2_year_CI=polyval(ESC2_year_CI,T_DHW_year_CI); 

  
%% 
%Put values in chronological order with cicle for 
%in this construction they are in chronological order. from 
%november-november 
limit_8=length(ENERGY_year_CI); 
time_vector=1:limit_8; 

  
%to have a more clear plot and analysis it is possibile to remove some 
%points from summer consumption (itis constant, so no problem) 
%I choose 900 values to consider 
ENERGY_year_lim_CI=ENERGY_year_CI(1:900); 
limit_9=length(ENERGY_year_lim_CI); 
time_vector_lim_CI=1:limit_9; 

  
figure(42) 
subplot(3,3,2) 
plot(time_vector_lim_CI,ENERGY_year_lim_CI,'b') 
grid on 
xlabel('Time', 'FontSize', fontSize); 
ylabel('ENERGY', 'FontSize', fontSize); 
title('ENERGY Demand (CI on)', 'FontSize', fontSize); 
legend('energy demand for 900 hours') 

  
%% Losses DHW evaluation 
%Losses in the DHW circuit: not possible to apply method used for Tartu 
%(summer consumption during night is unknown) but it is possible to 
%estimate losses using moment when SH is off during winter. Consider night 
%time: between 0.00 am and 4.00 am  

  
%create vector with demand values from 0.00 am to 4.00 am 
ENERGY_night=[ENERGY_0AM;ENERGY_1AM;ENERGY_2AM;ENERGY_3AM]; 
TEMPERATURE_night=[T_0AM;T_1AM;T_2AM;T_3AM]; 

  
%Removal of 5% tail of lowest temperature, then for losses considered mean 
%values of night time when SH is off (only for points considered, after 
%remotion) 

  
[CDF_E_SH_OFF,VALUES_CDF_E_SH_OFF]=ecdf(TEMPERATURE_night);  %find CDF value of 

empirical Demand night profile 

  
limit=length(CDF_E_SH_OFF); 
j=limit; 
save_T_night=[]; 
i=1; 
for k=limit:(-1):1 
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    control_P=CDF_E_SH_OFF(j); 
    control_T=VALUES_CDF_E_SH_OFF(j); 
    if control_P>=0.90 
        save_T_night(i)=control_T; 
        i=i+1; 
        j=j-1; 
    else 
        j=j-1; 
    end 
end 

  
limit_2=length(save_T_night); 
T_DHW_losses_limit=save_T_night(1,limit_2); %T out limit for considering losses 

(demand higher than that is ok to consider) 

  
%fitting of night data 
fit_SH_OFF_night=polyfit(TEMPERATURE_night,ENERGY_night,1); 
values_SH_OFF_night=polyval(fit_SH_OFF_night,TEMPERATURE_night); 

  
%vector for plotting values of T_DHW_losses_limit 
vector_T_DHW_losses_limit_x=[T_DHW_losses_limit,T_DHW_losses_limit]; 
vector_T_DHW_losses_limit_y=[0,max(ENERGY_night)]; 

  
%DHW circuit losses during summer estimation (mean value in the hottest 
%part of the SH off period at night) 
DHW_ENERGY_for_losses=[]; 
limit=length(TEMPERATURE_night); 
k=limit; 
i=1; 
for j=limit:(-1):1 
    control_E=ENERGY_night(j); 
    control_T=TEMPERATURE_night(j); 
    if control_T>=T_DHW_losses_limit 
        DHW_ENERGY_for_losses(i)=control_E; 
        i=i+1; 
    else 
    end 
end 

  
DHW_losses=mean(DHW_ENERGY_for_losses); %losses as mean value of highest demand 

point during winter night time 
DHW_losses_x=[T_DHW_losses_limit, max(TEMPERATURE_night)]; %vector for plotting 

lines 
DHW_losses_y=[DHW_losses, DHW_losses]; 

  
%norm pdf mean and std from T out at night dataset 
MEAN_T_SH_OFF=mean(TEMPERATURE_night); 
STD_T_SH_OFF=std(TEMPERATURE_night); 
MIN_T_SH_OFF=min(TEMPERATURE_night); 
MAX_T_SH_OFF=max(TEMPERATURE_night); 
vector_norm_night=MIN_T_SH_OFF:0.1:MAX_T_SH_OFF; 
NORM_CDF_T_SH_OFF=normcdf(vector_norm_night,MEAN_T_SH_OFF,STD_T_SH_OFF); 

  
axis_limit=[-6 13 0 65];  %set axes limit to have same dimensions as plot before 

  

figure (42) 
subplot(3,3,5) 
plot(TEMPERATURE_night,ENERGY_night,'.k') 
hold on 
plot(TEMPERATURE_night,values_SH_OFF_night,'b') 
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plot(vector_T_DHW_losses_limit_x,vector_T_DHW_losses_limit_y,'r') 
plot(DHW_losses_x,DHW_losses_y,'g') 
grid on 
hold off 
axis(axis_limit_1); 
xlabel('T out', 'FontSize', fontSize); 
ylabel('ENERGY AT NIGHT', 'FontSize', fontSize); 
title('ENERGY AT NIGHT vs T out (CI on)', 'FontSize', fontSize); 
legend('Demand between 0.00 am - 4.00 am','fitting','T limit for DHW losses 

estimation','DHW losses'); 

  
%% 
figure (42) 
subplot(3,3,3) 
plot(VALUES_CDF_E_SH_OFF,CDF_E_SH_OFF) 
hold on 
plot(vector_norm_night,NORM_CDF_T_SH_OFF) 
grid on 
xlabel('T out at night', 'FontSize', fontSize); 
ylabel('Probability', 'FontSize', fontSize); 
title('T out AT NIGHT (CI on)', 'FontSize', fontSize); 
legend('T out night','Normal distribution'); 

  
figure(42) 
subplot(3,3,4) 
normplot(TEMPERATURE_night) 

  
%% 
E_loss_year=DHW_losses; 

  
%put in chronological order points obtained from ESC model 
i=1; 
value_ESC_year_CI=[]; 
limit_10=length(T_year_CI); 

  
for k=1:limit_10 
    if T_year_CI(k)<=CPT_CI 
        value_ESC_year_CI(i)=polyval(ESC1_year_CI,T_year_CI(k)); 
        i=i+1; 
    else 
        value_ESC_year_CI(i)=polyval(ESC2_year_CI,T_year_CI(k)); 
        i=i+1; 
    end 
end 

  
%calcolo di E SH 
% E_SH_year_CI=value_ESC_year_CI-min(value_ESC_year_CI); 
E_SH_year_CI=value_ESC_year_CI; %without subtraction in school 

  
%calcolo di E DHW 
E_DHW_year_CI=[]; 
i=1; 
limit_3=length(ENERGY_year_CI); 
for k=1:limit_3 
    if ENERGY_year_CI(k)>E_SH_year_CI(k) 
        E_DHW_year_CI(i)=ENERGY_year_CI(k)-E_SH_year_CI(k)+E_loss_year; 
        i=i+1; 
    else 
        E_DHW_year_CI(i)=E_loss_year; 
        i=i+1; 
    end 
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end 

  
%% 
%Balnacing E_SH and E_SHW 
E_SH_balanced_year_CI=ENERGY_year_CI-E_DHW_year_CI; 

  
%Correction process for values <0 
%"corr" vector are balanced + all positive vectors 
E_SH_year_corr_CI=E_SH_year_CI; 
E_SH_balanced_year_corr_CI=E_SH_balanced_year_CI; 
E_DHW_year_corr_CI=E_DHW_year_CI; 

  
limit_4=length(E_SH_balanced_year_CI); 

  
for k=1:limit_4 
    if E_SH_balanced_year_CI(k)<0 
       E_DHW_year_corr_CI(k)=E_DHW_year_corr_CI(k)+E_SH_balanced_year_CI(k); 
       E_SH_balanced_year_corr_CI(k)=0; 
    end 
    if E_DHW_year_CI(k)<0 
        

E_SH_balanced_year_corr_CI(k)=E_SH_balanced_year_corr_CI(k)+E_DHW_year_CI(k); 
        E_DHW_year_corr_CI(k)=0; 
    end 
end 

  
%% 
fontSize=18; 

  
figure(42) 
subplot(3,3,6) 
plot(T_SH_year_CI,val_1_year_CI,'g') 
hold on 
grid on 
plot(T_year_CI,ENERGY_year_CI,'.b') 
plot(T_SH_year_CI,Demand_NOR_SH_year_CI,'r') 
plot(T_DHW_year_CI,val_2_year_CI,'g') 
plot(T_DHW_year_CI,Demand_NOR_DHW_year_CI,'r') 
hold off 
xlabel('DMT', 'FontSize', fontSize); 
ylabel('Demand', 'FontSize', fontSize); 
title('ESC complete (CI on)', 'FontSize', fontSize); 
legend('ESC shifted','Measured heat use 0AM','ESC of total heat use') 
% METTERE A SCHERMO INTERO 
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 1, 0.96]); 

  
guida_CI=1:limit_3; 
E_loss_year_plot_CI(1:limit_3)=E_loss_year; 
subplot(3,3,7) 
plot(guida_CI,ENERGY_year_CI,'b') 
hold on 
grid on 
plot(guida_CI,E_loss_year_plot_CI,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand 0AM', 'FontSize', fontSize); 
title('minimum value of demand at 0AM (CI on)', 'FontSize', fontSize); 
legend('Demand at 0AM','value for DHW losses') 
hold off 
%creation of smaller values for more clear plot (900 values) 
guida_lim=1:900; 
E_SH_balanced_year_corr_lim_CI=E_SH_balanced_year_corr_CI(1:900); 
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E_DHW_year_corr_lim_CI=E_DHW_year_corr_CI(1:900); 

  
subplot(3,3,8) 
plot(guida_lim,ENERGY_year_lim_CI,'b') 
hold on 
grid on 
plot(guida_lim,E_SH_balanced_year_corr_lim_CI,'g') 
plot(guida_lim,E_DHW_year_corr_lim_CI,'r') 
xlabel('time (day)', 'FontSize', fontSize); 
ylabel('Demand 0AM', 'FontSize', fontSize); 
title('cronological Demand balanced and correct (CI on)', 'FontSize', fontSize); 
legend('Measured Demand','SH demand balanced >0','DHW demand >0') 
hold off 

  
subplot(3,3,9) 
plot(T_year_CI,ENERGY_year_CI,'.b') 
hold on 
grid on 
plot(T_year_CI,E_SH_balanced_year_corr_CI,'.g') 
plot(T_year_CI,E_DHW_year_corr_CI,'.r') 
xlabel('DMT (°C)', 'FontSize', fontSize); 
ylabel('Demand 0AM', 'FontSize', fontSize); 
title('Demand splitted (CI on)', 'FontSize', fontSize); 
legend('Measured Demand','SH demand','DHW demand') 
hold off 

  
%model is ok, but DHW consumption is higher than SH. this is ok because it 
%is evident that slope of SH model is low and by not knowing data i estimate 
%DHW consumption in summer but when heating season was not finished 

  
%maybe it is possibile to estimate DHW consumption during summer from 
%points with SH off. Try to use these values to built a new ESC with 
%significantly lower DHW consumption in summer 

 

“NaN_removal_v2.m” 

%function for NaN cleaning from the original dataset 
%2 different outputs: 
%ENERGY_N_NaN: vector with energy consumption without empty data 
%ENERGY_D_NaN: vector with energyu consumption without days that contains 
%at least one empty box in the original dataset 

  
%delete every NaN element from the ENERGY vestor. in the original dataset 
%there are some empty raws: probabily meter was off or there were some 
%errors in the data reading. 

  
%do the same operation in the vector HOURS to be suyre that the Tout 
%corresponds to the value of demand in the considered hour. 

  
function 

[ENERGY_N_NaN,HOURS_N_NaN,ENERGY_D_NaN,HOURS_D_NaN,NUMBER_DAY,ENERGY_D_NaN_ORDER

,WEEKEND_N_NaN_E_COL,WEEKDAYS_N_NaN_E_COL,WEEKEND_N_NaN_T_COL,WEEKDAYS_N_NaN_T_C

OL]=NaN_removal_v2(ENERGY,HOURS,CONTROL_POWER,starting) 

  
limit=length(ENERGY); 
ENERGY_N_NaN=[]; 
f=0; 
i=1; 
HOURS_N_NaN=[]; 
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for j=1:limit 
    controlP=CONTROL_POWER(j); 
    controlE=ENERGY(j); 
    controlH=HOURS(j); 
    if isnan(controlP) 
        f=f+1; 
    else 
        ENERGY_N_NaN(i,1)=controlE; 
        HOURS_N_NaN(i,1)=controlH; 
        i=i+1; 
    end 
end 

  
%% processing dataset: delete days with at least one NaN values 

  
ENERGY_D_NaN=[]; 
HOURS_D_NaN=[]; 

  
%monday=1,%tuesday=2,%wednesday=3...Sunday=7 
%insert here from which day the database start 

  
NUMBER_DAY=[]; 
vector_number=starting-1; 

  
day=1; 

  
for a=1:limit  
    day_end=day+23; 

  
    if day_end<=limit 
       f=1; 
       vector_day=[]; 
       vector_hours=[]; 
       vector_control=[]; 
       vector_number=vector_number+1; 
       if vector_number>7 
           vector_number=vector_number-7; 
       end 
       for i=day:day_end 
           vector_day(f)=ENERGY(i); 
           vector_hours(f)=HOURS(i); 
           vector_control(f)=CONTROL_POWER(i); 
           f=f+1; 
       end 
   s=0; 
   g=0; 
   for k=1:24 
       variable=vector_control(k); 
       if isnan(variable) 
        s=s+1; 
       else 
        g=g+1; 
       end 
   end 

  
   if g==24 
       ENERGY_D_NaN=[ENERGY_D_NaN,vector_day]; 
       HOURS_D_NaN=[HOURS_D_NaN,vector_hours]; 
       NUMBER_DAY=[NUMBER_DAY,vector_number]; 
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   end 

  
   day=day+24; 
   end 
end 

  
ENERGY_D_NaN=ENERGY_D_NaN'; 
HOURS_D_NaN=HOURS_D_NaN'; 
NUMBER_DAY=NUMBER_DAY'; 

  
%ok vector with number of days is good. Now split in colomn of 24 values 
%ENERGY_D_NaN  
start=1; 
finish=24; 
limit_2=length(ENERGY_D_NaN); 
limit_3=(limit_2/24)+1; 
ENERGY_D_NaN_ORDER=[]; 
HOURS_D_NaN_ORDER=[]; 

  
for k=1:limit_3 
if finish<=limit_2 
    vector_E=ENERGY_D_NaN(start:finish); 
    vector_T=HOURS_D_NaN(start:finish); 
    ENERGY_D_NaN_ORDER=[ENERGY_D_NaN_ORDER,vector_E]; 
    HOURS_D_NaN_ORDER=[HOURS_D_NaN_ORDER,vector_T]; 
    start=start+24; 
    finish=finish+24; 
end 
end 

  
%split days of weekend (saturday+sunday) and of rest of the week 
limit_4=length(NUMBER_DAY); 
i=1; 
WEEKEND_N_NaN_E=[]; 
WEEKDAYS_N_NaN_E=[]; 
WEEKEND_N_NaN_T=[]; 
WEEKDAYS_N_NaN_T=[]; 

  
for k=1:limit_4 
    control_day=NUMBER_DAY(i); 
    control_vector_E=ENERGY_D_NaN_ORDER(:,i); 
    control_vector_T=HOURS_D_NaN_ORDER(:,i); 

     
    if control_day==6 || control_day==7 
        WEEKEND_N_NaN_E=[WEEKEND_N_NaN_E,control_vector_E]; 
        WEEKEND_N_NaN_T=[WEEKEND_N_NaN_T,control_vector_T]; 
    else 
        WEEKDAYS_N_NaN_E=[WEEKDAYS_N_NaN_E,control_vector_E]; 
        WEEKDAYS_N_NaN_T=[WEEKDAYS_N_NaN_T,control_vector_T]; 
    end 
    i=i+1; 

     
end 

  
WEEKEND_N_NaN_E_COL=WEEKEND_N_NaN_E(:); 
WEEKDAYS_N_NaN_E_COL=WEEKDAYS_N_NaN_E(:); 

  
WEEKEND_N_NaN_T_COL=WEEKEND_N_NaN_T(:); 
WEEKDAYS_N_NaN_T_COL=WEEKDAYS_N_NaN_T(:); 
end 
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“SH_ONOFF.m” 

%function for splitting complete demand profile into SH on and SH off hours 

  
function[ENERGY_SH_ON_A,ENERGY_SH_OFF_A,T_SH_ON_A,T_SH_OFF_A]=SH_ONOFF(COMPLETE_

ENERGY,COMPLETE_T,percentage,fit) 

     
ENERGY_SH_ON_A=[]; 
ENERGY_SH_OFF_A=[]; 
T_SH_ON_A=[]; 
T_SH_OFF_A=[]; 
sizee=size(COMPLETE_ENERGY); 
limit=sizee(1,1); 

  
for k=1:24 
    up=0; 
    low=0; 
    T_vector=COMPLETE_T(:,k); 
    E_vector=COMPLETE_ENERGY(:,k); 

     
    for j=1:limit 
        T=T_vector(j); 
        E=E_vector(j); 
        compare=polyval(fit,T); 

         
        if E>=compare 
            up=up+1; 
        else 
            low=low+1; 
        end 
    end 

     
    if up>=(percentage*limit) 
            ENERGY_SH_ON_A=[ENERGY_SH_ON_A,E_vector]; 
            T_SH_ON_A=[T_SH_ON_A,T_vector]; 
    else 
            ENERGY_SH_OFF_A=[ENERGY_SH_OFF_A,E_vector]; 
            T_SH_OFF_A=[T_SH_OFF_A,T_vector]; 
    end 

     
end 

  
end 
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