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Abstract

The development of an unsteady boundary-layer method by using a �nite di�erence

scheme is presented. The Falkner-Skan transformation is adopted to simplify the com-

putational process and the Cebeci-Smith zero equations model is implemented for turbu-

lent regime. The Keller box scheme has been used and the Flügge-Lotz approximation

is adopted for the steady �ow. Steady code results are used as starting conditions for

the unsteady simulations and a quasi-steady approach is applied for the starting condi-

tions near the leading edge stagnation point. A low-pass �ltering function is applied to

eliminate numerical instability near the wall. Boundary-layer thickness, displacement

thickness, velocity pro�les through the boundary-layer and drag coe�cient at no angle

of attack are calculated. Comparisons between this method, reliable analytical models

for �at plates, CFD simulations and experimental results for steady and unsteady �ow

along aerodynamic pro�les show quite good agreement.
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Introduction

Capability to predict boundary-layer behavior and, eventually, boundary-layer sepa-

ration is of fundamental importance when talking about aerodynamical design and

performance prediction of helicopters rotor blades, aircraft wings and every other kind

of airfoil. Boundary-layer thickness a�ects viscous drag and, consequently, fuel con-

sumption, while its separation triggers the pro�le aerodynamic stall.

Nowadays the only way to obtain good results in this �eld is to perform sophisticated

CFD simulations. Unfortunately they need big computational powers and they are very

time consuming. If these issues are not a big deal for research purposes, they become

a real problem when talking about industrial needings, such as preliminary design

analysis. In this context, in fact, it's necessary to have a quick and reliable instrument

in order to know as soon as possible which is the best among di�erent choices.

In order to realize a computational tool having the characteristics previously high-

lightened, viscous/inviscid interaction methods developed during the '70s and '80s[5, 6]

seem to be a good starting point. In this kind of methods an �external� inviscid solution

(computed by, for example, a panel code) provides the pressure distribution over the

airfoil, which is used to calculate the boundary-layer. Once the boundary-layer and its

thickness have been calculated the displacement e�ect of viscous layers is taken into

account for a new, improved inviscid calculation. This cycle is repeated until conver-

gence is reached. The computational advantages of this approach are that, on one hand,

inviscid solution is carried out with very quick and practical methods. On the other

hand, for what concerns the viscous part only the boundary-layer equations have to be

solved, which are a reduced Navier-Stokes equations, resulting in considerable savings

of computing time.

The following work will outline a numerical unsteady, laminar and turbulent boundary-

layer method that, in future developments, will be coupled with an inviscid �ow solver.

This represent the �rst attempt to make a numerical instrument to predict viscous

behaviors suitable for preliminary design analysis.

At �rst a theoretical introduction to boundary-layer is provided in Chapter 1. Here
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all its characteristics (such as its di�erent thicknesses) are de�ned, boundary-layer equa-

tions are derived and some basic concepts of �uid dynamics, such as di�erence between

laminar ant turbulent �ow, are recalled. There's also the numerical explanation of how

to implement some basic but reliable boundary-layer analytical models, such as the one

provided by Pohlhausen for the laminar �ow over a �at plate[1]. In the �rst chapter

some numerical issues are described too, like the turbulence model and the variables

transformation adopted for the boundary-layer method discussed here.

In Chapter 2 we have the actual numerical formulation of the present method: how

the computational grid is de�ned and how the boundary-layer equations are discretized

and solved, at �rst for steady and then for unsteady �ows.

In the end results obtained by the boundary-layer method discussed in this work

are compared with those calculated by reliable analytical models, CFD simulations and

some experimental data in Chapter 3. The �rst simulations are carried out for �ow over

a �at plate, for both completely laminar and turbulent �ow, and are compared with

the two di�erent analytical models explained in Chaper 1. Then a steady simulation

of a NLF-0416 pro�le has been runned, values of velocity external to the boundary-

layer are used as input for the present method, and the results compared. Then the

same procedure has been applied to the unsteady simulation of a NACA-0012 pro�le

performing a pitching motion. Experimental data are used to validate drag prediction

capability of the present method and understand if its results are better or worse than

those obtained by CFD simulations.
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Chapter 1

Boundary-Layer Methods

The �rst theoretical investigations about �uid dynamics were based on the assumption

of perfect �uids. Perfect �uids are considered to be incompressible and frictionless, so

that two contacting layers experience no tangential forces (shear stresses) but act on

each other with normal forces (pressures) only. Perfect �uids theory is mathematically

very far developed and it brought to very good results in the study of important phe-

nomena such as the motion of surface waves or the formation of liquid jets in air. On

the other hand, this theoretical assumption brings to some paradoxes when we want to

take into account the drag of a body. In this connexion it leads to the statement that

a body which moves uniformly through a �uid which extends to in�nity experiences no

drag (d'Alembert's paradox).

The origin of these problems is the assumption of no shearing stress transmission

through contacting layers, which in real �uid actually happens and is connected with a

property called viscosity of the �uid.

Because of the absence of tangential forces, on the boundary between a perfect �uid

and a solid wall there exists a di�erence in relative tangential velocities, i.e., there is

slip. In real �uids, on the contrary, the existence of intermolecular attractions causes

the �uid to adhere to a solid wall and this gives rise to shear stresses.

1.1 Boundary-Layer Theory Outline

A good way to understand the nature of viscosity is to consider the following experiment.[1]

We have a �uid between two very long parallel plates, one of which is at rest, the other

moving with a constant velocity parallel to itself, as shown in Fig. 1.1.1.

It can be observed that the �uid adheres to both walls so that at y = 0 it's at

rest, while at y = h it has a velocity U equal to the velocity of the upper plate.
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Figure 1.1.1: Velocity distribution in a viscous �uid between two parallel �at walls
(Couette �ow)

Furthermore, the velocity distribution in the �uid between the plates is linear, so that

the �uid velocity is proportional to the distance y from the lower plate and we have:

u(y) =
y

h
U. (1.1.1)

In order to keep the plate moving a tangential force must be applied, which has to be

in equilibrium with the frictional forces of the �uid. The experiment teaches that this

force is proportional to the upper plate velocity U , and reversely proportional to the

distance h between the two walls. If we consider parallel force per unit area τ0 (shearing

stress due to friction) this will be proportional to U/h, for which in general we may also

substitute du/dy. The proportionality factor between τ0 and du/dy it is called viscosity

and it will be denoted with µ, viscosity is a property of the �uid and it depends on a

great extend on its temperature:

τ0 = µ
du

dy
. (1.1.2)

Dimensions of viscosity can be easily deduced if we consider that τ0 is a force per unit

area and µ = τ0 · dy/du, so:

[µ] =

[
N

m2

m · s
m

]
=

[
N

m2
s

]
= [Pa · s] .

Furthermore, when frictional and inertia forces interact it is important to consider

the ratio between viscosity, µ, and density, ρ, known as kinematic viscosity and denoted

by ν :

ν =
µ

ρ
. (1.1.3)

The presence of tangential (shearing) stresses and the condition of no slip at solid

walls are the main di�erences between a perfect and a real �uids. Since a lot of �uids
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of great practical importance (such as air or water) have small viscosity coe�cients,

in most cases shear stresses can be neglected and the perfect �uid theory brings to

satisfactory results.

Before going on it's better to de�ne a very important dimensionless number: the

Reynolds number. The Reynolds number is de�ned as the ratio between inertia and

friction forces of a �uid in motion[1]:

Re =
Inertia force

Friction force
=
ρu∂u/∂x

µ∂2u/∂y2
=
ρV 2/d

µV/d2
=
ρV d

µ
=
V d

ν
. (1.1.4)

This number is the main parameter to take into account when talking about incom-

pressible �uids motion. In particular if we have two geometrically similar situations, for

example motion around two geometrically similar objects, these situations are dynami-

cally similar or have similar �ows (geometrically similar streamlines, at all geometrically

similar points the force acting on a �uid particle must bear a �xed ratio at every instant

of time) only if their Reynolds numbers are identical.

As already said, the perfect �uid theory fails in evaluating the drag force experienced

by an object in a �uid �ow[1]. In Fig. 1.1.2 we can see a picture of the motion of water

along a thin �at plate in which the streamlines were made visible by the sprinkling of

particles on the surface of the water. The traces left by the particles are proportional

to the �ow velocity.

Figure 1.1.2: Motion along a thin �at plate

It can be seen that there is a thin layer, near the plate, where velocity is considerably

smaller than at a larger distance from it. On this experimental evidence Prandtl built

his boundary-layer theory, for this theory the thin layer near the wall can be considered

as the only part of the �ow �eld which experiences viscous e�ects (friction and shearing
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Figure 1.1.3: Sketch of boundary-layer on a �at plate in parallel �ow at zero incidence

stress transmission through contacting layers) while the external �ow can be studied

adopting the perfect �uid theory. The thickness (δ(x)) of this boundary-layer increases

in downstream direction. Fig. 1.1.3 represents schematically the velocity distributions

along a �at plate. Before the leading edge the velocity distribution is uniform, while

proceeding along the plate the portion of retarded �uid becomes larger. Fluids having

large viscosity will present also a greater boundary-layer thickness. On the contrary,

a small value of viscosity won't bring to small values of shearing stress near the wall

because of the presence of great velocity gradient (Eq. (1.1.2)). Since velocity in the

boundary-layer tends asymptotically to the external velocity value U it's impossible to

de�ne δ(x) in an unambiguous way, but in general it's considered to be the point where

the parallel component u of the velocity vector is u = 0.99U . It is also useful to de�ne

some other values which have a real physical meaning [1]. The displacement thickness

δ1(x) is that distance by which the external potential �eld of �ow is displaced outwards

as a consequence of the decrease in velocity in the boundary-layer and is de�ned as

δ1(x) =
1

U(x)

ˆ ∞
y=0

(U(x)− u(x)) dy. (1.1.5)

On the other hand the momentum thickness δ2(x) symbolizes the loss of momentum

due to the presence of boundary-layer, its de�nition is:

δ2(x) =
1

U2(x)

ˆ ∞
y=0

u(u) (U(x)− u(x)) dy. (1.1.6)

1.2 Derivation of Boundary-Layer Equations

The governing equations of �uid motion are the Navier-Stokes equations. These equa-

tions express the two principles of conservation of mass and momentum. For incom-
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pressible �ows they are:

∇ · v = 0, (1.2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f . (1.2.2)

Where Eq. (1.2.1) is the continuity equation while Eq. (1.2.2) is the momentum

equation. The left side of the momentum equation evaluates the inertia per volume

of the �uid, where ∂v
∂t

is the unsteady acceleration and v · ∇v is the convective one.

Convective acceleration is due to a change in velocity over position, think for example

to a steady �ow through a converging nozzle. On the right side we have all the amount

of stress and forces acting on our �uid: −∇p + µ∇2v is the divergence stress, where

−∇p is the pressure gradient and µ∇2v the stress induced by viscosity, and f are the

other body forces per volume (gravity for example). Considering v = 〈u, v〉 Eq. (1.2.1)
- (1.2.2), in a two dimensional �ow with no relevant body forces, which is the case of

an air �ow passing around a thin airfoil, become respectively:

∂u

∂x
+
∂v

∂y
= 0, (1.2.3)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.2.4a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (1.2.4b)

In general it is possible to state that the thickness of boundary-layer increases with

viscosity or, more generally, that it decreases as the Reynolds number increases.[1] In

particular it has been seen that the boundary-layer thickness is proportional to the

square root of kinematic viscosity:

δ =
√
ν.

We can also assume that this thickness is very small compared to a linear still unspeci�ed

dimension, L, of the body

δ � L.

This means that the solutions obtained from the boundary-layer equations will apply

to very large Reynolds numbers.

In order to simplify the Navier-Stokes equations we have to estimate the order of

magnitude of every term. If we consider the two dimensional problem shown in Fig.

1.2.1 we can assume the wall to be �at and coincident with the x-direction, the y-

direction being perpendicular to it. Lets now rewrite the Navier-Stokes equations by
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Figure 1.2.1: Boundary-layer �ow along a wall

referring all velocities to the free stream velocity, U∞, and all the linear dimensions

to a characteristic length of the body, L, which is so selected as to ensure that the

dimensionless derivative, ∂u/∂x, does not exceed unity in the region under consideration.

The pressure is made dimensionless by ρU2
∞, while time is divided by L/U∞. Under these

assumptions, and retaining the same symbols for dimensionless quantities as for their

dimensional counterparts, the Navier-Stokes equations become:

∂u

∂x
+
∂v

∂y
= 0, (1.2.5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.2.6a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
. (1.2.6b)

With boundary conditions which are the absence of slip between �uid and the wall, i.e.

u = v = 0 for y = 0, u = U for y =∞, and Re = U∞L
ν
.

With these assumptions the dimensionless boundary-layer, for which we will retain

the symbol δ, is very small compared to unity (δ � 1). We will now estimate the order

of magnitude of every term in order to be able to drop smaller terms and simplify the

equations. We can see that ∂u/∂x is of the order 1, like ∂2u/∂x2, further, since v at the wall

is 0, v in the boundary-layer is of the order of δ, thus ∂v/∂y is of the order of 1(= δ/δ).

Further, ∂v/∂x and ∂2v/∂x2 are also of the order of δ, while ∂2u/∂y2 is of the order of 1
δ2

and
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∂2v/∂y2 is of the order of 1
δ
. We shall also assume that the unsteady acceleration ∂u/∂t

is of the same order of magnitude of the convective term u∂u/∂x, this will exclude very

sudden accelerations, such as occur in very large pressure waves. Since we said that in

boundary-layer viscous forces are comparable to inertial ones, we will have at least one

viscous term of the same order of magnitude of the inertial terms and this can happen

only if:
1

Re
= δ2.

So, as it was already said before, we are talking about very large Reynolds numbers.

It's now possible to simplify the equations by neglecting elements which are of an

order of magnitude smaller than 1, so these three new equations are obtained:

∂u

∂x
+
∂v

∂y
= 0, (1.2.7)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

∂2u

∂y2
, (1.2.8a)

δ = −∂p
∂y
. (1.2.8b)

The pressure variation through the boundary-layer, obtained by integrating Eq. (1.2.8b),

results to be of the order δ2, which is very small. Thus, it is possible to state that the

pressure in a direction normal to the boundary-layer is practically constant. It can be

assumed to take the pressure value at the outer edge of boundary-layer, determined by

the frictionless �ow. The pressure is said to be "impressed" on the boundary-layer by

the outer �ow[1].

Going back to dimensional values, it is now possible to write down the simpli�ed

Navier-Stokes equations, also known as Prandtl's boundary-layer equations:

∂u

∂x
+
∂v

∂y
= 0, (1.2.9a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
. (1.2.9b)

With boundary conditions

y = 0 : u = v = 0; y =∞ : u = U (x, t) . (1.2.10)

At the outer edge of boundary-layer the parallel component of the �ow, u, is equal

to the outer velocity, U (x, t) . Since there is no large velocity gradient the viscous term
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in Eq. (1.2.9b) vanishes for big Reynolds numbers. Thus for the outer region we obtain:

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂p

∂x
. (1.2.11)

It's now possible to substitute the pressure term in Eq. (1.2.9b), obtaining the boundary-

layer equations that will be used from now on:

∂u

∂x
+
∂v

∂y
= 0, (1.2.12a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂U

∂x
+ ν

∂2u

∂y2
. (1.2.12b)

With the same boundary conditions of Eq. (1.2.10).

1.3 Boundary-Layer on a Plate

The analysis of a �uid �ow can be carried on considering a steady or unsteady approach.

Steady state occurs when values of all the �uid properties are unchanging in time, so

that, considering a property x of the system, its partial derivative with respect to time

is zero:
∂x

∂t
= 0.

Hence in a steady state analysis it is possible to not taking into account the time

variable, since the only variations of properties concern space derivatives.

On the other hand the unsteady state (or transient state) is the most general situa-

tion in which properties change in space and time, and it is necessary to deal also with

the time variable.

1.3.1 Laminar Flow

Laminar �ow generally occurs at lower velocities, which means that we have laminar

boundary-layer, for example, near the leading edge of a rotor blade. In laminar regime

the �uid �ows in parallel layers, with no disruption between them[2]. Adjacent layers

slide past one on the other without lateral mixing, just like playing cards.

Historically, the �rst example illustrating the application of Prandtl's boundary-

layer theory was the �ow along a �at plate at zero incidence.

Let the leading edge of the plate be at x = 0, the plate being parallel to the x-

axis and in�nitely long downstream (Fig. 1.3.1). Since there are no pressure gradients,
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Figure 1.3.1: The boundary-layer along a �at plate at zero incidence

which means also no external velocity variations, the boundary-layer equations become:

∂u

∂x
+
∂v

∂y
= 0, (1.3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(1.3.2)

with boundary conditions written in Eq. (1.2.10). Since there isn't a preferred length

it seems reasonable to suppose that the velocity pro�les at varying distances from the

leading edge are similar to each other, which means that the velocity curves u(y) at

di�erent distances from the leading edge can be made identical by selecting suitable scale

factors for u and y. The two selected scaling factors are U∞ for u and the boundary-

layer thickness δ(x) for y. Hence the principle of similarity of velocity pro�les through

the boundary-layer can be written as u/U∞ = f(η), where η = y/δ and the function f

must be the same at all distances x from the leading edge.

In order to solve this problem the momentum Eq. (1.3.2) is applied to the case of

a �at plate at zero incidence, considering the control surface shown in Fig. 1.3.2.

We can say that the �ux of momentum through the control surface, considered �xed

in space, is equal to the skin friction on the plate D(x) from the leading edge (x = 0)

to the current section at x. Hence, the drag of a plate wetted on one side is given by:

D(x) = bρ

ˆ ∞
y=0

u(U∞ − u)dy, (1.3.3)

where the integral has to be taken at the section x and b is the width of the �at plate.

On the other hand the drag can be expressed as an integral of the shearing stress τ0 at
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the wall, taken along the plate:

τ0(x) = ρ
d

dx

ˆ ∞
y=0

u(U∞ − u)dy. (1.3.4)

Comparing the last two equations we obtain:

D(x) = b

ˆ x

0

τ0(x)dx. (1.3.5)

If we now introduce momentum thickness δ2, de�ned by Eq. (1.1.6), we have:

U2
∞
dδ2
dx

=
τ0
ρ
. (1.3.6)

Considering Eq. (1.3.4) and (1.3.6) we can now obtain an approximate solution of

our problem. The essence of the approximate solution is to assume a suitable velocity

pro�le u(y) within the boundary-layer, which means a suitable function f(η) taking

care that it satis�es the boundary conditions. So the function must vanish at the wall

(η = 0 means y = 0) and tend to 1 for large values of η. It's useful to consider that the

transition between boundary-layer and external �ow occurs at a �nite distance from the

wall. In other words, we assume a �nite boundary-layer thickness, in spite of the fact

that exact solutions tend asymptotically to the potential �ow of the particular problem.

In this connexion the boundary-layer thickness has no physical signi�cance, being only

a useful quantity for computation.

Having assumed the function f(η) the momentum integral becomes:

ˆ ∞
y=0

u(U∞ − u)dy = U2
∞δ(x)

ˆ 1

η=0

f(1− f)dη, (1.3.7)

where the last integral can be evaluated provided that a speci�c assumption is made

Figure 1.3.2: Application of the momentum equation to the �ow past a �at plate at
zero incidence.
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for f(η). Putting

α1 =

ˆ 1

η=0

f(1− f)dη (1.3.8)

we have ˆ ∞
y=0

u(U∞ − u)dy = U2
∞δ2 = α1δU

2
∞ (1.3.9)

which means that

δ2 = α1δ (x) . (1.3.10)

While the displacement thickness δ1, de�ned by Eq. (1.1.5), becomes

δ1 = α2δ (x) (1.3.11)

by putting

α2 =

ˆ 1

η=0

(1− f)dη. (1.3.12)

While τ0 is given by

τ0
ρ

= ν

(
∂u

∂y

)
y=0

=
νU∞
δ

f ′(0) = β1
νU∞
δ

. (1.3.13)

So the momentum Eq. (1.3.6), introducing these values, becomes

δ
dδ

dx
=
β1
α1

ν

U∞
(1.3.14)

and integrating it from δ = 0 for x = 0 we obtain

δ(x) =

√
2β1
α1

νx

U∞
(1.3.15)

and

τ0 = µU∞

√
α1β1

2

U∞
νx

, (1.3.16)

while δ1 (x) and δ2 (x) are obtained by Eq. (1.3.11) and (1.3.10).

The function f which was chosen is the von Karman-Pohlhausen function for a �at

plate at zero incidence[1]:

u

U
= f(η) = 2η − 2η3 + η4. (1.3.17)
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Velocity distribution u/U = f(η) α1 α2 β1 δ1

√
U∞
νx

τ0
µU∞

√
νx
U∞

δ1
δ2

f(η) = 2η − 2η3 + η4 37
315

3
10

2 1.754 0.343 2.52
exact - - - 1.721 0.332 2.59

Table 1.3.1: Results of the calculation of the boundary-layer for a �at plate at zero
incidence based on approximate theory

Assuming this velocity distribution within the boundary-layer we have

α1 =
37

315
,

α2 =
3

10

and

β1 = 2.

Obtained results are reported in Table 1.3.1, compared with those of the exact solution.

In Fig. 1.3.3 boundary-layer thickness δ, displacement thickness δ1 and momentum

thickness δ2 along the �at plate are plotted. In Fig. 1.3.4 it's possible to see how the

main part of viscous shearing stress occurs at the beginning of the �at plate, where

the boundary-layer is thinner and this brings to a greater velocity gradient through it.

Finally Fig. 1.3.5 shows how two velocity pro�les taken at di�erent x coordinates are

similar, scaled with boundary-layer thickness δ (x). The good accordance with the exact

solution and the simple calculations involved in this method make it a valid solution.

The next step has been to apply the preceding method to the general case of a

two-dimensional laminar boundary-layer with pressure gradient. In this case x denotes

the arc on the wet surface and y the distance from it. With this new coordinate system

the momentum equation, obtained by integrating the equation of motion with respect

to y from the wall at y = 0 to a certain distance h(x), which is assumed to be outside

of the boundary-layer for all values of x, becomes

U2dδ2
dx

+ (2δ2 + δ1)U
dU

dx
=
τ0
ρ
. (1.3.18)

This gives us, as before, a di�erential equation to integrate once we have assumed a

suitable velocity function. The function we decided to assume is the von Karman-
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Figure 1.3.3: Boundary-layer thickness (blue), displacement thickness (red) and mo-
mentum thickness (green) along a �at plate with fully laminar �ow

Figure 1.3.4: Viscous shearing stress at the wall of a �at plate with fully laminar �ow
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a) b)

Figure 1.3.5: Velocity pro�les through the boundary-layer at x = 1 m a) and x = 3.5 m
b) on a �at plate of total length L = 5 m with fully laminar �ow

Pohlhausen function[3]:

u

U
= f(η) =

(
2 +

Λ

6

)
η − Λ

2
η2 +

(
−2 +

Λ

2

)
η3 +

(
1− Λ

6

)
η4 (1.3.19)

where Λ is a shape factor de�ned by

Λ =
δ2

ν

dU

dx
. (1.3.20)

In this case α1, α2 and β1 become respectively

37

315
− Λ

945
− Λ2

9072
,

3

10
− Λ

120
, 2 +

Λ

6
. (1.3.21)

Values of Λ go from −12 to 12[1]. At −12 we have be boundary-layer separation, we

can observe indeed a in�ection point in the velocity pro�le[3], while the value of Λ for

the stagnation point at the leading edge it's 7.052[1]. It can be useful to notice that, as

we already said, the �at plate at zero incidence is a particular case of this model which

has Λ = 0. In order to bring the momentum equation to a dimensionless form, it is

possible to multiply it by δ2/(νU) and we obtain

U

ν
δ2
dδ2
dx

+
δ22
ν

dU

dx

(
2 +

δ1
δ2

)
=
δ2
U

τ0
ρ
. (1.3.22)

Introducing the new shape factor

K(x) =
δ22
ν

dU

dx
=

(
37

315
− Λ

945
− Λ2

9072

)2

Λ (1.3.23)
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we obtain

U
d

dx

(
K

dU/dx

)
= 2

(
37

315
− Λ

945
− Λ2

9072

)(
2− 116

315
Λ +

79

7560
Λ2 +

1

4536
Λ3

)
.

(1.3.24)

It is now necessary to integrate Eq. (1.3.24) from the stagnation point at the leading

edge, where Λ = 7.052, until the current section x to evaluate Λ. Thus, from the

de�nition of the shape factor (Eq. (1.3.20)), evaluate the boundary-layer thickness, so

that it's possible to calculate also the displacement and momentum thickness and the

viscous shear stress at the wall.

1.3.2 Turbulent Flow

The turbulent �ow is a chaotic �ow where properties like velocity and pressure change

very quickly in space and time. Turbulent �ow occurs at higher velocities and Reynolds

numbers, it means that viscous forces are not strong enough to overwhelm inertial forces,

the resultant motion is ruled by the chaos theory laws. Hence, knowing the precise start-

ing condition of every particle we will be able to predict exactly the development of the

whole �ow �eld, but the minimum di�erence from the actual starting set up will lead us

to a completely di�erent �nal solution. For these reasons the turbulent �ow is normally

treated statistically rather than deterministically. From previous considerations it could

seem impossible to talk about steady state for a turbulent �ow, in fact experimental

investigations highlightened that a turbulent �ow can be considered steady when its

properties present a mean value (unchanging in time) with superimposed �uctuations.

This assumption leads to the Reynolds decomposition: a mathematical technique to

separate the average and �uctuating parts of a quantity, and which allows us to deal

with steady turbulent �ows. For example, for a quantity u the decomposition would be

u(x, y, z, t) = u(x, y, z) + u′(x, y, z, t)

and, averaging on time:

1

T

ˆ T

0

u(x, y, z, t)dt =
1

T

(ˆ T

0

u(x, y, z)dt+

ˆ T

0

u′(x, y, z, t)dt

)
= u(x, y, z).

On the other hand, if we multiply two di�erent quantities (i.e. u and v) the result will

be:

u · v = u · v + u′v′.

21



Figure 1.3.6: Transport of momentum due to turbulent velocity �uctuation

So the two-dimensional incompressible steady turbulent boundary-layer equations are[1]:

∂u

∂x
+
∂v

∂y
= 0, (1.3.25a)

u
∂u

∂x
+ v

∂u

∂y
= U

∂U

∂x
+

∂

∂y

(
ν
∂u

∂y
− u′v′

)
. (1.3.25b)

Hence, the main di�erence between the laminar and turbulent boundary-layer equations

is the presence of the term −∂u′v′

∂y
which is called apparent turbulent stress or Reynolds

shear stress[1]. It can be interpreted as the transport of momentum in the x direction

through a surface normal to the y-axis. Considering, for example, the mean �ow given

in Fig. 1.3.6 we can see that the mean product u′v′ is di�erent from zero: for example,

the particles which travel upwards in view of the turbulent �uctuation (v′ > 0) arrive

to a layer y where a greater mean velocity u prevails. Since they preserve their original

velocity, they give rise to a negative component u′. Conversely, a positive u′ will rise in

a lower y layer if we have a negative v′.

To show the development of a turbulent boundary-layer along a �at plate we'll refer

to the same situation considered for the laminar �ow and an approximate solution, true

for moderate Reynolds numbers, is adopted[1].

The skin-friction drag on a �at plate at zero incidence, as already seen in Eq. (1.3.3)
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and (1.3.5), satis�es this relation:

D (x) = bρ

ˆ ∞
y=0

u(U∞ − u)dy = D(x) = b

ˆ x

0

τ0(x)dx (1.3.26)

which, introducing the momentum thickness δ2 de�ned by Eq. (1.1.6), becomes

D (x) = bρU2
∞δ2 (x) (1.3.27)

and substituting the de�nition of momentum thickness (Eq. (1.1.6)) we have

1

b

dD

dx
= τ0 (x) = ρU2

∞
dδ2
dx

. (1.3.28)

We now consider again a self similar solution, with velocity pro�les, de�ned by:

u

U∞
=
(y
δ

) 1
7

(1.3.29)

with δ (x) which is to be determined in the course of calculation. Shearing stress at the

wall is also assumed as[1]:

τ0
ρU2
∞

= 0.0225

(
ν

U∞δ

) 1
4

. (1.3.30)

From Eq. (1.1.5)-(1.1.6) and from Eq. (1.3.29) we obtain:

δ1 =
δ

8
; δ2 =

7

72
δ. (1.3.31)

Considering Eq. (1.3.28) and (1.3.31) we have

τ0
ρU2
∞

=
7

72

dδ

dx
(1.3.32)

and, comparing last equation with Eq. (1.3.30), the result is

7

72

dδ

dx
= 0.0225

(
ν

U∞δ

) 1
4

. (1.3.33)

Integrating Eq. (1.3.33) with δ = 0 at x = 0 we have that the boundary-layer thickness

is:

δ (x) = 0.37x

(
U∞x

ν

)− 1
5

. (1.3.34)

23



Figure 1.3.7: Boundary-layer thickness (blue), displacement thickness (green) and mo-
mentum thickness (red) along a �at plate with fully turbulent �ow

The obtained boundary-layer thickness, displacement thickness and momentum thick-

ness are plotted in Fig. 1.3.7. Again, like for the laminar �ow, we have a peak of

shearing stress at the wall near the leading edge, as it can be seen in Fig. 1.3.8 while in

Fig. 1.3.9 are shown two velocity pro�les, taken at di�erent x coordinates, and they're

clearly similar.

It's interesting to make some comparisons between laminar and turbulent boundary-

layer. In Fig. 1.3.10 it can be seen how the turbulent boundary-layer is way thicker

than the laminar one and, with turbulent boundary-layer, we have also greater shear

stresses at the wall (Fig. 1.3.11). This last evidence seems to be absurd. Indeed if

we think about the de�nition of shear stress
(
τ = µdu

dy

)
it seems to suggest that a

thicker boundary-layer determines a smaller value of shear stress (and that's actually

why we always have a peak of shear stress at the wall near the leading edge, where

the boundary-layer is thinner). However the reason of this phenomenon is the di�erent

velocity pro�le through a laminar or turbulent boundary-layer. Looking at Fig. 1.3.12,

indeed, it's possible to notice that for the turbulent boundary-layer we have a steep

increase in velocity very close to the wall, and that's why in this case we have a greater

wall shear stress.
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Figure 1.3.8: Viscous shearing stress at the wall of a �at plate with fully turbulent �ow

a) b)

Figure 1.3.9: Velocity pro�les through the boundary-layer at x = 1 m a) and x = 3.5 m
b) on a �at plate of total length L = 5 m with fully turbulent �ow
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Figure 1.3.10: Comparison between laminar (blue) and turbulent (red) boundary-layer
thickness on a �at plate

Figure 1.3.11: Comparison between laminar (blue) and turbulent (red) viscous shear
stress at the wall on a �at plate
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Figure 1.3.12: Comparison between laminar (blue) and turbulent (red) velocity pro�le
through the boundary-layer at x = 1 m on a �at plate of total length L = 5 m

1.4 Unsteady Boundary-Layer Theory

The unsteady state (or transient state) is the most general situation in which properties

change in space and time, and it is necessary to deal also with the time variable.

Unsteady motion occurs quite often in helicopter rotors, where the periodic pitching

movement is a fundamental movement of the blade, or during start-up and shut-down

processes.

In laminar �ow the unsteady boundary-layer equations are exactly Eq. (1.2.12) with

boundary conditions of Eq. (1.2.10).

On the other hand turbulent �ows are, in fact, by de�nition unsteady, so it is

necessary to explain what is meant with �unsteady turbulent �ow�. With Reynolds

decomposition turbulent �ows were divided into the time averaged �ow (which is time

independent) and the random �uctuations which varied in time. Now, also the �mean�

motion will be time dependent. So the Reynolds decomposition is slightly modi�ed and

the velocity component in the x direction can be written as:

u (x, y, z, t) = u (x, y, z) + ũ (x, y, z, t) + u′ (x, y, z, t) (1.4.1)

where u is the time independent component of mean motion, ũ its time dependent
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component and u′, again, the disordered turbulent �uctuation.

Using this new formulation we can de�ne:

u = u+ ũ, v = v + ṽ. (1.4.2)

And the boundary-layer equations become[4]:

∂u

∂x
+
∂v

∂y
= 0, (1.4.3a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂ U

∂x
+

∂

∂y

(
ν
∂u

∂y
− u′v′

)
. (1.4.3b)

y = 0 : u = v = 0; y = δ : u = U (x) . (1.4.4)

Such a complex �ow �eld must be solved with a numerical method and, in order to do

this, a turbulence model has to be applied.

1.4.1 Turbulence Model

The most common approach to the problem of calculating the Reynolds stresses is to

de�ne an eddy viscosity, νt, in the same form as the laminar viscosity[5]. Thus, for a

two-dimensional incompressible �ow, we have:

−u′v′ = νt
∂u

∂y
. (1.4.5)

On the other hand, using the mixing length, l, concept we can also write:

−u′v′ = l2
(
∂u

∂y

)2

. (1.4.6)

And, from the last two equations, we obtain the well-known Prandtl mixing length

formula:

νt = l2
∣∣∣∣∂u∂y

∣∣∣∣ . (1.4.7)

In this work the Cebeci-Smith method will be applied[6]. In this method the

boundary-layer is separated in two sub-layers with two di�erent formulations for the

eddy viscosity νt. For the inner region the Prandtl mixing length hypothesis is main-

tained, and the eddy viscosity is:

(νt)i = l2
∣∣∣∣∂u∂y

∣∣∣∣ γtr, 0 ≤ y ≤ yc. (1.4.8)
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Here γtr is an intermittency factor, while yc is the wall-normal distance where the outer

region for the turbulent viscosity starts. The mixing length l is given by:

l = ky
[
1− exp

(
− y
A

)]
(1.4.9)

where k = 0.4. A is a damping length constant which is expressed as:

A = 26
ν

Nuτ
, N =

√
1− 11.8p+, p+ =

νU

u3τ

dU

dx
(1.4.10)

where uτ is the friction velocity, de�ned by:

uτ =

√
τ0
ρ
. (1.4.11)

The intermittency factor γtr ensures a smooth transition between laminar and turbulent

�ow and it is given by:

γtr = 1− exp
[
−G (x− xtr)

ˆ x

xtr

dx

U

]
(1.4.12)

where xtr is the point where transition starts and

G =

(
3

C2

)(
U3

ν2

)
Re−1.34xtr (1.4.13)

where Rextr is the Reynolds number with xtr and U at that point. C2 is constant and

its value is

C2 = 213 (logRextr − 4.7323) (1.4.14)

for 2.4×105 ≤ ReL ≤ 2×106 with ReL being the Reynolds number with the undisturbed

velocity U∞ and the chord length L while, for greater ReL, C = 60.

On the other hand, in the outer region the eddy viscosity is given by:

(νt)o = αUδγtrγ. (1.4.15)

Here α = 0.0168 while γ is an intermittency factor for the outer region expressed as:

γ =

[
1 + 5.5

(y
δ

)6]−1
. (1.4.16)

The switching distance yc is de�ned as the point where (νt)i and (νt)o are equal.
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1.5 Falkner-Skan Transformation

As already seen in section 1.3 boundary-layer thickness increases with increasing down-

stream distance for both laminar and turbulent �ows. Thus transformed coordinates

employing similarity variables are advantageous for the solution of boundary-layer equa-

tions since they can reduce and even eliminate the growth of transformed boundary-

layer thickness. In this work the Falkner-Skan transformation was used. In this trans-

formation the dimensionless similarity variable η and the dimensionless stream function

f (x, η) are de�ned by[5]:

η =

√
U

νx
y, f (x, η) =

ψ (x, y)√
Uνx

(1.5.1)

where ψ (x, y) is the dimensional stream function. Considering also that

ξ =
x

L
, w =

U

U∞
, τ =

tU∞
L

(1.5.2)

and prime denoting the di�erentiation with respect to η, we can rewrite the boundary-

layer momentum equation as:

(bf ′′)
′
+
m+ 1

2
ff ′′+m

[
1− (f ′)

2
]
+m3 (1− f ′)−1

2
m3f

′′ = ξ

(
1

w

∂f ′

∂τ
+ f ′

∂f ′

∂ξ
− f ′′∂f

∂ξ

)
.

(1.5.3)

In the preceding equation b is the viscous term, while m and m3 are dimensionless

pressure gradient parameters and they are de�ned as:

b = 1 +
νt
ν
, m =

ξ

w

∂w

∂ξ
, m3 =

ξ

w2

∂w

∂τ
. (1.5.4)

The velocity components through the boundary-layer u and v are related to the dimen-

sionless stream function f (ξ, η) by:

u = Uf ′, v = −
√
Uνx

[
f√
Ux

d

dx

√
Ux+

∂f

∂x
+ f ′

∂η

∂x

]
. (1.5.5)

The transformed boundary conditions become:

η = 0 : f = f ′ = 0; η = ηe : f ′ = 1. (1.5.6)

30



Chapter 2

Numerical Method

In the following chapter the numerical solution of the boundary-layer equations is pre-

sented. The coordinate system is shown in Fig. 2.0.1. The airfoil is divided by the lead-

ing edge in two plates having di�erent distributions of velocity external to boundary-

layer. The x coordinate is set to be always parallel to the wall, while the y-axis is

always perpendicular to it.

2.1 Computational Grid

After the blade is divided in two �ctional plates and the stream-wise coordinate is set,

the Falkner-Skan transformation is applied, as de�ned by Eq. 1.5.2. The computational

grid is de�ned in nondimentional variables and the results are then transformed back

to real variables.

The advantage of this strategy is shown in Fig. 2.1.1, where a typical Falkner-Skan

Figure 2.0.1: Coordinate system adopted
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a)

b)

Figure 2.1.1: Comparison between transformed variables grid a) and real variables grid
b)

grid is shown together with the actual grid. Dealing with transformed variables allows

to de�ne a rectangular grid which is actually a growing grid in real variables scaled by

Eq. 1.5.1. The advantage to work on a rectangular grid it's ampli�ed by the reduction of

boundary-layer growth due to Falkner-Skan transformation, as already stated in section

1.5.

For what concerns stream-wise direction the adopted grid spacing is the same used

by the potential �ow solver while in wall-normal direction the spacing grid is de�ned

as:

η0 = 0, (2.1.1a)

ηj = ηj−1 + hj for j = 1, 2, ..., J. (2.1.1b)
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Figure 2.1.2: Dependence of J by ηmax

h1
and K

In wall-normal direction a very e�cient grid spacing is introduced that becomes �ner

while approaching the wall. This ensures a good accuracy of the derivatives of f ,

which change their value dramatically near the wall. The ratio of spacings between

two subsequent intervals is constant, so that hj = Khj−1, and it is called variable grid

parameter. The distance to the j-th line is given by:

ηj = h1
Kj − 1

K − 1
for j = 1, 2, ..., J (2.1.2)

where h1 is the distance between the wall and the �rst grid point away from it. The

total number of grid points in the wall-normal direction can be determined as

J =
ln
[
1 + (K − 1) ηmax

h1

]
lnK

+ 1. (2.1.3)

The in�uence of K and ηmax

h1
on the total number of nodes in the direction perpen-

dicular to the wall is shown in Fig. 2.1.2. In particular it is worth to notice that a

higher variable grid parameter brings to a reduction of grid points, since it means a

higher �growth rate� of nodes spacing.

Cebeci [5] suggests to set K = 1.1 and h1 = 0.01, while the maximum value of

transformed variable normal to the wall, ηmax, can be �xed by the user.
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The stagnation point, which divides the pro�le in two plates, is de�ned as the middle

point between the two nodes of the potential method that show the lowest velocities.

2.2 Numerical Solution

The boundary-layer equations are solved at �rst in the steady case, to provide a solution

for t = 0, and then unsteady. For both steady and unsteady equations the solution is

provided by using the Keller box method, which is a �nite-di�erence method.

a)

b)

Figure 2.2.1: a) Rectangle for steady Keller box method b) Center scheme

2.2.1 Steady Solution

In order to solve the steady boundary-layer momentum equation with the Keller box

method is useful to reduce the third order di�erential Eq. 1.5.3 to a system of three
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�rst order di�erential equations:

∂f

∂η
= f ′ = u, (2.2.1a)

∂2f

∂η2
= f ′′ = v, (2.2.1b)

(bv)′ +
m+ 1

2
fv +m

(
1− u2

)
= ξ

[
∂

∂ξ

(
u2

2

)
− v∂f

∂ξ

]
. (2.2.1c)

Where ∂
∂ξ

(
u2

2

)
= u∂u

∂ξ
.

The discretization of steady Keller box method is shown in Fig. 2.2.1. Eq. 2.2.1a

and 2.2.1b are centered at the n-th position, which is the middle point of the right side

of the sketch, while Eq. 2.2.1c is evaluated at the center of the rectangle.

So that the equations become:

fnj − fnj−1
hj

=
unj + unj−1

2
≡ un

j− 1
2
, (2.2.2a)

unj − unj−1
hj

=
vnj + vnj−1

2
≡ vn

j− 1
2
, (2.2.2b)

1

2

[
(bv)jn − (bv)jn−1

hj
+

(bv)j−1n − (bv)j−1n−1

hj

]
+
mn− 1

2 + 1

2
f
n− 1

2

j− 1
2

v
n− 1

2

j− 1
2

+mn− 1
2

[
1−

(
u
n− 1

2

j− 1
2

)2]
=

= ξn−
1
2

FLARE
(
un
j− 1

2

)2
−
(
un−1
j− 1

2

)2
2kn

− vn−
1
2

j− 1
2

fn
j− 1

2

− fn−1
j− 1

2

kn

 . (2.2.2c)

Where kn = ξn− ξn−1 while the FLARE parameter refers to the Flügge-Lotz Reyhner

approximation [7] and it's taken as unity when uj ≥ 0 and as zero whenever uj < 0.

The adoption of Flügge-Lotz Reyhner approximation is necessary to prevent calculation

instabilities due to possible back-�ow regions in the boundary-layer by dropping the u

stream-wise dependent term.

Eq. 2.2.2c can be rearranged to put in evidence known and unknown terms where

fn−1j , un−1j and vn−1j are supposed to be known for 0 < j < J :

(bv)nj − (bv)nj−1
hj

+ α1f
n
j− 1

2
vn
j− 1

2
− α2

(
un
j− 1

2

)2
+ αn

(
vn−1
j− 1

2

fn
j− 1

2
− fn−1

j− 1
2

vn
j− 1

2

)
= Rn−1

j− 1
2

.

(2.2.3)
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Where:

αn =
ξn−

1
2

kn
, (2.2.4a)

α1 = 1 +
mn− 1

2

2
+ αn, (2.2.4b)

α2 = mn− 1
2 + FLAREαn, (2.2.4c)

Rn−1
j− 1

2

= −Ln−1
j− 1

2

+ αn
[
−FLARE

(
un−1
j− 1

2

)2
+ vn−1

j− 1
2

fn−1
j− 1

2

]
, (2.2.4d)

Ln−1
j− 1

2

=
(bv)n−1j − (bv)n−1j−1

hj
+

(
1 +

mn− 1
2

2

)
fn−1
j− 1

2

+ 2mn− 1
2

1−

(
un−1
j− 1

2

)2
2

 . (2.2.4e)

In these equations the boundary conditions become:

fn0 = un0 = 0, (2.2.5a)

unJ = 1. (2.2.5b)

Eqs. 2.2.2 and 2.2.5 are a system of 3J + 3 nonlinear equations in 3J + 3 unknowns(
fnj , u

n
j , v

n
j

)
with 0 < j < J and Newton's method is applied to iteratively solve this

system. Thus, f , u and v are approximated as:

f
n,(r+1)
j = f

n,(r)
j + δf

n,(r)
j , u

n,(r+1)
j = u

n,(r)
j + δu

n,(r)
j , v

n,(r+1)
j = v

n,(r)
j + δv

n,(r)
j .

(2.2.6)

Where r is the iteration number and the initial values r = 0 are assumed equal to those

at the ξn−1 station. From now on the superscript n for the unknowns will be dropped

for sake of simplicity.

Inserting the right-hand sides of the last three expressions in Eqs. 2.2.2 and dropping

δf rj , δu
r
j and δv

r
j quadratic terms the following linear system is obtained:

f rj + δf rj − f rj−1 − δf rj−1
hj

=
urj + δurj + urj−1 + δurj−1

2
, (2.2.7a)

urj + δurj − urj−1 − δurj−1
hj

=
vrj + δvrj + vrj−1 + δvrj−1

2
, (2.2.7b)
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(bv)rj − (bv)rj−1
hj

+
mn− 1

2 + 1

2
f r
j− 1

2
vr
j− 1

2
−mn− 1

2

(
ur
j− 1

2

)2
−

− ξn−
1
2

kn

[(
ur
j− 1

2

)2
− f r

j− 1
2
vr
j− 1

2
− f r

j− 1
2
vn−1
j− 1

2

+ fn−1
j− 1

2

vr
j− 1

2

]
+
δvrj − δvrj−1

hj
+

+
1

2

mn− 1
2 + 1

2

(
f r
j− 1

2
δvrj + f r

j− 1
2
δvrj−1 + vr

j− 1
2
δf rj + vr

j− 1
2
δf rj−1

)
−mn− 1

2

(
ur
j− 1

2
δurj + ur

j− 1
2
δurj−1

)
−

− ξn−
1
2

kn

[
ur
j− 1

2
δurj + ur

j− 1
2
δurj−1 −

1

2

(
f r
j− 1

2
δvrj + f r

j− 1
2
δvrj−1 + vr

j− 1
2
δf rj + vr

j− 1
2
δf rj−1+

+ vn−1
j− 1

2

δf rj + vn−1
1− 1

2

δf rj−1 − fn−1j− 1
2

δvrj − fn−1j− 1
2

δvrj−1

)]
= Rn−1

j− 1
2

. (2.2.7c)

Which can be summarized as:

δf rj − δf rj−1 −
hj
2

(
δurj + δurj−1

)
= (r1)j , (2.2.8a)

δurj − δurj−1 −
hj
2

(
δvrj + δvrj−1

)
= (r3)j , (2.2.8b)

(s1)j δv
r
j +(s2)j δv

r
j−1 +(s3)j δf

r
j +(s4)j δf

r
j−1 +(s5)j δu

r
j +(s6)j δu

r
j−1 = (r2)j . (2.2.8c)

Where

(r1)j = −
(
f rj − f rj−1

)
+ hju

r
j− 1

2
, (2.2.9a)

(r3)j = −
(
urj − urj−1

)
+ hjv

r
j− 1

2
, (2.2.9b)

(r2)j = Rn−1
j− 1

2

−

[
(bv)rj − (bv)rj−1

hj
+ α1f

r
j− 1

2
vr
j− 1

2
− α2

(
ur
j− 1

2

)2
+ α2

(
f r
j− 1

2
vn−1
j− 1

2

− fn−1
j− 1

2

vr
j− 1

2

)]
(2.2.9c)

and

(s1)j =
1

hj
+
α1

2
f r
j− 1

2
− αn

2
fn−1
j− 1

2

, (2.2.10a)

(s2)j = − 1

hj
+
α1

2
f r
j− 1

2
− αn

2
fn−1
j− 1

2

, (2.2.10b)

(s3)j =
α1

2
vr
j− 1

2
+
αn

2
vn−1
j− 1

2

, (2.2.10c)

(s4)j =
α1

2
vr
j− 1

2
+
αn

2
vn−1
j− 1

2

, (2.2.10d)

(s5)j = −α2u
r
j− 1

2
, (2.2.10e)

(s6)j = −α2u
r
j− 1

2
. (2.2.10f)
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This new system needs three new boundary conditions, they are:

δf r0 = δur0 = δurJ = 0. (2.2.11)

The problem can be expressed in matrix-vector form

A
−→
δ = −→r (2.2.12)

Where the coe�cients matrix A shows a block tridiagonal structure. In detail Eq.

(2.2.12) is:

A0 C0

B1 A1 C1

. . .

. . .

Bj Aj Cj

. . .

. . .

BJ−1 AJ−1 CJ−1

BJ AJ





−→
δ0−→
δ1

.

.
−→
δj

.

.
−−→
δJ−1−→
δJ


=



−→r0
−→r1
.

.
−→rj
.

.
−−→rJ−1
−→rJ


. (2.2.13)

The three-dimensional block vectors
−→
δj and −→rj are:

−→
δj =

 δfj

δuj

δvj

 , −→rj =

 (r1)j
(r2)j
(r3)j

 , 0 ≤ j ≤ J (2.2.14)

while the 3× 3 matrices Aj, Bj and Cj are de�ned by:

A0 =

 1 0 0

0 1 0

0 −1 −h1
2

 , (2.2.15a)

Aj =

 1 −hj
2

0

(s3)j (s5)j (s1)j
0 −1 −hj+1

2

 1 ≤ j ≤ J − 1 AJ =

 −1 −hJ
2

0

(s3)J (s5)J (s1)J
0 1 0

 ,
(2.2.15b)
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Figure 2.2.2: Keller box cube for the di�erence equations for two-dimensional unsteady
�ows

Bj =

 −1 −hj
2

0

(s4)j (s6)j (s2)j
0 0 −hj+1

2

 1 ≤ j ≤ J Cj =

 0 0 0

0 0 0

0 1 −hj+1

2

 0 ≤ j ≤ J−1.

(2.2.15c)

This way to arrange the system of equations prevents matrix A0 from being singular.

It's also worth to note that the �rst, second and last row in Eq. (2.2.13) correspond

to the boundary conditions (2.2.11), this brings to (r1)0 = (r2)0 = (r3)J = 0 to ensure

that the boundary conditions are ful�lled. After solution is converged the whole system

is shifted to the next ξ station until, eventually, boundary-layer separation occurs and

no converge is achieved.

2.2.2 Unsteady solution

The two-dimensional unsteady �ow with no separation has many similarities with three-

dimensional cross-�ow steady problem since time can be associated with the direction

of a main stream with unit velocity component.

The discretization of Keller box method in this case, considering what has just been

said about similarities between two and three-dimensional �ow, is shown in Fig. 2.2.2.

In the discretized net cube τ is the non-dimensional time variable de�ned by Eq. (1.5.2).

Looking at this �gure it is also clear the reason why the Keller method is also called
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the �box� method.

In Fig. 2.2.2 the unknowns are only the (n, i, j) and (n, i, j − 1) values, this means

that initial conditions are necessary both in the (ξ, η) and (τ, η) planes. Since the aim

of this work isn't to investigate the starting of motion, the initial conditions in the

(ξ, η) plane are obtained by solving the steady-state equations with the instantaneous

external velocity at t = 0 using the procedure described in the preceding subsection.

For what concerns the (τ, η) plane a quasi-steady approach is applied, it implies that

for the �rst ξ node after the stagnation point it is possible to use the same values of

the preceding time-step. The assumption of quasi-steady �ow in the vicinity of the

stagnation point is legit for unsteady �ows with low frequency.

To solve Eq. (1.5.3) it's again necessary to reduce it to a �rst-order system by

introducing the new variables u (ξ, η, τ) and v (ξ, η, τ):

f ′ = u, (2.2.16a)

f ′′ = u′ = v, (2.2.16b)

(bv)′ +
m+ 1

2
fv +m

(
1− u2

)
+m3 (1− u)− m3

2
v = ξ

[
1

w

∂u

∂τ
+

∂

∂ξ

(
u2

2

)
− v∂f

∂ξ

]
.

(2.2.16c)

Again the �rst two equations are averaged about the midpoint between the two un-

knowns
(
ξn, τ i, ηj− 1

2

)
:

fn,ij − f
n,i
j−1

hj
=
un,ij + un,ij−1

2
= un,i

j− 1
2

, (2.2.17a)

un,ij − u
n,i
j−1

hj
=
vn,ij − v

n,i
j−1

2
= vn,i

j− 1
2

. (2.2.17b)

On the other side Eq. (2.2.16c) is approximated centering all quantities at the center

of the cube
(
ξn−

1
2 , τ i−

1
2 , ηj− 1

2

)
de�ning:

q̄j = q
n− 1

2
,i− 1

2
j =

1

4

(
qn,ij + qn,i−1j + qn−1,ij + qn−1,i−1j

)
=

1

4

(
qn,ij + q234j

)
, (2.2.18a)

q̄j− 1
2

=
1

2
(q̄j + q̄j−1) =

1

4

(
qn,i
j− 1

2

+ q234
j− 1

2

)
. (2.2.18b)

Where q234j = qn,i−1j +qn−1,ij +qn−1,i−1j is the sum of qj values at three of the four corners

of the ηj face of the box.
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With this notation the �nite-di�erence approximated momentum equation is:(
b̄v
)
j
−
(
b̄v
)
j−1

hj
+

1

2
(m̄+ 1) f̄j− 1

2
v̄j− 1

2
+m̄

[
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(
ūj− 1

2

)2
+ m̄3

(
1− ūj− 1

2

)
− m̄3

2
v̄j− 1

2

]
=

= ξn−
1
2

 1

w̄

ūi
j− 1

2

− ūi−1
j− 1

2

ri
+

(
ūn
j− 1

2

)2
−
(
ūn−1
j− 1

2

)2
2kn

− v̄j− 1
2

f̄n
j− 1

2

− f̄n−1
j− 1

2

kn

 (2.2.19)

where

q̄n
j− 1

2
= q

n,i− 1
2

j− 1
2

=
1

4

(
qn,ij + qn,i−1j + qn,ij−1 + qn,i−1j−1

)
=

1

2

(
qn,i
j− 1

2

+ qn,i−1
j− 1

2

)
, (2.2.20a)

q̄i
j− 1

2
= q

n− 1
2
,i

j− 1
2

=
1

4

(
qn,ij + qn−1,ij + qn,ij−1 + qn−1,ij−1

)
=

1

2

(
qn,i
j− 1

2

+ qn−1,i
j− 1

2

)
, (2.2.20b)

m̄ = mn− 1
2
,i− 1

2 =
1

4

(
mn,i +m234

)
, (2.2.20c)

m̄3 = m
n− 1

2
,i− 1

2
3 =

1

4

(
mn,i

3 +m234
3

)
, (2.2.20d)

w̄ = wn−
1
2
,i− 1

2 =
1

4

(
wn,i + w234

)
. (2.2.20e)

Considering Eqs. (2.2.18) and (2.2.20) and rearranging to highlight known and unknown

terms Eq. (2.2.19) can be written in a summarized form similar to Eq. (2.2.3) for steady

�ow:

(bv)n,ij − (bv)n,ij−1
hj

+

(
α1

4
+
αn

2

)
fn,i
1− 1

2

vn,i
1− 1

2

−α2
(
un,i
j− 1

2

)2
−

(
α3 +

m̄

2
u234
j− 1

2
− ξn−

1
2

kn
un,i−1
j− 1

2

)
un,i
j− 1

2

+

+
(α1

4
f 234
j− 1

2
− α4

)
vn,i
j− 1

2

+

(
α1

4
+
αn

2

)
v234
j− 1

2
fn,i
j− 1

2

= −β1 (2.2.21)

where αn is given by Eq. (2.2.4a) and

α1 =
1 + m̄

2
, (2.2.22a)

α2 =
m̄

4
+
αn

2
, (2.2.22b)

α3 = m̄3 + 2
ξn−

1
2

w̄ri
, (2.2.22c)

α4 =
m̄3

2
− αn

2

(
fn,i−1
j− 1

2

− 2f̄n−1
j− 1

2

)
, (2.2.22d)
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β1 =
(bv)234j − (bv)234j−1

hj
+
α1

4
f 234
j− 1

2
v234
j− 1

2
+
m̄

4
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(
u234
j− 1

2

)2]
+ m̄3
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1− u234
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2
− v234

j− 1
2

)
−

−αn
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4w̄ri

(
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j− 1
2

− ūi−1
j− 1

2

)
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2

(
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2
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− 2
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2
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2
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2
fn,i−1
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2

+ v234
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2
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j− 1

2

]
.

(2.2.22e)

The boundary conditions for the unsteady �ow are similar to the steady ones where the

superscript i is added to take into account the time variable, this brings to:

fn,i0 = un,i0 = 0, (2.2.23a)

un,iJ = 1. (2.2.23b)

The system of equations is again linearized applying Newton's method. If equations

and unknowns are written in the same order of the steady �ow the linearized equations

for Eqs. (2.2.17) become identical to Eqs. (2.2.8a) and (2.2.8b). On the other hand

linearized Eq. (2.2.21) is identical to Eq. (2.2.8c) with di�erent coe�cients, which are:

(r2)j = −

{
4

[(
b̄v
)r
j
−
(
b̄v
)r
j

hj
+ α1f̄

r
j− 1

2
v̄r
j− 1

2
+ m̄

(
1−

(
ūr
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2

)2)]
+ 2m̄3

[
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2
+ 2

(
1− ūr

j− 1
2

)]
−

−2αn
[(
ū
n,(r)

j− 1
2

)2
−
(
ū
n−1,(r)
j− 1

2

)2
− 2ūj− 1

2

(
f̄
n,(r)

j− 1
2

− f̄n−1,(r)
j− 1

2

)]
− 4

ξn−
1
2

w̄ri

(
ū
i,(r)

j− 1
2

− ūi−1,(r)
j− 1

2

)}
,

(2.2.24a)

(s1)j =
brj
hj

+
α1

2
f̄ r
j− 1

2
+
m̄3

4
+
αn

2

(
f̄
n,(r)

j− 1
2

− f̄n−1,(r)
j− 1

2

)
, (2.2.24b)

(s2)j = −
brj−1
hj

+
α1

2
f̄ r
j− 1

2
+
m̄3

4
+
αn

2

(
f̄
n,(r)

j− 1
2

− f̄n−1,(r)
j− 1

2

)
, (2.2.24c)

(s3)j = (α1 + αn) v̄r
j− 1

2
, (2.2.24d)

(s4)j = (α1 + αn) v̄r
j− 1

2
, (2.2.24e)

(s5)j = −m̄ūr
j− 1

2
− αnūn,(r)

j− 1
2

− α3

2
, (2.2.24f)

(s6)j = −m̄ūr
j− 1

2
− αnūn,(r)

j− 1
2

− α3

2
. (2.2.24g)

The matrix-vectors formulation is the same for the steady case and so are boundary

conditions.

When convergence is achieved the whole system is shifted to the next ξ node until
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both the upper and lower �ctional plates are completely solved for the present time

step, then the all process is repeated for the next one.

After solution has converged for all ξ and τ stations velocity pro�les are computed

using Eqs. (1.5.5). With these results it is possible to calculate boundary-layer char-

acteristics such as boundary-layer thickness and displacement thickness which are used

for the viscous-inviscid interaction method.
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Chapter 3

Results and Discussion

In this section the results obtained with the method developed in this work will be

compared with some analytical models and CFD simulations. At �rst were runned

two simulations of �ow over a �at plate (a fully laminar and a fully turbulent one) to

have a �rst validation of the method and the turbulence model in the most simple case

possible. Then, in order to test the method when pressure gradients occur, a highly

cambered pro�le with great thickness variations was simulated and compared with CFD

results. Finally the last step have been to validate the complete code with an unsteady

simulation.

3.1 Flat Plate

The most simple test case for a numerical method such as the one described here is

a steady �ow over a �at plate (i. e. with no pressure gradient over it). Nevertheless

this simple situation can highlight, as it will be shown, some important features and,

eventually, �aws of the present method.

At �rst a fully laminar �ow with U = 5 m/s over a �at plate 5 meters long was

simulated and compared with the Pohlhausen model described in subsection 1.3.1. The

results show a perfect matching between the two displacement thicknesses an a small

di�erence for what concerns boundary-layer thickness (Fig. 3.1.1).

The explanation of the di�erence between boundary-layer thicknesses, which is small

but spreading along the plate, could be that for the Keller box method the δ99 is

considered (i. e. at which distance from the wall u = 0.99U) while for the Pohlhausen

model BL thickness represents δ100 (u = U). What has just been said is con�rmed by

the analysis of the velocity pro�les shown in Fig. 3.1.2a) and enlarged in Fig. 3.1.2b).

It is clearly visible that the two velocity pro�les match completely, and this leads to
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Figure 3.1.1: Comparison between Pohlhausen (star) and Keller box (circle) boundary-
layer thickness (blue) and displacement thickness (red) over a �at plate 5 meters long
with fully laminar �ow

a) b)

Figure 3.1.2: Comparison between velocity pro�les obtained by Pohlhausen (blue) and
Keller box (red) method on a �at plate 5 meters long at x = 2 m with fully laminar
�ow a) and enlargement of the edge of boundary-layer b)
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Figure 3.1.3: Comparison between Pohlhausen (star) and Keller box (circle) boundary-
layer thickness (blue) and displacement thickness (red) over a �at plate 5 meters long
with fully turbulent �ow

the only conclusion that the di�erence in Fig. 3.1.1 is due to a di�erent de�nition of

boundary-layer thickness for the two methods.

In order to test the turbulence model described in subsection 1.4.1 a fully turbulent

�at plate was simulated (all the other parameters were identical to the previous simu-

lation) and the results were compared with those obtained by the analytical model of

subsection 1.3.2. Boundary-layer and displacement thickness computed with both the

two methods are plotted in Fig. 3.1.3. Here again we have a perfect accordance for

what concerns displacement thickness, while a spreading di�erence between boundary-

layer thicknesses can be noticed. The gap here by the way seems to be too large to be

justi�ed by the di�erence between δ99 and δ100, which is still present. Looking at the

velocity pro�les of Fig. 3.1.4 the reason of this bigger gap becomes obvious. The Keller

box velocity pro�le indeed reaches the external velocity value before than the analytical

model. This di�erence in velocity pro�le slopes is due to the turbulence model adopted.

By the way, in order to make a good viscous-inviscid interaction method, the important

parameter is the displacement thickness. δ1 indeed is the parameter which tells us how

much the streamlines are displaced from the wall because of the boundary-layer (section

1.1) and the turbulence model described in subsection 1.4.1 makes it match perfectly.
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a) b)

c) d)

e) f)

g) h)

Figure 3.1.4: Comparison between velocity pro�les obtained by analytical (blue) and
Keller box (red) method on a �at plate 5 meters long and enlargement of the region
closest to the wall at x = 2 m a) b), x = 2.5 m c) d), x = 3 m e) f) and x = 3.5 m g) h)
with fully turbulent �ow.



a) b)

c) d)

e) f)

g) h)

Figure 3.1.5: Comparison between velocity pro�les obtained by analytical (blue) and
Keller box (red) method on a �at plate 5 meters long and enlargement of the region
closest to the wall at x = 2 m a) b), x = 2.5 m c) d), x = 3 m e) f) and x = 3.5 m g) h)
with fully turbulent �ow after the �ltering correction was applied.



Figure 3.1.6: Comparison between analytical (star) and Keller box (circle) boundary-
layer thickness (blue) and displacement thickness (red) over a �at plate with fully
turbulent �ow after correction was applied

Looking at Fig. 3.1.4 an important �aw of this method can be noticed. In Figs.

3.1.4a), b) and 3.1.4e) and f) there's a small area with highly negative u velocities, while

in Figs. 3.1.4c), d) and 3.1.4g) and h) there are two points of in�ection of u. This kind

of behavior is almost impossible on a �at plate and, looking at all the velocity pro�les, it

can be noticed that pro�les with back�ow regions and with points of in�ection alternate

each other every 2 ξ nodes. These last considerations highlight the possibility that this

behavior is just an high order numerical instability. To �x it the following correction

is applied which acts like a low-pass �lter and it doesn't a�ect the solution accuracy if

the ξ stations are close enough each other:

xn = 0.25xn−1 + 0.5xn + 0.25xn+1 2 < n < N − 1, (3.1.1a)

xJ = −0.25xN−2 + 0.5xN−1 + 0.75xN n = N. (3.1.1b)

Where x is one among f , u and v and N is the total number of nodes in the streamwise

direction. Applying this �ltering formulas the new velocity pro�les become those shown

in Fig. 3.1.5, where both the back�ow areas and points of in�ection have disappeared.

Finally corrected Keller box and analytical boundary-layer characteristic thicknesses are
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compared in Fig. 3.1.6 and, as it was already predictable looking at the new velocity

pro�les, the �ltering correction doesn't a�ect the solution accuracy and the two δ1 still

match perfectly each other.

3.2 Steady Results

In order to investigate the behavior of Keller box method when pressure gradients occur

the simulation of a cambered and thick NLF-0416 airfoil 1 m long with steady �ow at

zero angle of attack was performed (Figs. 3.2.1 and 3.2.2). The reference temperature

and Mach number were 293.15 K and 0.1 respectively and the �ow Reynolds number

was 4.0 exp +06 while the transition point was set at X = 0.1L, where X denotes the

horizontal global Cartesian coordinate, whose origin is set at the pro�le leading edge.

From now on the results of the method developed in this work are compared with those

obtained by 2-D CFD simulations carried out with the DLR-TAU code and using the

Spalart-Allmaras 1 eq. turbulence model. The mesh was generated by �Pointwise�, a

commercial CFD mesh generation software, it has 255 nodes over the surface of the

NLF-0416 pro�le and the far �eld distance is equal to 20 chord lengths. On the other

side for the Keller box method ηmax was set at 100, resulting in 74 nodes in wall-normal

direction for every ξ node, which means 18870 total grid points.

Fig. 3.2.1 shows a good matching between CFD and Keller box boundary-layer

thickness for what concerns the blade suction side, while on the pressure side (Fig.

3.2.2) the two behavior are very di�erent after the �rst half of chord length.

Both the suction and pressure side CFD results show a peak at the leading edge.

Taking a look at the velocity pro�les through the boundary-layer close to the stagnation

point (such as the one in Fig. 3.2.3) it's clear that the peak is due to a bad interpretation

of the boundary-layer by the CFD. The actual boundary-layer in Fig. 3.2.3 in fact ends

at the point of in�ection at u ≈ 7 m/s (which is the true external velocity for that node)

and its thickness is of the same order of magnitude of the one calculated by the Keller

box method, although with the wrong U .

In Figs. 3.2.1 and 3.2.2 both boundary-layer thicknesses and the NLF-0416 pro�le

are shown. This is useful to understand the reason of the boundary-layer behavior

just looking at the preceding �gures, such as positive and negative accelerations due to

variations of pro�le camber line and thickness.

Results show a perfect matching between Keller box method and CFD both on

pressure and suction side for laminar �ow, and this is con�rmed by the laminar velocity

pro�les shown in Fig. 3.2.4.
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Figure 3.2.1: Comparison between CFD (blue) and Keller box (red) boundary-layer
thickness on the suction side of a NLF-0416 pro�le with α = 0

Figure 3.2.2: Comparison between CFD (blue) and Keller box (red) boundary-layer
thickness on the pressure side of a NLF-0416 pro�le with α = 0
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a) b)

Figure 3.2.3: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the suction side of a NLF-0416 pro�le at X = 5.03 exp−04 m a)
and enlargement of the point of in�ection b)

a) b)

c) d)

Figure 3.2.4: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the suction side of a NLF-0416 pro�le at X = 0.0828 m a) and on
the pressure side at X = 0.0816 m c) and enlargement of the edge of the boundary-layer
b), d)
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a) b)

Figure 3.2.5: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the suction side of a NLF-0416 pro�le at X = 0.3118 m a) and on
the pressure side at X = 0.3031 m b)

Also after laminar-turbulent transition occurs, boundary-layer thickness calculated

by CFD coincides with that obtained using the BL method developed in this work, until

maximum pro�le thickness is reached; again velocity pro�les support this statement

(Fig. 3.2.5).

In adverse pressure �ow conditions (after the maximum pro�le thickness) results

show very di�erent behaviors between suction and pressure side.

On the suction side the boundary-layer thickness shows the same trend as that

obtained by the Keller box method and that calculated by CFD. Nonetheless in Fig.

3.2.1 it is possible to notice an increasing gap which spreads even more after X = 0.9 m.

If we have a look at the calculated velocity pro�les (Fig. 3.2.6) we see that the reason

of the increasing di�erence of boundary-layer thickness between CFD and the method

analysed in this study is the same seen also in section 3.1. Because of the slope of

velocity pro�le through the boundary-layer due to the turbulence model Keller box

method reaches the potential velocity value before than the CFD. On the other hand

displacement thickness, since it's an integral parameter, will show smaller di�erences

between CFD and Keller box method. Calculating δ1 for example at X = 0.9502 m the

results are δ1 = 0.0043 m for the CFD and δ1 = 0.0036 m for the method developed in

this work, which are really close to each other, especially compared to the boundary-

layer thickness whose values, for the same ξ node, are δ = 0.037691 m for the CFD

and δ = 0.0192 m for Keller box method. Then, after X = 0.95 m, the velocity pro�les

through the BL calculated by the CFD and the method developed in this study start

to be completely separated, as can be seen in Fig. 3.2.7, and not even the displacement

thicknesses match any more.

For what concerns the pressure side Fig. 3.2.2 shows two peaks of the CFD boundary-
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a) b)

Figure 3.2.6: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the suction side of a NLF-0416 pro�le at X = 0.7538 m a) and at
X = 0.9502 m b)

Figure 3.2.7: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the suction side of a NLF-0416 pro�le at X = 0.99 m
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Figure 3.2.8: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the pressure side of a NLF-0416 pro�le at X = 0.5019 m

layer thickness, one at X ≈ 0.7 m and the second at X ≈ 0.9 m. From the observation

of velocity pro�les comes out that, after the maximum pro�le thickness, at �rst the

relative behavior between CFD and Keller box velocities through the boundary-layer

is absolutely similar to that already seen on the suction side (Fig 3.2.8). However after

X ≈ 0.67 m the two velocity pro�les (CFD and Keller box) completely separate each

other and never come close again, as can be observed in Fig. 3.2.9.

Paying attention at Fig. 3.2.9a) it can be observed that after y ≈ 0.03 m the velocity

pro�le reaches an almost vertical asymptote. This means that, again, the main reason of

the di�erence between CFD and Keller box results on the pressure side after X ≈ 0.7 m

could be a bad interpretation of the boundary-layer by the CFD post-processor. In

order to eliminate this CFD boundary-layer thickness peak and those at the leading

edge it's necessary to investigate all the badly interpreted velocity pro�les and �nd the

actual BL thickness and potential velocity on those points. Then the new U values

have to be given as a new input for the Keller box method, a new simulation has to be

performed and the results must be compared with the corrected CFD boundary-layer

thickness. At the end of this process a good match between results calculated by CFD

and by the method described in this study should be achieved, at least until X ≈ 0.8 m.

Figs. 3.2.7 and 3.2.9b), in fact, don't show any vertical asymptote, and the reason
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a) b)

Figure 3.2.9: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the pressure side of a NLF-0416 pro�le at X = 0.7215 m a) and
at X = 0.8975 m b)

of this discrepancy between CFD and Keller box boundary-layer thickness could be the

presence of the wake, which was not modeled in this work.

3.3 Unsteady Results

At last a complete unsteady simulation has been carried out. In this occasion was chosen

a symmetrical NACA-0012 airfoil with still 1 m chord length. The �ow conditions were

the same adopted for the steady simulation described in the previous section, except

for the angle of attack α, which changes over time as α = 0° + 2° sin (ωt), where

k = ωL
U∞

= 0.1. The simulated time interval is T = 5.4918 s divided in 8 time steps

which are di�erent between upper and lower side of pro�le and don't have �xed duration.

For the CFD simulation turbulence model and mesh generation criteria were the same

adopted for the steady test-case, resulting in a pseudo-2D grid which contains 49120

grid points and 24192 hexahedra, with 252 nodes over the pro�le. The Keller box grid

has the same setting of the steady simulation, which means 74 nodes in wall-normal

direction at every ξ station and 18648 total grid points.

Fig. 3.3.1 shows the development of both CFD and Keller box boundary-layer

thickness (multiplied per 10) over time, together with NACA-0012 blade, for the pro�le

upper side, while Fig. 3.3.2 it's about the lower side.

CFD results show peaks both close to the front stagnation point and afterX ≈ 0.8 m

although, looking at Figs. 3.3.1 and 3.3.2, the stagnation point peak is visible only at

certain time steps for upper and lower sides. The reason of this behavior lies in the

pitching motion performed by the blade, which implies that the stagnation point in
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a) b)

c) d)

e) f)

g) h)

Figure 3.3.1: Comparison between CFD (blue) and Keller box (red) boundary-layer
thickness on the upper side of NACA-0012 pro�le for t = 0 s a), t = 3.6612 s b),
t = 3.8442 s c), t = 4.0273 s d), t = 4.2103 s e), t = 4.3934 s f), t = 4.5765 s g) and
t = 5.4918 s h)



a) b)

c) d)

e) f)

g) h)

Figure 3.3.2: Comparison between CFD (blue) and Keller box (red) boundary-layer
thickness on the lower side of NACA-0012 pro�le for t = 0 s a), t = 3.6612 s b), t =
4.5765 s c), t = 4.7595 s d), t = 4.9426 s e), t = 5.1256 s f), t = 5.3087 s g) and
t = 5.4918 s h)



some cases is located on the upper side and in some other cases is on the lower side.

Only when α ≈ 0° the front stagnation point coincides with the pro�le leading edge

and there's a peak both on the upper and lower side.

The reason of this peak is, again, a bad interpretation of the boundary-layer by

the CFD post-processor. Fig. 3.3.3, for example, shows the velocity pro�le through

the boundary-layer on the upper side of NACA-0012 close to the stagnation point at

t = 3.6612 s. It's easy to notice that the boundary-layer actually ends, as already seen

for the NLF-0416, at the point of in�ection at u ≈ 1.3 m/s. Again, it's possible to

notice that the actual boundary-layer thickness is of the same order of magnitude as

the one calculated by Keller box method, although with a wrong external velocity.

After the leading edge Figs. 3.3.1 and 3.3.2 show perfect matching between results

obtained by CFD and the method developed in this work, both for upper and lower

side, laminar and turbulent �ow and at every time step. This last statement has been

con�rmed by the velocity pro�les analysis as shown, for example, in Fig. 3.3.4 for the

laminar �ow and in Fig. 3.3.5 for the turbulent regime.

After X ≈ 0.8 m CFD boundary-layer thickness shows an abrupt growth with a

peculiar shape, with two maximums, which is almost the same for upper and lower

side and constant over time. Looking at velocity pro�les through the boundary-layer

the reason of this second �double peak� appears to be, again, the wrong interpretation

of boundary-layer by the CFD. Looking at Fig. 3.3.6 it's possible to see how velocity

reaches a relative maximum at y ≈ 0.02 m, which is the actual end of boundary-layer.

After the relative minimum located at X ≈ 0.92 m u shows a quite di�erent behavior,

as can be seen in Fig. 3.3.7, where the velocity through the BL calculated by the CFD

reaches an almost vertical slope before the computed boundary-layer thickness. Here

the actual BL edge is located where the vertical slope is achieved (in Fig. 3.3.7, for

example, at y ≈ 0.04 m).

In order to eliminate CFD boundary-layer thickness peaks the method already de-

scribed in section 3.2 should be applied. Thus, the badly interpreted velocity pro�les

should be analysed in order to �nd the actual BL thickness and potential velocity and

perform an updated Keller box simulation. Results of this new simulation should then

be compared with the corrected CFD boundary-layer thickness. At the end of this pro-

cess a perfect match between results calculated by CFD and by the method described

in this study should be achieved.
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a) b)

Figure 3.3.3: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the upper side of NACA-0012 pro�le at X = 2.7 exp−05 m and
t = 3.6612 s a) and enlargement of the point of in�ection b)

a) b)

c) d)

Figure 3.3.4: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method at X = 0.0839 m on the upper side of NACA-0012 pro�le at t =
4.0273 s a) and on the lower side at t = 4.7595 s c) and enlargement of the end of the
boundary-layer b), d)
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a) b)

Figure 3.3.5: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method at X = 0.5121 m on the upper side of NACA-0012 pro�le at t =
4.0273 s a) and on the lower side at t = 4.7595 s b)

a) b)

Figure 3.3.6: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method at X = 0.9005 m on the upper side of NACA-0012 pro�le at t =
4.0273 s a) and on the lower side at t = 4.7595 s b)

a) b)

Figure 3.3.7: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method at X = 0.9716 m on the upper side of NACA-0012 pro�le at t =
4.0273 s a) and on the lower side at t = 4.7595 s b)
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Figure 3.4.1: Comparison between corrected CFD and Keller box boundary-layer thick-
ness on the suction side of a NLF-0416 pro�le with α = 0

3.4 Corrected Results

In this section the correction suggested in the two previous paragraphs is applied to

the steady simulation of NLF-0416 pro�le and NACA-0012 at t = 0 s. The correction

wasn't applied to all the unsteady data since the similarities among the boundary-layer

distributions of di�erent time steps make it reasonable to think that considerations

carried out on steady simulation can be extended to the unsteady case.

In the corrected NLF-0416 results, which are visible in Figs. 3.4.1 - 3.4.2, there isn't

any anomaly near the leading edge, and the �rst peak on the pressure side, located

between X = 0.7 m and X = 0.8 m, has been even out.

Although the CFD boundary-layer thickness close to the stagnation point present,

after the correction, values which are almost identical to those obtained by the method

discussed in this thesis, the analysis of velocity pro�les show that perfect match has

not been reached yet (Fig. 3.4.3). This last di�erence, since it occurs only in a very

small number of nodes, could be caused by the limited capacity of the CFD to properly

simulate the boundary-layer.

On the other hand the pressure side peak of CFD BL thickness located at X ≈ 0.7 m

has been corrected, but still the di�erence between Keller box results and control data
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Figure 3.4.2: Comparison between corrected CFD and Keller box boundary-layer thick-
ness on the pressure side of a NLF-0416 pro�le with α = 0

a) b)

Figure 3.4.3: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the suction side of a NLF-0416 pro�le at X = 5.03 exp−04 m a)
and enlargement of the boundary-layer edge b)
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Figure 3.4.4: Comparison between corrected velocity pro�les obtained by CFD (blue)
and Keller box (red) method on the pressure side of a NLF-0416 pro�le at X = 0.7215 m

isn't negligible. The observation of Velocity pro�les through the boundary-layer in that

region, like the one shown in Fig. 3.4.4, suggests that the reason of this behavior could

lay in the Cebeci-Smith turbulence model. This turbulence model indeed is not very

suitable for �ows with strong adverse pressure gradient[5], like the one which is present

in that area.

The non-corrected regions are the last portion of chord length both on suction and

pressure side. To better understand the actual situation in Fig. 3.4.5 both the CFD

and Keller box boundary-layer thicknesses are plotted perpendicular to the NLF-0416

pro�le. Looking at Fig. 3.4.5, where the BL thickness is not multiplied by a 10 factor,

it can be observed that the di�erences between CFD results and those obtained by the

method discussed in this thesis are very small on the suction side up until the very last

part of the pro�le, while on the pressure side the two patterns spread earlier and the

gap between them is way bigger. These discrepancies could actually be caused by the

under-capacity of the CFD, as already said, to perfectly simulate the boundary-layer

behavior, especially near the trailing edge. This leads to some weird phenomena like

the kind of bubble on the suction side in Fig. 3.4.5 where, although, no inverse �ow is

detected (Fig. 3.2.9), which means that is not a region of separated �ow.

Corrected results for the boundary-layer thickness of NACA-0012 steady simulation

65



Figure 3.4.5: Actual distribution of corrected CFD (blue) and Keller box (red)
boundary-layer thickness over a NLF-0416 pro�le at α = 0°

are shown in Fig. 3.4.6, only one �gure is necessary since the pro�le is symmetrical with

no angle of attack, so the BL thickness distributions are identical between upper and

lower side. Again, the leading edge peak have disappeared , while near the trailing edge

the abrupt growth of boundary-layer thickness has been smoothed out and reduced.

In Fig. 3.4.7 velocity pro�les near the leading edge (X = 2.7 exp−05 m) resulting

from both CFD and Keller box simulation are plotted, with an enlargement of the end

of the boundary-layer. It can be noticed that the two pro�les match very well each

other after the correction.

Also on the last part of chord length we have a way better correspondence between

CFD results and those obtained by the method here presented. In particular between

X ≈ 0.8 m and X ≈ 0.9 m velocity pro�les obtained by the two di�erent methods are

really similar, as can be seen in Fig. 3.4.8 at X = 0.9005 m, even though there's already

a non-negligible di�erence in boundary-layer thickness. After X ≈ 0.9 m the slope of

CFD boundary-layer thickness increases. This can be detected also in the velocity

pro�les calculated by CFD which, in this last region, result to be more separated from

those calculated using the numerical procedure described in this thesis. Fig. 3.4.9

shows explicitly what has just been said for the velocity pro�les on the upper side at

X = 0.9716 m.

66



Figure 3.4.6: Comparison between CFD (blue) and Keller box (red) boundary-layer
thickness on NACA-0012 pro�le with α = 0°

a) b)

Figure 3.4.7: Comparison between velocity pro�les obtained by CFD (blue) and Keller
box (red) method on the upper side of NACA-0012 pro�le at X = 2.7 exp−05 m with
α = 0° a) and enlargement of the boundary-layer edge b)
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Figure 3.4.8: Comparison between corrected velocity pro�les obtained by CFD (blue)
and Keller box (red) method on the upper side of a NACA-0012 pro�le at X = 0.9005 m

Figure 3.4.9: Comparison between corrected velocity pro�les obtained by CFD (blue)
and Keller box (red) method on the upper side of a NACA-0012 pro�le at X = 0.9716 m
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Figure 3.4.10: Actual distribution of corrected CFD (blue) and Keller box (red)
boundary-layer thickness over a NACA-0012 pro�le at α = 0°

Again, the actual boundary-layer thickness (not multiplied by 10) is added to the

pro�le in Fig. 3.4.10. Looking at this last �gure the hypothesis of a poor capacity

of the CFD to model the actual behavior of boundary-layer at the end of the pro�le

in strengthened. Indeed the enlargement of BL thickness shown after X ≈ 0.9 m it's

di�cult to explain without separation, which is not the case since, like for the NLF-0416

pro�le, there isn't any �ow reversal.

The only way to understand whether CFD or Keller box results are more accurate is

to compare them with experimental evidences. Since boundary-layer thickness a�ects

friction drag, a good solution is to use the large extend of published drag coe�cient

values, such as those provided by Abbott et al.[8], where drag coe�cient cd is de�ned

by:

cd =
D

1
2
ρLU2

∞
. (3.4.1)

Where D is the drag force on the airfoil calculated by integrating τ0, de�ned by Eq.

(1.1.2), over the pro�le. Since the position of laminar-turbulent transition plays a key

role in drag calculation (section 1.3) it's important to determine where it occurs in

real �ow. Fortunately transition point location doesn't a�ect very much the external

�ow. This means that, for a �rst comparison, it should be possible to use the old
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CFD velocity distribution and perform a Keller box simulation with TP set according

to experimental results. According to refs. [9, 10] a good approximation is to set

the TP at X = 0.225L which gives cd = 0.0059 while the experimental value is[8]

cd = 0.006, showing a perfect match between experimental data and Keller box results.

With the laminar-turbulent transition point set at X = 0.1L CFD gives cd = 0.0057

while the result computed by the present method is cd = 0.0067. Considering that the

CFD cd is already lower than the experimental value, and performing a new simulation

with TP set further would make the computed drag coe�cient decrease, it's clear that

the numerical method presented in this thesis gives way better results for the NACA-

0012 than a Spalart-Allmaras RANS simulation. The main reason of the di�erence

between CFD and Keller box drag coe�cients is the enlargement of CFD boundary-

layer thickness, which brings to smaller velocity gradients near the wall and lower shear

stress.

For what concerns NLF-0416 pro�le the real transition point location was found to

be[11] X = 0.39L for the upper side and X = 0.51L for the lower side. With this set

up the drag coe�cient calculated by the method presented here is cp = 0.0043 while

the experimental value is[11] cp = 0.0056. This discrepancy could be explained by

the under-capacity of the Cebeci-Smith turbulence model to deal with adverse pressure

gradients, which are stronger here than on NACA-0012. In fact in this case the accuracy

of drag prediction of Keller box method is comparable to the one shown by the CFD,

since with TP at X = 0.1L the latter method gives cp = 0.0068 while the result of the

former one is cp = 0.0069. Nevertheless, considering the NACA-0012 results, it seems

legit to state that the actual behavior of boundary-layer thickness is more similar to the

one shown by the Keller box simulations but, on the other side, better results for what

concerns drag prediction (which is related to velocity pro�les simulation capability) can

be achieved by adopting a more sophisticated turbulence model.

What has just been said shows that, for sure, the main reason of the di�erences

between CFD and Keller box BL thickness is the poor capacity of the RANS simulations

to properly model the boundary-layer.
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Conclusions and Outlook

In this work a method to solve unsteady boundary-layer equations was developed.

After having introduced the concept of boundary-layer and whose governing equa-

tions some simple but reliable boundary-layer analytical models for �at plates were

presented.

In Order to solve more complex �ow �elds it is necessary to solve the direct boundary-

layer equations, which are partial di�erential equations. A �nite di�erence method was

developed to solve these equations. At �rst the Falkner-Skan coordinates transforma-

tion was applied. This transformation introduce a variation of dimensionless spacing in

wall-normal direction which reduces or even eliminates the transformed boundary-layer

growth, allowing us to adopt a rectangular transformed grid and resulting in a nu-

merical advantage. Then a dimensionless stream function f (x, η) was introduced and

the boundary-layer momentum equation had to be solved for it. Considering also the

dimensionless stream function derivatives, u and v, the third order momentum di�er-

ential equation was reduced to a system of three �rst order di�erential equations. The

Cebeci-Smith zero equations turbulence model was applied, which is based on empirical

functions for inner and outer region of turbulent boundary-layer. This model has the

main advantage to not introduce any new equation to the system, and to be thought

precisely for boundary-layer determination. A numerical solver was implemented, based

on the Keller box discretization, for both steady and unsteady �ows. The steady code

results were used as starting conditions of the unsteady code in the (x, y) plane. In the

(x, t) plane the velocity pro�le at the previous time step of the ξ node corresponding

to the present stagnation point was adopted as starting condition. A good issue for

further developments would be to implement a more sophisticated way to model the

starting velocity pro�le, taking into account for example the ∂U
∂t

derivative.

Results for turbulent �at plate showed a small instability in the computation of the

�rst point after the wall in wall-normal direction. This instability was so small that its

presence didn't even a�ect boundary-layer and displacement thickness values, by the

way it has been eliminated by a low-pass �ltering function.
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Steady and unsteady �ow with pressure gradients test cases showed very good ac-

cordance between CFD results and those obtained by the present method for more

than two-thirds of chord length, a part from some very sharp peaks at the leading edge.

Then, at di�erent point for di�erent pressure distributions, abrupt changes of CFD

computed boundary-layer thickness occurred. Leading edge peaks, those located on

the suction side of NLF-0416 and after X = 0.8 m of NACA-0012, were all caused by a

bad interpretation of the boundary-layer by the CFD post processor. Thus, the velocity

pro�les through the BL computed by CFD which showed any anomaly in the steady

simulation of both NLF-0416 and NACA-0012 were analysed and both the boundary-

layer thickness and the external velocity were corrected. Even though the results were

corrected in order to �nd the actual external velocity and BL thickness distribution,

there were still non-negligible discrepancies between CFD and Keller box results. In

order to understand which one between results obtained by CFD and by the present

method are more accurate new Keller box simulations were performed for both NACA-

0012 and NLF-0416 setting the laminar-turbulent transition point in accordance with

experimental data[9, 10, 11], drag coe�cient was calculated and compared with values

found in literature[8, 11]. NACA-0012 results show perfect matching between experi-

ments and Keller box numerical data, while CFD drag coe�cient for TP at X = 0.1L

is way much smaller than the one calculated by the method discussed here. This sug-

gests that the simulations carried out by the method developed in this thesis are more

accurate for what concerns behavior of boundary-layer thickness. On the other hand

NLF-0416 drag coe�cient data showed that, in this case, drag prediction capability of

Keller box method is similar to the one achieved by the Spalart-Allmaras CFD simula-

tion, leading to an under-estimation of the drag. This last issue suggests the adoption

of a more sophisticated turbulence model than the Cebeci-Smith, which can't simulate

properly regions with adverse pressure gradient.

For further developments, after a new turbulence model will be implemented, the

new results should be validated by comparison with way more sophisticated (and time

consuming) CFD simulations or experimental results for what concerns boundary-layer

thickness behavior. Simple Spalart-Allmaras RANS simulations indeed showed to be

not enough reliable for validation purposes. The ideal solution would be, of course, to

carry out an experimental campaign where both laminar-turbulent transition location

and boundary-layer thickness are measured, but this approach would be even more

expensive and time consuming than using DNS simulations.

In this work the code needs the information where the turbulence model should be

used, which means setting the transition point. In the present calculation the transition
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point was set manually in accordance to the CFD reference data or experimental results.

In order to reduce this arbitrariness, and to re�ne the method, prediction of transition

point should be included and a transition model should be implemented.

The main strength of the boundary-layer method developed in this work is its quick-

ness, coupled with a good reliability. There wasn't any simulation which lasted more

than 15/20 seconds, not even the unsteady ones, and they all gave, as already said,

results which are better than those obtained by Spalart-Allmaras RANS simulations.

On the other hand the main �aw of this method is that it can't handle separated �ows,

since in these conditions it's no more able to reach convergence. By the way, since the

main target of this work was to �nd a quick method to model attached boundary-layers,

its impossibility to deal with separated �ows it's not so important. On the contrary,

the characteristic of the present method to not achieve convergence after �ow separa-

tion could be a good way to precisely predict it by detecting where solution is no more

reached, new test cases should be carried out to verify this possibility.

Thus, the boundary-layer method here discussed seems to be, if coupled with a good

inviscid method, a good starting point for the development of a quick, reliable method

useful for preliminary design analysis.
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Nomenclature

α Constant in Cebeci-Smith turbulence model for outer boundary-layer region α =

0.0168 in Chapter 1, angle of attack in Chapter 3 and Conclusions and Outlook

αn Constant of discretized boundary-layer equation

α1 Coe�cient for Pohlhausen method in Chapter 1, constant of discretized boundary-

layer equation in Chapter 2

α2 Coe�cient for Pohlhausen method in Chapter 1, constant of discretized boundary-

layer equation in Chapter 2

f̄ Averaged Falkner-Skan dimensionless stream function in unseady discretized

boundary-layer equation

q̄ Averaged variable of unsteady boundary-layer equation

ū Averaged �rst derivative of Falkner-Skan dimensionless stream function in un-

seady discretized boundary-layer equation

v̄ Averaged second derivative of Falkner-Skan dimensionless stream function in

unseady discretized boundary-layer equation

β1 Coe�cient for Pohlhausen method

δf Iterate of Falkner-Skan dimensionless stream funtion

δu Iterate of �rst derivative of Falkner-Skan dimensionless stram function

δv Iterate of second derivative of Falkner-Skan dimensionless stream function

δ Boundary-layer thickness

δ1 Displacement thickness

δ2 Momentum thickness
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δ100 Distance in wall-normal direction where velocity parallel to the wall reaches 100%

of external velocity

δ99 Distance in wall-normal direction where velocity parallel to the wall reaches 99%

of external velocity

η Laminar �ow wall-normal dimensionless coordinate in section 1.3, Falkner-Skan

dimensionless coordinate in wall-normal direction in section 1.5 and Chapters 2

and 3

ηe Falkner-Skan dimensionless wall-normal coordinate value at the edge of boundary-

layer

ηmax Maximum value of dimensionless coordinate in wall-normal direction

γ Intermittency factor for boundary-layer oute region in Cebeci-Smith turbulence

model

γtr Intermittency factor for transition in Cebeci-Smith turbulence model

Λ Shape factor for Pohlhausen method

(νt)i Eddy viscosity of inner boundary-layer region

(νt)o Eddy viscosity of outer boundary-layer region

(rj) Coe�cient of right-hand side of discretized boundary-layer equation with j =

1, 2, 3

(sj) Coe�cient of discretized boundary-layer equation with j = 1, 2, 3, 4, 5, 6

f Body forces per volume

v Velocity vector

µ Viscosity

ν Kinetic viscosity

νt Eddy viscosity

ω Angolar velocity

u Mean streamwise velocity component
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v Mean wall-normal velocity component

−→
δ Iterates vector

−→r Known terms vector

ψ Dimensional stream function

ρ Density

τ Shear stress in section 1.3, dimensionless time variable in section 1.5 and Chapter

2

τ0 Shearing stress due to friction

ũ Unsteady mean streamwise velocity component

ṽ Unsteady mean wall-normal velocity component

z̃ Width-parallel coordinate

ξ Dimensionless coordinate in streamwise direction

A Constant damping length for Cebeci-Smith turbulence model in Chapter 1, co-

e�cients matrix of Keller box method in Chapter 2

Aj 3× 3 block matrix of coe�cients for boundary-layer calculation with 0 ≤ j ≤ J

b Width of the �at plate in section 1.3, viscous term in transformed boundary-layer

momentum equation in section 1.5 and in Chapter 2

Bj 3× 3 block matrix of coe�cients for boundary-layer calculation with 1 ≤ j ≤ J

C Constant in intermittency factor for transition in Cebeci-Smith turbulence model

Cj 3×3 block matrix of coe�cients for boundary-layer calculation with 0 ≤ j ≤ J−1

D Skin friction

f Laminar �ow similarity function in section 1.3, Falkner-Skan dimensionless stream

function in section 1.5 and Chapters 2 and 3

FLARE Flügge-Lotz Reyhner approximation parameter

G Constant in intermittency factor for transition in Cebeci-Smith turbulence model
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h Distance between plates of Couette �ow

h1 Dimensionless space interval between the wall and the �rst node in wall-normal

direction

hj Dimensionless space inteval in wall-normal direction with j = 1, 2, ..., J

i Time step

J Total number of grid points in wall-normal direction

j Grid position in wall-normal direction with j = 0, 1, 2, ..., J and j = 0 at the wall

K Shape factor for Pohlhausen method in Chapter 1, variable grid parameter in

Chapter 2

k Constant in turbulence viscosity for inner region k = 0.4 in Chapter 1, dimen-

sionless reduced frequency in Chapter 3

kn Grid spacing in streamwise direction between two grid points at n and n− 1

L Characteristic length in section 1.2, total length in section 1.3, chord length in

sections 1.4, 1.5 and Chapters 2 and 3

l Mixing length

m Dimensionless pressure gradient coe�cient in transformed boundary-layer equa-

tion

m3 Dimensionless pressure gradient coe�cient in transformed boundary-layer equa-

tion

N Constant in damping length for Cebeci-Smith turbulence model

n Grid position in streamwise direction

p Pressure

p+ Dimensionless pressure in Cebeci-Smith turbulence model

q General variable of unsteady boundary-layer equation

q234j Sum of qj values at three of the four corners of the ηj of the box

r Iteration number
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Rn−1
j− 1

2

Constant including all terms o previous position in stramwise direction of dis-

cretized boundary-layer equation

ri Dimensionless time interval between i and i− 1 time steps

Re Reynolds number

ReL Reynolds number with free-stram velocity U∞ and chord length L

Rextr Reynolds number at transition point

T Time averaging interval

t Time coordinate

U Velocity at the boundary-layer edge

u Velocity through the boundary-layer in streamwise direction in Chapters 1 and

3, �rst derivative of Falkner-Skan dimensionless stream function f in Chapter 2

u′ Turbulent �uctuation of streamwise velocity component

U∞ Free stream velocity

uτ Friction velocity

v Velocity through the boundary-layer in wall-normal direction in Chapter 1, sec-

ond derivative of Falkner-Skan dimensionless stream function f in Chapter 2

v′ Turbulent �uctuation of wall-normal velocity component

w Dimensionless velocity at boundary-layer edge

X Global horizontal cartesian coordinate

x Streamwise coordinate

xtr Streamwise coordinate where laminar-turbulent transition starts

Y Global vertical cartesian coordinate

y Wall-normal coordinate

yc Wall-normal distance where the outer region for turbulent viscosity starts

BL Boundary-Layer

79



CFD Computational Fluid Dynamics

DNS Direct Numerical Solution

RANS Reynolds Averaged Navier Stokes

TP Transition Point
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