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Abstract

Single-cell sequencing techniques are becoming more and more used. Methods to compute
RNA velocity are improving. In this work, the main purpose is to study in deep the relation
between RNA velocity and the interaction of genes, in order to reconstruct the corresponding
Gene Regulatory Network.
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1
Introduction

Single cell RNA sequencing (scRNA-seq) is an active research area in recent years which is
rapidly developing and attracting attention due to its extraordinary potential. With this tech-
nology, it is able to observe the genome, the transcriptome and the proteomics at an individual
cell level. It represents an evolution from bulk sequencing technique, whose data provides an
average expression of a large population of cells. The scRNA-seq allows for the study of cell-
to-cell variability as well and thus quickly generated enormous expectations for biologists and
bioinformaticians. Indeed, it provides higher resolution data and a better understanding of bi-
ological processes of an individual cell within its microenvironment. It has become a standard
technique to systematically discriminate cell types in mixed samples, to study cell differentia-
tion and to better understand the dynamics of cancer cells.

Another fascinating possibility is to comprehend the interactions between genes and how
they regulate each other. The observation of the change in gene expression among cells belong-
ing to the same type enables to capture genes dependencies which can be described in a gene
regulatory network (GRN). It should be taken into account that stochastic fluctuations and
processes such as the cell cycle, which is always occurring in a living cell, are an important source
of noise for this type of data. On account of this, scRNA-seq data brings new challenges for
the mathematical modelling and the computational development of any methods.

The aimof this thesis is to study the already existing algorithmGRISLI [6] and to increase its
performance by making use of more precise methods within its workflow. GRISLI estimates

1



the gene regulatory network starting fromgene expressiondata, thanks first to the estimationof
the RNA velocity and then to the solution of a sparse regression problem. The initial improve-
ment consists in the employment of a preprocessing technique in order to remove some noise
from the data. Then, starting frommore reliablemeasurements, more advanced algorithms are
investigated for the RNA velocity inference step.
The thesis is organised as follows. Chapter 2 introduces the biological processes of transcrip-

tion and translation, fundamental for the comprehension of the definition of RNA velocity.
In addition, scRNA-seq techniques are discussed in detail and the differences with respect to
the bulk sequencing technologies are analysed. In Chapter 3 the concept of RNA velocity is
defined and three algorithms for its inference are presented. Chapter 4 deals with the gene reg-
ulatory networks theory and it examines theGRISLImethod in particular. Chapter 5 presents
an overviewof various techniques for the imputation of single cell data and for their simulation.
Finally, in Chapter 6 the results obtained from the modification of GRISLI are shown, with
some critical analysis about the limitation of this linear method.
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2
scRNA-seq data

This chapter introduces the technology of single cell RNA sequencing data, its improvement
with respect to bulk sequencing data and presents the phases of transcriptional dynamics. In
Section 2.1, the fundamental concepts of transcription and translation processes are intro-
duced. Section 2.2 explains the single cell technology pipeline, listing its strengths and also
its limitations.

2.1 FromDNA to proteins

Deoxyribonucleic acid (DNA) is composed by two chains of nucleotides, which are coiled
around each other by hydrogen bonds, forming the characteristic double helix. The repeating
units of the polymer are the nucleotides, which are only four: Adenine, that is complementary
to Thymine and Guanine, whose complement is Cytosine.

The units of biological information is the gene, that is identified by a specific region of the
DNA strand andwhich is responsible for a specific feature of the organism. In particular, genes
encode for proteins that carry out necessary functions for the lives of the cell and of the whole
organism. For example, some proteins must metabolise nutrients, others synthesise biological
constituents or create copies of the DNA. In order to encode for proteins, transcription and
translation processes must occur.
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Figure 2.1: Schema of transcription process. RNA polymerase (yellow) separates the strands of DNA and the lower strand
is taken as the template, for the synthesis the precursor mRNA (light green). The promoter region of DNA is highlighted in
green.

During transcription, the genetic information is transferred to a messenger ribonucleic acid
molecule (mRNA). It is really complicated since its setting up is regulated by cis-regulatory
elements, such as promoters and enhancers, which are non-coding regions of DNA that are
located respectively close to the gene or distant from it. Proteins called transcription factors
bind to these non-coding regions and, thanks to many mediator proteins, are able to make the
enhancers and promoters interact, in order to initiate transcription. At this stage, RNA poly-
merase, which is complex enzyme, binds to the promoter, which is still fully double-stranded.
RNA polymerase can separate the strands of a small region of the DNA, such that one single
strand can be used as a template.
When the enzyme finds the transcription start site, the elongation phase begins. Taking the

single strand of DNA as a template, a chain of complementary nucleotides is build, thus form-
ing a molecule of mRNA. It should be noticed that this molecule contains the same informa-
tion of the coding region of the gene, where the Thymine nucleotide is replaced by the base
Uracil. During the elongation, a process called capping occurs. It consists in the addition of
an altered Guanine at the beginning of the transcript. This allows the precursor mRNA to be
recognised as such and not be degraded. It also enables the correct occurrence of the splicing
and facilitates the translation process.
The termination is characterised by a specific sequence which signals that the RNA tran-

script is complete. This process involves the cleavage of the new RNA transcript and the ad-
dition of few hundreds of Adenines, in a reaction called polyadenylation. This poly(A) tail is
fundamental for the stability of the mRNA, protects it from degradation at that end and will
influence the downstream translation.
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Figure 2.2: (a). The particular conformation of tRNA. The upper part is responsible for the transportation of the amino acid.
The lower part is constituted by the anticodon, which will attach to the complementary codon on the mRNA. This tertiary
structure is maintained thanks to hydrogen bonds. (b). Schematic representation of translation. ThemRNA sequence (purple)
is bounded to the ribosomal sub‐units (green). The large sub‐unit is composed by three sites: acceptor (A), peptidyl (P) and
exit (E). When a codon is exposed, a tRNA molecule enters in the A site and the peptide chain is elongated with the newly
transported amino acid. The tRNAmoves to P site and when a new codon is attached by another tRNA, it will exit by moving
to the E site.

This newly transcribed mRNA is defined as premature mRNA and some extra processing
must occur before translation takes place. In particular, pre-mRNAundergoes splicing process
and is transformed into mature mRNA. The transcript contains regions called introns and ex-
ons. The first ones are non-coding regions ofRNA thatmust be removed. The second ones are
the actually coding sequences, that must be spliced back together, once the introns are cleaved
by a complex called spliceosome. Therefore, the mature mRNA that is obtained is composed
only by exons, as long as two untranslated regions at the terminations of the molecule (the cap
and the poly(A)). Indeed, only the exons of a gene encode a protein and the removal of the
introns prevents the generation of nonsense or pathological polypeptide chains.

The secondmajor step in gene expression is translation, which exploits themRNAmolecule
to build a sequence of amino acids. Before starting, it is necessary to say that themRNAcarries
information for building the proteins and this information comes in codons, which are groups
of three nucleotides. There are 64 codons (given by the combinations of the four nucleotides
in triplets) and each of them correspond to an amino acid, according to the genetic code rules.
The only exceptions are the three stop codons, which are not associated to any amino acid
but have the role of triggering some reactions to terminate the translation at the end of the
process. Another important triplet is the start codon, which encodes for the methionine and
is fundamental for the initiation of translation.
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In addition, two complexes are necessary for the protein synthesis. The first one is the trans-
fer RNA (tRNA) which has a particular conformation and acts as an intermediary between
nucleotides and amino acids. In particular, one site of the tRNA carries a particular amino
acid molecule, that is associated with a specific nucleotide sequence (codon), whose comple-
mentary (anti-codon) is found at another site of tRNA. The other complex is the ribosome,
which is a macro-molecular organelle and is constituted of two sub-units, the small and the
large one. Three sub-regions can be identified in the ribosome: the acceptor (A) site, that al-
lows one tRNA to enter; the peptidyl (P) site, which contains the polypeptide chain that is
being built; and the exit (E) site, from which the deacylated tRNAmolecule is released.

Like transcription, translation also occurs in three stages: initiation, elongation and termi-
nation. The small sub-unit of the ribosome assembles around a molecule of mature mRNA
and the complex is joined by the large sub-unit. ThemRNAmolecule is read a codon at a time
and, thanks to the tRNAs, the correct amino acid, which corresponds to the codon, is added
to the polypeptide chain. As themRNA is pulled through the ribosome, a tRNAmolecule en-
ters the acceptor site and binds the codon. The growing peptide chain, attached to the tRNA
on P site, is linked to the amino acid carried by the new tRNA onto the A site. The mRNA
shifts one codon-length, allowing the following codon to be exposed and read. In this way, the
tRNA in site A moves to site P and the one on site P moves to site E and then it is released.
This process is repeated many times, as long as new codons are available and the chain is

extended with new amino acids. The termination of translation happens when one of the
three possible stop codon is met. This is recognised by the so-called release factors, that bind to
the P site and separate the polypeptide chain from the tRNA. The newly synthesised protein is
released, the two sub-units of the ribosome detach from each other and a new translation can
start rapidly.

2.2 Single-cell data

Single-cell RNA sequencing is part of next-generation sequencing (NGS) technologies that are
rapidly progressing in recent years. It provides valuable insights into the biological systems of
individual cells, providing data with higher resolution than the previous technologies, such as
bulk RNA sequencing, and enables a deeper understanding about the complexity of micro-
environments. The objective of this technology is to generate omics data (genomics, transcrip-
tomics and epigenomics) that allows a precise characterisation of cells profiles, going further
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the traditional profiling methods, which analyse biological samples at a bulk-level. For exam-
ple, rare cells such as cancer cells, are extremely heterogeneous within their population, and
single-cell data can uncover unexpected gene-to-gene relationships, that are fundamental for
the awareness about cancer evolution. In developmental studies, single-cell technology can
reveal critical genes that trigger cell fate decisions and the trajectory of different lineages in de-
velopment can be inferred. In addition, the characterisation of outlier cells, which are not de-
tected by analysis of pooled cells, implicate a better understanding of drug resistance and cells
in diseased states.
Conventionalmethods, like bulkRNA-seq, analyse a large population of cells at a time, pro-

viding only an average of genes expression. However, even if each cell of an organism shares
identical genotypes, the transcriptome is determined by the expression of only a portion of
genes. Moreover, evidence shows that the expressions may vary also within similar cell types,
disproving the hypothesis that cells of a given tissue are homogeneous, asmostmethods assume.
Finally, most biological samples contain mixed ensemble of cells and bulk RNA-seq data ob-
scures important differences between cells of various types.

Single-cell RNA-seq technique constitutes an evolution with respect to bulk RNA-seq be-
cause the generated data is not an average of gene expression among all the cells, but aims to
faithfully represent the real expression profiles of an individual cell. Even if this is an important
turning point, some limitations are still present in scRNA-seq, both technical and biological.
The stochastic expression and the low amount of startingmaterial cause the data to be affected
byhighdropout andnoise. Indeed, scRNA-seq technologies producenoisier andmore variable
data, which is challenging for computational methods to analyse. Nevertheless, experimental
protocols and bioinformatics pipelines have become gold standard in the past few years and the
various steps resemble those of bulk RNA-seq, except the first ones.

The very first step consists in the isolation of single cell from which transcriptome informa-
tion is obtained. Many methods have been developed for this step, from the limiting dilution,
which is not very efficient, to the encapsulation of individual cells in droplets, thanks to a mi-
crofluidic device. These techniques continuously improve inperformances, decreasing the false
positive rates and bias, and constantly decreasing their cost.
The second phase is the preparation of scRNA-seq library. The cells are lysed to allow the re-

lease of genomic and transcriptomic materials. Then, in order to capture the messenger RNA
molecules, primers containing a segment of repeating deoxythymidines (dT) are adopted to an-
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Figure 2.3: Image from [1]. Schema of microfluidic isolation approach. Cells are encapsulated into droplets, that contain
primer beads identified by barcodes. Once the cell is lysed, fragments of RNA will attach to the beads and the reverse
transcription starts. Then, the generation of scRNA‐seq libraries is eventually completed with the cDNA amplification.

neal to the polyadenosine (polyA) tails present onmRNAs. At this stage, reverse transcription
is initiated, yet only a small amount of those transcripts will complete this stage, around the
10− 20% of the total. The low efficiency of mRNA capture is one of the main limitations of
this technology and require the adoption of a good upstream lysing approach. Molecules of
complementary DNA (cDNA) are synthesised from the captured mRNA molecules, which
serve as template, through a reaction catalysed by a chosen enzyme reverse transcriptase. This
step is necessary for many reasons: DNA’s structure is more stable, it allows amplification
thanks toDNApolymerase andmoredevelopedDNAsequencing technology canbe exploited.
Since the amount of the obtained cDNA is relatively low, an amplification technique must be
adopted. Conventional polymerase chain reaction (PCR) method can be used and one of its
advantages is that permits to generate full-length cDNAs. However, PCR introduces biases
since particular sequences may be amplified in an exponential manner, causing the creation of
libraries with uneven coverage. Another approach for cDNAamplification is in vitro transcrip-
tion (IVT), which avoid the coverage bias of PCR, but it can inefficiently transcribe specific
sequences, causing dropout events and the generation of incomplete sequences. Since tran-
scriptome analysis is performed on a huge amount of cells, barcodes of length 4 to 8 base pair
or unique molecular identifiers (UMIs) are incorporated in the reverse transcription phase, so
that each fragment of cDNA can be assigned to its original cell. It improves the accuracy and
reduce the bias caused by the amplification step. It allows also for a better reproducibility than
other read-based techniques.

Once the experimental laboratory procedure is completed, bioinformatics tools are necessary
to analyse the amplified cDNA libraries. The first step consists in the quality control of the
obtained reads, to get rid of low-quality bases and to remove the adapter sequences. Next, the
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transcriptomemust be assembled and twoapproaches are possible. One is thedenovo assembly,
which is used typically when a reference genome is not available. It consists in the generation
of contigs, continuous sequences obtained by the union of several reads that could be adjacent
in the genome. In order to find those reads, all-pairs overlaps graphs can be identified, but they
are not efficient when dealing with millions of reads, or the de Bruijn graph approach can be
exploited, which consists in the disruption of reads into sequences of k length (k-mers) that
collapse into a hash table. Otherwise, if a reference genome exists, genome guided assembly is
possible. This approach usually consists in the alignment of short portions of reads and then
the use of dynamic programming, which results in the optimal alignment.

In general, only reads that map the genome with high mapping quality are retained for the
construction of the gene expressionmatrix. Themain feature of scRNA-seq expressionmatrix
is the presence of zero-inflated value, caused by both technical limitations and transient gene
expression. The gene expression is given by the number of reads that are mapped to the dif-
ferent loci in the transcriptome assembly phase. Then, normalisation of the data is commonly
adopted to remove cell-specific bias. Scaling factors are used for this preprocessing step, and
are obtained as the standardisation among cells. This procedure makes the strong assumption
that most, if not all, genes are not differentially expressed. Other approaches are based on the
between-sample normalisation, which assume that highly variable genes skew the abundance
distribution in expression profiles. These methods are more efficient if the objective is to study
the differential expression of genes.

It should be noted that all the downstream analyses based on scRNA-seq data have to deal
with a high dimensionality problem. Indeed, the number of genes is usually bigger than the
number of cells, which is an issue for computational methods. For this reason, it is common
to adopt some reduction dimensionality approach, such as t-distributed stochastic neighbour
embedding (t-SNE). It is a non linear method which is suited for the embedding of high di-
mensional data in a low dimensional space of two or three dimensions. This leads to an easy
visualisation of the data and increases the interpretability of data and results. In particular,
two probability distributions are defined over the pairs of data-points in the high- and the
low-dimensional spaces. They are defined in such a way that similar ones are associated with a
higher probability and different ones are assigned a lower score. Then, the method minimises
the Kullback-Leibler (KL) divergence between the distributions according to a given similarity
metric. Finally, clustering methods are useful for cell types identifications and can also be em-
ployed to detect low-quality cells, especially those enriched in mitochondrial genes.
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After these preliminary steps, the processed data can be used for cell type characterisation,
gene regulatory networks inference and trajectory inference. These studies are improved and
more precise than when performed with bulk RNA-seq data, since data is more detailed and
specific correlation between genes can be discovered, as well as less-expressed genes are not dis-
carded, which usually happens when averaging the expression in bulk data.
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3
Inference of RNA velocity

This chapter explains what is defined as RNA velocity, its possible mathematical representa-
tions and their limitation. In Section 3.1, it is introduced the biological notion of RNA veloc-
ity. Section 3.2 and Section 3.3 explore in detail two of the state-of-the-artmethods for velocity
inference. The last Section 3.4 discusses a different modelling approach, which however is at
the core of this thesis.

3.1 The concept of RNA velocity

In the previousChapter 2, it has been introduced the importance of single-cell transcriptomics.
This kind of data can be exploited for the inference of RNA velocity and/or trajectory in-
ference. These concepts enable the dynamical study of RNA processing from unspliced to
spliced, through techniques described in proper scRNA-seq protocols. These procedures can
distinguish between pre-RNA and mature RNA molecules, as a result of the presence of the
so called introns. The latter are sub-sequences of RNA strands that do not directly code for
proteins and which are removed during the splicing process.

Once stated the ability to discriminate between unspliced and splicedmRNAmolecules, the
theory of RNA-velocity can be introduced. In literature, in particular in [2], it is defined as the
rate of change in mRNA abundance, which relates the unspliced and spliced mRNA quanti-
ties and it is induced by two main processes. The first one is the degradation of the mRNA
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molecules, fundamental for the regulation of gene expression and for the elimination of defec-
tive RNAs. The second one is the splicing process, that generates splicedmRNA starting from
unspliced one, and eventually permits the translation from RNAs to amino acid strands.
At the level of a single-cell measurement of RNA abundances, the velocity is a punctual

temporal estimate, in the sense that no temporal relationships can be exploited. Moreover, it
is a high-dimensional vector, whose dimension is given by the number of genes that are taken
into consideration, and which could be used to infer the future state of the single cell. It must
be recalled that each element of the velocity vector refers to the instantaneous velocity of one
particular gene of the cell and its value describes its dynamics. Therefore, single values of ve-
locity vectors can be interpreted according to their mathematical sign. Positive values indicate
an instantaneous up-regulation of the specific correlated gene. This means that the abundance
of unspliced mRNA is higher than expected and there is a deviation from the steady-state of
the cell. Vice versa, negative values are related to down-regulation phases, during which the
unspliced mRNA is less abundant. A null velocity means that the gene is in one of two steady-
states, which have been hypothesised to occur. It may be repressed, meaning no unspliced nor
spliced mRNA is observed, or it could be actively transcribed, while the rate of degradation
and generation of spliced mRNA counterbalance each other.

This relatively straightforward concept relies on the strong and fundamental assumptions
that the experimental data captures all the phases of a gene expression, from induction to re-
pression. It is crucial since the RNA velocity is expressed relatively to the steady-state ratio of
unspliced and splicedmRNA.The lack of this information could lead to an incorrect inference
of RNA velocity and might compromise the drawn conclusions. As discussed in [12], this as-
sumption is not always met because of many reasons. The experiment might not last enough
to capture the whole biological reaction of interest, the up-regulationmay start at the very end
of the process or the down-regulation at the very beginning of it. Another problem could be
that the difference between up- and down-regulation abundances is not detectable and, thus,
the deviation from the steady-state ratio is not discernible.

For these reasons, even if the method implemented in [2] is widely used, some progress has
been made [3], with the goal of removing some of those restrictions. Section 3.2 and Section
3.3 will describe in more detail this aspect.

Finally, the general formulation of the dynamic model of transcription can be introduced.
Many of the state-of-the-art methods are based on two first order differential equations that
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formalise three biological processes. Equations 3.1 are expressed with respect to one specific
gene and can be easily extended to a multitude of them.

du(t)

dt
= α(t)− β(t)u(t) ,

ds(t)

dt
= β(t)u(t)− γ(t)s(t) (3.1)

In order not to lose generality, the variables and the parameters are all time-dependent. The
variables u(t) = (u1(t), . . . , un(t)) and s(t) = (s1(t), . . . , sn(t)) are multi-dimensional
vectors, with n being the number of cells, and they represent the abundances of unspliced and
spliced mRNA, respectively. The parameters describe the rates of the different processes: α(t)
refers to the rate of transcription of precursor mRNA u(t), β(t) to the rate of splicing, that
generates mature mRNA s(t) and finally γ(t) to the rate of mRNA degradation. On the left-
hand side of Equations 3.1, the time derivative of both pre-mRNA and mature mRNA are
defined, with only the latter (ds(t)

dt
) being the RNA velocity.

This formulation is themost straightforward and general model that has been proposed and
on which the literature is based nowadays. Certainly, it can be adapted according to the as-
sumptions that different methods might make.

3.2 Steady-state model of velocyto method

After introducing the concept of RNA velocity, it must be said that different methods for
its inference rely on slightly diverse dynamical models, whose attempt is to go around or to-
tally avoid the previously listed problems. In particular, in the previous section, the explained
widespread theory is formalised in LaManno et al. [2]. The paper introduces their algorithm
velocyto, which is one of the first developed and state-of-the-art methods for the RNA velocity
inference. This method is able to approximate the first time derivative of the gene expression
state, by following a simple model for transcriptional dynamics, as shown in Equation 3.2 and
in Figure 3.1b.

ds(t)

dt
= βu(t)− γs(t)

(β=1)
= u(t)− γs(t) (3.2)

The parameters β and γ correspond to the splicing rate and the degradation rate and, differ-
ently from Equations 3.1, both of them are constant. Furthermore, it can be noticed that the
parameter β is set to be equal to 1. It is a strong assumption, since it implies a constant and
common splicing rate for all genes, that, as one might imagine, is not what happens in a real
biological environment. Still, this simplification is useful in order to diminish the number of
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a b c

Figure 3.1: Image from [2]. a. Schema of transcriptional dynamics. Parameters represent transcription rate, splicing rate
and degradation rate. At the bottom, the equation of velocity. b. According to a step change of α, it is represented how
u and s dynamics react. c. Phase diagram: on x‐axis there is s, on the y‐axis u. Bottom‐left equilibrium corresponds to
passive steady state; top‐right equilibrium to active steady state. Diagonal dashed line represents the slope γ of steady
states for different values of α. Upper‐space (red) represents positive velocities, i.e. up‐regulation of a gene; lower‐space
(blue) represents negative velocities, i.e. down‐regulation.

parameters to tune.

Recalling what said in Section 3.1, the strong assumption of this model is that both tran-
scribing and silenced (i.e. active and passive) steady state equilibria are observed in the data. In
those steady states, the synthesis of spliced mRNA and its degradation counterbalance each
other and the velocity is null (ds

dt
= 0). In order to properly tune the parameter γ, linear regres-

sion can be used on the lower and the upper quantiles in the phase space of mRNA expression,
as they correspond to the silenced and active steady state respectively. As a result, a straight line
can be drawn as in Figure 3.1c (grey dashed line) and it represents all the intermediate steady
states where the ratio between spliced and unspliced amounts is constant and equal to γ. Once
this ratio is found, induction and repression phases correspond to the upper- and lower-space
with respect to the steady state diagonal. It is the reason why this sort of model is referred to as
the steady-statemodel.

Analytically, the value of γ can be found through least square fit, by solving Equation 3.3.

γ̃ = β
uT s

∥s∥2
(β=1)
=

uT s

∥s∥2
(3.3)

Finally, the approximation of RNA velocity ṽ is computed as the deviation from the steady
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state ratio, that is the just found γ̃ parameter (Equation 3.4).

ṽi = ui − γ̃si ∀i ∈ {1, . . . , n} (3.4)

A null velocity represents a constant transcription of that gene; whereas, a non-zero veloc-
ity indicates a dynamic process is happening. The direction and the rate of it depend on the
mathematical sign and the absolute value of the velocity, respectively.

3.3 Dynamical model of scVelo method

The second state-of-the-art method for the RNA velocity inference is scVelo, which has been
developed and presented by Bergen et al. [3]. It is a likelihood-based and dynamical model and
allows the inference of specific reaction rates at the gene level. Moreover, it infers a latent time,
which can be considered as a cell’s internal clock, that places the cell at a point in an underlying
biological process, and, as a result, is shared among the cell’s genes.

The goal of thismethod is to overcome the restrictions introduced by the steady-statemodel.
The first problem that has been noticed is that the passive and active steady states are not always
observed in the data. The other restriction is the assumption that the splicing parameter β is
common and constant among all the genes.

As shown in Figure 3.2b, a phenomenon called early switch is likely to happen, in particu-
lar among transient cell populations. The immature cells differentiate in mature cells, passing
through temporary states which might be unstable. In [3], they consider various lineages in
hippocampal dentate gyrus neurogenesis and pancreatic endocrinogenesis. The assumption
of capturing both steady states discussed in Section 3.2 is inevitably violated and scVelo aims to
manage also those cases. Indeed, the predicted latent time reconstructs with enough accuracy
the temporal sequence of their transcriptomic events and the cellular fates.

The dynamics of this model is formulated in the following Equation 3.5.

du(t)

dt
= α(k) − βu(t) ,

ds(t)

dt
= βu(t)− γs(t) (3.5)

The parameters (α(k), β, γ) refer to the rates defined for Equation 3.1, but are now specific and
different for each cell and for each time point t ∈ {1, . . . , N}.
To overcome the problem of non-observed steady states, the equations are explicitly solved by
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Figure 3.2: Image from [3]. a. Representation of transcriptional dynamics. Parameterα captures the induction and repression
phases of pre‐mRNA. Parametersβ andγ account for splicing and degradation rates. b. The left plot describes a stable steady
state where the transcription persists over time. The left plot shows a passive steady state, named early switch, in which
induction terminates before unspliced mRNA saturation is reached. This particularly happens in transient cell populations.
c. Two plots portray the transcriptional dynamics while highlighting the latent variables assignment. On the left, the latent
time is assigned and projected onto the learned kinetics; on the right, sub‐regions correspond to four internal states of the
cell. A likelihood is associated to those variables and will be needed to update the other parameters. d. After the latent
variables have been fixed, transcriptional parameters are updated and so it is the gene‐dynamics. Finally, the successive
iteration starts by going back to the assignment of latent variables and their likelihood.

integration and the solution is found in Equation 3.6.

u(t) = u0 e
−βτ +

α(k)

β
(1− e−βτ )

s(t) = s0 e
−γτ +

α(k)

γ
(1− e−γτ ) +

α(k) − βu0

γ − β
(e−γτ − e−βτ ), τ = t− t

(k)
0

(3.6)

The initial condition for unspliced and spliced mRNA are given by u0 = u(t0) and s0 =

s(t0). The kinetics is described by two sets of parameters: the first one is given by (α(k), β, γ)

and the second one includes cell-specific latent variables, which are a transcriptional state k
and a continuous time t ∈ [0, 1]. In particular, k is a discrete variable that takes values in {on,
off, sson, ssoff}. These labels respectively refer to the induction and repression phases, or to the
active and passive steady states.

The two sets are interdependent and their estimate can be obtained through the expectation-
maximisationprocess. In thefirst step, given an approximatedphase trajectoryX = (û(t), ŝ(t))t,
a latent time ti is assigned to each mRNA pair xi = (ui, si), according to the minimization
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of its distance to the learned phase trajectory χ (Figure 3.2c). Meanwhile, it is also assigned a
transcriptional state ki to each mRNA abundance xi, by associating a likelihood to different
portions of the trajectoryχ. In the second step, the likelihood ismaximised through the update
of the transcriptional rates (Figure 3.2d). Finally, the method iterates those two steps until it
reaches the convergence for genes showing a clear kinetics.

Once the expectation-maximisation process has finished, RNA velocity is predicted as the
derivative of mature mRNA abundance, that is characterised by the explicit description of the
previously optimised splicing kinetics.

3.4 Three-point model

In the preceding sections, two state-of-the-art models have been examined. Their mathemati-
cal foundation is Equation 3.1, which models the dynamics of unspliced and spliced mRNA
abundances as a system of two linear differential equations. Their inference is based only on
the measurements deriving from scRNA-seq experiments.

However, the starting point work of this thesis is [6], in which they use a different concept
and computation for theRNAvelocity. Their objective is not the velocity inference, but rather
it is the gene regulatory network prediction (Chapter 4). Therefore, their approximation of the
velocity ismuchmorebasic and it is basedon the rate of change in thematuremRNAmolecules
and the pseudo-time label.

Themodel is completely different fromEquation 3.1 andnone of the parameterswhich have
been encountered before is used. It describes the expression process through a linear ordinary
differential equation, formalised in Equation 3.7.

dx(t)

dt
= Ax(t) (3.7)

The variable x(t) is a multi-dimensional vector representing the gene expression (i.e. the
mature mRNA abundance) for each cell. The pseudo-time label t is assigned to each cell and
it is a numerical description of where the cell is in the transcriptional process. A is a square
binarymatrix that characterises the dependencies among the genes. In particular, its dimension
is defined by the number of genes that are considered. Each column and each row corresponds
to one gene and an element of the matrix aij ∈ A is non-null if and only if there exists a
regulatory interaction between the i-th and the j-th genes. It is of crucial importance, since
it captures the internal relationships between genes and it is considered to be one of the main

17



reason behind the change of spliced RNA abundance.
This section is concentrated on the left-hand side of the equation, while the next Chapter 4

will discuss the whole structure in detail.

The RNA velocity inference relies on the pairs (xi, ti) of spliced RNA measure and time-
label for each cell. A first estimation is donewith respect to any other cell (described by (xj, tj))
with a different time-label, through the finite difference expressed in Equation 3.8.

v̂i,j =
xi − xj

ti − tj
, ti ̸= tj (3.8)

It can be noticed that if ti and tj are too far, the finite difference is no more a good approxi-
mation of the derivative, since the delta-time should be as small as possible. The same reasoning
applies to xi and xj : if two cells’ trajectories are too distant, their difference becomes meaning-
less.

The real estimate of the velocity v̂i of cell i is given by theweighted average of all the v̂i,j , with
j ̸= i. The weights in Equation 3.9 are defined as a spatio-temporal functionK(x, t, x′, t′)

that evaluates howmuch (x′, t′) is meaningful in the velocity inference at (x, t) point.

v̂i =
1

2

∑
j|tj>ti

K(xi, ti, xj, tj) v̂i,j∑
j|tj>ti

K(xi, ti, xj, tj)︸ ︷︷ ︸
future

+
1

2

∑
j|tj<ti

K(xi, ti, xj, tj) v̂i,j∑
j|tj<ti

K(xi, ti, xj, tj)︸ ︷︷ ︸
past

(3.9)

It can be noticed that Equation 3.9 is composed by two weighted averages: the first one
regards points in the future with respect to the considered ti, while the second one concerns
the points in the past. This is needed because the relative position in time acts differently on
the estimation of v̂i.

For the sake of completeness, the kernel function K(·) is defined arbitrarily by Equation
3.10, where σt and σx are constants and computed as the square root of the 10th percentile of
the distribution of squared distances in time, t, and gene expression, x, respectively [6].

K(x, t, x′, t′) = (t− t′)2 exp

(
−(t− t′)2

2σ2
t

)
× exp

(
−
∥x− x′∥2RG

2σ2
x

)
(3.10)
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4
GRN reconstruction

This chapter addresses the topic of gene regulatory networks and some of the existingmethods
for their inference. In Section 4.1, the concept of gene regulation is explored from a biolog-
ical and mathematical point of view. Section 4.2 introduces some inference methods, their
assumptions and limitations in terms of performance. In the last Section 4.3, the second step
of GRISLI regarding the regulatory network inference is illustrated in detail and a discussion
about its performance is addressed.

4.1 Gene regulatory networks

A Gene Regulatory Network (GRN) is a high level abstraction of the transcriptional mecha-
nisms, whose aim is to describe how genes and other regulators interact with each other. The
regulator molecules could be DNA, RNA, proteins or more complex structures. One partic-
ular class of proteins, the transcription factors (TFs), exists only to activate or deactivate tran-
scription processes of specific genes. GRNs usually comprehend mostly this class of proteins,
at the expense of the target genes, which have other functions rather than regulatory ones.
The GRN can be represented as a proper network (Figure 4.1), composed of nodes and

edges, which could be directed or not. Nodes denote genes, proteins or any other biological
molecules that interact and control the gene expression levels. Edges express the existing rela-
tion between two nodes, that could be of two types: inductive, where the objective of one gene
is to activate the expression of the other one; or inhibitory, in which case the objective is to
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Figure 4.1: Image from [4]. The schema represents how a complex model (left), that includes three level of expressions (i.e.
DNA, RNA and proteins), can be reduced by retaining only the interactions between the genes (right). On the most right side,
the corresponding adjacency matrix is shown.

diminish or terminate the expression of the other gene. However, even if the most complete
representation contains nodes for genes , mRNA and proteins, it must to be considered that
one gene encodes for one mRNA strand, which will be translated into an amino acids chain.
There exists a sort of a bijective relation between all these transcriptional products and there-
fore, the network can be simplified a lot, denoting all the interactions with respect to the genes
only. From such a complex structure, as depicted in the left part of Figure 4.1, only the gene-
wise relationships can be retained, in order to obtain a more schematic model.

From a mathematical point of view, such a network can be defined as a graph.

Definition (Graph). A graph is a pair G = (V,E), where V is a finite set of vertices and
E is a set of paired vertices, called edges. An undirected graph has edges connecting nodes
symmetrically; a directed graph has nodes connected a-symmetrically, in the sense that if edge
(i, j) exists, the inverse edge (j, i) does not necessarily exist.

Talking specifically about GRNs, different meanings can be assigned to the edges of the
networks. They could describe qualitatively the interaction between genes, if it is inhibitory
or inductive only, or they might be associated with the actual strength of the dependency, in
which case the network is defined as weighted. Generally, in the context of GRNs, their associ-
ated value belongs to the set {+1, 0,−1}, with the significance of activating, null or inhibitory
effect of one gene onto another one.

It is usually interesting to study some mathematical properties of the network, which ac-
quire relevant meanings biologically speaking. For example, the degree of a node is defined as
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the number of edges that are incident to the node itself. The higher the degree, the more cru-
cial the gene function is within the regulatory network, making the gene to be considered as a
hub. In addition, for directednetworks, one could distinguish the in-degree from the out-degree.
The first term refers to the number of arches terminating at the node, meaning howmany TFs
are regulating the gene, while the second one to the edges outgoing the node, standing for how
many target genes it is responsible to regulate. This distinction is fundamental to discriminate
which gene is responsible for the regulation of the other one, outlining the causal relation be-
tween the two of them and identifying which acts as the transcription factor and which as the
target gene.

The last mathematical aspect of graph theory that is possible to exploit, is the possibility
to construct a matrix, starting from the topology of the regulatory interactions, identified by
nodes and the edges.
Definition (Adjacencymatrix). Anadjacencymatrix is a squarematrixA ∈ Rn that describes
a graph G of order n, in which each row and column corresponds to a node in the graph G.
Each element aij ∈ A takes a value according to the fact that vertex i is adjacent to j: it is
1 if the edge (i, j) exists, otherwise it is 0. In the case of an undirected graph, the matrix is
symmetric with respect to the main diagonal.

It can be observed that the matrix for GRNs is usually very sparse, i.e. presenting a lot of
null entries. This characteristic is often problematic when it comes to modelling and inferring
the matrix with the usual computational methods, as it will be discussed in later Sections.

4.2 Overview of GRNs inference methods

The single cell technology continues to rapidly develop, leading to the possibility of better un-
derstanding the cellular pathways. As discussed in Chapter 2, single cell data is characterised
by features that are not present in bulk data. Thus, its statistical and bioinformatics analysis is
more complicated and requires additional attention. For this reason, bulk-data basedmethods
for GRN inference have a high probability of performing poorly and consequently providing
ambiguous results, if applied on sc-data. One fundamental complication is the high percent-
age of zero values in single cell measurements, that may really challenge the performance of
already-existing inference methods. This problem cannot yet be avoided because the presence
of many zeros in the data is caused by two main reasons. Firstly, it is not expected that all tran-
scriptional processes are happening in a single cell, and secondly, technical limitations are due
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to the insufficient amounts of mRNA molecules which can be detected. For bulk samples, a
standard preprocessing step is to impute the zero values in order to stabilise the inferencemeth-
ods. This technique applied on sc-data is still to be refined, since a possibility exists to alter the
overall distribution of gene expression.
These reasons brought the scientific community to develop new GRN inference methods

specifically for single cell experiments, whose goal is to extensively exploit the features of sc-data.
It must be taken into account that this is a relatively new research field and so, these models are
extremely simplified and the predicted network may not describe the entire regulatory mecha-
nism of single cells.

In this section, the following notation for the GRN inference modelling is used. The num-
ber of gene present in the network is n and the number of sampled cells is C . The matrixX
representing the gene expression has dimensionC × n, where the rows are n-dimensional vec-
tors of transcriptome, and the columns are C-dimensional vectors, representing the gene pro-
file among the cell population. The GRN inference methods start from the gene expression
matrixX and predict the network of interactions between pairs of genes. The usual output is
the adjacency matrix, where a non-null entry implies a connection between the two associated
genes that could be caused by physical interaction or by an indirect one.

A series of benchmarking works have compared the performances of many GRN inference
methods applied on sc-data, even the methods that were developed for bulk experimental sam-
ples ([5], [13]).

The most straightforward analysis that could be performed on sc-data is a correlation inves-
tigation. If two genes have very similar profiles, there is a high chance that they are interacting
directly or are involved in the same regulatory process. This condition is however not suffi-
cient, because the correlation may depend also by the effect of other variables. The measure of
partial correlation can be computed as in Equation 4.1, whereXi andXj are the i-th and j-th
genes’ expression vectors, Sm is the set containing all the other nodes and the variable σij is the
covariance between i and j.

ρij|Sm = corrXiXj |Sm =
σij|Sm√

σii|Sm σjj|Sm

(4.1)

This method infers the non-zero values for ρij|Sm that indicate the presence of an edge be-
tween nodes i and j.
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Figure 4.2: Image from [5]. The graphs shows the performance of different GRN inference methods (list at the right) applied
on four datasets. ESC and HSC are real sc‐data obtained from works which studied embrionic stem cell and blood‐forming
stem cell population respectively; while Sim1 and Sim2 are datasets simulated using GeneNetWeaver software (GNW). The
dashed horizontal line represents the threshold of 0.5 corresponding to the random baseline for AUROC. It is clear that no
method can consistently perform better than the random guess. Moreover, no method seems to stand out from the others.

A state-of-the-art method that is taken into consideration for the benchmarks is SCODE
[14]. It infers the GRN topology of a single cell experimental data exploiting an ordinary dif-
ferential equation that describes the regulatory dynamics: dX = AX dt. The matrixA is the
square adjacency matrix representing the gene interactions and X is the matrix of gene expres-
sions. dX and dt represent the infinitesimal change in the expression data and in the temporal
dimension respectively. For this reason, the method requires the pseudo-time data as an addi-
tional input. It is usually computed by external methods, such as Monocle [15].

Besides these two methods, there exist many others that are based on different assumptions.
For example, BayesianNetworksor tree-basedmethods (GENIE3 [16]),methods likeARACNE
[17] that use Mutual Information at their core.

Regardless of the theory which one method is based on, the conclusion drawn by these
benchmarks is that the performances of all known methods are poor, from many points of
view. In [5], depending on the method that is considered, the maximum value of Area Under
Curve (AUROC) fluctuates around 0.5, that is the baseline obtained by random generated
matrices (Figure 4.2). To the authors’ surprise, the methods are more challenged by the simu-
lated datasets, as the AUROCvalues are lower than the ones obtained for the real sc-data. This
is probably due to the fact that simulators are not yet able to reproduce the characteristics of
single cell measurements and those data might be a further challenge for the GRN inference
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methods. Moreover, almost all the methods examined in [5] have high rates of false positives,
that is defined as the percentage of predicted edge that is not present in the ground-truth net-
work.

To recapitulate, these studies show that the GRN inference is still an open problem and
many challenges still need to be overcome. This kind of method is a computationally demand-
ing task and no single solution has been proven to exist. Furthermore, when it comes to eval-
uate the performances and the predicted networks, it must be kept in mind that regulatory
networks are not yet understood comprehensively: therefore, when comparing the predicted
network with the ground-truth GRN taken from the literature, the latter can be inaccurate
itself. For this reason, any evaluation is always inherently incomplete and the networks used
as ground-truth are not really representative of all the gene interactions taking place in a single
cell.

4.3 GRISLI method

In Section 3.4 it has been introduced the work [6], that is the main core of this thesis, and it
has been discussed the velocity inference method based on the three-point model. Now, the
discussion of GRISLI can be concluded by examining the GRN inference part of the method.

Itmust be recalled the linear ordinary differential equation thatGRISLI is based on and that
describes the dynamics of cell expression with respect to a small temporal variation (Equation
4.2).

dx(t)

dt
= Ax(t) . (4.2)

The transcriptomic profiles x(t) ∈ RG represent the vector of abundances for each one of
theG genes. The pseudo-time variable t is a vector belonging to the setRC and its entries are
temporal labels for each cell. It can be assigned according to either the real experimental time
or calculated by an external software (such as Monocle [15]). Consequently, the data given as
input is a set of paired expression vector and time label: {(xi, ti) ∈ RG × R : i = 1, . . . , C}.
Finally, the matrix A ∈ RG×G is the matrix of GRN that has to be inferred. In particular,
aij ̸= 0means that the j-th gene regulates the i-th gene. The matrix is assumed to be sparse,
since the authors believe that each gene is regulated by only a few transcription factors.

GRISLI is a two-step method that firstly computes the RNA velocity of each cell v̂i, which
is an estimate of vi = dxi/dt (Section 3.4), and then it infers the regulatory interactions by
estimating non-zero elements ofA by solving a regression problem.
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Once the approximation of RNA velocity has been accomplished, the second step consists
in the GRN inference. The Equation 4.2 is considered as a sparse regression problem of the
form v̂ = Ax. A score s(i, j) ∈ (0, 1) is computed for each pair of genes (i, j) belonging to
{(i, j) : i, j ∈ {1, . . . , G}}, where j is believed to be the regulator and i the target gene. The
score increases when it is believed that the entry aij is non-null, meaning that gene j regulates
gene i.

The procedure through which s(·, ·) is computed, is proposed by [18] and involves three
hyperparameters: R,L ∈ N and α ∈ [0, 1]. The expression data of all the cells is denoted
as the matrix X = (x1, . . . , xC) ∈ RG×C , while the estimate of RNA velocity matrix is
V̂ = (v1, . . . , vC) ∈ RG×C . The procedure that will be now described is repeated R times,
in order to stabilise as much as possible the inferred network. A new expression matrix X̃ and
a new velocity matrix Ṽ are generated in two steps.

1. A random sample of ⌊C/2⌋ cells are randomly sampled fromX and V̂ : the dimensions
of X̃ and Ṽ are reduced toG× ⌊C/2⌋;

2. Each row i of X̃ is multiplied by a factor βi, which is sampled from a uniform distribu-
tion U([α, 1]).

For each generated pair (X̃, Ṽ ), thematrixA is estimated by solving a lasso regression prob-
lem, defined as in Equation 4.3.

min
A∈RG×G

∥Ṽ −AX̃∥22 + λ∥A∥1 (4.3)

The parameterλ is chosen among a grid of regularisation values, from 0 toL. It ensures that
the predicted regulatory network has at least λ non-zero entries in each row. It represents the
fact that the j-th gene is among the top λ transcription factors regulating the i-th gene.

This entire procedure is iteratedR times. During the steps, for each pair (i, j) of genes and
for each l ∈ [1, L], a frequency F (i, j, l) is computed as the amount of times that the entry
aij ofA is non-null. Then, always referring to [18], an area score is computed (Equation 4.4).

sarea(i, j) =
1

L

L∑
l=1

F (i, j, l) (4.4)

Even if the area score is the default choice in GRISLI and it has be proven to be more stable
[18], a variation of this score is provided. It is referred to as the original stability selection score
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Figure 4.3: Image from [6]. Boxplots show the performances of the three methods over 30 iterations. Two datasets are
examined: the murine dataset on the left [7] and the human one on the right [8]. GRISLI stably outperforms both SCODE
and TIGRESS methods.

and it is defined in Equation 4.5, proposed by [19].

soriginal(i, j) = F (i, j, L) (4.5)

The hyper-parameter selection is a tough and delicate problem. In [6], they suggest thatR
should be the largest possible, meaning that the number of iterations should be big enough
to reduce random fluctuation of the predicted GRN. The value of α should be chosen in the
range [0.2, 0.8] and L should be verified on a large interval of values. These two last parame-
ters are found to strongly depend on the considered dataset. The effect of α can increase the
diversity between the single batches. On the other hand,L limits the number of edges that can
be assigned to the estimated regulatory matrix and its value is related to how much the GRN
is expected to be sparse.

With respect to SCODE method, from which it takes the dynamical model, GRISLI has
many innovations. First of all, the velocity inference step avoid the numerical integration of the
left-hand side of Equation 4.2. Then, the assumption that all cells lie on the same trajectory is
not fundamental anymore. Finally, no restriction on themathematical properties ofA is made
andGRISLI is still able to solve a convexproblem to estimate theGRN, in an efficientway from
a computational point of view.

Even if the authors foundGRISLI to outperform SCODE in terms of AUROC, as noticed
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in [13], its performance is again poor. They tested GRISLI on two datasets and compared the
AUROC scores to the ones obtained by SCODE and TIGRESS. The first data comes from
the reprogramming murine embryonic fibroblast cells to myocytes [7]; the second one from
the differentiation of human embryonic stem cells to definitive endoderm cells [8]. Figure 4.3
shows a boxplot for both the datasets and it clearly indicates a net improvement for GRISLI
in terms of AUROC. However, recalling that 0.5 is the threshold of a random generated net-
work, the performance is just above 0.57 and the predicted matrix cannot be considered as
really meaningful, as remarked in [13].
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5
Imputation and simulation methods

The topic of this Chapter consists in two fundamental tools that have been used during the
thesis internship. In Section 5.1, a general discussion about imputation methods is proposed
and two methods in particular are examined. The Section 5.2 addresses the simulation tools
for single cell data and their challenges, and finally, two simulators are reviewed.

5.1 Imputation methods

As has been said before, single cell RNA sequencing data is characterised by a high percentage
of zero values, caused by two main reasons. The first one is the limit of the sequencing tech-
nologies and the second is the fact that not all the transcriptional processes may be activated
during the experiment. In general, two types of zero values can be distinguished. The true zeros
are generated by genes that are not truly expressed. Then, the dropout zeros are missing values
caused by too low mRNA abundance or by the stochastic pattern of gene expression at the
single cell level [10].

The sparsity of the data matrix could be a further challenge for most of the analyses per-
formed on single cell data. Moreover, there is not a standard preprocessingworkflow to address
these dropout events, as it exists for bulk data. Indeed, it is easier to impute the zero valueswhen
considering bulk data, as it is the result of the average expression among a large cell population.
Manymethodshavebeendeveloped for the imputationofmissing values inbulkRNA-seqdata
and they can be divided into five different strategies [10]. The first imputation class consists
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in averaging gene expression at a gene or cell level. Then, the k-Nearest Neighbours technique
can be adapted to achieve an estimation of null values from similar entries, through similarity
metrics among genes. Some statistical modelling can be exploited and can perform imputation
of missing values, and other methods execute many iterations and give as output a combina-
tion of the results. Finally, a more biological approach can be used, as some methods exploit
information such as gene ontology to facilitate the imputation.

However, a discussion similar to Chapter 4 can be addressed: these methods implemented
for bulk data may not have the same performances when applied on single cell data. In the
first place, scRNA-seq data presents a larger cell-level variability than bulk data and the latter
has a much smaller percentage of missing values. Nevertheless, the main and most important
complication is that dropout events in sc-data are given by a mixture of dropout zeros and real
zeros.

These reasons brought the scientific community to develop new imputation methods only
for single cell data. In subsection 5.1.1 and 5.1.2 two methods implemented specifically for
scRNA-seq data will be discussed in detail.

A few preprocessing techniques can be anticipated, which are standard for most of the im-
putation methods. First of all, the data matrix should be the count matrix, with only integer
entries, that can be obtained from standard sequencingmethods. Then, the data is normalised
with respect to the library size of each cell, that is defined as the total number of sequenced
RNA reads. After that, the logarithm function is applied, after having added a pseudocount
(1.01 for scImpute method and 1 for DrImpute), in order not to have infinite values due to
the logarithm of zero entries. These two steps are useful on one hand because the data values
become continuous, making most of the methods more efficient. On the other hand, the loga-
rithmic transformation prevents the large measurements of RNA abundance to be excessively
influential.

Anothermethod that is common to be applied is the Principal Component Analysis (PCA).
It is performed on the transformed data matrix and reduces its dimensions along the genes,
preserving the cells number dimension, and identifies the Principal Components (PCs). This
procedure helps to diminish the negative effect of frequent dropout events.

30



Figure 5.1: Figure from [9]. The scheme shows the workflow of scImputemethod. Low expressed genes with high probability
of being dropout events in cell j are imputed (gene set Aj ). A subset of the other cellsNj is selected based on the gene
setBj , which is not affected by dropout. The imputation is performed on the basis of the gene expression of those selected
cells. The result is represented in the right part of the scheme, with the vector cell j that is changed only on the upper entries
corresponding to the imputed gene setAj , while the lower entries that are not affected by the imputation process.

5.1.1 scImpute method

The first method that can be discussed is scImpute [9]. It is a statistical method that imputes
zero values, first by identifying the more likely dropout and then it estimates only those values,
without adding any noise to the rest of the data. The reason is that, as mentioned before, not
all null-values are caused by dropout events, and thus, not all of them should be imputed.

The first step of the method is to learn the probability of dropout for each gene in each cell,
based on a statistical mixture model. The second step is the actual imputation of those zeros
with highest likelihood to be derived from dropout events. The expression of the same gene of
other cells is acquired and used during the imputation process. This information comes only
from cells that are less likely to be affected by dropout. A schematic workflow of scImpute is
represented in Figure 5.1.

In detail, the input of the method is a count matrixX of dimensionsG × C , meaning the
rows represent the genes and the columns the cells. A normalisation preprocessing is applied
with respect to the library size of each cell and then it is transformedwith a logarithm function,
as shown in Equation 5.1.

Xij = log10
(
XN

ij + 1.01
)
; i = 1, . . . , G, j = 1, . . . , C (5.1)
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The second step is identifying clusters of similar cells from which to borrow genes informa-
tion. Since the percentage of null values is high, it is difficult to detect the true cell types and
thus, only candidate neighbours can be selected for each cell. The PCA is performed on the
data matrixX and the newly generated matrix Z has the PCs as rows. Then, a matrixDC×C

is computed as the distance between the cells. Now outlier cells must be identified. From this
matrix, a listL is created and each value is the minimum distance of a cell from its neighbours:
L = {l1, . . . , lC : lj = minDC×C(·, j)}. The outliers are identified following the common
definition (Equation 5.2), whereQ1 andQ3 are the first and second quantile forL.

O = {j : lj > Q3 + 1.5(Q3 −Q1)} (5.2)

The set of candidate neighbours for the outlier cells is set to the empty set, Nj = ∅. It
should be noted that these outlier cells may be the result of technical errors or may correspond
to a rare cell type that is truly present in the experiment. However, these cells do not undergo
the imputation process and are not taken into consideration as neighbours of other cells. The
last step consists in the clustering of the remaining cells, {1, . . . , C}∖O, intoK groups. K is
a hyperparameter that must be given as input by the user. Finally, a value gj = k is assigned to
cell j if it belongs to cluster k. So, the candidate neighbours set is defined asNj = {j′ : gj′ =
gj, j

′ ̸= j}.

Afterwards, a statistical model can determine if a zero entry ofX is caused by dropout event
or not. The model is given by a mixture of two components, as most genes express following a
bimodal distribution across similar cells. The first distribution that is used is a Gamma distri-
bution, that accounts for the dropouts and the second one is aNormal distribution, to account
for the gene expression level. The parameters of the mixture of the two distributions are spe-
cific for each cluster k. For each gene i and each subpopulation k, the expression is defined
as a random variableX(k)

i that follows the density distribution defined in 5.3. The parameter
λ
(k)
i is the dropout rate of gene i within the cluster k and the other parameters describe the

distribution they are associated with.

f
X

(k)
i
(x) = λ

(k)
i Gamma

(
x;α

(k)
i , β

(k)
i

)
+
(
1− λ

(k)
i

)
Normal

(
x;µ

(k)
i , σ

(k)
i

)
(5.3)

Thismodel represents the idea that, if a gene has high expression level and low variation among
the subpopulation, then a null value is more likely to be an effect of a dropout event. Vice
versa, if the medium expression is low and the variation is high, then the zero may be assumed
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to reflect a real biological behaviour.
At the end of these steps, the estimation of the parameters in Equation 5.3 is obtained by the

Expectation-Minimisation algorithm and the dropout probability of gene i and cell j is given
by Equation 5.4.

dij =
λ̂
(k)
i Gamma

(
Xij; α̂

(k)
i , β̂

(k)
i

)
λ̂
(k)
i Gamma

(
Xij; α̂

(k)
i , β̂

(k)
i

)
+
(
1− λ̂

(k)
i

)
Normal

(
Xij; µ̂

(k)
i , σ̂

(k)
i

) (5.4)

Finally, the imputation step is performed cell by cell. A gene setAj identifies the genes with
high probability of being dropout in cell j and it is defined as Aj = {i : dij ≥ t}. The
complementary gene setBj = {i : dij < t} is used to select those cells that are similar to cell
j, by using a non-negative least square regression (Equation 5.5).

β̂(j) = argminβ(j)∥XBj ,j −XBj ,Nj
β(j)∥22 , s.t. β(j) ≥ 0 (5.5)

This type of regression has the property of giving a sparse estimate, with exact zero components,
so the parameter β̂(j) is used to select cells which are similar to cell j, among its neighbours set
Nj . The final step is the actual imputation of gene expressions in the setAj (Equation 5.6).

X̂ij =

Xij, if i ∈ Bj,

Xi,Nj
β̂(j), if i ∈ Aj.

(5.6)

5.1.2 DrImpute method

The secondmethod that can be introduced isDrImpute [10]. It is a deck imputation approach
developed specifically for scRNA-seq data. A hot deck imputation method handles the puta-
tive missing data by replacing them with measurements belonging to a somehow similar unit.

The first step of this method is the identification of similar cells on the basis of their gene
expression, by using clustering techniques. For this reason, DrImpute is defined as a determin-
istic method, since the selection of similar units is not randomly performed. Then, the average
expression of similar cells is used to impute all the null values of a specific cell. This imputation
is iterated many times in order to achieve some sort of stability, by using different clustering re-
sults. The final imputed data matrix is the average of the many results obtained from different
iterations (Figure 5.2).
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Figure 5.2: Figure from [10]. Trivial example of DrImpute worflow. The first step is cell clustering (left). Within each identified
cluster, imputation process of zero entries is performed (right). The imputed values (red numbers) are obtained as the average
of the gene expression levels of the similar cells.

One limitation of DrImpute is that the imputation is based only on cell-level correlation
and on a relatively simple hot deck approach. Indeed, the gene-level correlation should also be
considered and modelled, since it exists and it is already considered in imputation methods for
bulk RNA-seq data. This improvement could lead to better performance if implemented.
It has been shown in [10] that the performance of many statistical tools improves when the

imputed data is provided as input. Moreover, it has been proven to impute in a better way than
scImpute does.

Going into details, DrImpute needs as input only the preprocessed data matrix X̃ and the
number of clusters that is assumed to characterise the cell population. The matrix X̃ must
have dimension G × C , where G is the number of genes and C the number of cells. The
preprocessing is standard and also similar to that performed by scImpute. The counts matrix
is normalised by size factor and so the matrixXN is obtained. A logarithmic function is then
applied, after adding a pseudocount of 1 to the normalised matrix, in order to avoid errors
when computing the logarithm of a null value (Equation 5.7).

Xij = log10(X
N
ij + 1) ; i = 1, . . . , G, j = 1, . . . , C (5.7)

Within the algorithm, the parameterH represents the number of clustering configurations
that are explored. It is the result of various combinations of distance metric functions applied
on the range of number of clusters that is given as input. Each combination provides a clus-
tering configuration, denoted asC1, . . . , CH . In particular, the default clustering approach is
similar to that of SC3 method [20]. Two similarity matrices among cells are generated, using
Pearson and Spearman correlations. Then, K-mean clustering is performed only on 5%% of
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the principal components retrieved from the similarity matrices. The default range of clusters
goes from 10 to 15 groups. In this case, the total number of configurations isH = 12, since
two metrics and 6 numbers of clusters are considered. The user can of course change both the
distance construction methods and the number of subgroups, according to their assumptions
about the studied cell population.

Iteratively, each clustering resultCh is assumed tobe a true cell classification and the imputed
value of a dropout event can be inferred as the average values among the cell cluster (Equation
5.8).

E(Xij|Ch) = mean (Xij|Xij in the same group in clustering configurationCh) (5.8)

The final imputation is obtained by averaging only the presumed dropout eventsXij among
the different clustering resultsC1, . . . , CH , as described in Equation 5.9.

E(Xij) = mean (E((Xij|C)) =
1

H

H∑
h=1

E(Xij|Ch) (5.9)

5.2 Simulation methods

It is a common approach to evaluate the performance of computational tools, which are run
on synthetic generated datasets, considered as the ground-truth data. The simulators should
resemble real data features and their usage is crucial in the assessment phase, to measure qual-
ity and robustness of the methods. The main objective of the simulation tools is to maintain
the biological signalling properties, while keeping inmind the computational applicability too.
The exponential growth of analysis tools for scRNA-seq data havemade it necessary to develop
high-performing simulators. They should provide in silico data with a user designed structure
and groutruth parameters, such as the number of cell groups.

In the literature, most simulation tools involve two steps. The first one is the definition
of a statistical model which describes the characteristics of real scRNA data. Then, this in-
formation is used as a template to actually simulate data, that is then given as output. The
first developed methods use the Negative Binomial (NB) distribution for the gene expression
modelling. This distribution is proved to provide simulated data whose variance accurately
resembles that of real data. The Poisson distribution has been also taken into account, but it
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requires a further assumption (that the mean and variance are equal) that is usually not met in
real experiments. One of its variants, the zero-inflated NB, has been considered to obtain data
with a better sparsity configuration. Recently, other models have adopted a mixture of two
statistical distributions to increase the flexibility of the modelling phase (as done also by scIm-
pute in Equation 5.3). Lately, deep learning based approach exploits neural networks ability to
capture the underlying gene expression distribution, avoiding any prior assumptions.

To recap, simulation tools aim to reproduce realistic datasets, characterised by both cell- and
gene-wise features, as well as high-order interactions [21].
In the following subsections, two simulators are introduced. Their singularities is that, be-

sides the simulation, they start from a given gene interaction network. Moreover, the RNA
velocity matrix can be retrieved. Both of these two pieces of information are necessary for the
purpose of this thesis, as they become the ground-truth for the evaluation of both velocity in-
ference and GRN inference.

5.2.1 SERGIO simulator

Most existing simulation tools for single cell data do not take into account the gene regulatory
networks that control the dynamics of expression. Indeed, transcription factors play a major
role in gene dynamics and their concentration can considerably alter the target’s expression.
SERGIO is a simulator that models the stochastic nature of transcription, starting from infor-
mation on the transcription factors which regulate the genes [22]. It can model any number
of cells, provided by the user, in both steady state or differentiation trajectory.

SERGIO is focused on three main aspects. A mathematical model describes the regulatory
dynamics underlying gene expression. The cell-to-cell variability, which characterises real sc-
data, is modelled as a stochastic component of the method. Finally, the technical errors due
to the sc-technologies are incorporated and can be applied on the expression matrix generated
before.

In detail, Equation 5.10 represents the stochastic differential equations that SERGIO is
based on, called Chemical Langevin Equations (CLE). They simulate the gene dynamics of
unspliced and spliced RNA as a function of the TFs levels, by following the GRN interactions
between them. The variablesui and si are the expression of gene i at unspliced and spliced level
respectively, λi, µi and γi represent the degradation of unspliced, splicing and degradation of
spliced rates and the term qi acts as noise amplitude in the transcription levels. The parameters
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α, β, ϕ andω are independent Gaussian processes, needed for the addition of white noise. The
parameter Pi is the production rate of gene i. It is calculated as the sum of the effect of all
regulators on the gene i.

dui

dt
= Pi(t)− (λi + µi) ui(t) + qui

(√
Pi(t)α +

√
(λi + µi)ui(t)β

)
dsi
dt

= µiui(t)− γisi(t) + qsi

(√
µiui(t)ϕ+

√
γisi(t)ω

) (5.10)

The CLE is advantageous mostly because numerical integration methods can be used to
derive the mRNA concentrations of genes in a computationally efficient way.

SERGIO allows the addition of technical errors, which are of three types. The first one is
the outlier genes phenomenon. It refers to proven observations that few genes have usually an
oddly high expression level among cells. A hyper-parameter must be given as input to define
the probability of a gene to be an outlier. Once selected as an outlier, its expression value is
multiplied by a coefficient that follows a log-normal distribution.

∀i ∈ {1, . . . , G} : IOi ∼ Ber(πO) , fO
i ∼ lnN(µO, σO)

∀i ∈ {1, . . . , G}, ∀c ∈ {1, . . . , C} : xc
i ← IOi fO

i x
c
i + (1− IOi xc

i)

Parameters G and C represent the number of genes and cells that are simulated, while xc
i is

the gene expression that can be either unspliced or spliced. The variable IOi is sampled from
a Bernoulli distribution and indicates if the gene is an outlier or not. The coefficient fO

i is
parametrised as a log-normal random variable, whose parameters are user-defined.

The second type of technical error which can be simulated is the library size parameter. For
each cell, a value Lc is sampled from a log-normal distribution, characterised by mean µL and
variance σL defined by the user. The gene expression is then multiplied by Lc and normalised
by the total depth of all the genes in the cell.

∀c ∈ {1, . . . , C} : Lc ∼ lnN(µL, σL)

∀i ∈ { . . . , G}, ∀c ∈ {1, . . . , C} : xc
i ←

Lc∑
j∈{1,...,G} x

c
j

xc
i

Finally, the last and most important phenomenon that can be simulated is the dropout effect.
For each cell, a probability is assigned to each gene, corresponding to the likelihood of being
subject to dropout. The authorsmake a strong assumptionhere: themore the gene is expressed,
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the less likely it is to be cancelled. For this reason, the probability of dropout is modelled as a
logistic function. This value is then used as the parameter of a Bernoulli distribution, which
is used to decide whether the gene is affected by dropout or not. In particular, unspliced and
spliced abundances are affected independently by dropout and values are sampled in parallel.

y0 = qthpercentile of Y,where Y = log(X + 1), X = {xc
i}

∀i ∈ {1, . . . , G}, ∀c ∈ {1, . . . , C} : πD
i,c ←

1

1 + exp (−k(Yi,c − y0))
, IDi,c ∼ Ber(πD

i,c)

xc
i ← IDi,cxc

i

5.2.2 dyngen simulator

The second simulation tool is dyngen, a method that is based on a multimodal representation
[23]. It is a three-step method that can be configured directly by the user. The biological tran-
scriptional processes are obtained starting from regulatory interactions, that are translated into
the set of reactions of regulation, transcription, splicing and translation. Then, each cell is
simulated separately from the others, by exploiting a stochastic simulation algorithm, called
Gillespie’s SSA. Finally, some real datasets are provided and, once the user selects one of those,
it is used to emulate the corresponding sc-profiling protocol.
The interesting property of dyngen is that it provides a large variety of differentiation trajec-

tories, such as bifurcating or cyclic, andmany experimental conditions, for example time-series
and perturbations. In addition, the user can set two parameters so that the method gives as
output both the gene regulatory network and the matrix of RNA velocity.

In detail, the first thing that is defined is themodule network. Amodule network ismodelled
by regulatory interactions that can be up- or down-regulating, and defines the trajectory of
differentiation of the simulated cells. dyngen provides different modules, from the simplest
linear process, to the bifurcating or cyclic. Also, more than one of these chains can be selected
and concatenated, creating a module with longer chains.
According to the selected module, a GRN is generated in four main steps. Transcription

factors are individuated and their interactions are set. A number of target genes, provided as
input, is added to the regulatory network and finally, the so-called “housekeeping” genes are
simulated. The latter are genes that are always highly expressed, independently from both tran-
scription factors and the other genes. They usually codify for proteins that are fundamental
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for cell survival.
The next step is the translation of the GRN to the set of reactions, based on a stochastic

framework. For each gene, the abundances of pre-mRNA, mature mRNA and protein are
tracked. Then, the reactions of transcription, splicing, translation and degradation are defined
and the expression changes mimic the real biological effect. For example, if the splicing reac-
tion considers one molecule of pre-mRNA, then a newmolecule of mature RNA is generated.
Except for the transcription reactions, the propensity of the other reactions are regulated by lin-
ear dependencies. The transcription process is defined by a more complicated model, derived
from thermodynamic models of gene regulation. The main concept is that a promoter of a
gene can be bound or not by some transcription factors and the propensity can be computed
through nonlinear functions.
One of the most crucial stages is the generation of single cell dynamics. The SSA simulation

consists of multiple iterations, where at each step one reaction is triggered. An external library
is used for performing those simulations in an efficient manner.
Once the SSA simulations are performed, all the gene expression levels are available for each

state. The technical effects are now introduced in order to get close to the real data patterns.
The library size and dropout effects are derived from the real dataset that the user selected dur-
ing the initialisation of the module.
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6
Evaluation of the GRISLI algorithm

The purpose of this thesis is the investigation of the GRISLI algorithm developed in [6]. It is
based on the linear ordinary differential equation (6.1) and aims to reconstruct the gene regu-
latory network that characterises a given scRNA-seq dataset.

dx

dt
= Ax (6.1)

The left-hand side of the equation represents theRNAvelocity, expressed as a ratio between the
change in gene expression and the corresponding infinitesimal change in time. On the right-
hand side, the matrix A is associated with the GRN and characterises how the expression of
one gene influences the dynamics of all the others.

Briefly recalling its workflow, this method is divided into two main steps. Firstly, instead of
integrating the left-hand sideofEquation6.1,it infers theRNAvelocity fromthe spliced counts
matrix through the three-point model described in Section 3.4, exploiting the pseudotime in-
formation. Then, using the expression and velocity matrices, the lasso regression problem is
formulated and solved many times, in order to achieve a GRN prediction that is as stable as
possible. At each iteration, a frequency score is associated with each entry of the GRNmatrix
and the final output of the method is the combination of all the results obtained during these
repetitions, according to that score.

In Section 6.1 some initial analyses are carried out, to study in depth the choices of GRISLI
authors and the relationship between genes and their regulators. Section 6.2 is themain core of
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this work and presents the results and limitations about velocity inference methods, with the
main focus on scVelo. Finally, Section 6.3 studies the effect of imputation as a preprocessing
step applied on both simulated and real data.

6.1 Preliminary analysis

Before starting any analysis, it must be said that GRISLI is implemented as a MATLAB algo-
rithm. In order to make it more readable, the beginning of the internship has been dedicated
to its translation in the more accessible python language. This period of time has allowed us a
deep understanding of the whole method and the main computational passages.

The first objective of the internship is to investigate and reproduce the analysis performed in
[6]. Since onemain step of the algorithm involves the resolution of a linear regression problem,
other computational methods are explored. In particular, the original method is the lasso
function provided by the SPAMS (SPArse Modelling Software, v2.6) package, developed for
bothMatlab and python languages. The formulation of the minimization problem is recalled
in Equation 6.2, where V is the velocity matrix andX the spliced gene expression matrix.

min
A∈Rp
∥V − AX∥22 such that ∥A∥1 ≤ λ (6.2)

The matrixA, that is given as output, is a sparse matrix and represents the inferred GRN.
We modify this step and investigate the performance of GRISLI using different methods.

Thefirst one is theLasso functionprovidedby theLinear_modelmoduleof thescikit-learn
library. Then, the least-squares method of the numpy package is used. Since, as discussed in
Chapter 4, the performance of GRN reconstructionmethods are really poor, the performance
of GRISLI is also tested on a regulatory matrix that is obtained in a randomway. Finally, an in-
vestigation about the importance of the pseudotime information is analysed. At the beginning
of the GRISLI workflow, the vector of cells’ times is shuffled and all the downstream analyses
may be affected by this manipulation.

In Figure 6.1, two boxplots are presented. The upper one shows the comparison of these
different approaches in terms of AUROC. As expected, the mean AUROC of random con-
structed matrix performance is exactly 0.5. The box corresponding to the SPAMS Lasso has
the best AUROC value with respect to all the others. The lower boxplot shows the compu-
tational cost in terms of time (seconds) of these approaches. It is noticeable the difference be-
tween the SPAMS Lassowhen applied on the correct dataset and on the one with the shuffled
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temporal vector. This means that, even if the performance with shuffled times is a little above
the random baseline, it requires an extreme effort from the lasso regression method to find the
solution of the minimisation problem.

Random Lstsq Sklearn_lasso Spams_lasso Spams_shuffle_time
0.46

0.48

0.50

0.52

0.54

0.56

AU
RO

C

AUROC wrt different methods

Random Lstsq Sklearn_lasso Spams_lasso Spams_shuffle_time

0

20

40

60

80

100

120

140

TI
M

E

TIME wrt different methods

Figure 6.1: Two boxplots presenting the performance of the different methods for the minimisation problem (Equation 6.2).
The upper chart shows the AUROC values for random generated GRNmatrix, using least squares approach, Lasso regression
of scikit-learn and SPAMS packages, and finally the results using shuffled pseudotime vector. Clearly, authors’ choice
of the SPAMS tools improves the performance. The lower chart shows the computational cost of the different approaches in
terms of time requirement (seconds). These tests were performed on dataset [7], but similar boxplots are obtained for both
dataset [8] and dataset [11].
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Figure 6.2: The plot shows the relation between the velocity of gene number 41 (blue line) and the expression of one of its
regulators (orange line). When the latter is little expressed (left part of the graph), the target gene is in a repression phase,
probably due to the effect of the other regulators. When the transcription factor is highly expressed (right part), the target
gene increases its velocity. Probably, this regulator gene is an activator of the expression of the gene 41. The data used for
this analysis comes from [7].

Another preliminary analysis is the study of the consistency between the expression of target
genes and their regulators. In particular, if the presence of a regulator is really fundamental and
has a real effect on the inhibition or activation of the final target gene. In order to examine these
relationships, one of the dataset used in [6] is considered, which is obtained by the reprogram-
ming of murine embryonic fibroblast cells to myocytes, presented in [7]. This dataset contains
373 cells and 100 genes are filtered.

The gene number 41 is selected, since it has five transcription factors as regulators. In Figure
6.2 the velocity of gene 41 is indicated by the blue line. It is given by the interpolation of the
single velocity values for each cell, which have been sorted in advance to realise a continuous
graph. One regulator of gene 41 is selected and its expression among all cells is shown as an
orange line.

The first thing to observe is that when the gene 41 velocity is null, its regulator is silent or
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little expressed. Vice versa, when the transcription factor is highly expressed, on the right side
of the graph, the velocity of the target gene increases. Even if it is not the only regulator of gene
41, the relationship between those two genes is evident.

6.2 RNA velocity inference analysis

Once it has been shown that the authors’ choice about the regressionmethod is the best among
the most common ones, the next objective of the internship is the benchmarking of methods
for RNA velocity. First, it must be said that in order to properly evaluate the inferred velocity
matrices, a ground-truthmatrix should be available to compare themwith. For this reason, the
simulation tools introduced in Section 5.2 are used to generate different datasets to carry out
all the needed analyses. In particular, from both algorithms, it is possible to retrieve the RNA
velocity underlying the expression dynamics of the single cell simulations. Now, the predicted
velocity matrix can be compared to the “real” matrix and errors can be calculated and used for
the evaluation of the performances.

These analyses aim to improve the prediction ofRNAvelocity, in order to providemore pre-
cise data to GRISLI and, hopefully, improve its performance. The three methods introduced
in Chapter 3 and others more recently developed are considered:

• three-point method, implemented in the first step of GRISLI algorithm;

• scVelo, based on the two differential equations describing both unspliced and spliced
mRNA dynamics;

• velocyto, also known as steady-state method, based on the strong assumption of observ-
ing both passive and active steady states of gene expression;

• dynamo, proposed by [24], based on a similar model to scVelo’s one, and that, besides
velocity, reconstructs also a continuous vector field of trajectories and extract gene regu-
lations;

• veloAE, proposed by [25], an autoencoder basedmethod that, through the projection of
expression data onto a low-dimensional space, aims to denoise the velocity information;

• unitvelo, proposed by [26], a statistical framework that models the spliced RNA as a
function of time and gene-specific parameters in a top-down strategy, allowing a more
flexible gene expression profile.
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(a) SERGIO simulations (b) dyngen simulations

Figure 6.3: Two heatmaps showing the Spearman correlation scores between the different velocity inference methods that
are investigated. The three‐point method adopted by GRISLI and veloAE are completely unrelated to any other method.
Unitvelo is not very correlated to scVelo, velocyto and dynamo, which instead are highly correlated to each other. The scores
are taken as the median of heatmaps given after many iterations and many simulations have been performed (at least ten for
each dataset).

The correlation between all these different methods is investigated. For each dataset sim-
ulated by SERGIO and dyngen methods, the Spearman correlation coefficient is calculated
among all the RNA velocity matrices that are predicted. The Spearman correlation is chosen
because, unlike thePearson correlation that is commonlyused, it does not assume that the given
data is normally distributed. The score belongs to the range [−1, 1], where−1 and 1 indicate
monotonic relationship and 0 implies that there is no correlation. Moreover, if the coefficient
is greater than 0, it means that there is a positive correlation and so, velocity matrices are sim-
ilar to each other, and vice versa, if it is smaller than 0, there is a negative relationship and the
predicted velocity are dissimilar and in some sense, opposite.

In Figure 6.3, two heatmaps are shown, summarising the correlations between the different
velocity methods. They are the results of computing the median values between various simu-
lated datasets and many iterations. The left heatmap is referring to the datasets obtained from
SERGIO simulator and the right one from dyngen. The rows and columns are associatedwith
the different velocity methods, starting with the three-point method used in GRISLI. It must
be said that veloAE is not applied on dyngen simulations, because it would have taken too long
to run, since many iterations are required to achieve the convergence of the algorithm.

Anyway, the two heatmaps are similar to each other. In particular, two methods are proved
to be not correlated to any other ones: the three-point method of GRISLI and veloAE. Their
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Spearman scores are always almost zero to all the other methods. In a sense, this is expected
from the simplistic derivation of GRISLI velocity method, since it does not even consider the
unspliced RNA expression and is based on the rate of change of spliced RNA alone. Also, an
innovative method like veloAE surprisingly differs a lot from others. In all the tests performed,
this machine learning model had the loss function that kept decreasing constantly, even after
being running for 48 hours, completing millions of epochs. Default hyper-parameters were
used and they surely could have been better adapted to each different dataset. However, the
huge demand of time to be trained and the difficult parameters tuning process make the use of
veloAE prohibitive.

On the other hand, three methods have high correlation scores with each other, which are
scVelo, velocyto and dynamo. They all are based on the same double differential equation
to describe the transcriptional dynamics and this is probably the reason why they predict ve-
locity matrices that are highly correlated, despite different approaches being adopted. Finally,
unitvelo method is little correlated to the three methods cited before, meaning that probably
the statistical framework allows more flexible predictions.

Looking at the overall behaviours, except for the two methods that are not correlated with
any other, the rest are characterised by positive Spearman scores, suggesting that the two differ-
ential equations modelling is consistent across different computational approaches.

In the second part of the velocity methods analysis, the relationship between gene expres-
sion and velocity is examined. In particular, during all the analyses performed, a bias towards
negative velocity values has been noticed. This aspect is especially investigated for scVelo, but
this tendency is observed in all the methods.

In Figure 6.4, two heatmaps show the first results of this study. They represent the spliced
mRNA expression on the x-axis and the velocity values on the y-axis. From the left heatmap,
the abundance of negative velocity values is immediately noticeable compared to positive ones.
It is recalled that negative velocity means that the corresponding gene is being switched off and
is decreasing its transcriptional phase. The right heatmap is obtained as an enlargement of the
whole graph and pays particular attention to the null expression values. Indeed, while positive
velocity values make sense for non-expressed genes, as they signify that the gene is being acti-
vated, the lots of negative velocity associated with silent genes is absolutely unexpected. From
a biological point of view, a gene that is not expressed cannot be deactivated even further. This
could be seen as a strong bias within the velocity inference methods, not just scVelo, and it
should be considered as a problem to be investigated in depth.
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(a)Without zoom (b)With zoom

Figure 6.4: The two heatmaps have gene expression values on the x‐axis and the corresponding velocity values on the y‐axis.
There is not an evident relationship between those two variables, as expected. In the left chart, it is evident the abundance
of negative velocity with respect to the positive ones. An horizontal line is also noticeable, that represents the genes with
null velocity, meaning they are in a steady state phase. The right heatmap is an enlargement in a neighbourhood of 0 gene
expression. It shows that scVelo assigns negative velocity even to genes that have zero expression. (In order to make the
heatmap more readable, the frequency values are cut at 3 occurrences.)

An hypothesis about the lots of negative values is formulated. Since single cell data is influ-
enced by dropout effects, i.e. expression matrices are really sparse, and these technical errors
affect unspliced and spliced mRNA counts independently. Since the SERGIO simulator al-
lows the generation of a “clean” dataset, on which technical errors can be added, an analysis
about the velocity distribution is performed for different percentages of dropout.

Figure 6.5 shows the velocity distribution of the ground-truth velocity, retrieved by SER-
GIO, and the one inferred by scVelo. The ground-truth distribution is almost symmetric with
respect to zero and the percentage of negative values is 53%. The left histogram exhibits also
the distribution of scVelo velocity for the smallest amount of dropout that SERGIO allows. It
is a little left skewed, with a peak that corresponds to a small positive number. With a higher
parameter of dropout, this peak shifts to the left and the percentage of negative values increases
to 58%. It is important to remark that this result is observed not only for scVelo, but for all
velocity inference methods.

An additional analysis about this negative velocity tendency is performed, examining the role
of both depth of sequencing and dropout percentage. Starting from the same “clean” dataset, a
grid of combinations is constructed using several parameters for the depth and for the dropout.
In Figure 6.6, the x-axis corresponds to the increasing dropout percentage and the y-axis to the
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Figure 6.5: Histograms comparing the distributions of ground‐truth velocity matrix (dark blue) and that inferred by scVelo
(light blue). The top right box shows the fraction of negative velocities. The left histogram shows the distributions referred
to a simulated dataset characterised by small percentage of dropout. The right histogram refers to a simulated dataset with a
high value of dropout. The peak of the inferred velocity distribution is shifted on the left, i.e. on negative values, supporting
the hypothesis that the dropout is the cause of the abundance of negative velocities.

library size. For each combination, the difference in number is calculated between the negative
values of the ground-truth velocity and the inferred ones. The heatmap shows that, as the
dropout percentage increases, the negative velocity values increase as well, despite the library
size. This is further evidence that the high dropout is the main cause of the bias of velocity
methods towards negative velocities.

6.3 Imputation of data

After observing that the velocity inference is misled by the amount of dropout that is present
within the single cell data, a possible solution to limit this problem could be to impute the
data as a further preprocessing step, before starting any analysis. As mentioned in Section 5.1,
there aremanymethods for this purpose, but only scImpute anddrImpute have been examined
during the experiments.

The objective of this Section is to investigate whether reducing null entries through the im-
putation of sc-data could improve the velocity inference step and eventually the overall per-
formance of GRISLI. The first analysis is performed on simulated data, in order to test if the
hypothesis is well founded and reasonable.
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Figure 6.6: Heatmap with increasing dropout percentage on the x‐axis and increasing depth values on the y‐axis. The single
cells correspond to the difference in number of negative velocities with respect to the ground‐truth matrix. As the dropout
increases, the bias towards negative velocities grows, regardless the value of depth.

The imputation can be performed on only one or both the gene expression matrices. It
would be interesting to see howmuch this combination can affect the performance of GRISLI.
For this reason, the method is applied on the original dataset, on the one where only the un-
spliced mRNA matrix is imputed, on the one where only the spliced matrix is imputed and
on the last one where both of them are imputed. In addition, the three-point method velocity
implemented within GRISLI is not used, instead the one inferred by scVelo is considered.

In Figure 6.7, the boxplot is showing the results of these investigations, that are repeated at
least30 timesper sample to achieve an acceptable stability. It canbenoticed that the imputation
process is useful in improving the AUROC score by almost a hundredth. In particular, the
imputation of the unspliced matrix affects the final results the most. It could be explained by
the fact that unsplicedmRNAdata is usuallymore sparse andwith shorter depth of sequencing
than spliced data. The imputation may relieve this problem, increasing the information on
average and thus, allowing for a better estimate of RNAvelocity. Eventually, when considering
both imputed matrices, the performances are also improved with respect to the original ones.
Surprisingly, GRISLI performs slightly worse when the only spliced data is imputed. It can
be caused by the fact that imputation does not add any additional information that could be
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Figure 6.7: The boxplot shows the different performance in terms of AUROC for different combination of imputation on the
two gene counts matrices. The tested dataset is simulated with SERGIOmethod and the ground‐truth GRN is retrieved from
the data provided as input. The velocity is computed by scVelo package. For the imputation of data, dyngen package has
been used. Starting from the left, there are the box of the performance using the original matrices, then imputing only the
unspliced matrix, imputing only the spliced counts and then using imputation on both unspliced and spliced matrices. There
is a clear improvement in terms of AUROC score, mainly due to the imputation of the pre‐mRNA data matrix.

exploited by the velocity inference step.

This overall behaviour is also found for the other velocity inference methods, consolidating
the hypothesis that working on the unspliced matrix to reduce the percentage of dropout as
much as possible could be a fundamental step in velocity inference.

Finally, this same analysis is tested on the real single cell data provided by [11], that is about
murine pancreatic cells during pancreatic endocrinogenesis. The imputation step is executed
by drImpute and scVelo is used to compute the RNA velocity matrix. Then, the GRN infer-
ence step of GRISLI is performed and the AUROC is calculated with respect to the ground-
truth GRN used in the original work [6].

Figure 6.8 shows the results obtained on the real single cell dataset. The boxplot is similar
to the one obtained before, displaying an improvement in terms of AUROC when the pre-
mRNA matrix is imputed, and consequently when both matrices are. Interestingly, also in
this case, the imputation of only the spliced count matrix seems not to be as effective as when
the unspliced matrix is imputed.

Overall, when the imputation is added to the preprocessing phase and the velocity inference
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Figure 6.8: Imputation performed by drImpute and velocity inference of scVelo are integrated as pre‐processing steps of
GRISLI. As in Figure 6.7, from left to right, each box corresponds to one combination of imputed data matrix. It is evident
that the imputation of both data matrices affect the AUROC score by increasing it by more than a hundredth. Imputation
methods can definitely improve the quality of data and, as a consequence, the methods used later perform better.

is done with a more accurate method, such as scVelo, the performance of GRISLI is increased
and the reconstructed GRN is more accurate. Even if the AUROC increases by just a hun-
dredth, this is a significant development that should be studied even more thoroughly.

The objective of this thesis can be considered achieved, as GRISLI method has been im-
proved in two ways. On the one hand, the data can be pre-processed through the utilisation of
an imputation method, which is a way to reduce the percentage of dropout events and, conse-
quently, to avoid computational problems due to the sparsity of the expression matrices. On
the other hand, the exploitation of a performing and well-designed velocity inference method
can be crucial in order to obtain a solid estimate of the real RNA velocity.
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7
Conclusion

The objective of this work was to improve the performance of the GRISLI algorithm through
imputation of data and a better inference of the RNA velocity.
In the first place, the fundamental definitions of the biological concepts such as RNA ve-

locity and gene regulatory networks are introduced. Some state-of-the-art methods for their
estimation are explored in detail, revealing their main assumptions and the differences among
them. Then, a more technical discussion is made about the simulation of single cell data and
its imputation. The algorithms that have been used to simulate and impute data are analysed
in depth.
In Chapter 6, some preliminary analyses of the performance of GRISLI are presented, as

well as an evaluation about the computational cost in terms of time that is required. After-
wards, the results of different experiments are shown and discussed. First of all, it is observed
thatmost of the existingRNAvelocity inferencemethods have a bias towards negative velocity.
In particular, negative values are found to be associated with genes with null expression. This
fact is unexpected, since a gene that is not expressed cannot be more switched off than that.
Thereafter, an analysis about the reasons for this negative velocity bias is completed. Exploit-
ing the simulation methods, it was possible to generate various datasets which are affected by
different amounts of dropout. It is confirmed that the abundance of null values within single
cell data is the main cause of the tendency to infer many negative values for the RNA velocity.
At this point, two imputationmethods are used to diminish the effect of the null values in gene
expression data.
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The combination of imputed data and the availability of advanced RNA velocity inference
methods, such as scVelo, is shown to be effective for the improvement ofGRISLI performance.
Indeed, in the final part of this work, this modified version of GRISLI is applied on a real
scRNA-seq dataset and an increase in terms of AUROC score is achieved.
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