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Facoltà di Ingegneria



Finito di scrivere il giorno October 9, 2013 utilizzando LATEX2ε
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Abstract

The analysis of retinal images plays a key role in the prevention and the diagnosis of

many diseases. The aim of this study is to establish whether there is a link between

blood vessel appearances in the eye and muscle loss with age (sarcopenia). Several

parameters are estimated in order to investigate changes in the retinal blood properties

and to look at biomarkers which may help us identify people at risk of sarcopenia. We

develop an innovative population image-based approach to retinal biomarkers, based

on the estimation of the distribution of retinal vessel diameters. A pilot study on a

community of older people affected by sarcopenia is presented.





Introduction

Age related loss of skeletal muscle and strength, sarcopenia - from the Greek terms

sarx for flesh and penia for loss - is a common cause of falls, frailty and disability in

old age. Research into this muscle loss is limited because, at present, it can only be

diagnosed when the condition is far advanced. The mechanisms underlying this loss of

muscle in old age have been not well understood yet, but recently evidence points to a

link between it and cardiovascular disease.

The analysis of the retinal images plays a key role in the prevention and the diagno-

sis of many diseases. Photographing the back of the eye (retinal photography) allows the

blood vessels of the eye to be seen directly, and is a routine rapid and well established

way of screening people with diabetes for eye complications. We think that muscle loss

in old age may be the results of disease in blood vessels throughout the body. To date,

no one have studied the relationship between muscle loss in old age and the appear-

ance of blood vessels. Eye photography may well help us identify older people at early

risk of sarcopenia. This would allow us to target therapy to those most likely to benefit.

We use novel fundus camera retinal image processing to explore the link between

sarcopenia and cardiovascular disease. Several parameters are estimated in order to

investigate changes in the retinal blood proprieties and to look for biomarkers which

would provide us with a new, simple, inexpensive and non-invasive assessment for de-

tecting people at risk of sarcopenia. We propose an innovative population image-based

approach to retinal biomarkers, based on the estimation of the distribution of retinal

vessel diameter. Moreover, we develop a new definition of a surrogate measurement for

vessel generation, based on blood flow rate estimation.

Chapter 1 provides a background of the topic: clinical aspects of sarcopenia disease

and the state of art of retinal image analysis are presented.

Capter 2 presents two algorithms that have been used in a section of the work,

respectively for vessel diameters estimation and AV (arteries and veins) classification.



Chapter 3 proposes an algorithm for estimation of distribution of vessels diameters.

It could represent the starting point towards a novel population image-based approach

to retinal biomarkers and a pilot study on a community dwelling older people is pre-

sented.

Finally, in chapter 4, we propose a new definition of a surrogate measurement for

vessel generation for which there is pour agreement in literature. An attempt of blood

flow rate estimation from morphometric measurements is also presented.

XVI



Chapter 1

Background

1.1 Background

Sarcopenia - from the Greek terms sarx and penia “loss of flesh” - is defined as the age-

related involuntary loss of skeletal muscle mass, strength and physical function. The

etiology is believed to be multi-factorial and includes ageing, disease, inflammation,

increased oxidative stress, reduced physical activity, malnutrition, hormone deficien-

cies, muscle structural changes, and motor unit remodeling [1]. Sarcopenia represents

a common cause of falls, frailty and disability in old age and is also associated with

complications of diabetes, including a increased risk of vascular disease, heart attacks,

strokes, blindness, liver and kidney disease [2],[3]. Thus, this leads to an increased re-

quirement for nursing home placements, home healthcare and hospital facilities.

Therefore, if at an individual level, disability leads to reduced quality of life, at

the social level it leads to an increase in healthcare expenditures. The estimated direct

healthcare cost attributable to sarcopenia in the United States in 2000 was $18.5 bil-

lion, which represented about 1.5% of total healthcare expenditures for that year [4].

Reducing the prevalence of sarcopenia by 10% would result in savings of $1.1 billion

per year in U.S. healthcare costs. [4] Recent estimates indicate that approximately 45%

of the older U.S. population is sarcopenic and that approximately 20% of the older U.S.

population is functionally disabled [4]. These numbers will rise significantly in the next

years due the ageing of the population and the economic costs of aged related diseases

will escalate unless effective public health campaigns aimed at reducing the occurrence

of sarcopenia are implemented. For this reason, preventions, treatments and early di-

agnoses are essential.

Research into muscle loss is limited because, at present, it can only be diagnosed

when the condition is far advanced. Several diagnostic protocols have been developed
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such as physical activity questionnaires, body composition analysis, anthropometric and

blood pressure measurement, muscle strength measurement and muscle performance

tests [1]. However, these approaches are costly and time-consuming. An alternative

method could be a non-invasive assessment, who is low cost, easily interpreted and

comfortable for patients. Medical imaging, based on the detection of imaging biomarkers

as indicator of the progress of the disease, could be a valid approach. Specifically,

sarcopenia could be diagnosed by a non-invasive retinal assessment since evidence has

recently established a link between age-related disease and cardiovascular disease [3].

1.1.1 Retinal biomarker

Biomarkers are proxies for biological and pathological processes that can be measured

objectively. They are clinically useful when the biomarker precedes the disease process,

thus serving as a risk factor, or when the biomarker acts as a surrogate for tissue or

fluid that is not obtainable practically. Biomarkers can be used in the diagnosis and

management of disease, for example using markers of blood pressure, cholesterol, and

body mass index to determine the risk for cardiovascular disease.

The retina is a unique site where the microcirculation can be imaged directly, pro-

viding an opportunity to study in vivo the structure and pathology of the human

circulation and the possibility of detecting changes in the microvasculature relating

to the development of cardiovascular disease. Histo-pathological studies have demon-

strated that these retinal signs reflect vascular damage from ageing, hypertension and

other processes. Retinal biomarkers have become a target in research, because they can

assist in elucidating mechanisms of disease, determining the risk of disease and disease

progression, and serve as outcome parameters for clinical studies. Retinal microvascular

abnormalities seen on fundus photography are associated with diabetes, hypertension,

stroke and cognitive impairment. Often, diagnostic focus is placed on structural fea-

tures of the vasculature such as vessel width, branching angles, and vessel tortuosity.

Retinal blood vessels have similar size and physiology to cerebral small vessels and may

act as a surrogate marker to them. Abnormalities are often subtle and may be missed

by visual observation or conventional retinal image inspection.

The ability to image the retina and develop techniques for analyzing the images

is of great interest. As its function requires the retina to see the outside world, the

involved ocular structures have to be optically transparent for image formation. Thus,

with proper techniques, the retina is visible from the outside, making the retinal tissue,

and thereby brain tissue of which represent the natural extension, accessible for imag-

ing non-invasively. Because the retina’s function makes it a highly metabolically active
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tissue with a double blood supply, the retina also allows direct noninvasive observation

of the circulation.

To date, just a few studies have studied the relationship between muscle loss in

sarcopenia and the appearance of retinal blood vessels [5]: changes in the retinal circu-

latory properties, such as decreasing in the number of the vessels, narrowing of the walls

and reduction of blood flow could be important factors. Emerging evidence suggests

a link between cardiovascular disease and physical function (sarcopenia) in old age.

Arterial stiffness is an established cardiovascular risk factor. Arterial stiffness increases

with age [5] and greater arterial stiffness with age has been demonstrated at many

sites, including the retinal microcirculation [6]. Arterial stiffness is associated with low

thigh muscle mass [7] and poor leg function in older people, both in those with and

without peripheral arterial disease. Retinal arterial narrowing is known to be associated

with increased arterial stiffness. The mechanisms linking microcirculatory changes to

macrocirculatory changes are not known but evidence shows that retinal microvascular

changes can reflect increases in arterial stiffness independent of measured blood pres-

sure and vascular risk factors [8],[9]. An age related increase in inflammatory markers

is implicated in the disruption of the microvascular endothelium. This is reflected in an

increased retinal arterial tortuosity and microvascular changes with age [5]. Sarcope-

nia is associated with an increase in inflammatory markers and with a reduction in

capillary density in skeletal muscle [5]. It is therefore plausible that retinal microvascu-

lature changes could be associated with sarcopenia. Thus, fundus images could prove

very useful in detecting any retinal biomarkers for sarcopenia and also to identify older

people at early risk of sarcopenia.

1.2 Fundus of the eye

Fundus photography documents the fundus of the eye, i.e. the interior surface of the

eye, opposite the lens, and includes the retina, optic disc, macula and fovea. The retina

is a layered tissue lining the interior of the eye that enables the conversion of incoming

light into a neural signal that is suitable for further processing in the visual cortex of

the brain. It consists of an outer pigmented layer, in contact with the choroid, and an

inner nervous layer, close to the vitreous body. At the center of the posterior part of

the retina is an oval, yellowish area, the macula lutea, which is the area of the retina

for the most distinct vision. It has a central depression, the fovea centralis. The optic

nerve leaves the retina about 3mm to the medial side of the macula lutea by the optic

disc. The optic disc is slightly depressed at its center, where it is pierced by the central

artery of the retina. At the optic disc is a complete absence of rods and cones so that

it is insensitive to light and is referred to as the “blind spot” [10].
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The only arterial blood supply to the inner retina is from the central retinal artery

(CRA), that runs along the inferior margin of the optic nerve sheath and enters the eye

at the level of the optic nerve head. Within the optic nerve, the artery divides to form

the inferior/superior nasal and temporal arteries, which supply the four quadrants of

the retina. The retinal venous branches are distributed in a similar fashion, where the

central retinal vein (CRV) is equivalent of the central retinal artery [11].

Figure 1.1: The left ocular fundus as seen with an ophthalmoscope. The image is centred

on the optic disc.

1.3 Fundal Digital Image Analysis

The first stage in fundal digital image analysis is image capture. This is normally

acquired by a fundal camera (mydriatic or non-mydriatic), that basically is a specialized

low power microscope with an attached camera. The digital camera operates in the same

fashion as a conventional camera, but instead of having film, they use a digital sensor

(CCD, C-MOS) [12]. The CCD is an array of tiny light-sensitive diodes which convert

the light signal (photons) into electrical charge (electrons). At each element in the

array, the electrical current proportional to the analogue light level is converted into a

digital level. Depending on the clinical application, various optical filters are available,

the most common being green filters for red-free photography, and barrier filters for

fluorescein angiography. A typical camera has a field of view (FOV) of 30 to 50◦ with

a magnification of 2.5×. The actual image resolution, i.e., how many millimetres are

captured by a pixel, depends on various factors, mainly the properties of the optics and

the resolution of the CMOS/CCD image sensor employed. About 3000 × 3000 pixels

are now common [13].

Nevertheless, taking manual measurements in retinal fundus images is time-consuming
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Figure 1.2: A Canon CR-DGi fundus digital camera

and laborious, slowing down significantly the analysis of large numbers of images. Hence

the need for software tools that can process large numbers of images in an objective,

effective and efficient manner. Recent technologic advances in high resolution digital

photography and image processing software programs have enabled quantitative and re-

producible measurement of various changes in the retinal vasculature. Fundus imaging

software also integrate visual information with reports, patient information and other

data, and are designed to help ophthalmologists organize their efforts in an efficient and

high-throughput manner. Retinal analysis systems usually follow the same schemes and

implement the following steps:

- pre-processing: in order to obtain an image enhancement - contrast enhancement,

denoising and correction of non-uniform illumination

- vascular net segmentation: the main step of every fundus images software

- landmark location: i.e. optic disc (OD) and fovea

- features extraction - e.g. vessel width, vessel tortuosity, branching coefficients,

thickness

- lesion detection - e.g. automated detection of diabetic retinopathy (ADDR), mi-

croaneurysms and haemorrhages.

In the next section we present VAMPIRE [14], [15], a software for semi-automatic



6 1. BACKGROUND

quantification of retinal vessel properties, developed at the University of Dundee by the

CVIP group. This discussion will also allow to have a general overview on the main

features characterizing retinal fundus images and the some of the algorithms for their

extraction.

1.3.1 VAMPIRE software for fundus retinal images analysis

VAMPIRE (Vascular Assessment and Measurement Platform for Images of the REtina)

is an easy-to-use tool allowing efficient quantification of features of the retinal vascula-

ture with hundreds or thousands of images. Most processing is performed automatically

before user intervention, which is kept at a minimum. The VAMPIRE interface provides

easy-to-understand visual feedback of the features extracted and a set of tools that al-

lows the user to easily identify, locate and correct wrong measurements. No experience

of image processing algorithms is assumed.

VAMPIRE starts with a segmentation of blood vessels and optic disc, followed by

geometry estimation at vessel bifurcations, the tortuosity of major vessels, and fractal

dimension of the vasculature. Most of the processing is hidden from the user, who is

expected to provide only a minimal level of intervention after all measures are calcu-

lated. The current, beta version of VAMPIRE includes modules for vessel detection,

branching angle measurements, vessel width estimation and tortuosity estimation. Op-

tic disc location and fractal analysis are available and to be incorporated.

User interface: VAMPIRE allows the user to load a set of images of arbitrary size.

At the moment, no automatic quality assessment is included. VAMPIRE locates the

vasculature network and estimates branching coefficients, vessel widths, and tortuos-

ity. The user can revise results efficiently, making corrections or discarding images. All

measures, together with metadata about the images, are saved by VAMPIRE in Excel

files, ready for analysis.

To date, VAMPIRE has been run for tests and pilot correlational studies on images

of resolution ranging from approximately 400× 400 to 3000× 3000 pixels, acquired by

various commercial instruments. These include fundus cameras (e.g. Canon CR-DGi

nonmydriatic at about 45◦ FOV), and a scanning laser ophthalmoscope (henceforth

SLO), the OPTOS P200 ultra-wide-field-of-view. VAMPIRE was run also on the main

public datasets or retinal images, DRIVE, STARE and DIARETDB1.

Landmark location: the purpose is to locate key retinal landmarks, namely the

optic disc (OD) and the fovea, and the approximate path of the arcade vessels. The de-
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Figure 1.3: VAMPIRE interface

tectors exploit bright-dark circularly symmetric structures in vessel-removed, inpainted

monochrome images and the method exploits the fact that the OD is crossed by large

vessels, and the fovea located in an avascular zone.

The input image is converted to greyscale. Vessels are removed using the inpainting

procedure described in [16]. Dark or bright radial symmetries are captured by the Fast

Radial Symmetry transform by Loy and Zelinsky [17]. For each radius R in a defined

range and for each pixel location ~p, a positively affected pixel p+ and a negative af-

fected pixel p− are obtained translating ~p along the gradient direction in positive (dark

to bright) and negative (bright to dark) orientations. Values of the bright (OD) and

dark (fovea) symmetry maps are generated by accumulating in ”‘affected”’ pixels values

depending on the gradient magnitude of the originating points and filtering maps in

order to make the contribution scale invariant, and summing the contributions of all the

radii used. If radii are densely sampled, the transform captures well all the symmetric

structures in the range used. For OD detection the “positive” symmetry map S+ on

all integer radius values within 7 and 12 pixels in a subsampled image is computed.

For the macular region the “negative” symmetry map S− in the range 3-12 pixels is

computed.

Vasculature detection: in order to locate and represent the retinal vessel net-

work, trials with various vessel segmentation algorithms, including Soares et al. [18]

and Lupascu et al. [19], were conducted. Currently, VAMPIRE implements a version

of Soares’s algorithm as the best compromise between speed and accuracy. In essence,
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the algorithm applies a multi-scale, 2-D Gabor wavelet transforms to emphasize the ap-

pearance of vessels, followed by supervised pixel classification with a Bayesian classifier.

Manually segmented images provide a labelled training set with two pixel classes, vessel

and non-vessel. The authors report high accuracy (fraction of correctly classified pixels,

0.9466 and 0.9480 on DRIVE and STARE respectively). VAMPIRE implements this

algorithm to generate a tree-like representation of the vasculature, as a pre-processing

for measurements.

Vessel width: vessel contours in the binary maps are refined by a constrained

spline-fitting algorithm [20], who allows a very good accuracy in width estimation on

public dataset. First, a temporary skeleton is obtained using morphological thinning

on the binary mask; branching points are removed and a natural cubic spline is fitted

to the thinned centreline. Second, two coupled cubic splines are fitted to the original

(jagged) contours by solving a linear system over-constrained by a parallel-tangent con-

straint coupling the two splines and penalizing locally non-parallel contours.

Vessel width wj at point Cj lying on the spline smoothed centreline is estimated

computing the Euclidean distance between points Dj and Ej on the two refined con-

tours and lying on segment djj , orthogonal to the centreline at Cj .

Vessel tortuosity: the purpose is to define and assess the degree of tortuosity

of selected retinal vessels. Currently, VAMPIRE adopt a new tortuosity metric that

takes into account both skeleton curvature as well as vessel thickness [21]. The intu-

ition is that at parity of skeleton, the curvature of the vessels boundaries changes width

thickness: the measure is computed as the sum of the averaged curvatures od airs of

corresponding boudary points. At the moment, only vessel segments between junctions

are measured; estimates of the tortuosity of the whole vessel network are under study.

Branching coefficents: the goal is to quantify bifurcation geometry via branching

angles and coefficients. Vessel center-lines are created from the binary vessel map and

intersecting junction points of the three converging vessels are found for each junction.

Following, three best-fit straight lines, one per vessel, are used to find the optimal junc-

tion location. A second set of lines crossing the estimated location are now fitted to

vessel points. Results are used to estimate junction angles. The bifurcation coefficient,

b, is determined from the widths of parent, W , and that of the two child vessels, w1,

w2, as: b = w2
1 + w2

2/W
2.

Fractal analysis: the fractal dimension (FD) characterizes complex, repeating ge-

ometrical patterns at different spatial scales. In our case, FD measures the degree of
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branching complexity of the vasculature tree. MFA is performed using the generalized

sand-box method. This selects a random set of pixels and counts the number of ves-

sel pixels in square regions centred at the selected pixels and with increasing linear

dimension.

1.4 Numerical Simulation of Blood Flow

The computing of hemodynamic proprieties, i.e. pressure and flow profiles, could be

very useful tool to diagnose arterial or venous disease. E.g. the challenge of ophthal-

mology management in patients with diabetes is the earliest detectable abnormalities in

microvascular hemodynamics before gross morphologic changes appear. In this way the

physician can intervene before complications arise and the effects of the disease become

irreversible. Therefore, being able to construct a model based on measured geometry

will allow to quantitatively understand the hemodynamics in a realistic retinal vascular

network. For a given subject, measured pathologic flow profiles could be compared with

computed healthy flow profiles. Studies of how the model parameters must change to

simulate the measured pathologic flow profiles might lead to a better understanding of

the pathologic condition.

Flow estimation from morphologic features Murray’s law, based on the simple as-

sumption of a steady Poiseuille blood flow, is usually used. It links the radius of a

parent vessel R0 (immediately upstream from a vessel bifurcation) to the radii of the

daughter vessels R1 and R2 (immediately downstream after a vessel bifurcation) as

R0/R1 = R0/R2 = 2−1/3. From Murray’s analysis, the required condition of minimum

power occurs when Q ∝ R3 where Q denotes the volumetric flow. This relation, called

“cube law”, is determined assuming that two energy terms contribute to the cost of

maintaining blood flow in any section of any vessel: (i) the pumping power and (ii) the

energy metabolically required to maintain the volume of blood which is referred to as

“volume constraint”. A generalization of this relation can be proposed as Q ∝ Rc where

c is determined from the condition of minimum power by assuming other constraints

(for instance surface constraint yields Q ∝ R2.5). Under the condition c = 3, the shear

stress on the vessel walls is uniform and independent of vessel diameter. Several studies

have been carried out to determine the value of c which usually ranges between 2 and 3.

In their article [22], Riva et al. present quantitative measurements of blood velocity and

volumetric flow rate in individual arteries and veins of the normal human retina and

establish their relation to vessel diameter. They found that volumetric flow rate varied

with D (vessel diameter) at a power of 2.76± 0.16 for arteries and 2.84± 0.12 for veins,

in close agreement with Murray’s law. Exactly, fitting data points of 64 arteries and 66

veins, they found that Qa varies as 2.0× 10−5 ×D2.76 and Qv as 8.25×−10−6 ×D2.84
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where D is in micron-meter.

Many authors developed mathematical models of hemodynamic proprieties of mi-

crocvascular retinal network. In their paper [23], Takahashi and Nagaoka et. al. develop

a theoretical concept to quantitatively describe hemodynamic behaviour in the mi-

crovascular network of the human retina: a dichotomous symmetric branching network

of the retinal vasculature was constructed, based on a combination of Murray’s law and

a mathematical model of fractal vascular trees. In [24] blood flow in the large systemic

arteries was modeled using 1D equations derived from the axisymmetric Navier-Stokes

equations for flow in compliant and tapering vessels. J. Malek et al. [25] developed a

detailed 2D computational model to simulate blood flow in a realistic retinal arterial

tree by solving Navier-Stokes equations and CFD analysis allowed them to examine

the effect of topological changes in retinal vasculature on hemodynamics distribution

in the retinal circulation.

In addition, the model of a microvascular network, such as the retina microcircu-

lation, is further complicated by the dependence of blood viscosity from several pa-

rameters, vessel diameter, shear rate and hematocrit and these effects has to be taken

into account. E.g. Pries et al. [26] developed a theoretical model to simulate blood

flow through large microcirculatory networks: the model takes into account the depen-

dence of apparent viscosity of blood on vessel diameter and hematocrit (the Fahraeus

Lindqvist effect), the reduction of intravascular hematocrit relative to the inflow hema-

tocrit of a vessel (the Fahraeus effect), and the disproportionate distribution of red

blood cells and plasma at arteriolar bifurcations (phase separation).



Chapter 2

Related Works

In this chapter we reported 2 algorithms, respectively for automatic vessel diameter

estimation and AV classification, that were of service of this project.

2.1 Width estimation

Reported algorithms estimating the diameter of retinal vessels in fundus camera images

follow two broad schemes. The first is to fit a parametric model of the image intensity

profile across the vessel, then estimate width from the best-fit parametric profile. The

second is to use contour detection methods to find vessel boundaries directly. In this

section, we present an algorithm of the former type, developed by Lupascu et. al. [27],

who basically uses a novel parametric surface to model the local cross-sectional inten-

sities and a ensembles of bagged decision trees for regression to estimate width from

the parameters of the best-fit surface.

The algorithm consist of three main steps: the extraction of 3d intensity surface, the

fitting of the surface with an extended multiresolution Hermite model and the width

estimation by of the parameter of the fitting with ensembles of bagged decision trees.

The next paragraphs briefly summarize the three sections, but for more details you can

see [27].

2.1.1 Extraction of 3D surface

The surface of image intensities around a selected location is obtained from the green

channel. The target location is automatically detected as the point of minimum inten-

sity within the cross-sectional profile and 5 parallel cross-section on each side of the

target location (for a total of 11 points) are set as seeds poins for the extraction pro-

file. For each of the 11 seed points, you get the intensity profiles perpendicular to the

vessel, using bilinear interpolation of intensities at non-integer locations. The length of
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the profiles, fixed to a value large enough to contain the widest vessel cross-section, is

taken to be 100 pixels Figure 2.1.

Figure 2.1: Seed points (blue asterisks), profile points (red circles), profile borders (ma-

genta and black diamonds) and automatic target location (green square).

The next step is to identify vessel region around target location on the mean in-

tensity profile in order to cut intensity profile regions of other vessels profiles. To auto-

matically obtain the vessel region, the local maxima and minima need to be detected.

Specific rules to group maxima and relate them to different vessels have been estab-

lished; they can captured both vessel with and without central reflex.

2.1.2 Extended multiresolution Hermite model

Intensity cross-section profiles of retinal vessels are approximately Gaussian in shape,

but not infrequently large vessels present a central light reflex caused by specular re-

flection. In this case a Gaussian intensity model tends to over-segment the features,

consequently underestimating width.

The starting point is the model suggest by Wang et. al. [28], who uses a second-order

Hermite polynomial to modulate a Gaussian, and shows to fit very well the intensity

profile of retinal vessels, thanks to its ability to represent the possible central reflex

of some vessels. However, Wang model cannot get all vessel proprieties, e.g. it can’t

explain for the asymmetric profile of some vessel, so some parameters with specific

functions were introduced in order to improve the fitting to the vessel surface. Here we

report the final expression of the extension of multiresolution Hermite model:



2.1. WIDTH ESTIMATION 13

H(a,m, δ, σ, p, q, x, y) = p[1 + a((x−m− δ)2 − 1)]
1√
2πδ2

e
−(x−m)2

2δ2 + q (2.1)

where:

- a: asses the central deformation of the Gaussian

- m: the mean of the Gaussian

- σ: the standar deviation of the Gaussian

- δ: accounts for the asymmetric profiles

- p: allows to change the sign of the function

- q: shifts the function along y-axis, ensuring positive values.

The fitting of the surface is achieved by the a Nelder-Mead optimizer, minimizing

the sum of squared differences between model and intensity data. To initialize the

optimization, the mean profile over the 11 cross-sections is computed and used its

maximum and minimum peaks to obtain the parameter values of a 1D, subsequently

pushed out to obtain the initialization of the surface.
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Figure 2.2: Vessel intensity profile before (a) and after fitting (b).

2.1.3 Width estimation

The final step is to associate the parameters of the best-fit intensity surface with a width

value. To do this, they use ensembles of bagged decision trees to learn the mapping

from a point in the 6d parameter space, representing the surface, to the vessel diameter.

2.1.4 Results

The classifier was trained on 378 cross-sections of main and secondary vessels, estimated

manually by 2 clinicians. The dataset includes and belonging to 38 healthy and dis-

eased images, resolution 2336× 3504, from the Tayside diabetic retinopathy screening
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programme, obtained in full conformity with the current protocols (ethics, Caldicott,

anonymization) training. 10-fold cross validation was performed in order to assess the

accuracy of the classifier and test on public dataset and compared their method width

other algorithms proposed in literature. The classification error is expressed as mean

and standard deviation of the difference between the estimated value and the ground

truth, computed on all the profiles available; results show good accuracy (the error

ranges from 0.004± 0.438 to 0.015± 1.073, depends on the dataset) and better success

rate (100%).

2.2 AV classification

In the retinal vasculature it is essential to classify vessels in artery and veins, due

to the possibility of extracting diagnostic indicators, as the Arteriolar to Venular ratio

(AVR), that has been linked to different disease. For this reason several authors [29], [30]

proposed methods to discriminate veins and arteries on retinal images. The classification

problem can be faced both with supervised and unsupervised approaches. In this section

we present an algorithms of the second type, who focuses on the selection on a large

number of optimal features and test different supervised classifications methods; for

major details you can see [31].

2.2.1 Features Extraction

They considered a large number of features, for a total of 86 features, including not

only color features, but also spatial location and vessel size. They can be summarize as

follows:

- colour: the main features are related to colour inside the vessels. Both colour

variations within in the vessel and contrast with the surrounding pixels were

computed: central pixel colour components (RGB, HSV), components derivatives,

mean, minimum, maximum and standard deviation of these values.

- position and size: vessel size and spatial location can be used together and in

combination of colour features to improve the classification accuracy: they decided

to computed polar coordinates (angle and distance from OD).

2.2.2 Vessels labelling

They performed supervised classification and feature selection tests based on the com-

putation of the parameters described in the previous section, using the PRTools Matlab

toolkit [32]. They tested different linear and non-linear classifiers (Linear and Quadratic

Normal Bayes, Parzen Classifier, Linear and radial basis Support Vector Machine), us-

ing different subset of features.
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2.2.3 Results

They performed tests on a database of 42 images acquired within the Tayside diabetic

screening programme at Ninewells Hospital, Dundee, in accordance to the current reg-

ulations (ethics, Caldicott, anonymization). Images have high resolution (2336×3504),

and type-2 field, i.e., centered on the macula. Images were also subsampled by different

factors (0.625, 0.5, 0.25, 0.125, 0.0625) in order to simulate acquisition with sensor with

different resolutions and tests have been repeated at each obtained resolution.

The best classification accuracy was obtained with the normal linear Bayes classifier

(classification error 0.06875) using subsets of features described above and considering

color variations within the vessel size or also outside. It’s worth to highlight some

interesting facts:

- colour variations are more informative considering both vessel and background

than using vessel only. Contrast with external pixels give more information than

internal variability (central reflex), even if the addition of features based on the

internal variations slightly improve the results

- size information alone does not improve the colour based classification accuracy,

while positional information does relevantly reduce the classification error

- the classification results and the role of feature groups does change with the

resolution and that the accuracy does not necessarily decrease with it: indeed, it

is maximal at about half the original size (0.625)

- vessel size is one of the best features and that a lot of colour features are relevant

for the classification.





Chapter 3

Estimation of distribution of

vessel widths

In this section we present a method for the estimation of the distribution of arteriolar

and venular widths in a set of retinal fundus images. The double purpose is to introduce

a new approach of investigation of vessel widths based on images and to characterize a

community dwelling older people with maps of distribution of retinal vessel diameters.

This study will allow us to characterize a populations of sarcopenic patients in order to

establish if there is any significant change in retinal vasculature compared to healthy

subjects.

3.1 Material

We used a set of 150 field-1 retinal images (N=75, left and right-eye images for each),

2304 × 3456 pixel, of older people (> 65 years, mean age 72 ± 6) volunteers from a

recent study on retinal biomarkers for Sarcopenia [5]. Participants with inability to walk

independently, past medical history of diabetes mellitus, stroke (within 6 months) and

significant visual impairment were excluded from the study. Images were taken at the

diabetes screening centre at Ninewells Hospital, Dundee, with a non-mydriatic digital

camera after dilation of the pupils with 1% tropicamide eye drops. 13 participants had

sarcopenia, 14 had pre-sarcopenia, no one had severe sarcopenia.

3.2 Methods

The algorithm is divided in three main parts: the estimation of the vessel diameter in

the set of images, registration of the images and the interpolation of the collected data.

They are described in details in the next sections.
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3.2.1 Data collection

For each image, widths were computed automatically at N=600 locations taken on con-

centric circles of different diameters di, centred on the OD. A location on a circle is

defined as a point where a vessel skeleton crosses the circle and it is detected automati-

cally by an operation of binary intersection of two sets, respectively the skeleton of the

binary map of retinal vasculature and a binary circular mask (Figure 3.1b). The number

of locations per circle thus varies. The algorithm starts with 5 circles (r = 1, 2, . . . , 5

OD radius) and adds inbetween circles until the target total number of measurements

is reached. This guarantees a regular sampling of the vasculature, with about 30 circles

per image.

(a) (b)

Figure 3.1: Example of intersections (red dots) between vessel skeletons and a circle,

on the binary vessel map extracted by VAMPIRE from an image: (a) locations along

a circle, (b) particular.

Vessel maps are extracted using the VAMPIRE automatic package [15] and skele-

tonisation is performed by the MATLAB bwmorph function, based on iterative deletion

of pixels and preserving 8-neighbour connectivity.

Widths are estimated automatically using Lupascu et al.’s method [27], described

in section 2.1, which basically fits a parametric model of the image’s intensity profile

across the vessel and then estimate width from the best profile. To minimize accidental

errors, each width is computed as the average of the widths at N=9 adjacent locations

centred on the target point. Moreover, a location is accepted only if the standard devi-

ation of the 9 measurements was below 10% of the mean.

Information on vessel type is also available: AV classification is performed by a

supervised classification and features selection based on Zampierini et al.’s algorithm

[31], described in section 2.2. Errors in the automatic results were checked manually to
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ensure 100% correct classification.

The two classifiers (vessel diameter estimation and AV classification) were trained

on our images to improve the performance.

A total of about 8 × 104 width measurements were collected using the methods

above from 136 images.

Figure 3.2: Final result of the algorithm after locations detection, width estimation and

AV classification.

Data collected can be displayed in Figure 3.3. The 3d histograms were generated by

the MATLAB hist3 function and allow to visualize the frequencies of the combination

of levels for two variables, respectively the distance from the OD an the width value in

each location. Different plots were generated for arteries and veins.

3.3 Computational time

Width’s estimation for a large number of points (order of magnitude 8×104) requires a

considerable computation time: indeed the algorithm takes several seconds on width’s

estimation in each intersection, which is estimated as the mean of 9 measurements

taken along the vessel. It clearly depends on the CPU and in our experiment we can

assume an average time of about 12 s for each intersection. Every image was processed

in approximately in 1.30h, for a total the number of 68 images.

Also AV classification requires a computational time not negligible, comparable with

the time required for width’s estimation. The most is taken by the extraction extraction



20 3. ESTIMATION OF DISTRIBUTION OF VESSEL WIDTHS

(a)

(b) (c)

Figure 3.3: Distribution of the widths as a function of OD distance: (a) arteries + veins,

(b) arteries, (c) veins.
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of the 44 features. Every image was processed in about in 1h.

Vessel diameter’s estimation and AV classification were performed in two different

runs for organizational set-up reasons. Tests were made on an Intel(R) Core(TM)2 Duo

CPU (2.26 GHz) with 3GB RAM memory.

3.3.1 Registration of the images

A preliminary operation of registration of the images was leaded to define coordinates

of each location in a new reference system (Figure 3.4): this operation allows the over-

lapping of the OD centres and of the OD-fovea axis.

Figure 3.4: Definition of the new reference system. The new reference system x’y’ is in

blue, the old one xy in red.

Registration is performed by a combination of affine transformations: the Cartesian

coordinates of every locations are firstly shifted in the origin of a new reference system

and then rotated by an angle θ between the horizontal axis and the line connecting the

OD centre with the fovea. The rotation is clockwise or counter-clockwise depending if

the eye is left or right. The coordinates of each location are finally scaled to obtain a

200 pixel radius in each image. The transformation can be described by the following

matrix form:

[
x′

y′

]
= s

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
+ s

[
x0

y0

]
(3.1)

where x, y are the coordinates of the location in the original reference system and

x′, y′, x0, y0, are respectively the coordinates of the location and the OD in the new

one ans s is the scaling factor.
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3.3.2 Interpolation

Data collected can be stored on a mask of the same size the original images (Figure 3.5),

which contains values of every location detected with coordinates in the reference sys-

tem described in 3.1. If two or more locations have the coordinates we chose the mean

value. Thus, we obtain a set of scattered points from which we have to create a con-

tinuous surface, using an interpolation method to predict values at every point. It’s a

similar problem of surface interpolation geo-sciences deal with to estimate data (eleva-

tion, temperature, concentrations) from limited observational records.

Figure 3.5: Sample set of point locations, after images registration, to be interpolated.

There are two main groupings of interpolation techniques: deterministic and geo-

statistical. Deterministic interpolation techniques create surfaces from measured points,

based on either the extent of similarity (inverse distance weighted) or the degree of

smoothing (radial basis functions). Geo-statistical interpolation techniques (e.g. Krig-

ing) utilize the statistical properties of the measured points. Geo-statistical techniques

quantify the spatial autocorrelation among measured points and account for the spatial

configuration of the sample points around the prediction location.

We chose the inverse distance method (IDW) because of the sampling sufficiently

dense. IDW interpolation explicitly implements the assumption that things that are

close to one another are more alike than those that are farther apart. To predict a value

for any unmeasured location, IDW uses the measured values surrounding the prediction

location. The measured values closest to the prediction location have more influence on

the predicted value than those farther away. IDW assumes that each measured point

has a local influence that diminishes with distance. It gives greater weights to points

closest to the prediction location, and the weights diminish as a function of distance,

hence the name inverse distance weighted. In IDW the value ẑ of un-sampled is given
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by the following formula:

ẑ(xj) =
n∑

i=1

λizi (3.2)

where λi is the weight of the each observation and n the number of the sampling

points. Usually the weights are normalized in the range [0 1]:

n∑

i=1

λi = 1 (3.3)

Weights are proportional to the inverse of the distance between the sample point and

the prediction location, raised to the power value p. As a result, as the distance increases,

the weights decrease rapidly. The rate at which the weights decrease is dependent on

the value of p. Inverse Squared Distance (i.e. p=2) is a widely used interpolator, so the

IDW interpolator can be rewritten as follws:

ẑ(xj) =

∑n
i=1 z(xi)d

−2
i,j∑n

i=1 d
−2
i,j

(3.4)

The characteristics of an interpolated surface can be controlled by limiting the input

points used. Points can be limited by specifying a maximum nunber of points, which

will select the nearest points until that maximum number of points is reached. Alter-

natively, a radius can be specified in maps units (Figure 3.6).

(a) (b)

Figure 3.6: IDW search area: (a) maximum number of neighbours, (b) fixed radius.

We first performed an IDW interpolation on a grid of 288 × 432 nodes, obtained

taking 8 pixels far node along rows and columns in the mask of size 2304×3506. A spline
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2d-interpolation, performed by the MATLAB function interp2, followed to interpolate

every pixel of the mask.

3.4 Results

14 images were excluded from the study (8 because of a different scale factor, 6 because

too damaged), so the set was reduced to 136 images. Different plots are generated for

arteries and veins, left and right eyes.

In Figure 3.7 there are results of widths distribution after the interpolation. Differ-

ent plots were generated for arteries and veins, for left and right eyes. The maps can

be visualized using colour coded images to aid the medical diagnosis.

3.4.1 Cross-validation

Although no measures are known that would or could be universally applied to choose

the optimal set of parameters, cross-validation is often used to select an interpolator

from finite number of candidates. It is common practice to use k-fold cross-validation

method to validate the accuracy of an interpolation when the data set is numerous.

The method is based on removing k data points at a time, performing the interpolation

for the location of the removed points using the remaining samples and calculating

the difference (residual) between the actual value of the removed data point and the

estimate for this point obtained from remaining samples. This scenario is repeated k

times, with each of the k subsamples used exactly once as the validation data. The

overall performance of the interpolator is then evaluated as the root-mean of squared

residuals:

RMSE =

√√√√ 1

N

N∑

i=1

(zi − ẑi)2 (3.5)

where RMSE stands for root-mean-squared error, zi is the interpolated value of vari-

able at point i, zi is the measured value of variable, and N is the number of data points.

Cross-validation was used to find the best agreement between the measured data and

the IDW estimates performed with different sets of parameters. The number of closest

samples chosen varied from 4 to 16, with a four-sample interval. The best neighbours

sample number was found to be 16. We tested only Inverse Square Distance.



3.4. RESULTS 25

 

 

6

8

10

12

14

16

18

20

22

24

26

(a)

 

 

6

8

10

12

14

16

18

20

22

24

26

(b)

 

 

6

8

10

12

14

16

18

20

22

24

26

(c)

 

 

6

8

10

12

14

16

18

20

22

24

26

(d)

 

 

6

8

10

12

14

16

18

20

22

24

26

(e)

 

 

6

8

10

12

14

16

18

20

22

24

26

(f)

Figure 3.7: Widths distribution map in left and right eye: (a), (b) arteries + veins, (c),

(d) arteries, (e), (f) veins.
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Figure 3.8: Widths distribution histograms for artery + vein (green) artery (red), vein

(blue) in left right eye.
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3.4.2 Metrics for comparing maps

In the following section we briefly present some measurements that quantitatively eval-

uate the amount similarity of two images. Two of them come from the images regis-

tration theory, the others two are based on the comparison of the grey scale histograms.

Maps of different sub-populations can be compared each others thanks the concepts

of mutual information (MI), who represents the amount of similarity of two images. As a

similarity measure, mutual information has enjoyed a great deal of success, particularly

in the medical imaging domain, and has emerged in recent years as a well-established

algorithm in image-registration.

MI between two variables is a concept with roots in information theory and essen-

tially measures the amount of information that one variable contains about another. MI

is closely related to joint entropy concepts (H). Specifically, given image X and image

Y, the joint entropy H(X,Y ) can be calculated as:

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y) (3.6)

where p(x, y) is the joint probability distribution function of pixels associated with

images X and Y. The joint probability for each couple is computed from the joint his-

togram, who displays in x-axis the grey values of the pixels of X and in y-axis those

of Y, both considered as realizations of a random variable. The joint entropy is mini-

mized (and the mutual information is maximized) when there is a one-to-one mapping

between the pixels in X and their counterparts in Y and it increases as the statistical

relationship between X and Y weakens.

Mutual information considers both the joint probability distribution function of X

and Y, p(x, y), and the marginal probability distribution function of X and Y, respec-

tively p(x) and p(y). It can be defined as:

MI(X,Y ) =
∑

y

∑

x

p(x, y) log
p(x, y)

p(x)p(y)
(3.7)

MI can be equivalent expressed as:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (3.8)

A frequently used technique in data analysis is the comparison of two distributions
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through the comparison of histograms, in terms of some specific criteria for similarity

[33], [34]. To compare two histograms H1 and H2, first we have to choose a metric

d(H1, H2) to express how well both histograms match. There are several measurements

of similarity [35]: correlation, chi square, intersection, Bhattacharya. E.g. correlation

metric can defined as:

d(H1, H2) =

∑
iH

′

1(i)H
′

2(i)√∑
iH

′2
1 (i)H ′2

2 (i)
(3.9)

where:

H ′

k(i) = Hk(i)− (1/N)
∑

j

Hk(j) (3.10)

and N equals the number of bins in the histogram. For correlation, a high score rep-

resents a better match than a low score. A perfect match is 1 and a maximal mismatch

is -1; a value of 0 indicates no correlation (random association).

Chi-square metric (χ2) comes from is a statistical test for testing the null hypothesis

that the distribution of a discrete random variable coincides with a given distribution.

It can be express as:

d(H1, H2) =
∑

i

(H1(i)−H2(i))
2

H1(i) +H2(i)
(3.11)

For chi-square, a low score represents a better match than a high score. A perfect

match is 0 ans a total mismatch is unbounded (depending of the size of the histogram).

3.4.3 Characterization of the community dwelling older population

Using histograms comparison metrics, mutual information and joint entropy concepts,

evaluations of sub-population maps were performed, comparing left and right eyes in

arteries, veins and total vessel maps. All groups show high correlation. The higher MI

has been found in arteries distribution between left and right eye, while veins has the

lowest one. The results are displayed in table 3.1.

We performed a further analysis to establish if there were substantial differences

between sarcopenic and non-sarcopenic participants. We focused on the arterial maps

because it has assumed that arteriolar narrowing is an important risk factor for cardio-

vascular disease, to which is related sarcopenia disease. Two maps were created from
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Groups MI [bit] H [bit] Corr. [-] χ2 [-]

A+V left / A+V right 1.40 2.18 0.96 0.006

A left / A right 1.42 2.03 0.97 0.027

V left / V right 1.36 3.32 0.93 0.014

Table 3.1: MI H, correlation and χ2 between different groups of population (A = arteries,

V = veins).

the 27 participants affected by sarcopenia/pre-sarcopenia and from 27 non-sarcopenic

participants. Analysis on the left, right eye, between arteries and veins of the two groups

were performed. The same number of participants in the two groups ensures compa-

rability of data. As usual H, MI, correlation and χ2 were used to compare maps. The

following table summarizes the results:

Groups MI [bit] H [bit] Corr [-]. χ2 [-]

(A+V) left / (A+V) left 1.44 2.03 0.97 0.005

(A+V) right / (A+V) right 1.40 2.08 0.96 0.018

A left / A left 1.49 1.79 0.97 0.025

A right / A right 1.49 1.78 0.97 0.029

V left / V left 1.41 2.20 0.94 0.008

V right / V right 1.37 2.25 0.94 0.011

Table 3.2: MI, H, correlation and χ2 between histograms of sarcopenic and non-

sarcopenic group (A = arteries, V = veins).

These results show that there are not significant differences between MI and H

values in the maps of left and right eye, when comparing the same type of vessels.

Maps of veins show the lowest correlation, maps of the arteries the highest. All the

groups show similar histograms of widths.

3.5 Discussion

We proposed an innovative population image-based approach to retinal biomarkers,

based on the estimation of the distribution of retinal vessel diameter. We analysed

lots of fundus camera images of community dwelling older people, collecting a large

number of data and testing two classifiers (vessel width estimation and AV classifier).

We collected a large number of data, automatically detecting locations at different OD

distance and we interpolated data with IDW in order to create a raster surface. We

compared maps and found no significant differences between the widths distribution

in left and right eye, neither in arteries neither in veins, although the arteries map is
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slightly more correlate than the veins one. In saying this, we have to keep in mind some

errors the algorithm can commit, i.e. the detection false positive locations because of

a bad segmentation, the widths estimation error and the interpolation error. Reducing

these errors could modify the results and lead to different maps.

We identified participants affected by sarcopenia (and pre-sarcopenia) and yielded

maps for sarcopenic and non-sarcopenic population. We compared the plots of the two

healthy in order to verify if the distribution of the widths is different in healthy and

patient population. These results show an high correlation between maps of left and

right eye, when comparing the same type of vessels. Arteries maps have the highest

mutual information value.

Such results lead to the conclusion that widths could not play a key role in detecting

people affected by sarcopenia, since there are not differences in with distribution in the

two groups. However, a limitation of our study is that it was small and a cross-sectional

study in community dwelling older people with poor function. Given that, many of our

participants had mobility limitation at baseline, we cannot rule out possible differences

between retinal microvascular findings in frailer vs fitter older people. It is possible that

associations between retinal vascular measures will be more prominent in people with

greater vascular risk and diabetes, especially when looking at longitudinal change in

retinal vascular measures.

3.6 Conclusions

Our method aims to produce simple and easy-to-read maps that characterize the dis-

tribution of vessel widths in a specific population. Results obtained suggest that vessel

widths distribution maps have a good potential as a population image-based approach

to retinal biomarkers. Using joint entropy and mutual information concepts, we can

compare healthy subjects with patients in order to establish if there is any substantial

difference between the two groups in vessel diameter distribution. For the while widths

does not seem to play a key role in detecting people affected by sarcopenia, but it would

be interesting evaluate more data, comparing more separate classes of subjects.



Chapter 4

Surrogate measurements for

vessel generation

In this chapter we develop a method for blood flow rate estimation from morphomet-

ric measurements and show how it cloud work as a surrogate measurement for vessel

generation, for which there is poor agreement in literature.

Vessel generation can be defined as counting the number of junctions encountered

in a vessel tree from OD before hitting this vessel. More specifically, consider the fundus

retinal images in figure: we expect to see 4 major vessel supplying the 4 quadrant; CRA

and CRV usually splits into superior and inferior as it passes through the disc and then

each half (uneven) splits into to cover nasal and temporal retina. We can refer as “0

order” the first split into superior/inferior vessels, and as “1st order” the vessels after

the next junction.

Figure 4.1: The mother vessel branches into 2 daughter vessels with different widths,

but we can label for certain the smallest one as “2nd generation”.

The main problem is that we can’t count every junction as magnitude “order”

higher, as some vessels are so small and they clearly do not reduce the size of the mother

vessel Figure 4.1. The current thinking is to distinguish junctions from bifurcations,

whereby a junction occurs when the daughter vessels have about same width, instead a
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bifurcation arise from two daughter vessels with very different widths. When counting to

determine generation, ignore bifurcations. A reasonable compromise may be to suggest

that junction is of an “order” magnitude if the smallest daughter is above a certain

percentage of the width of the parent vessel, although this solution could be arguable

and not be acceptable by everyone.

A more scientific approach could be to replace the “generation order” with a surro-

gate measure related, e.g. with the percentage of the total blood, on a certain distance

from OD, carried out on a specific vessel. The same Thus, consider a point P(x,y) on

a given vessel; we can call Q(P ) the estimated blood flow at P. Trace a circle centered

on the OD and passing through P, find all vessels intersecting the circle and sum up

all their flows at the points of intersection with the circle; we can call this
∑

Q. The

surrogate measure for generation could be the ratio Q(P )/(
∑

Q).

4.1 Materials

We used a set of 150 field-1 retinal images (N=75, left and right-eye images for each)

of older people (> 65 years, mean age 72± 6) volunteers from a recent study on retinal

biomarkers for Sarcopenia [5]. Participants with inability to walk independently, past

medical history of diabetes mellitus, stroke (within 6 months) and significant visual

impairment were excluded from the study. Images were taken at the diabetes screening

centre at Ninewells Hospital, Dundee, with a non-mydriatic digital camera after dilation

of the pupils with 1% tropicamide eye drops. 13 participants had sarcopenia, 14 had

pre-sarcopenia, no one had severe sarcopenia.

4.2 Methods

The alghoritm is organized in 2 main steps, the detection of the locations and the blood

flow estimation through the vessel in each location.

A location on a circle is defined as a point where a vessel skeleton crossed the circle

and it is detected automatically by an operation of binary intersection of two sets,

respectively the skeleton of the binary map of retinal vasculature and a binary circu-

lar mask Figure 4.1. Locations are taken at different distance from OD, respectively

at 1, 1.5 and 2 ODD (OD distance). Blood flow estimation is computed from vessel

diameter and expressed as a percentage of the total flow on a certain distance from OD.

Vessel maps are extracted using the VAMPIRE automatic package [15] and skele-

tonisation is performed by the MATLAB bwmorph function, based on iterative deletion

of pixels and preserving 8-neighbour connectivity. Widths were estimated automatically
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using Lupascu et al.’s method [27], described in 2.1, which basically fits a parametric

model of the image’s intensity profile across the vessel and then estimate width from

the best profile. To minimize accidental errors, each width was computed as the average

of the widths at 9 adjacent locations centred on the target point, and accepted only if

the standard deviation of the 9 measurements was below 10% of the mean. Different

analysis for arteries and veins are performed; AV classification is carried out by a su-

pervised classification and features selection based on Zamperini et al.’s algorithm [31],

described in 2.2.

Furthermore, an interface to correct efficiently by hand wrong locations detected,

wrong width estimate and wrong AV labels, due to classifiers errors, is also available.

(a)

21.70 %

20.18 %

2.68 %

3.98 %

18.27 %
3.97 %

1.91 %

17.69 %

9.63 % 1.02 %
7.14 %

1.55 %

5.37 %

24.93 %
2.63 %

1.65 %
7.84 %

9.16 %3.26 %

11.95 %

1.52 %
1.46 %20.54 %

(b)

(c)

Figure 4.2: The main step of the alghoritm: (a) location of intersections, (b) flow’s

estimation for one circle and (c) AV classification along three circles.

In flow estimation, we considered a Hagen-Poiseuille flow through a pipe: according

to the modification of Murray’s Law developed by T. Takahashi et. al. [23], we can

assume a dependence of blood flow on the m = 2.85 power of vessel diameter, Q =

kr2.85, where Q is the volumetric flow rate, r is the inner radius of the vessel segment

and k is a constant.
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(a) (b)

(c) (d)

Figure 4.3: Tool for manual correction: we can see examples of (a) false alamrs, (b)

missing interections, (c) wrong width’s diameter estimation and (d) wrong AV classifi-

cation.
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We also computed the area of the section pipe, rounding the vessel, according the

definition of area of a disk: A = πr2 r is the inner radius of the vessel segment. Hence,

for a given vessels wj , flow and area (henceforth Q and A) are computed as a proportion

of the flow and area of all vessels intersecting the circle, according to Murray’s Law

and definition. The following formulae were used:

Flow estimate:

Qj =
w2
j .85∑N

k=1w
2.85
k

(4.1)

Area estimate:

Aj =
w2
j∑N

k=1w
2
k

(4.2)

where wj is the width of the vessel at which the measure is taken, and the sum is

taken over the N vessels (including wj) intersecting the circle (total flow).

For each circle, results were plotted as a function of the angle formed between two

axis, the vector from the OD to the location and the vector from OD to the fovea

location, counter-clockwise for left eyes, clockwise for right eyes (Figure 4.4).
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Figure 4.4: Estimated values of flow (Q) and area (A) for arteries (red dots) and veins

(blue dots); locations detected at 1.5 ODD.
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4.2.1 Equation in retinal miscrovascular network

Despite blood viscosity in miscrovascular network relies on from different parameter,

we can consider blood as a Newtonian fluid in first approximation and apply the

Hagen-Poiseuille’s equation in the flow estimation, derived from Navier-Stokes equa-

tion. Specifically, it says that, under the hypothesis of a current of incompressible and

Newtonian fluid taking place under conditions of uniform and laminar motion in a rigid

circular cylindrical pipe, the volumetric flow rate can be estimated as follows:

Q =
π∆Pr4

8µL
(4.3)

Where, r is the radius of the vessel, ∆ P is the pressure drop across the vessel,

L is the length of the vessel and µ the blood viscosity. We can highlight the strong

dependence of flow on the radius of the tube (fourth power), the pressure gradient over

the tube length (∆ P / L an viscosity of blood (µ). A less detailed and thus more

general form of Poiseuille’s law is Q = ∆ P / R, with resistance R being:

R =
8µL

πr4
(4.4)

This law is used in analogy to Ohm’s law of electricity, where resistance equals

voltage drop/current. The analogy is that voltage difference is compared to pressure

drop and current to volume flow. In hemodynamics we also call it Ohm’s law. This

means that resistance can be calculated from pressure and flow measurements.

Starting from Hagen-Poiseuille’s equation, we can derive Murray’s Law, who relates

the radii of the daughter branches to the radii of the parent branch of a lumen-based

system. It assumes that the energy required for blood flow and the energy needed to

maintain the vasculature is minimal. The first term equals pressure times flow and,

using Poiseuille’s law, this is ∆Q. The second term is proportional to the vessel volume

and thus equals bπr2L, with b proportionally constant. The total energy Em is:

Em =
Q28µL

r4
+ bπr2L (4.5)

The minimal value is found for ∂Em/∂r = 0 and this lads to:

Q =
π/4L

b/µ

1/2

r3 = kr3 (4.6)

By the principle of the conservation of mass, the flow of blood in the mother vessel

Q0 must be equal to the sum of the flow of blood through dauthers vessels Q1 and Q2:
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Q0 = Q1 +Q2 (4.7)

and thus,

r30 = r31 + r32. (4.8)

In their paper [23], Takahashi and Nagaoka develop a theoretical and mathematical

model to quantitatively describe haemodynamic behaviour in the microvascular network

of the human retina. They constructed a symmetric branching network of the human

retinal vasculature based on a combination of Murray’s law and a mathematical model

of fractal vascular trees and supplemented it with physiological and anatomical data

available in the literature. The system is characterized by a diameter exponent of m =

2.85, instead of 3 as dictated by Murray’s law, where the value of m = 2.85 is the sum

of a fractal dimension (1.70)and a branch exponent (1.15) of the retinal vasculature.

This theoretical model allowed to quantitatively assess the hemodynamic parameters,

including blood pressure, blood flow, flow velocity, shear rate, and shear stress, as a

function of vessel diameter. Thus, in blood flow rate estimation, we can use the following

formula:

Q = kr2.85. (4.9)

This modified formula can also be simply derived from Hagen-Poiseuille’s law,

when the branch length-radius relationship (L = 7.4r1.15) is substituted into Hagen-

Poiseuille’s law Q = π∆Pr4

8µL , so that the final form is Q = kr4/r1.15 = kr2.85, where k

denotes (π∆P )/(7.4× 8µ).

4.3 Preliminary results

We performed a preliminary analysis in order to computed the error in blood flow rate

estimation. The expected error on Q and A is given by the derivatives of and , e.g., for

, after some algebra:

∂Qj

dwj
=

3w1.85
j∑N

k=1w
2.85
k

[
1− w2.85

j∑N
k=1w

2.85
k

]
(4.10)

We have expectations of the width estimation error, ∂wj , from extensive experi-

ments with Hermite model’s method (reported [27]) and the widths are estimated from

the images. Hence we can expect the magnitude of the error on Q (A). The expected
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error on the relative formula for Q (4.10) increase monotonically with widths and even

small variations in width estimate may yield important variations of Q, so we can not

take Q (A) as reliable estimates. E.g. in Figure 4.5 are reported 2 plots of ∂Q (on

the left) and ∂A (on the right) as functions of the width of the vessels. The widths

of the vessels range from 9 to 20 px and for each we can compute the expectation of

the magnitude on Q error. For the largest vessel i we have an error ∂Q/Qi ≈ 0.3; the

smallest one j yield an error of even ∂A/Ai ≈ 0.8.

(a) (b)

Figure 4.5: Expected error in: (a) Q estimation and (b) A estimation.

A second issue is related to the formula 4.3, which simplifies excessively the flow

rate estimation. Indeed, we considered the term k = (π∆P )/(7.4 × 8µ) constant for

all the vessels (indeed equation was obtained by gathering k in the denominator, then

dividing numerator and denominator by k); however k contains elements that can be

different for different vessels:

- the pressure differential

- the vessel length

- the viscosity coefficient

These cannot be ignored and are probably instrumental for the hypothesized flow

balance. Thus, we can conclude that the flow, except for a constant term, is not only

function of widths and some others variables have to come into play: firstly, the dif-

ference of pressure along the vessel and the viscosity coefficient, which depends on the

vessel diameter (F◦ahraeus-Lindqvist effect), flow rate and hematocrit in miscrovascu-

lar network. Specifically, blood cannot be treated as homogeneous when flowing within

the vessels of the capillary network, whose average diameter is the same order of mag-

nitude as red blood cells in diameter.

Some observations on a few images support the thesis that equation leads to wrong

measurements of blood vessel flow rate, e.g. the hypothesis of conservation of flow may
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not be verified. Indeed, as shown in Figure 4.6, at several vessel branches, the width of

the mother vessel and of one daughter vessel are practically the same, but the width of

the second daughter vessel is significant. However, according to the continuity equation,

the volume flow splits into two parts: the most one carried on the larger daughter vessel

and a minor one carried the smaller one; but computing with the simplified formula ,

the mother vessel and the larger daughter one look like to bring the same flow volume.

Figure 4.6: The mother vessel branches into 2 daughter vessels: the diameter of the left

daughter vessel looks like the same or even bigger than the one of parent vessel.

This results presented in the previous section lead to the conclusion that the com-

puting of the flow in microcirculation, as the retinal circulation is, can’t be just simply,

with the Murray’s law. Thus, the blood flow can’t be reduced as function of just vessel

diameter and local morphological features per se do not allow to calculate flow, since

they give no information on local pressure drop and viscosity. Indeed, heterogeneity is a

hallmark of microvascular networks and parameters usually exhibit large coefficients of

variation. Thus, flow would have to measured independently, e.g. from time time series

images (e.g. fluorescein angiogram) or from laser doppler or speckle tracing.

For this reason, we decided to suspend the study and do not perform further anal-

ysis.

4.4 Conclusion

We developed a new definition of a surrogate measurement for vessel generation, based

on blood flow rate estimation, for which there is pour agreement in literature. We

estimated the blood flow as a function of the vessel diameter, according to a modification

of Murray’s law, developed in [23]. Unfortunaley, the used formulae haven’t yielded to
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reliable estimations, since the framework of the vasculature network, at least in our

images dataset, does not obey to the Murray’s Law and can’t be simplified as just a

function of vessel diameter. In the future, it would be interesting to compute blood

flow with other techniques (e.g the laser doppler) and verify if there is any significant

change in blood vessel flow rate in sarcopenic population.



Appendix A

MATLAB code

In the next section we describe, in details, the MATLAB code that performs the esti-

mation of widths distribution, described in Chapter 3.

main.m: detects N=600 locations for each images between vessel skeleton circle

mask with different diameters. The algorithm starts the detection of the points in 5

starting circles and continues to add points until the number N is reached. In the first

iteration, circles with radii 1, 2, ..., 5 OD distance (ODD) has been chosen; the radii of

the circles in the following iterations are set in the way to drop in the middle of two con-

secutive circles of the previous one; thus, i.e., for the second iteration ri = 1.5, 2.5, ..., 4.5

ODD.

%add circles until nTot >= nBorderMin

while n<nBorder (1)

kk=length (1+( step /2):step:5-(step /2)); %last kk circles index

d=[d,1+( step /2):step:5-(step /2)]; %radii ’s vauue array

for i=1+ nOfCircles:length(d)

%find intersection

circle(i)=circle_info(datavampire ,d(i));

%update number of total intersection

n=n+circle(i).nInterSection ;

end

step=step /2; %update sampleRate

nOfCircles=length(d);

end

If the number of the intersections exceeds the limit number N, locations detected

in the last iteration are subsampled in order to return within N.
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circle.m: perform an automatic width’s estimation, and AV classification of retinal

vessels at locations detected by the function intersection.m. Results are stored in the

structure circle, which provides informations about locations detected: distance from

the OD, polar and Cartesian coordinates of the location, vessel diameter and type of

vessel.

Cartesian co-ordinate are defined by a spatial reference system with orign on the

top left corner of each image and axis oriented as follows: x-axis from the left to the

right the horiziontal axis, y-axis from the top to the bottom the vertical one. Polar

co-ordinates, instead, have been adjusted to allow in order to be related to the mor-

phometric features of the retina (fovea and OD). The origin of the reference system is

the OD centre; the angular coordinate, instead, starts from the orthogonal to the line

connecting the OD centre with the fovea and has opposite direction for left (clockwise)

and right (counterclockwise) eye Figure A.1. In this way the two eyes have a reference

system symmetrical to the sagittal plane and the corresponding structures in the left

and right retina have the same coordinates.

Figure A.1: Polar coordinates of a point of interest (green cross): the black arrow repre-

sents the linear coordinate, in blue the angular coordinate with respect to the reference

axis (in red).

intersection.m: location of intersections of vessels with circles centred on OD of

arbitrary diameter d. The detection of the points is achieved by an operation of binary

intersection of two sets, respectively the skeleton of the binary map of retinal vascula-

ture, provided from VAMPIRE tool, and a binary circlular mask.

%find intersection between mask & skel

intersection =(skel & mask);

[r,c]=find(intersection ==true);
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Skeletonisation of the vasculature map is performed by the MATLAB bwmorph

function, based on iterative deletion of pixels and preserving 8-neighbour connectivity:

the result is an image in which each blood vessel is one pixel thick. A one pixel thin

circular mask is built setting the coordinates rounding the circumference to a true value.

%draw circles

deg =0:0.001:1; %degree

%circle ’s coordinates

x=x_OD+radius*cos (2*pi*deg)*d;

y=y_OD+radius*sin (2*pi*deg)*d;

%create circle ’s mask

mask=false(size(skel));

for i=1: length(x)

mask(uint16(y(i)),uint16(x(i)))=true;

end

Morphological operations (dilation following by thinning) are then applied in order

to obtain a connected two-pixel boundaries mask.

%connect mask ’s pixel

mask=imdilate(mask ,strel(’diamond ’,10));

mask=bwmorph(mask ,’thin ’,Inf);

%2 px mask ’s width to intersect all the vessels

mask=imdilate(mask ,strel(’diamond ’,1));

In this way we can detect all the vessel: indeed some vessels would over-cross with-

out intersect a one pixel thin mask. False positive are detected too (Figure B.2), thus,

only intersections more than three pixel far (chessboard distance) from each others are

considered corrected intersection points.

dist =[];

%delete false intersection

for i=1: length(r) -1

%chessboard distance

dist(i)=max(abs(c(i)-c(i+1)),abs(r(i)-r(i+1)));

end

dist(i+1)=max(abs(c(end)-c(1)),abs(r(end)-r(1)));

indx=find(dist >=3);

r=r(indx);

c=c(indx);
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Figure A.2: False positive (red dots) detected by the intersection between the skeleton

mask and the 2 pixel circular mask.

HermiteAroundPoint.m: estimates, for each location, vessel diameter as the av-

erage of the widths at N = 9 adjacent locations centred on the target point. In each

location estimation, we don’t consider measurements out of range of the 10 and 90

percentiles of the 9 widths computed. Moreover, a location is accepted only if the stan-

dard deviation of the 9 measurements was below 10% of the mean. The tracking the

vessel is based on gradient orientation analysis: the orientation of a vessel in P (x, y) is

computed from the numerical gradient [∂x∂y] in a window centred in P, eigenvectors

are calculated by svd (singular value decomposition) analysis and the normalized values

are assumed as the main direction of the vessel in P.

Figure A.3: Tracking of the vessel.
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Training of the classifiers

In order to improve classifiers accuracy, we trained them on sarcopenic images dataset.

The set includes of 138 fundus images, both OD centred and macula centred, resolution

2304× 3504, provided by Ninewells Hospital, Dundee, and obtained in full conformity

with the current protocols (ethics, Caldicott, anonymization). In the following section

we report of the new training.

B.1 Width estimation

Regarding vessel diameter’s estimation, two observers (final year Biomedical Engineer-

ing students) estimated widths for 362 cross-sections of main and secondary vessels,

both veins and arteries, with a purpose-designed graphical interface allowing vessel

magnification and pixel selection. The mean of the two manual measurements wass

used as the gold standard (third observer).
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Figure B.1: Distribution of number of samples per width in the dataset.
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K-fold cross validation (K = 10) was performed in order to estimate the accuracy

of the predictive model. Prediction error was computed as the mean and standard

deviation of the differences between the estimation of the model and the ground truth;

so for the i-th profile, we can write the classification error χi as follows:

χi = ωi − ϕi (B.1)

where ωi is the estimated width and ϕi is the ground truth of the ith profile. We

obtained an error of 1.8± 1.2 px, consistent with the results obtained in [27].
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Figure B.2: Correlation between classify’s predictions and ground truth.

Figure B.2 shows the correlation of predicted vessel widths and the observer’s mea-

surements: the regression line shows the prediction tends to underestimate large vessels

and to to overestimate the narrow vessels, compared to the observers’s measurements.

B.2 AV classification

The same dataset was used to train the AV classify: it consists of vessels of different

size, half arteries and half veins, labelled by a final year Bomedical Enginering student.

In order to exploit maximally the available data, without creating biased results, we

performed classification procedures with a leave-image-out protocol, i.e. averaging re-

sults obtained by taking test points on one image and training points on all the other

in the dataset. Despite the results obtained in [31], the best accuracy was provided

by Support Vector Machine classifier, with a subset of 44 features and a subsampling

resolution factor of 0.625, comparable with the classification error obtained in [31].



Conclusion

In this study we analyzed lots of fundus camera images of a community dwelling older

people in order to look for retinal biomarkers for sarcopenia.

We proposed an innovative population image-based approach to retinal biomarkers,

based on the estimation of the distribution of retinal vessel diameter. Our method aims

to produce simple and easy-to-read maps that characterize the distribution of vessel

widths in a specific population. We collected a large number of data, automatically

detecting locations at different OD distance and testing two classifier for widths esti-

mation and AV classification. We interpolated data with IDW in order to create a raster

surface. Using mutual information and joint entropy concepts, we compared maps of

sarcopenic and non-sarcopenic population looking for any difference between the two

class. High correlation was found in each comparison, both in veins and arteries, both in

left and right eye. Thus vessel diameter seem not to play a crucial role in detecting peo-

ple affected by sarcopenia, since there is no significant change in vessel widths. However,

it would be interesting evaluate more data, comparing more separate classes of subjects.

We developed a new definition of a surrogate measurement for vessel generation,

based on blood flow rate estimation, for which there is pour agreement in literature. We

estimated the blood flow as a function of the vessel diameter, according to a modification

of Murray’s law. The used formulae haven’t yielded to reliable estimations, since the

framework of the vasculature network, at least in our images dataset, does not obey to

the Murray’s Law and can’t be simplified as just a function of vessel diameter. In the

future, it would be interesting to compute blood flow with other techniques and verify

if there is any significant change in blood vessel flow rate in sarcopenic population.
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