

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria aerospaziale

Relazione per la prova finale «Effetti dei flussi termici sul MLI della ISS dovuti a veicoli di passaggio »

Tutor universitario: Prof. Marco Azzolin

Laureando: Chistol Vadim

Padova, 20/09/2024

- Più di 150 lanci di veicoli verso la ISS
- I veicoli sono dotati di propulsori per effettuare manovre di aggiustamento durante la fase di attracco e distacco

È possibile che i flussi termici indotti dai propulsori danneggino le pareti isolanti della ISS?

- I gas caldi esausti dei propulsori si espandono in tutte le direzioni compreso verso la ISS
- I flussi maggiori sono registrati vicino al modulo di attracco

MULTI LAYER INSULATION

- Sistema di controllo termico PASSIVO
- Sistema stratificato
- Rientra nella categoria degli «schermi radiativi»
- Eccelle nel isolamento termico per irraggiamento

Materiale	α	3	τ	ρ (kg/m ³)	C _p (J/kg·°C)	K (W/m°C)	Spessore (mm)
Beta cloth	0.15	0.88	0.28	1270	750	1.38	0.020
Kapton Alluminizzato	0.14	0.05	0.05	1400	1090	0.12	0.0076-0.127
Mylar alluminizzato	0.14	0.04	0	1390	1170	0.14	0.0051-0.127

www.dii.unipd.it

Per valutare l'effetto dei carichi termici sul MLI si è utilizzato il seguente programma di simulazione: ANSYS THERMAL DESKTOP

Ansys Thermal desktop un software per l'analisi del trasferimento di calore, l'irraggiamento termico, il riscaldamento ambientale e la progettazione del flusso dei fluidi

È in grado di produrre risposte analitiche sulla base di simulazioni una volta definiti tutti i parametri caratteristici del sistema.

Specifiche tecniche per la simulazione

- Superficie 1m²
- Frontiera chiusa
- I nodi sono rappresentati da layer più un nodo extra equivalente alla ISS
- Fra ciascun layer viene interposta una resistenza conduttiva
- La distanza iniziale fra i layer è assunta pari a 0,25 mm
- L'emissività effettiva ε^* iniziale viene assunta pari a 0.03.
- flusso solare costante pari a 1400 W/m^{2} .
- I carichi termici indotti dai veicoli di passaggio vengono applicati allo strato più esterno.
- La conduttanza per unità di superficie fra strato più interno di Kapton e la superficie della ISS viene impostata a 10 W/m² $^{\circ}$ C

TEMPERATURE LIMITE DEI LAYER							
MATERIALE	FLUSSO INTERMITTENTE (°C)	FLUSSO CONTINUO (°C)					
Beta cloth	315	260					
Kapton alluminizzato	400	290					
Mylar alluminizzato	150	121					

CALCOLO DELLE RESISTENZE

PROCEDIMENTO

1. CONDIZIONI AL CONTORNO

Tint=20°C(*fornita dai requisiti della stazione spaziale)Tsup=29,1°C(*ottenuta facendo girare la simulazione assumendo che i layer non si tocchino mai)

2. CALCOLO DELL'EMISSIVITÀ

3. CALCOLO DEI FLUSSI TERMICI

$$\begin{split} \dot{q} &= \dot{q}_{radiativo} + \dot{q}_{conduttivo} \\ \dot{q} &= \delta \varepsilon^* A(T_{sup}{}^4 - T_{int}{}^4) \\ \dot{q} &= 1,64 \frac{W}{m^2} \\ \dot{q}_{radiativo} &= \delta \varepsilon_{teorico} A(T_{sup}{}^4 - T_{int}{}^4) = 0.05 \frac{W}{m^2} \\ \dot{q}_{conduttivo} &= \dot{q} - \dot{q}_{radiativo} = 1,58 \frac{W}{m^2} \end{split}$$

4. CALCOLO DELLE RESISTENZE

$$\dot{q}_{conductivo} = AG_{totale} (T_{sup} - T_{int})$$

$$G_{totale} = \frac{\dot{q}_{conductivo}}{A(T_{sup} - T_{int})} = 0,174 \frac{W}{K}$$

$$R_{totale} = \frac{1}{G_{totale}} = 5,747 \frac{K}{W}$$

$$R_{interfaccia} = \frac{R_{totale}}{N} = 0,288 \frac{K}{W}$$

Layer R_{interfaccia} Layer

Temperature massime al variare della distanza tra i layer con solo flusso solare

Layer	Materiale	Tmax (°C) per flusso	0,025cm	0.127cm	0,25cm	1,27cm
		continuo	(°C)	(°C)	(°C)	(°C)
Esterno	Beta cloth	260	28.1	28.2	28.1	28.2
1	Kapton	290	52.6	52.5	52.6	52.8
2	Mylar	121	51.1	51.1	51.2	51.2
3	Mylar	121	49.5	49.4	49.4	49.6
••••						
Interno	Kapton	290	20.6	20.6	20.6	20.6

Valori di temperatura al variare delle distanze fra i layer nel caso intermittente

Layer	Materiale	Tmax (°C) per flusso	0,025cm	0.127cm	0,25cm	1,27cm
		intermittente (64 kW/m ²)	(°C)	(°C)	(°C)	(°C)
Esterno	Beta cloth	315	190.7	190.8	190.8	190.9
1	Kapton	400	101.4	101.3	101.4	101.4
2	Mylar	150	89.4	89.2	89.3	89.3
3	Mylar	150	79.9	79.8	79.9	79.9
Interno	Kapton	400	20.8	20.8	20.8	20.8

ANALISI DEI RISULTATI AL VARIARE DELLA CONDUTTANZA

Temperature al variare della conduttanza nel caso intermittente

Layer	Materiale	Tmax (°C) per flusso	E* =0,011	e* =0,019	ε* =0,03	ε* =0,05
		intermittente	(1,2 W/K)	(2,16 W/K)	(3,47 W/K)	(5,86 W/K)
			(°C)	(°C)	(°C)	(°C)
Esterno	Beta cloth	315	191.6	191.2	190.7	190.9
1	Kapton	400	115.6	106.1	101.3	100.1
2	Mylar	150	104	94.2	89.2	87.9
3	Mylar	150	94.3	84.6	79.7	78.4
			•••••			
Interno	Kapton	400	20.5	20.6	20.8	21.3

Aumentando ε* aumenta la conduttanza, il calore risulta meglio distribuito

ANALISI DEI RISULTATI AL VARIARE DEL INTENSITÀ E DURATA

Temperature al variare del picco d'intensità e della durata

Layer	Materiale	Tmax (°C) per flusso intermittente	64 kW/m ² per 0.5s	48 kW/m ² per 0.66s	32 kW/m ² per 1s	16 kW/m ² per 2s	0.5 kW/m ² per 0.5s
			(°C)	(°C)	(°C)	(°C)	(°C)
Esterno	Beta cloth	315	190.7				
1	Kapton	400	101.3				
2	Mylar	150	89.2				
3	Mylar	150	79.7				
••••							
Interno	Kapton	400	20.8				
WORST HOT CASE Maggior riscaldamento della superficie esterna per l'alta intensità CASI RIMANENTI							
Minor dispersione di calore negli strati più interni per la breve durata				N m	Maggior dispers legli strati più i Minor riscalc superficie est	sione di calore nterni lamento della erna	

CONCLUSIONI

NON SONO MAI STATE SUPERATE LE TEMPERATURE LIMITE DEI MATERIALI

- ✓ Carichi termici indotti dai veicoli di passaggio, per le tipiche durate con cui vengono applicate non possono eccedere le temperature limite dei materiali del multi layer insulation system.
- ✓ Questo studio dimostra la grande efficienza e validità di questa tipologia di isolamento termico applicata al campo aerospaziale.
- ✓ Queste conclusioni si applicano solo a questa specifica tipologia e conformazione del pacchetto, utilizzo di altri materiali potrebbero aver portato a risultati molto diversi.

- Dunmore Aerospace, StarCrest Product Selection Guide (3rd Edition), Bristol, PA, 2021.
- Advanced Materials, "Pure Silica Fibre," [Online]. Available: https://www.finalmaterials.com/gb
- 3. DuPont Kapton 500VN Polyimide Film, 125 Micron Thickness," [Online]. Available: https://www.matweb.com/search/datasheet_print.aspx?matguid=338573ad1bdf4586aa17fa b95f3a57d7.
- 4. L. Carrillo, Non-Aluminized Beta Cloth and MLI Conduction Evaluation, 2014.
- 5. D. Gilmore, "Spacecraft Thermal Control Handbook Volume 1: Fundamental Technologies," in Insulation,

2002, p. 163.

6. Brandon Hoffmann Jacobs – NASA Johnson Space Center – Houston, TX Abigail Zinecker NASA Johnson

Space Center – Houston, TX, NASA.

7. <u>Ansys Thermal Desktop | Ansys</u>