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Abstract

This master’s thesis presents a comprehensive investigation into the develop-
ment and application of robust control techniques for robot manipulators op-
erating in the presence of both known and unknown bounds of uncertainty.
The primary focus is on achieving precise and robust control performance in
challenging scenarios where uncertainties are inevitable. Two prominent con-
trol methodologies, namely robust feedback linearization and adaptive sliding
mode control, are employed to address these challenges.

The first part of the thesis focuses on robust feedback linearization, which
aims to linearize the nonlinear dynamics of the robot manipulator while con-
sidering uncertainties. The proposed approach incorporates a robust control
law to handle bounded uncertainties, ensuring stability and enhanced tracking
performance. Extensive simulations are conducted to evaluate the effectiveness
and performance of the proposed robust feedback linearization technique.

The second part of the thesis explores adaptive sliding mode control, which
is a powerful approach for achieving robustness against both parametric un-
certainties and un-modeled dynamics. By integrating an adaptive law with the
sliding mode control framework, the controller adapts online to unknown uncer-
tainties, ensuring accurate tracking and disturbance rejection. The effectiveness
of the proposed adaptive sliding mode control is verified through simulations
and experiments on a robotic manipulator platform.

To assess the performance and compare the proposed control strategies,
comprehensive evaluations are conducted using benchmark tasks and various
manipulation scenarios that involve both known and unknown uncertainties.
Performance metrics such as tracking accuracy, disturbance rejection, and ro-
bustness against uncertainties are quantitatively analyzed and compared.

The results demonstrate the effectiveness of both robust feedback lineariza-
tion and adaptive sliding mode control in achieving robust and precise control
for robot manipulators in the presence of uncertainties. The findings of this re-
search provide valuable insights into the design and implementation of robust
control strategies for real-world robotic applications.
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1
Introduction

1.1 Motivation

Figure 1.1: Argonne National Lab 1949

The history of robotics manipulators can be traced back to 1949 when Ar-
gonne National Lab first utilized them for assembling nuclear weapons. Nowa-
days ,Robotic manipulators play a pivotal role in various industrial applications,
including assembly, welding, painting, and pick and place tasks. These applica-
tions are of significant importance in real-life scenarios as they offer automation,
precision, and efficiency in industrial processes. The ability to achieve precise
and smooth motion control is crucial for ensuring the successful execution of
these tasks. However, the presence of uncertainty and external disturbances
poses a formidable challenge to the control of robotic manipulators in industrial
environments.
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1.1. MOTIVATION

The precise and smooth motion control of robotic manipulators is essential
for several reasons. In assembly tasks, it ensures accurate alignment and fitting
of components, contributing to the overall quality and reliability of the final
product. Welding applications require precise control to achieve high-quality
welds, minimize defects, and reduce material waste. Painting tasks necessitate
smooth and precise motion control to ensure even coating and prevent over-
spray. In pick and place operations, precise and coordinated motion control is
vital for handling delicate objects without causing damage or misalignment.

Despite the exponential progress in the field of robotics, the design of robust
and adaptive controllers for robotic manipulators remains an active area of re-
search. Robust control methodologies capable of handling uncertainties and
disturbances are crucial for achieving reliable and efficient performance in in-
dustrial applications. Developing robust control strategies that can adapt to
uncertain and dynamic environments has a significant impact on improving
industrial processes and outcomes.

The development and implementation of robust control techniques in indus-
trial applications yield numerous benefits and have a profound impact on vari-
ous sectors. The ability to handle uncertainties and disturbances enhances the
reliability, repeatability, and safety of industrial processes involving robotic ma-
nipulators. This, in turn, leads to reduced production costs, improved product
quality, increased production rates, and enhanced workplace safety.

The application of robust control methodologies in industrial settings ensures
precise and smooth motion control, even in the presence of uncertainties and
disturbances. By mitigating the adverse effects of uncertainties, these control
strategies improve the accuracy and consistency of robotic manipulators, thereby
reducing errors and rework. The capability to adapt to changing conditions and
disturbances in real-time enables robotic manipulators to perform optimally in
dynamic environments.

Moreover, the development of robust control techniques in the field of robotics
has far-reaching implications beyond industrial applications. Advancements in
robust control methodologies can also benefit other domains such as health-
care, service robotics, and autonomous systems. These technologies have the
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CHAPTER 1. INTRODUCTION

potential to improve surgical procedures, facilitate assistance to people with
disabilities, and enhance the reliability of autonomous vehicles.

1.2 Thesis contributions and objectives

This master’s thesis aims to address the challenges posed by uncertainties
and disturbances in the control of robotic manipulators through the investiga-
tion and development of robust control strategies. By enhancing the reliability
and efficiency of robotic manipulator systems, the research contributes to the
ongoing efforts to improve industrial processes and advance the field of robotics.

The primary objective of this thesis is to develop robust and adaptive control
strategies to overcome the challenges associated with controlling robot motion
under unknown uncertainty of dynamic parameters. Specifically, the thesis
aims to achieve the following objectives:

1. Investigate the impact of unknown uncertainty and dynamic parameters
on robot motion control in industrial applications.

2. Explore existing control methodologies and identify their limitations in
handling unknown uncertainties.

3. Develop novel robust and adaptive control strategies that can effectively
handle unknown uncertainties in real-time.

4. Evaluate and compare the performance of the proposed control strategies
with existing approaches through simulations and experiments.

5. Demonstrate the applicability and effectiveness of the developed control
strategies in representative industrial tasks

1.3 Thesis Structure

This thesis is structured into three main parts, each addressing distinct as-
pects of robotics modeling and control. Part I provides an introduction to the
field, presenting two cases of kinematic and dynamic modeling for a planar RR

3



1.3. THESIS STRUCTURE

manipulator and a SCARA manipulator. These models serve as the foundation
for subsequent chapters focused on simulation and controller development. Part
II constitutes the core of the thesis, discussing common approaches for manipu-
lator control and extending these controllers to handle unknown uncertainties.
It also includes an analysis of stability, convergence, and adaptability under
varying levels of unknown parameter variation and noise. Finally, Part III en-
compasses the conclusions, suggestions for future work.

Outline of Part I

Chapter 1: Introduction

• Motivation: Applications of manipulators and the necessity for precise
controllers

• Thesis contributions and Objectives

• Structure of the Thesis

Chapter 2: Background Review:

• Linear Algebra review

• stability review

Chapter 3: Manipulator Modeling:

• General manipulator modeling using the Lagrangian approach

• Case 1: Kinematic and dynamic modeling of a planar RR manipulator

• Case 2: Kinematic and dynamic modeling of a SCARA manipulator

• Schemes and simple simulations

Outline of Part II

Chapter 4: Manipulator Controllers

• Open loop Control: Pros and Cons, Performance evaluation

• Feedback Linearization

4



CHAPTER 1. INTRODUCTION

• Robust Feedback Linearization
• Sliding Mode Control

Chapter 5: Implementation,Simulation and Analysis

• Types of Uncertainty

• Uncertainty modeling techniques

• Disturbances: Constant vs. time-varying

• Case 1: RR Experimental Design

• Case 2: SCARA Experimental Design

• Case 2: UR10 Experimental Design

• Results and Analysis

Outline of Part III

Chapter 6: Conclusions and Future Work

• Summary of Achievements

• Contributions to the Field
• Limitations and Challenges

• Suggestions for Future Research

• Conclusion
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2
Background Review

2.1 Linear Algebra

2.1.1 Introduction

Linear algebra plays a vital role in the modeling, analysis and control of
robot manipulators. It provides a powerful mathematical framework for under-
standing the kinematics, dynamics, and control of robotic systems. This chapter
highlights the importance of linear algebra in robot manipulator analysis and
control, showcasing how it enables the representation and solution of complex
robotic problems [1].

2.1.2 Linear Algebra Review for Robotics

Vectors and Matrices

In robotics, vectors and matrices are fundamental entities used to represent
positions, orientations, and transformations of robot manipulators. A vector
represents a quantity with both magnitude and direction, while a matrix is a
rectangular array of numbers. Vectors in 3D space are commonly denoted as:

v =


𝑣1

𝑣2

𝑣3
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2.1. LINEAR ALGEBRA

where 𝑣1, 𝑣2, and 𝑣3 are the components of the vector in three orthogonal
directions.

Dot and Cross Product

Dot Product
The dot product of two vectors a and b is a scalar value defined as:

a · b = ‖a‖‖b‖ cos(𝜃)

where 𝜃 is the angle between the vectors, and ‖a‖ and ‖b‖ are the magni-
tudes of the vectors.

Cross Product
The cross product of two vectors a and b is another vector c defined as:

c = a × b

where the components of c are given by:

𝑐1 = 𝑎2𝑏3 − 𝑎3𝑏2

𝑐2 = 𝑎3𝑏1 − 𝑎1𝑏3

𝑐3 = 𝑎1𝑏2 − 𝑎2𝑏1

2.1.3 Homogeneous Transformations

Homogeneous transformations are 4x4 matrices used to represent the pose
and transformation of robot manipulators. The transformation matrix from
frame 𝐴 to frame 𝐵 is denoted as 𝑇𝐴𝐵 . It consists of a 3x3 rotation matrix 𝑅𝐴𝐵
representing orientation and a 3x1 translation vector d𝐴𝐵 representing position:

𝑇𝐴𝐵 =


𝑅𝐴𝐵 d𝐴𝐵

0𝑇 1
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CHAPTER 2. BACKGROUND REVIEW

2.1.4 Image and Kernel in Robotic Analysis

Image & Kernel

The image (column space) and kernel (null space) of a matrix play a crucial
role in robotic manipulator analysis. The image of a matrix 𝐴 is the subspace
spanned by all possible linear combinations of its columns. It represents the
range of the linear transformation induced by 𝐴. The kernel of 𝐴 is the set of all
vectors that are mapped to the zero vector under the linear transformation of 𝐴.

Usage in Robotic Manipulator Analysis

Solving Forward Kinematics

The forward kinematics problem in robotics involves determining the end-
effector pose given the joint variables [2]. The transformation matrix 𝑇end rep-
resenting the end-effector pose can be expressed as a function of joint variables.
The image of the forward kinematics matrix provides the reachable workspace
of the manipulator, while the kernel of Jacobian matrix indicates the singular
configurations where the manipulator loses mobility.

Solving Inverse Kinematics

The inverse kinematics problem in robotics involves finding the joint vari-
ables given the desired end-effector pose. It is an essential task in trajectory
planning and control. The kernel of the Jacobian matrix represents the set of
joint velocities that yield zero end-effector velocity. This is crucial in singularity
avoidance and dexterity analysis.

2.1.5 Conclusion

Linear algebra is an indispensable tool in robot manipulator analysis and
control. It provides the foundation for representing positions, orientations, and
transformations, as well as solving kinematic and dynamic equations. The con-
cepts of image and kernel of the matrix are essential in understanding the ma-
nipulator’s reachable workspace, singularity analysis, and trajectory planning.
By leveraging linear algebra, researchers and engineers can develop robust and
efficient control strategies for various robotic applications.

9



2.2. STABILITY

2.2 Stability

2.2.1 Introduction

In the field of manipulator control, stability analysis plays a crucial role
in ensuring the safe and efficient operation of robotic arms and manipulators.
Stability is the property of a system that characterizes its ability to return to an
equilibrium state after experiencing perturbations or disturbances. Understand-
ing the stability of manipulator systems is essential to design reliable control
strategies and guarantee their robustness in real-world applications. This chap-
ter aims to explore the importance of stability analysis in manipulator control,
discuss different types of stability, and focus on Lyapunov Stability, its types,
and its relation to manipulator control [3].

2.2.2 Importance of Stability Analysis

Stability analysis is a fundamental aspect of manipulator control as it pro-
vides insights into the system’s behavior under various conditions. The stability
of a manipulator determines whether the system will converge to a desired con-
figuration or trajectory or deviate uncontrollably. In robotic applications, such
as pick-and-place tasks, manufacturing, or autonomous vehicles, stable control
is crucial for precise and accurate movements.

Without proper stability analysis, the manipulator could exhibit oscillations,
vibrations, or even uncontrollable motion, leading to potential accidents, dam-
ages, or loss of efficiency. Stability analysis aids in designing control algorithms
that ensure the manipulator remains within acceptable operating limits, pre-
venting any harmful consequences.

2.2.3 Types of Stability

Lyapunov Stability

Lyapunov Stability is a widely used concept in control theory to assess the
stability of dynamical systems, including manipulators. The primary idea is
to determine if the system’s trajectories remain bounded and converge to an
equilibrium point or a desired trajectory.

10



CHAPTER 2. BACKGROUND REVIEW

Let us consider a manipulator system described by the state-space represen-
tation:

𝑥¤ = 𝑓 (𝑥, 𝑢)
where 𝑥 represents the state vector, and 𝑢 is the control input.
A point 𝑥𝑒 is an equilibrium point if 𝑓 (𝑥𝑒 , 0) = 0.

Asymptotic Stability

A system is considered asymptotically stable if it is stable (trajectories re-
main bounded) and, additionally, all trajectories starting sufficiently close to an
equilibrium point converge to that equilibrium point as time approaches infinity.

Mathematically, the asymptotic stability condition is expressed as follows:
For all 𝜖 > 0, there exists a 𝛿 > 0 such that

if ‖𝑥(0) − 𝑥𝑒 ‖ < 𝛿, then lim𝑡→∞ ‖𝑥(𝑡) − 𝑥𝑒 ‖ = 0.

Exponential Stability

Exponential stability is a stronger form of stability. A system is exponentially
stable if there exist positive constants 𝑘 and 𝜆 such that the distance between the
trajectory and the equilibrium point decays exponentially over time.

Mathematically, exponential stability is characterized as follows:
‖𝑥(𝑡) − 𝑥𝑒 ‖ ≤ 𝑘𝑒−𝜆𝑡 , where 𝑘 > 0 and 𝜆 > 0.

BIBO Stability (Bounded Input, Bounded Output)

BIBO stability deals with the response of a system to bounded inputs. A sys-
tem is BIBO stable if, for every bounded input, the output of the system remains
bounded.

Mathematically, BIBO stability can be defined as follows:
For a bounded input 𝑢(𝑡) such that ‖𝑢(𝑡)‖ ≤ 𝑀𝑢 for all 𝑡, there exists a

constant 𝑀𝑦 such that ‖𝑦(𝑡)‖ ≤ 𝑀𝑦 for all 𝑡.

Lyapunov Stability and Manipulator Control

In manipulator control, Lyapunov Stability [4] provides a powerful frame-
work to analyze and design stable control algorithms. The basic idea is to design
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a Lyapunov function 𝑉(𝑥) that satisfies the following properties:

1. 𝑉(𝑥) > 0 for all 𝑥 ≠ 0 (positive definite).

2. 𝑉(0) = 0 (positive semidefinite).

3. 𝑉¤ (𝑥) ≤ 0 for all 𝑥 (negative definite).

If the system’s state trajectories satisfy these conditions, then the system is
stable. Furthermore, the type of Lyapunov function used can help determine
the type of stability achieved, such as asymptotic or exponential stability.

2.2.4 Conclusion

Stability analysis is a critical aspect of manipulator control. It ensures that
robotic arms and manipulators operate safely, efficiently, and within desired
specifications. Lyapunov Stability, in particular, provides a powerful mathe-
matical framework to assess the stability of manipulator systems and design
control algorithms that guarantee desirable behaviors. By understanding dif-
ferent types of stability and leveraging Lyapunov’s principles, engineers and
researchers can create reliable and robust control strategies for a wide range of
manipulator applications.
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3
Manipulator Modelling

3.1 Forward Kinematics

In the study of robotics, understanding the kinematics and dynamics of
robot manipulators is essential for analyzing their behavior and performance.
One crucial aspect of kinematics is the forward kinematics problem, which
involves mapping the joint variables of a manipulator 𝑞𝑖 ∈ R𝑛 to the pose of its
end-effector, including both position and orientation. In this section, we will
delve into the intricacies of the forward kinematics problem and explore various
methods used to solve it, such as the Denavit-Hartenberg (DH) Convention and
the screw axis representation. Additionally, we will highlight the significance of
using transformations to represent rigid bodies with respect to a global frame.

 

 

 

 

World Base 

Link 1 

Link 2 

Link n-1 

Joint 1 

Joint 2 

Joint 3 
Joint n 

- 1 

Joint n 

End-Effector 

Figure 3.1: General Robot
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3.1.1 Forward Kinematics Problem

The forward kinematics problem is concerned with determining the posi-
tion and orientation of a manipulator’s end-effector based on the joint variables,
which typically correspond to the joint angles or displacements. Mathemati-
cally, this problem can be defined as finding the transformation matrix T, which
represents the pose of the end-effector frame (usually denoted as frame 𝐸) with
respect to a base frame (often referred to as frame W). The transformation matrix
T relates the joint variables (𝑞) to the end-effector pose (𝑝, 𝑅), where 𝑝 represents
the position vector and 𝑅 represents the Rotation matrix.

3.1.2 Methods for Solving Forward Kinematics

Method(1): Denavit-Hartenberg (DH) Convention The DH Convention [5]
is a systematic sequence of steps commonly used to solve the forward kinematics
problem for serial manipulators. It provides a framework to establish a set of
reference frames for each joint of the manipulator, enabling a straightforward
representation of the end-effector pose.

Figure 3.2: The colors red and blue denote all things associated with links 𝑖1
and 𝑖 respectively. The numbers in circles represent the order in which the
elementary transforms are applied.

The transformation from link coordinate frame { 𝑗 − 1} to frame { 𝑗} is defined
in terms of elementary rotations and translations as :
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𝑇 𝑖𝑖−1 =


cos(𝜃𝑖) − sin(𝜃𝑖) cos(𝛼𝑖) sin(𝜃𝑖) sin(𝛼𝑖) 𝑎𝑖 cos(𝜃𝑖)
sin(𝜃𝑖) cos(𝜃𝑖) cos(𝛼𝑖) − cos(𝜃𝑖) sin(𝛼𝑖) 𝑎𝑖 sin(𝜃𝑖)

0 sin(𝛼𝑖) cos(𝛼𝑖) 𝑑𝑖
0 0 0 1


(3.1)

where,

 
 

 

 

 

 

Joint 
Angle 𝜽𝒊 Rotation around 𝒛𝒊−𝟏 between 𝒙𝒊−𝟏 and 𝒙𝒊 Revolute joint variable 

Link Offset 𝒅𝒊 Translation along 𝒛𝒊−𝟏 from  𝑶𝒊−𝟏 to 𝑶𝒊−𝟏 Prismatic joint variable 

Link 
Length 𝒂𝒊 Translation along 𝒙𝒊 from  𝑶𝒊−𝟏 to 𝑶𝒊−𝟏 Constant 

Link Twist  𝜶𝒊 Rotation around 𝒙𝒊 between 𝒛𝒊−𝟏 and 𝒛𝒊 Constant 

Figure 3.3: Denavit-Hartenberg parameters and their physical meaning

The steps involved in the DH Convention are as follows:

• Step 1: Assign reference frames to each joint: Typically, the joint reference
frames are attached to the links of the manipulator, following a predefined
convention.

• Step 2: Assign coordinate systems: Define coordinate systems for each
joint frame, specifying the origin and orientation of the frame using ap-
propriate parameters, namely the link length (𝑎), link twist (𝛼), link offset
(𝑑), and joint angle (𝜃).

• Step 3: Derive the transformation matrix: Use the DH parameters to calcu-
late the transformation matrix between consecutive joint frames, yielding
a transformation matrix 𝑇𝑖 that represent the total change of a frame 𝑖 w.r.t
frame 𝑖 − 1.

• Step 4: Compute the forward kinematics: To obtain the transformation
matrix T between the base frame W and the end-effector frame E, multiply
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the individual transformation matrices in a sequential manner: 𝑇0
𝑛 = 𝑇0

1 ∗
𝑇1

2 ∗ ... ∗ 𝑇𝑛−1
𝑛 .

Method(2):Screw Axis Representation Another method commonly used
for solving the forward kinematics problem is the screw axis representation [6].
This approach characterizes the rigid body motion of a joint by a twist, defined
as a pair of a screw axis and a pitch. The twist represents the direction and
magnitude of the joint’s instantaneous velocity. By recursively propagating the
twists from the base to the end-effector, the end-effector pose can be determined.
Utilizing Transformations for Rigid Body Representation.

3.2 Velocity Kinematics

The forward kinematic equations establish a functional relationship between
the space of Cartesian positions and orientations and the space of joint positions
in robot manipulators. In turn, the velocity relationships are derived from
the Jacobian matrix associated with this function. The Jacobian matrix can be
considered as the vector representation of the ordinary derivative of a scalar
function. In the analysis and control of robot motion, the Jacobian matrix holds
paramount importance, as it plays a crucial role in various aspects of robotic
manipulation.

Firstly, the Jacobian matrix allows for the determination of the velocity in the
workspace based on the given joint velocities. By relating the joint velocities to
the end-effector velocities, it enables the understanding and prediction of the
overall motion and behavior of the manipulator.

Secondly, the Jacobian matrix facilitates the control of the velocity in the
workspace. By manipulating the joint velocities, one can precisely and effi-
ciently control the motion of the end-effector, which is crucial for successful
object manipulation and interaction with the environment.

Thirdly, the Jacobian matrix aids in identifying "singular configurations"
where small workspace velocities result in large joint velocities. These configu-
rations are of significant concern as they can limit the manipulator’s dexterity
and stability. By detecting and avoiding singular configurations, more reliable
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and robust robot motions can be achieved.

Furthermore, the Jacobian matrix is employed in calculating the inertia ma-
trix of the robot. This matrix assists in transforming forces and torques from
the end-effector to the manipulator joints, thereby facilitating the analysis and
control of the manipulator’s dynamic behavior.

3.2.1 Jacobian calculation

The relation between joint velocities 𝑞¤ and end-effector velocity can be written
as :

𝜈 = 𝐽
(
𝑞
)
𝑞¤ (3.2)

where,

𝐽 =

[
𝐽𝑣1 ...... 𝐽𝑣𝑛
𝐽𝑤1 ...... 𝐽𝑤𝑛

]
𝑎𝑛𝑑 𝜈 =

[
𝑣

𝑤

]
• 𝑣 : end-effector linear velocity

• 𝑤 : end-effector angular velocity

• 𝐽𝑣𝑖 : describe the effect of the joint on translational velocity

• 𝐽𝑤𝑖 : describe the effect of the joint on rotational velocity

we can evaluate 𝐽𝑣 & 𝐽𝑤 for any joint based on its type as follows:

𝐽𝑣 =
[
𝐽𝑣1 𝐽𝑣2 · · · 𝐽𝑣𝑛

]
(3.3)

where the 𝑖-th column 𝐽𝑣𝑖 is defined as:

𝐽𝑣𝑖 =


𝑧𝑖−1 × (𝑜𝑛 − 𝑜𝑖−1) for revolute joint 𝑖

𝑧𝑖−1 for prismatic joint 𝑖
(3.4)

The lower half of the Jacobian is given as:

𝐽𝜔 =
[
𝐽𝜔1 𝐽𝜔2 · · · 𝐽𝜔𝑛

]
(3.5)
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where the 𝑖-th column 𝐽𝜔𝑖 is defined as:

𝐽𝜔𝑖 =


𝑧𝑖−1 for prismatic joint 𝑖

0 for revolute joint 𝑖
(3.6)

Combining the upper and lower halves of the Jacobian, the Jacobian matrix
for an 𝑛-link manipulator can be expressed in matrix form as: 𝐽 =

[
𝐽1 𝐽2 · · · 𝐽𝑛

]
where the 𝑖-th column 𝐽𝑣𝑖 is defined as:

𝐽𝑣𝑖 =


𝑧𝑖−1 × (𝑜𝑛 − 𝑜𝑖−1) for revolute joint 𝑖

𝑧𝑖−1 for prismatic joint 𝑖
(3.7)

The lower half of the Jacobian is given as:

𝐽𝜔 =
[
𝐽𝜔1 𝐽𝜔2 · · · 𝐽𝜔𝑛

]
(3.8)

where the 𝑖𝑡ℎ column 𝐽𝜔 is defined as:

𝐽𝜔𝑖 =


𝑧𝑖−1 for prismatic joint 𝑖

0 for revolute joint 𝑖
(3.9)

Combining the upper and lower halves of the Jacobian, the Jacobian matrix
for an 𝑛-link manipulator can be expressed as:

𝐽 =
[
𝐽1 𝐽2 · · · 𝐽𝑛

]
The 𝑖-th column 𝐽𝑖 is defined as follows:

If joint 𝑖 is revolute:

𝐽 =

[
𝑧𝑖−1 × (𝑜𝑛 − 𝑜𝑖−1)

𝑧𝑖−1

]
(3.10)

If joint 𝑖 is prismatic:

𝐽 =

[
𝑧𝑖−1

0

]
(3.11)
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3.3 Dynamics

The dynamics of robotic manipulators play a vital role in understanding and
analyzing their motion and performance. While the kinematic model provides
information on motion between poses, dynamics provides insights into various
aspects such as the influence of robot material, the impact of object weight on
joint torques, the effect of external forces, and the determination of collaboration
or resistance from these forces. By employing approaches such as the Newtonian
and Lagrangian methods, dynamic equations can be derived to describe the
manipulator’s behavior. Additionally, understanding the different sources of
actuator torques is crucial for ensuring the stability and proper functioning of the
manipulator. Advancements in manipulator dynamics contribute to enhanced
manipulator control, simulation, and overall performance in a wide range of
applications.

3.3.1 Approaches to Derive Dynamic Equations

To derive the dynamic equations for a robotic manipulator, two common
approaches are widely employed: the Newtonian approach and the Lagrangian
approach.

1. Newtonian Approach: The Newtonian approach applies Newton’s laws
of motion to each link and joint of the manipulator. It involves determining the
forces and torques acting on each element and subsequently solving the equa-
tions of motion. This approach can be computationally efficient if applied in a
recursive approach [7].

2. Lagrangian Approach: The Lagrangian approach [8] utilizes the concept
of the Lagrangian function, which is defined as the difference between kinetic
and potential energies. It provides a systematic and efficient method for deriving
the equations of motion for robotic manipulators.
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Newtonian Approach Lagrangian Approach 

- Uses Newton & Euler equations to 
derive body dynamics. 

- Uses Lagrange equations for energy 
analysis of the body to derive dynamics. 

- Depends on the analysis of each body’s 
forces and moments. 

- Depends on calculating energies of the 
robot. 

- Less common in Robotics research. - More common in Robotics research as 
it provides symbolic representation that 
is useful for control. 

- More common in Robotics Industry as 
it needs much less computational power. 

- Less common in Robotics Industry. 

 

 

 

Figure 3.4: Comparison between Newtonian Approach Vs Lagrangian Approach

The steps involved in calculating the equation of motion using the Lagrangian
approach can be summarized as follows:

Step 1: Define the Lagrangian function: The Lagrangian function (ℒ) is de-
fined as the difference between the kinetic energy (𝐾) and the potential energy
(𝑃) of the manipulator system: ℒ = 𝐾 − 𝑃.

Step 2 Determine the generalized coordinates: Identify a set of generalized
coordinates that describe the configuration of the manipulator. These coordi-
nates capture the essential degrees of freedom required to specify the system’s
state.

Step 3: Derive the Euler-Lagrange equations: Apply the Euler-Lagrange
equations, which are derived from the Lagrangian function, to obtain a set of
coupled differential equations that describe the system’s dynamics.
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Step 4: Solve the equations of motion: Solve the resulting differential equa-
tions to determine the joint torques or forces required to achieve the desired
motion of the manipulator.

3.3.2 Actuator Torques and Sources

To ensure the proper functioning of a robotic manipulator, the actuator must
balance torques from various sources:

1) Dynamic Torques: Dynamic torques are generated due to the motion
of the manipulator and consist of three components:

• Inertial torques: Proportional to joint acceleration, in accordance with
Newton’s law.

• Centripetal torques: Proportional to the square of joint velocity, directed
toward the center of circular motion.

• Coriolis torques: Arise from the interaction between two rotating links,
resulting in vertical forces.

2) Static Torques: Static torques arise due to friction within the manipu-
lator’s joints.

3) Gravity Torques: Gravity torques are caused by the gravitational
forces acting on the manipulator’s links.

4) External Torques: External torques are exerted on the manipulator’s
end-effector, typically resulting from the task being performed.

3.3.3 Equation of Motion

In this section, we focus on the specialization of the Euler-Lagrange equations
to a specific case where two conditions are satisfied. Firstly, the kinetic energy
(K) is expressed as a quadratic function of the vector 𝑞¤ in the form: Consider
a manipulator consisting of 𝑛 links. As discussed in the Velocity Kinematics
section, the linear and angular velocities of any point on any link can be repre-
sented using the Jacobian matrix and the derivative of the joint variables. In our
case, since the joint variables correspond to the generalized coordinates, we can
express the velocities as:

𝑣𝑖 = 𝐽𝑣𝑖 (𝑞)𝑞¤ , 𝜔𝑖 = 𝐽𝜔𝑖 (𝑞)𝑞¤ (3.12)
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Suppose the mass of link 𝑖 is 𝑚𝑖 and the inertia matrix of link 𝑖, evaluated
around a coordinate frame parallel to frame 𝑖 but with its origin at the center
of mass, is denoted as 𝐼𝑖 . In such a scenario, the overall kinetic energy of the
manipulator can be computed as:

𝐾 =
1
2 𝑞
¤𝑇

(
𝑛∑
𝑖=1

𝑚𝑖 𝐽𝑣𝑖 (𝑞)𝑇 𝐽𝑣𝑖 (𝑞) + 𝐽𝜔𝑖 (𝑞)𝑇𝑅𝑖(𝑞)𝐼𝑖𝑅𝑖(𝑞)𝑇 𝐽𝜔𝑖 (𝑞)
)
𝑞¤ (3.13)

Here, 𝑅𝑖(𝑞) represents the rotation matrix associated with frame 𝑖.

𝐾 =
1
2

∑
𝑖 , 𝑗

𝑑𝑖 𝑗(𝑞)𝑞¤ 𝑖𝑞¤ 𝑗 := 1
2 𝑞
¤𝑇𝐷(𝑞)𝑞¤ (3.14)

Here, the 𝑛 × 𝑛 "inertia matrix" 𝐷(𝑞) is symmetric and positive definite for
each 𝑞 ∈ R𝑛 . Secondly, the potential energy (P) is independent of 𝑞¤ . It is worth
mentioning that these conditions are satisfied by robotic manipulators.

Consider the potential energy term. In the case of rigid dynamics, the sole
source of potential energy is gravity. The potential energy associated with the 𝑖-
th link can be computed by assuming that the entire object’s mass is concentrated
at its center of mass. This potential energy is given by:

𝑃𝑖 = 𝑔𝑇 𝑙𝑐𝑖𝑚𝑖 (3.15)

Here, 𝑔 is a vector representing the direction of gravity in the inertial frame,
𝑙𝑐𝑖 denotes the coordinates of the center of mass of link 𝑖, and 𝑚𝑖 represents the
mass of link 𝑖.

Consequently, the total potential energy of the 𝑛-link robot can be expressed
as:

𝑃 =
𝑛∑
𝑖=1

𝑃𝑖 =
𝑛∑
𝑖=1

𝑔𝑇 𝑙𝑐𝑖𝑚𝑖

The Euler-Lagrange equations for such a system can be derived as follows.
Considering that:
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ℒ = 𝐾 − 𝑃 =
1
2

∑
𝑖, 𝑗

𝑑𝑖 𝑗(𝑞)𝑞¤ 𝑖𝑞¤ 𝑗 − 𝑃(𝑞) (3.16)

The Euler Formulation can be then written as:

𝑑
𝑑𝑡

(
𝜕ℒ
𝜕𝑞¤ 𝑗

)
− 𝜕ℒ

𝜕𝑞 𝑗
= 𝜏𝑗 (3.17)

where 𝑑
𝑑𝑡 represents the derivative with respect to time, 𝜕ℒ

𝜕𝑞¤ 𝑗 denotes the par-

tial derivative of the Lagrangian (ℒ) with respect to 𝑞¤ 𝑗 , 𝜕ℒ
𝜕𝑞 𝑗

represents the partial
derivative of the Lagrangian with respect to 𝑞 𝑗 , and 𝜏𝑗 represents the generalized
force or torque acting on the 𝑗-th degree of freedom of the system.

The matrix form of the Euler-Lagrange equations can be expressed as:

𝐷(𝑞)𝑞¥ + 𝐶(𝑞, 𝑞¤)𝑞¤ + 𝑔(𝑞) = 𝜏 (3.18)

where 𝐷(𝑞) represents the inertia matrix, 𝑞¥ denotes the second derivative
of 𝑞 with respect to time, 𝐶(𝑞, 𝑞¤) represents the Coriolis matrix, 𝑞¤ is the first
derivative of 𝑞 with respect to time, 𝑔(𝑞) represents the gravity vector, and 𝜏

represents the vector of external torques or forces applied to the system.

3.4 Case Studies

we will comprehensively investigate the kinematics and dynamics of two
distinct types of robot manipulators, namely the RR planar manipulator and
the SCARA manipulator.The analysis and understanding of these models will
serve as a foundation for the subsequent control section, where they will be
extensively utilized. By studying the kinematic and dynamic properties of these
manipulators, we aim to enhance our comprehension of their behavior and
enable effective control strategies for achieving desired motion and performance.
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3.4.1 RR Planar Manipulator

 

World Base 

𝒍𝟐 

𝒍𝟏 

𝒒𝟐 

𝒒𝟏 

(
𝑥𝑒
𝑦𝑒
) 

𝒙𝟎 

𝒚𝟏 

𝒙𝟏 

𝒚𝟎 

End-Effector 

𝒍𝒄𝟏 

𝒍𝒄𝟐 

Figure 3.5: RR PLanar Manipulator

Forward Kinematics

Link 𝜃 𝑑 𝑎 𝛼
1 𝜃1 0 𝑙1 0
2 𝜃2 0 𝑙2 0

Table 3.1: DH-table for 2-link RR planar manipulator

From (3.1), we have the following transformation matrices:

𝐴1 =


cos(𝜃1) − sin(𝜃1) 0 𝑎1 cos(𝜃1)
sin(𝜃1) cos(𝜃1) 0 𝑎1 sin(𝜃1)

0 0 1 0
0 0 0 1
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𝐴2 =


cos(𝜃2) − sin(𝜃2) 0 𝑙2 cos(𝜃2)
sin(𝜃2) cos(𝜃2) 0 𝑙2 sin(𝜃2)

0 0 1 0
0 0 0 1


The T-matrices are then given by:

𝑇0
1 = 𝐴1

𝑇0
2 = 𝐴1𝐴2 =


cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2) 0 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2) 0 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2)

0 0 1 0
0 0 0 1


Note that the first two entries of the last column of 𝑇0

2 represent the end-
effector position 𝑥𝑒 and 𝑦𝑒 w.r.t the base frame, given by:

𝑥𝑒 = 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) (3.19)

𝑦𝑒 = 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2) (3.20)

Velocity Kinematics

Since both joints are revolute, the Jacobian matrix, denoted as 𝐽(𝑞), has
dimensions of 6 × 2 and can be represented as:

𝐽(𝑞) =
[
𝑧0 × (𝑂2 − 𝑂0) 𝑧1 × (𝑂2 − 𝑂1)

]
(3.21)

The various quantities in the equation are as follows:

𝑂0 =


0
0
0

 𝑂1 =


𝑙1 cos(𝜃1)
𝑙1 sin(𝜃1)

0

 𝑂2 =


𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2)
𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2)

0
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𝑧0 = 𝑧1 =


0
0
1


By performing the necessary calculations as described in Section 3.2, we

obtain the Jacobian matrix 𝐽 given by:

𝐽 =



−𝑙1 sin(𝜃1) − 𝑙2 sin(𝜃1 + 𝜃2) −𝑙2 sin(𝜃1 + 𝜃2)
𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) 𝑙2 cos(𝜃1 + 𝜃2)

0 0
0 0
0 0
1 1


(3.22)

It is evident that the first two rows of Eq. (3.22) correspond precisely to the
2 × 2 Jacobian obtained by differentiation of Eq. (3.19) and (3.20), representing
the linear velocity of the origin 𝑂2 relative to the base. The third row in Eq.
(3.22) denotes the linear velocity in the direction of 𝑧0, which is constantly zero
since we are in planar case. The final three rows indicate the angular velocity
of the end frame, which is simply a rotation about the vertical axis at a rate of
𝜃¤ 1 + 𝜃¤ 2.

Dynamics

Inertia Matrix
Following the Lagrangian approach mentioned in Section (3.3.3), the inertia
matrix can be written as:

𝐷(𝑞) =
[
𝑑11 𝑑21

𝑑12 𝑑22

]
(3.23)

where,

𝑑11 = 𝑚1𝑞¤2
1𝑐1 + 𝑚2(𝑞¤2

2 + 𝑞¤2
1𝑐2 + 2𝑞¤1𝑞¤2𝑐2 + 2𝑞¤1𝑐¤2 cos 𝑞2) + 𝐼1 + 𝐼2

𝑑12 = 𝑑21 = 𝑚2(𝑞¤2
2𝑐2 + 𝑞¤1𝑐¤2 cos 𝑞2) + 𝐼2

𝑑22 = 𝑚2𝑞¤2
2𝑐2 + 𝐼2

Coriolis and centrifugal matrix
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CHAPTER 3. MANIPULATOR MODELLING

𝐶(𝑞, 𝑞¤) =
[
𝑐11 𝑐12

𝑐21 𝑐22

]
(3.24)

Where,

ℎ = −𝑚2𝑞¤1𝑐¤2 sin 𝑞2

𝑐11 = ℎ𝜃¤ 2

𝑐12 = ℎ𝜃¤ 1 + 𝜃¤ 2

𝑐21 = −ℎ𝜃¤ 1

𝑐22 = 0

Gravitational forces

𝑔
(
𝑞
)
=

[
(𝑚1𝑐¤1 + 𝑚2𝑞¤1)𝑔 cos 𝑞1 + 𝑚2𝑐¤2𝑔 cos(𝑞1 + 𝑞2)

𝑚2𝑐¤2 cos(𝑞1 + 𝑞2)

]
(3.25)

3.4.2 SCARA Manipulator

 

𝜽𝟐 

𝜽𝟏 

𝒅𝟑 

𝜽𝟒 

𝒚𝟏 

𝒙𝟏 

𝒛𝟏 

𝒛𝟎 

𝒛𝟐 

𝒛𝟑 , 𝒛𝟒   

𝒙𝟎 

𝒙𝟐 

𝒙𝟑 

𝒙𝟒 

𝒚𝟎 

𝒚𝟐 

𝒚𝟑 

𝒚𝟒 

𝜽𝟏 

Figure 3.6: SCARA Manipulator
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Forward Kinematics

Link 𝜃 𝑑 𝑎 𝛼
1 𝜃1

∗ 0 𝑙1 0
2 𝜃2

∗ 0 𝑙2 𝜋
3 0 𝑑3

∗ 0 0
4 𝜃4

∗ 𝑑4 0 0

Table 3.2: DH-table for SCARA manipulator

Velocity Kinematics

We will now derive the Jacobian of the SCARA [] . The SCARA manipulator
has four degrees of freedom, thus resulting in a 6×4 Jacobian matrix. To compute
the Jacobian, we need to calculate the transformation matrices 𝑇0

𝑗 = 𝐴1 . . . 𝐴 𝑗 ,
where the A-matrices are determined by Eq. (3.1).

Since joints 1, 2, and 4 are revolute, and joint 3 is prismatic, with 𝑜4− 𝑜3 being
parallel to 𝑧3 (and hence 𝑧3×(𝑜4− 𝑜3) = 0), the Jacobian takes the following form:

𝐽 =

[
𝑧0 × (𝑜4 − 𝑜0) 𝑧1 × (𝑜4 − 𝑜1) 𝑧2 𝑧0

𝑧0 𝑧1 0 𝑧3

]
Performing the calculations, we obtain the following expressions:

𝑜1 =


𝑙1𝑐1

𝑙1𝑠1
0

 , 𝑜2 =


𝑙1𝑐1 + 𝑙2𝑐12

𝑙1𝑠1 + 𝑙2𝑠12

0

 , 𝑜4 =


𝑙1𝑐1 + 𝑙2𝑐12

𝑙1𝑠2 + 𝑙2𝑠12

𝑑3 − 𝑑4


Similarly, we have 𝑧0 = 𝑧1 = 𝑘 and 𝑧2 = 𝑧3 = −𝑘. where, 𝑘 =

[
0 0 1

]𝑇
.

Therefore, the Jacobian of the SCARA manipulator is given by:

𝐽 =



−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12 0 0
𝑙1𝑐1 + 𝑙2𝑐12 𝑙2𝑐12 0 0

0 −1 0 0
0 0 0 0
0 0 0 0
1 1 0 −1


(3.26)
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4
Manipulator Controllers

4.1 Introduction

Robot control plays a vital role in enabling robotic systems to perform vari-
ous tasks with accuracy and precision. The primary goal of robot control is to
determine the time history of torques that need to be sent to the actuators, allow-
ing the robot to execute desired tasks. There are two types of tasks: regulation,
where a constant reference is maintained, and tracking, where the reference
trajectory varies with time.

The manipulator system constitutes a intricate multi-input multi-output
framework characterized by strong interconnections, uncertain behaviors, and
nonlinear dynamics. The prevailing uncertainty can be broadly classified into
two distinct categories: structural uncertainty, encompassing perturbations in
system parameters, unaccounted dynamics, frictional components both static
and dynamic, and elasticity; and non-structural uncertainty, arising from ex-
ternal disturbances, actuator saturation, sampling delays, measurement errors,
and other external influences.

In the realm of industrial applications, various established control approaches
for manipulators have been explored, spanning from traditional methodologies
to advanced techniques. These include PID control [9]-[11], feedback lineariza-
tion [12],[13], adaptive backstepping control [14], discrete control [15], adaptive
control [16]-[18], robust control [19],[20], neural network control [21] , fuzzy
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control [22], iterative learning control [23], and variable structure control [24].

PID control, suited for linear systems, proves effective for relatively straight-
forward scenarios but lacks the capacity to govern systems characterized by in-
tricacy, significant inertia, and pronounced lag [25]. Discrete control, operating
through step-wise sampling, excels in noise reduction and showcases commend-
able resistance to interference [26]. Adaptive backstepping control introduces a
virtual control concept, decomposing the system into simpler low-order entities
for effective regulation [27]. Feedback linearization involves linearizing both
state and output equations, presenting a common technique to address the limi-
tations of conventional linearization which worsens with expanding operational
ranges. Nevertheless, this method isn’t universally applicable to all nonlinear
systems and requires complete state measurement. In cases of parameter per-
turbations, system robustness cannot be assured.

Robust control, resilient against external perturbations and parameter varia-
tions, suits systems with widely varying ranges of uncertainty, yet often compro-
mises steady-state accuracy due to non-optimality . Neural network and fuzzy
control emulate human intelligence to tackle intricate nonlinear challenges. By
designing suitable network architectures, optimal control system parameters can
be approximated to ensure control precision .Iterative learning control proves
valuable for repetitive motion control tasks, particularly for complex nonlinear
systems with strong coupling and intricate modeling. Similar to robust control,
it accommodates system uncertainties and promotes high steady-state accuracy,
achieving comprehensive tracking .

The combination of these control methodologies spawns various hybrid ap-
proaches, enhancing the potential to proficiently and accurately address trajec-
tory tracking challenges in manipulator control. Adaptive controllers strive to
update unknown dynamic parameters using suitable updating laws. An ad-
vantageous trait of adaptive controllers is their ability to function without prior
knowledge of constants like payload masses or friction coefficients. However,
these controllers demand substantial real-time computation and lack robustness
against bounded additive disturbances.

In this research, we address the control of robots when their dynamical
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CHAPTER 4. MANIPULATOR CONTROLLERS

model is uncertain. Uncertainty in the model may arise due to factors such as
the robot carrying an unknown load or the high cost associated with accurately
evaluating the robot’s dynamics. To overcome these challenges, robust control
strategies are employed.

Control of uncertain systems is typically achieved through two main ap-
proaches: adaptive control and robust control. The adaptive approach involves
designing a controller that aims to "learn" the uncertain parameters of the sys-
tem and eventually become the optimal controller for the given system. On the
other hand, the robust approach employs a fixed controller structure that en-
sures acceptable performance for a class of plants, which includes the uncertain
plant under consideration. Although the adaptive approach is applicable to a
wider range of uncertainties, robust controllers are simpler to implement and
require no tuning specific to the plant.

In this chapter, we review various control designs used in controlling the
motion of robots. Additionally, we introduce a novel approach that enables the
control law to effectively handle unknown uncertainties. By developing robust
control strategies, we aim to enhance the performance and accuracy of manipu-
lator control in the presence of uncertainty, thereby expanding the capabilities
of robotic systems in real-world applications.

4.2 Inverse Dynamics Control

Considering that dynamics of general manipulator can be written as follows:

𝐷(𝑞)𝑞¥ + 𝐶(𝑞, 𝑞¤)𝑞¤ + 𝐹𝑞¤ + 𝑔(𝑞)︸                    ︷︷                    ︸
𝑛(𝑞,𝑞¤)

= 𝜏 (4.1)

Idea: Using our knowledge of robot dynamics to compute the required
torque to follow desired trajectory of (𝑞𝑑 , 𝑞¤ 𝑑)

Let control law:
𝜏 = 𝐷(𝑞𝑑)𝑞¥ 𝑑 + 𝑛(𝑞𝑑 , 𝑞¤ 𝑑) (4.2)
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Assume: exact initialisation 𝑞(0) = 𝑞𝑑(0), 𝑞¤(0) = 𝑞¤ 𝑑(0)

Then system dynamics dynamics after substituting with (4.2) in (4.1) will be:

𝑞¥(𝑡) = 𝑞¥ 𝑑(𝑡)

This approach can’t handle the following:

• Initial state not matched to the desired trajectory 𝑞.

• External disturbance.

• Inaccurate model parameters.

• Unknown payload.

• Unmodeled dynamics.

4.3 Feedbak Linearization

4.3.1 Introduction

In the realm of robot manipulator control, feedback linearization emerges as
a valuable nonlinear design methodology [28],[29] . Its fundamental concept
revolves around transforming a nonlinear system into a (fully or partially) linear
system, enabling the application of well-established linear design techniques for
control design. Feedback linearization has proven to be effective in addressing
various practical nonlinear control challenges. It is particularly applicable to
important classes of nonlinear systems known as input-state linearizable or
minimum-phase systems, albeit with the requirement of full state measurement.
However, it is important to note that while feedback linearization offers valuable
advantages in terms of system linearity and control design, it does not inherently
guarantee robustness in the presence of parameter uncertainty or disturbances.
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Idea:

The concept of feedback linearization in manipulator control involves the
application of state feedback to cancel non-linearity followed by the use of linear
control to stabilize the tracking error to zero. State feedback is utilized to mit-
igate the impact of nonlinearities by measuring and incorporating appropriate
feedback gains based on the manipulator’s state variables. Subsequently, linear
control strategies, such as PID or LQR controllers, are employed to regulate
the system and minimize tracking errors, ensuring accurate trajectory tracking.
Considering robot dynamics model in Eq.(4.1)

Let: 𝑒𝑞 = 𝑞𝑑 − 𝑞, 𝑒¤𝑞 = 𝑞¤ 𝑑 − 𝑞¤

Then: closed loop dynamics will be

𝑒¥𝑞 + 𝐾𝑑𝑒¤𝑞 + 𝐾𝑝𝑒𝑞 = 0 (4.3)

where , 𝐾𝑝 and 𝐾𝑑 are (𝑛 × 𝑛) symmetric and positive definite matrices

Let control law:

𝜏 = 𝐷(𝑞𝑑) [𝑞¥ + 𝐾𝑑𝑒¤𝑞 + 𝐾𝑝𝑒𝑞]︸                ︷︷                ︸
𝑎

+𝑛(𝑞𝑑 , 𝑞¤ 𝑑) (4.4)
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Control Scheme
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Figure 4.1: Block scheme of feedback linearization control

This approach can’t handle the following:

• Inaccurate model parameters .

• Unmodeled dynamics.

4.4 Robust Feedbak Linearization

In the case of imperfect compensation, it is reasonable to assume that a
control vector expressed by

𝑢 = 𝐷(𝑞)𝑎 + �̂�(𝑞, 𝑞¤) (4.5)

where 𝐷(𝑞) and �̂�(𝑞, 𝑞¤) represent the computational model adopted in terms of
estimates of the terms in the dynamic model. The error on the estimates, i.e.,
the uncertainty, is represented by

𝐷 = 𝐷 − 𝐷(𝑞), �̃� = �̂� − 𝑛 (4.6)

and is due to imperfect model compensation as well as intentional simplification
in inverse dynamics computation. Note that by setting𝐷(𝑞) = 𝐷 (where𝐷 is the
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diagonal matrix of average inertia at the joint axes) and �̂� = 0, the decentralized
control scheme is recovered, where the control action 𝑎 can be of the general
PID type computed on the error.

Using (4.5) as a nonlinear control law gives

𝐷𝑞¥ + 𝑛 = 𝐷𝑎 + �̂� (4.7)

where the functional dependence has been omitted. Since the inertia matrix 𝐷
is invertible, it follows that

𝑞¥ = 𝑎 + (𝐷−1𝐷 − 𝐼)𝑎 + 𝐷−1�̃� = 𝑎 − 𝜂

Where

𝜂 = (𝐼 − 𝐷−1𝐷)𝑎 − 𝐷−1�̃� (4.8)

Assuming

𝑎 = 𝑞¥ 𝑑 + 𝐾𝐷𝑒¤𝑞 + 𝐾𝑃𝑒𝑞 (4.9)

we obtain,

𝑞¥ + 𝐾𝐷𝑒¤𝑞 + 𝐾𝑃𝑒𝑞 = 𝜂 (4.10)

The system described by (4.10) is still nonlinear and coupled, since 𝜂 is a
nonlinear function of 𝑞 and 𝑞¤ . The first term in (4.8) represents the error in
acceleration due to an incorrect model of 𝐷(𝑞), while the second term accounts
for the error caused by an incorrect model of 𝑛(𝑞, 𝑞¤). The controller alone does
not guarantee convergence of the error to zero.

Idea:

In order to compensate for model uncertainty and ensure error convergence
to zero while tracking a trajectory in the presence of uncertainties, a linear PD
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control is no longer adequate. Therefore, the control law needs to be modified
[30]−[32].

we need to modify (4.9) to compensate for uncertainty 𝜂. The Lyapunov
direct method can be employed to design an outer feedback loop on the error ,
which should be robust to the uncertainty 𝜂.

𝑎 = 𝑞¥ 𝑑 + 𝐾𝐷𝑒𝑞¤ + 𝐾𝑃𝑒𝑞 + 𝑤 (4.11)

where 𝑤 will be designed based on knowledge of uncertainty bounds.

Consider the error state vector :

𝜉 =

[
𝑒𝑞
𝑒¤𝑞

]
(4.12)

It’s time evolution is described by the following state-space representation:

𝜉¤ = 𝐻𝜉 + 𝐺(𝑒¥𝑞 − 𝑎 + 𝑛) (4.13)

where 𝐻 and 𝐺 are block matrices of dimensions (2𝑛 × 2𝑛) and (2𝑛 × 𝑛),
respectively:

𝐻 =

[
0 𝐼

0 0

]
, 𝐺 =

[
0
𝐼

]
(4.14)

In order to analyze stability of (4.13) , we consider the following Lyapunov
function :

𝑉(𝜉) = 𝜉𝑇𝑄𝜉 > 0 ∀𝜉 ≠ 0 (4.15)

where 𝑄 = 𝑄𝑇 > 0

It’s time derivative :
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𝑉¤ = 𝜉¤𝑇𝑄𝜉 + 𝜉𝑇𝑄𝜉¤
= 𝜉𝑇(𝐻𝑇𝑄 +𝑄𝐻)𝜉 + 2𝜉𝑇𝑄𝐺(𝜂 − 𝑤)

(4.16)

where,

𝐻 =

[
0 𝐼

−𝐾𝑝 −𝐾𝑑

]

Since 𝐻 has eigenvalues with all negative real parts, it is well-known that for
any symmetric positive definite matrix 𝑃, the equation

𝐻𝑇𝑄 +𝑄𝐻 = −𝑃 (4.17)

gives a unique solution 𝑄 which is symmetric positive definite as well. In
view of this, equation (4.16) becomes

𝑉¤ = −𝜉𝑇𝑃𝜉︸ ︷︷ ︸
<0

+2𝜉𝑇𝑄𝐺(𝜂 − 𝑤) (4.18)

The asymptotic stability of 𝜉 = 0 is guaranteed iff 𝑉¤ < 0 ∀𝜉 ≠ 0 . since
−𝜉𝑇𝑃𝜉 is negative definite ∀𝜉 ≠ 0 , we need to find 𝑤 s.t 2𝜉𝑇𝑄𝐺(𝜂 − 𝑤) < 0.
To do so, we need to make some assumptions on the uncertainty bounds of the
model. 𝐼 − 𝐷−1 (

𝑞
)
𝐷

(
𝑞
) ≤ 𝛼 ∈ (0, 1) ∀𝑞 (4.19)

�̃� (
𝑞, 𝑞¤ ) ≤ Φ ≤ ∞ ∀𝑞, 𝑞¤ (4.20)
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𝑞¥ 𝑑 (𝑡) ≤ 𝜑𝑀 ≤ ∞ ∀𝑞¥ 𝑑 (4.21)

It is known that matrix D is positive definite with bounded upper and lower
norms, the following inequality is valid :

0 < 𝐷𝑚 ≤ 𝐷−1(𝑞) ≤ 𝐷𝑀 < ∞ ∀𝑞 (4.22)

Additionally, there always exists a choice for 𝐷 that satisfies equation 4.19.
In fact, the following expression for 𝐷 can be set:

𝐷 =
2

𝐷𝑚 + 𝐷𝑚
𝐼 (4.23)

this leads to 𝐷−1𝐷 − 𝐼
 ≤ 𝐷𝑀 − 𝐷𝑚

𝐷𝑀 + 𝐷𝑚
= 𝛼 < 1 (4.24)

It can be seen that a more accurate estimation of 𝐷 will lead to a smaller
value of 𝛼

Now, we can impose ,
𝑧 = 𝐺𝑇𝑄𝜉,

By using the following control law to compensate for the uncertainty

𝑤 =
𝜌

‖𝑧‖ 𝑧 𝜌 > 0 (4.25)

In this way we have :

𝑧𝑇
(
𝜂 − 𝑤)

= 𝑧𝑇𝜂 − 𝜌

‖𝑧‖ 𝑧
𝑇𝑧

≤ ‖𝑧‖‖𝜂‖ − 𝜌‖𝑧‖
= ‖𝑧‖(‖𝜂‖ − 𝜌)

(4.26)

Imposing 𝜌 > ‖𝜂‖ in Eq.(4.25) will lead to 𝑉¤ less than zero along all error
system trajectories.
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To fulfill Eq.(4.26), it is important to observe that considering the definition of
as presented in Eq.(4.8) and the assumptions Eq.(4.19)-(4.20), with the condition
that ‖𝑤‖ = 𝜌, the following relationship can be established:𝜂 ≤

𝐼 − 𝐷−1𝐷
 𝑞¥ 𝑑 + ‖𝐾‖ ‖𝜉‖ + ‖𝑤‖ + 𝐷−1 ‖�̃�‖

≤ 𝛼𝜑𝑀 + 𝛼 ‖𝐾‖ ‖𝜉‖ + 𝛼𝜌 + 𝐷𝑀Φ
(4.27)

By setting

𝜌 >
1

1 − 𝛼
(𝛼𝜑𝑀 + 𝛼 ‖𝐾‖ ‖𝜉‖ + 𝐷𝑀Φ) (4.28)

where 𝐾 = [𝐾𝑝 𝐾𝑑]

In the special case where 𝑃 = 𝑃𝐼 , solving for 𝑄 in Eq.( 4.17 ), we have

𝑞1 =
𝑝(𝑘𝑝 + 𝑘2

𝑝 + 𝑘𝑑)
2𝑘𝑝𝑘𝑑

𝑞2 = 𝑞3 =
𝑝

2𝑘𝑝

𝑞4 =
𝑝(𝑘𝑝 + 1)

2𝑘𝑝𝑘𝑑

(4.29)

Substituting of 𝑄 into 𝑍 , we obtain:

𝑧 = 𝑞2𝐼𝑒𝑞 + 𝑞4𝐼𝑒¤𝑞 (4.30)

and

𝑤 =
𝜌

‖𝑧‖ 𝑞2𝐼𝑒𝑞 + 𝜌

‖𝑧‖ 𝑞4𝐼𝑒¤𝑞 (4.31)

Finally , Substituting of 𝑄 into 𝑎 , we have:

𝑎 = 𝑞¥ 𝑑 + (𝑘𝑝 + 𝜌

‖𝑧‖ 𝑞2𝐼)︸           ︷︷           ︸
�̃�𝑃

𝑒𝑞 + (𝑘𝑑 + 𝜌

‖𝑧‖ 𝑞4𝐼)︸           ︷︷           ︸
�̃�𝐷

𝑒¤𝑞 (4.32)

Based on equation 4.32, it can be observed that the inclusion of the supple-
mentary robust term leads to an adjustment of the linear proportional-derivative
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(PD) control gains, thereby providing compensation for uncertainties. As a
consequence, the feedback linearization methodology demonstrates a capac-
ity to effectively manage uncertainty, especially when high gain matrices are
employed.

Note:
This control law will drive the error to the sliding plane 𝑧 = 0. At this point,

the control is switched at infinite frequency (chattering) , which is not feasible
in practice. In order to mitigate the presence of high-frequency components
(chattering), it is possible to employ a robust control strategy that, while not
guaranteeing error convergence to zero, guarantees the boundedness of the
error with respect to its norm. Such a control law can be expressed as follows:

𝑤 =


𝜌
𝑧

‖𝑧‖ if ‖𝑧‖ ≥ 𝜀

𝜌
𝑧
𝜀

if ‖𝑧‖ < 𝜀

(4.33)

This control law effectively regulates the control input based on the norm of
the error signal, where represents a scaling factor, z denotes the error signal,
and 𝜖 is a predetermined threshold value.

Control Scheme
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Figure 4.2: Block scheme of robust feedback linearization control
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4.4.1 Adaptive 𝜌

One of the key contributions of this thesis is the proposed method aimed at
addressing uncertain certainty bounds associated with robot dynamic parame-
ters. This approach involves utilizing an update law to adjust the parameter 𝜌

based on the value of 𝑉¤ as defined in equation (4.18). In the subsequent simu-
lation chapter, it will be demonstrated that this method exhibits the capability
to handle varying degrees of uncertainty and achieve a response comparable to
that of robust feedback linearization.

Our research approach centers on Adaptive Robust Feedback Lineariza-
tion(ARFBL), a technique grounded in Lyapunov analysis. This method hinges
on the fundamental principle that to achieve stability and convergence within
the system, the derivative of the Lyapunov function in Equation (4.16) should
exhibit negativity.

Instead of using constant 𝜌 , we will use the following update law to make it
adaptive.

Our initial strategy involves devising an update law to augment the parame-
ter 𝜌 . This adjustment aims to counteract uncertainties when the rate of change
of 𝑉¤ is positive. Nevertheless, empirical experimentation revealed a limitation
in this approach it tends to overestimate 𝜌 actual value due to its singular up-
ward adjustment.

𝜌¤ =

𝑘𝜌 if 𝑉¤ > 0

0 if 𝑉¤ < 0
(4.34)

where 𝑘𝜌 > 0

To address this limitation, we introduce a modified update law in Eq. (4.35).
Once again, our methodology capitalizes on Lyapunov analysis. This modified
approach affords the adaptive scheme greater flexibility in modifying rho. The
degree of freedom in 𝜌 adjustment is extended to both incrementation and
decrementation. The basis for this modification lies in the 𝑉¤ 𝑖𝑑, which serves as
a reference point. This 𝑉¤ 𝑖𝑑 is derived from the initial term in Equation (4.18), a
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scenario where uncertainties are absent. Notably, in this context, we assume the
identity matrix P.

𝜌¤ =

𝑘𝜌 if 𝑉¤ > 𝑉¤ 𝑖𝑑/2

0 if 𝑉¤ 𝑖𝑑 < 𝑉¤ < 𝑉¤ 𝑖𝑑/2

−𝑘𝑎 if 𝑉¤ < 𝑉¤ 𝑖𝑑
(4.35)

where,

𝑘𝑎 > 0 𝑎𝑛𝑑 𝑉¤ 𝑖𝑑 = −𝜉𝑇𝑃𝜉︸ ︷︷ ︸
<0

4.5 Sliding Mode Control

4.5.1 Introduction

In the realm of robust control for robot manipulators, sliding mode control
(SMC) has emerged as a prominent technique. SMC offers a powerful framework
to address uncertainties, disturbances, and nonlinearities present in robotic sys-
tems [33]−[37]. Its main concept revolves around the notion of a sliding surface,
which plays a crucial role in achieving robust control performance.

The essence of sliding mode control lies in the ability to guide the system state
onto a predefined sliding surface, where subsequent motion remains confined.
By doing so, the control system operates in a switching mode, rapidly switch-
ing between different control laws or dynamics, leading to a robust response.
This switching mechanism serves as a distinctive feature of sliding mode control.

Sliding mode motion encompasses two distinct phases: the reaching stage
and the sliding stage. In the reaching stage, the system state undergoes a finite-
time convergence towards the sliding surface from any initial state, adhering
to predefined reaching conditions until the sliding surface is attained. The
subsequent sliding stage involves the system state maintaining a sliding mode
trajectory along the sliding surface due to the influence of the applied control
law.

The central challenge in the development of a sliding mode controller resides
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in guaranteeing perpetual convergence of the system state to the sliding mode
surface, while simultaneously constraining its movement to the sliding hyper-
plane. This task also involves determining the existence and compliance with
the accessibility condition of the sliding hyperplane, as elaborated in reference
[31]. Distinct sliding mode controllers can be formulated using a reaching law
to satisfy the dynamic performance requirements of the control system and to
ensure the overall stability of the control system.

4.5.2 Design of Sliding Surface

The sliding surface can be categorically delineated into two classifications:
one pertains to the linear sliding surface, while the other pertains to the nonlinear
sliding surface. A prominent illustration of a nonlinear sliding surface is the
terminal sliding surface. Specifically, when the system state is distantly removed
from the equilibrium point, the rate of convergence of the linear sliding surface
exceeds that of the terminal sliding surface. Conversely, when the system state is
proximate to the equilibrium point, the convergence rate of the terminal sliding
surface surpasses that of the linear sliding surface. An instance of a linear sliding
mode surface is formulated as:

𝑠 = 𝜆𝑒𝑞 + 𝑒¤𝑞 𝜆 ∈ R𝑛×𝑛 (4.36)

An exemplar of a nonlinear sliding surface was introduced in reference [38]:

𝑠 = 𝑒¤𝑞 + 𝜇1𝑒𝑞𝑚/𝑝 + 𝜇2𝑒𝑞 𝑘/𝑙 (4.37)

For the parameters in the expressions:

𝜇1 > 0, 𝜇2 > 0, 𝑚 > 𝑝 > 0,

where 𝑚 and 𝑝 are positive odd numbers.

Similarly, the parameters are constrained as:

𝑙 > 𝑘 > 0,

where 𝑙 and 𝑘 are positive odd numbers.
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4.5.3 Design of Reaching Law

To enhance the dynamic performance of sliding mode control during the
reaching phase, Academician Gao Weibing introduced the concept of a reach-
ing law and devised several representative reaching laws [39]. By appropriately
tuning the parameters within the reaching law formulation, the dynamic perfor-
mance of sliding mode control can be effectively enhanced. Among the reaching
laws commonly employed in sliding mode control are the constant reaching law,
power reaching law, exponential reaching law [40],[41], and generalized reaching
law. The constant reaching law inadequately attenuates chattering phenomena.
While the power reaching law mitigates chattering, the speed of attaining the
sliding surface is suboptimal, potentially resulting in inadequate tracking per-
formance.

A prototypical expression for the exponential reaching law is as follows:

𝑠¤ = −𝐾1𝑠 − 𝐾2sign(𝑠) (4.38)

Here, 𝐾1 = [𝑘11, 𝑘12, . . . , 𝑘1𝑛] represents the parameter associated with the
exponential reaching component, where 𝑘1𝑖 > 0 for 𝑖 = 1, 2, . . . , 𝑛. Similarly,
𝐾2 = [𝑘21, 𝑘22, . . . , 𝑘2𝑛] denotes the parameter linked to the constant reaching
component, with 𝑘2𝑖 > 0 for 𝑖 = 1, 2, . . . , 𝑛. The term 𝑠¤ = −𝐾1𝑠 represents
the exponential reaching component. This component ensures that when the
system state closely approaches the sliding surface 𝑠, the system state rapidly
reaches the sliding surface. Naturally, as the system state advances towards
the sliding surface, its reaching speed gradually diminishes to zero. This not
only minimizes the time taken to reach the sliding surface but also significantly
reduces the speed of the system state’s approach.

The process of the system state reaching the sliding surface transpires as
a gradual evolution governed solely by the exponential reaching component.
However, this sole reliance on the exponential reaching component does not
guarantee a finite-time attainment of the sliding surface. Consequently, to en-
sure a finite-time arrival at the sliding surface, an additional constant reaching
component −𝐾2sign(𝑠) is incorporated based on the foundation of the exponen-
tial reaching term. The incorporation of this component presents the advantage
of enabling a reaching speed 𝐾2 when the system state approximates the slid-
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ing surface. This modification guarantees the system’s finite-time arrival at the
sliding surface .

The steps involved in sliding mode control can be summarized as follows:

1. Define an intermediate variable, denoted as 𝑠.

• 𝑠¤ must contains the control signal 𝑢
• (𝑠 → 0) =⇒ (eq(𝑡) → 0)

2. Determine the rate of convergence for the sliding mode control based on
the Sliding Condition.

3. Establish the control law for the sliding mode control.

The resultant control law, utilizing the linear sliding surface as expressed in
Eq. (1) and employing the constant reaching law (SMC-CRL), is given by:

𝜏 = �̂�(𝑞, 𝑞¤) + 𝐷(𝑞)𝑞¥ + 𝐷(𝑞)𝜆𝑒¤𝑞 + 𝜌sign(𝑠) , 𝜌 > 0 (4.39)

This control law is well-suited for straightforward manipulators such as the
RR planar configuration. However, for more intricate robots like the 6-DOF
UR10 manipulator, modifications to the reaching law are essential to achieve
satisfactory performance. In the subsequent discussion, we introduce a control
law employing the linear sliding surface from Eq.(1) and incorporating the
exponential reaching law (SMC-ERL):

𝜏 = 𝐷(𝑞) (𝑞¥ 𝑑 + 𝐾1𝑠 + 𝐾2sign(𝑠) + 𝐾3𝑒¤𝑞 ) + �̂�(𝑞, 𝑞¤) (4.40)

Furthermore, an adapted version of the prior control law can be defined,
employing a nonlinear sliding surface as described in Eq. (3) and integrating
the exponential reaching law (SMC-MERL):

𝜏 = 𝐷(𝑞) (𝑞¥ 𝑑 + 𝑎𝑒¤𝑞 + 𝐾1𝑠 + 𝐾2sign(𝑠)) + �̂�(𝑞, 𝑞¤) (4.41)

where ,

𝑎 = 𝜇1
(
𝑚/𝑝)𝑒(𝑚/𝑝)−1 + 𝜇2(𝑘/𝑙)𝑒(𝑘/𝑙)−1
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4.5.4 Chattering Phenomenon

The aforementioned controllers will encounter a well-known issue in Sliding
Mode Control which is the chattering phenomenon, which occurs due to the dis-
continuous nature of the control input. Chattering refers to the high-frequency
oscillations of the control signal, which can lead to undesirable wear and tear of
actuators and produce undesirable noise in the system.

ሶ𝒒

𝒒

𝒔 = 𝟎
𝒔 < 𝟎

𝒔 > 𝟎

Figure 4.3: Control chattering problem

4.5.5 Sliding Mode Control with Boundary Layer

To mitigate the chattering problem, a boundary layer can be introduced
around the sliding surface [42]. The boundary layer is a small region where the
control input is smoothed to reduce the chattering effect while preserving the
robustness of the SMC.
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𝜖− 𝜖

𝑠𝑖𝑔𝑛(𝑦)

𝑠𝑎𝑡(
𝑠

𝜖
)

𝒚

Figure 4.4: smooth 𝑠𝑎𝑡 function Vs non-smooth 𝑠𝑖𝑔𝑛 function

This can be achieved by replacing sign function in control laws in Eq.(4.39-
4.41) with sat function .

where the saturation function is defined as:

sat(𝑠) =

𝑠
𝜖

if |𝑠 | < 𝜖

sign(𝑠) if |𝑠 | > 𝜖
(4.42)

The saturation function, denoted as sat(𝑠), plays a role in limiting the control
input when the sliding surface 𝑠 exceeds a certain threshold determined by 𝜖.

When |𝑠 | is less than 𝜖, the control input is scaled by 1
𝜖

to ensure its bounded-
ness. On the other hand, if |𝑠 | exceeds 𝜖, the sign of 𝑠 is preserved to maintain
the control input’s direction.

Note:

The update law in section (4.4.1) can be used to update 𝜌 based on the
derivative of Lyapunov function.
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Control Scheme

𝑑

𝑑𝑡

(
𝑑

𝑑𝑡
+ Λ)(𝑛−1)

𝒖Sliding 
Mode 

Control

𝒔 ሶ𝒔

𝒆𝒒𝒒𝒅

𝒒

Figure 4.5: Sliding Mode Control Scheme
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5
Implementation,Simulation and

Analysis

5.1 RR Manipulator

This section focuses on investigating the behavior and conducting an analysis
of three case studies, namely the RR manipulator, SCARA and UR10, in relation
to the controllers discussed in Chapter 4. The objective is to perform a compar-
ative analysis that highlights the strengths and weaknesses of each controller
method. Through this analysis, we aim to gain insights into the performance
and effectiveness of these controllers in practical scenarios.

5.1.1 Kinematic and Dynamic Parameters

Link 𝜃 𝑑 𝑎 𝛼
1 𝜃1

∗ 0 0.3 0
2 𝜃2

∗ 0 0.15 0

Table 5.1: DH-table for 2-link RR planar manipulator

Inertia Matrix

𝐼 =

[
0.176 0

0 0.0411

]
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5.1. RR MANIPULATOR

Link 𝑚𝑖 𝑙𝑐𝑖
1 7.848 .1554
2 4.49 0.0411

Table 5.2: Dynamic parameters for 2-link RR planar manipulator

5.1.2 Setup

The desired input trajectory is defined as follows:

𝑞𝑑1 =
𝜋
4 cos(𝑡 + 𝜋

2 ), 𝑞𝑑2 =
𝜋
6 cos(2𝑡 + 𝜋

4 )

To simulate parameter uncertainty, random constant values were added to
the original dynamical parameters. This allows us to estimate the lower and
upper bounds of the parameters.

5.1.3 Feedback Linearization Control Simulation
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Figure 5.1: Feedback linearization control
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In Figure 5.1, feedback linearization was employed to control the robot’s
behavior. The control gains used were

𝐾𝑝 =

[
120 0
0 120

]
and

𝐾𝑑 =

[
15 0
0 15

]
Increasing the gains demonstrates that feedback linearization can effectively
handle uncertainty. A detailed analysis of robust feedback linearization will
be discussed to verify this claim. The tracking performance exhibits bounded
tracking error, and the joint torques exhibit smooth behavior.

5.1.4 Robust Feedback Linearization Control Simulation
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Figure 5.2: Robust feedback linearization control (chattering)
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Figure 5.3: Robust feedback linearization control (without chattering)
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Figure 5.4: Robust feedback linearization control (adaptive 𝜌)
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Figure 5.5: Robust feedback linearization control (modified adaptive 𝜌)
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Figure 5.6: 𝜌 evolution based on two diffrent update laws

In the following, we analyze the response of the robust feedback lineariza-
tion technique as implemented in Section 4.4 of our study.

Figure 5.2 illustrates two key observations. Firstly, the utilization of the sign
function introduces chattering behavior, resulting in high-frequency switching
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dynamics. This behavior is impractical in real-world applications. Secondly, we
note that the error converges to zero for both joints.

On the contrary, Figures (5.3) and (5.4) demonstrate smoother joint torque in-
puts, which are more suitable for actuator operation. However, this comes at the
expense of allowing a bounded tracking error. The magnitude of this boundary
layer of error is governed by the parameter 𝜖 in Eq.(4.33). It is worth mentioning
that we need a priori knowledge of the bounds of the dynamic parameters.

The recently introduced adaptive robust feedback linearization (ARFBL) method-
ology depicted in Figures (5.4) and (5.5) demonstrates a notable advancement,
as it operates independently of a priori knowledge concerning the associated
bounds. This technique successfully attains commendable performance out-
comes.

Upon careful examination, as evidenced in Figure (5.6), a comparative analysis is
conducted concerning the evolution of parameter 𝜌 for two distinct approaches:
adaptive feedback linearization (AFBL) and modified adaptive feedback lin-
earization (MARFBL). It is noteworthy that MARFBL exhibits the capability to
regulate parameter 𝜌 effectively, thereby maintaining its value within a proxim-
ity to the one derived from a comprehensive understanding of dynamic bounds.
In contrast, the ARFBL technique exhibits an escalating trend in parameter 𝜌

over time.
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5.1.5 Sliding Mode Control Simulation
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Figure 5.7: Sliding mode Control (𝜖 = 8)
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Figure 5.8: Sliding mode Control (𝜖 = 1)
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Figure 5.9: Sliding mode Control (adaptive 𝜌)

In this study, we proceed to investigate the sliding mode controller. Specifi-
cally, we compare the responses presented in Figure (5.7) and Figure (5.8), where
we set 𝜖 = 8 and 𝜖 = 1, respectively. It is noteworthy that a decrease in 𝜖 leads
to the reemergence of the chattering problem.
To address this issue, we introduce an update law in Figure 5.9, which aims to
increase the value of 𝜌 only when necessary. This approach offers the advantage
of maintaining chattering-free behavior even when we decrease 𝜖.

The performance of various controllers is assessed based on root mean square
error (RMSE) values, as shown in Table 5.3 and Fig(5.10) The table presents RMSE
values for each controller across three distinct scenarios of external disturbance:
No Error, Constant Error, and Time-varying Error.

In the case of "No Error," the controllers’ behavior is compared. Among the
controllers, the Adaptive Robust Feedback Linearization (ARFBL) and Modified
Adaptive Feedback Linearization (MARFBL) exhibit the lowest RMSE values,
both at approximately 0.0494 and 0.0495, respectively. These two controllers
demonstrate superior performance in accurately tracking the desired trajectory
despite the absence of errors.
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Transitioning to the scenario of "Constant Error," a similar trend emerges.
Once again, ARFBL and MARFBL controllers demonstrate their robustness by
achieving the lowest RMSE values of around 0.1281 and 0.1282, respectively.
This signifies their ability to handle and mitigate the influence of a constant
external error on the system.

In the context of "Time-varying Error," ARFBL and MARFBL controllers re-
main the most effective choices, maintaining their performance consistency with
RMSE values of approximately 0.0606 and 0.0607, respectively. These controllers
showcase their adeptness at adapting to varying disturbances over time.

On the other hand, the Sliding Mode Control (SMC) and Adaptive Sliding
Mode Control (ASMC) controllers exhibit comparatively higher RMSE values
as well as chattering across all disturbance scenarios . Notably, ASMC displays
the highest RMSE value of 0.1722 in the case of "Constant Error," signifying its
relative susceptibility to consistent disturbances.

In conclusion, the Adaptive Robust Feedback Linearization (ARFBL) and
Modified Adaptive Feedback Linearization (MARFBL) controllers consistently
emerge as the best performers across all examined disturbance scenarios, effec-
tively minimizing RMSE values and thereby demonstrating superior control ro-
bustness and accuracy. In contrast, the Adaptive Sliding Mode Control (ASMC)
controller generally presents less favorable results.

FBL RFBL ARFBL MARFBL SMC ASMC
No Error 0.0775 0.0499 0.0494 0.0495 0.0591 0.1171

Constant Error 0.2078 0.1274 0.1281 0.1282 0.3695 0.1722
Time-varying Error 0.0968 0.0602 0.0606 0.0607 0.0831 0.1119

Table 5.3: RMSE of different controllers under different external disturbances
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Figure 5.10: RMSE of different controllers under different levels of external
disturbances)

5.2 SCARA Manipulator

5.2.1 Kinematic and Dynamic Parameters

Link 𝜃 𝑑 𝑎 𝛼
1 𝜃1

∗ 0.5 0.5 0
2 𝜃2

∗ −0.005 0.4 0
3 0 𝑑3

∗ − 0.15 0 0
4 𝜃4

∗ −0.005 0.2 0

Table 5.4: DH-table for SCARA manipulator

In the table 5.5, we reported the parameters defining the dynamics, where
𝑝𝑥 , 𝑝𝑦 , and 𝑝𝑧 are the three components of 𝑝𝑐 , expressed w.r.t. the correspondent
reference frame of the Denavit-Hartenberg convention. Each link is assumed to
be a cylinder, with radius 𝑟𝑖 and length 𝑙𝑐𝑖 . For simplicity, we will neglect the
contributions due to motors .
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Link 𝑚𝑖[𝑘𝑔] 𝑝𝑥[𝑚] 𝑝𝑦[𝑚] 𝑝𝑧[𝑚] 𝑟𝑖[𝑚] 𝑙𝑖[𝑚]
0 25 0.0 0.0 0.25 0.1 0.5
1 20 −0.25 0.0 0.0 0.1 0.5
2 15 −0.2 0.0 0.0 0.1 0.4
3 10 0.0 0.0 0.15 0.1 0.3
4 5 −0.1 0.0 0.0 0.1 0.2

Table 5.5: Dynamic parameters for SCARA manipulator

Inertia Matrix

𝐼𝑖 =



𝑚(3𝑟𝑖2 + 𝑙𝑖2)
12 0 0

0 𝑚(3𝑟𝑖2 + 𝑙𝑖2)
12 0

0 0 𝑚𝑟𝑖2

2



5.2.2 Setup

The desired input trajectory is defined as follows:

𝑞𝑑1 =
𝜋
4 cos(𝑡+𝜋

2 ), 𝑞𝑑2 =
𝜋
6 cos(2𝑡+𝜋

4 ), 𝑞𝑑3 =
𝜋
4 cos(𝑡+𝜋

2 ), 𝑞𝑑4 =
𝜋
6 cos(2𝑡+𝜋

4 )
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5.2.3 Feedback Linearization Simulation
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Figure 5.11: Feedback linearization control

In Figure 5.11, feedback linearization was employed to control the robot’s
behavior. The control gains used were

𝐾𝑝 =


1000 0 0 0

0 1000 0 0
0 0 1000 0
0 0 0 1000


and

𝐾𝑑 =


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100


As expected, by increasing the gains, feedback linearization can effectively

handle uncertainty while maintaining smooth input torque.
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5.2.4 Robust Feedback Linearization Simulation
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Figure 5.12: Robust Feedback linearization control(chattering )
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Figure 5.13: Robust Feedback linearization control(without chattering )
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Figure 5.14: Robust Feedback linearization control(adaptive 𝜌 )
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Figure 5.15: Robust Feedback linearization control(modified adaptive 𝜌 )
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Figure 5.16: 𝜌 evolution based on derivative of 𝑉¤

Similar to the analysis in Section 5.1.4, we investigated the response of the ro-
bust feedback linearization method, as implemented in Section 4.4, on a SCARA
robot to understand the differences in controlling the prismatic joint.

As expected, in Figures (5.12) - (5.15), the system converges to the desired
trajectory. However, the chattering problem arises in this case as well, which we
addressed by employing a smooth saturation function instead of a sign func-
tion. It is noteworthy how effective the new approach based on adaptive 𝜌 is in
handling uncertainty without requiring prior knowledge of its bounds.

Figure 5.16 compares the evolution of 𝜌 in using the proposed update law
in section 4.4.1.
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5.2.5 Sliding Mode Control Simulation
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Figure 5.17: Sliding mode control(scalar 𝜌 )
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Figure 5.18: Sliding mode control(matrix 𝜌 )
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Figure 5.19: Sliding mode control( adaptive matrix 𝜌 )
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Figure 5.20: Adaptive parameters evolution based on lyapunov function

In this section, we aim to evaluate the sliding mode controller developed in
Section 4.5. The behavior of the joints when 𝜌 is a scalar is depicted in Figure
5.17. However, the observed behavior does not align with our expectations. The
reason for this discrepancy is that 𝜌 is intended to compensate for the uncertainty
in the system, and each link possesses its own uncertainty. Hence, it becomes
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necessary to select a distinct 𝜌 value for each input. To address this, we introduce
𝜌 as an (𝑛 × 𝑛) matrix. By setting the control parameters as follows:

𝜌 =


70 0 0 0
0 30 0 0
0 0 200 0
0 0 0 10


, 𝜖 = 3, 𝜆 =


20 0 0 0
0 30 0 0
0 0 50 0
0 0 0 30


we achieve the results depicted in Figure 5.18 . In this figure, all joint variables
converge to their desired values, and the tracking error converges to zero. Since
selecting the parameters of the 𝜌 matrix is nontrivial, an update law was in-
troduced to learn the parameters based on the error dynamics. By setting the
control parameters as follows:

𝜌0 =


10
10
10
10


, 𝜖 = 3, 𝜆 =


20 0 0 0
0 30 0 0
0 0 50 0
0 0 0 30


where 𝜌0 represents the initialization of the 𝜌 matrix, we can observe the evo-
lution of 𝜌𝑖 and the Lyapunov energy function in Figure 5.20(a) and 5.20(b),
respectively. It is evident that the tracking error eventually approaches zero.
The convergence speed depends on the initialization of 𝜌.

The previously mentioned sliding mode control (SMC) and adaptive sliding
mode control (ASMC) strategies employ the linear sliding surface as defined in
Eq.(4.36) coupled with a constant reaching law. An examination of both sce-
narios reveals a common tendency towards gradual convergence, marked by a
subdued convergence rate. Furthermore, it is noteworthy that both instances
are characterized by the occurrence of oscillations in joint torques.
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Figure 5.21: RMSE under diffrent levels of external disturbances

FBL RFBL ARFBL MARFBL
No Error 0.1125 0.1125 0.1125 0.1125

Constant Error 0.1234 0.1233 0.1234 0.1234
Time-varying Error 0.1307 0.1307 0.1307 0.1307

Table 5.6: RMSE of different robust feedback linearization controllers under
different external disturbances

Examining Table 5.6 and Fig.(5.21), which presents a comparative evaluation
of various robust feedback linearization laws and their variants in the presence
of distinct magnitudes of external disturbance, it becomes evident that the root
mean square error (RMSE) values across all controllers exhibit a notable degree
of similarity. This phenomenon finds its explanation in the underlying princi-
ples outlined in Eq.(4.32), wherein the parameter 𝜌 assumes the responsibility of
amplifying the proportional-derivative (PD) control gains proportionate to the
extent of uncertainty and the discrepancy between the actual and desired trajec-
tories. In cases where the PD gains become exceedingly elevated, the influence
exerted by 𝜌 tends to diminish significantly in comparison to these dominant
gains.
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5.3 UR10 Manipulator

5.3.1 Kinematic and Dynamic Parameters

Figure 5.22: UR10 Manipulator

The Universal Robots UR10 in Fig (5.22) is a versatile and widely used robotic
manipulator known for its flexibility and ease of integration into various indus-
trial applications. As with any robot manipulator, understanding its kinematics
and dynamics is crucial for precise control and effective task planning.

Forward Kinematics

Link 𝜃 𝑑 𝑎 𝛼
1 𝜃1

∗ 0.1273 0 𝜋/2
2 𝜃2

∗ 0 −0.612 0
3 𝜃3

∗ 0 −0.5723 0
4 𝜃4

∗ 0.163941 0 𝜋/2
5 𝜃5

∗ 0.163941 0 −𝜋/2
6 𝜃6

∗ 0.0922 0 0

Table 5.7: DH-table for UR10 manipulator

where the kinematic parameter can be illustrated from Fig.(5.23)
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Figure 5.23: UR10 Manipulator Kinematic Parameters

Dynamics

In the Table 5.8 ,we reported the parameters defining the dynamics, where
𝑝𝑥 , 𝑝𝑦 , and 𝑝𝑧 are the three components of 𝑝𝑐 , expressed w.r.t. the correspondent
reference frame of the Denavit-Hartenberg convention. Each link is assumed to
be a cylinder, with radius 𝑟𝑖 and length 𝑙𝑐𝑖 .

Link 𝑚𝑖[𝑘𝑔] 𝑝𝑥[𝑚] 𝑝𝑦[𝑚] 𝑝𝑧[𝑚] 𝑟𝑖[𝑚] 𝑙𝑖[𝑚]
1 7.1 0.021 0.0 0.027 0.2 0.1273
2 12.7 0.382 0.0 0.158 0.15 0.612
3 4.27 0.24 0.0 0.068 0.15 0.5723
4 2 0.01 0.007 0.018 0.1 0.163941
5 2 −0.0 0.007 0.018 0.1 0.1157
6 0.365 0.0 0.0 −0.026 0.1 0.0922

Table 5.8: Dynamic parameters for UR10 manipulator

5.3.2 Setup

The desired input trajectory is defined as follows:

𝑞𝑑1 =
𝜋
4 cos(𝑡 + 𝜋

2 ), 𝑞𝑑2 =
𝜋
6 cos(2𝑡 + 𝜋

4 ), 𝑞𝑑3 =
𝜋
4 cos(2𝑡 + 𝜋

2 )

𝑞𝑑4 =
𝜋
6 cos(2𝑡 + 𝜋

4 ), 𝑞𝑑5 =
𝜋
4 cos(2𝑡 + 𝜋

6 ), 𝑞𝑑6 =
𝜋
6 cos(2𝑡 + 𝜋

4 )
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5.3.3 Feedback Linearization Simulation

0 5 10

Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
P

os
iti

on
 (

ra
d)

Link Response

q1 (t)

q2 (t)

q3 (t)

q4 (t)

q5 (t)

q6 (t)

Ref

0 5 10

Time (s)

-1

-0.5

0

0.5

1

1.5

2

E
rr

or
 (

ra
d)

Tracking Error

e1 (t)

e2 (t)

e3 (t)

e4 (t)

e5 (t)

e6 (t)

0 5 10

Time (s)

-200

-150

-100

-50

0

50

100

150

200

T
or

qu
es

 (
N

.m
)

Joint Torques

u1 (t)

u2 (t)

u3 (t)

u4 (t)

u5 (t)

u6 (t)

Figure 5.24: Feedback linearization control

In Figure 5.24, feedback linearization was employed to control the robot’s
behavior. The control gains used were

𝐾𝑝 =



1000 0 0 0 0 0
0 1000 0 0 0 0
0 0 1000 0 0 0
0 0 0 1000 0 0
0 0 0 0 1000 0
0 0 0 0 0 1000


and

𝐾𝑑 =



100 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100
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5.3.4 Robust Feedback Linearization Simulation
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Figure 5.25: Robust Feedback linearization control(chattering )
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Figure 5.26: Robust Feedback linearization control(without chattering )
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Figure 5.27: Robust Feedback linearization control(adaptive 𝜌 )
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Figure 5.28: Robust Feedback linearization control(modified adaptive 𝜌 )
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Figure 5.29: 𝜌 evolution based on derivative of 𝑉¤

Illustrated within Figures (5.25-5.28) is the dynamic behavior exhibited by
distinct feedback linearization approaches. Analogous to the response patterns
observed in RR and SCARA manipulators, the Robust Feedback Linearization
(RFBL) and Adaptive Robust Feedback Linearization (ARFBL) methodologies
deliver notable performance outcomes in the presence of heightened uncertainty.
Their operational efficacy is underscored by their rapid convergence dynamics
and the generation of seamless input torque profiles.
However, when implementing the RFBL technique, as depicted in Figure (5.25),
employing the sign function introduces undesirable chattering phenomena and
eventual saturation of joint torques. To address these concerns, a novel adap-
tive law is proposed. The application of this refined approach yields a dual
advantage: fast convergence coupled with a smooth transition profile.
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5.3.5 Sliding Mode Control Simulation
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Figure 5.30: Sliding mode control(matrix 𝜌 )
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Figure 5.31: Sliding mode control( adaptive matrix 𝜌 )

74



CHAPTER 5. IMPLEMENTATION,SIMULATION AND ANALYSIS

𝜌0 =



30
60
10
10
10
10


, 𝜖 = 7, 𝜆 =



20 0 0 0 0 0
0 30 0 0 0 0
0 0 50 0 0 0
0 0 0 30 0 0
0 0 0 0 30 0
0 0 0 0 0 30


In Figures 5.30 and 5.31, the Sliding Mode Control (SMC) and Adaptive Slid-
ing Mode Control (ASMC) methodologies were employed, respectively. These
approaches utilized a constant reaching law, characterized by the parameter 𝜌0,
which serves as the initialization for the 𝜌 matrix. Notably, it is observed that
the convergence of the ASMC approach exhibits enhanced performance.

It is apparent that the tracking error progressively diminishes over time,
ultimately converging to zero. The rate of convergence is influenced by the
initial value of 𝜌. This observation underscores the necessity for the integration
of more intricate reaching laws to further enhance performance.
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Figure 5.32: Joint error at 𝜖 = 0.5
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Figure 5.33: Joint torques at 𝜖 = 0.5
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Figure 5.34: Joint error at 𝜖 = 1
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Figure 5.35: Joint torques at 𝜖 = 1
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Figure 5.36: Joint error at 𝜖 = 3
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Figure 5.37: Joint torques at 𝜖 = 3

ASMC RFBL SMC-ERL SMC-MERL
𝜖 = 0.5 0.3005 0.1326 0.0264 0.1133
𝜖 = 1 0.3002 0.1332 0.0288 0.1297
𝜖 = 3 0.3077 0.1337 0.0309 0.1379
𝜖 = 5 0.3147 0.1338 0.0315 0.1397

Table 5.9: RMSE of different controllers under different 𝜖 values

Comparing the behaviors depicted in Figures 5.30 and 5.31, specifically the
Sliding Mode Control (SMC) employing a constant reaching law with 𝜌 as a
constant matrix against the case where 𝜌 is adaptive, it is evident that the Adap-
tive Sliding Mode Control (ASMC) exhibits smoother trajectories characterized
by smaller bounded tracking errors. However, both methods display slower
convergence tendencies.

Further investigation, presented in Figures 5.32-5.37, focuses on the most
effective controllers Sliding Mode Control with linear sliding surface and ex-
ponential reaching law (SMC-ERL) as defined in Equation (4.38), Sliding Mode
Control with nonlinear sliding surface and exponential reaching law (SMC-
MERL), and RFBL. These figures highlight how the sliding mode controllers
exhibit chattering behaviors when 𝜖 is small, while RFBL and ARFBL strategies

78



CHAPTER 5. IMPLEMENTATION,SIMULATION AND ANALYSIS

effectively mitigate chattering, even in cases of small 𝜖.

The dataset provided in Table 5.9 examines the impact of changing the pa-
rameter 𝜖 on the root mean square error (RMSE) values associated with dif-
ferent controllers: Adaptive Sliding Mode Control (ASMC), Robust Feedback
Linearization (RFBL), Sliding Mode Control with Exponential Reaching Law
(SMC-ERL), and Sliding Mode Control with Nonlinear Sliding Surface and Ex-
ponential Reaching Law (SMC-MERL).

Upon analyzing the table, discernible trends emerge that highlight the inter-
play between 𝜖 variations and controller performance. As 𝜖 increases, there is a
general upward trend in the RMSE values across all controllers. This suggests
that heightened values of 𝜖 are associated with greater RMSE values but on the
other hand smoother joint torques.

Examining the controllers individually, the Adaptive Sliding Mode Control
(ASMC) consistently exhibits the highest RMSE values across all 𝜖 values, in-
dicating its comparatively weaker performance in minimizing tracking errors.
This is due to the choice of proper reaching mode is crucial for the performance
and convergence speed to the desired trajectory.

Conversely, the Robust Feedback Linearization (RFBL) method maintains
relatively stable RMSE values irrespective of variations in 𝜖, underlining its ro-
bustness against changes in this parameter.

Furthermore, the Sliding Mode Control with Exponential Reaching Law
(SMC-ERL) has the best performance in terms of smoothness of joint torques
and values of RMSE even if we increase 𝜖 . This again highlights the importance
of choosing the proper sliding surface and the reaching law.

On the other hand, the Sliding Mode Control with Nonlinear Sliding Surface
and Exponential Reaching Law (SMC-MERL) portrays an ascending trend in
RMSE values with increasing 𝜖, indicating its relatively deteriorating perfor-
mance as 𝜖 grows.

In summary, the data presented in the table unravels the nuanced connection
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between 𝜖 variations and the performance of different controllers. The trends
underscore the importance of selecting an appropriate 𝜖 value to optimize the
controller’s tracking accuracy while maintaining smooth input torque . Fur-
thermore, the comparison discerns the controllers with the most favorable and
unfavorable RMSE outcomes. RFBL emerges as a robust contender, whereas
ASMC tends to yield higher errors. The observed trends in this analysis offer
valuable insights into controller dynamics and serve as a guide for selecting
optimal control strategies across different scenarios.
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Figure 5.38: Comparison with best performance controllers under different lev-
els of disturbances

RFBL SMC-ERL ASMC
No Error 0.1057 0.0336 0.3444

Constant Error 0.2087 0.2867 0.3217
Time-varying Error 0.2342 0.4249 0.3475

Table 5.10: RMSE of different controllers under different external disturbances

The investigation entails a comparative analysis utilizing Figure 5.38 and Ta-
ble 5.10 to contrast two distinct sliding mode controllers (SMCs) with a robust
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feedback linearization (RFBL) controller across three distinct external distur-
bance scenarios. The observations reveal distinctive controller behaviors under
these conditions.

When there is no external disturbance, the SMC-ERL demonstrates notable
superiority in performance, showcasing both rapid convergence and the mini-
mal root mean square error (RMSE) among all controllers. However, upon the
introduction of noise to the system, the RFBL controller emerges as the most
resilient in maintaining minimal tracking error. This resilience is particularly
evident when contrasted with the other controllers. Conversely, the adaptive
sliding mode controller (ASMC) exhibits sluggish convergence, contributing to
higher RMSE values in all scenarios. This outcome can be attributed to the
ASMC’s utilization of a constant reaching law, leading to a plateauing of track-
ing error upon reaching the sliding surface.

In summary, this comparative assessment highlights the varying perfor-
mance profiles of the analyzed controllers in response to different external dis-
turbance scenarios. The SMC-ERL excels in disturbance-free environments, the
RFBL controller demonstrates robustness against noise, and the ASMC presents
limitations in convergence and tracking accuracy due to its control strategy.
These findings deepen our comprehension of controller behavior and inform
controller selection based on specific operational contexts.
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6
Conclusions and Future Works

6.1 Discussion

In this thesis, an investigation was undertaken to address the challenges
associated with controlling robot manipulators in the presence of unknown un-
certainties. In Chapter 4, the focus centered on two primary categories of robot
controllers: robust feedback approaches, which introduced a novel update law
to mitigate uncertainty, and sliding mode approaches. These controllers were
rigorously examined across diverse scenarios, encompassing varying levels of
structural and non-structural uncertainties.

Chapter 5 presented simulation outcomes for a range of scenarios, including
a comparative analysis of existing control methods. The simulation encom-
passed three distinct manipulator types two-link RR planar, SCARA, and UR10
with increasing complexity to validate the results. The findings underscored
the efficacy of the proposed adaptive robust feedback linearization controller in
effectively addressing diverse forms of uncertainty across all manipulators.

6.2 Conclusion

The research outcomes yielded the following conclusions:

• The study of robot manipulator control in the context of uncertain time-
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varying parameters is of paramount importance, given its potential to
enhance operational accuracy and tracking precision.

• The introduced adaptive robust controller successfully achieved control
objectives, demonstrating the ability to minimize tracking errors, ensure
fast convergence, and provide smooth input torque.

• Notably, for sliding mode control, the selection of a suitable sliding surface
emerged as a critical factor with a direct impact on performance. This was
evident in the simulation results of the UR10 manipulator, where the
choice of sliding law significantly influenced outcomes. Employment of
the exponential reaching law yielded the best performance in terms of
convergence and root mean square error (RMSE), contrasting with the
poorer performance associated with the constant reaching law.

6.3 Future avenues of research

• Development of a specialized adaptive robust controller tailored for track-
ing control in robot manipulators. This controller would amalgamate the
strengths of adaptive and robust control techniques, reducing online com-
putations while ensuring robustness against bounded disturbances and
eliminating the need for prior knowledge of system uncertainty. Further-
more, this controller would strive to achieve asymptotic tracking error
performance.

• Enhanced system modeling through the utilization of Gaussian Processes
based on measured data, thereby facilitating improved cancellation of
nonlinearities.

• Advancements in the Adaptive sliding mode control methodology, involv-
ing the refinement of sliding surface choices and the exploration of novel
reaching laws.

• Extension of the adaptive robust control concepts to address force control
scenarios, broadening the scope of their applicability.
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