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Abstract

Thanks to the popularity and effectiveness of machine learning, the computational
requirements for its development have increased beyond the limits of conventional de-
vices. Because of this, in recent years, in order to speed up the training and inference
processes of deep neural networks, a new hardware accelerator, the tensor core unit
(TCU), has been introduced, allowing the computation time of matrix multiplication
operations to be reduced. The aim of this work is to exploit the capabilities of tensor
cores to speed up a different problem: dimensionality reduction. By making use of
TCUs and certain properties of matrices, first introduced by William B. Johnson and
Joram Lindenstrauss, we are able to embed a set of points having high dimensionality
into a lower dimensional space with high-quality results. Throughout this paper, we
will introduce the basic concepts of dimensionality reduction and explain the construc-
tion of the Johnson-Lindenstrauss matrices used in our reduction method in detail, as
well as the theory involved. Following the description of Nvidia tensor cores and the
Volta architecture, we will develop a number of dimensionality reduction algorithms.
After testing their CUDA implementation on the Nvidia Tesla V100 GPU, we will ex-
tensively study their effectiveness and performance, both in terms of computation time
and quality of results.
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1 Introduction

One of the most important and relevant problems in the field of big data computing is
the so-called curse of dimensionality, which refers to the issues arising when processing
data in a high-dimensional space, occurring in many domains such as data analysis,
statistics and machine learning.

Working with such spaces can have an impact on the quality of results as well as
the performance of the algorithms used: depending on the problem, running times may
have a linear or even exponential dependency on the number of dimensions. As the
volume of the space increases, the available data also becomes increasingly sparse, with
the negative effect of making common data organization strategies less efficient. For
example, distance functions may lose effectiveness in assessing similarity between input
entries. In these cases, in order to obtain a reliable result, the amount of available data
would need to increase, often exponentially, with the number of dimensions.

The problems described above can be solved thanks to dimensionality reduction.
This technique consists in the transformation of high-dimensional input data into a new
dataset with a reduced number of dimensions, so that the new data points correlate to
their originals in a meaningful way.

Many methods can be used to perform dimensionality reduction, but the one that
we will be using and analyzing in this paper is the Johnson-Lindenstrauss transform,
which has been proven to produce an output that retains many of the most important
properties of the original data, such as pairwise distance and norm.

Much of the data stored and manipulated on computers, including text and images,
can be represented as points in a high-dimensional Euclidean space; keeping this in
mind, the problem of dimensionality reduction can be viewed as the product between a
matrix (the transform) and a vector whose number of dimensions needs to be reduced.

At this point, we would like to introduce a hardware device of fundamental impor-
tance for this thesis: the tensor core unit (TCU). This family of hardware accelerators
has been introduced in recent years because of the the ever-increasing challenges posed
by deep neural networks and machine learning as a whole. This branch of artificial intel-
ligence has reached unparalleled levels of accuracy and reliability in many applications,
but, as the quality of this tool increased, so did its complexity: as the name suggests,
deep neural networks are comprised of thousands of artificial ’neurons’, interconnected
within multiple layers, and their development requires a tremendous computational ef-
fort. The most common and time-consuming operations performed during the training
and inference steps heavily rely on matrix math operations. In order to lessen this
computational bottleneck, tensor core units, such as Google Tensor Processing Units
or Nvidia Tensor Cores, are specifically designed to perform a dense matrix product, of
a fixed

√
m×

√
m small size, as efficiently as possible.

Throughout this work, we will be using a machine containing an Nvidia Tesla V100
GPU, a graphics card equipped with hundreds of tensor cores; thanks to the CUDA
API, TCUs can be programmed to aid in any task involving matrix multiplication, and
this is how we can go back to the original problem of dimensionality reduction: thanks
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to some additional properties of Johnson-Lindenstrauss transforms, the problem of
dimensionality reduction can be treated as a matrix product, allowing us to exploit the
power of tensor core units to achieve a

√
m speedup over other traditional approaches

[1]. These properties and the theoretical analysis of the problem will be presented in
later sections.

The aim of this work is to evaluate some algorithms that perform dimensionality
reduction through matrix multiplication by using both common, traditional methods,
as well as implementing the idea presented by Ahle and Silvestri in [1] and leveraging
the capabilities of Nvidia tensor cores, in order to compare the results both in terms
of computation time and quality of the low-dimensional output vectors. In chapter 2
we will further introduce the main concepts of dimensionality reduction, while chapter
3 will describe the theory involved in the construction of Johnson-Lindenstrauss em-
beddings in detail. Chapter 4 will explain the Nvidia architecture, and in particular,
the Volta generation, which was the first to introduce TCUs to the market, and also
the architecure of the GPU we will be using for our tests. Next, chapter 5 will illus-
trate our proposed algorithms and their implementation with Nvidia’s CUDA library,
and, in chapter 6, we will show and analyze their practical results, both in terms of
computation time and quality.
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2 Dimensionality Reduction

As stated in the introduction, the issues that we face when dealing with high-dimensional
data can be solved with the technique of dimensionality reduction. As a matter of fact,
this tool is usually used during the pre-processing step of many problems in the field of
big data. A dataset can be defined as high-dimensional when the number of features
(dimensions) is greatly larger than the number of observations (input data points in
the space) available. This issue is not at all theoretical: real-world datasets, such as
speech signals, digital photographs, or MRI scans, often have high dimensionality. This
technique lets us embed a high-dimensional input dataset within a space with a lower
number of dimensions, while keeping the important properties of the data as intact
as possible: ideally, the reduced representation should have a dimensionality that cor-
responds to the minimum number of parameters needed to account for the observed
properties of the data (the intrinsic dimensionality of the data).

Let’s give the problem a more formal definition: we can represent the inputs as a
set V of vectors v ∈ Rd, where d is the number of dimensions in the high-dimensional
Euclidean space. The aim of the problem is to embed the original points into a space
with lower dimensionality k ≪ d by using a suitable transform T : Rd → Rk. Intuitively,
the result is a ”compressed” dataset where the valuable parts of the original data are
kept, while the others are discarded.

This transformation helps to alleviate the issues caused by the curse of dimensional-
ity: its benefits include smaller data storage requirements, reduced computation times
and improvements in the quality of the data, where redundant or noisy features can be
removed and only its most important aspects are captured. It is also very useful when
the number of samples include a low number of observations, and a limited number of
dimensions can also improve the visualization and readability of the data.

Over the years, a number of different approaches have been researched in order to
generate the transform T , resulting in many different dimensionality reduction tech-
niques being proposed.

The broadest subdivision of the different methods can be defined between linear
and nonlinear techniques: the most important and commonly used linear technique is
known as Principal Component Analysis (PCA), while examples of nonlinear techniques
include Kernel PCA, Isomap, Hessian locally linear embedding (LLE), and many more.
As shown by figure 2, different techniques allow us to tackle individual problems and
deal with specific distributions of data in the optimal way.

Just as a brief overview of the characteristics, advantages and drawbacks of different
dimensionality reduction techniques, let’s examine a couple of the most popular ones:

PCA seeks a k-dimensional basis that best captures the variance in the data. With
this construction, the first principal component (p.c.) would be the dimension having
the largest projected variance, the second p.c. the orthogonal dimension with largest
projected variance, and so on. Finding the first k principal components requires to
find the covariance matrix of the centered data, as well as to compute and sort its
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Figure 1: Visualization of a simple PCA dimensionality reduction from 3 to 2 dimen-
sions.

eigenvalues in order to set the eigenvectors corresponding to the highest variance as the
basis of the k-dimensional space. This method is certainly the most commonly used
in practice, but it carries significant drawbacks related to computation time: since the
size of the covariance matrix is proportional to the dimensionality of the datapoints,
obtaining the eigenvectors can become infeasible for very high-dimensional data.

Figure 2: Linear and nonlinear dimensionality reduction techniques. The PCA pro-
jection is not able to adequately capture the features of the original points, as certain
distributions of data require nonlinear reduction methods to obtain good results.
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Kernel PCA is a nonlinear version of the first technique that utilizes the so-called
’kernel trick’: this method computes the principal eigenvectors of the kernel matrix,
instead of the covariance matrix. PCA is then applied in the kernel space, giving Kernel
PCA the ability of constructing nonlinear mappings. This technique isn’t immune to
weaknesses either: the size of the kernel matrix is tied to the square of the number of
instances that constitute the input dataset, so it’s clear that finding the dimensionality
reduction transform can often be a computationally taxing operation, regardless of the
method we might choose.

An in-depth analysis and comparison of the most important dimensionality reduc-
tion techniques can be found at [2].

When compared to traditional techniques, one of the most important features of
the method we will study here, which uses Johnson-Lindenstrauss properties, is that it
allows us to generate the transform T randomly by using specific probability distribu-
tions, without further computational requirements. This is certainly a great advantage,
and it has been proved that the quality of the input’s transformation is comparable
with the other methods, at least when considering features of the original dataset such
as pairwise distance and vector norm, which are kept intact by the method with high
probability.

Indeed, throughout this work we will be taking advantage of the Johnson-Lindenstrauss
technique to perform dimensionality reduction, making the generation of the transform
T a computationally trivial operation.

5



3 The Johnson-Lindenstrauss transform

In the late 1980s, William B. Johnson and Joram Lindenstrauss proved, with the so-
called Johnson-Lindenstrauss lemma, that projecting points onto a random basis ap-
proximately preserves pairwise distances with high probability [3].

Lemma 1 (Johnson–Lindenstrauss): for every d ∈ N1, given a set V of n points
in Rd, 0 < ε < 1, there exists a function f : V → Rk, where k = Θ(ε−2log(|V |)), such
that for every x,y ∈ V ,

| ∥f(x)− f(y)∥22 − ∥x− y∥22 | ⩽ ε∥x− y∥22 (1)

The proof of this lemma is based on defining the function as f(x) := (d/k)1/2Ax,
where A ∈ Rd×k is a random orthogonal matrix. It was indeed shown that such a func-
tion is able to keep the norm of vectors unchanged with high probability by proving
the distributional lemma, an alternative definition of lemma 1, which defines the JL
property for probability distributions:

Lemma 2 (Distributional Johnson–Lindenstrauss): for every d ∈ N1 given a set V
of n points in Rd and ε, δ ∈ (0, 1), there exists a probability distribution F over linear

functions f : Rd → Rk, where k = Θ(ε−2 log(
1

δ
)), such that for every x ∈ Rd,

Prf∽F
[︁
| ∥f(x)∥22 − ∥x∥22 | ⩽ ε∥x∥22

]︁
⩾ 1− δ (2)

and we can say that such a distribution is a (ε, δ)-Johnson-Lindenstrauss (JL)
distribution. In words, distributions with this property allow us to embed any set of
n points so that all pairwise Euclidean distances are preserved up to a factor of 1± ε;
the output dimension only depends on the number of points n in the dataset and the
desired quality of the embedding.

Let’s now analyze how one such JL-embedding could be generated: a coarse way to
do so would be to simply take k of the original coordinates in Rd as the new coordinates,
but since two points can be at a significant distance to one another while differing
along just one dimension, this naive approach, by itself, is obviously fallacious. To
give the reader an intuition of the real process, what we need is to find a way to have
all coordinates contribute somewhat equally to the corresponding pairwise distance.
To this end, the only necessary operation would be to apply a random rotation to
the original d-dimensional set of points: this way, even the naive method would be
viable. This is why the first methods proposed to generate the JL transform all involve
randomized algorithms, based on the projection of the input points onto a spherically
random hyperplane through the origin [4]. These ideas, while being fairly simple in
terms of concept, also require to multiply the matrix formed by the input points with a
dense matrix of real numbers; unfortunately, the computational effort required to solve
this product can often be not trivial.
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In a paper by Dimitris Achlioptas [5], a different method for the generation of JL
embeddings was suggested. The author demonstrated that, instead of computing the
spherical hyperplane projections, the same goal could be achieved with significantly
faster and simpler operations. Furthermore, the random distributions proposed by
Achlioptas, somewhat unintuitively, yield the same results as the other methods (and
exceed them in some areas as well), without sacrificing any aspects of the embeddings’
quality. This is the technique that we will be exploiting in order to generate dimen-
sionality reduction transforms having the desired Johnson-Lindenstrauss properties.

Theorem 1 (Achlioptas JL embedding): Let’s consider an arbitrary input set V of
n points v ∈ Rd, that we can represent as a n× d matrix M (every vector corresponds

to a row of M), as well as two parameters ε, β > 0. We define k0 =
4 + 2β

ϵ2/2− ϵ3/3
log n,

where ε controls the desired distance preservation accuracy, and β the probability
of success. For any integer k ⩾ k0, let T be a d × k random matrix with T (i, j) = tij,
where tij are independent random variables from either of the following probability
distributions:

tij =

{︄
+1 with probability 1/2,

-1 with probability 1/2.
(3)

tij =
√
3×

⎧⎪⎨⎪⎩
+1 with probability 1/6,

0 with probability 2/3,

-1 with probability 1/6.

(4)

Let now E = 1√
k
MT and f : Rd → Rk a function mapping rows of M to the corre-

sponding rows of E. With probability at least 1− n−β, for all x, y ∈ V :

(1− ϵ)∥x− y∥2 ⩽ ∥f(x)− f(y)∥2 ⩽ (1 + ϵ)∥x− y∥2

As we can clearly see, this outstanding result allows us to construct an incredibly
effective JL transform by using incredibly simple probability distributions. The distri-
bution described at (4) even allows to cut down on execution times, since only a third
of the entries in the transform matrix needs to be computed.

For reasons that will be made clearer in a few paragraphs, our proposed dimension-
ality reduction technique requires the input vectors to be lined up as the columns of the
input matrix, instead of as the rows of M like shown in the above theorem. This is not
a problem, as it is sufficient to take into consideration a property of matrix multiplica-
tion: (AB)T = BTAT ; that is, the transpose of a product of matrices is the product,
in the opposite order, of the transposes of the factors. So, from now on, we will always
refer to the JL transform T as a k×d matrix, while the input matrix M will be a d×n
matrix. The outcome will be a matrix having the result vectors in its columns, but
this is a further advantage because the CUDA API used in the implementation of the
algorithm supports columns-major storage.
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Now that we know what a JL distribution is and how to generate one, we can fi-
nally introduce the dimensionality reduction technique proposed by Ahle and Silvestri
in [1]. This paper suggests that it is possible to generate a dimensionality reduction
transform having the (ε, δ)-JL property, with which the matrix-vector product can be
efficiently computed using tensor core units. In particular, when considering the TCU
model, this method allows us to reach a speedup of

√
m in matrix-vector multiplication.

The (m, τ)-TCU model is a simple computational model for tensor core units, de-
signed to abstract the main hardware features of these accelerators [6]. Here, m refers
to the hardware parameter indicating the size of the matrices that TCUs do calculations
with (refer to chapter 4 for clarification), while τ represents the computation time of
a matrix multiplication between two

√
m×

√
m matrices. With this nomenclature, we

can say that regular machines using fast matrix-multiplication algorithms can compute
the output in time τ = O(m3/2), while those equipped with TCUs have linear complex-
ity, so τ = O(m). What needs to be highlighted is that the method we will analyze
has been proven to provide a

√
m speedup in matrix-vector multiplication, instead of

matrix-matrix multiplication.

Theorem 2 (Ahle-Silvestri matrix-vector TCU multiplication): for any d,ε,δ > 0, there
exists a (ε, δ)-JL transform matrix T ∈ Rk×d such that the matrix-vector product Tx
can be computed in time O((dk + k2

√
m log3 d

k
)τm−3/2) in the (m, τ)-TCU model, as-

suming k ⩾ m.

The transform in question is defined as the following matrix:

T = (Irl ⊗ Al) · · · (Ir1 ⊗ A1) ∈ Rrmkl×r1c1 (5)

The writing Irl⊗Al refers to the tensor product of the two matrices. The tensor (or
Kronecker) product C = A⊗B between two matrices A ∈ Rm×n and B ∈ Rn×l, results
in a mn × nl matrix containing the B matrix mn times, multiplied in each position
by an element of A that corresponds to the position of B in the m × n grid of n × l
matrices represented by the output. In the case of a tensor product with an n × n
identity matrix, the result is a matrix having the other input matrix repeated n times
along the diagonal of the output, and all zeroes everywhere else (refer to figure below).

C = A⊗B =

⎡⎢⎢⎢⎢⎣
A1,1B A1,2B . A1,nB
A2,1B A2,2B . A2,nB

. . . .

Am,1B Am,2B . Am,nB

⎤⎥⎥⎥⎥⎦ , In ⊗ A =

⎡⎢⎢⎢⎢⎣
A 0 . . 0
0 A . . 0
. . . . .

0 0 . . A

⎤⎥⎥⎥⎥⎦
And (In ⊗ A) is known as the block identity matrix.

8



At this point, we have to introduce a useful property of JL-distributions, proposed
by Kane and Nelson [7]:

Definition 1 (JL-moment property): A distribution over random matrices M ∈ Rk×d

has the (ε, δ, p)-JL-moment property, when E[∥Mx∥22] = 1 and
(E[|∥Mx∥22 − 1|p])1/p ⩽ εδ1/p for all x ∈ Rd, ∥x∥2 = 1

This property is quite useful when dealing with tensor matrix products, and more
specifically, block identity matrices:

Lemma 3 (JL Tensor lemma): for any matrixQ with the (ε, δ, p)-JL-moment property,
Ik ⊗Q also has the (ε, δ, p)-JL-moment property.

It also needs to be stated that, thanks to Markov’s inequality, a distribution with
the (ε, δ, p)-JL-moment property also has the (ε, δ)-JL property. All this is important
because, going back to our transform (5), Ai ∈ Rki×ci is defined as having the Strong
JL moment property (which implies the JL-moment property [1]). Thanks to these
characteristics, as well as the JL Product lemma found at [1], we can be certain that
the transform T is a JL transform (meaning it has the JL property).

Let’s now only consider a single product between an input vector and one of the sub-
matrices of T : (Ir ⊗A)x = v. Thanks to the features of the block identity matrix, this
operation can be conveniently transformed into a matrix multiplication, the outcome of
which can be easily converted back to the vector that we would have obtained from the
original matrix-vector multiplication. This essentially means that we can compute the
product of a (specifically designed) matrix with a single vector, while also exploiting
the power of tensor cores.

The above mentioned transformation of vector x ∈ Rd into the matrix taking part
in the product, X ∈ Rc×r (where r = d/c is a fixed parameter representing the size
of the identity matrix Ir), can be explained by making an observation on the block
identity (Ir ⊗ A): since with the tensor product we obtain a matrix with copies of A
along its diagonal and all zeroes elsewhere, when calculating a given value of the output
vector, only a specific chunk of the inputs contributes to the result (because all other
values outside the chunk are zero-products), and the contributing chunk shifts along
the input vector x, depending on the output value to be computed. This is because,
as the rows of the block identity matrix are considered, matrix A ”shifts” along the
diagonal. Note that every chunk is also always multiplied with the whole A. From here,
we can split vector x into r chunks of length c, and use them as the columns of a new
matrix X ∈ Rc×(d/c)=r.

Because of this, the matrix-vector product (Ir ⊗ A)x can be simply performed as
the matrix multiplication between A and X.

9



v = (Ir⊗A)x =

⎡⎢⎢⎢⎣
k { A⏞⏟⏟⏞

c

A

A

⎤⎥⎥⎥⎦x ⋍ A
[︁
x1 · · · xr

]︁}︁
c =

[︁
v1 · · · vr

]︁}︁
k = V

The result of the product is a matrix V ∈ Rk×r that can be easily transformed
back to the vector that could be obtained from the original (Ir ⊗A)x product. It’s the
opposite operation to what we did before to obtain X: concatenating all columns of V
yields the result vector v.

A simple practical example of this operation and the transformations involved is
provided in figure 3. The blue and green arrows represent the transformations applied
to vector x during the construction of X, and the ones performed on matrix V to obtain
v, respectively.

Figure 3: Simple numerical example of the JL transform operation described above.

To obtain the complete dimensionality reduction Tx, it is sufficient to compute the
above product for each i (recall the definition of T ), and concatenate the resulting
vectors to obtain the final result.

The proposed transform is proven to compute the matrix-vector product Tx in time
O((dk + k2

√
m log3 d

k
)τm−3/2), in the (m, τ)-TCU model. As previously stated, when

using tensor cores, we have τ = O(m), so with this value the computation time can be
rewritten as O(dk/

√
m+ k2 log3 d

k
). This result can be simplified to O(dk/

√
m) in the

case of the number of dimensions of the input set d being dominant over k2, giving our
method a speedup of

√
m compared to traditional methods: as stated by [3], embedding

a vector by performing a dense matrix-vector multiplication with a standard application
of JL transforms takes time O(dk).
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4 Nvidia GPU microarchitecture

This study leverages the computing power of a Graphic Processing Unit, which provides
much higher instruction throughput and memory bandwidth compared to a CPU. These
two kinds of hardware components have different capabilities because they are designed
with different goals in mind: CPUs excel at executing a single sequence of operations,
called a thread, as fast as possible (and can execute a few tens of these in parallel),
while GPUs are specialized in highly parallel computations (thousands of concurrent
threads), and more transistors are dedicated to data processing rather than caching
and flow control.

Thanks to the information provided by [8], [9] and [10], we will now take a look at
the architecture and explain the internal structure of Nvidia GPUs, with a particular
focus on the Tesla V100 GPU, which is the processor we used during our testing.

4.1 CUDA programming model

To better understand Nvidia GPU microarchitecture, first we need to briefly introduce
CUDA. Released in November 2006, CUDA is a general purpose parallel computing
platform and programming model used with Nvidia GPUs to solve many complex com-
putational problems in a more efficient way. In the CUDA programming model, both
the CPU (the Host) and GPU (the Device) can be freely used, and special care needs
to be taken when thinking about memory allocation and access, because both the host
and the device have their own memory spaces: making the most of GPU performance
requires the data to be as close to the GPU as possible.

Figure 4: CUDA thread hierarchy

CUDA lets the programmer execute thousands of threads in parallel, all concurrently
running the same function (known as the CUDA kernel). Threads can be organized
in blocks: grouping of threads (up to 1024 in current GPUs) executing at the same
time, working together on the same memory. Thread blocks are required to execute
independently from one another, and can be further grouped to form grids (as seen in
figure 5). This structure enables the programmer to easily write code that scales with
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the number of cores, by setting the appropriate parameters when calling the kernel to
decide the number of threads, blocks and grids.

Figure 5: CUDA memory hierarchy

4.2 Streaming Multiprocessors

The Nvidia GPU architecture is built around the Streaming Multiprocessor (SM).
SMs have their own control units, execution pipelines, caches and registers, and this is
where all computations are actually performed.

In practice, when a CUDA program on the host CPU invokes a kernel grid, all the
different blocks are distributed to available multiprocessors. One or multiple thread
blocks can execute concurrently on a single SM, and as blocks terminate, new ones
can be launched on the vacated multiprocessor. As such, SMs are designed to execute
hundreds of threads at the same time, and do so by employing the SIMT (Single-
Instruction, Multiple-Thread) architecture, thanks to which SMs can even take ad-
vantage of instruction-level parallelism.

The multiprocessor manages threads concurrently in groups of 32, called warps.
Each thread of a given warp starts at the same initial state, but has its own instruction
counter and register state. A warp executes one common instruction at a time, so if
all 32 threads of the warp have the same execution path, the maximum efficiency is
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achieved. However, threads are free to diverge from the others in case of data-dependent
conditions, and in that case the warp starts to execute each branch taken, disabling
threads outside that path.

Figure 6: Volta GV100 Streaming Multiprocessor internal composition

The execution context for each warp processed by a SM is maintained on-chip for the
whole duration of the execution, and, as such, switching from one context to another
has no cost. For this task, the Warp Scheduler selects a warp with active threads
(threads that are ready to be executed) and issues them with the correct instructions.

From the Hardware point of view, as we can see in figure 6, the physical imple-
mentation of a SM is partitioned into different processing blocks (they are 4 in the
aforementioned image), each containing a number of FP32, FP64 and INT32 cores, an
L0 instruction cache, a warp scheduler, a dispatch unit, and a Register file. The Volta
architecture also includes new mixed-precision Tensor Cores, which we will later explain
in detail.
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4.3 Volta architecture specifics

The machine where we will perform our tests is equipped with a Tesla V100 GPU
(also known as GV100), which belongs to the generation of Nvidia processors imple-
menting the V olta architecture. This architecture brought a massive upgrade in both
performance and energy efficiency, and represented the state-of-the-art for deep learning
inference and HPC systems and applications, at the time of its 2017 release.

As we can see in figure 7, pairs of Streaming Multiprocessors are grouped into Tex-
ture Processing Clusters (TPC), and groups of TPCs form a GPU Processing Cluster
(GPC).

Tesla contains multiple GPCs, as well as further caches and memory controllers.
The full Volta GV100 GPU microarchitecture consists of:

� 6 GPCs, each having:

– 7 TPCs (each including 2 SMs)

– 14 SMs

� 8 512-bit memory controllers

� Each of the 84 Volta SMs is made up of:

– 64 FP32 cores

– 32 FP64 cores

– 64 INT32 cores

– 8 Tensor Cores

With 84 SMs, a full GV100 GPU has a total of 5376 FP32 cores, 5376 INT32 cores,
2688 FP64 cores, 672 Tensor Cores, and 336 texture units. It also includes a total of
6144 KB of L2 cache. figure 7 shows a full GV100 GPU with 84 SMs. In practice, the
Tesla V100 accelerator only uses 80.

Volta’s SMs are 50% more energy efficient compared to previous Nvidia architecture
generations, enabling much greater performance in the same power range compared to
previous architectures. Volta also introduced a new independent thread scheduling
capability, which enables finer-grain synchronization and cooperation between parallel
threads: it allows full concurrency between threads, regardless of warp. With indepen-
dent thread scheduling, the GPU maintains execution state per thread, making better
use of resources and even allowing threads to wait for data produced by others. A
schedule optimizer determines how to group active threads from the same warp.

Thanks to its impressive raw computing power and efficiency, Tesla V100 is able to
provide up to 7.8 TFLOPS of double precision floating point (FP64) performance, 15.7
TFLOPS of single precision (FP32) performance, and 125 Tensor TFLOPS.
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Figure 7: Complete Volta GV100 GPU architecture

4.4 Volta Tensor Cores

As mentioned in the previous sections, Tesla V100 is equipped with Tensor Cores
(TCUs), which were first introduced with the Volta microarchitecture.

Tensor cores were developed because of the need to manage and deal with the ever-
increasing complexity and size of deep neural networks in machine learning applications:
new networks with thousands of layers and millions of neurons demand higher perfor-
mance and faster training times than ever. Tensor cores, designed specifically for deep
learning, are the key element that enables the Volta GV100 architecture to deliver the
necessary performance to train large neural networks.

The operation at the core of the training and inferencing process is Matrix-Matrix
multiplication (General Matrix Multiply, or GEMM), which is performed to multitply
large matrices of input data with weights in the (many) connected layers of the network.
TCUs are programmable matrix-multiply-and-accumulate units specifically designed to
solve this operation in the fastest and most efficient way possible.

Each core provides a 4×4×4 matrix processing array (which can be seen in figure
8), and operates on 4x4 matrices, performing the following operation:

D = A × B + C

where A,B,C,D are in fact 4×4 matrices. Nvidia refers to TCUs as performing mixed
precision math, because the input matrices A and B are in half precision (meaning
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Figure 8: Tensor Core 4×4×4 matrix multiply and accumulate

the elements they are made of are 16-bit floating point numbers, or FP16) but the
accumulation matrices C and D can be in full precision (32-bit floats, or FP32). As
described in figure 9, the FP16 multiplication results in a full precision product that
is then accumulated using FP32 addition with the other intermediate products for a
4×4×4 matrix multiply, requiring a total of 64 operations to generate the 4×4 output
matrix.

Figure 9: Flow of multiply-accumulate operations inside tensor cores

Of course, in practice, GEMM operations are performed on arbitrairly big matrices
that are first decomposed into smaller elements, in order for tensor cores to be exploited.

In our case, we are not interested in training neural networks, but we can still take
advantage of TCUs and perform fast matrix multiplication thanks to cuBLAS, CUDA’s
Basic Linear Algebra Subroutines library.

As a matter of fact, a result from [6] states that the (m, τ)-TCU model defines
the asymptotic computation time for computing the product between two rectangular
matrices:

Theorem 3 (Rectangular matrices product): Let A and B be p × r and r × q ma-
trices respectively, with p, r, q ⩾

√
m. Then, there exists an algorithm that computes

the product A ·B in time O(prqm−3/2τ) on the (m, τ)-TCU model.
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4.5 Example of a Gemm algorithm implementation with Ten-
sor Cores

Even though we don’t have access to the exact details of cuBLAS’ Gemm algorithms
we will be using in the code, thanks to the CUDA documentation [11], as well as one
of the examples made available by Nvidia [12], we can still get a good idea of how they
work.

First of all, a Gemm (General Matrix Multiplication) operation is defined as the
following matrix multiplication and accumulation: D = αAB + βC , with A, B and
C input matrices, and α, β scalar inputs. In the simple matrix product that we are
interested in, the gemm operation would be performed with α = 1 and β = 0.

Sticking to the nomenclature used in the documentation, A has size M × K, B is
a K ×N matrix, and, of course, C and D have size M ×N . In practice, C and D are
phisically the same matrix, with C being overwritten with the results of the products
and additions.

The basic idea of the implementation of a Gemm operation on a GPU is that the
output matrix needs to be split into multiple tiles of size Mtiles × Ntiles, which are
then assigned to different thread blocks (refer to section 4.1 for their definition).

Taking figure 10 as reference, each thread block computes its output by advancing
through the K dimension of its matrix in tiles, multiplying the loaded values from A
and B and accumulating the result into the output matrix.

Figure 10: Tiled outer product approach to GEMMs
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Figure 11 represents a very simple numerical example of the idea described above.
In this case, each block is given a 2×2 tile of the output matrix. As shown by the
blue squares, each portion of the output is computed in K/Ktile = 2 steps; the first
one partially computes the result of the tile by performing the product between the
two smaller matices taken from the inputs, and in the second one, new input tiles are
selected, advancing in the K dimention, and their product is added to the output (in the
example, since matrix B is the 4×4 identity and has tiles wholly composed of zeroes,
some of these products don’t add anything to the result).

For simplicity’s sake, what’s shown in the example is a sequential representation
of the operation, where each output tile is processed one after the other. In practice,
every tile is managed in parallel by a different thread block, and the figure can also be
interpreted in that way: we can view each row of matrix triplets as the steps performed
by one block concurrently with respect to the others.

Algorithm 1 Algorithm of a single Gemm operation with Tensor Cores

1: WMMA K ← 16 ▷ each warp advances through the k dimension of A and B in
steps of 16

2:

3: procedure simple wmma gemm(A,B,C,D,m, n, k, α, β)
4: a frag, b frag, c frag, acc frag ▷ declare fragments
5:

6: select output matrix tile to compute, based on the block and thread IDs
7:

8: for i← 0 to k; i+=WMMA K do ▷ advance through k dimension
9: fill a frag and b frag with the correct data from each input matrix (syn-

chronous step)
10: ▷ perform product with TCUs and accumulate results in acc frag
11: wmma :: mma sync(a frag, b frag, acc frag)
12: end for
13:

14: load the current value of c frag (synchronous step)
15: ▷ scale it by beta, and add to it acc frag scaled by alpha
16: for i← 0 to c frag.num elements do
17: c frag[i]← α ∗ acc frag[i] + β ∗ c frag[i]
18: end for
19: store the output of the computed tile (synchronous step)
20: end procedure

Let’s now take a look at the algorithm found at [12], of which the pseudocode is
found above: I will explain the simple wmma gemm() CUDA kernel found inside file

cudaTensorCoreGemm.cu of the GitHub page. This algorithm uses the wmma API to
perform MMAs (Matrix-Multiplication and Accumulation), which uses instances of the
fragment class to handle every tile of the matrix. A fragment represents a section of
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a matrix distributed across threads in the warp, and so, different pieces of the tile are
handled by different threads of the same warp (opaquely to the programmer).

Each warp handles a 16×16 tile of the output. First of all, the fragments are
initialized and, as always, the operations require the matrices to be uploaded to the
GPU, (in this specific case, to the single threads) through the wmma API. Note that,
since a tile isn’t contiguous in the memory where the matrix is originally stored, the
inputs of the wmma function need to be set to also account for the stride between
consecutive columns. To avoid conflicts, all the steps that require access to the memory
(be it read or write operations) happen synchronously among the various threads and
warps.

After the initialization, the algorithm starts a loop that, within each cycle, selects
and uploads the correct pieces of matrices A and B to the thread, performs their
multiplication through wmma::mma sync() , and moves along the K dimension of the
matrices by 16 rows or columns. The wmma function always adds the multiplication
result to the same accumulation fragment, so that at the end of the loop, it will contain
the intermediate result.

Next, the algorithm simply starts a new loop to account for the values of α,β, and
the previous value held by the C matrix in that tile. After the tile from C is transfered
to a fragment, one by one, every element is multiplied by β, and the corresponding
element of the accumulation tile, multiplied by α, is added to it. At the end of this
process, the values are transfered back to retrieve the tile of the result matrix D.

As we have seen, there are a lot of performance gains to be found in details such as
warp management, and the reference code also contains an even more optimized version
of the algorithm that employs a fine-tuned management of global and shared memory
of blocks (memory hierarchy in CUDA is shown in figure 5).

Details such as those are probably the reason why the specifics of the algorithms
used in the cuBLAS library are not provided by Nvidia.
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Figure 11: Simple numerical example of a Gemm operation using the tiled approach
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5 Algorithm description

As we know, the algorithms in question will be run on an Nvidia Tesla V100 GPU and,
as such, will make use of Nvidia’s CUDA API with which we can write code that runs
on a GPU, using the processor for general purpose computing. In particular, we will
be exploiting the cuBLAS (CUDA Basic Linear Algebra Subroutine) library, which
allows us to activate tensor cores when performing matrix multiplication. As stated
by the documentation [9], in order to use this API, the application needs to allocate
the resources and fill them with data in the GPU memory space, and after performing
the desired operations, the results can then be uploaded to the CPU space. It is also
required to manually initialize the library by creating a cuBLAS handle, which holds
the library context, via the cublasCreate() method, which allocates the necessary
hardware resources on both host and device. Once we have the handle, the math mode
can be set to CUBLAS TENSOR OP MATH , which allows the library to perform tensor core
operations whenever possible.

CUDA also offers a feature called Unified Memory, thanks to which memory ma-
magement is streamlined into one common virtual memory, which can be accessed by
either of the two kinds of processing units. This, however, only makes the programmer’s
job easier, but the data transfers in the correct memory spaces still need to happen, and
relying on the page-faulting mechanism to move data is inefficient and slow, compared
to a bulk copy. For thihs reason, we will not be using unified memory in our algorithms.

In this section, we will describe four different algorithms developed to perform the
dimensionality reduction of either a single or multiple vectors, with and without TCUs.
The first algorithm is the simplest and just performs a standard matrix-vector multipli-
cation with cuBLAS and parallelization, without any specific optimization and, more
importantly, without the aid of TCUs. It will be used as the baseline of performance
in the ”worst-case scenario”, just in order to appreciate how much faster the other
algorithms are. The second algorithm is the first one employing TCUs, and it does so
by computing the product between the dimenionality reduction transform and a batch
of vectors forming the second matrix (remember, tensor cores require matrix-matrix
multiplication to be activated). The third algorithm is the most important one, being
the implementation of the method proposed by Ahle and Silvestri and described in sec-
tion 3. The final algorithm we will study is a variant (or more precisely, an extension)
of the last one. Like the second algorithm, it computes the dimensionality reduction
of a batch of vectors with tensor cores, while also exploiting the JL transform and its
performance advantage over regular methods.

5.1 Standard matrix-vector multiplication

This is the first and simplest algorithm that we will consider. It doesn’t make use
of Tensor Cores and, by itself, it’s not very interesting. It’s simply used for us to
have the baseline of performance that we can achieve for the problem of dimensionality
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reduction.
This algorithm simply performs a basic multiplication between an m× n matrix A

and a single vector v of length n, computing the m-long result vector r by implementing
the standard matrix-vector product definition:

r =

⎡⎢⎢⎢⎢⎣
a11 a12 . . a1n
a21 a22 . . a2n
. . . . .

am1 am2 . . amn

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
v1
v2
.
.

vn

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a11v1 + a12v2 + ...+ a1nvn
a21v1 + a22v2 + ...+ a2nvn

.

.

am1v1 + am2v2 + ...+ amnvn

⎤⎥⎥⎥⎥⎥⎥⎦
The program first allocates memory for both the matrix and the vector, and, after

loading the necessary data by filling them with random numbers, performs the multi-
plication parallelly through cuBLAS.

Algorithm 2 Standard matrix-vector multiplication

1: n← vector length
2: m← matrix rows
3:

4: v ← malloc(n)
5: A← malloc(m ∗ n)
6: r ← malloc(m)
7: generateUnitV ector(v) ▷ fill v and A with random numbers
8: generateJLTransform(A)
9: ADevice← cudaMalloc(m ∗ n)
10: vDevice← cudaMalloc(n)
11: rDevice← cudaMalloc(m)
12: ... ▷ initiate cuBLAS library handle and set math mode
13: ADevice← cublasSetMatrix(A) ▷ transfer data to device
14: vDevice← cublasSetV ector(v)
15: cublasSgemV (ADevice, vDevice, rDevice) ▷ perform matrix-vector product
16: r ← cublasGetV ector(rDevice) ▷ retrieve result

This method uses a parallel algorithm to perform the multiplication, but, as we will
see during the performance analysis, it is completely outclassed by the next ones we will
study. Without exploiting tensor cores, it would be very difficult to find faster or more
efficient methods to implement a basic matrix-vector product, since this program uses
state-of-the-art algorithms developed by Nvidia that perform matrix-vector product
with parallelization. This is why we chose to keep this algorithm as the baseline of
performance.
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5.2 Multiplication between a matrix and a batch of vectors

This algorithm performs the multiplication between a given matrix M and a batch of
multiple vectors, making use of TCUs to achieve a faster execution time.

If we take a look at the definition of matrix multiplication between two matrices
A ∈ Rm×n and B ∈ Rn×l, we can easily observe how the i-th column of the result
matrix corresponds to the result of the matrix-vector multiplication between A and the
i-th column of B (which is itself, of course, a vector).

A×B =

⎡⎢⎢⎢⎢⎣
a11 a12 . . a1n
a21 a22 . . a2n
. . . . .

am1 am2 . . amn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
b11 b12 . . b1l
b21 b22 . . b2l
. . . . .

bn1 an2 . . bnl

⎤⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎢⎣
a11b11 + a12b21 + ...+ a1nbn1 . . . a11b1l + a12b2l + ...+ a1nbnl
a21b11 + a22b21 + ...+ a2nbn1 . . . a21b1l + a22b2l + ...+ a2nbnl

. . . . .

. . . . .

am1b11 + am2b21 + ...+ amnbn1 . . . am1b1l + am2b2l + ...+ amnbnl

⎤⎥⎥⎥⎥⎥⎥⎦
Given the fact that, by using TCUs, we have an incredibly fast way of performing

matrix multiplication, we can exploit the previous observation and group all vectors of
the batch inside of a matrix. This allows us to obtain the dimensionality reduction of
multiple vectors at the same time. The columns of the result matrix indeed represent
the reduction of each vector of the batch.

In the same manner as the previous algorithm, the program first prepares all the data
in host memory with the two input matrices: the dimensionality reduction transform T ,
as well as B, which represents the whole batch of vectors. Now, the data can be trans-
fered to the GPU space. To this end, cuBLAS offers the function cublasSetMatrix() ,
which copies a tile of a specified number of elements from a matrix M1 in host memory
space to a matrix M2 in device space. The memory used for the matrices in the device’s
space, as previously stated, first needs to be allocated, and this is done by simply calling
cudaMalloc() for each of them.

Once everything is ready, the algorithm can compute the matrix product through
the cublasGemmEx() function (where Gemm means General Matrix Multiplication),
and the resulting matrix is subsequently extracted and saved back on the host.

The documentation states that there are multiple gemm algorithms that can be
selected when calling the function, though their specifics and/or differences are not
explained anywhere. The general funcitoning, however whould be very similar to what
was explained in section 4.5, though it’s not perfectly clear how the matrices are de-
composed in order to be reduced to a size that’s appropriate for the TCUs.
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Algorithm 3 Matrix-Matrix multiplication with Tensor Cores

1: m← matrixrows
2: n← lengthofvectorsinthebatch
3: l← numberofvectorsinthebatch
4: A← malloc(m ∗ n) ▷ allocate matrices in host memory
5: B ← malloc(n ∗ l)
6: R← malloc(m ∗ l)
7: generateJLtransform(A) ▷ fill inputs
8: unnitV ectors(B)
9: Adevice← cudaMalloc(m ∗ n) ▷ allocate matrices in device (GPU) memory
10: Bdevice← cudaMalloc(n ∗ l)
11: Rdevice← cudaMalloc(m ∗ l)
12:

13: ... ▷ initiate cuBLAS library handle and set math mode
14:

15: Adevice← cublasSetMatrix(A) ▷ transfer data to device memory
16: Bdevice← cublasSetMatrix(B)
17:

18: Rdevice← cublasGemmEx(Adevice, Bdevice) ▷ perform product with TCUs
19:

20: R← cublasGetMatrix(Rdevice) ▷ transfer multiplication result back to the host

Because of this, in practice, when calling cublasGemmEx() inside the program,
the parameter specifying the algorithm was set as CUBLAS GEMM DEFAULT TENSOR OP ,
which applies heuristics to select the gemm algorithm (while allowing the use of Tensor
Cores) autonomously.

5.3 Johnson-Lindenstrauss transform

In the following section, we will see an implementation of the Johnson-Lindenstrauss
dimensionality reduction, as it is presented in section 3. As a refresher, the reference
paper [1] describes a way to construct a matrixM ∈ Rk×d having the (ϵ, δ)-JL property,
and for which there is an efficient algorithm to compute the product Mx on a TCU.
At a high level, the JL property of the matrix means that the result of the product
preserves many features of the original vector x, such as, for example, its norm.

In terms of the practical implementation of the algorithm, since we ultimately just
aim at performing matrix multiplication with TCUs, the program is structurally and
functionally quite similar to the previous one described in section 5.2.

We start with the assumption that A is already given as input, so the program
doesn’t have to spend time extracting the matrix from the block identity (Ir ⊗ A).

A very important detail is that, thanks to the functioning of the cuBLAS methods
used to transfer the data between host and device ( cublasSetMatrix and
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cublasGetMatrix ), both the transformations x→ X and V → v (see figure 3) happen
without any computation: it’s just a matter of re-arranging the data during its upload
and download between memory spaces by properly setting the input parameters of the
cuBLAS functions.

The first transformation happens when calling cublasSetMatrix() [9]: this func-
tion copies a tile of rows × cols elements from a matrix A in host memory space to
a matrix B in GPU space. The leading dimensions (the number of rows) for source
matrix A and destination matrix B are given as input with parameters lda and ldb ,
respectively. So, when transferring vector x to the GPU, we can set its host pointer
as the source matrix, and by specifying rows=c and cols=d/c , with lda=c and
ldb=c , we are creating the X matrix in the device with the correct number of rows
and columns. This whole process is made very convenient by the fact that matrices
in cuBLAS are stored in column-major format. As seen in figure 12, this means that
every contiguous chunk of memory taken from x will be interpreted as a column of the
matrix, and not as a row (which is the most common practice).

Figure 12: Row-major and Column-major allocation examples. Since, as seen in Figure
3, the chunks of vector x form the columns of matrix X, the column-major format is
very convenient for our needs.

For a similar reason, when extracting the result V matrix from the device’s memory
with cublasGetMatrix , we can directly save it, ”as is”, into a single block of host
memory; there is no need to transform the saved matrix because columns of V will
already be concatenated to one another in the host memory’s registers, forming the
result vector v.

5.4 Batch JL Algorithm

The previous algorithm can be easily expanded to perform multiplication between the
block identity matrix (Ir ⊗ A) and a batch of b vectors x ∈ Rd, using TCUs.

Indeed, in this case, the block identity matrix is multiplied with a new matrix
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B ∈ Rd×b, which represents the batch of vectors. As in the batch construction of section
5.2, every vector forms a column of B.

Figure 13: Visualization of the batch JL multiplication described in this section.

If we consider any individual vector xi from the batch, the observation made in
section 3 is still true: it can be split and transformed into a matrix Xi like previously
described. Xi can once again be multiplied with A to obtain the matrix Vi, the columns
of which, once concatenated, form the vector vi, which equals to the result of the original
product (Ir ⊗ A)xi.

Since every matrix Xi needs to be multiplied with A, the size of the chunks in which
vectors are split during the transformation is always c. Thus, as shown in figure 13, we
can simply concatenate the obtained Xi ∈ Rc×(d/c) matrices into a ”longer” matrix with
c rows and b(d/c) columns, which we will call X. The transformation from xi to Xi

happens during the upload to device memory, as described for the previous algorithm
in 5.3.

After this step, the product AX can be computed using Tensor Cores, giving the
k × b(m/k) V matrix as output. This matrix is formed by the concatenation of the
single Vi ∈ Rk×(m/k) matrices representing the result of the product AXi for every vector
of the batch (each is obtained like matrix V from figure 3).

Again, thanks to the column-major storage format of cuBLAS, we can transfer the
whole result matrix back to the host, saving them into the m × b result matrix R.
The individual vi result vectors are contiguous in memory, and can be easily read or
extracted from R by offsetting the pointer to the matrix by the appropriate i·m amount
(where m is the length of the result vectors and columns of R).

As we explained in the previous algorithm, both of the transformations represented
by the blue and green arrows in figure 13 happen naturally during the data transfer,
without further computational effort.
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6 Experimantal results

In this section, we will analyze the practical behaviour and effectiveness of the above
described dimensionality reduction algorithms on the Nvidia Tesla V100 GPU. In par-
ticular, we will test each one on a defined set of input parameters and measure their
performance, both in terms of execution time and quality of the results. Section 6.1 will
provide the results of our computation time measurements, which will be performed on
all four algorithms introduced in chapter 5, while section 6.3 will examine the quality
of the output produced by the JL transform algorithm (from section 5.3) with different
input parameters, as well as comparing its results with a standard execution of the
Achlioptas method described in [5]. In this chapter, we will display numerous plots in
order to describe and visualize the results; their representation will often include the
variance of the data, displayed with coloured squares in the figures.

6.1 Time performance

The goal of this section is to compute and analyze the amount of time needed to perform
a single dimensionality reduction on a vector of length N by multipliyng it with an
M × N matrix. For a more convenient interpretation of the data, the only parameter
that will change is N, while the dimensionality of the reduced vectors M = 1024 will
stay the same during all tests. Each algorithm has been tested on the following values
of N :

� 210 = 1024

� 212 = 4096

� 214 = 16384

� 216 = 65536

� 218 = 262144

� 220 = 1048576

Time measurements were performed with cudaEvents . Running the code with
many cudaEvents calls obviously slows down the programs to some degree, but since
they are all tested with the same method and the same number of library calls, it’s
fair to say that we can still consider the measurements and the comparisons between
algorithms as valid. This is also the performance measurement method suggested by
Nvidia [13].

Since in a real-case scenario the input vectors and matrices would still need to be
uploaded to the GPU memory space before performing the products, I opted to include
the data transfers of the inputs from host to device, and of the results from device to
host, in the time measurements. I also calculated the percentage of total execution time
spent during the data transfers. On the note of input datasets, since for now we don’t
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care about qualitative results, it’s sufficient to generate a dense random matrix for the
dimensionality reduction transform, and random vectors for the inputs.

The programs repeat the multiplication a certain number of times n and store the
execution time of each iteration. From these informations, we can later calculate the

average value of the execution time t̄, as well as its sample variance σ2 =
Σ(ti − t̄)2

n− 1
.

Obviously, practical measurements are always going to be affected by some amount
of variance: while testing the code, we noticed that, more often than not, comput-
ing one multiplication with a given algorithm consistently resulted in a certain time
measurement t, but, when repeating it n times, the average time did not even closely
amount to nt, especially when talking about the algorithm where tensor cores are ac-
tivated. This suggests that there is some kind of execution overhead during the first
executions that we must account for. For this reason, in order to more precisely repre-
sent the real value, the multiplication was always performed 100 times for each value of
N , with the execution time of each iteration being stored. From those results, we could
later calculate the average value of the execution time t̄, as well as its sample variance

σ2 =
Σ(ti − t̄)2

n− 1
.

This repetition in the measurement is implemented in all algorithms.
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6.1.1 Baseline algorithm

Let’s start with the baseline algorithm: times are almost identical between iterations,
and, as seen in figure 14, the results follow a perfectly linear pattern with respect to the
size of N . Looking at this algorithm alone, a ∼400ms execution time for the reduction
of a vector made of a million elements might seem impressive, but, as we will soon
discover, TCUs really make an exceptional difference in computation times.
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Figure 14: Standard matrix-vector multiplication algorithm performance

Looking at the data transfer times, we can clearly observe that the percentage of
time spent on read/write operations is very high, with the conclusion that the perfor-
mance of the algorithm is heavily reliant on the memory i/o capacity, and not limited
by the computational capabilities of the device.

vector size time (ms) variance data transfer(%)

1,048,576 451.149 3.34 94.9
262,144 111.072 0.0595 95.2
65,536 28.05 0.0057 96.4
16,384 7.35 0.004 97.1
4,096 1.625 0.003 96.5
1,024 0.488 0.0002 96.6
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6.1.2 Batch algorithm

Moving on to the standard batch algorithm: as previously described, the program does
not actually perform a single matrix-vector multiplication, but, given the i-th vector of
the batch, the i-th column of the result is still its dimensionality reduction. Keeping
this in mind, we can still measure the time of a single dimensionality reduction by
simply dividing the time of a batch multiplication by b, the number of vectors in the
batch. In this case, b = 256 was kept constant throughout all values of N that were
tested.
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Figure 15: Plot of batch algorithm: the values shown represent the dimensionality
reduction time for a single vector of the batch.
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Figure 16: Logarithmic plot of batch algorithm. Times refer to the execution time and
variance of the multiplication of an entire batch.
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The measured values follow a mostly linear pattern once again, and the data transfer
time percentage is quite high this time as well: it’s at a value of around 90 − 95% of
the total computation time, making this algorithm memory limited.

As previously anticipated, compared to the baseline algorithm, we can already see
a massive improvement in execution time (by multiple orders of magnitude!), obviously
thanks to the usage of TCUs.

vector size batch (ms) batch variance single vector (ms) data transfer %

1,048,576 557.02 0.25 2.176 94.6
262,144 153.05 0.421 0.597 94.7
65,536 36.78 0.156 0.144 95.1
16,384 9.799 0.037 0.038 93.8
4,096 2.556 0.007 0.0099 89.9
1,024 0.891 0.002 0.0035 92.3

6.1.3 Single Johnson-Lindenstrauss algorithm

Next, we have the algorithm using the JL transform described in section 3: remember
that, in this algorithm, we want to compute the matrix-vector multiplication (Iri⊗Ai)x
by transforming x into a matrix X and performing the matrix-matrix multiplication
AX. As such, the size of matrices A and X taking part in the actual calculations with
tensor cores are a lot smaller than the M and N inputs (figure 3 gives a rough idea of
this: A ∈ Rk×c is a lot smaller than (Ir ⊗ A) ∈ RM×N) . When preparing these tests
this was something to keep in mind.

To be clearer, the program was set so that (Ir⊗A) would be the input matrix of size
M × N ; these are, in practice, the same parameters described at the beginning of the
chapter, set so as to allow comparisons with the other algorithms. A is a k× c matrix,
but these two values have to be chosen according to a given r (which represents the
number of blocks in which the input vector is split), so that M = k ∗ r and N = c ∗ r.
For the purpose of this performance evaluation, I decided to try different values of
r = 32, r = 64, r = 128.

This also means that the other matrix, X, is of size c × r, and, as such, depends
on the value of r. As expected, the performance of the algorithm significantly changes
depending on the chosen value of the parameter r.

This algorithm is extremely fast, and the percentage of time spent during data
transfers is also less than previous algorithms, though it still takes up the majority
of execution time, especially at the largest values of N . This happens because the
transform matrix (Ir⊗A) of sizeM×N is not transferred wholly, but only its submatrix
A (of size k × c) is used in the multiplication, so not only does this dimensionality
reduction method provide a theoretical speedup, it also has the side effect of making
the whole operation even more optimized by requiring less data to be transferred from
host to device memory.
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Figure 17: Plot of the single-JL algorithm’s performance with r = 32.
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Figure 18: JL algorithm times calculated with different values of r (log scale).

We can also notice from the plot in figure 17 that the execution times are no longer
perfectly linear, and it becomes increasingly advantageous to use this algorithm over
the previous ones as the number dimensions of the input vectors increase.

Figure 18 clearly shows that tweaking the value of r significantly changes execution
times. In this case, a higher number of blocks, leads to faster execution times. This
behaviour could be explained by looking at the characteristics of the Gemm algorithm
and at the structure of matrix X we obtain from the initial vector: x is split into r
blocks, each making up a column of X. Thus, if the number of blocks increases, the
number of columns of the matrix will decrease, and the Gemm algorithm executed
during the multiplication is more efficiently parallelized, with each result tile having
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vector size r3̄2 execution time (ms) variance data transfer(%)

1,048,576 1.013 0.0008 88.5
262,144 0.428 0.00004 86.5
65,536 0.13 0.00002 72.9
16,384 0.055 0.00004 71.4
4,096 0.0347 0.00002 69.2
1,024 0.031 0.00002 71.4

vector size r6̄4 execution time (ms) variance data transfer(%)

1,048,576 0.72 0.00028 88.1
262,144 0.275 0.00004 84.2
65,536 0.096 0.00001 72.3
16,384 0.047 0.00003 71.9
4,096 0.031 0.00002 70.5
1,024 0.029 0.00002 72.5

vector size r1̄28 execution time (ms) variance data transfer(%)

1,048,576 0.568 0.00027 88.6
262,144 0.227 0.00003 86
65,536 0.081 0.00001 72.2
16,384 0.043 0.00002 75.1
4,096 0.031 0.00002 73.3
1,024 0.03 0.00001 73.9

shorter sections of the input matrices to do calculations on.
When analyzing the program execution and library calls with the Nvidia profiler,

one can notice how, given the same size of the inputs M and N , both the multiplication
and data transfer times decrease as r increases. So it’s probably a safe assumption to
say that cuBLAS is able to more efficiently execute tasks when dealing with matrices
that are closer to a square matrix, in terms of proportions between the number of rows
and columns.
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6.1.4 Batch JL algorithm

Finally, we will examine the computational performance of the batch-JL algorithm,
described in section 5.4: what was stated above about the relationship between M , N ,
c and k is also applied here, and the value of r is also set to the three different values
tested on the previous algorithm. Another thing worth mentioning is that, as with the
previous standard batch algorithm (6.1.2), the batch size is set to a fixed b = 256.
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Figure 19: Plot of batch JL algorithm: the values shown represent the dimensionality
reduction time for a single vector of the batch (r = 32).
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Figure 20: Logarithmic plot of batch JL algorithm. Times are relative to the execution
time of the entire batch (not divided by 256). We can clearly observe how, in this case,
changing the value of r does not produce significant differences in execution times.
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This is the algorithm that yields the best results, although the percentage of time
spent during data transfers still dominates execution time, independently of N. This
tells us that having more data (we are dealing with b = 256 vectors instead of just one)
does not increase the time spent to compute the products as much as it increases the
time spent during data upload/download. Obviously, since many vectors need to be
transferred between host and device, the advantage of only having to copy matrix A
that we had in the single JL algorithm is greatly reduced, if not completely lost.

Looking at the Nvidia profiler, we can notice how, compared to the previous JL
algorithm that only deals with a single vector, the average time for both Gemm oper-
ations and data transfers is not proportionate to the 256 multiplicative factor given by
the number of inputs in the batch. This suggests that time is gained because it’s a lot
more efficient to start a single cuBLAS operation for a large amount of data than to
instance multiple smaller operations to achieve the same result. It’s also worth noting
that the Gemm multiplication library call differs between the two algorithms: the single
JL algorithm uses volta sgemm 32x32 sliced1x4 nn , while the batch one calls

turing s884gemm 128x128 ldg8 f2f nn (though I could not find anything more spe-

cific about these two library functions).
Again, looking at the plots of figures 19-20, execution times are almost perfectly

linear. This can be attributed to the linearly increasing data size and the fact that the
algorithm, like the previous ones, is memory limited, always spending more than 95%
of execution time on i/o operations between device and host memory.

It’s also quite interesting to note how, in this case, increasing r provides almost no
improvement in the performance at all. My guess is this happens because we are dealing
with a batch containing a lot of vectors, so the matrix X involved in the operations
(see figure 13 is too unbalanced along one of its dimensions in a way that changing the
number r of blocks in which vectors are split does not make enough of a difference in
the parallelization and execution efficiency of the cuBLAS library.

vector size r3̄2 batch time (ms) variance vector ex.time (ms) data transfer(%)

1,048,576 113.5 0.08 0.4434 96.6
262,144 28.59 0.02 0.1117 96.3
65,536 7.646 0.01 0.0298 96.7
16,384 1.893 0.0062 0.0074 95.3
4,096 0.678 0.002 0.0026 94.1
1,024 0.383 0.0013 0.0015 95.34

In the previous section we hypothesized that having a balanced proportion between
rows and columns might be an important factor in increasing the efficiency of cuBLAS
operations and thus decreasing execution times. We can observe that the number of
rows of matrix A depends both by r and M (k = M/r). Let’s now see what happens
when changing the value of this parameter.

In this part of the experiment, we will fix the values of N = 220 and r = 128, while
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vector size r6̄4 batch time (ms) variance vector ex.time (ms) data transfer(%)

1,048,576 117.3 0.055 0.458 96.8
262,144 28.94 0.034 0.113 97.2
65,536 7.286 0.008 0.0285 96.4
16,384 1.904 0.006 0.0074 94.8
4,096 0.688 0.002 0.0027 93.5
1,024 0.391 0.0013 0.0015 94.7

vector size r1̄28 batch time (ms) variance vector ex.time (ms) data transfer(%)

1,048,576 117.3 0.08 0.458 96.8
262,144 28.98 0.036 0.1132 97.2
65,536 7.147 0.007 0.0279 96.9
16,384 1.923 0.0062 0.0075 94.8
4,096 0.684 0.0018 0.0027 92.5
1,024 0.385 0.0014 0.0015 93.2

M will go from 210 to 220.
Here are the results:
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Figure 21: Plot of batch JL algorithm with different values of M , N = 220 and r = 128.
The values shown represent the dimensionality reduction time for a single vector of the
batch.

We can conclude a few things from the plots 21 and 22: first of all, we can see that
once again, a higher value of r leads to a faster execution time. So we can conclude
that, with the right proportions of the matrices, increasing r improves the performance
quite consistently.
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Figure 22: Plot of batch JL algorithm with differing values of M and r.

The other observation we can make is that, no matter the value of r, up to a certain
point, we can increase the value of M without having any impact on the performance of
the algorithm: the execution time stays very stable, up to M = 216, even though we are
dealing with an ever-increasing amount of data. Remember, matrix A is a k×c matrix,
where k = M/r and c = N/c, and M is increased compared to the previous algorithms,
while N is set at the highest value ever set in the previous tests. Even when looking
at the output of the Nvidia profiler, it’s difficult to precisely tell why this occurs, other
than, again, thanks to an optimized parallelization by cuBLAS made possible by the
different size of the inputs. Obviously, when talking about dimensionality reduction,
our aim would be to decrease the value M of the number of output dimensions. Nev-
ertheless, this unexpected behaviour was worth highlighting, if only to appreciate the
exceptional performance of tensor core units.

Looking at the results for the highest values of M , we can notice how the data size
is so huge that the multiplication time percentage increases up to the point of taking
up most of the execution time (data transfer time percentage decreases significantly).
This also happens at the same threshold of input size where execution time begins to
exponentially increase. Clearly, data transfer time must increase linearly with the input
size, but the multiplication time increases exponentially in k (which is also supported
by the theory [1]).
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M r3̄2 batch time (ms) variance vector ex.time (ms) data transfer(%)

1,048,576 1,607 1,479 6.28 40.2
262,144 491.37 111.4 1.91 51.2
65,536 201.8 14.2 0.79 72.7
16,384 133.2 2.4 0.52 91
4,096 114.4 0.14 0.45 96.5
1,024 119.2 0.06 0.46 96.8

M r6̄4 batch time (ms) variance vector ex.time (ms) data transfer(%)

1,048,576 815.3 1,122 3.18 40.2
262,144 286.8 156 1.12 58.6
65,536 152.9 15.3 0.59 83.2
16,384 123.1 1.13 0.48 94.6
4,096 116.7 0.11 0.46 96.7
1,024 112.9 0.09 0.44 96.6

M r1̄28 batch time (ms) variance vector ex.time (ms) data transfer(%)

1,048,576 457.5 1,307 1.78 50.08
262,144 194.9 135 0.76 71.5
65,536 127.09 8.3 0.49 90.6
16,384 118.64 0.56 0.46 96.7
4,096 118.72 0.084 0.46 96.8
1,024 117.22 0.086 0.46 96.9
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6.2 Algorithm comparison
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Figure 23: Time performance comparison between all four tested algorithms.

In this section, we will compare the time performance of the different algorithms
we tested. The above figure clearly shows that the three algorithms that use TCUs are
so fast that a proper comparison with the baseline is not really possible or meaningful.
This plot suggests that the faster algorithms do not carry meaningful differences, but
obviously this is just a consequence of the three operating at a completely difference
timescale from the baseline.
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Figure 24: Comparison of the performance of the three fastest algorithms. A logarithmic
scale is applied to the x axis in order to better show values on the lower end of the
vector size.

As shown by figure 24, the time spent by the three algorithms to compute the
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dimensionality reduction of a single vector is basically identical when considering low
values of N . As the size of the inputs increases, the batch JL algorithm becomes
more and more advantageous, though not by a huge margin when compared to the
single JL version. Since multiplication times take a very little percentage of the total,
we can conclude that transferring all the data in one go (the whole batch) and then
performing the multiplication is a better strategy than alternating between data transfer
and multiplication for each vector we need to reduce. The slower performance of the
standard batch algorithm can be explained by simply observing that the size of the
matrices involved is a lot higher (M × N and N × b) compared to the JL algorithms
(k × c and c× b(N/c)).
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Figure 25: Plot of the three main algorithms’ execution time, considering only the time
spent on multiplications without the data transfer percentage.
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Figure 26: Log version of the previous plot.

N batch (ms) single JL (ms) batchJL (ms)

1,048,576 0.117 0.0648 0.01466
262,144 0.0315 0.0318 0.00317
65,536 0.00706 0.0225 0.00086
16,384 0.00236 0.0107 0.00039
4,096 0.00099 0.0083 0.0002
1,024 0.00027 0.0078 0.0001
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6.3 Quality performance measurements

In this section, we will analyze the quality of the results of our algorithms. This can be
done by computing the norm of the reduced vectors and comparing it with the norm of
their original respective. In particular, all tests were performed on unit vectors (vectors
of norm equal to 1), so the values relative to the norm difference which are displayed
in the plots of this chapter are relative to the reference value of 1.

The quality measurements will be performed by using the batch JL algorithm 5.4. In
particular, we are interested in studying the relationships between certain parameters
relative to the construction of the block identity matrix (Ir ⊗ A): we will investigate
how the quality of the results changes depending on the values of the input and output
dimensions of the vectors, as well as depending on the size of matrix A representing the
JL transform. Since unit vectors will be used as inputs throughout all the tests, the
norms of the result will need to be as close as possible to 1 in order for the results to
be satisfactory.

We will also compare the results obtained by our proposed JL method to the ones
measured from an implementation of the standard Achlioptas method, which simply
requires to generate the transform matrix with the probability distributions described
by Theorem 1 (from chapter 3) as the whole M × N input matrix. The difference
between the two methods is that our JL algorithm generates the k × c matrix A and
performs the multiplication with this smaller matrix, while Achlioptas uses the whole
M ×N array of values.

Figure 27: JL transform matrix sparsity visualization with different values of r. As the
value decreases, the non-zero portion of the matrix increases. The blue squares are not
actually fully dense, but feature the sparsity of the Achlioptas distribution (the one at
(4), since the other one does not have non-zero items), also shown at the bottom of the
image.
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Considering the new JL method, it’s important to observe that by tweaking the
number of blocks r, the values of k = M/r and c = N/r also change. When considering
a fixed value of M and N , as the value of r decreases, the two parameters specifying the
dimensions of A increase, and the matrix (Ir⊗A) is composed by a decreasing number
of larger A matrices, becoming less sparse (figure 27): as k and c increase, our trans-
form and an Achlioptas transform with the same values of M, N become increasingly
similar in terms of sparseness (when r = 1 they are identical). We will see whether or
not these traits have an impact in the quality.

First, let’s analyze the JL algorithm by itself: we will see how the quality changes
when keeping M = 210 and N = 220 fixed, while tuning the value of k. As we know,
changing this value implies a change in the value of r, and since r must be integer and
M , N are powers of 2, we will use values of k from 23 to 210. Both of the probability
distributions described in Theorem 1 will be tested.
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Figure 28: Quality plot with fixed M , N dimensions representing results from both JL
embedding methods described in the paper.

As we can see from figure 28, there does not seem to be a particularly significant
difference between the two methods, though distribution (4) seems to achieve slightly
better results, on average. What does make a difference is the value of r: as the blocks
increase and the size of matrix A decreases, the norm difference between inputs and
outputs gets noticeably higher. Remembering that we are dealing with unit vectors, a
difference of 0.2 represents a 20% delta between the two norms, which is too high of
an error margin. At the lower end of the value of r, we have a more satisfying quality
of results: the algorithm is able to produce output vectors that have less than a 5%
difference from their corresponding inputs while reducing their dimensions by 10 orders
of magnitude.

It is also worth recalling chapter 3: the requirements given by Theorem 1 state
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r k norm diff. variance

4 256 0.0311 0.00019
8 128 0.0332 0.00031
16 64 0.0531 0.0015
32 32 0.0677 0.00173
64 16 0.1337 0.0086
128 8 0.1668 0.01166
256 4 0.1962 0.01155

(a) probability distribution (3)

r k norm diff. variance

4 256 0.027 0.0003
8 128 0.053 0.0012
16 64 0.038 0.0011
32 32 0.078 0.0031
64 16 0.083 0.0042
128 8 0.134 0.0142
256 4 0.195 0.0124

(b) probability distribution (4)

that the quality of the result is directly correlated to the output dimensions M ⩾
4 + 2β

ϵ2/2− ϵ3/3
log n. Consider that when choosing, for example, n = 256 (the batch size),

β = 0.9 and ε = 0.2, which are not very strict parameters, we get M ⩾ 1855. We can
clearly see that having M = 1024 in the previous test does not leave a lot of room for
choosing big values of k, but we still managed to obtain a decent quality.

Another thing to note is that, at the end of the previous section we concluded that
having a bigger value of r (small k) improves execution time. This means that choosing
the values for these parameters requires to make a tradeoff between execution time and
quality of the results.

The next plots will show how the quality changes when the values of the input
matrices and vectors are modified. We are interested in calculating how the perfor-
mance changes depending on the difference between the input and output dimension.
Intuitively, having result vectors that are more similar in length to their corresponding
originals should yield better results, and thus, a smaller difference between the vectors’
norms.

From figure 29 it’s clear that, as Achlioptas demonstrated, when considering norm
differences, higher output dimensions produce the best results, regardless of the differ-
ence from the input, and the quality only depends on the number of output dimensions,
so our intuition has misled us in this instance.

Testing while changing parameters M and N also enables us to compare the results
of our JL method to the original Achlioptas method. This is because the only values
that we can change in the Achlioptas method are the input and output dimensions of
the vectors to reduce. Since we just observed that changing the dimensions of input
vectors does not impact the results (figure 29), we can limit our testing to different
values of output dimensions M .

We will evaluate the quality of the practical results given by both algorithms after
the reduction of input unit vectors having N = 65536 entries to a number of dimension
ranging from M = 1024 to M = 8192. Regarding the measurements on our JL algo-
rithm, we will perform multiple tests with different numbers of blocks r = 64, r = 32
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Figure 29: Plot of algorithm quality with differing values for the input vector’s dimen-
sion. M is fixed at a value of 210, and k is at 512.

N norm difference variance

16,384 0.02 0.0001
40,960 0.0276 0.0002
81,920 0.0308 0.0007
163,840 0.0247 0.0002
245,760 0.0217 0.0003
409,600 0.02 0.0002
819,200 0.0282 0.0004

(a) k=256

N norm difference variance

16,384 0.0135 0.0001
40,960 0.0146 0.0001
81,920 0.0154 0.0001
163,840 0.0149 0.0001
245,760 0.0192 0.0001
409,600 0.0177 0.0001
819,200 0.0178 0.0001

(b) k=512

and r = 16.
Given our previous observations, the expected results are that the Achlioptas method,

though slower in terms of execution time, should provide the best results from a qual-
itative standpoint, while the norm differences between inputs and outputs of our JL
transform should decrease with the decrease of the number of blocks r. Also, the overall
quality should increase as stated by the theory (in Theorem 1, increasing k means using
more strict ε and β quality parameters).

The results of figure 30 seem to support all of our previous claims: norm differences
decrease as the number of blocks in the block identity matrix decreases, and the quality
of results also increases with the value of M . Achlioptas’ method gives the best quality
by an almost constant factor (given a fixed value of r), but the quality achieved by the
proposed JL transform is still satisfactory, save for the case of values of M being at
their lowest while the values of r at their highest.
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Figure 30: Comparison between the quality of Achlioptas’ method and our proposed
JL transform, with fixed input dimensions N = 65536 = 216.
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7 Conclusion

In this thesis, we have seen how tensor core units can be used in a field different from
the one they were originally designed for. We successfully developed several algorithms
to speed up dimensionality reduction using these hardware accelerators, showing the
effectiveness of TCUs compared to standard parallel strategies.

In particular, we studied the features and effectiveness of the JL dimensionality
reduction method proposed by Ahle and Silvestri in [1], which showed promising results,
while also expanding and improving its time performance with the batched version of
the algorithm.

Crucially, the proposed method also yields good results when considering the quality
of the embeddings, although they are generally less accurate than other methods that
use the same probability distributions (Achlioptas method [5]), but not by a huge
margin. It is also worth noting that the other methods are worse than ours when
talking about execution time performance. As shown in the previous chapter, there is a
tradeoff to be found between execution time and quality of the results, which is governed
by various parameters; this feature could make our JL algorithms more versatile to be
used in practice, allowing developers to tweak these parameters depending on the needs
of the application in question.

An aspect of the performance which was not explored in this thesis is the measure-
ment of quality with respect to the pairwise distance between points. In general, we
would like Euclidean distances to be preserved as much as possible after the reduction
of the inputs. The two lemmas of Johnson and Lindenstrauss equivalently define the
JL property of probability distributions both in terms of preservation of pairwise dis-
tance between points and preservation of the norms of the single vectors. This suggests
that the JL matrices used in our testing should, in theory, maintain both aspects of
the quality, though further tests would be required to confirm this behaviour in our
proposed method.

It would also have been interesting to explore the execution and quality performance
of the algorithms when working on real datasets instead of only testing them on random
unit vectors.
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