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Abstract

In modern Cosmology, primordial non-Gaussianity (PNG) is regarded as a fundamental and
independent source of information about the physics of the early Universe. The ideal observable to
measure the non-Gaussian nature of primordial perturbations, and its eventual scale dependence,
is the cosmic microwave background (CMB) radiation. In this work another promising probe of
primordial non-Gaussianity is considered, namely the cosmological gravitational wave background
(CGWB) generated during inflation. An eventual detection of such a GW background in the near
future may possibly provide with new and exciting information, inaccessible to CMB measure-
ments. Signatures of primordial non-Gaussianity are in fact expected to be picked up via the GW
propagation across large-scale scalar perturbations. Particular attention is given to the CGWB
energy density anisotropies 3-point angular correlator, or bispectrum, as the lowest-order indica-
tor of the presence of PNG. Explicit expressions can be derived in the case non-Gaussianity is
parametrized in terms of the local ansatz for the primordial curvature perturbation. The inclusion
of the scale dependence, or running, in the discussion is then achieved by means of a kernel ap-
proach for the non-linear parameter fNL and of a subsequent matching with bispectrum templates
recurring in the literature. A specific scenario of CGWB sourced at second order from enhanced
small-scale scalar perturbations, arising with the formation of primordial black holes (PBHs), is
also considered. In this context the presence of primordial non-Gaussianity would show up already
at the emission, as an initial condition. The PBHs mass is taken to be such that they may as well
comprise all of the dark matter (DM). If this was actually the case it would be remarkable, in pres-
ence of a sufficient running of non-Gaussianity, the possibility to obtain an arbitrarily anisotropic
CGWB which is otherwise, in the non-running scenario, constrained to be highly isotropic due to
cold dark matter isocurvature (CDI) bounds.
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Introduction

It is believed that at early times our Universe experiences a period of accelerated expansion, known
as inflation [4], which in the most standard models is driven by the vacuum energy density of a
scalar field, known as inflaton. Most importantly, other than solving a few shortcomings of the
standard Big Bang model, the inflationary mechanism is able to provide an explanation for the
production of primordial scalar perturbations [1], along with a primordial stochastic gravitational
wave background [52, 53]. The former are at the origin of both the temperature and polarization
anisotropies in the cosmic microwave background (CMB) radiation and the density inhomogeneities
responsible for large-scale structure (LSS) formation at later times [41].

Primordial scalar perturbations are the result of inflaton quantum fluctuations during inflation, in
such a way that they cannot be treated in a deterministic way. The right approach is to consider
them as the different values assumed by a random field and thus to give a statistical description
of the process. In practice this means to compute statistical correlators of quantities related to
primordial perturbations, such as the CMB temperature angular anisotropies, which can then be
compared to observations. The usual assumption, justified also by experimental data [10], is to take
a zero-mean Gaussian as the probability density function from which primordial perturbations are
drawn. If this is the case, all the information needed to describe such a distribution is represented
by the variance and it is thus contained inside the 2-point correlation function. Its counterpart in
Fourier space, then, is what is called the power spectrum.
Nevertheless, even if latest observations are compatible with the Gaussianity of primordial scalar
perturbations, it is still interesting to consider the possibility of a deviation from this Gaussian
behaviour, which is addressed to as non-Gaussianity [8]. In the specific case of primordial perturba-
tions from inflation we refer to primordial non-Gaussianity (PNG). In such a context, higher-order
statistical correlators have to be considered to fully describe a non-Gaussian random field. The
lowest-order correlator to be an indicator of primordial non-Gaussianity is the the 3-point one,
whose Fourier counterpart is the primordial bispectrum, in analogy to the definition of the power
spectrum.
Primordial non-Gaussianity may then be regarded as an important and unique probe of the funda-
mental physics in the early Universe, since each inflationary model provides with a specific amount
of PNG [12], in such a way that it can be exploited to confirm or rule out models depending on
their predictions. It is also possible to consider an additional dependence of the non-Gaussian
behaviour as a function of the scale of the perturbations. This generalization takes the name of
running non-Gaussianity [12, 34] and a major part of this work is dedicated to deal with such a
possibility.

In Cosmology, one of the main observables to retain information about primordial perturbations
is the CMB. Primordial scalar perturbations can be expressed in the form of the gauge-invariant
quantity ζ, known as primordial curvature perturbation [8]. The peculiarity of this quantity is
that its evolution is frozen outside of the Hubble horizon, for the simplest models of inflation, in
such a way that its value during inflation is transferred, practically unchanged, to later times after
the horizon re-entry. In this way CMB temperature anisotropies can be directly referred to the
inflationary period. In particular, CMB anisotropies inherit their statistics from the primordial
curvature perturbation ζ, meaning that we can consider CMB statistical correlators, which are ob-
servable quantities, in order to study the presence of primordial non-Gaussianity and its nature [16].
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2 CHAPTER 0. INTRODUCTION

Other than reviewing how the CMB may be regarded as a fundamental probe for PNG, we are in-
terested in considering also another promising, possibly independent, source of information, namely
the stochastic background of gravitational waves (GWs) of cosmological origin [52, 53]. Similarly to
primordial scalar perturbations, quantum fluctuations during inflation are also expected to produce
primordial tensor perturbations of the metric, which can be identified as a stochastic background
of GWs. These are then expected to eventually pick up signatures of primordial non-Gaussianity
during their propagation across large-scale scalar perturbations [49]. Since the scales probed by
the cosmological GW background (CGWB) can be orders of magnitude different with respect to
the CMB ones, there is the concrete possibility to recover unique constraints on primordial non-
Gaussianity on such scales. This is one of the main focus of this Thesis, where the more original
part actually consists in the generalization of the treatment to include the possibility of a scale-
dependent non-Gaussianity.

The production of GWs early in the Universe is not exclusive to quantum fluctuations during
inflation. Later in this work we will consider the stochastic background of GWs associated to the
early formation of primordial black holes (PBHs) [81] and sourced by scalar perturbations at second
order in perturbation theory [69, 70, 71, 20, 72, 73, 74, 75]. Any presence of non-Gaussianity in
the primordial scalar perturbations is imprinted into this GW background directly at its emission
[87]. In fact we will see how this may introduce anisotropies in the GW energy density and how
this conclusion changes when accounting for the possibility of running non-Gaussianity. Moreover,
a measurement of these anisotropies should also allow to constrain PNG, and its running, at scales
much much smaller than the CMB ones.

The structure of this Thesis is organized as follows:
Chapter 1 introduces briefly to the main concepts in modern Cosmology, with a particular attention
to the treatment of standard single-field models of inflation. The derivation of primordial scalar
perturbations from quantum fluctuations is shown, along with the definition of the gauge-invariant
curvature perturbation ζ. The necessity of a statistical description by means of the power spectrum
is introduced.
Chapter 2 consists in a small, almost self-consistent, review of the cosmological perturbation the-
ory (CPT) at linear order, which includes the main results of linearized Einstein equations. The
topic of the gauge problem is then treated, and the expression for the curvature perturbation ζ is
derived in an alternative way, as the result of a gauge-invariant construction.
In Chapter 3 the concept of primordial non-Gaussianity is introduced in the most generic context.
The focus is in particular on the primordial bispectrum, as the main indicator of the presence
of non-Gaussianity, which is described by a shape function and an amplitude parameter, whose
eventual scale dependence corresponds to a running non-Gaussianity. The local shape is then con-
sidered, being it the simplest and most common way to parametrize non-Gaussianity and allowing
also for a quite immediate generalization to the scale-dependent scenario, of which few possible
cases are presented.
Chapter 4 is devoted to the treatment of the CMB temperature anisotropies as the result of pri-
mordial scalar perturbations. The standard derivation for the CMB angular power spectrum is
presented. Analogously, the CMB angular bispectrum is computed in the presence of primordial
non-Gaussianity and presented as a fundamental observable to probe deviation from Gaussian
statistics in the early Universe. Specific expressions of the CMB bispectrum are also derived ex-
ploiting the local parametrization of non-Gaussianity.
In Chapter 5 the focus becomes the stochastic background of GWs of cosmological origin, the
CGWB. Gravitational waves are presented as the solution to vacuum Einstein equations and the
production of tensor metric perturbations arising from quantum fluctuations during inflation is
treated. Via a Boltzmann-like approach, the CGWB is then described in strict analogy with the
CMB, so that the effect of large-scale scalar perturbations on high-frequency GWs can be con-
sidered. This shows how primordial GWs from inflation may carry important information about
PNG. Consequently, expression for the angular bispectrum, analogous to the ones for the CMB,
are also derived.
In Chapter 6 a specific scenario of GW production in the early Universe is considered, associated
to the formation of PBHs. This happens in presence of enhanced scalar perturbations at small
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scales, which may then source at second order a background of GWs with sufficient amplitude to
be detectable. The basic physics of GW production at second order from scalar perturbations and
of PBH formation from enhanced density perturbations is briefly reviewed. The energy density
of the CGWB is then introduced as a fundamental observable, and the effect that the presence
of primordial non-Gaussianity has on it, in the considered scenario, is derived. The inclusion
of running non-Gaussianity in the discussion is an original contribution to this work. Finally,
isocurvature bounds on PBH abundance are considered in order for constraints on primordial local
non-Gaussianity to be derived.
Formulae and relations useful for the discussions in the main text are reported in the Appendices,
along with some of the more technical mathematical steps.
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Chapter 1

Introduction to Cosmology

We start off the discussion with this introductory Chapter, in which we briefly recap the geometric
and energetic aspects of our Universe. We focus in particular on the description of a FLRW back-
ground, homogeneous and isotropic as expected by the Cosmological Principle. A major portion
of the Chapter is then devolved to introduce the inflationary hypothesis, along with the standard
slow-roll model. A remarkable result, fundamental for the following treatment of primordial non-
Gaussianity, is the production of primordial quantum scalar fluctuations during inflation, in the
form of primordial curvature perturbations.

1.1 Background Cosmology

1.1.1 FLRW spacetime

If we look at our own Universe, on sufficiently large scale it appears almost exactly isotropic, where
the deviations from this behaviour are of the order of 1 out of 105. Assuming that this property
holds also when looking from any other point, meaning we do not occupy any special position
(as stated by the Cosmological Principle), we can conclude that the Universe is also homogeneous.
Furthermore, today we know that our Universe started hot and dense, cooled down while expanding
during its thermal history, in the last 13.8 billions year, and ended up being what we observe today.
Adopting Einstein’s General Relativity as the theory governing gravity, all this features lead up to
the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric in spherical coordinates:

ds2 = −dt2 + a2(t)

(

dr2

1− kr2
+ r2

(

dθ2 + sin2θdϕ2
)

)

, (1.1)

which describes the geometry of the background spacetime. Notice that we have assumed natural
units, i.e. c = 1, and we will implicitly do the same throughout this work. The spatial curvature
parameter k is a constant which can take three different values, in the case of a flat (k = 0), close
(k = +1) or open (k = −1) spatial geometry. The scale factor a(t), function of the cosmic time t,
is a dimensionless quantity that accounts for the expansion of the Universe. We have introduced in
(1.1) the comoving coordinate r, meaning that r remains fixed for a point following the Universe
in his expansion. Physical distances, in Cartesian coordinates, are related to the comoving ones
via the scale factor: ~xphys = a(t)~xcom.

Sometimes it is useful to introduce an alternative way of parametrizing the time coordinate. The
conformal time is defined as:

τ =

∫ t

0

dt′

a(t′)
, (1.2)

so that dτ = dt
a(t) . Substituting this expression inside (1.1), and setting k = 0, one finds the

following result for the flat FLRW metric, written in Cartesian coordinate:

ds2 = a2(τ)
(

− dτ2 + δijdx
idxj

)

, (1.3)

5



6 CHAPTER 1. INTRODUCTION TO COSMOLOGY

which corresponds to the Minkowski metric rescaled by an overall time dependent factor.

A photon traveling across the Universe experiences its expansion so that, when it reaches our
detectors, its wavelength is stretched with respect to the one at emission. To quantify this we
introduce the redshift z, defined as:

z ≡ λo − λe
λe

, (1.4)

where λo and λe are, respectively, the wavelength we observe today and the one emitted in the
past. In the case of an expanding Universe we see that z is always bigger than unity and it basically
quantifies how much a photon travelled before being picked up by some instrumentation on Earth.
This suggests a relation between the redshift z and the scale factor a, which happens to be [1]:

1 + z(t) =
a(t0)

a(t)
, (1.5)

and it is then evident how z may be regarded as a time variable, something which is usually done
in Cosmology.

1.1.2 Einstein’s Equations and Energy Content

The evolution of the background metric (1.1) can be obtained starting from the following action:

S =

∫

d4x
√−g

( 1

16πG
R+ Lm(gµν , ψm)

)

, (1.6)

where g denotes the determinant of the metric and R the Ricci scalar (see Appendix A), as usual.
The first term of (1.6) corresponds to the Einstein-Hilbert action, constructed from the metric
and thus containing all the information about the geometry of the spacetime. The second term
Lm(gµν , ψm), instead, accounts for all the energetic content of the Universe, which acts as a source
for the gravitational field gµν . In this sense ψm is the field associated to any of the particles of the
system.

Varying the action (1.6) with respect to the metric gµν one obtains the famous Einstein’s equations:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.7)

where Rµν and Gµν are the Ricci and Einstein tensors, respectively. See Appendix A for more
information on the geometric part of Einstein’s equations.
We have defined the stress-energy tensor on the right side of (1.7) as:

Tµν = − 2√−g
δ(
√−gLm)

δgµν
. (1.8)

In Cosmology, when describing the background spacetime (1.1), usually one can assume the simple
expression of the stress-energy tensor for a perfect fluid, isotropic and homogeneous [1]:

Tµν = uµuν(ρ+ p) + pgµν , (1.9)

with uµ the 4-velocity of the fluid. In its rest frame, where uµ = (1, 0, 0, 0), it follows immediately
T 0

0 = −ρ and T ij = pδij , where ρ is the background energy density and p is the background
isotropic pressure. In evaluating them one has to account for all the possible contributions to
the energy budget. Notice that the form (1.9) of the stress-energy tensor is compatible with the
assumption made before of an homogeneous and isotropic background spacetime.
Writing explicitly the components of equation (1.7), in case of the metric (1.1), and using expression
(1.9) for the stress-energy tensor, one derives the so called Friedmann equations:

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.10)
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from the (0-0)-component and:
ä

a
= −4πG

3
(ρ+ 3p), (1.11)

from the (i-j)-component. In equation (1.10) we have also defined the Hubble parameter H, which
identifies a characteristic time of expansion τH = H−1. Furthermore, from Bianchi identities
∇µG

µν = 0 for the metric (1.1), where ∇µ is the covariant derivative, it follows the continuity
equation:

ρ̇+ 3H(ρ+ p) = 0. (1.12)

We end up with a system of three equations, but it is possible to verify that only two out of these
are independent. Therefore, we need one additional equation to solve the system for the three
variables a, ρ and P , all as function of the cosmic time t. This is usually done by specifying the
equation of state for a barotropic fluid:

p = wρ, (1.13)

where w is a constant, different for each one of the fluid components. Substituting (1.13) inside
(1.12) one then obtains the evolution of the background energy density with respect to the scale
factor:

ρ = ρ0

(

a

a0

)−3(1+w)

, (1.14)

where we indicate with the subscript 0 the quantities evaluated today at t = t0.
In the Standard Model of Cosmology ΛCDM the following cases are usually considered as com-
ponents of the cosmic fluid:

• Matter: it includes both dark and ordinary matter, which have the peculiarity of having
negligible pressure |p| ≪ ρ. Setting w = 0 in (1.14) results in ρm ∝ a−3, an expected result
since it accounts for the dilution due to the Universe expansion (vol ∝ a3).

• Radiation: it indicates not only photons but basically all the particles in a relativistic state,
such as neutrinos or, at early times, particles with mass negligible with respect to the ther-
mal energy. In this case w = 1/3, so that equation (1.14) gives ρr ∝ a−4, and it can be
interpreted as the combined effect of dilution (∝ a−3) and redshift (∝ a−1).

• Cosmological Constant: this is the most simple and common way to describe dark energy,
whose presence should be able to drive the late time accelerated expansion. Its name derives
from the assumption that ρΛ = const, possible only if we set p = −ρ inside equation (1.12).
A negative pressure might seem strange, but we will see that it is required also during what
is believed to be a fundemental phase of the primordial Universe, the inflation.

The evolution of these fluid components’ energy densities is plotted in Figure 1.1.

Today the Universe is measured to be composed predominantly by cold dark matter and dark
energy, which drives the late time accelerated expansion of the Universe and, within the ΛCDM
model, is thought to be in the form of a cosmological constant Λ . They cover, respectively, around
25% and 70% of the energy budget today, with baryonic matter which constitutes the remaining
5%. The present contribution of radiation is negligible.
With the term baryonic matter we refer to all the particle content of the Standard Model of particle
physics, whereas dark matter is still an unknown component of the Universe, with the property
of interacting only gravitationally. So far its presence has only been stated indirectly by means
of gravitational considerations on galaxies, which require the presence of additional yet not visible
matter. Moreover, dark matter is necessary to allow the gravitational collapse of primordial per-
turbations into the large scale structures we observe today [1].

Starting from the present energy densities of the fluid components and evolving them back in
time with equation (1.14) it is possible to recover different regimes:
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Figure 1.1: Energy densities evolution for radiation, matter and a cosmological constant. The
critical energy density ρcrit is defined in equation (1.15). It is immediate to deduce the different
regimes and the epochs of equality between two fluid components. Taken from [2].

• Radiation domination until zeq ≃ 3000,

• Matter domination from zeq ≃ 3000 until zΛ ≃ 0.3,

• Late time acceleration driven by dark energy from zΛ ≃ 0.3 until today (z0 = 0).

A specific regime is set by the dominating component of the fluid at a given moment and determines
the dynamics of the Universe expansion. The transition between two different regimes happens
when two components equally contribute to most of the total budget.

Before ending this preliminary section, it is worth spending few more words about the spatial
curvature in the FLRW spacetime (1.1). From the first Friedmann equation (1.10), setting k = 0
and inverting, one obtains:

ρcrit(t) =
3H2

8πG
, (1.15)

called the critical energy density, corresponding to the energy density one would measure in the
case of a perfectly spatially flat Universe (k = 0). It is then useful to define the energy density
parameter for the i-th fluid constituent:

Ωi(t) ≡
ρi(t)

ρcrit(t)
, (1.16)

where the total energy density parameter Ω(t) is the sum of the energy density parameters of the
single components. By definition, then, it would be Ω(t) = 1 in case of a spatially flat FLRW
spacetime with k = 0, with Ω(t) > 1 and Ω(t) < 1 for the close and open cases, respectively. From
these considerations it follows that we can derive information about the geometry of the Universe
by measuring its energy content. Furthermore, since k is a constant, we can determine its value
today and the conclusion remains valid throughout all the history of the Universe.
From most recent observations we know the present density parameter of the main components of
the cosmological fluid [3]:

Ωc0h
2 = 0.120± 0.001,

Ωb0h
2 = 0.0224± 0.0002,

ΩΛ0 = 0.685± 0.007,
(1.17)



1.2. INFLATION 9

where h is defined such that the Hubble parameter today is H0 = 100h km s−1 Mpc−1. The
present energy contribution due to radiation is negligible. Since observationally [3] H0 = (67.36±
0.54) km s−1 Mpc−1, it can be verified that the components (1.17) almost add up to a total present
energy budget Ω0 ∼ 1, resulting with the experimental evidence that today we measure a density
parameter compatible with a flat Universe. Because of this result, in the following discussion it is
safe to set k = 0 inside the first Friedmann equation (1.10).
Starting from the experimental measurements (1.17) it is then possible to derive the values of the
present energy densities as ρi0 = Ωi0ρcrit,0. This allows to recover the results listed before for the
epochs of equality by imposing ρi(teq) = ρj(teq) and using equation (1.14).

1.2 Inflation

The theory of inflation was first proposed by Guth in 1981 [4] as a way to solve the shortcomings
of the Big Bang model. The idea behind it is that at very early time the Universe expands al-
most exponentially, driven by the vacuum energy density of a scalar field which takes the name
of inflaton. Soon after the formulation of this theory, it was realized that inflation can provide
also a mechanism to explain another fundamental aspect which a cosmological model necessarily
have to deal with: the formation of large scale structures. We will see how the quantum fluctua-
tions of the field driving inflation can be regarded as the seeds of the structures we observe today [1].

The first step is to understand what are the conditions needed in order to realize inflation. Starting
from the second Friedmann equation (1.11) and imposing a positive acceleration ä > 0, we find
that the equation of state must satisfy:

w =
p

ρ
< −1

3
. (1.18)

This means that, in order to have inflation, it is necessary a mechanism which provides sufficiently
negative pressure during that period. We have already seen an example of accelerated expansion
provided by a cosmological constant. One would think an analogous assumption to be enough
also in the inflationary case, but a fundamental requirement of the model is to be able to explain
also how this accelerated phase ends and transitions to the standard Hot Big Bang. Before seeing
how this is realized, we address briefly to the shortcomings that first led to the formulation of the
inflationary hypothesis.

1.2.1 Shortcomings of the Hot Big Bang

We quickly review two of the historical inconsistencies, or shortcomings, of the standard Hot Big
Bang model. They are usually called the horizon and the flatness problems, and we will see how
a period of accelerated expansion in the early Universe, i.e. inflation, can solve both of them.

Number of e-foldings

Before presenting the details of the Hot Big Bang shortcomings, it has to be stressed that both the
horizon and the flatness problem require not only a period of inflation, but actually a large enough
amount of expansion. In both cases it is possible to explicitly compute the required amount, by
asking these inconsistencies to be instead a natural consequence of the inflationary period. First
of all, it is necessary to define a way in order to quantify the amount of inflation. This is done by
defining the so called number of e-foldings:

N =

∫ tf

ti

H(t)dt = ln

(

af
ai

)

, (1.19)

which is essentially related to the ratio of the scale factors at the beginning (ti) and at the end (tf )
of inflation. It is then possible to compute the minimum amount of e-foldings necessary in order
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to solve the shortcomings of the Hot Big Bang. The requirement is that, both for the horizon and
flatness problem, inflation must be able to start from generic initial conditions and evolve them
such that they end up today in what we experimentally measure. Taking such an approach, the
required number of e-foldings is found to be at least N ∼ 60 − 70 [1], but usually inflationary
models predict it to be much higher.

Horizon problem

In order to introduce the horizon problem it is necessary to understand how causality works in an
expanding Universe. It is known that no signal can travel faster than light. It is the light signals
what thus determine the causal connection between two points of the spacetime. It is useful, in
particular, to compute what is the farthest distance from which we, or any other observer, can
receive a signal. In this way one can find out what is the so called past causal cone of a given
spacetime point. Assuming that a photon could have been emitted at the earliest at t=0, the
particle horizon is defined as [1]:

RH(t) = a(t)

∫ t

0

dt′

a(t′)
. (1.20)

To evaluate this expression it is necessary to find the solution for a(t) in an expanding Universe.
Combining equations (1.10) and (1.14) one finds:

a(t) = a∗

(

t

t∗

)
2

3(1+w)

, (1.21)

where t∗ is an arbitrary reference time and a∗ = a(t∗). Substituting (1.21) inside (1.20) and
performing the integration gives:

RH(t) =
3(1 + w)t

1 + 3w
, (1.22)

and it follows that RH is finite if and only if w > − 1
3 , i.e. ä < 0. This suggests that the

Standard Hot Big Bang model, which describes an always decelerating expansion, cannot explain
the causal connection between points farther than the particle horizon distance. This contradicts
the experimental evidence of an homogeneous CMB, as we will discuss in Chapter 4, since points
separated by an angle of more than few degrees could not have been able to be in causal connection
at the epoch of last scattering.
Actually the situation is even worse. The particle horizon is the distance from which an observer
can receive a signal emitted any time after the Big Bang. But to have an homogeneous CMB
a constant exchange of information between points is needed, so that they can share the same
temperature. Such a causal connection is described by the Hubble radius:

Rc =
1

H(t)
, (1.23)

and corresponds to the maximum distance between points that can exchange information over a
Hubble time τH = H−1. What is interesting about Hubble radius is that the evolution of its
comoving counterpart rc = (aH)−1 depends on the dynamics of the Universe. In fact:

ṙc = − ä

ȧ2
. (1.24)

It is then possible to define the comoving Hubble sphere, which contains all the points in causal
contact, at a given instant, with the observer located at the centre. We see from equation (1.24)
that, in the case of a decelerating Universe ä < 0, such a sphere expands over time, such that
the observer comes in causal contact with new, never seen before, points. It follows that we, as
observers, are now in causal contact with points that could not have been able to communicate
before the last scattering epoch, and thus we can explain the homogeneity of the CMB only by
means of finely-tuned initial conditions. This is what is called the horizon problem.
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Figure 1.2: Evolution of the comoving Hubble radius rc before (0 < t < ti), during (ti < t < tf ) and
after (tf < t < t0) inflation. Any fixed comoving distance l0 remains instead constant throughout
the evolution. The horizon problem is solved if rc(t0) < rc(ti). Taken from [1].

Looking again at equation (1.24), it seems natural to try to solve this inconsistency by admitting
an early time of accelerated expansion, during which the Hubble radius decreases and points in
causal connection get pushed far apart. It is then sufficient to request the comoving Hubble radius
today to be less than what it was before inflation:

rc(t0) < rc(ti), (1.25)

and we obtain a past causal connection with all the points from which we can receive signals today.
This situation is represented in Figure 1.2, in which it is plotted the evolution of the comoving
Hubble radius rc together with that of a comoving scale l0.
Condition (1.25) can be made more explicit by combining the definition of comoving Hubble radius
and equation (1.21) for the evolution of the scale factor. The latter assumes different values for
different equation of states w, determined by the dominating fluid component during a certain
period of expansion. Accounting, after the end of inflation, for a radiation dominated period
followed by a matter dominated one, the condition (1.25) brings to the qualitative result:

N & 60, (1.26)

which is derived in details in [1].

Flatness problem

Another problem, similar to the horizon one, involves the measured spatial curvature of the space-
time. From our discussion in the previous section, we know that observationally the Universe is
very close to be flat. This is due to the fact that today the density parameters of the various
components add up almost exactly to a total Ω0 ∼ 1, which corresponds to k = 0 inside the first
Friedmann equation (1.10). The latter can be rewritten, exploiting (1.16), in the following way:

Ω(t)− 1 =
k

(aH)2
= kr2c , (1.27)

where in the second equality we have applied the definition of the comoving Hubble radius. It
is then possible to define the density parameter associated with the spatial curvature Ωk(t) ≡
1−Ω(t) = −kr2c . From this definition, it follows that Ωk vanishes in the spatially flat case and it is
positive (negative) for a spatially open (close) spacetime. The latest measurements from the Planck
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collaboration [3] constrain the value today to be Ωk0 = 0.001 ± 0.002. This value is compatible
with a spatially flat Universe and it is way too small to be reasonable after the standard Hot Big
Bang evolution. We can understand why by looking back to the first Friedmann equation (1.10)
and analyzing the two terms on the right side: the first accounts for the energy contribution of
the fluid components, whose energy density decreases at best as a−3 in the case of matter; the
second term is, as already stressed, related to the spatial curvature and goes like a−2. We can
then conclude that, approaching early times, the curvature term, along with Ωk, starts to become
more and more negligible inside the Friedmann equation. The so called flatness problem lies in the
fact that the measured value for Ωk0, frequently expressed as |Ω0 − 1| < 10−3, would require an
initial condition, computed at Planck time tP , of |Ω(tP )−1| ≃ |Ω0−1|10−60 [1], which is of course
a finely-tuned assumption, in the same way as the initial homogeneity of the observable Universe
was in the previous section.
The same conclusion can be deduced by taking the time derivative of the density parameter Ωk:

d

dt
Ωk = −k d

dt
r2c = 2krc

ä

ȧ2
. (1.28)

This result tells us how the spatial curvature density parameter evolves when going back in time.
It is straightforward to verify that, for a decelerating Universe ä < 0, Ωk approaches zero at early
time, both in the case of positive or negative curvature. This leads to the same conclusion given
before about the necessity for a fine-tuning at early times.

Once again the solution is to admit a period of inflation sufficiently long to satisfy, in analogy
with (1.25), the inequality:

1− Ω−1
i

1− Ω−1
0

≥ 1, (1.29)

which corresponds to ask that the density parameter today Ω0 must be closer to unity than the
density parameter at the beginning of inflation Ωi was. Furthermore, from the first Friedmann
equation (1.10) it is possible to derive that the combination (Ω−1 − 1)ρa2 = const is actually
conserved over time. Using this result inside (1.29), remembering (1.21) and splitting again the
history of the Universe into the three periods of inflation (w ≃ −1), radiation domination (w = 1

3 )
and matter domination (w = 0), it is possible [1] to recover the same amount of required inflation
than the one computed by solving the horizon problem, which is approximately N & 60. The
evolution of the total energy density parameter, for both the cases of open and close Universe, is
plotted in Figure 1.3.

Figure 1.3: Evolution of the total density parameter before (0 < t < ti), during (ti < t < tf )
and after (tf < t < t0) inflation, for an open (a) and closed (b) Universe. The flatness problem is
solved if |Ω(t0)− 1| < |Ω(ti)− 1| Taken from [1].

1.2.2 Single scalar field inflation

We have seen that inflation should be capable of solving some of the shortcomings of the Big Bang
model. It can actually achieve much more, namely it can explain the primordial origin of the
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structures we observe today on cosmological scales. In order to see this we first need to understand
how exactly it is possible to achieve such a period of early accelerated expansion.

The simplest way to obtain a period of inflation is to assume the presence, at very early time,
of a scalar field, whose energy density drives the accelerated expansion. We call this scalar field
the inflaton ϕ(t, ~x). The starting point to study the single scalar field inflation is then the following
action:

S =

∫

d4x
√−g

(

1

16πG
R− 1

2
gµν∇µϕ∇µϕ− V (ϕ)

)

, (1.30)

which basically corresponds to the action (1.6) where subdominant fields, other than the inflaton,
have been neglected in Lm. Apart from the Einstein-Hilbert sector, action (1.30) contains the most
standard scalar field Lagrangian, with a canonical kinetic term and a self-interaction potential. In
principle it is possible to construct different inflationary models by choosing various profiles for
the potential, but later we will see that there are some underlying requirements which have to be
fulfilled. An example is given in Figure 1.4.

Figure 1.4: Example of slow-roll potential. During inflation the inflaton φ rolls down along the
plateau of the potential. Taken from [6].

Varying the action (1.30) with respect to ϕ results in the Klein-Gordon equation for the inflaton:

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
= −∂V

∂ϕ
. (1.31)

Applying equation (1.8) for the inflaton part of the action (1.30) it is possible to compute the
inflaton stress-energy tensor:

Tµν = ∂µϕ∂νϕ− gµν

(

1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)

. (1.32)

In order to proceed it is necessary to split the inflaton into its background value plus a small
fluctuation around it [7]:

ϕ(t, ~x) = ϕ0(t) + δϕ(t, ~x), (1.33)

with δϕ ≪ ϕ0. The background value ϕ0(t) is allowed to be only a function of time due to
the symmetries of the background FLRW spacetime. By definition < δϕ(t, ~x) >= 0, so that
< ϕ(t, ~x) >= ϕ0(t) is the inflaton vacuum expectation value. At first we will focus only on the
background evolution, leaving the treatment of the fluctuations for later, when we will see how
they can be regarded as the origin of the structures we observe today. A more detailed treatment
of cosmological perturbations from a general point of view is given in Chapter 2.



14 CHAPTER 1. INTRODUCTION TO COSMOLOGY

Equation (1.32) evaluated for the background inflaton can be written in components:

T 0
0 = −ρϕ = −

(

1

2
ϕ̇2 + V (ϕ)

)

,

T ij = pϕδ
i
j =

(

1

2
ϕ̇2 − V (ϕ)

)

δij ,

(1.34)

where from now on in this section we indicate the background inflaton just with ϕ. The first
Friedmann equation (1.10) now reads:

H2 =
8πG

3

(

1

2
ϕ̇2 + V (ϕ)

)

, (1.35)

where we have neglected the spatial curvature. This is possible because during inflation the cur-
vature density parameter is pushed to zero, as can be deduced from equation (1.28).

We can finally verify how the inflaton stress-energy tensor can behave as the driving force of
an inflationary period. Remembering the condition (1.18), and substituting (1.34), we get:

wϕ =
pϕ
ρϕ

=
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
< −1

3
, (1.36)

which is the constraint that the equation of state of the inflaton must satisfy in order to achieve
ä > 0, i.e. accelerated expansion. In particular, making the assumption V (ϕ) ≫ ϕ̇2, it follows
wϕ ≃ −1, with the inflaton behaving almost like a cosmological constant. This is called slow-roll
inflation, from the fact that the inflaton has little kinetic energy and slowly rolls down its potential.
Again we stress that it can’t be wϕ = −1 exactly because in such a case there would not be a way
to end the period of accelerated expansion. In the slow-roll regime, considering the background
value of the inflaton field, equations (1.31) and (1.35) can be approximated to:

3Hϕ̇ ≃ −V ′(ϕ),

H2 ≃ 8πG

3
V (ϕ),

(1.37)

where we have also assumed, reasonably, ϕ̈ ≪ 3Hϕ̇ in the first equation. This condition ensures
that the slow-roll requirement ϕ̇2 ≪ V (ϕ) is fulfilled for a long enough period.

We can now introduce some useful parameters, in order to better quantify the condition of slowly
rolling we have just introduced. The first slow-roll parameter is defined in the following way:

ǫ ≡ − Ḣ

H2
. (1.38)

Furthermore, we can write:
0 < ä = ȧH + aḢ = aH2(1− ǫ), (1.39)

from which it immediately follows the condition ǫ > 1, necessary to obtain an accelerated expansion.
However, inflation requires a more stringent constraint. Rearranging (1.38) in fact, with the help

of the second of (1.37), results in ǫ ∝ ϕ̇2

V (ϕ) ≪ 1. Exploiting also the first of (1.37) it is possible to

obtain a constraint on the first order derivative of the potential:

ǫ =
1

16πG

(

V ′

V

)2

≪ 1, (1.40)

meaning that the inflaton potential has to be sufficiently flat. A second parameter may also be
introduced, exploiting the assumption made on the inflaton acceleration ϕ̈≪ 3Hϕ̇:

η ≡ − ϕ̈

Hϕ̇
≪ 1, (1.41)
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from which it follows a condition on the second derivative of the potential:

ηV ≡ η + ǫ =
1

8πG

V ′′

V
, (1.42)

with |ηV | ≪ 1. A whole hierarchy of slow-roll parameters may follow, of higher orders than the
two just introduced, constraining higher order derivatives of the potential.

Therefore, the situation can be summed up as follows: during inflation the Universe undergoes
an accelerating expansion, driven by the energy density (mostly potential) of a single scalar field,
which slowly rolls along its potential. This goes on until the slow-roll conditions are satisfied (es-
sentially until ǫ ∼ 1). At this point inflation ends and the inflaton energy density gets converted
into all the particles needed to start the Hot Big Bang phase, via a process called reheating [7].
This situation is described in Figure 1.4, where a typical potential profile is represented. In par-
ticular, it can be observed that inflation occurs while the potential is sufficiently flat, so that the
inflaton can slowly rolls on the plateau. Eventually, this flatness is spoilt and inflation ends: the
inflaton starts oscillating around the true minimum of the potential and decays into other particles.

1.2.3 Primordial fluctuations from inflation

Now that we have seen the basic idea behind the background evolution in a single scalar field
inflationary model, we can turn to a fundamental topic for the scope of this Thesis, which is the
treatment of quantum fluctuations during inflation. In other words, we now consider the full ϕ(t, ~x)
as a quantum field, and see what is the evolution of the fluctuation δϕ(t, ~x) we have previously
neglected. Because of this fluctuation, there will be local differences δt(~x) in the time when the
inflation ends. This means that the local expansion history varies from one point to another and
leads to the production of local inhomogeneities in the energy density δρ(~x), which then evolve into
the CMB temperature inhomogeneities δT (~x) we measure today. The aim of this section and the
following one is to show how these perturbations generate from the primordial inflaton fluctuations
δϕ(t, ~x).

We start by writing the perturbed part (linear in δϕ) of the Klein-Gordon equation (1.31):

δ̈ϕ+ 3H ˙δϕ− ∇2δϕ

a2
= −V ′′(ϕ0)δϕ, (1.43)

where we have used the following expansion around ϕ0, up to first order, for the potential term:

V ′(ϕ) = V ′(ϕ0) + V ′′(ϕ0)δϕ+O(δϕ2), (1.44)

which in this way is explicitly written as a background term plus a first-order one. It is now
convenient to perform the following rescaling:

δϕ(t, ~x) =
δϕ̃(t, ~x)

a(t)
. (1.45)

Using this, and passing to conformal time τ , equation (1.43) becomes:

δϕ̃′′ − a′′

a
δϕ̃−∇2δϕ̃ = −∂

2V

δϕ2
(ϕ0)δϕ̃, (1.46)

where the ′ symbol denotes derivatives with respect to τ . In order to solve this equation it is useful
to write it in Fourier space:

u′′~k(τ) +

[

k2 − a′′

a
+
∂2V

δϕ2
(ϕ0)

]

u~k(τ) = 0, (1.47)

where u~k is defined as the Fourier transform of δϕ̃:

δϕ̃(τ, ~x) =
1

(2π)3

∫

d3~kei
~k~xu~k(τ). (1.48)
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We first consider the massless scalar field case, where m2
ϕ = ∂2V

δϕ2 (ϕ0) = 0. Equation (1.47), can be
rewritten as:

u′′~k + ω2
ku~k = 0, (1.49)

so that each Fourier mode satisfies the harmonic oscillator equation of motion with frequency
ω2
k = k2− a′′

a . Canonical quantization can thus be performed in analogy to the quantum harmonic
oscillator [6]. We promote the perturbation δϕ̃(τ, ~x) to a quantum operator δϕ̂(τ, ~x), such that the
mode expansion can be written as:

δϕ̂(τ, ~x) =
1

(2π)3

∫

d3~k
[

uk(τ)â~ke
i~k~x + u∗k(τ)â

†
−~k
e−i

~k~x
]

, (1.50)

where â~k, â
†
~k

are, respectively, the annihilation and creation operators, i.e. â~k|0〉 = 0 and 〈0|â†~k = 0,

where |0〉 is the vacuum state. The vector notation in uk and u∗k has been dropped since the

frequency ω2
k(τ) = k2 − a′′

a depends only on the absolute value k and the same happens for the
modes evolution [6]. Canonical quantization conditions read:

[

â~k, â~k′
]

=
[

â†~k
, â†~k′

]

= 0,
[

â~k, â
†
~k′

]

= (2π)3δ(3)(~k + ~k′),
(1.51)

and are ensured by the following normalization for the modes:

u′k(τ)u
∗
k(τ)− uk(τ)u

∗
k
′(τ) = −i. (1.52)

To fix the vacuum state |0〉, we exploit the information that at sufficiently early time (τ → −∞)

all modes of interest are still inside horizon
(

k2 ≫ a′′

a

)

. Taking the sub-horizon limit in equation
(1.49) results in ωk = k and the solution at early times corresponds to a plane-wave in a flat
spacetime:

lim
τ→−∞

uk(τ) =
1√
2k
e−ikτ . (1.53)

This initial condition for the mode functions defines what is called the Bunch-Davis vacuum.

We have already said that inflation needs some dynamics and the Universe cannot end up in
a de-Sitter spacetime, since otherwise it would go on inflating forever. We thus want to solve equa-
tion (1.49) in a so called quasi de-Sitter spacetime, where, using the slow-roll parameter already

introduced, ǫ = − Ḣ
H2 ≪ 1. In this approximation it is possible to rewrite (1.49) in the form of a

Bessel equation [8]:

u′′k(τ) +

[

k2 − ν2 − 1
4

τ2

]

uk(τ) = 0, (1.54)

where ν2 = 9
4 + 3ǫ. Solutions of this equation can be found going into the sub-horizon or super-

horizon limit. In the first case the result is basically proportional to the plane-wave in a flat
spacetime (1.53) we have already discussed. Remembering the rescaling (1.45), it follows:

δϕk =
uk
a

=
1

a
√
2k
e−ikτ . (1.55)

This tells us that, during inflation, modes inside the horizon oscillate while their amplitudes de-
creases as the inverse of the scale factor a. This behaviour goes on, for a given k, until the mode
crosses the horizon when k2 ∼ a′′

a . Without going too much into details, solving equation (1.54)
in the super-horizon regime leads to the following result [8]:

|δϕk| ≃
H√
2k3

(

k

aH

)
3
2−ν

, (1.56)

with 3
2 − ν = −ǫ. This tiny scale dependence of order ǫ would be absent in the case of a pure

de-Sitter spacetime. What the result (1.56) tells us is that, after crossing the horizon, an oscillating
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k mode (with vanishing expectation value) freezes out with an almost constant amplitude, thus
generating a classical perturbation of the field ϕ. A more in-depth treatment of equation (1.47)
and its solutions, in the massless case, is performed in Chapter 5, dealing with primordial tensor
perturbations.
In the more general case of a massive field the same result (1.56) holds, this time with 3

2−ν = ηV −ǫ
[8], where ηV =

m2
ϕ

3H2 . The slow-roll condition |ηV | ≪ 1 then requires ϕ to be very light (with re-
spect to the Hubble parameter).

1.2.4 Primordial power spectrum

Now that we have found expression (1.56) for the primordial perturbations after the horizon-
crossing, we are able to compute their power spectrum, which is the most important observable
when dealing with a zero-mean random field such as δϕ.

First, we introduce the concept of power spectrum in a more general way. Let δ(t, ~x) be the
fluctuation around the background value of any field. The 2-point correlation function is then
taken to be the following:

ξ(r) = 〈δ(t, ~x+ ~r)δ(t, ~x)〉, (1.57)

where the angular brackets denote an ensamble average, ideally over different realizations of the
Universe. Expression (1.57) basically represents the probability to have a configuration with the
two fluctuations at a distance r one from another. The dependence on r = |~r| is due to the
homogeneity and isotropy of the background spacetime. Taking instead the 2-point correlation
function of the Fourier transform, defined as in (1.48), we obtain:

〈δ(t,~k)δ(t,~k′)〉 = (2π)3δ(3)(~k + ~k′)P (k), (1.58)

where P (k) is the power spectrum of the fluctuation δ. The dependence on k = |~k| is due to
isotropy, while homogeneity is encoded in the Dirac delta function. The power spectrum carries
information about the mean power (quadratic in the fluctuation itself) of the fluctuation on a given
scale. The just defined two quantities (1.57) and (1.58) are one the Fourier transform of the other,
in fact:

ξ(r) = 〈δ(t, ~x+ ~r)δ(t, ~x)〉 = 1

(2π)6

∫

d3~k

∫

d3~k′ei
~k(~x+~r)ei

~k~x〈δ(t,~k)δ(t,~k′)〉

=
1

(2π)3

∫

d3~kei
~k~rP (k).

(1.59)

The variance of δ(t, ~x) can be regarded as the 2-point correlation function (1.57) computed for
r=0:

ξ(0) = 〈δ2(t, ~x)〉 = 1

(2π)3

∫

d3~kP (k) =

∫

dk

k
P(k), (1.60)

where the last equality defines the adimensional power spectrum:

P(k) =
k3

2π2
P (k). (1.61)

We can now compute the power spectrum of the primordial inflaton fluctuations. Taking the
variance of expression (1.50) we get:

〈|δϕ̂2|〉 = 1

(2π)6

∫

d3~k

∫

d3~k′〈0|
(

uk(τ)â~ke
i~k~x + u∗k(τ)â

†
−~k
e−i

~k~x
)

×
(

uk′(τ)â~k′e
i~k′~x + u∗k′(τ)â

†
−~k′

e−i
~k′~x

)

|0〉

=
1

(2π)6

∫

d3~k

∫

d3~k′uku
∗
k′〈0|

[

â~kâ
†
−~k′

]

|0〉e−i(~k−~k′)~x

=
1

(2π)3

∫

d3~k|uk|2,

(1.62)
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where we have used the second of the (1.51) in the last passage. Remembering the rescaling (1.45),
by comparing (1.62) with (1.60) we finally obtain the power spectrum of the inflaton perturbations:

Pδϕ(k) = |δϕk|2 =
H2

2k3

(

k

aH

)3−2ν

, (1.63)

where in the second equality we have substituted the expression (1.56), since all modes of interest
sooner or later leave the horizon during inflation. From (1.61), the adimensional power spectrum
is then:

Pδϕ(k) =
(

H

2π

)2(
k

aH

)3−2ν

. (1.64)

In our previous treatment we have provided with the relation 3− 2ν = 2ηV − 2ǫ, when accounting
for both the deviation from a pure de-Sitter spacetime and a light mass of the inflaton. Actually
the situation is slightly more involved. Our simple model is based on the fact that, during inflation,
the inflaton sources the vast majority of the energy content, such that we have also neglected any
other possible contribution during that time. From Einstein equations it follows that the metric
itself is sourced by the inflaton energy density, and in particular we conclude that it should be
sensible to the inflaton fluctuations. To account for this, it is useful to introduce the so called
comoving curvature perturbation [8]:

R ≡ ψ̂ +H
δϕ

ϕ̇
, (1.65)

where ψ̂ is related to the spatial curvature perturbation of the metric, as we will see in the next
Chapter. From the definition it is clear that R keeps trace of any perturbation in the inflaton
field δϕ, of which we have just computed the power spectrum (1.64). Actually, another quantity is
usually considered when studying primordial scalar perturbations, whose relation with the inflaton
perturbation is less manifest. It is called the curvature perturbation on uniform energy density
hypersurfaces [8]:

ζ ≡ −ψ̂ −H
δρ

ρ̇
, (1.66)

where ρ designates generically the energy density of any component of the fluid which contributes
to the total budget. The denomination of the two quantities (1.65) and (1.66) reflects the fact

that both correspond to ψ̂ in two different gauges: the comoving gauge and the spatially flat one,
respectively. We will deepen more on this subject in the next Chapter, dealing with cosmological
perturbation theory. In particular we will see that both R and ζ are gauge-invariant quantities by
construction. Furthermore, we will show that their value remains constant on super-horizon scales,
for the simplest models of inflation, making them great candidates to understand the evolution of
primordial scalar perturbations of the inflaton field after they cross the horizon during inflation.
Figure 1.5 describes the constant behaviour of primordial perturbations outside the horizon. It is
clear the advantage of using R instead of δϕ: since Ṙ ≃ 0 on super-horizon scales, we can compute
R at horizon-crossing, during inflation, and the same results holds also when the mode re-enters
the horizon, well after inflation has ended. In practice, we can neglect the super-horizon evolution,
since modes are nearly frozen during that time.
A more rigorous treatment of R and ζ is left for the next Chapter, but as of now we can at
least derive the relation between these two quantities, since we are already in possession of all the
instruments to do so. Assuming the slow-roll condition is satisfied during inflation, we know that
the inflaton energy density can be identified with the potential, neglecting the kinetic one, i.e.
ρϕ ≃ V (ϕ). From this we can write, on super-horizon scales:

δρϕ = V ′(ϕ)δϕ = −3Hϕ̇δϕ, (1.67)

where in the last passage we have used the Klein-Gordon equation in the slow-roll regime (1.37).
Substituting expressions (1.34) inside the continuity equation (1.12) we get:

ρ̇ϕ = −3H(ρϕ + Pϕ) = −3Hϕ̇2. (1.68)
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Figure 1.5: Time evolution of the primordial fluctuations during and after inflation. In particular,
their value is frozen out of the horizon, ending up as the initial condition for the CMB temperature
anisotropies. Taken from [6].

Putting together the previous results (1.67) and (1.68), and remembering the definitions of the
gauge-invariant quantities (1.65) and (1.66), we finally obtain on super-horizon scales:

ζ = −ψ̂ −H
δρ

ρ̇
= −ψ̂ −H

−3Hϕ̇δϕ

−3Hϕ̇2
= −ψ̂ −H

δϕ

ϕ̇
= −R, (1.69)

meaning that we can derive the power spectrum of the quantity ζ using the result already found
for the inflaton perturbation (1.64). The convenience of using ζ resides in the fact that, as well as
being gauge-invariant, it is also a conserved quantity outside the horizon, under the assumption of
adiabaticity of the perturbations [8]. We will derive this result in the next Chapter.
All the arguments just provided lead to identify ζ as the right quantity to focus on in order to study
the effects of primordial scalar perturbations on observables, such as the large scale structure (LSS)
and the cosmic microwave background (CMB) radiation. Chapter 4 is devolved to the derivation
of the CMB temperature anisotropies as a consequence of the primordial scalar perturbations re-
entering the horizon.

Moving on, we can exploit the gauge invariance property to evaluate expression (1.66) for ζ in

the spatially flat gauge, where ψ̂ = 0. Remembering the result (1.69), we conclude that:

ζ
∣

∣

ψ̂=0
= −H δϕ

ϕ̇
, (1.70)

such that expression (1.64) becomes:

Pζ(k) =
(

H2

2πϕ̇

)2(
k

aH

)3−2ν

, (1.71)

which we refer to as the primordial power spectrum. This result can be rewritten using slow-roll

equations (1.37) and the definition of ǫ (1.38). In fact, during slow-roll inflation, ǫ = − Ḣ
H2 = 4πGϕ̇2

H2 ,
and (1.71) becomes:

Pζ(k) =
H2

8π2M2
P ǫ

(

k

aH

)3−2ν

, (1.72)

where we have introduced the reduced Planck mass MP = (8πG)−1/2. It is then possible to
compute the so called scalar spectral index ns, defined as:

ns − 1 ≡ dlnPζ
dlnk

, (1.73)
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which quantifies the scale dependence of the adimensional power spectrum of scalar primordial
perturbations. To proceed with the computation, we evaluate equation (1.71) at horizon-crossing,
exploiting the fact that ζ is constant on super-horizon scales:

Pζ(k) =
(

H2

2πϕ̇

)2

k=aH

. (1.74)

In this way at each scale corresponds a different instant in time, determined by solving the condition
which identifies the horizon-crossing k = aH. Doing so the k dependence is made implicit inside
time-dependent quantities in (1.74). From the horizon-crossing condition we have:

lnk = lna+ lnH = N + lnH, (1.75)

where in the second equality we have applied the definition of e-foldings (1.19). From (1.75),
neglecting the variation of H [9]:

dlnk = Hdt. (1.76)

Combining equations (1.73), (1.74) and (1.76) it follows:

ns − 1 =
1

Pζ
dPζ
Hdt

=
ϕ̇2

H4

1

H
2
H2

ϕ̇

2HḢϕ̇− ϕ̈H2

ϕ̇2
= 4

Ḣ

H2
− 2

ϕ̈

Hϕ̇
= −4ǫ+ 2η = 2ηV − 6ǫ, (1.77)

where we have used expressions (1.38), (1.41), (1.42) for the slow-roll parameters. Equation (1.77)
is the spectral index of the scalar perturbations, when one accounts both for the inflaton and the
metric scalar perturbations.
From the latest result by Planck Collaboration [3], obtained considering CMB power spectra to-
gether with CMB lensing constraints, we know that experimentally ns = 0.9649 ± 0.0042. This
is consistent with the prediction (1.77) of the single field slow-roll model of inflation. In par-
ticular, this value of the scalar spectral index tells us that primordial perturbations are nearly
scale-invariant, with just a little red tilt (i.e. more power on smaller scales).

1.2.5 Primordial non-Gaussianity

Until now we have focused on the primordial scalar perturbations and their power spectrum, which
is the equivalent of the 2-point correlation function in Fourier space. That would be enough for a
complete statistical description only in the case perturbations were assumed to be Gaussian, which
actually would be consistent with latest measurements by Planck collaboration [10].
Clear deviations from this Gaussian behaviour have yet to be observed, neither they have been ex-
cluded. Nevertheless, primordial non-Gaussianity (PNG) is expected to contain both exclusive and
complementary information about the early Universe. For instance, a more precise measurements
of the amount of PNG would be fundamental to help discriminating between different models of
inflation [11].

Single field slow-roll models of inflation predict an amount of PNG of the order of the slow-
roll parameters [12, 13]. Evidences of substantial deviations from Gaussianity would thus rule out
this kind of models. Higher amounts of non-Gaussianity are predicted, typically, by models with
non-canonical kinetic terms, multiple fields and/or higher order inflaton self-interactions [14].

The simplest way to probe PNG is to compute the 3-point correlation function of the primor-
dial fluctuations. In fact, it vanishes in the Gaussian case and its value is directly proportional
to the amount of non-Gaussianity predicted by a specific model. Statistical properties of the pri-
mordial perturbations would then be inherited by late time observables, affecting for example the
expected CMB temperature anisotropies.
Simulated CMB maps are shown in Figure 1.6, for both temperature and polarization, in absence
and presence of non-Gaussianities. At a first glance the effect of the non-Gaussianity is to move
the power of the fluctuations to lower multipoles [15]. This is just an example but shows how
PNG could have an influence on present observables, which in return would tell us fundamental
information about the early Universe.
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In this work we will treat at first CMB non-Gaussianities, which are vastly covered in the lit-
erature [16, 17], and then we will apply the same formalism to study non-Gaussianities in the
cosmological gravitational wave background (CGWB). In particular we will focus on the primor-
dial bispectrum and its imprint on the GW background, being it simple to treat yet containing
much information on PNG already.

Figure 1.6: Simulated CMB maps for temperature (up) and polarization (down) anisotropies. In
the left column Gaussian initial conditions are assumed, while the non-Gaussian case is represented
in the right column. Taken from [15].
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Chapter 2

Theory of Cosmological

Perturbations

Dealing with the inflationary model in the previous Chapter, we have split the treatment of the
inflaton evolution into its background and perturbations parts. This is a procedure which is fre-
quently adopted in Cosmology, and in general it takes the name of Cosmological Perturbation
Theory (CPT) [18, 19]. In this Chapter we focus on the linear perturbation theory, considering
only first order fluctuations, and we introduce the so called gauge problem, seeing also what are
the ways to solve it. Finally we formulate a more rigorous treatment of the curvature perturba-
tion, already defined to study the evolution of scalar primordial fluctuations outside of the horizon.

2.1 Cosmological perturbations at first order

We have seen that the background metric (1.1) has a very simple expression. In reality the situa-
tion is quite different and the FLRW metric is not sufficient to describe aspects which deviate from
the idea of an isotropic and homogeneous Universe, e.g. the formation of large scale structures.
Nevertheless, we do not want to give up on the simplicity provided by such an idealized background
spacetime. The idea behind CPT is thus to solve exactly a simpler version of a given problem,
and then to include all the other complications as small perturbations around the background
solution. In this way it is possible to treat, quite handily, also problems which would not have
exact solutions. This is a general idea that can be applied to any tensor defined on the spacetime,
so that each quantity can be split into a background value plus a fluctuation.
We have already followed this same procedure in equation (1.33), dealing with the inflaton and its
fluctuations, where we have implicitly kept perturbative terms up to the first order. Now we can
perform a more general and rigorous treatment, starting by defining the metric fluctuations.

2.1.1 The perturbed metric tensor

The full metric, describing the physical spacetime with all its features, can be expressed, in a
similar fashion to equation (1.33), as:

gµν(τ, ~x) = g(0)µν (τ) + δgµν(τ, ~x), (2.1)

where g
(0)
µν is the background FLRW metric (1.1) and δgµν represents the fluctuations around it.

It is assumed δgµν ≪ g
(0)
µν , as requested by perturbation theory. A similar expression can be

considered for any other tensor, keeping in mind that the background value must satisfy the same
symmetry properties of the background spacetime, i.e. homogeneity and isotropy.
Usually, the metric fluctuation in equation (2.1) is further decomposed into scalar, vector and
tensor components, according to their transformation behaviour under local rotations [20]. We can

23
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thus expand the metric components, written in Cartesian coordinates, in the following way:

g00 = −a2(τ)
(

1 + 2

+∞
∑

r=1

1

r!
φ(r)

)

,

gi0 = g0i = a2(τ)

+∞
∑

r=1

1

r!
ω̂
(r)
i ,

gij = a2(τ)

[

(

1− 2

+∞
∑

r=1

1

r!
ψ(r)

)

δij +

+∞
∑

r=1

1

r!
χ̂
(r)
ij

]

,

(2.2)

where χ̂ij(r) is a traceless tensor, i.e. χ̂
i(r)
i = 0. We have adopted the same notations used in [8].

All the newly introduced functions in (2.2), needed to parametrize the metric fluctuations, depend
both on conformal time and space. Summations include all the different terms of the expansion,
where r denotes the order of the perturbation.
A decomposition like (2.2) into scalar (S), vector (V) and tensor (T) component is often called an
SVT decomposition [2]. In this way, a 3-vector can be split into the gradient of a scalar plus a
divergenceless vector, so that:

ω̂
(r)
i = ∂iω

(r) + ω
(r)
i , (2.3)

with ∂iω
(r)
i = 0. In this context a divergenceless vector is also called transverse, since in Fourier

space the condition becomes kiω
(r)
i = 0, identifying the orthogonal direction with respect to the

wavevector ki. In a similar way a traceless tensor can be written as:

χ̂
(r)
ij = Dijχ

(r) + ∂iχ
(r)
j + ∂jχ

(r)
i + χ

(r)
ij , (2.4)

where, in analogy to the vector case, ∂iχ
(r)
ij = 0, thus designating χ

(r)
ij as transverse and traceless

tensor degrees of freedom. Consistently with the fact that χ̂
(r)
ij is a traceless tensor, we have in-

troduced the traceless operator Dij ≡ ∂i∂j − 1
3δij∇2. As a result of the SVT decomposition, we

check that the 10 degrees of freedom of the metric have been split up into 4 scalar, 4 divergenceless
vector, and 2 divergenceless and traceless tensor degrees of freedom [18, 21]. Furthermore, the
actual reason behind the SVT decomposition is that, at linear order, scalars, vectors and tensors
evolve independently, meaning that it is possible to write evolution equations which do not mix
different type of perturbations [8].

In writing decomposition (2.2) we have been generic and included perturbations up to any or-
der. Neglecting all the terms of order higher than the first, the full perturbed line element has the
following expression:

ds2 = a2(τ)
[

− (1 + 2φ)dτ2 + 2ω̂idτdx
i +

(

(1− 2ψ)δij + χ̂ij
)

dxidxj
]

, (2.5)

where from now on we omit the apex (1) since we will treat only the linear perturbation theory.
Putting to zero all the perturbative terms in (2.5) the background FLRW metric is retrieved.
The next step is to use this linearly expanded metric inside Einstein equations (1.7) and to solve
for the evolution of the different perturbations. In order to do so it is necessary to first compute the
perturbed expressions for the affine connections and subsequently for the Ricci tensor and scalar.
The results of these computations are reported in Appendix A.

2.1.2 The perturbed stress-energy tensor

The other necessary ingredient to write down Einstein equations is the stress-energy tensor, which
accounts for the energy content of the Universe and thus acts as a source for the gravitational field.
Dealing with the background evolution, in the previous Chapter we have written down expression
(1.9) as the stress-energy tensor of a perfect fluid. This reflects, as we have already pointed out,
the homogeneity and isotropy properties of the FLRW background spacetime. More in general, we
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now want to account for fluctuations around the background value, so that the expression for the
full perturbed stress-energy tensor becomes:

Tµν = T (0)
µν + δTµν = ρuµuν + phµν +Πµν , (2.6)

where we have defined the projector hµν ≡ uµuν+gµν orthogonal to the 4-velocity uµ, i.e. hµνu
µ =

0. The perturbative term Πµν accounts for the presence of anisotropic stresses and thus has a
vanishing background value. All the quantities in expression (2.6) can then be expanded up to any
order, in the same way as we have done with the metric in (2.2):

• The 4-velocity can be expressed as:

uµ =
1

a

(

δµ0 +

∞
∑

r=1

vµ(r)(τ, ~x)

)

, (2.7)

where the first order perturbation is vµ = (v0, v̂i), with v̂i the peculiar velocity of the fluid.
Expanding the normalization condition gµνu

µuν = −1 at first order, it follows for the 0-
component of the linear velocity perturbation:

v0 = −φ. (2.8)

• For the energy density we write:

ρ(τ, ~x) = ρ(0)(τ) +
∞
∑

r=1

δρ(r)(τ, ~x), (2.9)

where the background value ρ(0) cannot depend on the spatial position, due to the symme-
tries of the underlying spacetime. The lowest order spatial dependence is then carried by the
linear perturbation.

• Likewise, the isotropic pressure is:

p(τ, ~x) = p(0)(τ) +

∞
∑

r=1

δp(r)(τ, ~x). (2.10)

Writing p = p(ρ, S), with S being the entropy, its perturbation can also be split in the
following way:

δp =

(

∂p

∂ρ

)

S

δρ+

(

∂p

∂S

)

ρ

δS, (2.11)

where the second term accounts for non-adiabatic (δS 6= 0) contributions, while the first

defines the adiabatic speed of sound c2s =

(

∂p
∂ρ

)

S

, computed at constant entropy S.

The anisotropic stress Πµν has only non-vanishing spatial components Π̂ij , that can be further
SVT decomposed:

Π̂ij = DijΠ+ ∂iΠj + ∂jΠi +Πij . (2.12)

It is considered to be traceless, Π̂ii, since its trace can be reabsorbed into the definition of the
isotropic pressure p. In analogy to the spatial components of the metric, the tensor degrees of free-
dom Πij are defined as transverse ∂iΠij = 0. We will consider only the linear part of perturbation
(2.12), but in principle it includes terms up to any order.

Substituting the perturbative expansions back into equation (2.6), and keeping terms up to first
order, it is possible to recover an explicit expression for the linear perturbation of the stress-energy
tensor. This, combined with the geometric part from the previous section, allows to write down
the perturbed linear order Einstein equations.
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2.1.3 Perturbed Einstein equations

The evolution of metric perturbations in (2.5) is determined by the linearized Einstein equations.
Expanding equation (1.7) up to first order and subtracting from it the background part we are left
with just the linear components:

δGµν = 8πGδTµν , (2.13)

where we have raised one index with respect to (1.7) since it makes the computations more feasible.
We have already described the necessary ingredients to write down the components of this equation.
General expressions for δGµν are reported in Appendix A. For what concerns the stress-energy
tensor, we have:

δTµν = δ
(

gµνTµν
)

= δgµνTµν + gµνδTµν , (2.14)

where we need to neglect terms of order higher than the first.
Remember now that, at linear order, Einstein equations only couple perturbations of the same
nature, being them scalar, vector or tensor degrees of freedom. Because of this, it is possible
to consider only a single type of perturbations at a time inside the linearized Einstein equations
(2.13).
For the scope of this work we are mostly interested in the scalar metric perturbations and thus
provide here with their evolution equations, which can be derived neglecting vector and tensor
degrees of freedom.
The (0-0)-component of (2.13) gives:

1

a2

[

3H
(

ψ̂′ +Hφ
)

−∇2
(

ψ̂ +Hσ
)

]

= −4πGδρ, (2.15)

where we have defined the curvature perturbation:

ψ̂ ≡ ψ +
1

6
∇2χ, (2.16)

and the shear perturbation:

σ ≡ 1

2
χ′ − ω. (2.17)

From the (0-i)-component of linearized Einstein equations we get:

1

a2
(

ψ̂′ +Hφ
)

= −4πG(ρ0 + p0)(v + ω), (2.18)

where we have exploited the SVT decomposition of the vector components and neglected the
divergenceless parts, since they do not affect the evolution of scalars. We have also introduced
a simplified notation to designate the background zero-order values of the energy density ρ0 and
isotropic pressure p0. Both equations (2.15) and (2.18) are not dynamical and can be regarded,
respectively, as energy and momentum constraints. Actual evolution equations follow instead from
the (i-j)-component of (2.13). Consistently with the previous treatment of the spatial metric
perturbations, the trace and traceless parts provide with two independent equations. These are,
respectively:

1

a2

[

ψ̂′′ + 2Hψ̂′ +Hφ′ +
(

2H′ +H2
)

φ
]

= 4πG

(

δp+
2

3
∇2Π

)

, (2.19)

and:
1

a2
(

σ′ + 2Hσ + ψ̂ − φ
)

= 8πGΠ, (2.20)

where again we have SVT decomposed the tensor perturbations and considered only their scalar
degrees of freedom. Equations (2.19) and (2.20) contains second-order time derivatives and thus
describe the evolution of scalar perturbations.

In order to derive the physical implications of the equations we have just computed, it is first
necessary to deal with an issue we have not considered up to now. Because of the symmetries of
General Relativity and of the way perturbations are defined in Cosmology, in fact, our results,
written in the way we have, actually contain redundant and nonphysical degrees of freedom we
need to take care of. This will be the subject of the next section.
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2.2 The gauge problem

It is time to address to a subtle but intrinsic ambiguity that arises when dealing with CPT. This
is known as gauge problem, and refers to the fact that the perturbations for which we derived
expressions in the previous sections are not uniquely defined [20].
Consider for example a generic tensor quantity T , which takes value on the full perturbed space-
time: its perturbation δT is then defined as the difference between the perturbed value T computed
in a certain point of the physical spacetime and the zero-order value T0 evaluated in the corre-
sponding point of the background. This correspondence between points of the physical and of the
background spacetime is realized by a map. The problem lies in the freedom of choosing such a
map, so that different choices for the corresponding points are possible. This ultimately leads to
different values for the perturbations, one for each possible choice of the map.
The change of map is achieved through a gauge transformation, in such a way that each map
describes a different gauge choice. A gauge transformation, in practice, is realized by a change
of coordinates in the physical spacetime. General Relativity is a theory invariant under generic
diffeomorphisms, but the value of a perturbation δT does transform after a change of coordinates,
and thus it depends on the gauge.
It is quite useful to think each coordinate system as a particular way of slicing the full spacetime
into constant time τ hypersurfaces. In this way a gauge can be identified by the properties we
want the spatial hypersurfaces to have. The freedom in choosing a particular slicing, i.e. gauge,
can introduce non-physical contributions to the perturbations, which have to be identified and
distinguished from the real physical values.

In order to illustrate better these ideas, let us show a simple concrete example [2]. Starting
from the FLRW flat metric (1.1), we make the following change of spatial coordinates:

x̃i = xi + ξi(τ, ~x), (2.21)

where ξi is assumed to be a small perturbation. The inverse change of coordinates is then, up to
first order in ξi, xi = x̃i − ξi(τ, ~̃x). Space and time intervals transform with the Jacobian of the
transformation law:

dxµ =
∂xµ

∂x̃ν
dx̃ν . (2.22)

For the transformation (2.21) we are considering, the time component is left invariant while for
the spatial ones we get:

dxi =
∂xi

∂x̃ν
dx̃ν = dx̃i − ξi′dτ − ∂jξ

idx̃j , (2.23)

so that the FLRW metric in the new coordinates (2.21), at linear order in the perturbation ξ, has
the following expression:

ds2 = a2
[

− dτ2 − 2ξ′idτdx̃
i + (δij + ∂iξj + ∂jξi)dx̃

idx̃j
]

. (2.24)

Comparing this result with the generic expression (2.5), we see that we have apparently introduced
metric perturbations, even if we know that FLRW spacetime is homogenous and isotropic. Indeed
this is just an effect of the coordinate system in which we have decided to rewrite the metric, and
the perturbations which have come up can be regarded as unphysical gauge artifacts.
In a similar but opposite way, by making a suitable change of coordinates it is also possible to
instead remove real perturbations. A particular gauge choice can thus hide the true physical prop-
erties of our system, so that we need an unambiguous way to describe it uniquely.

2.2.1 Gauge transformations

Consider now the gauge transformation induced by a generic infinitesimal change of coordinates:

x̃µ = xµ − ξµ(x), (2.25)
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where the presence of the minus sign is such that the results we find agree with the sign convention
usually adopted in the literature. It is necessary to understand how a given quantity transforms as
a consequence of (2.25). In order to do so we exploit the transformation properties of tensors. We
know in fact that any given tensor T transforms with the Jacobian (and its inverse) of the change
of coordinates, namely:

T̃µν(x̃) =
∂x̃µ

∂xρ
∂xσ

∂x̃ν
T ρσ(x), (2.26)

where the generalization to a different combination of indices is straightforward. We want to
compute the consequences on T of a gauge transformation along the direction ξ. We thus combine
equations (2.25) and (2.26) to obtain the relation between the new and old tensors, both evaluated
at the same coordinate point:

T̃µν = (δµρ − ∂ρξ
µ)(δσν + ∂νξ

σ)T ρσ(x+ ξ) = Tµν − ∂ρξ
µT ρν + ∂νξ

ρTµρ + ξρ∂ρT
µ
ν , (2.27)

where we have kept the linear order in ξ. A similar transformation law is valid for tensors of any
order. All the first order terms in (2.27) can be grouped together into what is known as the Lie
derivative of the tensor T along the direction ξ:

LξTµν = ∂ρT
µ
νξ
ρ − T ρν∂ρξ

µ + Tµρ∂νξ
ρ, (2.28)

where all the terms are evaluated at the same coordinate point. This reflects the independence
on the coordinate system of the Lie derivative. Furthermore, the fact that all terms in (2.28) are
already linear in the perturbations let us consider only the unperturbed part of a tensor T0 inside
the Lie derivative, when dealing with first order CPT.

It is now possible to derive what is the behaviour under a gauge transformation of all the metric
and stress-energy tensor perturbations we have previously defined. In doing so it is useful to SVT
decompose the infinitesimal displacement ξµ in the following way:

ξ0 = α,

ξi = ∂iβ + di,
(2.29)

with ∂id
i = 0, so that the 4 degrees of freedom are split up between two scalars and one diver-

genceless vector.
Applying the transformation law (2.27) on the perturbations of the linearly perturbed metric (2.5),
we can find how they behave under the infinitesimal change of coordinates (2.25):

g̃µν = gµν + Lξg(0)µν . (2.30)

As an example, we show the explicit computation for the perturbation φ of the g00 = −a2(1 + 2φ)
component:

− a2(1 + 2φ̃) = −a2(1 + 2φ)− 2aa′α− 2a2α′, (2.31)

where we have applied equation (2.30) and used the decomposition (2.29) for the infinitesimal
displacement ξ. Solving for φ̃ we find the following gauge transformation law:

φ̃ = φ+Hα+ α′, (2.32)

with H ≡ a′

a defined in analogy with the Hubble parameter but using instead the conformal time
τ . In a similar way it is possible to obtain an analogous expression for each of the perturbations
in the metric (2.5). We just write down the results of the computations:

ψ̃ = ψ −Hα− 1

3
∇2β,

˜̂ωi = ω̂i + ∂iα+ ∂iβ
′ + d′i,

˜̂χij = χ̂ij + 2Dijβ + ∂idj + ∂jdi.

(2.33)
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Applying an SVT decomposition it is also possible to separate the scalar, vector and tensor degrees
of freedom defined in (2.3) and (2.4):

ω̃ = ω − α+ β′,

ω̃i = ωi + d′i,

χ̃ = χ+ 2β,

χ̃i = χi + di,

χ̃ij = χij ,

(2.34)

from which it is clear that (transverse and traceless) tensor components are gauge-invariant, at
least at linear order in the perturbations.
Similarly, one can compute gauge transformations for the stress-energy tensor perturbations. The
procedure is totally analogous to what we have done in the metric perturbations case. For the
energy density it gives:

δ̃ρ = δρ+ ρ′0α. (2.35)

Considering instead the 4-velocity, and separating the temporal and spatial components, the gauge
transformations are:

ṽ0 = v0 −Hα− α′,

˜̂vi = v̂i + ∂iβ + di′.
(2.36)

The SVT decomposition allows to write v̂i = ∂iv + vi, so that it follows:

ṽ = v + β,

ṽi = vi + di′.
(2.37)

2.2.2 Gauge freedom and gauge choice

After having discussed the gauge problem, it is now clear how the freedom to choose one gauge or
another can truly be a source of ambiguity, both during computations and in the interpretation of
the final results. Therefore, a clever and powerful way out of this issue may actually be to come
up with gauge-invariant quantities, exploiting the gauge transformations we have just computed
and combining them in meaningful ways. We will do so in the next section.

An alternative would be to choose a given gauge and work out all the calculations in that gauge.
From the discussion of the previous section we know that a gauge transformation is determined by
the infinitesimal displacement ξ. The freedom in the choice of gauge corresponds to the freedom of
choosing the components of ξ. In practice this can be used to arbitrarily fix the values of four de-
grees of freedom amongst the perturbation components. Doing so can be referred to as performing
a gauge choice. Many different choices are possible and in principle there is no reason to prefer a
gauge over another. Usually it is convenient to choose a gauge where equations of interest have a
simpler form, solve the problem in that gauge and then exploit gauge transformations to generalize
the result to any gauge. Even if this may simplify the actual computations, one should always be
careful to the presence of possible gauge artifacts [5].

2.2.3 Gauge-invariant quantities

One way to deal with the gauge problem is to define specific quantities that have the useful property
to be invariant under an arbitrary gauge transformation. One of the first attempt to implement
this idea is due to Bardeen (1980), who introduced what now are called the Bardeen’s potentials
[21]:

Φ = φ− σ′ −Hσ,
Ψ = ψ̂ +Hσ.

(2.38)

It is straightforward to check that Φ and Ψ are indeed gauge-invariant quantities. They are
called potentials since they appear inside a Poisson-like equation, derived from linearized Einstein
equations for scalar perturbations, playing a role similar to the gravitational potential. This result
is explicitly derived in the next section.
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2.2.4 Linearized Einstein equations in the Poisson gauge

We can now exploit the gauge freedom to actually gain some physical insight from the compo-
nents of linearized Einstein equations derived in section 2.1.3. These equations assume simpler
expressions in the Poisson gauge, which is defined imposing the following conditions [8]:

ω = 0, χ = 0, χi = 0. (2.39)

In this way vector and tensor perturbations of the metric contain, respectively, only true (diver-
genceless) vector and true (divergenceless and traceless) tensor degrees of freedom. Notice that
this corresponds to fix 4 degrees of freedom, as we have pointed out previously. It is then possible
to focus on each type of perturbation at a time.

From conditions (2.39) it immediately follows that in the Poisson gauge the shear perturbation van-

ishes σ = 0, in such a way that also ψ̂ = ψ. Furthermore, the expressions of Bardeen’s potentials
(2.38) in this gauge reduce to:

Φ = φ, Ψ = ψ. (2.40)

Equation (2.20) thus simplifies and, in absence of anisotropic stresses Π = 0, which is actually the
case for many ΛCDM models, we get:

Φ−Ψ = 0. (2.41)

This is a remarkable and simple result, which relates the two scalar potentials. Furthermore, it is
written in terms of gauge-invariant quantity, so that it holds also for any other gauge choice, even
if we explicitly derived it in the Poisson one.

Another interesting result can be obtained by combining equations (2.15) and (2.18), such that, in
the Poisson gauge, it is possible to write:

−∇2Φ = −4πGa2
[

δρ− 3H(ρ0 + p0)(v + ω)
]

. (2.42)

Keeping the first order in perturbations, we can substitute the background continuity equation
(1.12) and we obtain:

∇2Φ = 4πGa2
[

δρ+ ρ′0(v + ω)
]

, (2.43)

which is yet another gauge-invariant equation, since it can be verified that the combination on the
right side δρ+ ρ′0(v+ω) is indeed a gauge-invariant quantity. It corresponds to the energy density
in the comoving gauge, defined by imposing the peculiar velocity of the fluid to vanish. Equation
(2.43) thus resembles a Poisson-like equation where the Bardeen’s potential plays the role of the
Newtonian one, thus justifying the name given to the gauge-invariant quantity. Because of this
result, the Poisson gauge also takes the name of Newtonian gauge when only scalar perturbations
are considered.

2.3 Curvature perturbation

With the insight we have learnt on cosmological perturbations theory, we are now able, using the
formalism adopted for the treatment of gauge-invariant quantities, to revisit and deepen the two
different definitions of curvature perturbation, (1.65) and (1.66), first introduced in Chapter 1
dealing with primordial scalar perturbations.

2.3.1 Comoving curvature perturbation

For what concerns the comoving curvature perturbation, the starting point is to consider the
intrinsic spatial curvature on constant time hypersurfaces [8]:

(3)R =
4

a2
∇2ψ̂, (2.44)
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where we remember the definition (2.16). Notice that the quantity (2.44) is clearly not invariant

under a gauge transformation, since ψ̂ transforms in the following way:

˜̂
ψ = ψ̂ −Hα, (2.45)

where we have applied results (2.33) and (2.34). In particular, it is sensible only to a shift α of the
time coordinate, responsible for a change of the slicing of spacetime.
Consider then the comoving gauge, where constant time hypersurfaces are orthogonal to the world-
lines of comoving observers. Such observers do not measure any flux of energy, i.e. T0i = 0, since
they experience an isotropic expansion [18, 21]. During inflation this corresponds to measure a
vanishing inflaton perturbation, δϕcom = 0. Applying the transformation law (2.27) to the full
inflaton field (1.33), we find that:

δ̃ϕ = δϕ+ ϕ′
0α, (2.46)

where δϕ has been regarded as the linear perturbations around the zero-order value ϕ0. We have
found that the inflaton perturbation transforms in a similar way to ψ̂. This suggests that it should
be possible to combine the two in such a way to obtain a gauge-invariant quantity.
Therefore, we can ask ourselves what is the required time displacement, ξ0 = α, necessary to pass
from a generic gauge to the comoving one. The condition to impose is δϕcom = δϕ + ϕ′

0α = 0,
from which:

α = −δϕ
ϕ′
0

. (2.47)

We can substitute this shift inside the transformation law (2.45) to recover the expression for ψ̂ in
the comoving gauge:

ψ̂com = ψ̂ +Hδϕ

ϕ′
0

= ψ̂ +H
δϕ

ϕ̇0
≡ R, (2.48)

which corresponds to the definition (1.65). It can be checked that R is, by construction, a gauge-
invariant quantity and it goes by the name of comoving curvature perturbation. Indeed, in the
comoving gauge δϕcom = 0, so that Rcom = ψ̂.
We have already associated this quantity to the primordial scalar perturbations, and exploited the
fact that, assuming a spatially flat gauge with ψ̂ = 0, R depends only on the inflaton perturbation
and can thus be computed exploiting the results obtained for the scalar field slow-roll dynamics.
Another interesting property, fundamental to treat the evolution of primordial perturbations out-
side the horizon, is that on large scale the comoving curvature perturbation remains practically
constant, under certain reasonable assumptions. In order to show this, we need to consider the
other gauge-invariant quantity we have introduced during the treatment of primordial perturba-
tions.

2.3.2 Curvature perturbation on uniform energy density hypersurfaces

Instead of the comoving one, we consider now a different way of performing the slicing, identifying
constant time hypersurfaces charachterized by constant energy density, i.e. δρ = 0. The time
displacement to reach such a gauge would be, from equation (2.35):

α = −δρ
ρ0
. (2.49)

Proceeding as in the previous case, the curvature perturbation ψ̂ in the uniform energy density
gauge is obtained via the following transformation:

ψ̂
∣

∣

δρ=0
= ψ̂ +Hδρ

ρ′0
= ψ̂ +H

δρ

ρ̇0
≡ −ζ, (2.50)

which corresponds to (1.66) and is once again a gauge-invariant quantity, called curvature pertur-

bation on uniform energy density hypersurfaces, since ζ
∣

∣

δρ=0
= −ψ̂.
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Super-horizon evolution

We have already shown that, during slow-roll inflation, the two gauge-invariant quantities are re-
lated by ζ = −R. We can now exploit the definition of ζ (2.50) to explicitly verify that perturbation
modes are constant on super-horizon scales, after having exited the horizon during inflation.
To do this we need to perturb at first order the stress-energy tensor continuity equations ∇µT

µν =
0. On super-horizon scales it takes the following expression [19]:

δρ′ + 3H(δρ+ δp)− 3ψ̂′(ρ0 + p0) = 0. (2.51)

It is possible to evaluate this equation in the uniform energy density gauge previously defined, so
that δρ = 0 and ψ̂ = −ζ. In equation (2.11) we have split the pressure perturbation into adiabatic
and non-adiabatic components. We know that δpadiabatic = c2sδρ and it follows that this component
vanishes within our gauge choice, where equation (2.51) becomes:

ζ ′ = − H
ρ0 + p0

δpnon-adiabatic. (2.52)

If perturbations are adiabatic, which is the case for single field slow-roll inflation [8], then ζ
remains constant on super-horizon scales. This result justifies the choice of using the curvature
perturbation on uniform energy density hypersurfaces when dealing with primordial perturbations.
As a consequence, the value of ζ at horizon-crossing during inflation, determined by the inflaton
perturbations, is the one that enters inside the expressions for the late time observables, like the
CMB temperature anisotropies. We thus have a concrete link between what happened during
inflation and how the Universe evolves long after, during the standard hot Big Bang period. This
result is represented in Figure 1.5.



Chapter 3

Primordial non-Gaussianity

In Chapter 1 we have briefly reviewed the standard slow-roll inflationary model, with particular
focus on the production of primordial perturbations such a period of early acceleration is able
to provide. In dealing with quantum random fluctuations we have then introduced the concept
of power spectrum, needed describe their statistical properties. As we have already pointed out,
the power spectrum would actually be sufficient to completely define a random field in the case it
was drawn from a zero-mean Gaussian distribution, which for the primordial curvature ζ has the
following expression:

P (ζ) =
1√
2πσ

exp

(

− ζ2

2σ2

)

, (3.1)

where σ2 = 〈ζ2(t, ~x)〉 is the variance, defined as the 2-point correlation function when the two
points coincide. In the standard slow-roll single field inflationary model the departure from Gaus-
sianity can be computed to be of the order of the slow-roll parameters [13], a physically expected
result since they quantify the deviation of the inflaton from being a free field, in which case the
corresponding wave function in the ground state would be Gaussian [6]. Therefore, in order to gen-
erate a larger amount of primordial non-Gaussianity, it is required to violate any of the following
conditions, which actually characterize the single field slow-roll inflation [22]:

• A single scalar field is responsible for driving inflation and for the production of primordial
quantum fluctuations.

• The inflaton Lagrangian contains a canonical kinetic energy term, such that perturbations
travel at the speed of light.

• As stated by the slow-roll assumption, the inflaton evolution has a much bigger timescale
than the Hubble time H−1.

• The initial condition for the inflaton is determined by the Bunch-Davis vacuum choice.

When all these conditions are satisfied simultaneously inflation predicts an undetectable amount of
primordial non-Gaussianity. Detecting a consistent deviation from Gaussianity can thus be enough
to rule out the most standard inflationary model. Furthermore, any other inflationary model, con-
structed by violating one or more of the conditions we have just listed, provides a different amount
of predicted non-Gaussianity. In this sense primordial non-Gaussianity can be regarded as an in-
dependent probe of the physics in the early Universe.

In presence of non-Gaussianity, the power spectrum is not sufficient anymore to describe all of
the statistics, and higher-order correlation functions can provide useful information about the na-
ture of the perturbations.
The aim of this Chapter is then to introduce, in detail, to the possibility of a non-Gaussian be-
haviour of the primordial perturbations. We will focus in particular on the 3-point correlation
function, as the leading non-Gaussian signature, and on its Fourier counterpart, the bispectrum.

33
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3.1 The bispectrum

Computing higher order correlation functions is the standard method to measure non-Gaussianity.
We know in fact that all the correlators beyond the power spectrum do not carry additional in-
formation about the statistics of a Gaussian random field. In that case the odd order correlators
vanish while the even order ones can be written in function of the power spectrum, i.e. the con-
nected part of higher order correlators vanish. It follows that measuring non-vanishing values of
these correlators is a clear sign of the non-Gaussian nature of the random field.

The simplest indicator sensible to non-Gaussianity in the early Universe is then the 3-point corre-
lation function of the primordial curvature perturbation ζ. Its Fourier transform takes the name
of bispectrum B and is defined by the following expression:

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bζ(k1, k2, k3), (3.2)

which may of course be generalized to any other kind of perturbation evaluated on a FLRW
background. It is clear the analogy with the power spectrum (1.58), where this time the correlation
is extended to three fluctuations instead of two. Once again, isotropy of the background ensures
the bispectrum to depend only on the magnitude of wavevectors, while homogeneity is accounted
for by the presence of the Dirac delta. This actually requires to have wavevectors which form a
triangle in Fourier space, while the power spectrum only correlates two perturbations with the
same wavenumber. It is thus necessary to account for the different possibilities in the shape of the
triangle, on which should actually depends the value of the bispectrum. This is done usually by
splitting the bispectrum into two different factors:

Bζ(k1, k2, k3) = fNLF (k1, k2, k3), (3.3)

where the shape dependence is contained inside the shape function F , which is instead kept sepa-
rated from the overall amplitude fNL. Given the relevance of these two functions just introduced,
we now spend few words each to present their major features.

3.1.1 Shape function

The shape function F introduced in (3.3) carries information about how much power is associated
to each possible triangle shape, while keeping fixed the overall scale. Different inflationary models
predict different shape functions, corresponding to different configurations for which the signal
peaks. Furthermore, it has been discovered that the violation of each of the conditions provided
earlier is responsible for a primordial bispectrum with a specific triangular shape [22]. It is then
possible to classify F (k1, k2, k3) based on which shape of the triangle corresponds to the maximum
of the bispectrum. Different momenta configurations along with the relative shapes are represented
in Figure 3.1.
Before looking more in depth at the different shapes and the respective expressions of the bispec-
trum, we fix some conventions useful for our discussion. First of all we can better quantify what
we mean with the term overall scale, introduced before, by defining:

K =
k1 + k2 + k3

3
, (3.4)

such that it is the average of the three wavevectors correlated by the bispectrum. For sure it is
then possible to construct different triangles by varying the angles and the individual sides length,
but keeping fixed the quantity (3.4). If we now assume the shape function to be invariant on this
overall scale K, it is straightforward to conclude that F should only have two degrees of freedom,
corresponding to the ratios between the three wavevectors. As we will see shortly, any possible
overall scale dependence would be accounted instead by the amplitude fNL. We thus define the
rescaled momenta:

xi =
ki
k1
, (3.5)
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Figure 3.1: Parameter space of the rescaled momenta, where the three most common shapes of
bispectrum predicted by inflationary models are highlighted. Taken from [6].

for i = 2, 3 and where we stick to the usual assumption of ordering the three momenta such that
x3 ≤ x2 ≤ 1. Different combinations of rescaled momenta correspond to different shapes, with the
ones shown in Figure 3.1 being the most common and studied in the literature [10]:

• Local shape. The signal is maximum for squeezed triangles with x3 ≪ x2 ∼ 1. Large
amounts of this type of non-Gaussianity are usually predicted by multi-field models, like the
curvaton model [8], which thus violate the first of the conditions listed above. The shape
function can be written as [10]:

Flocal(k1, k2, k3) =
6

5
A2

[

1

k4−ns

1 k4−ns

2

+
1

k4−ns

1 k4−ns

3

+
1

k4−ns

2 k4−ns

3

]

, (3.6)

where the normalization constant A is defined as the amplitude of the primordial power
spectrum Pζ(k) = Akns−4. The name local comes from the fact that the non-linearity, re-
sponsible for non-Gaussianity, is parametrized in the following way, which was first considered
in [23, 24, 25]:

ζ(~x) = ζg(~x) +
3

5
fNL

[

ζg(~x)
2 − 〈ζg(~x)〉2

]

, (3.7)

so that the complete perturbation ζ is assumed to be, in real space, a local function of a
Gaussian random field ζg. In particular, the deviation from non-Gaussianity is taken to be
proportional to the amplitude parameter fNL. The presence of the term 〈ζg(~x)〉2 ensures
that ζ is a zero-mean field, i.e. 〈ζ(~x)〉 = 0. The local shape is particularly interesting since, in
Fourier space, a considerable amount of non-Gaussianity arises from the correlation between
long and short wavelenghts. This, plus the fact that a simple and explicit parametrization
(3.7) there exists, makes the local shape a recurrent topic in the following discussions. Fur-
thermore, a certain amount of non-Gaussianity with a local shape is expected also in the
context of single field slow-roll inflation, with an amplitude proportional to the slow-roll
parameters fNL = O(ǫ, η) [12, 13, 26, 27].

• Equilateral shape. The bispectrum peaks for the equilateral configuration x3 ∼ x2 ∼ 1.
This type of non-Gaussianity is produced by inflationary models containing non-canonical
kinetic terms, i.e. higher derivative terms, in the inflaton Lagrangian. This happens, for
example, in the Dirac-Born-Infeld model of inflation [12]. In these cases the correlation is
between modes with comparable wavelengths, which cross the horizon nearly at the same
time. The shape function of the equilateral type is [10]:

Fequil(k1, k2, k3) =
18

5
A2

{

− 1

k4−ns

1 k4−ns

2

− 1

k4−ns

1 k4−ns

3

− 1

k4−ns

2 k4−ns

3

− 2

(k1k2k3)2(4−ns)/3
+

[

1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k

(4−ns)
3

+ 5 perms

]}

,
(3.8)
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where, in the second line, we have introduced a notation to account implicitly for all the
possible permutations of a given term. This will be done extensively throughout the rest of
this work.

• Folded shape. Violating the assumption of a Bunch-Davis vacuum as initial condition for
the inflaton usually gives rise to a bispectrum peaking in the flattened configuration, with
x3 ∼ x2 ∼ 1

2 .

• Orthogonal shape. It is then possible to consider another type of non-Gaussian bispec-
trum, which is defined to be orthogonal to the equilateral one and can thus be referred to
as orthogonal shape. The signal has a maximum both for equilateral and folded triangle
configurations [28]. In this case the shape function has the following expression [10]:

Fortho(k1, k2, k3) =
18

5
A2

{

− 3

k4−ns

1 k4−ns

2

− 3

k4−ns

1 k4−ns

3

− 3

k4−ns

2 k4−ns

3

− 8

(k1k2k3)2(4−ns)/3
+

[

3

k
(4−ns)/3
1 k

2(4−ns)/3
2 k

(4−ns)
3

+ 5 perms

]}

.
(3.9)

In Figure 3.2 are plotted the shape functions for the local and the equilateral configurations. The
normalization is such that F (1, 1, 1) = 1.

Figure 3.2: Plotted shape functions, indicated here as S instead of F , for the local (left panel) and
equilateral (right panel) cases, as functions of rescaled momenta. Taken from [6].

3.1.2 Amplitude parameter

The amplitude, or non-linear, parameter fNL, introduced in equation (3.3), accounts for the overall
magnitude of the bispectrum. A more rigorous definition, which holds for arbitrary shapes, is
obtained by fixing the following normalization [6]:

fNL =
5

18

Bζ(k, k, k)

P 2
ζ (k)

, (3.10)

where the bispectrum is computed in the equilateral configuration. The factor 5
18 is chosen in

such a way that the parameter fNL in (3.7) corresponds with the one just defined (3.10). Using
parametrization (3.7) it is also possible to recover that Bζ ∝ P 2

ζ , a result which actually holds
also for other shapes. We will do so in the next section, performing the explicit calculation of the
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bispectrum for the perturbation ζ parametrized as in (3.7).

Predictions on the amount of primordial non-Gaussianity from different inflationary models are
usually expressed in terms of constraints on the value of fNL, along with specifying the particular
shape function predicted by the model. Referring to the definition (3.3) and to the three shape
functions (3.6), (3.8) and (3.9), the latest observational constraints by the Planck Collaboration
(2018) are [10]:

f local
NL = −0.9± 5.1,

f equil
NL = −26± 47,

fortho
NL = −38± 24.

(3.11)

3.1.3 Running non-Gaussianity

We have not addressed yet to the possibility of a dependence of the amplitude parameter on the
scale. We already know that the dependence on the triangular shapes, and thus on the ratio
between the three momenta, is contained in the shape function. On the other hand, it is possible
to account for a dependence of fNL on the overall scale K (3.4). In analogy to the definition of
the scalar spectral index ns for the primordial power spectrum (1.73), it is natural to define the
following parameter:

nfNL
≡ dlnfNL(k)

dlnk
, (3.12)

which is known as running parameter, since it accounts for the possibility of having running non-
Gaussianity, i.e. a scale-dependent fNL. In this context the definition (3.10) can be rewritten in
the following way [29]:

fNL(k1, k2, k3) =
5

6

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + 2 perms
, (3.13)

which is quite a more general definition for the amplitude parameter, since it is function of all the
three momenta and so also of the shape of the triangle itself. In this case fNL can be interpreted,
directly from the definition (3.13), as the amplitude of the bispectrum with respect to the power
spectrum squared.

Various explicit forms of running, in terms of the dependence on the wavenumbers, may be con-
sidered, as they arise from the different inflationary models. We know that multi-field models
predict a local shape for the bispectrum (3.6), which is modified in case of a scale-dependent
non-Gaussianity as [29]:

Bζ(k1, k2, k3) ∝ (k1k2)
ns−4k

nfNL

3 + 2 perms, (3.14)

if the curvature perturbation originates from only one of the scalar fields, while for a two-field
model where both contribute to the primordial perturbations it is given by [29]:

Bζ(k1, k2, k3) ∝ (k1k2)
ns−4+nfNL

/2 + 2 perms. (3.15)

A mild running non-Gaussianity is also predicted by models which produce bispectra of the equi-
lateral shape [10]. In this case the scale dependence can be expressed as [30]:

fNL(k1, k2, k3) = fNL(kp)

(

k1 + k2 + k3
3kp

)nfNL

, (3.16)

where kp is a pivot scale and we recognize the explicit dependence on K defined in (3.4).
The 3 types of running just presented have been analyzed by the Planck collaboration (2018) and
no evidence in favour of a scale-dependent primordial non-Gaussianity was found yet [10].
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3.2 The local shape

Until now in this Chapter we have discussed the general features of primordial non-Gaussianity
and provided with some of the most common results which can be found in the literature. It is
interesting for the scope of this Thesis to deepen a bit more on the local parametrization (3.7):

ζ(~x) = ζg(~x) +
3

5
fNL

[

ζ2g (~x)− 〈ζ2g (~x)〉
]

, (3.17)

which we have rewritten here, being it the starting point of our discussion. This way of expressing
the non-linearity of the primordial perturbation ζ allows to derive a simple result for the bispec-
trum (3.2). Furthermore, it is also straightforward to consider the case of running non-Gaussianity
by introducing a dependence on the scale directly inside fNL in (3.17).

In order to compute the primordial bispectrum (3.2) we need an expression for ζ(~k) in Fourier
space. Considering then the local ansatz (3.17), we find:

ζ(~k) = ζg(~k) +
3

5
fNL

[ ∫

d3~p

(2π)3
ζg(~p)ζg(~k − ~p)− (2π)3δ(3)(~k)〈ζ2g (~x)〉

]

≡ ζg(~k) + ζng(~k), (3.18)

where 〈ζ2g (~x)〉2 is the variance in real space. For the time being the amplitude parameter is assumed
to be scale-invariant. Substituting (3.18) inside the correlator (3.2) one obtains:

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = 〈
(

ζg(~k1) + ζng(~k1)
)(

ζg(~k2) + ζng(~k2)
)(

ζg(~k3) + ζng(~k3)
)

〉

= 〈ζg(~k1)ζg(~k2)ζg(~k3)〉+
3

5
fNL

[(∫

d3~p

(2π)3
〈ζg(~p)ζg(~k1 − ~p)

× ζg(~k2)ζg(~k3)〉 − (2π)3δ(3)(~k1)〈ζ2g (~x)〉〈ζg(~k2)ζg(~k3)〉
)

+ 2 perms

]

,

(3.19)

where we have kept the linear order in the amplitude parameter fNL. We see that, because of the
parametrization (3.17), the result (3.19) is written in terms of correlators of the Gaussian random
field ζg. Recalling the discussion, at the beginning of this Chapter, about the properties of such a
perturbation, it follows for the 3-point correlation function:

〈ζg(~k1)ζg(~k2)ζg(~k3)〉 = 0, (3.20)

and the same result holds for higher order odd correlators. The linear term in fNL of (3.19)
contains instead the 4-point correlation function, for which we know the connected part to vanish,
and thus ends up being just a combination of 2-point correlators:

〈ζg(~k1)ζg(~k2)ζg(~k3)ζg(~k4)〉 = 〈ζg(~k1)ζg(~k2)〉〈ζg(~k3)ζg(~k4)〉+ 2 perms, (3.21)

such that it can be expressed in terms of the primordial power spectrum (1.58). Therefore, com-
bining results (3.20) and (3.21) with equation (3.19), we obtain:

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 =
3

5
fNL

[(∫

d3~p

(2π)3

(

(2π)6δ(3)(~k1)δ
(3)(~k2 + ~k3)Pζ(p)Pζ(k2)

+ (2π)6δ(3)(~p+ ~k2)δ
(3)(~k1 − ~p+ ~k3)Pζ(k2)Pζ(k3)

+ (2π)6δ(3)(~p+ ~k3)δ
(3)(~k1 − ~p+ ~k2)Pζ(k3)Pζ(k2)

)

− (2π)6δ(3)(~k1)δ
(3)(~k2 + ~k3)Pζ(k2)

∫

d3~p′

(2π)3
Pζ(p

′)

)

+ 2 perms

]

,

(3.22)

where the definition of (1.58) was used and the variance 〈ζ2g (~x)〉2 was re-expressed as the Fourier
counterpart of Pζ (1.60). It follows that the first and the last line of (3.22) cancel out each other so
that performing the integration over ~p on the remaining terms gives rise to two equal contributions.
The final result can be written in the following way:

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 =
6

5
fNL(2π)

6δ(3)(~k1 + ~k2 + ~k3)
[

Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)
]

,

(3.23)



3.2. THE LOCAL SHAPE 39

in which we have explicitly written the contributions coming from all the possible permutations.
Remembering definition (3.2), we obtain the expression of the primordial bispectrum arising from
the local ansatz (3.17):

Bζ(k1, k2, k3) =
6

5
fNL

[

Pζ(k1)Pζ(k2) + 2 perms
]

. (3.24)

It is straightforward to check, setting Pζ(k) = Akns−4, that this result indeed corresponds to the
local shape function (3.6), thus verifying a posteriori that the ansatz (3.17) gives rise to primordial
non-Gaussianity of the local type. It is also worth to notice that in this case the power spectrum
of the full, non-linear, perturbation ζ does not include linear term in fNL, and thus remains un-
changed from the Gaussian one, up to corrections of the second order in fNL.
Another consistency check would be to substitute the bispectrum (3.24) inside the definition of
the amplitude parameter (3.10) finding that, thanks to the chosen normalization, it corresponds
to the fNL introduced in (3.17), which a priori was not at all obvious.

3.2.1 The long-short split

One interesting property of the local parametrization (3.17) is that it couples Fourier modes with
long and short wavelengths . Remember in fact that the local shape of non-Gaussianity peaks in the
squeezed configuration, where the relation between wavenumbers can be expressed as k3 ≪ k1 ∼ k2.
This means that the bispectrum signal is maximum when it correlates one long wavelength per-
turbation with two short wavelength ones. We know that during inflation longer modes cross the
horizon earlier. Therefore, in presence of primordial local non-Gaussianity, it is possible to imagine
a situation in which ζ(~k3) has already frozen out and acts as a background for the evolution of

the other two shorter modes ζ(~k1) and ζ(~k2). We can refer to this phenomenon by saying that the
short modes are modulated by the long one.

In order to study such a scenario, we express once again the non-linearity in the form of the
local ansatz (3.17) and, moreover, we assume that the Gaussian perturbation ζg(~x) can be split
up as [31]:

ζg(~x) = ζs(~x) + ζl(~x), (3.25)

where ζs (ζl) is the part of ζg which receives contribution from short (long) wavelength modes.
This can be better understood by going to Fourier space, where we have [32]:

ζs(~x) =

∫

d3~k

(2π)3
θ(k − kH)ζg(~k)e

i~k~x,

ζl(~x) =

∫

d3~k

(2π)3
θ(kH − k)ζg(~k)e

i~k~x.

(3.26)

The step functions truncate the integration intervals at kH , which is the arbitrary wavenumber we
choose to separate long and short modes. Usually, it is natural to take kH ≃ aH, corresponding to
the comoving Hubble horizon (1.2). In this way only modes with sub-horizon wavelength contribute
to the short part of the perturbation, and vice-versa for the long one. From expressions (3.26), we
can write the Fourier counterpart of the split (3.25) in the following way:

ζg(~k) = ζs(~k) + ζl(~k), (3.27)

where we have defined:

ζs(~k) ≡ θ(k − kH)ζg(~k),

ζl(~k) ≡ θ(kH − k)ζg(~k).
(3.28)

The split in Fourier space (3.27) is thus just a formal way to state that a single mode of perturbation
can, trivially, either be short, if still inside the horizon, or long, if already out of it. Expressed in
this way, the two components do not mix together and we can conclude that in a Gaussian scenario



40 CHAPTER 3. PRIMORDIAL NON-GAUSSIANITY

they cannot influence each other, an expected result since we know that, in linear perturbation
theory, different Fourier modes evolve independently. This is not the case anymore if one allows for
the presence of primordial non-Gaussianity: in this case we have already said that a bispectrum
of the local type gets the maximum contribution from the correlation between long and short
wavelength perturbations. Thanks to this correlation, it becomes possible to think the sub-horizon
evolution of the short mode as modulated by the long one, which is instead assumed to be super-
horizon and thus frozen. To see this we substitute the split (3.25) inside the local ansatz (3.17),
obtaining:

ζ = ζs + ζl +
3

5
fNL

[

ζ2s + 2ζsζl − 〈ζs〉2
]

, (3.29)

where all the perturbations are computed at the same point ~x in real space. In writing expression
(3.29) we have already exploited the fact that the evolution of the long wavelength component ζl
is assumed to be frozen, so that ζ2l ≃ 〈ζl〉2 and the two terms cancel out. From (3.29) we can
derive the expression for the full, non-linear, small scale perturbation ζS modulated by the fixed
large scale one [31]:

ζS = ζs +
3

5
fNL

[

ζ2s + 2ζsζl − 〈ζs〉2
]

. (3.30)

This result explicitly shows how, in presence of a local type of primordial non-Gaussianity (3.17),
the evolution of a small-scale perturbation is affected by a larger scale one.

The long wavelength modulation has a direct consequence on the power spectrum of the mod-
ulated short perturbation (3.30). Similarly to equation (3.18), the expression for ζS in Fourier
space can be written as:

ζS(~k) = ζs(~k) +
3

5
fNL

[

(

ζs ⋆ ζs
)

(~k) + 2
(

ζs ⋆ ζl
)

(~k)− (2π)3δ(3)(~k)〈ζ2s (~x)〉2
]

, (3.31)

where we have introduced a shorter notation for the convolution:

(

ζ ⋆ ζ
)

(~k) =

∫

d3~p

(2π)3
ζ(~p)ζ(~k − ~p). (3.32)

It is straightforward to compute the 2-point correlation function of expression (3.31), remembering
that, under our assumptions, we can take ζl out of the averages. Keeping the linear order in fNL
we find the following non-vanishing contributions:

〈ζS(~k1)ζS(~k2)〉 = 〈ζs(~k1)ζs(~k2)〉+
6

5
fNL

∫

d3~p

(2π)3
[

ζl(~k1 − ~p)〈ζs(~p)ζs(~k2)〉

+ ζl(~k2 − ~p)〈ζs(~p)ζs(~k1)〉
]

= (2π)3δ(3)(~k1 + ~k2)Pζs(k1) +
6

5
fNL

∫

d3~p

(2π)3
[

ζl(~k1 − ~p)

× (2π)3δ(3)(~p+ ~k2)Pζs(k2) + ζl(~k2 − ~p)(2π)3δ(3)(~p+ ~k1)Pζs(k1)
]

= (2π)3δ(3)(~k1 + ~k2)Pζs(k1) +
6

5
fNLζl(~k1 + ~k2)

[

Pζs(k1) + Pζs(k2)
]

.

(3.33)

Notice that the second term of expression (3.33) is proportional to ζl(~k1+~k2) which, remembering

definition (3.28), implies the condition on the wavevectors |~k1 + ~k2| < kH . This is a less stringent

constraint than the one coming from the usual Dirac delta, ~k1 + ~k2 = 0, and it introduces a
correlation between two short modes with different wavenumbers. This new contribution in (3.33)
is linear in the amplitude parameter.

3.2.2 Running non-Gaussianity

We can also exploit the local ansatz (3.17) to discuss the case of a scale-dependent amplitude
parameter fNL, namely the case of running non-Gaussianity. The first thing we need to under-
stand clearly is how we can implement the scale dependence inside the parametrization. Were we
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assuming a particular expression of the bispectrum, we could have just defined the running as in
(3.13). Looking instead at the parametrization in Fourier space (3.18), it seems natural to simply
generalize fNL as a function of the wavenumber k, such that our new starting point becomes [33]:

ζ(~k) = ζg(~k) +
3

5
fNL(k)

[ ∫

d3~p

(2π)3
ζg(~p)ζg(~k − ~p)− (2π)3δ(3)(~k)〈ζ2g (~x)〉

]

. (3.34)

Notice that this ansatz is not local anymore, which is evident when we transform back to real
space:

ζ(~x) = ζg(~x) +
3

5

∫

d3~k

(2π)3
ei
~k~xfNL(k)(ζg ⋆ ζg

)

(~k), (3.35)

where the deviation from the local form is proportional to the amount of scale dependence of fNL.
Substituting parametrization (3.34) inside (3.2), and repeating the exactly same steps of the scale-
independent case, we end up with the following expression for the bispectrum:

Bζ(k1, k2, k3) =
6

5

[

fNL(k1)Pζ(k2)Pζ(k3) + 2 perms
]

, (3.36)

where the running of the amplitude parameter is manifest. The result (3.36) is quite general, since
it allows to recover a local type primordial bispectrum in the presence of running non-Gaussianity.
The only limitation is that it describes only the cases where fNL can be written explicitly as
a function of a single wavenumber. Nevertheless, substituting (3.36) inside (3.13) would return,
in principle, an expression for fNL(k1, k2, k3), with a dependence on all the three wavenumbers.
This does not correspond to the scale-dependent fNL introduced in (3.34). We conclude that the
two definitions of the amplitude parameter are inconsistent and identify two distinct objects [33],
while in the constant-fNL case the two were equivalent. We will however stick with the notation
of expression (3.36), since the interpretation of fNL as the amplitude of bispectrum is still valid
there. Hopefully this ambiguity should not be the source of any confusion.

In order to study a concrete case, we consider a simple, physically motivated, power-law dependence
of fNL(k) [34]:

fNL(k) = fNL(kp)

(

k

kp

)nfNL

, (3.37)

which actually corresponds to equation (3.12) in the case of constant nfNL
and where kp is an

arbitrary reference scale. Remembering also the expression for the primordial power spectrum
Pζ(k) = Akns−4, we obtain for the bispectrum (3.36):

Bζ(k1, k2, k3) =
6

5
A2 fNL(kp)

k
nfNL
p

[

k
nfNL

1 (k2k3)
ns−4 + 2 perms

]

, (3.38)

which corresponds to the result (3.14), obtained for multi-field inflationary models where only a
single scalar field contributes to the primordial curvature perturbation [29]. The running non-
Gaussianity parametrization (3.34) can thus describe such physical cases.

Large scale limit

Since the bispectrum (3.36) peaks on squeezed configurations, it is natural to make a further step
and take the large scale limit kL ≡ k3 → 0. As a result of this, terms in (3.36) proportional to
Pζ(kL) (remember ns ∼ 1) would diverge so that, assuming also fNL(k) to be finite around k = kL,
we may write [31]:

Bζ(ks, kL) ≃
12

5
fNL(ks)Pζ(ks)Pζ(kL), (3.39)

where in the large scale limit ks ≡ k1 ∼ k2. The result is that in (3.39) appears only the dependence
of fNL on the small scale ks. This is exactly what happens to expression (3.38) in the reasonable
case where nfNL

> −3:

Bζ(ks, kL) ≃
12

5
A2 fNL(kp)

k
nfNL
p

k
nfNL

+ns−4
s kns−4

L . (3.40)
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This suggests the possibility to consider an amplitude parameter fNL(k) with a dependence on
only the shorter wavelengths. This is quite interesting since it allows to imagine a scenario with
the presence of a very little and undetectable amount of non-Gaussianity on largest scales, which
would be bumped on smaller ones by choosing a sufficiently positive value for the parameter nfNL

.

3.2.3 Scale-dependent fNL as a kernel

We can actually obtain an even more general expression for running non-Gaussianity, starting from
the local parametrization (3.17). In order to do so we may consider a generic, non-local, kernel
operator K which modifies the coupling in the quadratic term [36]:

ζ(~x) = ζg(~x) +
3

5
K[ζg, ζg](~x), (3.41)

where we have included fNL inside the definition of K, since we want to account for running
non-Gaussianity. Actually we will assume that the deviation from the local parametrization (3.17)
is entirely due to the scale dependence of fNL. In this way we can exploit the kernel formalism
[27, 35, 36, 37] to recover explicit expressions for the scale dependence of fNL. This is achieved by
performing a matching with expressions of running bispectra recurring in the literature [10, 29, 30],
like the ones we have considered in section 3.1.3

In Fourier space equation (3.41) has the following expression:

ζ(~k) = ζg(~k) +
3

5

∫

d3~k1d
3~k2

(2π)3
δ(3)(~k − ~k1 − ~k2)K(~k1, ~k2)ζg(~k1)ζg(~k2)

≡ ζg(~k) +
3

5
K~k[ζg, ζg],

(3.42)

where the second equality defines the expression of the kernel operator in Fourier space. As a
reference, the Fourier transform of (3.17) can be rewritten in the following way:

ζ(~k) = ζg(~k) +
3

5
fNL(ζg ⋆ ζg

)

(~k)

=
3

5
fNL

∫

d3~k1d
3~k2

(2π)3
δ(3)(~k − ~k1 − ~k2)ζg(~k1)ζg(~k2).

(3.43)

We can also exploit expression (3.42) to derive a more explicit form of the kernel operator in real
space, introduced in equation (3.41):

K[ζg, ζg](~x) =
3

5

∫

d3~yd3~zK(~y, ~z)ζg(~x− ~y)ζg(~x− ~z), (3.44)

where the kernel function in real space is related to the Fourier counterpart as:

K(~k1, ~k2) =

∫

d3~yd3~ze−i(
~k1~y+~k2~z)K(~y, ~z). (3.45)

Expression (3.42) is quite general, while we are interested in the case where the kernel accounts
only for the scale dependence of fNL. Comparing expressions (3.42) and (3.43) we can thus set

K(~k1, ~k2) = fNL(~k1,~k2), and we will continue to refer to it as the kernel. Furthermore, if we
also assume statistical isotropy, fNL can only be a function of the magnitude of the momenta and
the angle between the two, meaning that we can rewrite its dependencies as fNL(k1, k2, k), where

k = |~k1 + ~k2| because of the Dirac delta in equation (3.42). We end up with the most general
expression for running non-Gaussianity derived as a generalization of the local ansatz:

ζ(~k) = ζg(~k) +
3

5

∫

d3~k1d
3~k2

(2π)3
δ(3)(~k − ~k1 − ~k2)fNL(k1, k2, k)ζg(~k1)ζg(~k2), (3.46)
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where fNL(k1, k2, k) is the kernel we want to explicitly determine.

Computing the 3-point correlation function of (3.46), it is possible to to recover the corresponding
form of the primordial bispectrum (3.2) in terms of the primordial power spectrum:

Bζ(k1, k2, k3) =
6

5

[

f12NL(k1, k2, k3)Pζ(k1)Pζ(k2) + f23NL(k2, k3, k1)Pζ(k2)Pζ(k3)

+ f31NL(k3, k1, k2)Pζ(k3)Pζ(k1)
]

,
(3.47)

where we have also accounted for the possibility that, in principle, fNL may not be symmetric
under exchange of its arguments and thus introduced the notation f ijNL to designate the term
which is multiplied to the power spectra evaluated in ki and kj . Nonetheless, we want instead to
preserve the symmetry under the exchange of these two momenta in a single term. Because of
this, it is important to highlight the order in which the momenta appear inside the dependencies
of f ijNL(ki, kj , |~ki + ~kj |), distinguishing in particular the third momenta from the other two, which
are interchangeable.
The result (3.47) can now be compared with specific bispectra expressions, arising from run-
ning non-Gaussianity physical arguments. This allows to recover the solutions for the kernel
f ijNL(ki, kj , |~ki + ~kj |) which generate such templates.

As a consistency check, we start by considering the template (3.14), for which we already know
one explicit expression of the kernel. This form of bispectrum arises from the generalization of
the local ansatz to a scale-dependent fNL(k) (3.34) parametrized as a power-law (3.37), which we
have discussed in the previous section. Adopting the kernel formalism to deal with such a case, we
already see that fNL depends only on one out of the three possible momenta.
Remembering that the primordial power spectrum can be expressed as Pζ(k) = Akns−4, we impose
the equality between (3.47) and (3.14).

f12NL(k1, k2, k3)A
2(k1k2)

ns−4 + 2 perms = A2(k1k2)
ns−4AknfNL

3 + 2 perms, (3.48)

where we have defined the dimensionful constant A ≡ fNL(kp)

k
nfNL
p

, independent on the chosen pivot

scale kp. If we focus on the symmetry properties of the two sides, we realize that the term explicited
on the left can only be matched with terms on the right symmetric under the exchange of k1 and
k2. There are two possible combinations, on the RHS, with such a symmetry property: the term
(k1k2)

ns−4k
nfNL

3 and the term
(

kns−4
1 k

nfNL

2 + kns−4
2 k

nfNL

1

)

kns−4
3 . These will correspond to two

different solutions for the kernel f12NL(k1, k2, k3). The first is trivial and leads to:

f12NL(k1, k2, k3) = AknfNL

3 , (3.49)

where the generalization for permutations of the arguments is straightforward. This is our expected
parametrization of the running as a power-law (3.37). It is interesting to notice, in particular, that

in this case the running is exclusively on k3 = |~k1+~k2|, which is the external momentum in (3.42).
This is a conclusion which will become relevant in the discussion of the following Chapters, where
we will use this simple expression of scale-dependent fNL to perform explicit calculations.
If we consider instead the second possibility for the matching in (3.48), we recover a less trivial
kernel solution:

f12NL(k1, k2, k3) =
A
2

(

k
4−ns+nfNL

1 + k
4−ns+nfNL

2 )kns−4
3 , (3.50)

This is indeed another expression for fNL which, inserted in (3.47), allows to recover the bispectrum
(3.14). More generically, this is true for a combination of the two solutions:

f12NL(k1, k2, k3) = A
[

(1− u)k
nfNL

3 +
u

2

(

k
4−ns+nfNL

1 + k
4−ns+nfNL

2 )kns−4
3

]

, (3.51)

where u is a free parameter [36]. In fact, inserting (3.51) in (3.47) we find:

Bζ(k1, k2, k3) =
6

5
A2A

[

(k1k2)
ns−4k

nfNL

3 + 2 perms
]

, (3.52)
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which is consistent with (3.14). This confirms our hypothesis for the running as a power-law (3.37)
and extends it with a more general expression for the kernel (3.51).

We now consider the form of primordial bispectrum (3.15), for which this time we have not yet a
corresponding parametrization of the running. Again, we interpret the scale dependence of fNL
as a kernel which has to be inverted and explicited by performing a matching. We thus identify
the combinations in (3.15) which are symmetric under the exchange of k1 and k2. Again there are

two possibilities: (k1k2)
ns−4+

nfNL
2 and

(

k
ns−4+

nfNL
2

1 + k
ns−4+

nfNL
2

2 )k
ns−4+

nfNL
2

3 . The first leads
to the following kernel solution:

f12NL(k1, k2, k3) = A(k1k2)
nfNL

2 , (3.53)

which can be seen to depend only on the internal momenta k1 and k2, as opposed to dependence
on the external momentum of the power-law (3.49) we have pointed out earlier.
Matching instead with the second possibility let us recover the following result:

f12NL(k1, k2, k3) =
A
2

(

k4−ns

1 k
nfNL

2
2 + k

nfNL
2

1 k4−ns

2

)

k
ns−4+

nfNL
2

3 . (3.54)

The general kernel solution is then:

f12NL(k1, k2, k3) = A
[

(1− u)(k1k2)
nfNL

2 +
u

2

(

k4−ns

1 k
nfNL

2
2 + k

nfNL
2

1 k4−ns

2

)

k
ns−4+

nfNL
2

3

]

, (3.55)

which substituted in (3.42) leads to:

Bζ(k1, k2, k3) =
6

5
A
[

(k1k2)
ns−4+

nfNL
2 + 2 perms

]

, (3.56)

as expected.
It is also interesting to consider the large scale-limit in the template (3.15), since we have just
recovered it from the generalization of the local shape to a scale-dependent fNL. This is analogous
to what we have done in expression (3.40) in the case of the bispectrum arising from the simple
power-law parametrization of the running. We thus take the limit kL ≡ k3 → 0 inside (3.56),
which, assuming ns ∼ 1 and nfNL

< 6, results in:

Bζ(ks, kL) ≃
12

5
A(kskL)

ns−4+
nfNL

2 , (3.57)

where ks ≡ k1 ∼ k2. We see that this actually corresponds to the scale-dependent non-linear

parameter fNL(ks, kL) = A(kskL)
nfNL

2 , i.e. a running both on the small ks and large kL scale, as
opposed to (3.40) which only has the running on the small scale.

In conclusion, starting from two different, physically meaningful, bispectrum templates, (3.14) and
(3.15), we have found two different parametrization of the running, equations (3.51) and (3.55).
Substituting these results in (3.46) we have then two different ways of generalizing the local ansatz
(3.7) in the case of running non-Gaussianity.
This same procedure may be adopted also for other forms, not considered here, of primordial
bispectra arising in the case of running non-Gaussianity, and should allow to recover, by match-
ing with the general expression (3.47), the corresponding solution for the scale-dependent kernel

f ijNL(ki, kj , |~ki + ~kj |) present in the generalization of the local ansatz (3.46).

Long-short split

It seems natural to also generalize the previously discussed long-short split for the case of scale-
dependent non-Gaussianity. It is actually quite straightforward to do so by employing the kernel
formalism we have just introduced.
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We consider the real space expression (3.41) and we substitute the split (3.25), remembering also
the explicit form of the kernel (3.44). In analogy with (3.30), we derive the expression of a small
scale perturbation modulated by a large scale one:

ζS(~x) = ζs(~x) +
3

5

∫

d3~yd3~zK(~y, ~z)
[

ζs(~x− ~y)ζs(~x− ~z) + 2ζs(~x− ~y)ζl(~x− ~z)
]

, (3.58)

where we have thus neglected terms including only long wavelength perturbations. In Fourier space
it corresponds to:

ζS(~k) = ζs(~k)+
3

5

∫

d3~k1d
3~k2

(2π)3
δ(3)(~k−~k1−~k2)fNL(k1, k2, k)

[

ζs(~k1)ζs(~k2)+2ζs(~k1)ζl(~k2)
]

, (3.59)

where we have explicitly expressed the kernel as the scale-dependent non-linear parameter fNL.
The long and short wavelength modes are defined as in (3.27). Since the external momentum ~k
is the one relative to a short mode, we can express the modulated short mode, in analogy with
(3.42), by means of the following kernel operator:

K
(s)
~k

[ζg, ζg] ≡
3

5

∫

d3~k1d
3~k2

(2π)3
δ(3)(~k − ~k1 − ~k2)fNL(k1, k2, k)

[

ζs(~k1)ζs(~k2) + 2ζs(~k1)ζl(~k2)
]

, (3.60)

which does not vanish only for large external momentum k > kH . This ensures that only the
combinations of two short modes which couple to a large k are considered inside the integral. The
modulated short mode is then expressed as:

ζS(~k) = ζs(~k) +K
(s)
~k

[ζg, ζg]. (3.61)

This result for the long-short split in the presence of running non-Gaussianity will prove to be
useful in Chapter 6 when we will perform some explicit calculations.
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Chapter 4

CMB anisotropies

The cosmic microwave background (CMB) radiation is regarded as one of the most important
source of information in Cosmology [38, 39], theorized as a fundamental prediction of the standard
Hot Big Bang model. The fortuitous measurement of the CMB in 1964, by Penzias and Wilson
[40], was in fact considered as a striking evidence for the thermal evolution of the Universe, as
opposed to the other possibility proposed at the time, the Steady State Universe [41], a scenario
without any expansion.

The CMB is believed to be the direct consequence of an event called recombination, localized
around 3 × 105 years after the Big Bang [1]. During its thermal history, the Universe expands
while cooling down and its temperature at a given time greatly affects the behaviour of the par-
ticle content at that moment. In this discussion we are keeping a much qualitative approach, for
more details about the thermal history see for example [7].
Recombination takes place when the Universe is cold enough to allow the formation, for the first
time, of a bound state between a proton and an electron, what is known as an hydrogen atom.
Qualitatively, this happens when the bound energy starts to prevail over the thermal energy, so
that photons are unable to ionize the atoms. Before this time, the ionization is very efficient and
protons and electrons exist in a free state. The important aspect to understand the origin of the
CMB is that, before recombination, photons and free electrons interact through what is called the
Compton scattering and its non-relativistic counterpart, the Thomson scattering. Because of this,
photons are continuously scattered and are not able to free stream. Thus, before recombination,
the Universe is opaque to electromagnetic radiation. All of this changes with the recombination:
electrons end up in a bound state and the cross section for the scattering of photons reduces dras-
tically. Photons start to free stream without being interrupted as much as before. In this context,
the CMB radiation is produced when photons scatter the last time before recombination. It can
be derived that this happened at a redshift z∗ ≃ 103 [1], which corresponds to what is called the
last scattering surface.

After recombination photons are able to freely stream, while their wavelength is being stretched
due to the cosmic expansion, corresponding in a decrease of their energy. From equations (1.4)
and (1.5), in fact, any physical wavelength evolves proportionally to the scale factor, just due to
the expansion of the Universe, i.e. λphys ∝ a. Consequently, the frequency, i.e. the energy, evolves
like the inverse of the scale factor. Furthermore, before recombination the photon fluid is kept in
thermodynamical equilibrium by the continuous scatterings on electrons. This suggests that CMB
should have an almost perfect black-body spectrum, a fact which is confirmed by observations, like
the measurements from the instrument FIRAS onboard of COBE satellite [42]. It is then possible
to associate a temperature to the CMB spectrum, which evolves linearly with the frequency so
that, approximately, it holds that T ∝ a−1 [41].

The latest measured value of the CMB temperature is T0 = 2.726 ± 0.001K [43]. This tem-
perature corresponds to wavelengths typical of microwaves, and thus gives the name to the CMB
radiation. For many years T0 had been measured to be the same in every possible direction of the

47
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incoming photons, apart for an overall dipole due to our own motion [44], until COBE in 1992
mapped for the first time temperature anisotropies at a level of 10−5 [45]. As of today, the most
precise measurements of CMB temperature anisotropies have been achieved by the Planck satellite
[46], resulting in the map of Figure 4.1.

Figure 4.1: Map of CMB temperature, with anisotropies of the order of 10−5. Taken from [47].

We have already seen how the theory of inflation was proposed in early eighties in order to explain,
among other things, why at the time the CMB was measured to be homogeneous and isotropic [4].
Nevertheless, its most striking success is to be able to predict CMB anisotropies, interpreted as
the consequence of quantum fluctuations during inflation. Those same anisotropies are then the
seeds that lead, via gravitational instability, to the formation of the structures present today in
our Universe [1]. In such a scenario, quantum fluctuations during inflation are responsible for de-
viations from a perfectly homogeneous and isotropic Universe. It is then important to understand
how the initial conditions set by inflation do evolve throughout space and time. In particular, a
fundamental step is to compute the predicted amount of anisotropies in the CMB temperature,
produced by inflaton fluctuations which become classic once out of the horizon.

4.1 CMB angular power spectrum

If the CMB was perfectly homogeneous and isotropic, the value of the temperature would be suffi-
cient to fully describes its properties, since it has a nearly perfect black-body spectrum. If this was
the case, this observable would not be as interesting as it is today, since fundamental knowledge
about the Universe and its evolution comes from studying the tiny fluctuations (at the level of
10−5) around the background temperature, which require additional information in order to be
described.
The starting point is then to assume the CMB temperature anisotropies as a direct consequence of
primordial scalar quantum fluctuations, from which they inherit the random nature. As we have
seen in the Chapter 1, when dealing with random fields the correct approach is to describe their
statistical properties. In particular, in the case of the zero-mean field ζ, we have found the power
spectrum to be the most simple and insightful statistical correlator, being it the Fourier counter-
part of the 2-point correlation function. The aim of this section is thus to find an expression for
the present power spectrum of CMB temperature anisotropies, seen as the result of the evolution
of primordial fluctuations after they re-entered the horizon.

The statistical behaviour of the photon fluid, i.e. the CMB radiation, is described by its dis-
tribution function, which is the Bose-Einstein distribution in the case of a perfect black-body
radiation, when the photons are in thermodynamical equilibrium. In this context, CMB tempera-
ture anisotropies can then be interpreted as a small departure of the photon distribution function
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from the Bose-Einstein one [41]:

f(~x, ~p, τ) =

[

exp

(

p

T (τ)
(

1 + Θ(~x, p̂, τ)
)

)

− 1

]−1

, (4.1)

which can be expanded, for small Θ, in the following way:

f(~x, ~p, τ) ≃ f (0)(p, τ)− p
∂f (0)

∂p
(p, τ)Θ(~x, p̂, τ), (4.2)

where f (0) is the background Bose-Einstein distribution function:

f (0)(p, τ) =

[

exp

(

p

T (τ)

)

− 1

]−1

. (4.3)

The function Θ(~x, p̂, τ) is thus defined as the first-order temperature perturbation ∆T
T , such that

the full CMB temperature field can be written in a way resembling the CPT approach of Chapter
2:

T (~x, p̂, τ) = T (τ)
[

1 + Θ(~x, p̂, τ)
]

. (4.4)

In agreement with the cosmological principle, the background temperature does depend only on
the conformal time τ . In an analogous way, the zero-order Bose-Einstein distribution function
(4.3) depends only on the time τ and on the magnitude of the momentum p, i.e. on the frequency
of the photons. The perturbation Θ, instead, introduces two new dependencies:

• ~x is responsible for a spatial dependence, which breaks the homogeneity of the temperature
field;

• p̂ corresponds to the direction of the photons momentum, whose dependence breaks the
isotropy of the system.

The expression (4.4) for the temperature field is as general as it can be, but we actually have to
take into account that our observations can be performed only here ( ~x0) and now (τ0). Therefore
we can appreciate, in our experiments, only the CMB temperature variation due to a change in
the photons direction. This corresponds to a dependence on the polar coordinates θ and φ, which
makes natural the projection of the first-order temperature perturbation Θ over the surface of a
sphere. This is done mathematically by performing the following spherical harmonics expansion
[41]:

Θ(~x, p̂, τ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
aℓm(~x, τ)Yℓm(p̂), (4.5)

where aℓm are the coefficients of expansion and Yℓm form an orthonormal basis on the sphere and
are called spherical harmonics. The index ℓ is particularly meaningful since can be associated
to the angular scale of the anisotropy described by aℓm, through the relation θ ∼ ℓ−1. More
details on spherical harmonics and their properties can be found in Appendix B.2. Exploiting the
normalization (B.8) it is then possible to invert equation (4.5) and obtain an expression for the
aℓm coefficients:

aℓm(~x, τ) =

∫

dΩY ∗
ℓm(p̂)Θ(~x, p̂, τ). (4.6)

In this way all the information about the temperature perturbation is now contained in the aℓm
coefficients, where the finite resolution of a given experiment determines the ℓmax above which
there is no more information.
It is then possible to focus on the statistical properties of the spherical harmonics coefficients
aℓm(~x, τ), instead of Θ(~x, p̂, τ). In particular the mean vanishes 〈aℓm〉 = 0, while the variance Cℓ
is defined by the following 2-point correlator:

〈aℓma∗ℓ′m′〉 = δℓℓ′δmm′Cℓ, (4.7)



50 CHAPTER 4. CMB ANISOTROPIES

and, in analogy with the definition of power spectrum (1.58), takes the name of angular power
spectrum. It is interesting to notice, in comparison again with (1.58), that the independence on m
of the coefficient Cℓ stands for isotropy, while the Kronecker deltas ensure homogeneity.

In order to find an explicit expression for the 2-point correlation function (4.7), we actually need
to write the coefficients aℓm in a more manageable way than (4.6). In particular we want to
understand how exactly we can compute the ensamble average 〈ΘΘ∗〉. Our goal is to derive an
expression for the angular power spectrum today to compare it with observations. Therefore, from
now on we fix the dependencies on ~x0 and τ0 inside all the functions, as we have pointed out
earlier. The value of the perturbation Θ( ~x0, p̂, τ0) is then the result of two different processes: the
production of quantum fluctuations during inflation and the following evolution until today. The
first is a random process, while the second is deterministic. To account for both processes it is
then useful to go into Fourier space and express Θ in the following way [41]:

Θ(~k, p̂, τ0) = T (~k, p̂)ζ(~k), (4.8)

where ζ is the gauge-invariant primordial curvature perturbation (2.50), defined in previous Chap-
ters, and T is the transfer function which accounts for the later evolution. It is remarkable the
fact that Θ can be expressed as a linear function of ζ, meaning that the statistical behaviour of
the primordial perturbations is recovered unaffected in the temperature anisotropies. In (4.8) we
have passed to Fourier space in the usual way:

Θ(~x, p̂, τ) =

∫

d3~k

(2π)3
ei
~k~xΘ(~k, p̂, τ). (4.9)

We have already found out that the value of the primordial perturbation ζ is conserved while it is
out of the horizon and thus it can be interpreted as an initial condition for Θ when the mode crosses
the horizon during radiation domination. Therefore T accounts only for the evolution happening
after inflation and inside the horizon, in such a way that it is not random and it can be uniquely
determined in a deterministic way, regardless of the result of the primordial random processes.
This is done by solving a set of Boltzmann-Einstein coupled equations, where the former describes
the evolution of the phase space distribution functions of the cosmic fluid components, accounting
for both their interactions and the expansion of the Universe [41]. In particular, in the CMB case,
one has to consider two different regimes when the photon fluid behaves differently: at first it is
tightly coupled to matter so that the two oscillate with the same frequency; then, at recombination
(z∗ ≃ 1100), the rate of these interactions starts to drop and photons are able to freely stream
until today, as we have already reviewed earlier in this Chapter. Without going further into details
(see [41]), the final result for Θ is usually given in terms of the coefficients Θℓ of the following
expansion:

Θ(~k, p̂, τ) =

∞
∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Θℓ(k, τ)Pℓ(k̂ · p̂), (4.10)

where Pℓ are Legendre polynomials, defined in Appendix B.1. A similar expression holds for the
transfer function T , in such a way that relation (4.8) implies:

Θℓ(~k, τ0) = Tℓ(k)ζ(~k). (4.11)

Actually, in performing the expansion (4.10), we have implicitly assumed that the dependence

(~k, p̂) can be expressed as (k, k̂ · p̂). Exploiting now expansions (4.9) and (4.10), and remembering
(4.11), expression (4.6), evaluated at ~x = ~x0 and τ = τ0, becomes:

aℓm(~x0, τ0) =

∫

dΩY ∗
ℓm(p̂)

∫

d3~k

(2π)3
ei
~k~x0

∞
∑

ℓ′=0

(−i)ℓ′(2ℓ′ + 1)Tℓ′(k)ζ(~k)Pℓ′(k̂ · p̂)

= 4π(−i)ℓ
∫

d3~k

(2π)3
ei
~k~x0Y ∗

ℓm(k̂)Tℓ(k)ζ(~k),
(4.12)

where, in the second step, we have expanded the Legendre polynomials over spherical harmonics
(B.9) and applied the orthonormality condition (B.8). Computing now the 2-point correlator (4.7)
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leads to:

〈aℓma∗ℓ′m′〉 = (4π)2(−i)ℓ(i)ℓ′
∫

d3~k

(2π)3

∫

d3~k′

(2π)3
ei
~k~x0e−i

~k′~x0

× Y ∗
ℓm(k̂)Yℓ′m′(k̂′)Tℓ(k)T ∗

ℓ′ (k
′)〈ζ(~k)ζ(~k′)〉

= (4π)2
∫

d3~k

(2π)3
Y ∗
ℓm(k̂)Yℓ′m′(k̂)Tℓ(k)T ∗

ℓ′ (k)Pζ(k)

=
2

π
δℓℓ′δmm′

∫ ∞

0

dkk2Pζ(k)|Tℓ(k)|2,

(4.13)

where in the second line we have applied the definition of the primordial power spectrum (1.58)
and integrated the resulting Dirac delta, while in the third we have used the spherical harmonics
normalization condition (B.8). The ensamble average in (4.13) acts only on the random field ζ,
since the transfer function T is fully determined, as we discussed previously. Equating (4.7) and
(4.13), it immediately follows the expression for the angular power spectrum we have been looking
for:

Cℓ =
2

π

∫ ∞

0

dkk2Pζ(k)|Tℓ(k)|2. (4.14)

This is a general result, which actually needs the expression of the transfer function Tℓ, computed
by solving the aforementioned Boltzmann-Einstein set of equations, in order to provide with an
explicit prediction for Cℓ comparable with observations. The derivation and solution of these
equations is certainly beyond the scope of this Thesis and we will not treat them. Nevertheless,
we present here the result of the computation, written as the value of the anisotropies today (at
τ = τ0) expressed as a function of the anisotropies at recombination (at τ = τ∗) [41]:

Θℓ(k, τ0) =
[

Θ0(k, τ∗) + φ(k, τ∗)
]

jℓ
[

k(τ0 − τ∗)
]

+ 3Θ1(k, τ∗)

(

jℓ−1

[

k(τ0 − τ∗)
]

− ℓ(ℓ+ 1)jℓ
[

k(τ0 − τ∗)
]

k(τ0 − τ∗)

)

+

∫ τ0

0

dτe−τD
[

φ′(k, τ) + ψ′(k, τ)
]

jℓ
[

k(τ0 − τ)
]

,

(4.15)

where τD is the photons optical depth, not to be confused with the conformal time τ , and is
defined such that − 1

τ ′

D

= λMFP is the mean free path a photon travels in between two scatterings.

In (4.15) we have introduced the spherical Bessel function jℓ(kτ) of order ℓ, which quantifies the
contribution of a plane-wave of wavenumber k to the anisotropy on an angular scale θ ∼ ℓ−1.
From equation (4.15) it is not immediately evident how to recover an explicit expression for the
transfer function Tℓ, since the linear dependence on ζ is not manifest as in (4.11). This is because
the result is written as a function of quantities evaluated at recombination, which can themselves
be computed solving the Boltzmann-Einstein equations in the tightly coupled regime, making thus
explicit the dependence on ζ.
The final prediction for the CMB temperature anisotropies angular power spectrum is plotted in
Figure 4.2 as the best fit curve in agreement with observational data [3].

Let us now briefly cover the three different terms which contribute to the present temperature
anisotropies in equation (4.15).

• The first contribution is usually called the Sachs-Wolfe term. It includes the monopole of the
distribution Θ0, which corresponds to the intrinsic temperature anisotropy, and the gravita-
tional potential φ, defined in Chapter 2, both evaluated at recombination. The presence of
the latter accounts for a gravitational redshift effect, due to photons having to climb out of
potential wells at the last scattering surface.

• The second term is the Doppler one, since it consists of the dipole moment Θ1, again at
recombination, mainly attributable to the relative velocity between the observer and the
CMB rest frames.
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Figure 4.2: Planck 2018 [3] temperature power spectrum, DTT
ℓ ≡ ℓ(ℓ + 1)CTTℓ /2π. The base-

ΛCDM theoretical spectrum best fit is plotted in light blue in the upper panel. Residuals with
respect to this model are shown in the lower panel.

• The last is an integrated term, namely the Integrated Sachs-Wolfe (ISW) term. It depends
on the time variation of the gravitational potentials throughout the history of the Universe,
until the present τ = τ0. This is the only term, out of the three, which accounts for later
evolution after recombination.

In order to have a qualitative understanding we can focus on just the Sachs-Wolfe term, which
allows us to explain the two main features of the CMB angular power spectrum profile: the plateau
at low multipoles and the acoustic peaks at smaller scales.

4.1.1 Large angular scales

If we consider super-horizon perturbations at recombination we know that no causal physical
process can affect them so that they are fully determined by the initial conditions set by the
primordial fluctuations. It can be shown that in this scenario the Sachs-Wolfe term in (4.15)
dominates and it can be expressed in terms of the primordial curvature perturbation [41]:

(Θ0 + φ)(k, τ∗) = −1

5
ζ(~k). (4.16)

Furthermore, this term can be interpreted and motivated with simple physical arguments, since on
largest scales the observed anisotropies are determined by the monopole at recombination Θ0 plus
the gravitational potential φ, which accounts for a gravitational redshift effect due to the fact that
photons, at recombination, have to climb out of potential wells, losing energy in doing so. This
phenomenon is known as the Sachs-Wolfe effect [48] and it dominates on largest scales.

It is then possible to compute the predicted angular power spectrum when accounting only for
the Sachs-Wolfe term in (4.15). From (4.16) we can write:

ΘSWℓ (k, τ0) ≃ −1

5
ζ(~k)jℓ

[

k(τ0 − τ∗)
]

, (4.17)
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in such a way that it is possible, by comparison with equation (4.11), to find an explicit expression
for the transfer function:

T SW
ℓ (k) = −1

5
jℓ
[

k(τ0 − τ∗)
]

. (4.18)

We thus see that, dealing with large scale anisotropies, we are able to compute the result for the
angular power spectrum today. Inserting (4.18) in (4.14) gives:

CSWℓ =
2

π

1

25

∫ ∞

0

dkk2
2π2

k3
Pζ(k)j2ℓ

[

k(τ0 − τ∗)
]

, (4.19)

where we have used the expression of the adimensional power spectrum (1.61). Moreover, inte-

grating the definition of the scalar spectral index (1.73), we can write Pζ = As
(

k
kp

)ns−1
, where As

is a dimensionless amplitude and kp a reference scale, so that (4.19) becomes:

CSWℓ =
4π

25
Ask

1−ns
p

∫ ∞

0

dkkns−2j2ℓ
[

k(τ0 − τ∗)
]

. (4.20)

In order to solve this integral it is useful to exploit relation (B.12) involving the spherical Bessel
functions, making also use of the fact that τ∗ ≪ τ0. The final result for the angular power spectrum
in the Sachs-Wolfe regime is:

CSWℓ =
4π

25
As(kpτ0)

1−ns2ns−4π
Γ
(

ℓ+ ns

2 − 1
2

)

Γ(3− ns)

Γ
(

ℓ+ 5
2 − ns

2

)

Γ2
(

2− ns

2

) , (4.21)

where the Euler Gamma function Γ is defined in Appendix B.5. In the simple case of a scale-
invariant power spectrum, i.e. ns = 1, result (4.21) can be rearranged as:

ℓ(ℓ+ 1)CSWℓ =
2π

25
As, (4.22)

which actually corresponds to a constant angular power spectrum per logarithmic interval. We
have used properties (B.19) and (B.20) to compute explicitly the Gamma functions in (4.21).
This scale-invariant behaviour is directly inherited from the primordial power spectrum and it is a
confirm that on largest scales any kind of evolution is frozen. The result (4.22) may be recognized
as the plateau in Figure 4.2 in correspondence to the lower multipoles, until ℓ ∼ 30, and it is the
reason why usually in the literature the plotted quantity is ℓ(ℓ+ 1)Cℓ, instead of just Cℓ.

4.1.2 Acoustic peaks

We have just seen that the treatment of super-horizon perturbations is quite simple, since they
don’t experience any evolution. But what if a given mode re-enters the horizon and does so before
the epoch of recombination? When this happens the perturbation associated to the mode starts
to be influenced once again by causal physics.

Before recombination the interactions between photons and matter are so efficient that the two
species can be regarded as a single fluid, whose dynamics is essentially driven by two competing
forces: the repulsion due to the photon pressure and the gravitational attraction experienced by
baryons. The net result is an oscillating evolution of the fluid, with a frequency determined by the
baryon density Ωb. Therefore, the Sachs-Wolfe term, as a function of k, in (4.15) assumes different
value depending on which stage of oscillation it is going through at recombination. The evolution
until recombination of different modes is plotted in Figure 4.3. A mode, with wavenumber k,
experiencing at τ∗ a maximum compression or rarefaction corresponds to a peak in the angular
power spectrum centered around ℓ ∼ kτ0, while the opposite happens for modes with vanishing
amplitude at recombination, for which we expect a trough in the spectrum at the corresponding
scale.

The description we have just given is a bit sketchy and certainly qualitative, but it at least physi-
cally motivates the presence of what are called the acoustic peaks, visible in the spectrum of Fig.
4.2 for ℓ & 30.
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Figure 4.3: Time evolution of the Sachs-Wolfe term in the CMB temperature anisotropies. The
evolution of modes with different wavenumber is shown. The amplitude at recombination is what
determines the spectrum height at ℓ ∼ kτ0. In particular, it can be noticed that the super-horizon
mode is shown to be not oscillating. In our notation Ψ = φ and Φ = −ψ. Taken from [41].

4.2 CMB bispectrum

So far in this Chapter we have derived how the CMB temperature anisotropies are a product of
the primordial perturbations evolution. In particular, the linear proportionality between Θ and ζ,
expressed by relation (4.8), suggests that the CMB itself can be regarded as a source of information
about the statistical properties of perturbations generated during inflation. We know, in fact, that
the statistics of a given random field is described by the full set of n-point correlation functions.
In the CMB case any n-point correlator of the present temperature anisotropy Θ(~k, p̂, τ0) can be
written schematically as:

〈Θ(~k1)Θ(~k2)...Θ(~kn)〉 =
( n
∏

i=1

T (~ki)

)

〈ζ(~k1)ζ(~k2)...ζ(~kn)〉. (4.23)

It follows in particular that a non-vanishing higher order correlator of Θ(~k, p̂, τ0) must be related

to a non-vanishing correlator of the primordial perturbation ζ(~k) of the same order. Furthermore,
the proportionality factor is given deterministically by a product of transfer functions. In Chapter
3 we have introduced the primordial bispectrum as the main indicator of the presence of non-
Gaussianity in some form. Setting n = 3 in relation (4.23) it is thus possible to probe primordial
non-Gaussianity by means of the CMB bipectrum.

4.2.1 Angular bispectrum

In section 4.1 we have seen how it is natural, when dealing with CMB temperature anisotropies, to
project the temperature field over the spherical sky by performing a spherical harmonics expansion.
This has led us to compute the angular power spectrum (4.14), which is given by the 2-point
correlation function of the expansion coefficients (4.7). In an analogous way it is possible to define
the CMB temperature angular bispectrum, as the 3-point correlation function of the spherical
harmonics expansion coefficients (4.6):

Bm1m2m3

ℓ1ℓ2ℓ3
= 〈aℓ1m1aℓ2m2aℓ3m3〉. (4.24)

Assuming rotational invariance, we can average out the dependence on m without losing any
physical information. We thus define the angle-averaged bispectrum as [16]:

Bℓ1ℓ2ℓ3 =
∑

m1m2m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

Bm1m2m3

ℓ1ℓ2ℓ3
, (4.25)
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where we have introduced the Wigner-3j symbol (Appendix B.4), which explicitly requires the
angular bispectrum Bm1m2m3

ℓ1ℓ2ℓ3
to satisfy the following triangle conditions and selection rules:

m1 +m2 +m3 = 0,

ℓ1 + ℓ2 + ℓ3 = integer,

|ℓi − ℓj | ≤ ℓk ≤ ℓi + ℓj .
(4.26)

As a result, it is possible to express Bm1m2m3

ℓ1ℓ2ℓ3
in the following way [16]:

Bm1m2m3

ℓ1ℓ2ℓ3
= Gm1m2m3

ℓ1ℓ2ℓ3
bℓ1ℓ2ℓ3 , (4.27)

where bℓ1ℓ2ℓ3 is called reduced bispectrum and carries all the physical information contained in
Bm1m2m3

ℓ1ℓ2ℓ3
. The factor Gm1m2m3

ℓ1ℓ2ℓ3
is the Gaunt integral and satisfies all the geometrical conditions

mentioned earlier. It is a real quantity defined by the integral:

Gm1m2m3

ℓ1ℓ2ℓ3
≡

∫

dΩYℓ1m1(n̂)Yℓ2m2(n̂)Yℓ3m3(n̂)

=

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(

ℓ1 ℓ2 ℓ3
0 0 0

)(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

.

(4.28)

It is clear the analogy of expression (4.27) with the definition of angular power spectrum (4.7): the
Gaunt integral plays a similar role of the Kronecker deltas and ensures homogeneity, while isotropy
is manifest from the m-independence of the reduced bispectrum.
Substituting (4.27) back inside (4.25) one obtains the relation between the angle-averaged and the
reduced bispectrum:

Bℓ1ℓ2ℓ3 =

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(

ℓ1 ℓ2 ℓ3
0 0 0

)

bℓ1ℓ2ℓ3 , (4.29)

where we have used the orthogonality relation (B.16). Since all the physical information is con-
tained in the reduced bispectrum, or equivalently the angle-averaged one, we may regard it as the
actual observable quantity, whereas the Gaunt integral ensures the geometrical properties (4.26)
and allows to recover the full expression (4.24) of the angular bispectrum.

We can now compute explicitly the 3-point correlation function (4.24), by substituting the ex-

pression of the expansion coefficients written as a function of the primordial perturbation ζ(~k)
(4.12). We obtain the angular bispectrum in terms of the primordial one:

Bm1m2m3

ℓ1ℓ2ℓ3
= (4π)3(−i)ℓ1+ℓ2+ℓ3

∫

d3~k1
(2π)3

∫

d3~k2
(2π)3

∫

d3~k3
(2π)3

ei(
~k1+~k2+~k3)~x0

× Y ∗
ℓ1m1

(k̂1)Y
∗
ℓ2m2

(k̂2)Y
∗
ℓ3m3

(k̂3)Tℓ1(k1)Tℓ2(k2)Tℓ3(k3)〈ζ(~k1)ζ(~k2)ζ(~k3)〉

= (4π)3(−i)ℓ1+ℓ2+ℓ3
∫

d3~k1
(2π)3

∫

d3~k2
(2π)3

∫

d3~k3
(2π)3

Y ∗
ℓ1m1

(k̂1)Y
∗
ℓ2m2

(k̂2)Y
∗
ℓ3m3

(k̂3)

× Tℓ1(k1)Tℓ2(k2)Tℓ3(k3)(2π)3δ(3)(~k1 + ~k2 + ~k3)Bζ(k1, k2, k3),

(4.30)

where we have exploited the definition of primordial bispectrum (3.2) in the second equality. In
order to proceed we can expand the Dirac delta over spherical harmonics to get the following
representation [49]:

δ(3)(~k1 + ~k2 + ~k3) =

∫

d3~r

(2π)3
ei(
~k1+~k2+~k3)~r

=

∫

d3~r

3
∏

i=1

[

2
∑

ℓimi

iℓijℓi(kir)Y
∗
ℓimi

(r̂)Yℓimi
(k̂i)

]

.

(4.31)
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Therefore, going back to expression (4.30), we obtain:

Bm1m2m3

ℓ1ℓ2ℓ3
=

∫

d3~r

3
∏

i=1

[

2

π

∑

LiMi

(−i)ℓiiLiY ∗
LiMi

(r̂)

∫ ∞

0

dkik
2
i Tℓi(ki)jLi

(kir)

×
∫

d2k̂Y ∗
ℓimi

(k̂i)YLiMi
(k̂i)

]

Bζ(k1, k2, k3)

= Gm1m2m3

ℓ1ℓ2ℓ3

∫ ∞

0

drr2
3
∏

i=1

[

2

π

∫ ∞

0

dkik
2
i Tℓi(ki)jℓi(kir)

]

Bζ(k1, k2, k3),

(4.32)

where in the second equality we have used the spherical harmonics normalization condition (B.8)
and the definition of the Gaunt integral (4.28). Remembering equation (4.27), the reduced bispec-
trum is then:

bℓ1ℓ2ℓ3 =

∫ ∞

0

drr2
3
∏

i=1

[

2

π

∫ ∞

0

dkik
2
i Tℓi(ki)jℓi(kir)

]

Bζ(k1, k2, k3). (4.33)

Equation (4.32), together with the analogous (4.33), is a general result which holds for any given
expression of the primordial bispectrum. Measuring the observable CMB reduced bispectrum thus
allows to recover information about the amplitude and the shape of the primordial non-Gaussianity.

4.2.2 CMB bispectrum from local primordial non-Gaussianity

Result (4.32) can be specified for the case of primordial bispectrum with a local shape. In Chapter
3 we computed the 3-point correlator of the primordial perturbation ζ parametrized by the local
ansatz (3.7). Substituting the resulting bispectrum (3.24) inside equation (4.33), we obtain:

bℓ1ℓ2ℓ3 =
6

5
fNL

∫ ∞

0

drr2
[(

2

π

∫ ∞

0

dk1k
2
1Pζ(k1)Tℓ1(k1)jℓ1(k1r)

)

×
(

2

π

∫ ∞

0

dk2k
2
2Pζ(k2)Tℓ2(k2)jℓ2(k2r)

)(

2

π

∫ ∞

0

dk3k
2
3Tℓ3(k3)jℓ3(k3r)

)

+ 2 perm

]

.

(4.34)

It is then possible to define the following coefficients [30]:

αℓ(r) ≡
2

π

∫ ∞

0

dkk2Tℓ(k)jℓ(kr), (4.35)

βℓ(r) ≡
2

π

∫ ∞

0

dkk2Pζ(k)Tℓ(k)jℓ(kr), (4.36)

in such a way that the reduced bispectrum (4.34) can be written as:

bℓ1ℓ2ℓ3 =
6

5
fNL

∫ ∞

0

drr2
[

αℓ1(r)βℓ2(r)βℓ3(r) + αℓ2(r)βℓ3(r)βℓ1(r) + αℓ3(r)βℓ1(r)βℓ2(r)
]

. (4.37)

In general, this result can be directly implemented into a code to perform the numerical integration
over r. In order to compute coefficients (4.35) and (4.36) explicit expressions for the primordial
power spectrum and transfer function are needed. The latter is usually provided by Einstein-
Boltzmann solvers, like CMBFAST [50] and CAMB [51], which solve the full system of equations
accounting for the evolution of perturbations after they re-enter the horizon during the post-
inflationary period.

Sachs-Wolfe regime

It is possible to analytically solve the integrals in equation (4.37) by assuming the explicit expression
for the transfer function in the Sachs-Wolfe regime (4.18). Remember that it is valid for angular
scales larger than the horizon at recombination, for which we have considered only the Sachs-Wolfe
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term in the expression (4.15) of the temperature anisotropy today. We have already seen how this
assumption simplifies the expression of the angular power spectrum, and a similar outcome follows
for the reduced bispectrum. We then substitute the transfer function (4.18) inside the expressions
for coefficients (4.35) and (4.36), obtaining:

αSWℓ (r) = − 2

5π

∫ ∞

0

dkk2jℓ
[

k(τ0 − τ∗)
]

jℓ(kr), (4.38)

βSWℓ (r) = − 2

5π

∫ ∞

0

dkk2Pζ(k)jℓ
[

k(τ0 − τ∗)
]

jℓ(kr). (4.39)

Remembering the assumption τ∗ ≪ τ0, we recognize in (4.38) the spherical Bessel function closure
relation (B.11), so that it becomes:

αSWℓ (r) = −1

5

δ(r − τ0)

r2
. (4.40)

The resulting Dirac delta is used to perform the integration over r in equation (4.37) and we are
left with:

bSWℓ1ℓ2ℓ3 = − 6

25
fNL

[(

− 2

5π

∫ ∞

0

dk1k
2
1Pζ(k1)j

2
ℓ1(k1r)

)

×
(

− 2

5π

∫ ∞

0

dk2k
2
2Pζ(k2)j

2
ℓ2(k2r)

)

+ 2 perm

]

,
(4.41)

where the terms inside the parentheses are non other than the CMB angular power spectrum in
the Sachs-Wolfe limit (4.19). It follows that the CMB temperature reduced bispectrum, in the
Sachs-Wolfe regime, can be expressed in terms of the CMB temperature angular power spectrum
in the following way:

bSWℓ1ℓ2ℓ3 = −6fNL
[

CSWℓ1 CSWℓ2 + CSWℓ2 CSWℓ3 + CSWℓ3 CSWℓ1
]

. (4.42)

As expected, this result holds only for large angular scales, when ℓ1, ℓ2 and ℓ3 are all less than
∼ 10 [16].

4.2.3 CMB bispectrum from running primordial non-Gaussianity

Exploiting the results of sections 3.2.2 and 3.2.3, we can now compute the CMB angular bispec-
trum in the case of a running non-Gaussianity parametrized as a generalization of the local model
(3.7). We just need to consider the corresponding primordial bispectrum and substitute it inside
expression (4.33) for the CMB reduced bispectrum. This leads to calculations almost identical to
the one we have done in the previous section, such that the result can still be written as equation
(4.37), with the only difference being the scale dependence of fNL now has to be included in the
definition of either αℓ and/or βℓ.
We are going to discuss the two simple parametrizations (3.49) and (3.53) for fNL we have derived
by generalizing the local ansatz as (3.46) and performing a matching with known primordial bis-
pectrum templates.

In the first case, corresponding to the power-law parametrization of the running (3.37), we find
the following reduced bispectrum:

bℓ1ℓ2ℓ3 =
6

5
fNL(kp)

∫ ∞

0

drr2
[

αℓ1(r)βℓ2(r)βℓ3(r)+αℓ2(r)βℓ3(r)βℓ1(r)+αℓ3(r)βℓ1(r)βℓ2(r)
]

, (4.43)

where the scale dependence of fNL affects the expression of the αℓ coefficient in the following way:

αℓ(r) ≡
2

π

1

k
nfNL
p

∫ ∞

0

dkk2+nfNLTℓ(k)jℓ(kr), (4.44)
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while βℓ(r) keeps instead the same expression of the constant-fNL case (4.36). It seems natural to
take the Sachs-Wolfe limit, for which (4.44) becomes:

αSWℓ (r) = − 2

5π

1

k
nfNL
p

∫ ∞

0

dkk2+nfNL jℓ
[

k(τ0 − τ∗)
]

jℓ(kr). (4.45)

Unfortunately the scale dependence introduced by fNL(k) does not allow to recover an analytic
solution of this integral, meaning that we cannot derive the analogous of expression (4.42) without
making any further assumption.

The expression (3.15) for a scale-dependent fNL leads to the same expression (4.43), where the
coefficient αℓ(r) is defined as in (4.35) and βℓ has to be modified in this way:

βℓ(r) ≡
2

π

1

k
nfNL

/2
p

∫ ∞

0

dkk2+
nfNL

2 Pζ(k)Tℓ(k)jℓ(kr). (4.46)

Since αℓ(r) is left untouched from the constant-fNL case, this time it is possible to take the
Sachs-Wolfe limit, for which the CMB reduced bispectrum becomes:

bSWℓ1ℓ2ℓ3 = − 6

25
fNL(kp)

[(

− 2

5π

1

k
nfNL

/2
p

∫ ∞

0

dk1k
2+

nfNL
2

1 Pζ(k1)j
2
ℓ1(k1r)

)

×
(

− 2

5π

1

k
nfNL

/2
p

∫ ∞

0

dk2k
2+

nfNL
2

2 Pζ(k2)j
2
ℓ2(k2r)

)

+ 2 perm

]

.

(4.47)

Nevertheless, remember that the the CMB angular power spectrum is not affected, at first order,
by non-Gaussian contributions, in such a way that its expression (4.19) in the Sachs-Wolfe regime
holds even when considering a scenario with running non-Gaussianity. We thus conclude that the
result (4.42), relating the CMB angular power spectrum and reduced bispectrum in the SW limit,
is an exclusive feature of the local model of primordial non-Gaussianity (3.7) with constant fNL.



Chapter 5

The Cosmological Gravitational

Wave Background

In Chapter 4 we have seen how the CMB may be regarded as an observable to probe, among other
things, the possible presence of non-Gaussianity of primordial scalar perturbations. The key point
is that the CMB temperature anisotropies, on a given scale, are set by the corresponding mode of
the gauge-invariant curvature perturbation ζ at the time when it crosses the horizon after inflation.
Since all the subsequent evolution is deterministic, the statistical properties of the temperature
anisotropies we measure today describe the statistical nature of the perturbation ζ during inflation
and thus allow to test for the presence of primordial non-Gaussianity.

The main focus of the original part of this work is actually to consider another, independent,
probe for primordial non-Gaussianity, which is represented by the so called cosmological gravita-
tional wave background (CGWB) [52, 53]. First of all, we need to define what we refer to as a
gravitational wave background and to understand why the CGWB can be considered a fundamental
and unique observable to probe the early Universe.

5.1 Gravitational waves in a linearized theory of gravity

Gravitational waves (GWs) are a natural prediction of the theory of General Relativity and can be
identified as the transverse and traceless tensor degrees of freedom of the perturbed metric, as we
have already mentioned in Chapter 2 discussing Cosmological Perturbation Theory. In a linearized
theory of gravity, we can define GWs to be a small perturbation around the Minkowski flat metric:

gµν = ηµν + hµν , (5.1)

with |hµν | ≪ 1. Vacuum Einstein equations for the linearized metric (5.1) reads [54]:

�h̄µν = 0, (5.2)

where we have assumed the de Donder gauge ∂µh̄µν = 0 and introduced the trace-reversed metric
perturbation:

h̄µν = hµν −
1

2
ηµνh, (5.3)

where h ≡ hµµ and for which h̄ = −h. It is now possible to show [54] that there are actually
4 redundant degrees of freedom not fixed by the gauge choice, represented by the infinitesimal
coordinate transformation x′µ = xµ+ ξµ with �ξµ = 0. We can then choose ξµ in order to impose
the conditions h0i = 0 and h = −h̄ = 0, so that it is also h̄µν = hµν . From the de Donder
condition then it follows that the component h00 is constant in time and can be set to vanish, since
we consider the GW itself to be just the time-dependent part. Such choices define the transverse
and traceless (TT) gauge, where the remaining spatial components hij must satisfy the conditions
hii = 0 and ∂ihij = 0. This explains why we have identified the transverse and traceless tensor

59
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degrees of freedom χij in (2.5) as gravitational waves in the first place.
In the TT-gauge, equation (5.2) maintains the same form �hµν = 0 when going back to the hµν
variable. It is a wave equation whose solution can in general be expressed as a superposition of
Fourier modes:

hij(t, ~x) =

∫

d3~k
[

hij(~k)e
ikµx

µ

+ h∗ij(
~k)e−ikµx

µ]

, (5.4)

with kihij(~k) = 0 and kµkµ = 0. We have neglected the h0µ components since in the TT gauge
they all vanish. Assuming a plane-wave traveling in the ẑ direction, the solution (5.4) reduces to:

hij(z, t) =





h+ h× 0
h× −h+ 0
0 0 0



 eik(z−t), (5.5)

where the two transverse and traceless tensor degrees of freedom, h+ and h×, correspond to the
two possible polarization states of the gravitational waves, + and ×. This is a direct manifestation
of the nature of the gravitational interaction whose mediator, the graviton, is a massless spin-two
boson.
Here we have just provided with the main results of the linearized theory of gravity in flat space,
leading to the gravitational wave solution (5.4). For more details see [54].

5.1.1 Gravitational waves in curved spacetime

Our discussion so far has been centered around the linearized metric (5.1), where a gravitational
wave is interpreted as a small perturbation around the flat spacetime. Nevertheless, in Cosmology
we are more interested in considering the scenario of gravitational waves traveling throughout the
physical spacetime, which at the background level we know to be described by the FLRW metric
(1.1). More in general, it is necessary to find a way to describe gravitational waves in a curved
spacetime. In analogy to the linearized case (5.1) we can write:

gµν(x) = ḡµν(x) + hµν(x), (5.6)

where this time the background metric is a function of the spacetime coordinate x. It follows that
isolating the gravitational wave hµν may not happen to be a trivial task. In such a context, this is
made possible by considering a separation of scales/frequencies [52]. The idea is quite simple: ba-
sically we can distinguish the gravitational wave from the background by means of the length-scale
over which they vary. This is actually the case when the background ḡµν varies over LB , while
GWs have a typical wavelength λ ≪ LB . An analogous distinction can be performed by means
of the different variations over a period of time, where the typical frequency of the GWs is much
larger than the frequency which characterizes the variations of the background f ≫ fB . In this
way the GWs are seen as small perturbations on a smooth background or, equivalently, as rapidly
varying perturbations on a slowly varying background.
In general, when the background is curved, it is not possible to write the metric perturbations in
the TT gauge, where h+ and h× are the only degrees of freedom. From our discussion in Chapter
2 we know indeed that there are in total four additional physical degrees of freedom: two scalars
and two transverse vectors. Nevertheless, it is possible to show [52] that h+ and h× are the two
only physical radiative degrees of freedom, whereas the metric can contain also scalar and vector
non-radiative ones.

5.2 Stochastic background of gravitational waves

We have seen how the transverse and traceless tensor metric perturbations hij can be associated
to gravitational waves propagating on a sufficiently smooth background. We will refer to hij as
the amplitude of GWs. Its physical degrees of freedom are the actual observables which detectors
on Earth [55] are capable of measuring.
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Since the first detection, GW150914 [56], all measured GW signals until now have been associated
with localized astrophysical events. In this context, it is then possible to distinguish between tran-
sient GWs, due to binary inspirals or burst events, and continuous periodic ones, generating for
example from pulsars [57].
In Cosmology we are instead mainly interested in a very different type of signal, namely a stochas-
tic background of gravitational waves, coming from all direction and with the defining property of
being describable only in a statistical way. In the case of a stochastic background, the amplitude
hij is in fact regarded as a random variable, which as we already know can be described only by
means of statistical correlators. We then refer to a stochastic background of cosmological origin as
a cosmological gravitational wave background (CGWB). When searching for this background [58],
to first approximation homogeneity and isotropy can be assumed, in a similar way as the CMB
case. It is indeed a very similar concept to the CMB one, where the photons are substituted by
gravitational waves, arising from some kind of cosmological process in the early Universe. Actually,
a stochastic background of astrophysical nature is also expected to be produced by the superposi-
tion of a large number of independent sources [59] and it is thus necessary to be able to distinguish
it from the CGWB. This can be achieved, for example, by separating different frequency depen-
dencies, which are determined by the characteristic scales of the cosmological processes.

The detection of a stochastic background of GWs is not a simple task, since, unlike the other
types of signal, its statistical nature would make it appear as noise in a single detector [57]. The
signal is in fact a random field which can be expressed as:

s(t) = n(t) + h(t), (5.7)

the sum of the GW amplitude h(t) and of the noise n(t). The magnitude of the stochastic back-
ground is expected to be very tiny and for sure much smaller than the noise h(t) ≪ n(t). Never-
theless, it is possible to isolate the GW signal by considering the 2-point correlator of the outputs
of two different detectors:

〈s1(t)s2(t)〉 = 〈(n1(t) + h1(t))(n2(t) + h2(t))〉 = 〈h1(t)h2(t)〉, (5.8)

where the last passage is motivated by the fact that it is possible to assume the statistical inde-
pendence between the noise measured by different detectors.

Up to now a direct signal of the stochastic gravitational wave background, either of astrophys-
ical or cosmological origin, has yet to be detected. Several detection methods are expected to be
able to achieve such a result in the near future, each probing a specific range of the frequency
spectrum [57].
Ground-based detectors LIGO and Virgo [60] , already responsible for the detection of localized
GW signals, can exploit the correlation between detectors mentioned earlier to probe the range
from 20 Hz to 1000 Hz. Pulsar timing [61] (10−9 Hz - 10−8 Hz) and the space based gravitational
wave detector LISA [62] (0.1 mHz - 100 Hz), launching in the 2030s, are other examples of methods
to attempt the detection of a stochastic background of GWs.

5.2.1 CGWB as a probe of the early Universe

An early period of inflation is expected to be a fundamental source for the CGWB [52]. This can
either be the direct result of the amplification of initial quantum fluctuations of the gravitational
field, which is responsible for the so called irreducible contribution to the background, or a conse-
quence of other mechanisms in action during such a period.
In both cases, the CGWB is retained as a unique probe of the fundamental physics at early times.
In fact, the peculiarity of gravitational waves is that they interact only gravitationally, whereas
the photons of the CMB, for example, mainly interact electromagnetically with baryons. Being
the gravitational interaction very weak, it decouples at very early time during the thermal history
of the Universe, in such a way that GWs are able to freely stream, without interacting with matter
or radiation.
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Qualitatively speaking, we can evaluate the strength of a given interaction in an expanding Uni-
verse by comparing its rate Γ with the Hubble rate H, which roughly corresponds to the frequency
with which the Universe doubles its size. In the case of the gravitational interaction we have [52]:

Γ(T )

H(T )
∼ G2T 5

T 2/MP
≃

(

T

MP

)3

, (5.9)

where the reduced Planck mass is defined as MP = (8πG)−1/2 and the Hubble parameter during
the radiation era has been expressed as H(T ) ∼ T 2/MP . The interaction rate has been computed
assuming a weak interaction Γ(T ) = nσv, where the number density of particles is n ∼ T 3 and
their velocity is relativistic v ∼ 1. The cross-section is the one typical of interactions mediated by
massless gauge bosons (in this case the graviton) σ ∼ G2T 2.
An interaction is then said to be inefficient when Γ < H, which for the gravitational one happens
for T < MP , i.e. the gravitational waves decouple from the thermal plasma approximately one
Planck time tP after the Big Bang. This shows that GWs are free to propagate immediately
after they are produced, carrying unique information about the processes which generated them.
Primordial GWs from inflation can thus be assumed as a unique probe of very high energy scales,
inaccessible to the other observables. As a comparison, we know that CMB radiation is produced
shortly after the recombination epoch, when photons decouple from matter, and thus cannot carry
any information about the state of the Universe prior to that time.

5.2.2 Energy density of the stochastic background

The natural quantity to describe the statistics of a stochastic background is the 2-point correlation
function of the GW amplitude hij , which is what we will compute explicitly in the next section for
primordial GWs generated by quantum fluctuations during inflation, ending up with an expression
for the tensor power spectrum, analogous to the scalar one computed in Chapter 1.
Beside the amplitude power spectrum, another quantity of major interest for a stochastic back-
ground is the GW energy density ρGW . In the weak-field limit, GWs can be considered as small
perturbations around a fixed background metric. It is thus possible to define how the presence of
these perturbations affects the background. This is done by rewriting vacuum Einstein equations
Gµν = 0 in the following way [53]:

Ḡµν = 8πGtµν , (5.10)

where Ḡµν is computed using the background metric only and tµν is a stress-energy tensor ac-
counting for the presence of GWs, expressed as:

tµν =
1

32πG
〈∂µhij∂νhij〉. (5.11)

The angle brackets denote an average over the typical lengthscale on which the background metric
varies, which corresponds to several GW wavelengths. The energy density is then proportional to
the (0-0) component of this stress-energy tensor. For a FLRW background with conformal time τ ,
we explicitly find:

ρGW =
1

32πGa2
〈h′ij(τ, ~x)h′ij(τ, ~x)〉. (5.12)

It is often useful to define also the GW energy density per per logarithmic frequency interval:

ΩGW (τ, k) ≡ 1

ρc

dρGW
dlnk

, (5.13)

where ρc is the critical density introduced in equation (1.15). Here we have defined ΩGW as
homogeneous, which is the usual assumption in most of the studies on the CGWB. Nevertheless,
later in this Chapter we are going to see how it may be interesting to introduce the possibility for
a space dependence related to the anisotropies of the GW stochastic background.
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5.3 Gravitational Waves from inflation

In this section we discuss how primordial tensor perturbations, corresponding to gravitational
waves, are naturally generated during an early period of inflation. This is analogous to the pro-
duction of primordial scalar perturbations from the inflaton quantum fluctuations we have discussed
in Chapter 1.

We consider again the standard single field slow-roll model of inflation, characterized by the action
(1.30):

S =

∫

d4x
√−g

(

1

16πG
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)

. (5.14)

In Chapter 1 we have derived from this action the equation of motion for the full inflaton ϕ(t, ~x),
including both the background and the small perturbations around it, namely the Klein-Gordon
equation (1.31). We know from the discussion of the previous section that GWs are represented
by the transverse and traceless tensor degrees of freedom of the metric perturbation. Furthermore,
at linear order their evolution is decoupled from scalars and vectors, in such a way that we can
express the perturbed FLRW metric (2.5) as:

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (5.15)

where only the gauge-invariant tensor degrees of freedom have been considered. Expanding the
pure gravitational part of action (5.14) for the perturbed metric (5.15), we get:

Sg =
1

64πG

∫

d4xa2(t)

[

ḣij ḣij −
1

a2
(~∇hij)2

]

, (5.16)

where we have kept the second order of expansion in hij , since we want to derive the equations of
motion at first order. These are obtained by varying action (5.16) with respect to hij , resulting in:

ḧij + 3Hḣij −
1

a2
∇2hij = 0, (5.17)

which is just the equation for a free wave propagating in a FLRW spacetime, as we would have
expected. It is then possible to decompose hij in Fourier space into the two polarization states
λ = (+,×), in the following way:

hij(t, ~x) =
∑

λ=(+,×)

∫

d3~k

(2π)3
h(λ)(t,~k)e

(λ)
ij (k̂)ei

~k~x, (5.18)

where we have introduced the polarization tensors e
(λ)
ij (k̂), which depend only on the unit vector

k̂ and are symmetric eij = eji, transverse kieij = 0 and traceless eii = 0. They can be assumed

to be real and to satisfy the condition eij(−~k) = eij(~k), in such a way that the reality of hij is

ensured if h(λ)∗(t,~k) = h(λ)(t,−~k). In order to solve equation (5.17) it is then useful to introduce
the following variable:

v
(λ)
~k

(τ) =
aMP√

2
h(λ)(τ,~k), (5.19)

where we have also passed to the conformal time τ . Combining definitions (5.18) and (5.19),

equation (5.17) can be rewritten, in Fourier space, in terms of the mode functions v
(λ)
~k

(τ):

v
(λ)
~k

′′(τ) +

(

k2 − a′′

a

)

v
(λ)
~k

(τ) = 0. (5.20)

By comparison with equation (1.47) for the inflaton fluctuations, we can see how each polarization
of the tensor perturbation hij behaves, during inflation, like a massless scalar field in a FLRW
spacetime, where the expansion of the Universe is accounted for by an effective mass squared term
equal to a′′

a [53].
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Before we perform the standard quantization of v
(λ)
~k

(τ) and compute the power spectrum of primor-

dial tensor perturbations, we can study the qualitative behaviour of equation (5.20). It is possible
to identify two different regimes, which correspond either to a sub-horizon or super-horizon mode
solution.
We know that a given perturbation mode of wavenumber k crosses the horizon during inflation
when its wavelength is comparable to the Hubble radius, which we identify with the condition
k = aH. Therefore, for a mode well inside the horizon it holds the relation k ≫ aH, which can be
rewritten in terms of the proper time τ as k2 ≫ a′′

a . Analogously, the wavenumber of a mode out

of the Horizon satisfies k ≪ aH, or k2 ≪ a′′

a .
We first consider the sub-horizon regime, where equation (5.20) reduces to:

v′′~k + k2v~k = 0. (5.21)

As we have already seen in Chapter 1, this corresponds to the equation of a plane-wave in flat
spacetime. Physically, modes with a large enough wavenumber experience the FLRW spacetime
as flat, thus ignoring the expansion of the Universe. The general solution for a sub-horizon mode
is then:

vk(τ) = A(k)eikτ +B(k)e−ikτ , (5.22)

where A and B are time-independent integration functions determined by initial conditions, of
which we will talk about soon. This means, remembering the rescaling (5.19), that the amplitude
of sub-horizon modes of hij decreases during inflation as the inverse of the scale-factor.

In the super-horizon regime the term a′′

a in (5.20) dominates over k2, in such a way that we have
to solve:

v′′~k − a′′

a
v~k = 0. (5.23)

This time the solution does not oscillate and in general can be expressed as:

vk(τ) = A(k)a(τ) +B(k)a−2(τ), (5.24)

which corresponds to a constant and a decreasing solution for hij . We will be interested in par-
ticular in the former, since during inflation the scale-factor increases almost exponentially and the
decreasing super-horizon solution becomes negligible very soon.

Knowing the qualitative behaviour of the solutions of equation (5.20) in the two main regimes, we
now perform the standard quantization of the tensor field hij , which is analogous to what we have
done in Chapter 1 for the inflaton perturbation δϕ. We thus promote the mode function v~k to the
corresponding quantum operator:

v̂
(λ)
~k

= vk(τ)â
(λ)
~k

+ v∗k(τ)â
(λ)†
~k

, (5.25)

where â
(λ)
~k

, â
(λ)†
~k

are the annihilation and creation operators for the two polarization states. Each

couple of operators satisfies the canonical quantization condition (1.51), introduced when dealing
with the quantum inflaton perturbations. In analogy with (1.52), then, the modes are normalized
in such a way that they satisfy:

v∗kv
′
k − vkv

∗
k
′ = −i. (5.26)

The vacuum state |0〉 is defined by imposing that it is destroyed by the annihilation operator at

past infinity, i.e. â
(λ)
~k

|0〉 = 0 for τ → −∞. This corresponds to the so called Bunch-Davis vacuum
choice.
Until now we have just repeated the same steps of section 1.2.3, adapting the notation to the
current case. This time we want to deal more in details with the solution of the quantized version
of equation (5.20). We already know that it corresponds to the equation of motion of a quantum
harmonic oscillator for each polarization state:

v′′k + ω2
kvk = 0, (5.27)
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which oscillates with frequency:

ω2
k(τ) ≡ k2 − a′′

a
. (5.28)

Equation (5.27) can then be rewritten in the form of a Bessel equation:

v′′k +

(

k2 − ν2 − 1
4

τ2

)

vk = 0, (5.29)

with ν2 = 9
4 + 3ǫ and where we have used the fact that a′′

a ≃ 2
τ2 when neglecting contributions

linear in the slow-roll parameter ǫ. The most general exact solution of this Bessel equation is [53]:

vk(τ) =
√
−τ

[

c1H
(1)
ν (−kτ) + c2H

(2)
ν (−kτ)

]

, (5.30)

where H
(1)
ν and H

(2)
ν are Hankel functions of the first and second kind, respectively, and order

ν. The integration constants c1 and c2 can be fixed by imposing the initial conditions mentioned
earlier. The Bunch-Davis vacuum choice states that the solution at past infinity is a plane-wave.
This is consistent with the fact that we expect sub-horizon modes to experience the spacetime as
flat. Combining it with the normalization (5.26), and picking up the positive frequency mode, we
find the following initial condition:

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ . (5.31)

This has now to be matched to the sub-horizon limit of solution (5.30). The condition k2 ≫ a′′

a can

be rewritten as −kτ ≫ 1 by using the aforementioned approximation a′′

a ≃ 2
τ2 and remembering

that the proper time τ is negative during inflation. We can then exploit the following asymptotic
forms of the Hankel functions:

H(1)
ν (x≫ 1) ∼

√

2

πx
ei
(

x−π
2 ν−

π
4

)

,

H(2)
ν (x≫ 1) ∼

√

2

πx
e−i

(

x−π
2 ν−

π
4

)

.

(5.32)

First of all we see that the Hankel function of the second kind has a negative frequency, so that

we have to set c2 = 0. Substituting the expression for H
(1)
ν (x ≫ 1) inside (5.30) and matching it

to the early time plane-wave (5.31) we get:

c1 =

√
π

2
ei
(

ν+ 1
2

)

π
2 , (5.33)

in such a way that the exact solution becomes:

vk(τ) =

√
π

2
ei
(

ν+ 1
2

)

π
2
√
−τH(1)

ν (−kτ). (5.34)

In order to compute the primordial tensor power spectrum we need the super-horizon behaviour of
this solution. In analogy to the scalar case, in fact, also the tensor modes are conserved while out of
the horizon, before re-entering it during the post-inflationary evolution. This fact directly follows
from the solution (5.24) in the super-horizon regime. The value assumed by the perturbation at
horizon-crossing, during inflation, thus provides the initial condition for the evolution of the modes
upon horizon re-entry. Furthermore, from the discussion in Chapter 2 we remember that, at linear
order, transverse and traceless tensor perturbations hij are also automatically gauge-invariant,
which was the main reason that has led us to introduce the comoving curvature perturbation ζ to
be identified with primordial scalar perturbations.
On super-horizon scales we have −kτ ≪ 1, for which the Hankel function of the first kind has the
following asymptotic behaviour:

H(1)
ν (x≪ 1) ∼

√

2

π
e−i

π
2 2ν−

3
2
Γ(ν)

Γ
(

3
2

)x−ν , (5.35)
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which, substituted inside (5.34), leads to the mode solution:

vk(τ) = ei
(

ν− 1
2

)

π
2 2ν−

3
2
Γ(ν)

Γ
(

3
2

)

1√
2k

(−kτ) 1
2−ν . (5.36)

We can finally recover, remembering the rescaling (5.19), the super-horizon solution for the Fourier
modes of the GW amplitude:

h
(λ)
k (τ) = ei

(

ν− 1
2

)

π
2 2ν−

3
2
Γ(ν)

Γ
(

3
2

)

1

a
√
kMP

(−kτ) 1
2−ν , (5.37)

which is the same for both polarization states.

5.3.1 Primordial GW power spectrum

In analogy to the primordial scalar perturbations treatment, the adimensional power spectrum of
primordial gravitational waves has the following expression:

P(λ)
h (k) =

k3

2π2
|h(λ)k |2. (5.38)

The total tensor power spectrum is then defined as the 2-point correlator of the GW amplitude:

〈hij(~k)h∗ij(~k′)〉 = (2π)3δ(3)(~k − ~k′)
2π2

k3
PT (k), (5.39)

where the T refers to tensor degrees of freedom. Remembering that we are working in the TT
gauge, we can express the LHS as 2|h+k |2 + 2|h×k |2, in such a way that PT (k) = 4Ph(k). In order

to compute it explicitly, we first simplify expression (5.37) for h
(λ)
k . The parameter ν is defined by

the relation ν2 = 9
4 + 3ǫ, which at first order in ǫ gives ν ≃ 3

2 + ǫ. In the slow-roll limit, where
ǫ→ 0, we can then write the following approximate solution:

|h(λ)k | = 1

a
√
kMP

(−kτ) 1
2−ν =

H

MP

√
k3

(

k

aH

)−ǫ
, (5.40)

where in the second equality we have also used the fact that, neglecting corrections of order ǫ,
τ ≃ − 1

aH during slow-roll inflation. The total tensor power spectrum thus happens to have the
following expression:

PT (k) = 4× k3

2π2
|h(λ)k |2 =

8

M2
P

(

H

2π

)2(
k

aH

)−2ǫ

. (5.41)

We see that standard slow-roll inflation, characterized by the positive slow-roll parameter ǫ ≪ 1,
predicts a slightly red-tilted power spectrum of primordial gravitational waves. This is made clear
by defining the tensor spectral index:

nT ≡ dlnPT (k)
dlnk

≃ −2ǫ, (5.42)

which is very small and negative.
Exploiting the fact that tensor modes are conserved on super-horizon scales, we can evaluate result
(5.41) at horizon-crossing, where k = aH, so that it becomes:

PT (k) =
8

M2
P

(

H

2π

)2∣
∣

∣

∣

k=aH

. (5.43)

The power spectrum we have just computed is relative to the production of primordial gravitational
waves as metric quantum fluctuations during inflation. This means that an eventual detection of
such a stochastic background of GWs would be a direct confirmation of an early period of acceler-
ated expansion. In this sense it is often referred to as the "smoking gun" of inflation.
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Gravitational waves from inflation are also expected to leave some characteristic traces on the CMB
radiation, in particular on its polarization field [63, 64] . Without going too much into details, we
just mention that an eventual detection of a pattern of B-modes can be associated to the presence
of a CGWB coming from inflation. Here the experimental challenge is to account correctly for
other possible sources of polarized light, in order to isolate the net effect due only to primordial
GWs.

Consistency relation

We conclude this section by addressing to a unique prediction of standard slow-roll inflationary
models.

We compute the relative contribution of primordial GWs with respect to primordial curvature
perturbations, by taking the ratio of the respective power spectra. This defines the tensor-to-
scalar ratio:

r ≡ PT
Pζ

=

2H2

π2M2
P

H2

8π2M2
P
ǫ

= 16ǫ, (5.44)

where in the second equality we have used the expressions of power spectra evaluated at horizon-
crossing, (1.74) and (5.43).
Latest CMB measurements by Planck Collaboration (2018) [65] impose an experimental upper
bound on the tensor-to-scalar ratio, evaluated at a pivot scale of 0.002 Mpc−1, of r0.002 < 0.056
at 95% CL. This result is actually obtained by combining with B-mode polarization data of the
BICEP2/Keck Array [66].

Recalling expression (5.42) for the tensor spectral index, it is now possible to write down the
following relation between the parameters of the primordial power spectra:

r = −8nT , (5.45)

which is independent on the explicit values of the slow-roll parameters. This result can be regarded
as an actual consistency relation which only slow-roll models of inflation are able to provide. A
proper measure of the tensor power spectrum, of both its amplitude and spectral index, is required
in order to check the validity of the relation, whose violation would be the signature of a departure
from the standard single field slow-roll inflationary models.

Parameter space

If we consider both the primordial power spectra, tensor and scalar, we need to fix a total of 4 pa-
rameters in order to uniquely determine their behaviour. To make this more clear, we parametrize
them in the following way:

Pζ = Pζ(kp)
(

k

kp

)ns−1

,

PT = PT (kp)
(

k

kp

)nT

,

(5.46)

where kp is an arbitrary pivot scale. We thus have 4 observables, consisting in the 2 amplitudes,
measured at the pivot scale, and the 2 respective scalar indices.
If we assume the consistency relation (5.45) to be valid, we obtain a relation between the two
amplitudes and the tensor spectral index, which reduces the number of degrees of freedom to
3. Furthermore, measurements of CMB temperature anisotropies constrain the scalar amplitude,
usually indicated as As, at the pivot scale 0.05 Mpc−1 to the value ln(1010As) = 3.044± 0.014 [3].
This leaves a viable parameter space with just 2 degrees of freedom, which are usually chosen to
coincide with ns and r. This is represented in Figure 5.1, where predictions on the parameters
for several inflationary models are reported, along with confidence regions from latest observations
[65].
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Figure 5.1: Confidence regions at 68% and 95% CL for ns and r evaluated at the scale k =
0.002 Mpc−1, along with theoretical predictions from several inflationary models. Taken from [65].

5.3.2 Primordial GWs from inflation as a source of information

A detection of CGWB generated during inflation would not only be a confirmation of the theory
itself, but would also provide crucial information, otherwise inaccessible, about the physics of the
early Universe. We present here two immediate conclusions one may draw from a direct measure
of the tensor power spectrum, while assuming the standard slow-roll inflationary model.

Energy scale of inflation

The amplitude of the tensor power spectrum is strictly tied to the energy scale Einf ≃ V
1
4 at

which the inflationary mechanism takes place, where V (ϕ) is the inflaton potential in the slow-roll
approximation. Notice in fact that expression (5.43) for PT evaluated at horizon-crossing only de-
pends on the Hubble parameter H. Moreover we know that, assuming the slow-roll approximation,
during inflation the value of H is fully determined by the inflation potential V (ϕ), via the first
Friedmann equation in the slow-roll regime (1.37). Substituting the latter inside expression (5.43)
we thus get a relation between the inflaton potential and the amplitude of primordial GWs power
spectrum:

V =
3

2
π2M4

PPT . (5.47)

This result can be rewritten in a more practical way, by exploiting the definition of the tensor-to-
scalar ratio (5.44) and the estimate of the scalar amplitude on large scales obtained by the Planck
Collaboration [65], which leads to:

V ≃ (1016 GeV)4
r

0.01
, (5.48)

from which it is clear that a measure of r would fix this energy scale.

Excursion of the inflaton field

In Chapter 1 we have introduced the concept of e-foldings (1.19) to quantify the duration of
inflation, which is also related, as we will show shortly, to the excursion ∆ϕ experienced by the
inflaton from the horizon-crossing of large-scale perturbations to the end of inflation. We now want
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to show that the value of this ∆ϕ is directly related, once again, to the tensor-to-scalar ratio. By
definition the excursion of the inflation field is:

∆ϕ =

∫ ϕend

ϕCMB

dϕ, (5.49)

where we have chosen to start the integration at the horizon-crossing of the CMB scale, i.e. the
scale corresponding to the Hubble horizon at the epoch of last scattering. The relation with the
number of e-foldings can be derived by combining definitions (1.19), (5.44) and the expression for
the slow-roll parameter ǫ ≃ 4πGϕ2, so that we can write:

r =
8

M2
P

(

dϕ

dN

)2

. (5.50)

An expression for ∆ϕ is then derived by performing the following integration:

∆ϕ =MP

∫ N(ϕend)

N(ϕCMB)

(

r(N)

8

)
1
2

dN, (5.51)

where we have made explicit the dependence of r on N . In the standard slow-roll inflationary
models r can be taken to be constant [53], in such a way that:

∆ϕ

MP
≃

(

r

8

)
1
2

N(ϕCMB). (5.52)

Assuming the minimal amount of e-foldings necessary to solve both the horizon and the flatness
problem, Nmin ∼ 60 [1], a qualitative lower bound for the value of the inflaton excursion can be
derived:

∆ϕ

MP
&

(

r

0.01

)
1
2

. (5.53)

5.3.3 Classical production of GWs during inflation

The CGWB generated from the quantum metric fluctuations during inflation is predicted to have
the statistics described by the power spectrum (5.41). Actually, another way to produce GWs dur-
ing inflation has to be taken into account, namely a classical mechanism. This takes place when the
GW equation of motion in a FLRW spacetime (5.17) includes a source term, i.e. a non-vanishing
term after the equality.
Possible sources of classically generated GWs can be associated with several different scenarios,
such as particle production during inflation or the presence of additional scalar fields beyond the
inflaton [53].

We are interested in particular in the classical production of GWs sourced by scalar perturba-
tions, which is a second-order effect. Up to now we have neglected scalar and vector degrees of
freedom of the metric fluctuations, since they do not influence the evolution of pure tensor degrees
of freedom, but we know that this holds only at the linear level.
Already at the second order, equations of motions for the perturbations start to mix degrees of
freedom of different nature. Among other things, this introduces the possibility of primordial
GWs sourced, at second order, by a combination of first-order scalar perturbations. This is quite
interesting because we know that, during inflation, scalar perturbations are always generated by
quantum fluctuations of the inflaton, which then represent themselves a source for the classical
production of primordial GWs at second order.
In principle we expect this contribution to the CGWB, being a second-order effect, to be negligible
with respect to the one generated at first order from quantum metric fluctuations. Nevertheless,
this may not be the case, for example, in a scenario where scalar perturbations are highly enhanced
at very small scales, whereas the CMB constraints are satisfied at cosmological scales. In such a
situation, second-order production of GWs from scalar perturbations would be greatly enhanced
at small scales.
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Large enough scalar perturbations may also lead to the formation of primordial black holes (PBHs).
The description of the CGWB associated with PBH formation from enhanced scalar perturbation
will be one of the the main focus of the next Chapter, where we will also provide with details about
second-order primordial GWs sourced by scalar perturbations.

5.4 Characterization of the CGWB

Upon an actual detection of the CGWB in the foreseeable future, it arises the necessity to char-
acterize the stochastic background in order to distinguish between different possible sources. The
astrophysical and cosmological natures of the GW background, for instance, can be set apart by
looking at the frequency dependence, since for each physical mechanism a different peaking scale
is expected.
A natural alternative would be to focus instead on the GW background statistics, as we have al-
ready pointed out throughout this Chapter. In the previous section we have computed the tensor
power spectrum as the 2-point correlation function of the amplitude hij of primordial GWs gener-
ated from quantum metric fluctuations during inflation. It is also possible to perform a statistical
description analogous to the one presented in Chapter 4 for CMB temperature anisotropies. This
is what we are actually going to do for the rest of this Chapter, which will eventually allow us to
consider the effect of primordial non-Gaussianity on the CGWB. For this purpose we thus shift
our focus, from now on, to the statistics of the GW energy density parameter ΩGW , defined in
(5.13), rather than the GW amplitude.

Our treatment of the CGWB anisotropies throughout this section follows quite closely the dis-
cussion presented in [49].

5.4.1 Boltzmann equation for gravitational waves

The statistical description of a GW stochastic background can be worked out within a Boltzmann
equation approach [67], in complete analogy to the usual procedure developed for the treatment
of CMB anisotropies [41].

Boltzmann equation regulates the evolution of a given distribution function of particles, accounting
for all their possible interactions. The particles associated to gravitational waves are the gravitons,
and we thus need to introduce the distribution function which describes their statistics.
In the weak-field limit it is possible to assume that massless gravitons travel along null geodesics of
the background spacetime, like photons do. In fact, since gravitons themselves are a manifestation
of the spacetime perturbations, such a description holds only as long as the typical wavelength of
gravitational waves under study is much smaller than the lengthscale over which the background
spacetime experiences sensible variations. This may resemble the geometric optics approach in the
study of light propagation and it is usually referred to as the shortwave formalism [68].

We define the distribution function of gravitons f(x, p, λ) as a function of the 4-position xµ, the
4-momentum pµ = dxµ

dλ and of the affine parameter λ, which parametrizes the null trajectories.
Boltzmann equation for f is then written schematically in the following way [67]:

L[f(λ)] = C[f(λ)] + I[f(λ)], (5.54)

where we have introduced L, C and I as the Liouville, the collisional and the source operator,
respectively. The first is simply the total derivative with respect to the affine parameter L[f(λ)] =
df
dλ computed following the motion of the particles, which usually goes by the name of Lagrangian
derivative. In absence of collisions and production of particles, Liouville’s theorem then states that
the distribution function is conserved along the trajectories, i.e. df

dλ = 0.
The collisional operator vanishes when dealing with GWs at linear order in the perturbations.
Collisions between gravitons affect the distribution at higher orders and can thus be neglected,
while interactions with other particle species become inefficient at very early times, as we have
discussed in section 5.2.1. As a matter of fact, we neglect the collisional term in our treatment.
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The source operator should account for all the possible emissions of GWs, being them astrophysical
processes in the late Universe or cosmological ones, like the quantum fluctuations production
during inflation we have discussed in the previous section. Since we are restricting ourselves to
the description of a stochastic background of cosmological origin, i.e. a CGWB, we can treat the
source term as an initial condition to be imposed at early times. This corresponds to the situation
in which the CGWB is fully produced instantaneously and then left to evolve, without any other
contribution from later emissions.
These considerations leave us with the free Boltzmann equation, in which we can replace the affine
parameter with the conformal time τ :

df

dτ
≡ ∂f

∂τ
+
∂f

∂xi
∂xi

∂τ
+
∂f

∂p

∂p

∂τ
+
∂f

∂ni
∂ni

∂τ
= 0, (5.55)

where the unit vector n̂ = p̂ points in the GW direction of motion. The last term accounts for grav-
itational lensing effects and vanishes at linear order where gravitons are assumed to travel along
straight lines, like CMB photons. The other, non-vanishing terms, describe the free-streaming
and the redshifting of gravitons, where the latter includes effects analogous to the Sachs-Wolfe
(SW) and the integrated Sachs-Wolfe (ISW) ones that we have discussed while dealing with CMB
temperature anisotropies in Chapter 4.

We now need to express the free Boltzmann equation (5.55) in terms of the first-order metric
perturbations around a FLWR background. In order to do so, we consider the metric written as
in (2.5) and put ourselves in the Poisson gauge. Moreover, we can neglect transverse vector modes
since they are not expected to be produced at linear order in standard inflationary models. We
thus end up with the following expression for the linearly perturbed metric in the Poisson gauge:

ds2 = a2(τ)
[

− (1 + 2φ)dτ2 +
(

(1− 2ψ)δij + χij
)

dxidxj
]

, (5.56)

where perturbations, both scalar and tensor, include only modes with wavelength much longer than
the one of the GWs we are considering. In this way it is possible to separate the GW amplitude
hij from the transverse and traceless tensor perturbations χij , realizing concretely the idea behind
the shortwave formalism introduced earlier. This allows us to consider the gravitons propagating
along null geodesics of the perturbed background metric (5.56) and thus to derive the effects of the
presence of scalar and tensor perturbations on the evolution of the graviton distribution function.
Assuming the metric (5.56) and following the standard procedure developed for CMB anisotropies
[77], we get the free Boltzmann equation (5.55) describing the evolution of gravitons in presence
of scalar and tensor perturbations:

∂f

∂τ
+ ni

∂f

∂xi
+

[

∂ψ

∂τ
− ni

∂φ

∂xi
− 1

2
ninj

∂χij
∂τ

]

q
∂f

∂q
= 0, (5.57)

where we have also introduced the comoving momentum defined as q ≡ pa, in such a way that its
value is not affected by the Universe expansion.
The solution of this equation can be expanded to first order as f = f (0)+f (1), in the same way done
in equation (4.2) for the CMB photon distribution function. From the zero-order part of equation

(5.57), which simply reads ∂f(0)

∂τ = 0, we conclude that the zero-order distribution function can
be a function of the comoving momentum q only and it is thus homogeneous and isotropic. The
other dependencies, on time, position and direction of motion, are accounted for by the first order
correction. This is the case also for CMB photons, even if it is not immediately manifest. The
zero-order photon distribution function is the Bose-Einstein one (4.3), which depends only on the
ratio p

T . Moreover, at zero order the temperature varies only as a consequence of the Universe
expansion and goes like T ∝ a−1, in such a way that also the photon distribution function depends
only on the comoving momentum p

T ∝ pa = q.
Keeping the analogy with the CMB treatment, we now express the first order contribution to the
graviton distribution function in the following way:

f (1)(τ, ~x, q, n̂) ≡ −q ∂f
(0)

∂q
(q)Γ(τ, ~x, q, n̂), (5.58)
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where we have defined the function Γ which accounts, as we will discuss in a moment, for the
anisotropies in the CGWB energy density. By comparison with equation (4.2), we see that it is
the analogous of the temperature anisotropy Θ in the CMB case.

5.4.2 Anisotropies in the CGWB energy density

Anisotropies in the graviton distribution function, parametrized by Γ, are related to anisotropies in
the CGWB energy density. The latter, in fact, is obtained as the first moment of the distribution
function:

ρGW (τ, ~x) =
1

a4(τ)

∫

d3~qqf(τ, ~x, q, n̂) ≡ ρc(τ)

∫

dlnqΩGW (τ, ~x, q), (5.59)

where in the second equality we have applied the definition of energy density per per logarithmic
frequency interval (5.13).
Equation (5.59) relates f and ΩGW in the following way:

ΩGW (τ, ~x, q) =
1

ρc

(

q

a

)4 ∫

d2n̂f(τ, ~x, q, n̂) ≡ 1

4π

∫

d2n̂ωGW (τ, ~x, q, n̂), (5.60)

where we have also introduced the contribution to ΩGW per unit solid angle ωGW . Remembering
now the first-order expansion of the graviton distribution function, it is possible to define the
homogeneous component of ΩGW as:

Ω̄GW (τ, q) =
1

ρc

(

q

a

)4 ∫

d2n̂f (0)(q) =
4π

ρc

(

q

a

)4

f (0)(q) ≡ ω̄GW (τ, q), (5.61)

which is usually the main focus of studies on the CGWB. In this work we are interested instead
in the generalization to a possible spatial dependence of ΩGW and we will thus consider the full,
anisotropic, GW energy density (5.60). We want to study in particular the anisotropies around
the homogeneous background value Ω̄GW . For this purpose we now introduce the GW density
contrast, defined in this way:

δGW (τ, ~x, q, n̂) ≡ ωGW (τ, ~x, q, n̂)− ω̄GW (τ, q)

ω̄GW (τ, q)
= − q

f (0)
∂f (0)

∂q
Γ(τ, ~x, q, n̂), (5.62)

where we have applied equations (5.60) and (5.61) in the second passage and the definition (5.58)
in the third. In this way, we have written the GW density contrast in terms of the function
Γ, introduced previously to parametrized the first order contribution to the graviton distribution
function. Deriving the (5.61) we also get the following relation:

∂lnΩ̄GW
∂lnq

= 4 +
∂lnf (0)

∂lnq
, (5.63)

in such a way that equation (5.62) can be rewritten as:

δGW (τ, ~x, q, n̂) =

(

4− ∂lnΩ̄GW
∂lnq

)

Γ(τ, ~x, q, n̂). (5.64)

From this result we conclude that the evolution of the anisotropies of the GW energy density ΩGW
is fully determined by the evolution of the function Γ, which we know to be described by the
Boltzmann equation.

5.4.3 Evolution of the CGWB anisotropies

In order to study the evolution of the CGWB energy density anisotropies we need to write the first-
order Boltzmann equation and solve it in terms of Γ. Neglecting the zero-order term in (5.57) and
remembering the definition (5.58), we obtain the following expression for the Boltzmann equation:

∂Γ

∂τ
+ ni

∂Γ

∂xi
=
∂ψ

∂τ
− ni

∂φ

∂xi
− 1

2
ninj

∂χij
∂τ

≡ S(τ, ~x, n̂), (5.65)
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where we have defined the source function S, which accounts for the effects of scalar and tensor
first order perturbations on the primordial GW propagation. It is remarkable the independence of
S on q, meaning that, at first order in perturbations, a dependence on the GW frequency can only
originates from initial conditions rather than propagation effects [49].
Going in Fourier space with the usual convention (1.48), equation (5.65) becomes:

Γ′ + ikµΓ = ψ′ − ikµφ− 1

2
ninj∂χ′

ij , (5.66)

where we have defined µ ≡ k̂ · n̂. It is then possible to obtain the solution to this equation by
performing a straightforward integration over τ , which gives [49]:

Γ(τ,~k, q, n̂) = e−ikµ(τ−τin)
[

Γ(τin, ~k, q, n̂) + φ(τin, ~k)
]

+

∫ τ

τin

dτ ′e−ikµ(τ−τ
′)

[∂
(

ψ(τ ′, ~k) + φ(τ ′, ~k)
)

∂τ ′
− 1

2
ninj

∂χij(τ
′, ~k)

∂τ ′

]

,

(5.67)

where the lower extremum of integration τin corresponds to the instant of emission of the CGWB
we are considering. We may recognize 3 different contributions to this result:

• The first term, which is evaluated at τin, accounts for the presence of anisotropies in the ini-
tial conditions set by the mechanism generating the CGWB in the early Universe. Assuming
that such a mechanism picks up initial conditions as the result of some random process, it
is then possible to perform a statistical description of this term, analogous to the treatment
of the primordial curvature perturbation ζ. Notice that the initial condition term carries an
exclusive dependence on the frequency q, not present in the other terms, as we have previ-
ously anticipated.

• The terms including scalar metric perturbations ψ and φ can be identified, recalling result
(4.15) for CMB temperature anisotropies, as the analogous of Sachs-Wolfe and integrated
Sachs-Wolfe effects for the stochastic GW background. This suggests us that the CGWB
may be exploited to probe large-scale primordial scalar perturbations, in addition to other
already established observables, like the CMB. In particular, we can study the anisotropies
in the stochastic background of primordial GWs in order to test the presence of primordial
non-Gaussianity. This is exactly what we are going to do later in this Chapter.

• The last term accounts for the effect of (long-wavelength) transverse and traceless tensor
modes on the GW propagation. In this work we will focus on the other two contributions,
being the generalization to include also this term quite straightforward, even if mathemati-
cally a bit more involved.

The statistical description of the GW stochastic background now proceeds in analogy to the CMB
treatment, with the final objective being the computation of angular correlators. The next step is
thus to perform the usual spherical harmonics decomposition of the anisotropies to project them
onto the spherical sky. We are going to do this separately for the initial condition and the scalar
term (remember that we have decided to neglect the tensor contribution), so that it is convenient
to split solution (5.67) into two parts:

Γ(τ,~k, q, n̂) = ΓI(τ,~k, q, n̂) + ΓS(τ,~k, n̂), (5.68)

where I and S identify the initial condition and scalar sourced term, respectively, defined as:

ΓI(τ,~k, q, n̂) ≡ e−ikµ(τ−τin)Γ(τin, ~k, q, n̂), (5.69)

and

ΓS(τ,~k, n̂) ≡ e−ikµ(τ−τin)φ(τin, ~k) +

∫ τ

τin

dτ ′e−ikµ(τ−τ
′)
∂
(

ψ(τ ′,~k) + φ(τ ′, ~k)
)

∂τ ′
. (5.70)
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We address for a moment to the directional dependence in the initial condition term. In order to
obtain statistically isotropic angular correlators we choose to limit the dependence on n̂ in (5.69)
to be just inside the µ term in the exponential, which corresponds to assuming an isotropic initial
value of the random field Γ(τin, ~k, q, n̂) = Γ(τin, ~k, q).
In the following Chapter we will be interested to the CGWB anisotropies arising in a more specific
context, where considering primordial GWs sourced at second order by scalar perturbations char-
acterized by a certain amount of running non-Gaussianity. In such a context it may be reasonable
to relax the hypothesis and consider the possibility of anisotropic correlators. Nevertheless, for
now we stick to the simpler case of isotropic correlators, hence our previous assumption on the
initial condition term.

Performing the expansion of the anisotropy Γ over spherical harmonics, in real space, allows us to
obtain the following expansion coefficients:

Γℓm(τ0, ~x0, q) =

∫

d2n̂Y ∗
ℓm(n̂)Γ(τ0, ~x0, q, n̂), (5.71)

which are the analogous of the aℓm coefficients (4.6) in the CMB treatment. Notice how we have
decided to evaluate both sides at the present time τ0 and at our position ~x0, since we would
ultimately want to make contact with quantities observationally accessible to us.
We now need to substitute (5.69) and (5.70), one at a time, inside the expression (5.71) for the
coefficients Γℓm, remembering also to transform back from Fourier space to the real one.

Initial condition term

We start with the initial condition term, for which we have:

Γℓm,I(τ0, ~x0, q) =

∫

d2n̂Y ∗
ℓm(n̂)

∫

d3~k

(2π)3
ei
~k~x0e−ikµ(τ0−τin)Γ(τin, ~k, q). (5.72)

The integration over the GW direction n̂ is performed by exploiting the following expansion of the
exponential in a series of Legendre polynomials [49]:

e−i
~k~y =

∞
∑

ℓ=0

(−i)ℓ(2ℓ+ 1)jℓ(ky)Pℓ(k̂ · ŷ). (5.73)

Remembering also the spherical harmonics expansion of Pℓ (B.9), and applying the orthonormality
condition (B.8), we finally obtain:

Γℓm,I(τ0, ~x0, q) = 4π(−i)ℓ
∫

d3~k

(2π)3
ei
~k~x0Γ(τin, ~k, q)Y

∗
ℓm(k̂)jℓ

(

k(τ0 − τin)
)

. (5.74)

It has to be stressed that this result holds only for the isotropic case we have assumed, where
Γ(τin, ~k, q) does not depend on the GW direction. This has allowed us to simply integrate over
n̂ by exploiting the spherical harmonics normalization condition (B.8). If this had not been the
case we should have taken into account a non-trivial dependence on n̂ while performing such an
integration.

Scalar sourced term

We now perform the same steps for the scalar sourced term (5.70). In order to isolate the statistical
behaviour inside this expression, we make use of the formalism of the transfer function, already
introduced for the treatment of CMB anisotropies. We know that temperature anisotropies Θ on
a given scale ∼ k−1 are set by the value of the curvature perturbation mode ζ~k when it crosses the
horizon after the end of inflation. This has allowed us to introduce the transfer function, defined in
expression (4.8), in order to account for the subsequent deterministic evolution inside the horizon,
while leaving the statistical behaviour of Θ to be inherited from ζ. A similar argument can be
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given for the metric scalar perturbations ψ and φ. It is possible, in fact, to relate the value of these
potentials, at late time after inflation, to the primordial curvature perturbation ζ [41]:

ψ(τ,~k) = Tψ(τ, k)ζ(~k),
φ(τ,~k) = Tφ(τ, k)ζ(~k),

(5.75)

in complete analogy with the CMB temperature anisotropies transfer function (4.8). Moreover,
in absence of anisotropic stresses, we know from equation (2.20) that the two scalar potentials
coincide ψ = φ in the Poisson gauge, so that their respective transfer functions are also the same,
i.e. Tψ = Tφ.
With this premise in mind, we can now compute the spherical harmonics expansion coefficients for
the scalar sourced terms:

Γℓm,S(τ0, ~x0) =

∫

d2n̂Y ∗
ℓm(n̂)

∫

d3~k

(2π)3
ei
~k~x0

[

e−ikµ(τ0−τin)Tφ(τin, k)

+

∫ τ0

τin

dτ ′e−ikµ(τ0−τ
′)
∂
(

Tψ(τ ′, k) + Tφ(τ ′, k)
)

∂τ ′

]

ζ(~k)

= 4π(−i)ℓ
∫

d3~k

(2π)3
ei
~k~x0ζ(~k)Y ∗

ℓm(k̂)

[

Tφ(τin, k)jℓ
(

k(τ0 − τin)
)

+

∫ τ0

τin

dτ ′
∂
(

Tψ(τ ′, k) + Tφ(τ ′, k)
)

∂τ ′
jℓ
(

k(τ0 − τ ′)
)

]

,

(5.76)

where we have followed the same procedure detailed for the initial condition term. Notice how this
result closely resembles the structure of the first (SW) and third (ISW) terms of the expression
(4.15) for the CMB temperature anisotropies. We can further define:

T S
ℓ (τ0, τin, k) ≡ Tφ(τin, k)jℓ

(

k(τ0 − τin)
)

+

∫ τ0

τin

dτ ′
∂
(

Tψ(τ ′, k) + Tφ(τ ′, k)
)

∂τ ′
jℓ
(

k(τ0 − τ ′)
)

, (5.77)

in such a way that:

Γℓm,S(τ0, ~x0) = 4π(−i)ℓ
∫

d3~k

(2π)3
ei
~k~x0ζ(~k)Y ∗

ℓm(k̂)T S
ℓ (τ0, τin, k), (5.78)

thus making complete the analogy with the aℓm coefficients (4.12) expressed in terms of the pri-
mordial curvature perturbation ζ.

5.4.4 Angular correlators

We compute statistical correlators of our previous results, in order to extract physical informa-
tion which may be eventually compared with observations. The two different contributions to
the CGWB anisotropies we are considering, (5.74) and (5.78), are determined by the statisti-

cal behaviour of the random fields Γ(τin, ~k, q) and ζ(~k), respectively. We have already described
extensively the curvature perturbation ζ, by defining the primordial power spectrum:

〈ζ(~k1)ζ(~k2)〉 = (2π)3δ(3)(~k1 + ~k2)Pζ(k1), (5.79)

and the primordial bispectrum:

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bζ(k1, k2, k3), (5.80)

which for the latter we know to be non-vanishing only in the presence of primordial non-Gaussianity.
The same treatment can also be applied to the anisotropy initial condition Γ(τin, ~k, q), which we
assume to be the result of some primordial random process. We thus define the following 2-point:

〈Γ(τin,~k1, q)Γ(τin, ~k2, q)〉 = (2π)3δ(3)(~k1 + ~k2)PI(q, k1), (5.81)
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and 3-point correlation functions:

〈Γ(τin, ~k1, q)Γ(τin, ~k2, q)Γ(τin, ~k3, q)〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)BI(q, k1, k2, k3). (5.82)

Notice in particular that the exclusive q-dependence of the initial condition term gets transferred
to PI and BI .
We can now exploit the correlators just defined to compute the angular correlators of expression
(5.71), starting with the angular power spectrum.

Angular power spectrum

We define the angular power spectrum in analogy to the CMB temperature one (4.7):

〈Γℓ1m1Γ
∗
ℓ2m2

〉 = δℓ1ℓ2δm1m2C̃ℓ1 . (5.83)

Exploiting the split (5.68), it is useful to also write expression (5.71) as:

Γℓm(τ0, ~x0, q) = Γℓm,I(τ0, ~x0, q) + Γℓm,S(τ0, ~x0), (5.84)

which substituted in (5.83) gives:
C̃ℓ = C̃ℓ,I + C̃ℓ,S , (5.85)

where we have chosen to neglect the possibility of an eventual cross-correlation, in order to focus
on the effects of the different physical mechanisms.
The 2-point correlators are then computed in the usual way, which we have already reported with
all the details for the CMB case. Here we thus limit to provide with the results:

C̃ℓ,I(q) = 4π

∫

dk

k

[

jℓ
(

k(τ0 − τin)
)]2PI(q, k), (5.86)

C̃ℓ,S = 4π

∫

dk

k

(

T S
ℓ (k, τ0, τin)

)2Pζ(k). (5.87)

It is interesting to consider the large-scale limit of this expressions. Remember in fact that, in the
approximation of the shortwave formalism, we are considering only large-scale CGWB anisotropies
produced by the propagation of high-frequency GWs across long-wavelength perturbation modes.
We know that, for CMB temperature anisotropies, in the large-scale limit the SW term dominates
over the ISW one and we expect now a similar outcome for the scalar sourced term (5.78). Actually,
in this case we can give a slightly different explanation as to why we safely neglect the ISW
contribution. For long-wavelength modes, which re-entered the horizon at later times during
matter domination, we can safely neglect the evolution of the transfer functions and set them to
be constant [41]:

Tψ = Tφ =
3

5
. (5.88)

In this way, expression (5.77) reduces to:

T S
ℓ (τ0, τin, k) =

3

5
jℓ
(

k(τ0 − τin)
)

, (5.89)

where in particular the contribution responsible for the ISW term vanishes since it is proportional
to the time derivative of the transfer functions, which we are assuming constant.
We then exploit relation (B.12) to solve the integrals in (5.86) and (5.87), obtaining the following
result for the CGWB anisotropies angular power spectrum in the large-scale limit:

C̃ℓ =
2π

ℓ(ℓ+ 1)

(

PI(q) +
9

25
Pζ

)

, (5.90)

where we have assumed a scale-invariant power spectrum for both the anisotropies initial condition
and the curvature perturbation. The scalar sourced contribution of this result happens to be
proportional to the CMB anisotropies spectrum in the Sachs-Wolfe regime (4.22), consistently
with the fact that we have considered only the SW term in (5.77).
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Angular bispectrum

In the previous Chapter we have computed the 3-point correlation function of CMB angular
anisotropies and we have shown that it is strictly related to the non-Gaussianity of the primordial
curvature perturbation ζ. A similar argument holds also for the CGWB anisotropies we are consid-
ering here, as it is evident from expression (5.78) for the contribution due to the GW propagation
across scalar metric perturbations. The 3-point correlator of such a term can thus be regarded
as a probe, alternative to the CMB, to test the presence of primordial non-Gaussianity. Before
returning to this topic, which is one of the main focus of this Thesis, let us compute the angular bis-
pectrum of the full anisotropy term (5.71), including also the contribution due to initial conditions.

The angular bispectrum of the CGWB anisotropies can be defined as:

B̃m1m2m3

ℓ1ℓ2ℓ3
= 〈Γℓ1m1

Γℓ2m2
Γℓ3m3

〉, (5.91)

in analogy with the angular bispectrum of CMB anisotropies (4.24). We can focus on the reduced
bispectrum, defined in (4.27), without losing the physical information. In order to perform the
explicit computation, we split the result in the usual way:

b̃ℓ1ℓ2ℓ3 = b̃ℓ1ℓ2ℓ3,I + b̃ℓ1ℓ2ℓ3,S , (5.92)

where cross-correlations terms are neglected. The 3-point correlators of terms (5.74) and (5.78)
are recovered in analogy with the CMB angular anisotropies one. We then refer to section 4.2.1
for the detailed calculations, which have just to be adapted for the current cases. The results of
this procedure are the following reduced bispectra:

b̃ℓ1ℓ2ℓ3,I(q) =

∫ ∞

0

drr2
3
∏

i=1

[

2

π

∫ ∞

0

dkik
2
i jℓi

(

k(τ0 − τin)
)

jℓi(kir)

]

BI(q, k1, k2, k3), (5.93)

b̃ℓ1ℓ2ℓ3,S =

∫ ∞

0

drr2
3
∏

i=1

[

2

π

∫ ∞

0

dkik
2
i T S
ℓi (ki, τ0, τin)jℓi(kir)

]

Bζ(k1, k2, k3). (5.94)

The reduced bispectrum of the scalar sourced contribution is in particular interesting since, as
anticipated earlier, we can study the effect of primordial non-Gaussianity, and its possible running,
on this term. Such a treatment is very similar to the one we have already detailed for the CMB
bispectrum and it will be the focus of the remaining part of this Chapter.

5.5 Probing primordial non-Gaussianity via CGWB anisotropies

One interesting result we have found in our computations is that the statistics of the CGWB
anisotropy term sourced by the scalar perturbations (5.78) is fully determined by the statistics
of the primordial curvature perturbation ζ, which is exactly analogous to what happens for the
CMB angular anisotropies (4.11). In Chapter 4 we have used this fact to study the effects of the
non-Gaussianity of ζ, i.e. the primordial non-Gaussianity, on the expressions for CMB angular
power spectrum and bispectrum. In return, observational measurements on the CMB statistics
can then be used to constrain the amount of primordial non-Gaussianity. It is in this sense that
the CMB can be considered as a probe to test primordial non-Gaussianity.
Therefore, it seems natural to conclude that the CGWB represents an additional and indepen-
dent source of information for primordial non-Gaussianity. As we have said, this information is
contained inside the contribution to anisotropies due to the scalar perturbations the GWs have to
traverse along their path.

Given the previous considerations, in this section we want to compute the effects of primordial
non-Gaussianity on the CGWB anisotropies angular correlators we have previously derived. In
particular, the original aim of this Thesis was to derive the consequences of scale-dependent non-
Gaussianity.
We anticipate that the results we are looking for closely resemble what we have already computed
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in Chapter 4 in the CMB case. This should not come as a surprise, since our treatment of the
CGWB has been done in complete analogy to the one developed for the CMB. Nevertheless we
spend a few words on this topic, both beacuse the physical phenomenon under study is quite dif-
ferent, even if the mathematics is not, and because this was estabilished as one of the main focus
of this Thesis. We leave for the next Chapter the treatment of a more original outcome of running
non-Gaussianity on the CGWB anisotropies.

5.5.1 CGWB anisotropies and local non-Gaussianity

The starting point of the following discussion is result (5.94) for the reduced bispectrum of CGWB
anisotropies sourced by primordial scalar perturbations. Being it proportional to the primordial
bispectrum Bζ , we see that the term vanishes for a Gaussian curvature perturbation ζ. We are
thus interested in the less trivial scenario where primordial non-Gaussianity is indeed present.
We assume the usual non-linear coupling expressed by the local ansatz (3.7). We have already
computed the primordial bispectrum (3.24) arising from such a parametrization, which we rewrite
here in terms of the adimensional power spectrum (1.61):

Bζ(k1, k2, k3) =
6

5
fNL

[

2π2

k31
Pζ(k1)

2π2

k32
Pζ(k2) + 2 perms

]

. (5.95)

Substituting this expression inside (5.94) allows to factorize the three integrals over ki:

b̃ℓ1ℓ2ℓ3,S =
24

5
π4fNL

∫ ∞

0

drr2
[(

2

π

∫ ∞

0

dk1
k1

T S
ℓ1 (k1, τ0, τin)jℓ1(k1r)Pζ(k1)

)

×
(

2

π

∫ ∞

0

dk2
k2

T S
ℓ2 (k2, τ0, τin)jℓ2(k2r)Pζ(k2)

)

×
(

2

π

∫ ∞

0

dk3k
2
3T S
ℓ3 (k3, τ0, τin)jℓ3(k3r)

)

+ 2 perms

]

.

(5.96)

Comparing this expression with (4.34), we see that results for the CGWB bispectrum may be
simply obtained from the CMB ones by substituting the CMB transfer function Tℓ with the transfer
function T S

ℓ for the scalar sourced contribution to the CGWB anisotropies.
If we assume expression (5.88) for the transfer functions, valid for modes re-entering the horizon
during matter domination, the result (5.96) simplifies in a way similar to the CMB bispectrum in
the Sachs-Wolfe regime (4.41). We can exploit in particular the closure relation of spherical Bessel
functions (B.11) in order to solve the following integral:

3

5

2

π

∫ ∞

0

dkk2jℓ(kτ0)jℓ(kr) =
3

5

δ(r − τ0)

r2
, (5.97)

where we have expressed T S
ℓ = jℓ(kτ0), which comes from result (5.89) with the reasonable approx-

imation τ0−τin ≃ τ0. Actually, we have been a little imprecise, since expression (5.88) is only valid
for large-scale modes of the curvature perturbation. In practice this means that, in substituting
this expression inside (5.96), we should cut off the ki integrals at the maximum wavenumber for
which the transfer function (5.88) holds. As a consequence, the exact relation (B.11) should be
applied only for sufficiently low multipoles ℓ, in such a way that the contribution to the integral
from the disregarded interval can be safely neglected. We see that, even if the reasons are a bit
different, we end up in the same Sachs-Wolfe regime considered for the CMB and the following
results will thus be valid only for low multipoles, i.e. large angular scales.
Substituting relation (5.97) in expression (5.96), it is possible to solve the integral over r and
obtain:

b̃ℓ1ℓ2ℓ3,S = 2fNL

[(

4π
9

25

∫ ∞

0

dk1
k1

j2ℓ1(k1τ0)Pζ(k1)
)

×
(

4π
9

25

∫ ∞

0

dk2
k2

j2ℓ2(k2τ0)Pζ(k2)
)

+ 2 perms

]

.

(5.98)
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We recognize in this result the expression for the scalar source contribution to the angular power
spectrum (5.87), in such a way that we can write it in the following way:

b̃ℓ1ℓ2ℓ3,S = 2fNL(C̃ℓ1,SC̃ℓ2,S + C̃ℓ2,SC̃ℓ3,S + C̃ℓ3,SC̃ℓ1,S), (5.99)

which is analogous to the CMB reduced bispectrum in the Sachs-Wolfe regime (4.42). Again, this
result includes only the contribution coming from the SW term in (5.77) and it is valid only for
anisotropies on large angular scales.

We remind that the expression for the angular power spectrum (5.87) holds in presence of non-
Gaussianity when keeping the first order in fNL. It is straightforward to verify that, assuming
the local ansatz (3.7), the lowest non-Gaussian correction to the primordial power spectrum is
indeed of second order in the non-linear parameter. In this way result (5.99) relates the CGWB
anisotropies angular power spectrum and bispectrum in presence of non-Gaussianity, at first order
in fNL.

5.5.2 CGWB anisotropies and running non-Gaussianity

Results just derived may be generalized to the case of a scale-dependent non-Gaussianity. We have
seen in Chapter 3 that it is possible to account for running non-Gaussianity by generalizing the
simple non-linear coupling of the local ansatz (3.7), by substituting it with a less trivial kernel
(3.41), quadratic in the curvature perturbation ζ. This actually corresponds to consider a scale
dependence of the non-linear parameter fNL, whose parametrization can be determined explicitly
by performing a matching with a given template of running primordial bispectrum.
In order to account for a running of fNL, it is useful to define the following r-dependent coefficients:

α̃ℓ(r) ≡
2

π

∫ ∞

0

dkk2T S
ℓ (k, τ0, τin)jℓ(kr), (5.100)

β̃ℓ(r) ≡
2

π

∫ ∞

0

dkk2Pζ(k)T S
ℓ (k, τ0, τin)jℓ(kr), (5.101)

analogous to the CMB ones (4.35) and (4.36). The reduced bispectrum (5.96) can thus be expressed
as:

b̃ℓ1ℓ2ℓ3 =
6

5
fNL

∫ ∞

0

drr2
[

α̃ℓ1(r)β̃ℓ2(r)β̃ℓ3(r) + α̃ℓ2(r)β̃ℓ3(r)β̃ℓ1(r) + α̃ℓ3(r)β̃ℓ1(r)β̃ℓ2(r)
]

. (5.102)

In the presence of running, the scale-dependent fNL(k1, k2, k3) would enter the definitions of co-
efficients (5.100) and (5.101), carrying an additional k-dependence, provided it is expressed in a
factorizable form. This is actually the case for the power-law explicit parametrizations we have
encountered so far.
The actual results are identical to the CMB ones we have already provided. For completeness we
report them anyway.
In the case of a simple power-law non-Gaussianity (3.37), the coefficient α̃ℓ gets modified as:

α̃ℓ(r) =
2

π

1

k
nfNL
p

∫ ∞

0

dkk2+nfNLT S
ℓ (k, τ0, τin)jℓ(kr), (5.103)

while for the kernel (3.53) it is the coefficient β̃ℓ who gains a new dependence inside the integral:

β̃ℓ(r) =
2

π

1

k
nfNL
p

∫ ∞

0

dkk2+
nfNL

2 Pζ(k)T S
ℓ (k, τ0, τin)jℓ(kr). (5.104)

With these re-definitions, expression (5.102) for the reduced bispectrum holds also in the presence
of running, where the constant fNL in the front has to be replaced with fNL(kp) evaluated at the
pivot scale.
We have seen how taking the Sachs-Wolfe limit results in the constant transfer function (5.88).
This simplifies the integrals inside coefficients α̃ℓ and β̃ℓ, but in general it is not possible to derive
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an expression analogous to (5.99), directly relating the angular power spectrum and bispectrum,
in the case of running non-Gaussianity. We have already pointed out this fact in section 4.2.3,
dealing with the CMB running bispectrum.

Expression (5.102), and its generalization to include the presence of running non-Gaussianity,
is the result for the reduced bispectrum of CGWB anisotropies, sourced by scalar perturbations,
written in terms of the non-linear parameter fNL and the primordial power spectrum Pζ . Fol-
lowing an actual detection of the stochastic cosmological background of GWs, our results may
indeed be exploited to constrain local non-Gaussianity, and its running, provided it is possible to
isolate the scalar sourced contribution to the anisotropies. In principle, a similar procedure may
be applied to probe different shapes of non-Gaussianity, other than the local one, and additional
parametrizations of the running.



Chapter 6

CGWB anisotropies from enhanced

scalar perturbations

In the previous Chapter we have performed a statistical analysis of the anisotropies in the cosmo-
logical gravitational wave background, computing the 2-point and 3-point correlators. In particular
we have considered two distinct sources of anisotropies. The first can be identified with initial con-
ditions set by the mechanism responsible for the production of the background itself at early times.
The other contribution to the anisotropies is due instead to the propagation of high-frequency GWs
across large-scale metric perturbations, an assumption which has allowed us to introduce the gravi-
ton distribution function and study its evolution by means of the Boltzmann equation. We have
found in particular that the scalar sourced term inherit its statistics from the curvature pertur-
bation. We have thus concluded that an experimental measurements of the reduced bispectrum
(5.96) would allow to extract information and put constraints on primordial non-Gaussianity, and
its running, in analogy to what is already done using CMB temperature anisotropies.

So far, in our discussion we have not made any specific assumption about the source of the CGWB,
meaning that the results of the previous Chapter should hold whatever is the mechanism respon-
sible for the production of GWs. We know that the latter is accounted for by the initial condition
term (5.69), which we have considered to be an independent random field. Therefore, we have
assumed the initial condition to the CGWB anisotropies to not carry any information about the
statistics of primordial scalar perturbations and thus we have disregarded it while searching for
signatures of primordial non-Gaussianity on the GW background.
In this Chapter we consider instead a more specific scenario, namely the stochastic background
of GWs generated along with the formation of primordial black holes (PBHs). In such a con-
text the GWs are produced classically at second order, sourced by primordial scalar perturbations
[69, 70, 71, 20, 72, 73, 74, 75]. A particular attractive of this scenario is that it exclusively allows, as
we will see, to probe the amount of non-Gaussianity at the small scales related to PBH formation.
In this sense future detections of such a CGWB may provide with information about primordial
non-Gaussianity which are otherwise inaccessible by CMB measurements.
We start the Chapter by reviewing the key points of the production of scalar sourced GWs at
second order and introducing briefly to the physics of PBHs. Later on we will also compute how
constraints on PBHs as dark matter may be relaxed with a specific parametrization of running
non-Gaussianity. This was one of the main motivation behind this work, and can be considered to
be the central original result.

6.1 Gravitational waves at second order from scalar pertur-

bations

In the previous Chapter we have reviewed how primordial GWs are produced as quantum metric
perturbations during standard slow-roll inflation. We have already pointed out that also other

81
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mechanisms may be responsible for the production of a stochastic background.
The alternative in which we are interested here is the classical production of GWs sourced by
scalar perturbations. This is a result which arises only at second order in perturbation theory and
can provide an important contribution to the stochastic GW background if scalar perturbations
are somehow enhanced at small scales, thus breaking the scale invariance property of large-scale
perturbations. Nevertheless, a CGWB of this kind is always expected when scalar perturbations
are produced, which we know to be the case during inflation. We now review how GWs can arise
from scalar perturbations at second order. The first seminal papers dealing with second-order
gravitational waves induced by scalar perturbations have been developed in [20, 76].

Going beyond linear order in CPT, the fact that metric perturbations of different nature do not
couple remains valid only for perturbations of the same order. This means that, already at second
order, we have that tensor perturbations, i.e. GWs, are inevitably sourced by first-order scalar
perturbations. In order to better study this scenario, we introduce the following perturbed FLRW
metric:

ds2 = a2(τ)
[

− (1 + 2φ(1))dτ2 +
(

(1− 2ψ(1))δij +
1

2
h
(2)
ij

)

dxidxj
]

, (6.1)

where we have specified the order of the perturbations, which from now on will be made implicit.
Notice that we are neglecting first-order tensors since the mechanism we are investigating is able
to produce GWs only at second order or higher.
The equation of motion for hij is obtained by writing Einstein’s equations for the perturbed
metric (6.1). Expanding the transverce and traceless spatial part up to second order we obtain
[20, 70, 72, 76] (see also, e.g. [73, 74]):

h′′ij + 2Hh′ij −∇2hij = −4T lm
ij Slm, (6.2)

where the source term Slm is contributed by second-order combinations of first-order scalar per-
turbations and reads [20, 70, 72, 76] (see also, e.g. [27, 74]):

Sij = 2φ∂i∂jφ− 2ψ∂i∂jφ+ 4ψ∂i∂jψ + ∂iφ∂jφ− ∂iφ∂jψ − ∂iψ∂jφ+ 3∂iψ∂jψ

− 4

3(1 + w)H2
∂i(ψ

′ +Hφ)∂j(ψ′ +Hφ)− 2c2s
3wH2

[

3H(Hφ− ψ′) +∇2ψ
]

∂i∂j(φ− ψ).
(6.3)

The projector T lm
ij extracts the transverse and traceless part of the tensor it acts on.

In Fourier space the GW amplitude can be decomposed in terms of the polarization tensors:

hij(τ, ~x) =
∑

λ=(+,×)

∫

d3~k

(2π)3
h(λ)(τ,~k)e

(λ)
ij (k̂)ei

~k~x. (6.4)

It is useful to express the polarization basis as:

e
(+)
ij (k̂) =

1√
2

[

ei(k̂)ej(k̂)− ēi(k̂)ēj(k̂)
]

,

e
(×)
ij (k̂) =

1√
2

[

ei(k̂)ēj(k̂) + ēi(k̂)ej(k̂)
]

,

(6.5)

where ei and ēi form an orthonormal basis with k̂, so that e
(λ)
ij e

(λ)ij = 1 and e
(λ)
ij e

(λ′)ij = 0.
In terms of the polarization tensors, the TT projected source term is:

T lm
ij Slm =

∑

λ=(+,×)

∫

d3~k

(2π)3
e
(λ)
ij (k̂)e(λ)ij(k̂)ei

~k~xSlm(~k). (6.6)

It is then possible to write equation (6.2) in Fourier space for the mode function h~k with either
polarization:

h′′~k + 2Hh′~k + k2h~k = S(τ,~k), (6.7)

where the source term is defined as:

S(λ)(τ,~k) ≡ −4e(λ)lm(~k)Slm(~k), (6.8)
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whose explicit expression is actually a convolution of two first-order scalar perturbations [20, 76, 74].
The mode solution of equation (6.7) can be expressed in the following way:

h
(λ)
~k

(τ) =
4

9

1

k3τ

∫

d3~p

(2π)3
e(λ)(k̂, ~p)ζ(~p)ζ(~k− ~p)

[

Ic(p, |~k− ~p|)cos(kτ) + Is(p, |~k− ~p|)sin(kτ)
]

, (6.9)

where the details of the calculation are reported in Appendix C, together with the definitions for
the functions Ic and Is.

6.1.1 GW amplitude power spectrum

We now compute the 2-point correlation function of solution (6.9), corresponding to the power
spectrum of GWs generated at second order from scalar perturbations:

〈h(λ)~k1
(τ)h

(λ′)
~k2

(τ)〉 =
(

4

9

)2
1

k31k
3
2τ

2

∫

d3~p1
(2π)3

∫

d3~p2
(2π)3

e(λ)(k̂1, ~p1)e
(λ′)(k̂2, ~p2)

× 〈ζ(~p1)ζ(~k1 − ~p1)ζ(~p2)ζ(~k2 − ~p2)〉
×
[

Ic(p1, |~k1 − ~p1|)cos(k1τ) + Is(p1, |~k1 − ~p1|)sin(k1τ)
]

×
[

Ic(p2, |~k2 − ~p2|)cos(k2τ) + Is(p2, |~k2 − ~p2|)sin(k2τ)
]

,

(6.10)

where the adimensional power spectrum of the curvature perturbation is defined in the usual way:

〈ζ(~k1)ζ(~k2)〉 = (2π)3δ(3)(~k1 + ~k2)
2π2

k31
Pζ(k1). (6.11)

In order to evaluate the 4-point correlator in (6.10) we assume, for the moment, that ζ possesses
a Gaussian statistics, in such a way that we can write schematically:

〈ζ4〉 = 〈ζ2〉〈ζ2〉+ 〈ζ2〉〈ζ2〉+ 〈ζ2〉〈ζ2〉, (6.12)

meaning that the 4-point correlator can be expressed in terms of the 2-point one, i.e. its conneceted
part vanishes. We will see in the next section how to generalize the treatment to the case of non-
Gaussian statistics of ζ, which is actually the main focus of this Chapter.
Therefore, in terms of the primordial power spectrum, the 4-point correlation function of Gaussian
ζ has two non-vanishing contributions for ~k1, ~k2 6= 0:

〈ζ(~p1)ζ(~k1 − ~p1)ζ(~p2)ζ(~k2 − ~p2)〉 = (2π)6δ(3)(~p1 + ~p2)δ
(3)(~k1 − ~p1 + ~k2 − ~p2)

× 2π2

p31
Pζ(p1)

2π2

|~k1 − ~p1|3
Pζ(|~k1 − ~p1|)

+ (2π)6δ(3)(~p1 + ~k2 − ~p2)δ
(3)(~p2 + ~k1 − ~p1)

× 2π2

p31
Pζ(p1)

2π2

p32
Pζ(p2),

(6.13)

and it is possible to show that the two terms contribute equally inside the integrals in (6.10). We
choose to keep the first contribution and account for an overall factor 2. Exploiting the Dirac delta
to integrate over ~p2 leads to:

〈h(λ)~k1
(τ)h

(λ′)
~k2

(τ)〉 = (2π)3δ(3)(~k1 + ~k2)

(

4

9

)2
2

k61τ
2

∫

d3~p1
(2π)3

e(λ)(k̂1, ~p1)e
(λ′)(−k̂1,−~p1)

× 2π2

p31
Pζ(p1)

2π2

|~k1 − ~p1|3
Pζ(|~k1 − ~p1|)

×
[

Ic(p1, |~k1 − ~p1|)cos(k1τ) + Is(p1, |~k1 − ~p1|)sin(k1τ)
]2
,

(6.14)
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where we have also exploited the second Dirac delta to set ~k2 = −~k1. In order to solve the integral
over ~p1 it is now useful to introduce the following variables [78]:

x =
p1
k1
, y =

|~k1 − ~p1|
k1

. (6.15)

Moreover, we are allowed to assume, without losing generality, a coordinate system where ~k1 is
oriented along the third axis, and to express the integral in (6.14) in spherical coordinates (p1, θ, φ),
where:

cosθ =
1 + x2 − y2

2x
. (6.16)

We can first of all solve the integral over φ, with only the function e(λ)(k̂1, ~p1) carrying such a
dependence. Its definition is given by (C.5) in Appendix C. It is possible to explicitly compute
that [78]:

∫ 2π

0

dφe(λ)(k̂1, ~p1)e
(λ′)(−k̂1,−~p1) =

k41x
4

2
π

[

1− (1 + x2 − y2)2

4x2

]2

δλλ
′

. (6.17)

Substituting this result in (6.14) and performing the change of variable (6.15) leads to:

〈h(λ)~k1
(τ)h

(λ′)
~k2

(τ)〉 = (2π)3δ(3)(~k1 + ~k2)δ
λλ′ 2π2

k31
× 4

81

1

k21τ
2

∫ ∫

S
dxdy

x2

y2

×
[

1− (1 + x2 − y2)2

4x2

]2

Pζ(k1x)Pζ(k1y)

×
[

Ic(x, y)cos(k1τ) + Is(x, y)sin(k1τ)
]2
,

(6.18)

where the integration domain is S = {(x, y)|x > 0 ∧ |1− x| ≤ y < 1 + x}.
We recognize in this result the power spectrum of the GW amplitude, in the case of a second-order
scalar source, defined in the usual way:

〈h(λ)~k1
(τ)h

(λ′)
~k2

(τ)〉 = (2π)3δ(3)(~k1 + ~k2)δ
λλ′ 2π2

k31
Ph(k1), (6.19)

with:

Ph(τ, k) =
4

81

1

k2τ2

∫ ∫

S
dxdy

x2

y2

[

1− (1 + x2 − y2)2

4x2

]2

Pζ(kx)Pζ(ky)

×
[

Ic(x, y)cos(kτ) + Is(x, y)sin(kτ)
]2
.

(6.20)

6.1.2 GW energy density

We are actually more interested in the energy density of the scalar sourced CGWB, rather than
in the power spectrum of its amplitude. For the second-order tensor perturbation hij in (6.1), the
energy density is defined in real space as [68, 79]:

ρGW (τ, ~x) =
M2
P

16a2
〈h′ij(τ, ~x)h′ij(τ, ~x)〉T , (6.21)

where the angle brackets denote a time average over an interval much greater than the GW period
k−1 but much smaller than the Hubble time H−1. The expected GW energy density is the 1-
point correlator of (6.21), which we can compute starting from the mode solution (6.9) for h~k we
have derived in the previous section. Remembering also the Fourier decomposition in terms of the
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polarization tensors (6.4), we obtain the following expression:

〈ρGW (τ, ~x)〉 = M2
P

16a2

∫

d3~k1
(2π)3

∫

d3~k2
(2π)3

ei(
~k1+~k2)~x

∑

λ,λ′

〈〈h′(λ)~k1
(τ)h

′(λ′)
~k2

(τ)〉T 〉e(λ)ij (k̂1)e
(λ′)ij(k̂2)

=
M2
P

16a2

(

4

9

)2
1

τ2

∫

d3~k1
(2π)3

∫

d3~k2
(2π)3

∫

d3~p1
(2π)3

∫

d3~p2
(2π)3

× ei(
~k1+~k2)~x

1

k21k
2
2

〈ζ(~p1)ζ(~k1 − ~p1)ζ(~p2)ζ(~k2 − ~p2)〉

× 〈
2
∏

i=1

[

Is(pi, |~ki − ~pi|)cos(kiτ)− Ic(pi, |~ki − ~pi|)sin(kiτ)
]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(k̂2)e
(λ)(k̂1, ~p1)e

(λ′)(k̂2, ~p2).

(6.22)

We have already computed the 4-point correlator of ζ in the Gaussian case (6.13), which lets us

perform an immediate integration over ~k2 and ~p2:

〈ρGW (τ, ~x)〉 = M2
P

16a2

(

4

9

)2
2

τ2

∫

d3~k1
(2π)3

∫

d3~p1
(2π)3

× 1

k41

2π2

p31
Pζ(p1)

2π2

|~k1 − ~p1|3
Pζ(|~k1 − ~p1|)

× 〈
[

Is(p1, |~k1 − ~p1|)cos(k1τ)− Ic(p1, |~k1 − ~p1|)sin(k1τ)
]2〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(−k̂1)e(λ)(k̂1, ~p1)e(λ
′)(−k̂1,−~p1).

(6.23)

The time average of trigonometric functions over many periods k−1
1 has the following outcome:

〈cos2(k1τ)〉T = 〈sin2(k1τ)〉T =
1

2
, 〈cos(k1τ)sin(k1τ)〉T = 0. (6.24)

Following the same logic of the previous Chapter, we now want to write the expression for the GW
energy density per logarithmic frequency interval (5.13). We thus perform the trivial integration

over the angular component of ~k1, in such a way that we are left with the integral over the frequency
k1, which can be factorized in the definition of ΩGW . Again, to solve the integral over ~p1 we can
assume the coordinate system with ~k1 along the third axis. Similar steps to the one performed
before then lead to the following result:

ΩGW (τ, k) =
1

972a2H2τ2

∫ ∫

S
dxdy

x2

y2

[

1− (1 + x2 − y2)2

4x2

]2

Pζ(kx)Pζ(ky)I2(x, y), (6.25)

where we have defined I2 = I2
c + I2

s . This is the expression for the energy density of a CGWB
sourced at second order by scalar perturbations, for which we have not specified yet the form of
the primordial power spectrum (for a similar computation, see also, e.g. [80]). Notice that the
result we have found does not depend on the position ~x.
In the previous Chapter we have seen how the propagation of primordial GWs across large-scale
scalar perturbations can be a source of anisotropies in the GW energy density. We have also
introduced a contribution to the anisotropies due to the initial conditions set by the mechanism
responsible for the production of the CGWB. The description we have given there is quite general
and holds for any kind of initial process. Without any further assumption, we have thus considered
the effects of non-Gaussianity only on the scalar sourced part.
We are now considering the more specific scenario of primordial GWs sourced at second order
by scalar perturbations. Therefore, it seems natural to conclude that any presence of primordial
non-Gaussianity should affect the initial conditions of the CGWB and thus its anisotropies corre-
lators. This is exactly what we are going to study, considering the concrete physical scenario of a
background of gravitational waves produced at the formation of primordial black holes.
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6.2 CGWB from Primordial Black Holes

Primordial black holes (PBHs) are expected to be created at small scales in the presence of suffi-
ciently enhanced density perturbations (see, e.g., the review [81]). The production happens when
the enhanced modes re-enter the horizon after inflation, and all the regions where the perturbation
exceeds a certain threshold collapse into a black hole, which is what we identify as a PBH. These
enhanced density perturbations are then related to scalar perturbations which inevitably generate
gravitational waves at second order, as we have just discussed. The required density fluctuations in
order to obtain a substantial amount of PBHs is so large that the respective scalar sourced CGWB
may well exceed, at peak frequency, the first-order generated one, so that the GW amplitude could
be large enough to become observable [82, 83, 84].

6.2.1 Primordial Black Holes

We pause for a moment the discussion around the GW background in order to introduce briefly
to the physics of PBHs and, in particular, to the details about their formation in the early Universe.

PBH abundance

During radiation domination, a large enough overdensity can gravitationally collapse directly into a
black hole. This is what we refer to as a primordial black hole. The actual formation happens when
a perturbation exceeding a certain threshold re-enters the horizon, in which case gravity overcomes
pressure and the region with the dimension of the perturbation collapses into a PBH with mass of
the order of the horizon mass at that time. The threshold value is usually expressed in terms of the
density perturbation and it is given by δc ∼ 0.45 [85]. We are instead more interested in dealing
with the curvature perturbation ζ, for which the corresponding critical value is estimated to be
around ζc ∼ 1. Density and curvature perturbation modes are actually related, during radiation
domination, by the following expression [85]:

δ(t,~k) =
4

9

(

k

aH

)2

ζ(~k), (6.26)

with (aH)−1 being the comoving Hubble radius at the time of PBH formation. It follows that,
for long-wavelength modes, outside of the horizon (k ≪ aH), density perturbations are suppressed
with respect to the curvature ones. This explains why super-horizon modes have little effect on
the formation of PBHs.

We can compute the mass fraction of the Universe which collapses into PBHs, defined as the
fraction of the total energy density of the Universe contributed by the region collapsed into PBHs
at the time of formation:

β ≡ ρPBH(τin)

ρtot(τin)
. (6.27)

This is obtained by integrating the probability density function of the curvature perturbation:

β =

∫ ∞

ζc

dζP (ζ), (6.28)

which corresponds to the probability that the random field ζ assumes a value equal to the PBH
formation threshold ζc or greater. Assuming a Gaussian distribution function (3.1), this gives the
following PBH fraction [85]:

β ≃
√

2σ2

πζ2c
exp

(

− ζ2c
2σ2

)

. (6.29)

The PBH mass fraction β can be directly related to the present density parameter of PBHs with
a mass MPBH [82]:

ΩPBH,0(MPBH) ≃ 1× 1014β(MPBH)

(

MPBH

1020 g

)−1/2

. (6.30)
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Consider now the bounds on the primordial power spectrum amplitude and spectral index com-
ing from large-scales CMB measurements [65]. Latest observations constrain them to be As ≡
Pζ(kCMB) ≃ 2.2×10−9 and ns−1 ≃ −0.035, where the pivot scale probed by CMB experiments is
taken to be kCMB = 0.05 Mpc−1. Assuming that the spectral index has no significant running, we
can use these information to extrapolate the power spectrum amplitude at some arbitrary small
scale kPBH ≫ kCMB. Because of the red tilt, the estimated power spectrum at the PBHs scale
would be for sure smaller than the one at CMB scales. This would correspond to a completely
negligible fraction of PBHs. The reason for such a conclusion can be easily deduced from the fact
that, in the case of a Gaussian ζ and taking for simplicity a scale-invariant spectrum, the width of

the zero-mean distribution is P
1/2
ζ ∼ 10−5, . It thus follows that PBHs form only in the extreme

positive end of the distribution function, where ζ > ζc.
The assumption that the power spectrum behaviour does not change down to very small scales
is however quite strong and we could instead imagine a scenario in which the curvature pertur-
bation is highly enhanced at some given small scale, giving rise to a sufficiently high fraction
of PBHs to be observationally interesting. This happens for a power spectrum of the order of
Pζ(kPBH) ∼ 10−2 − 10−1 [81], thus requiring a blue-tilted enough power spectrum, which is not
so easy to realize in the standard slow-roll inflationary models and is ruled out at CMB scales by
observations. The enhancement of the power spectrum at small scales can instead be achieved in
alternative inflationary models, such as multi-field hybrid and curvaton models [81].

The PBH abundance is constrained by observations for a wide range of masses [81]. By now,
PBHs with a mass up to 1015 g would have completely evaporated by emitting Hawking radiation.
More massive ones are instead particularly interesting since they are considered to be a viable dark
matter (DM) candidate. Depending on their masses, they can arrive to comprise a large fraction or
even the totality of DM. This is true for PBHs with a mass in the range 1017 g < MPBH < 1024 g
[85] and with an abundance ΩPBH,0h

2 ≃ 0.1.

PBH abundance in presence of non-Gaussianity

A factor that can have a strong influence on the PBH abundance is the presence of primordial non-
Gaussianity, which in fact affects the shape of the tails of the curvature perturbation distribution
function (see, e.g. [86]). We consider the usual local model of non-Gaussianity, parametrized as:

ζ = ζg +
3

5
fNL(ζ

2
g − σ2), (6.31)

where we indicate the variance of the Gaussian distribution as σ2 ≡ 〈ζ2g 〉. To obtain the PBH
abundance we need to compute the values of the Gaussian ζg corresponding to the value of the full
ζ above the threshold ζc. Imposing ζ = ζc we get the following solutions [85]:

ζ± =
−5±

√

25 + 60ζcfNL + 36f2NLσ
2

6fNL
. (6.32)

The mass fraction is then computed as the integral of the Gaussian distribution, in analogy with
(6.28), which for fNL ≪ 1 can be written as:

β =

∫ ∞

ζ+

dζgP (ζg) ≃
√

2σ2

πζ2+
exp

(

− ζ2+
2σ2

)

(6.33)

This practically results in a small variation of the critical value of the perturbation ζ needed for
the formation of PBHs.

We are actually more interested in another consequence of primordial non-Gaussianity, which
is the coupling between perturbation Fourier modes on large and small scales. We have derived
in section 3.2.1, assuming the local non-Gaussianity parametrization (3.7) and performing the
long-short split, how a short-wavelength perturbation can be modulated by a longer one. This
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phenomenon directly affects the number of PBHs forming in different regions of the Universe. In
particular, a peak in the long mode would correspond to an enhancement of the power of short-
wavelength perturbations, effectively decreasing the threshold necessary to gravitationally collapse
into a PBH. This is represented in Figure 6.1.

Figure 6.1: The top plot shows the curvature perturbation in the case it includes only one short and
one long wavelength mode. The modulated short perturbation mode, described by equation (6.34),
is shown in the bottom plot, along with a red line representing the PBH formation threshold. It is
evident how the coupling with the long mode affects the spatial distribution of PBHs in different
regions. Taken from [85].

Expression (3.30) for the modulated short mode can be rewritten as:

ζS =

(

1 +
6

5
fNLζl

)

ζs +
3

5
fNL

(

ζ2s − σ2
s

)

, (6.34)

where σ2
s ≡ 〈ζ2s 〉. Terms containing only the long mode cannot affect the PBH formation, which

happens on the scales of the short mode, and thus have been neglected. It is possible to compute
the new result for the PBH abundance, as a function of the long mode, by defining the following
quantities [85]:

ζ̃g ≡
(

1 +
6

5
fNLζl

)

ζs,

σ̃ ≡
(

1 +
6

5
fNLζl

)

σs,

f̃NL ≡
(

1 +
6

5
fNLζl

)−2

fNL,

(6.35)

in terms of which equation (6.34) assumes the structure of the local parametrization (6.31):

ζS = ζ̃g +
3

5
f̃NL

(

ζ̃2g − σ̃2
)

. (6.36)

It is thus possible to recover the PBH abundance in the presence of the mode coupling by simply
exploiting results (6.32) and (6.33), rewritten in terms of the quantities (6.35).
In order to quantify the effect of the long mode modulation on the PBH abundance, we define the
following ratio:

δβ ≡ β − β̄

β̄
, (6.37)
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where the background value β̄ is computed as equation (6.33), while β accounts for the modulation
and it is thus a function of ζl. At first order in ζl the explicit expression is [85]:

δβ =
25 + 30ζcfNL + 36f2NLσ

2
s − 5

√

25 + 60ζcfNL + 36f2NLσ
2

3fNLσ2
s

√

25 + 60ζcfNL + 36f2NLσ
2

ζl. (6.38)

This result describes the spatial variation of the PBH abundance due to the modulation of the
long mode ζl. We will see in the following how, if PBHs consist of a large part of DM, this spatial
modulation is related to the presence of isocurvature modes. The latter are strongly constrained by
the latest CMB measurements and thus allow to put upper bounds on the value of the non-linear
parameter fNL. We then generalize the conclusions in the case of a scale-dependent fNL.

6.2.2 GW energy density for a Dirac delta curvature power spectrum

We have seen that, in order to produce a significant amount of PBHs, it is necessary to have a
substantial increase of the amplitude of scalar perturbations on small scales with respect to the one
measured at CMB scales. These same enhanced scalar perturbations are then expected to source
at second order a possibly observable amount of primordial GWs.
Several inflationary models are able to provide the enhancement of curvature perturbation at small
scales. In this work we consider the simple scenario, represented in Figure 6.2, of a primordial power
spectrum peaked at some given scale k−1

∗ , leading to the production of a significant amount of PBHs
with a specific mass, along with a large amplitude CGWB of a characteristic peak frequency. It is
possible to derive a relation between the two quantities [81]:

fGW ≃ 3× 10−9 Hz

(

MPBH

M⊙

)− 1
2

. (6.39)

Figure 6.2: Example of primordial power spectrum with a peak at some given small scale, as a
function of the number of e-folds N . Away from the peak the spectrum is small and with the
spectral index ns = 0.96, in such a way that at large scales it is compatible with latest CMB
observations. Taken from [85].

We are interested into the possibility of PBHs consisting in the totality of dark matter, which is
the case if we choose MPBH ∼ 10−12M⊙ (see, e.g. [87]). This corresponds to the GW frequency
fGW ≃ 3 × 10−3 Hz, which coincidentally falls in the range where LISA has the best sensitivity
ΩGWh

2 ∼ 10−11 [82, 84]. This gives hope that a CGWB with such an origin may be observed in
the next decades. Finally, from the GW frequency we derive the scale at which we assume the
scalar perturbations to be enhanced, which is k∗ ≃ 2× 1012 Mpc−1 [83].
The scenario we are considering is thus characterized by a power spectrum with a sharp peak on
the small scale responsible for the PBH formation, as visible in Figure 6.2. We may approximate
it as a Dirac delta power spectrum:

Pζ(k) = Ask∗δ(k − k∗). (6.40)
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Substituting this choice of the power spectrum inside expression (6.25), obtained for the GW energy
density of a scalar sourced CGWB, we get:

ΩGW (τ, k) =
A2
s

15552a2H2τ2
k2

k2∗

[

4k2∗
k2

− 1

]2

θ(2k∗ − k)I2

(

k∗
k
,
k∗
k

)

, (6.41)

where, exploiting expressions (C.14):

I2

(

k∗
k
,
k∗
k

)

=
729

16

(

k

k∗

)12(

3− 2k2∗
k2

)4{[

4

(

2− 3k2

k2∗

)−1

− log

(∣

∣

∣

∣

1− 4k2∗
3k2

∣

∣

∣

∣

)]2

+π2θ

(

2k∗√
3k

− 1

)}

.

(6.42)
Result (6.41) for the GW energy density is indeed independent on position in the case of Gaussian
statistics for ζ we have assumed. The profile is shown in Figure 6.3. At the peak frequency
fGW = k∗√

3π
, the typical amplitude is given by:

ΩGWh
2 ≃ 6× 10−8

(

As
10−2

)2

, (6.43)

which, as expected, exceeds the first-order counterpart ΩGWh
2 ∼ 10−14 [82].

Figure 6.3: GW energy density per logarithmic frequency interval of the stochastic background
sourced at second order by scalar perturbations with a Dirac delta spectrum peaked at the small
scale k∗. The value As = 0.033 has been chosen. Interesting features of this profile are the resonant
peak at k = 2√

3
k∗ and the k2 scaling at low frequencies. Moreover, the energy density vanishes

for k > 2k∗ due to the momentum conservation law. These features would be absent in the case
of a more physical power spectrum, but the overall amplitude would be similar. The expected
sensitivity curve of LISA is also plotted, showing that the stochastic background of GWs arising
at the formation of MPBH = 10−12M⊙ PBHs should be detectable. Taken from [84].

The fact that we recover an homogeneous result for the CGWB energy density is not that trivial. In
principle, there is no actual reason to assume the GW production process to be perfectly homoge-
neous across the Universe. The level of anisotropies can then be evaluated as the 2-point correlation
function of expression (6.21) for the energy density of scalar sourced GWs, i.e. 〈ρGW (~x)ρGW (~y)〉,
which is only a function of the distance |~x − ~y| due to the statistical properties of the correlator.
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It is indeed possible to show that the result is mainly contributed by the disconnected part of the
correlator 〈ρGW 〉2, which we know from (6.41) to be in fact homogeneous. Qualitatively speaking,
this conclusion can be understood by remembering that we are considering anisotropies on the scale
|~x−~y|, which is much larger than the one associated to the CGWB production k−1

∗ . Therefore, the
enhanced Gaussian scalar perturbations on this small scale are not able to correlate over the large
scales. Moreover, eventual inhomogeneities present at the production of the stochastic background
would be averaged out, as a consequence of the central limit theorem, when measuring the GW
energy density on angular scales several times larger than k−1

∗ [87]. This shows that anisotropies
in the CGWB energy density do not arise in a Gaussian scenario.
We will see in the next section that the presence of primordial local non-Gaussianity is necessary to
induce a long-mode modulation of the small scale enhanced perturbation. In this way, the presence
of the long modes both produces a spatial variation of the GW energy density and is responsible
for the statistical correlation between regions separated by large angular distances. This is what
gives rise to an anisotropic initial contribution of the CGWB energy density.
What we want to do now is thus to see how the homogeneous result (6.41) is altered in the presence
of primordial local non-Gaussianity.

6.2.3 CGWB anisotropies in presence of non-Gaussianity

In the previous Chapter we have seen how anisotropies in the CGWB may arise from the GW
propagation across scalar metric perturbations and how this imprints information about primor-
dial non-Gaussianity on the stochastic background of GWs itself. We now focus instead on the
anisotropies arising from the initial condition term ΓI in the case of a scalar sourced CGWB. For
such a case, we expect the presence of non-Gaussianity to directly affect the background of GWs
already at their formation, in addition to the later propagation effects we have already considered.
We now focus on the case with a constant non-linearity parameter fNL, leaving the generalization
to a scale-dependent non-Gaussianity for a later discussion.
Remember from (6.22) that the energy density of GW sourced at second order by scalar pertur-
bations is a function of the 4-point correlator of the curvature perturbation ζ. This is basically
due to ρGW being quadratic in hij which is quadratic itself in ζ. As always we consider primordial
non-Gaussianity to be parametrized by the local ansatz (3.7). It is straightforward to realize that,
neglecting corrections of second order or higher in fNL, the non-Gaussianity of ζ does not affect
the expression for the 4-point correlator (6.13) we have computed in the Gaussian case, being it an
even-order correlator. What can actually produce anisotropies in the initial condition term of the
CGWB is instead the coupling between long and short perturbation modes, which we already know
to be responsible for spatial variations in the PBH abundance within different regions. Primordial
local non-Gaussianity is then necessary in order to ensure such a coupling.

We consider the long-short split in real space (3.25), where ζs is the enhanced short wavelength
perturbation responsible for the PBH formation, and the CGWB production, at the scale k−1

∗ .
Long modes are instead the ones relevant at cosmological scales, with a nearly scale-invariant spec-
trum, which do not affect the PBH production directly but only via the modulation on the short
mode. This is accounted in the expression for the modulated short mode (3.30), for which we
now compute the 4-point correlator and substitute it inside the GW energy density (6.22). The
expression corresponding to (3.30) in Fourier space is given by (3.31) and we have already derived
its 2-point correlator (3.33). In an analogous way, remembering to keep the long mode out of the
ensamble average, since we assume it to be fixed, we get, up to the linear order in fNL:

〈ζS(~k1)ζS(~k2)ζS(~k3)ζS(~k4)〉 = 〈ζs(~k1)ζs(~k2)ζs(~k3)ζs(~k4)〉+
6

5
fNL

∫

d3~p

(2π)3

×
[

ζl(~k1 − ~p)〈ζs(~p)ζs(~k2)ζs(~k3)ζs(~k4)〉+ 3 perms
]

.

(6.44)
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Exploiting the Gaussianity of ζs, it is then possible to expand its 4-correlator in terms of the power
spectrum Pζs , in such a way that we can write:

〈ζS(~p1)ζS(~k1 − ~p1)ζS(~p2)ζS(~k2 − ~p2)〉 = (2π)6δ(3)(~p1 + ~p2)δ
(3)(~k1 − ~p1 + ~k2 − ~p2)

× Pζ(p1)Pζ(|~k1 − ~p1|)
+ (2π)6δ(3)(~p1 + ~k2 − ~p2)δ

(3)(~p2 + ~k1 − ~p1)

× Pζ(p1)Pζ(p2)

+
6

5
fNL

[

ζl(~p1 + ~p2)(2π)
3δ(3)(~k1 − ~p1 + ~k2 − ~p2)

× Pζ(|~k1 − ~p1|)
[

Pζ(p1) + Pζ(p2)
]

+ 3 perms

]

,

(6.45)

where we have only considered the two possible non-vanishing contractions for ~k1, ~k2 6= 0. As
already pointed out, in presence of local non-Gaussianity the long-mode modulation introduces
the correlation of short modes with similar, not necessarily equal, wavenumber. In the terms linear
in fNL, in fact, the long mode ζl appears in place of one of the two Dirac delta, relaxing the
condition on its argument. Considering for example the term explicitly reported in (6.45), the sum

~p1 + ~p2 = ~k1 +~k2 is no longer constrained to vanish, but it is only required to be the wavenumber
of a long mode, i.e. |~k1 + ~k2| < kH , where kH is the wavenumber of the shortest long mode we
are considering in making the split. This conclusion comes automatically from the step function
included in the definition (3.28) of long and short modes.
We have already computed the contribution to the CGWB energy density coming from zero-order
terms in (6.45), which gives the homogeneous result (6.25). We now focus on the term linear in
fNL explicitly written in (6.45). Substituting it inside the formula for the GW energy density
(6.22) we get:

〈ρGW (τ, ~x)〉 = M2
P

81τ2a2

∫

d3~k1
(2π)3

∫

d3~k2
(2π)3

∫

d3~p1
(2π)3

∫

d3~p2
(2π)3

ei(
~k1+~k2)~x

1

k21k
2
2

× 〈
2
∏

i=1

[

Is(pi, |~ki − ~pi|)cos(kiτ)− Ic(pi, |~ki − ~pi|)sin(kiτ)
]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(k̂2)e
(λ)(k̂1, ~p1)e

(λ′)(k̂2, ~p2)

× 6

5
fNLζl(~p1 + ~p2)(2π)

3δ(3)(~k1 − ~p1 + ~k2 − ~p2)

× Pζ(|~k1 − ~p1|)
[

Pζ(p1) + Pζ(p2)
]

.

(6.46)

We then integrate over ~p2, by making use of the Dirac delta, and we perform the change of variable
~q = ~k1 + ~k2, replacing the integration over ~k2 with the integration over ~q. Doing so we obtain:

〈ρGW (τ, ~x)〉 = M2
P

81τ2a2

∫

d3~k1
(2π)3

∫

d3~p1
(2π)3

∫

d3~q

(2π)3
ei~q~x

1

k21|~q − ~k1|2

× 〈
[

Is(p1, |~k1 − ~p1|)cos(k1τ)− Ic(p1, |~k1 − ~p1|)sin(k1τ)
]

×
[

Is(|~q − ~p1|, |~k1 − ~p1|)cos(|~q − ~k1|τ)
− Ic(|~q − ~p1|, |~k1 − ~p1|)sin(|~q − ~k1|τ)

]

〉T
×

∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(~q − ~k1)e
(λ)(k̂1, ~p1)e

(λ′)(~q − ~k1, ~q − ~p1)

× 6

5
fNLζl(~q)Pζ(|~k1 − ~p1|)

[

Pζ(p1) + Pζ(|~q − ~p1|)
]

.

(6.47)

By comparing this result with (6.23), we see that the long-short split has introduced new depen-
dencies on the long mode wavevector ~q. This actually results in a spatial dependence on ~x inside
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(6.47), which has been previously canceled by the presence of the Dirac delta δ(3)(~p1 + ~p2). The
physical interpretation of this fact is that the presence of the long modes, coupled to the short ones
via local non-Gaussianity, is able to provide a correlation of the small-scale enhanced perturbations
over large scales, which is exactly what is needed for anisotropies to arise in the GW energy density,
as we have previously discussed. This idea is represented in Figure 6.4.

Figure 6.4: Representation of the spatial modulation of short-wavelength (sub-horizon) perturba-
tion modes due to the presence of a long-wavelength (super-horizon) one, ensured by the coupling
provided by local non-Gaussianity. In the context we are considering, this induces a large-scale
correlation between patches of size k−1

∗ , practically introducing anisotropies in the CGWB energy
density. Taken from [89].

The next step is to realize that, at leading order of expansion in q
p1

≪ 1, it is possible to ne-
glect the presence of ~q when it is combined with the wavevector ~p1 related to the short mode. A
similar argument holds for q

k1
≪ 1, since we will ultimately identify k1 with the GW frequency,

which we know to be peaked around k∗. As a result, we are practically considering the leading
order of expansion in q

k∗
≪ 1. This allows us to perform the remaining integrals in (6.47) in the

same way as we have already done in the Gaussian case. Furthermore, the contributions coming
from the other 3 linear terms in (6.45) are obtained with either the substitutions ~p1 → ~k1 − ~p1 or

~p2 → ~k2−~p2 or both. It is possible to explicitly derive that, at least in the assumed approximation,
this corresponds to an overall factor 4 we have to account in (6.47). Combining it with the previous
result (6.23), we thus perform the remaining integrals in the usual way and obtain the following,
position-dependent, expression:

ΩGW (τ, ~x, k) = Ω̄GW (τ, k)

[

1 +
24

5
fNL

∫

d3~q

(2π)3
ei~q~xζl(~q)

]

, (6.48)

which is the anisotropic energy density of a stochastic GW background sourced by the scalar per-
turbation ζS , enhanced at a given small scale and modulated, in presence of local non-Gaussianity,
by longer perturbation modes on large scales. We have identified Ω̄GW (τ, k) with the homogeneous
result (6.41) derived in the Gaussian case. Following the more general treatment of the previous
Chapter, we then compute the GW density contrast:

δGW (τ, ~x, k) =
24

5
fNL

∫

d3~q

(2π)3
ei~q~xζl(~q), (6.49)

and, remembering equation (5.64), we obtain the initial condition term ΓI contributing to the
anisotropic energy density of the CGWB generated at PBH production we are considering:

ΓI(τ, ~x, k) =

(

4− ∂lnΩ̄GW
∂lnk

)−1
24

5
fNL

∫

d3~q

(2π)3
ei~q~xζl(~q) =

3

5
f̃NL(k)

∫

d3~q

(2π)3
ei~q~xζl(~q), (6.50)

where the second equality defines the rescaled non-linear parameter:

f̃NL(k) ≡ 8fNL

(

4− ∂lnΩ̄GW
∂lnk

)−1

. (6.51)

It is clear that the initial contribution to the GW anisotropies ΓI is sensible to the presence of
primordial non-Gaussianity, being it proportional to the non-linear parameter fNL. This is quite
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different to what we have seen before for the scalar sourced anisotropies due to propagation, where
instead the non-Gaussianity of ζ eventually shows up in the 3-point angular correlators, since
its statistics is determined by the primordial bispectrum. We thus expect to be able to probe
non-Gaussianity already via the lowest angular correlator, i.e. the angular power spectrum, of
expression (6.50).

Angular power spectrum

The projection of the anisotropies onto the spherical sky is obtained in the usual way by expanding
over spherical harmonics. Setting the observer at the origin, the position of the GW source is
~x = −n̂(τ0 − τin), where n̂ ≡ k̂ points in the direction of propagation of the wave. We then
substitute the expansion (5.73) for the exponential inside (6.50) and, applying spherical harmonics
relations (B.8) and (B.9), we recover the following expression of the spherical harmonics expansion
coefficients:

Γℓm,I(k) = 4π(−i)ℓ 3
5
f̃NL(k)

∫

d3~q

(2π)3
ζl(~q)Y

∗
ℓm(q̂)jℓ

(

q(τ0 − τin)
)

. (6.52)

Notice in particular, as anticipated in the previous Chapter, the dependence on the GW frequency
k, exclusive of the initial condition contribution to the anisotropies, which we have indicated in
(5.74) with q. Here ~q is instead the wavevector associated with the long modes of the scalar
perturbation. This means that the integration in (6.52) is cut off at the higher extremum kH ,
introduced as the largest wavenumber we associate to a long mode of the split.
Since the initial condition term already contains information about the non-Gaussianity of ζ we
decide to focus on the 2-point correlator of (6.52), i.e. the angular power spectrum of the CGWB
anisotropies. Before proceeding with the computation, we remember to allow also for later time
anisotropies coming from the GW propagation across large-scale perturbations. This is accounted
for in the scalar sourced term (5.78) computed in the previous Chapter. We also know that for
perturbation modes re-entering the horizon during matter domination the transfer function is
constant and the ISW-like term in (5.77) can be neglected. This is definitely the case for the long
modes ζl we are considering.
Accounting for both the initial condition (6.52) and scalar sourced due to propagation (5.78)
contributions we write the expansion coefficients of the CGWB energy density anisotropies as:

Γℓm,I+S(k) = 4π(−i)ℓ
∫

d3~q

(2π)3
ζl(~q)Y

∗
ℓm(q̂)T I+S

ℓ (τ0, τin, k, q), (6.53)

where, remembering expression (5.89) for the scalar transfer function in the large-scale limit, we
have defined:

T I+S
ℓ (τ0, τin, k, q) =

3

5

[

1 + f̃NL(k)
]

jℓ
(

q(τ0 − τin)
)

. (6.54)

The result (6.53) is the quantity of which we actually want to compute the 2-point angular corre-
lator.
We define the angular power spectrum of the CGWB anisotropies in the usual way:

〈Γℓ1m1,I+S(k)Γ
∗
ℓ2m2,I+S(k)〉 = δℓ1ℓ2δm1m2C̃ℓ1,I+S(k), (6.55)

where we keep highlighting the dependence on the GW frequency k. The 2-point correlation
function has the following explicit expression:

〈Γℓ1m1,I+S(k)Γ
∗
ℓ2m2,I+S(k)〉 = (4π)2(−i)ℓ1(i)ℓ2

∫

d3~q1
(2π)3

∫

d3~q2
(2π)3

〈ζl(~q1)ζ∗l (~q2)〉

× Y ∗
ℓ1m1

(q̂1)Yℓ2m2(q̂2)

(

3

5

)2
[

1 + f̃NL(k)
]2

× jℓ1
(

q1(τ0 − τin)
)

jℓ2
(

q2(τ0 − τin)
)

,

(6.56)

where the power spectrum of the long perturbation mode is:

〈ζl(~q1)ζ∗l (~q2)〉 = (2π)3δ(3)(~q1 − ~q2)
2π2

q31
Pζl(q1). (6.57)



6.2. CGWB FROM PRIMORDIAL BLACK HOLES 95

The long mode ζl is the one whose statistics is constrained by the measurements on CMB large-
scale anisotropies. We can thus safely approximate to a scale-invariant power spectrum for the
long mode Pζl(q) = Pζl . Applying the spherical harmonics normalization (B.8) and the relation for
spherical Bessel functions (B.12) with n = 1 we get the following result for the CGWB anisotropies
angular power spectrum:

C̃ℓ,I+S(k) =
[

1 + f̃NL(k)
]2 2π

ℓ(ℓ+ 1)

9

25
Pζl . (6.58)

It is interesting to compare this result with the expression for the GW angular power spectrum
(5.90), obtained in the last Chapter where the initial condition term has been kept generic. We

see that the two coincide by setting PI(k) ≡ 9
25

(

f̃NL(k)
)2Pζ in (5.90) and accounting also for the

contribution coming from the cross-correlation, which has been previously neglected.
Notice that that result (6.58) is only valid in the limit of low multipoles. This is due to the fact
that the q-integrals in (6.56) are cut off at the wavenumber kH , since ζl is a long-wavelength per-
turbation mode. Because of this, relation (B.12) cannot be applied exactly, but it is possible to
show that it gives a sufficiently approximate result for the lowest multipoles, up to ℓ ∼ kH(τ0−τin).
This is also consistent with the fact that we are considering only the constant SW-like term (5.88)
of the scalar transfer function.

6.2.4 The effect of running non-Gaussianity on the CGWB anisotropies

angular power spectrum

The result (6.58), for the anisotropies angular power spectrum of a stochastic GW background gen-
erated along with the formation of PBHs at the enhanced small scale k−1

∗ , has been obtained under
the assumption of a scale-independent non-Gaussianity. We stress again that the anisotropies in
such a CGWB are induced by the modulation of longer perturbation modes on the enhanced short
mode responsible for the PBHs production. This mode coupling is possible only in the presence
of a (possibly squeezed) primordial non-Gaussianity, as we have shown explicitly by assuming the
local parametrization (6.31).
Until now we have just recovered the same conclusions reported in [87]. We actually want to do
a step further and try to account for the running of non-Gaussianity, in order to see what are the
consequences on the results of the previous section. This was one of the main motivation behind
this Thesis and arguably the most interesting original result of this work.

In section 5.5.2 we have derived the effect of running non-Gaussianity on the CGWB anisotropies
angular bispectrum. What we have found is that the results resemble closely the ones for CMB tem-
perature anisotropies. Specifically, this is the case when the anisotropy term due to the propagation
of GWs across large-scale scalar perturbations is considered. Therefore, the natural conclusion is
that a stochastic GW background with an unspecified cosmological origin may act as a probe for
non-Gaussianity, either scale-dependent or not.
We are now considering instead a CGWB originated at PBHs formation, where the anisotropies in
the energy density are set already by initial conditions. The latter are provided by the modulated
short mode responsible for the PBHs production, with the modulation being proportional to the
non-linear parameter fNL. We have thus decided to just consider the angular power spectrum,
being it the lowest statistical correlator which ideally allows to make contact with observations
and recover information on primordial non-Gaussianity.

In order to generalize expression (6.58) in presence of running non-Gaussianity we now exploit
the results obtained in section 3.2.3, concerning in particular the form of the long-short split
(3.59), obtained from the local parametrization with a scale-dependent fNL.
The starting point is yet again equation (6.22), corresponding to the expectation value of the GW

energy density. This expression contains the 4-point correlator of the perturbation mode ζ(~k)
responsible for the production of the PBHs. We remember our previous assumption to be that
the power spectrum has a sharp peak at a given small scale k−1

∗ , which we approximate with a
Dirac delta (6.40). Moreover, in presence of non-Gaussianity, we know that the short mode gets
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modulated by longer modes on large observable scales, where the nearly scale-invariant spectrum
is constrained by CMB measurements. In real space, this long-short coupling is linear in the non-
linear parameter fNL and therefore, the presence of a running in the non-Gaussianity would affect
the modulation itself, leading to a different expression of the CGWB energy density (6.48).
We have already computed the expression in Fourier space (3.59) for the modulated short mode in
presence of running non-Gaussianity. Remember that it accounts for the most generic form of scale
dependence of the kernel fNL(k1, k2, k3), where it is important the order in which the wavenumbers
are written. We want in fact to keep the calculation as general as possible, at least until it becomes
convenient to substitute a specific parametrization of the running in order to further simplify the
results we obtain.

The 4-point correlator of (3.59) can be computed exploiting the Gaussianity of ζs and keeping
the linear order in fNL. Considering the combination of wavevectors needed inside (6.22), we find
the following result:

〈ζS(~p1)ζS(~k1 − ~p1)ζS(~p2)ζS(~k2 − ~p2)〉 = (2π)6
[

δ(3)(~p1 + ~p2)δ
(3)(~k1 − ~p1 + ~k2 − ~p2)

× Pζ(p1)Pζ(|~k1 − ~p1|)
+ δ(3)(~p1 + ~k2 − ~p2)δ

(3)(~k1 − ~p1 + ~p2)Pζ(p1)Pζ(p2)
]

+
6

5
(2π)3

[

ζl(~p1 + ~p2)δ
(3)(~k1 − ~p1 + ~k2 − ~p2)

× Pζ(|~k1 − ~p1|)
[

fNL(p1, |~p1 + ~p2|, p2)Pζ(p1)

+ fNL(p2, |~p1 + ~p2|, p1)Pζ(p2)
]

+ 3 perms

]

.

(6.59)

Notice in particular that the non-linear parameter fNL is a function of the same wavevectors whose
combination appears as the argument of the long mode ζl. We then substitute inside (6.22) the
explicitly written term linear in fNL of the correlator (6.59) and repeat the same steps outlined
for the constant-fNL scenario, which lead to:

〈ρGW (τ, ~x)〉 = M2
P

81τ2a2

∫

d3~k1
(2π)3

∫

d3~p1
(2π)3

∫

d3~q

(2π)3
ei~q~x

1

k21|~q − ~k1|2

× 〈
[

Is(p1, |~k1 − ~p1|)cos(k1τ)− Ic(p1, |~k1 − ~p1|)sin(k1τ)
]

×
[

Is(|~q − ~p1|, |~k1 − ~p1|)cos(|~q − ~k1|τ)
− Ic(|~q − ~p1|, |~k1 − ~p1|)sin(|~q − ~k1|τ)

]

〉T
×

∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(~q − ~k1)e
(λ)(k̂1, ~p1)e

(λ′)(~q − ~k1, ~q − ~p1)

× 6

5
fNLζl(~q)Pζ(|~k1 − ~p1|)

[

fNL(p1, q, |~q − ~p1|)Pζ(p1)

+ fNL(|~q − ~p1|, q, p1)Pζ(|~q − ~p1|)
]

.

(6.60)

At leading order in q
k∗

, we now neglect the presence of the long-mode wavector ~q with respect to
the short-mode wavevectors. This assumption is quite strong and it is mainly motivated by the
fact that the computations would get much more involved already at first order in q

k∗
. Actually,

a treatment up to the linear order in q
k∗

has been one of the main focus of our work, even if in
the end it has appeared to be incomplete. Therefore, we have decided to include these incomplete
computations in Appendix D and to report here in the main text only the correct leading order
result, which already provides with an interesting physical interpretation.
Accounting for all the contributions in (6.59), and proceeding in the usual way, we obtain:

ΩGW (τ, ~x, k) = Ω̄GW (τ, k)〉
[

1 +
24

5

∫

d3~q

(2π)3
ei~q~xζl(~q)fNL(k∗, q, k∗)

]

. (6.61)

As expected, the peculiarity of result (6.61), being a generalization of (6.48), is that it accounts for
a generic scale dependence of the non-linear parameter. The latter depends on the wavenumber
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k∗, characteristic of the enhanced short mode, and on the integrated wavenumber q of the longer
modes responsible for the modulation of ζS .
We see in particular that the first and third wavenumber on which fNL depends are identified with
the enhanced scale k−1

∗ . This is valid only in the approximation we have chosen to make, i.e. when
keeping just the leading order term of the expansion in q

k∗
. The third wavenumber, in particular,

would not just be equal to k∗ in the case we wanted to relax our assumptions. Specifically, it would
also carry dependencies on q and on the direction q̂, which may eventually lead to the introduction
of off-diagonal terms in the angular power spectrum. This is evident from the discussion in Ap-
pendix D, where we derive a partial result for (6.61) at linear order in q

k∗
. The precise treatment

of such a case would additionally require a careful computation of the influence that the pres-
ence of ~q inside the time average and the polarization tensors in (6.60) would have. Nevertheless,
as we will now discuss, some of the physical information is already present as a leading order effect.

By comparison between results (6.48) and (6.61), we can exploit the previous treatment to di-
rectly write down the spherical harmonics expansion coefficients of the CGWB anisotropies in
presence of running non-Gaussianity:

Γℓm,I(k) = 4π(−i)ℓ 3
5

∫

d3~q

(2π)3
ζl(~q)Y

∗
ℓm(q̂)jℓ

(

q(τ0 − τin)
)

f̃NL(k, q), (6.62)

where the scale-dependent, rescaled non-linear parameter is defined as:

f̃NL(k, q) ≡ 8fNL(k∗, q, k∗)

(

4− ∂lnΩ̄GW
∂lnk

)−1

. (6.63)

Notice that this notation does not keep track of the specific dependencies inside fNL(k∗, q, k∗).
Accounting also for CGWB anisotropies due to the GW propagation across large-scale cosmological
perturbations, we then compute the 2-point angular correlator:

〈Γℓ1m1,I+S(k)Γ
∗
ℓ2m2,I+S(k)〉 = (4π)2(−i)ℓ1(i)ℓ2

∫

d3~q1
(2π)3

∫

d3~q2
(2π)3

〈ζl(~q1)ζ∗l (~q2)〉

× Y ∗
ℓ1m1

(q̂1)Yℓ2m2(q̂2)

(

3

5

)2
[

1 + f̃NL(k, q1)
][

1 + f̃NL(k, q2)
]

× jℓ1
(

q1(τ0 − τin)
)

jℓ2
(

q2(τ0 − τin)
)

.

(6.64)

In order to proceed with the computation, we now need to specify the parametrization of the
running of fNL. In particular, it is necessary to eventually account for any specific dependence on
q in order to solve the respective integrals.

Power-law parametrization of the running

We first consider the simple case of a power-law running (3.37). As we know from (3.49), this
means that fNL depends only on the third wavenumber, which in this case corresponds to k∗, i.e.
the wavenumber associated to the small scale at which scalar perturbations are enhanced and a
sizeable amount of PBHs form. Explicitly, we consider:

f̃NL(k, k∗) = 8AknfNL∗

(

4− ∂lnΩ̄GW
∂lnk

)−1

, (6.65)

where the dependence on k∗ has been highlighted in order to distinguish it from (6.51) in the

constant-fNL case. The dimensionful coefficient A ≡ fNL(kp)

k
nfNL
p

is independent on the chosen pivot

scale. Notice that parametrization (6.65) is independent on q. Therefore, substituting it inside
(6.64), we can perform the integration in the usual way and we end up with the following result
for the angular power spectrum of CGWB anisotropies:

C̃ℓ,I+S(k) =
[

1 + f̃NL(k, k∗)
]2 2π

ℓ(ℓ+ 1)

9

25
Pζl . (6.66)
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which is analogous to (6.58) in the non-running case, with the important detail that fNL has to
be evaluated at k∗. Actually, the simplicity of this result is a consequence of the level of precision
we are keeping. Remember in fact that we have approximated, at leading order in q

k∗
, thus setting

|~q − ~p1| ≃ p1 inside the fNL dependence in (6.60). Relaxing this assumption would introduce new
directional dependencies on q̂ inside the integrals, which could possibly lead to additional, even
off-diagonal, contributions to the angular power spectrum. For more details see Appendix D.
Nevertheless, the leading-order result (6.66) already gives useful insight about the effect of the
running on the anisotropies of the CGWB. The power-law parametrization is in fact evaluated at
the small scale k−1

∗ , which differs many order of magnitude from the cosmological scales on which
constraints on fNL are usually derived. We thus see that even a small value of the running, i.e. a
small positive value of the parameter nfNL

, would greatly enhance the amount of expected CGWB
anisotropies with respect to the scale-invariant result (6.58). This conclusion naturally leads to
the discussion of the following section, where isocurvature constraints on the PBH abundance are
taken into consideration.

Alternative parametrization

The outcome is less trivial if we choose the parametrization (3.53) of the running. In this case fNL
depends on the first two wavenumbers, in such a way that we have:

f̃NL(k, k∗, q) = 8A(k∗q)
nfNL

/2

(

4− ∂lnΩ̄GW
∂lnk

)−1

, (6.67)

where this time we do have to account for this q-dependence in order to solve the integrals.
Substituting (6.67) inside (6.64) we find the following expression for the angular power spectrum
of CGWB anisotropies:

C̃ℓ,I+S(k) = 4π
9

25

∫ ∞

0

dq

q
j2ℓ1

(

q(τ0 − τin)
)

×
[

1 + 16A
(

4− ∂lnΩ̄GW
∂lnk

)−1

(k∗q)
nfNL

/2

+ 64A2

(

4− ∂lnΩ̄GW
∂lnk

)−2

(k∗q)
nfNL

]

,

(6.68)

where we have written explicitly the parametrization of the running, in order to account for the
q-dependence. We now exploit relation (B.12), which we know to hold with a good approximation
at low multipoles, in the three different cases n = 1, n = nfNL

/2+ 1 and n = nfNL
+1. Assuming

nfNL
≪ 1 we can neglect its presence in the numerical coefficients, in such a way that we end up

with the result:

C̃ℓ,I+S(k) =

[

1 + 16A
(

4− ∂lnΩ̄GW
∂lnk

)−1(
k∗

τ0 − τin

)nfNL
/2

+ 64A2

(

4− ∂lnΩ̄GW
∂lnk

)−2(
k∗

τ0 − τin

)nfNL
]

2π

ℓ(ℓ+ 1)

9

25
Pζl

=
[

1 + f̃NL
(

k, k∗, (τ0 − τin)
−1

)]2 2π

ℓ(ℓ+ 1)

9

25
Pζl ,

(6.69)

where in the second equality we have recognized the same structure of (6.67) and thus defined:

f̃NL
(

k, k∗, (τ0 − τin)
−1

)

= 8

(

4− ∂lnΩ̄GW
∂lnk

)−1

fNL
(

k∗, (τ0 − τin)
−1

)

, (6.70)

with:

fNL
(

k∗, (τ0 − τin)
−1

)

= A
(

k∗
τ0 − τin

)nfNL
/2

. (6.71)
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We see that this time the q-dependence inside (6.67), once integrated, induces a dependence in the
result (6.69) on (τ0 − τin)

−1, which is the wavenumber associated to the distance between the GW
emission and the observer. This result does not come unexpected, since we know from the squeezed
limit (3.57) that the parametrization of the running we are considering here has a dependence both
on the large and small scale, with the latter being the one responsible for PBH formation k−1

∗ .
The large-scale wavenumber, instead, is originally identified with q, which we assume to be related
with observable scales accessible by CMB measurements. The subsequent integration leads to a
non-linear parameter fNL evaluated at (τ0 − τin)

−1, which can be seen as a dependence on the
largest characteristic scale of the considered scenario.

6.3 Isocurvature constraints on CGWB anisotropies

We have seen that the coupling between long and short wavelength modes, induced by local-type
non-Gaussianity, is responsible for fluctuations of the PBH abundance in different regions of the
Universe. In the case PBHs contribute to a large fraction of the dark matter (DM), the fluctuations
in DM distribution are then related to cold dark matter density isocurvature (CDI) perturbations,
which are strictly constrained by CMB observations [65]. An isocurvature (or entropy) perturba-
tion is such that the relative change δX

Ẋ
is different for each perturbed quantity, while the total

energy density is kept constant [18, 19, 88]. It is the opposite of an adiabatic perturbation, which
is instead equally shared by the different components, in such a way that the total entropy is kept
constant.
Gravitational collapse is an irreversible process, which is thus expected to be related to some kind
of entropy production. Moreover, at PBH formation, a fraction of the energy content of the Uni-
verse is transferred from radiation to matter, i.e. δρr 6= δρm during the process, which is exactly
the kind of behaviour associated to isocurvature perturbations. Spatial fluctuations in the PBH
abundance due to the mode coupling can also be related to CDI perturbations and, in particular,
it is possible to show [90] that this contribution is dominant with respect to the one due to the
standard PBH formation in a Gaussian scenario. Therefore, CMB constraints on CDI perturba-
tions may be exploited to derive bounds on the non-linear parameter fNL of the local shape, which
is the one responsible for the long-short modes coupling. Consequently, this also sets upper limits
on the amount of CGWB anisotropies, since we have found the angular power spectrum of the
latter to be proportional to fNL [87].

Equation (6.38) expresses the spatial modulation of the PBH abundance as a function of the
long wavelength perturbation ζl. If the latter is small, as it is in the scenario we are considering,
it is then possible to introduce the so called scale-dependent bias b, in such a way that δβ = bζl
[90]. In our case we thus have explicitly:

b =
25 + 30ζcfNL + 36f2NLσ

2
s − 5

√

25 + 60ζcfNL + 36f2NLσ
2
s

3fNLσ2
s

√

25 + 60ζcfNL + 36f2NLσ
2
s

, (6.72)

where we recall ζc to be the critical value of ζ needed for the gravitational collapse into a PBH,
and σs ≡ 〈ζ2s 〉 to be the variance of the short component of the perturbation. Expanding (6.72) at
first order in fNL, it simplifies as [85]:

b =
6

5

(

1 +
ζ2c
σ2
s

)

fNL. (6.73)

The scale-dependent bias then relates the power spectrum of isocurvature modes, arising as the
spatial fluctuations in the PBH abundance δβ in the case PBHs constitute all of DM, with the
primordial curvature power spectrum in the following way:

Piso = b2Pζ , (6.74)

where Pζ is the nearly scale-invariant curvature power spectrum compatible with large-scale CMB
measurements. The contribution of CDI perturbations to the total primordial power spectrum is



100CHAPTER 6. CGWB ANISOTROPIES FROM ENHANCED SCALAR PERTURBATIONS

defined as the primordial isocurvature fraction [65]:

βiso =
Piso

Pζ + Piso

=
b2

1 + b2
, (6.75)

where in the second equality we have substituted the result (6.74). Constraints on CDI perturba-
tions are provided by the Planck collaboration latest TT,TE,EE+lowE+lensing results at 95% CL
[65]:

βiso < 0.00095 (fully correlated),

βiso < 0.00107 (fully anti-correlated),
(6.76)

where fully (anti-)correlated isocurvature perturbations correspond to positive (negative) values of
the scale-dependent bias b. Combining these results with (6.75) we obtain the following constraints
on b:

− 0.0327 < b < 0.0308. (6.77)

Exploiting now equation (6.73), we derive limits on the non-linear parameter fNL:

− 6.0× 10−4 < fNL < 5.6× 10−4, (6.78)

where we have assumed the values ζc = 1 and σs = 0.15 for the parameters, as reported in [85].
The conclusion is that, in the case PBHs make up for the totality of the dark matter, upper
limits on isocurvature perturbations strongly constrain the amount of local-type primordial non-
Gaussianity. As a consequence, also the stochastic background of GWs generated at the formation
of these PBHs is constrained to be highly isotropic.
In order to evaluate the limits on the CGWB anisotropies angular power spectrum coming from
CDI constraints, we express it in terms of the GW density contrast δGW , which should allow for
a more intuitive physical description than the function Γ [87]. We thus introduce the following
2-point correlator:

〈δGW,ℓ1m1δ
∗
GW,ℓ2m2

〉 = δℓ1ℓ2δm1m2Ĉℓ1(k), (6.79)

and, remembering relation (5.64), we can rewrite the result (6.58) (in the case of constant fNL)
for the CGWB anisotropies angular power spectrum as:

√

ℓ(ℓ+ 1)

2π
Ĉℓ(k) =

3

5
P1/2
ζl

∣

∣

∣1 + f̃NL(k)
∣

∣

∣

∣

∣

∣

∣

4− ∂lnΩ̄GW
∂lnk

∣

∣

∣

∣

. (6.80)

Written in this way, the combination on the left side does not depend on the multipole ℓ, which
is the same behaviour of the CMB temperature angular power spectrum at low multipoles, where
it features the so called Sachs-Wolfe plateau. Substituting in (6.80) the constraints (6.78) on the
non-linear parameter, and assuming the Planck normalization at CMB scales Pζl ≃ 2.2 × 10−9

[65], we get the following estimate for the level of the CGWB anisotropies:

√

ℓ(ℓ+ 1)

2π
Ĉℓ(k∗) ∼ 3.0× 10−4, (6.81)

where we have evaluated the angular power spectrum at the peak frequency k∗. Remember that
this result has been recovered within the assumption that PBHs consist of all of the dark matter.
It is possible to generalize this conclusion for a scenario where PBHs constitute only a fraction of
the DM, defined as the ratio fPBH =

ΩPBH,0

ΩDM,0
. In order to account for this possibility it is sufficient to

notice that this directly affects the proportions between isocurvature and curvature perturbations,
in such a way that the relation between the two power spectra becomes Piso = b2f2PBHPζ . Repeating
the previous steps we end up with:

− 6.0× 10−4

fPBH

< fNL <
5.6× 10−4

fPBH

. (6.82)

We see that a sizeable amount of local non-Gaussianity, corresponding to a more anisotropic
CGWB, would thus require that only a very tiny fraction of dark matter was in the form of PBHs.
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This result is represented in Figure 6.5 which shows, following [87], a contour plot of the CGWB
anisotropies angular power spectrum in the viable region for the parameters fNL and fPBH. To
produce such a plot, expression (6.72) has been used, rather than the (6.73) which holds only at
first order in fNL. Furthermore, the angular power spectrum is evaluated at k = k∗ where the
corresponding background energy density Ω̄GW is close to the maximum, as visible in Figure 6.3.

Figure 6.5: Contour plot of the angular power spectrum (6.80) of CGWB anisotropies evaluated
at the frequency k∗, corresponding to the enhanced scale at which PBHs form. The actual plotted

expression is the ℓ-independent combination

√

ℓ(ℓ+ 1)Ĉℓ(k∗)/2π in the allowed region for the

parameters fNL and fPBH, as derived from CDI constraints on CMB scales. The spectrum has
its absolute minimum in correspondence of the dark spot, approximately for fNL ≃ 1.3. We
acknowledge [87] for the original idea to produce such a plot, along with the decision to take
fNL = −1/3 as the lower bound.

6.3.1 Isocurvature constraints and running non-Gaussianity

Up to now we have considered the case with constant fNL, already covered in the literature [85, 87].
One interesting question we may ask ourselves is whether the presence of a running of fNL can
eventually evade the isocurvature bounds and allow for the possibility of an anisotropic CGWB,
even arising from PBHs which constitute the totality of the dark matter.
We observe that equation (6.82) translates CDI constraints into limits on the non-linear parameter.
In the case of constant fNL these bounds on the non-linear parameter hold at all scales, even if they
are derived within a very specific range. Constraints on CDI perturbations are in fact obtained in
the range of scales probed by CMB anisotropies, i.e. 10−4 Mpc−1 < k < 0.1 Mpc−1 [31], which
can be taken to be centered around the intermediate scale kCMB ≃ 0.05 Mpc−1 [65]. Then, the
scale-invariance of fNL requires the constraints on local non-Gaussianity to hold at any scale.

The conclusion is quite different in the case of a scale-dependent fNL. CDI bounds only con-
strain non-Gaussianity on the CMB scales and a sufficient running can then enhance the value
of fNL on other scales. We know from the result (6.66) that, if the running is parametrized as
a simple power-law (3.37), the angular power spectrum of the CGWB anisotropies we are con-
sidering depends on fNL evaluated at the small scale k−1

∗ , at which PBHs form. Given that the
two scales k−1

∗ and k−1
CMB differ by many orders of magnitude, even a slightly positive running

nfNL
would bring a constrained value fNL(kCMB) ≪ 1 to easily evade the isocurvature bounds at
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fNL(k∗). Running local non-Gaussianity may thus allow to obtain an anisotropic CGWB even in
the scenario where PBHs constitute all of the dark matter, which is instead not admitted in the
case fNL is constant.

Notice that, rigorously speaking, the case of scale-dependent fNL should be dealt with by re-
peating, this time including the running, the steps which have led to expression (6.72) for the
scale-dependent bias. We decide instead to proceed in a more approximate way, by assuming that
the bounds (6.82), coming from CDI constraints, still hold at CMB scales for fNL(kCMB). From
these, we use the power-law parametrization (3.37) of the running to extrapolate upper limits on
the local non-linear parameter at the enhanced PBH scale:

− 6.0× 10−4

fPBH

(

k∗
kCMB

)nfNL

< fNL(k∗) <
5.6× 10−4

fPBH

(

k∗
kCMB

)nfNL

, (6.83)

where we tassume kCMB = 0.05 Mpc−1 and k∗ = 2 × 1012 Mpc−1. Then, in order to have an
enhancement of the CGWB anisotropies with respect to the non-running case, we need a positive
value for nfNL

, in such a way that fNL increases at small scales. In the case of a power-law running,
in analogy with (6.80), we evaluate the CGWB anisotropies as:

√

ℓ(ℓ+ 1)

2π
Ĉℓ(k) =

3

5
P1/2
ζl

∣

∣

∣1 + f̃NL(k, k∗)
∣

∣

∣

∣

∣

∣

∣

4− ∂lnΩ̄GW
∂lnk

∣

∣

∣

∣

, (6.84)

where we have exploited equation (6.66). The running non-linear parameter f̃NL(k, k∗) is defined
as in expression (6.65), for which we have yet to fix the value of nfNL

. Given the huge discrepancy
between the two scales in consideration, even a small positive running would be already sufficient
to enhance the CGWB anisotropies at small scales, and we thus choose the quite conservative value
nfNL

= 0.1 [34, 30]. For such a choice, the non-linear parameter is enhanced at small scales by a
factor fNL(k∗)/fNL(kCMB) = (k∗/kCMB)

nfNL ∼ 23. This leads to the contour plot in Figure 6.6.

Notice first of all that the coloured viable parameter space is the same of Figure 6.5 for the non-
running case. This is because we are considering fNL(kCMB), evaluated at the CMB scale, which
is the one directly constrained by CDI bounds. What actually changes is that the angular power
spectrum is now a function of fNL(k∗), evaluated at the PBH scale, which, as we have said, is
enhanced with respect to fNL(kCMB) by the positive running. Overall, we can see that in the
considered interval [−1/3, 2] for fNL(kCMB), the power spectrum of the CGWB anisotropies is
increased of roughly one order of magnitude for the case of power-law fNL with nfNL

= 0.1. On
the other hand, it is important to notice how the minimum of the spectrum (marked as the darkest
part) shifts going from Figure 6.5 to Figure 6.6. The reason for this is that we need to evaluate

the combination
∣

∣

∣1+ f̃NL(k, k∗)
∣

∣

∣ in equation (6.84) and not just f̃NL(k, k∗). As a result, in Figure

6.6 the minimum almost falls inside the interval where fPBH is allowed to be of order unity. The
consequences of this fact becomes clear if we set fPBH = 1 and derive the maximum amount of
anisotropies in the case of running fNL. The result is practically the same as (6.81). This means
that, if we focus on the scenario where PBHs constitute all of DM, a value of nfNL

= 0.1 is still
not sufficient enough to appreciate differences with respect to the non-running case. In order
for such a thing to happen a value of at least nfNL

∼ 0.3 is needed, for which the combination
√

ℓ(ℓ+ 1)Ĉℓ(k∗)/2π is allowed to range up to ∼ 0.002, marking an order of magnitude increase
with respect to previous cases. It is worth mentioning that in this case the CGWB anisotropies
angular power spectrum starts to cover a wider range of values, while keeping also fPBH = 1, in
such a way that also the value of fNL(kCMB) for which Ĉℓ vanishes falls inside the CDI bounds
(6.78).

Similar arguments to the one we have just provided may be repeated for the other parametrization
of the running (3.53) considered in this work. Starting again from the CDI bounds (6.82) at the
CMB scale kCMB ≃ 0.05 Mpc−1, we now want to extrapolate constraints on the value of the non-
linear parameter which enters inside the expression for the angular power spectrum (6.69). This
is expressed by equation (6.71), where we recall that fNL is evaluated at the small PBH scale k−1

∗
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Figure 6.6: Contour plot of the angular power spectrum (6.84) of CGWB anisotropies evaluated
at the frequency k∗, corresponding to the enhanced scale at which PBHs form, in the case of a
power-law running non-Gaussianity (3.37). The actual plotted expression is the ℓ-independent

combination

√

ℓ(ℓ+ 1)Ĉℓ(k∗)/2π in the allowed region for the parameters fNL(kCMB), evaluated

at kCMB, and fPBH, as derived from CDI constraints on CMB scales. The spectrum, which instead
is proportional to fNL(k∗), has its absolute minimum in correspondence of the dark spot, approx-
imately for fNL(kCMB) ≃ 0.06, which is near the interval where fPBH is allowed to range up to
unity. Notice that the colour scale differs from the one in Figure 6.5.

and at the large observable scale τ0 − τin ≃ τ0 ≡ k−1
H,0, which is of the order of magnitude of the

present comoving Hubble horizon.
In such a scenario, from the CDI bounds (6.82) we then derive the following constraints:

− 6.0× 10−4

fPBH

(

k∗ · kH,0
k2CMB

)nfNL
/2

< fNL(k∗, kH,0) <
5.6× 10−4

fPBH

(

k∗ · kH,0
k2CMB

)nfNL
/2

, (6.85)

where we have adopted the same notation of equation (6.71) by expressing explicitly the dependence
of fNL on the two wavenumbers k∗ and kH,0. We take the latter to be approximately kH,0 ≃
8.6 × 10−5 Mpc−1 [16]. The result for the CGWB anisotropies in this case has the following
expression:

√

ℓ(ℓ+ 1)

2π
Ĉℓ(k) =

3

5
P1/2
ζl

∣

∣

∣1 + f̃NL(k, k∗, kH,0)
∣

∣

∣

∣

∣

∣

∣

4− ∂lnΩ̄GW
∂lnk

∣

∣

∣

∣

, (6.86)

where f̃NL(k, k∗, kH,0) is defined in equation (6.70). Setting again nfNL
= 0.1 we find an enhance-

ment at small scales of fNL(k∗, kH,0)/fNL(kCMB) =

(

k∗·kH,0

k2
CMB

)nfNL
/2

∼ 3.5. Consequently, we

expect the departure of the amount of anisotropies from the constant-fNL case to be less with
respect to the one obtained with the power-law running. This is confirmed in Figure 6.7, which
presents an overall level of CGWB anisotropies comprised between the two aforementioned cases.
The minimum of the angular power spectrum is also found at an intermediate position. Predictably
enough, if we focus on the scenario with fPBH = 1, a value of nfNL

= 0.1 is not sufficient to provide
significant differences with respect to the non-running case. Since the parametrization considered
here is less steep than the power-law one, we now need a value nfNL

∼ 0.7 to start appreciating
an enhanced level of anisotropies.

We see from our previous results that the capability of evading CDI bounds at PBH scales strongly
depends on the chosen parametrization for the running. We can however conclude the discussion



104CHAPTER 6. CGWB ANISOTROPIES FROM ENHANCED SCALAR PERTURBATIONS

Figure 6.7: Contour plot of the angular power spectrum (6.86) of CGWB anisotropies evaluated
at the frequency k∗, analogous to the one in Figure 6.6, for the alternative parametrization of the
running (3.53). The spectrum has a minimum for fNL(kCMB) ≃ 0.4.

by stating what is the model-independent condition necessary to deviate from the highly isotropic
CGWB found for fPBH = 1 in the non-running scenario [87]. This can be derived quite straight-
forwardly by noting that the level of anisotropies depends on the combination |1 + f̃NL|, which
in the constant-fNL case approaches unity since CDI bounds (6.78) constrain fNL ≪ 1. There-
fore, significant deviations from this situation only arise when the running is sufficient to enhance
|f̃NL| & 1 at the PBH scale. This in fact happens for nfNL

& 0.3 and nfNL
& 0.7, respectively, for

the two parametrizations we have considered.



Conclusions

Throughout this work we have centered our discussion on the topic of primordial non-Gaussianity,
being it the deviation from the Gaussian statistics of the primordial perturbation ζ. After having
reviewed the tools necessary to treat such a context, we have presented the CMB as the ideal ob-
servable to probe the presence of non-Gaussianity in the early Universe. Particular attention has
been devoted to the local ansatz of non-Gaussianity, which has been assumed in order to recover
explicit expressions for the CMB angular bispectrum, already present in the literature [16], and
their generalizations to include a scale dependence of the non-linear parameter (see, e.g. [30]).
The discussion involving running non-Gaussianity, in particular, has been central in this work.
What we have done, instead of considering the running arising from specific models of inflation
[29], has been to start from the local parametrization and try to find the most general way to
account for a scale dependence inside fNL. This has resulted into a power-law parametrization as
the simplest, but not the only, expression for a running within the local ansatz [33]. Nevertheless,
the kernel approach to non-Gaussianity (see, e.g. [35, 36]) we have introduced should be general
enough to allow for different, less trivial, parametrizations to be considered, leading to their re-
spective expressions for the primordial bispectrum.

Primary focus of this Thesis has then been the cosmological gravitational wave background as a
probe of primordial non-Gaussianity, which may possibly be a source of information on scales inac-
cessible to CMB and, consequently, provide with independent constraints on the amount of running
non-Gaussianity. Exploiting the formalism developed for the treatment of CMB anisotropies [41]
and non-Gaussianity [16], we have actually studied the stochastic GW background in a Boltzmann-
like fashion [49, 67]. This has allowed to show that primordial non-Gaussianity may induce
anisotropies in the GW energy density due to the propagation across large-scale scalar pertur-
bations. Not surprisingly, given the formal analogy in the computations, the results written in
terms of the CGWB anisotropies angular bispectrum strictly resemble the ones already available
in the literature for the CMB [16]. The generalization to account also for running non-Gaussianity,
which we have obtained by starting from the local model and admitting a scale-dependence of fNL
[33], can also be expressed with a notation similar to the one adopted for the treatment of such a
context in the CMB case [30]. We conclude that the CGWB should represent an additional probe
to test primordial non-Gaussianity, possibly even at scales inaccessible to the CMB. Therefore, an
eventual detection of the CGWB in the near future, for example by means of space interferometers
[62], is expected to shed more light, or at least provide with a new perspective, on the nature of
primordial non-Gaussianity and its running.

Moving steps from the general treatment, we have come to consider the more specific context of a
CGWB associated to PBH formation at small scales [87]. At second order in perturbation theory,
GWs are sourced by scalar perturbations and, therefore, sufficiently enhanced modes, responsible
for overdensities collapsing into PBHs, may produce a background of GWs with a characteristic
frequency and possibly overcoming the CGWB arising from quantum fluctuations during inflation.
The enhancement of scalar perturbations at small scales would actually require a deviation from
the scale-invariant behaviour of the primordial power spectrum measured at large scales via CMB
anisotropies [65]. Even though in the literature several inflationary models do exist capable of
providing such a feature [81], in this work we have considered the idealized case of a Dirac delta
curvature power spectrum, peaked at some given small scale.
We have shown explicitly that the presence of primordial local non-Gaussianity introduces inho-
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mogeneities in the energy density of the GW background [87]. This is actually realized via a
coupling between the short enhanced mode, responsible for the PBH production, and larger modes
on observable scales, which otherwise would not affect the process. This also introduces spatial
fluctuations of the PBH abundance within different regions [85, 90], which are then constrained
by dark matter isocurvature bounds from CMB measurements [65]. As a result, it is possible to
strictly limit the amount of local non-Gaussianity, in the case PBHs constitute a large amount or
even the totality of dark matter [87].

As an original contribution to this Thesis, we have tried to consider the effect of the scale depen-
dence of non-Gaussianity on the CGWB generated at PBH formation in the context just outlined.
Exploiting the derived results on the parametrization of the running as a generalization of the local
ansatz for non-Gaussianity, we have found that a sufficiently positive running should allow for the
possibility of an arbitrarily anisotropic CGWB, even in the case of DM composed entirely by PBHs,
contrary to what happens in the constant-fNL scenario where the GW stochastic background is
instead constrained to be highly isotropic [87]. We have to stress that this conclusion has been
obtained by keeping only the leading order terms of expansion in q

k∗
≪ 1, where q is the wavenum-

ber of the long-wavelength component of the primordial perturbation ζ and k−1
∗ the small scale

at which PBHs form in the model we have considered. Nevertheless, we have still recovered the
interesting result that CGWB anisotropies are determined by a non-linear parameter evaluated at
the enhanced small scale k−1

∗ , responsible for PBH formation. This is exactly what allows for large
CGWB anisotropies in the presence of a positive enough running. Such a conclusion is exclusive
of our treatment and cannot be realized within the constant-fNL scenario [87]. A partial attempt
to extend our computations up to linear order in q

k∗
≪ 1 is discussed in Appendix D.

In this work we have not addressed to, and it is thus left open for further investigations, what an
actual estimate could be on the minimum amount of CGWB anisotropies, and therefore of running
non-Gaussianity, in order to be detectable at the interferometers [91]. Furthermore, constraints
of different nature do exist on the curvature power spectrum at small scales [92] and it should
be verified if these are compatible with the scenario we have considered. In general, we have ad-
dressed to the question whether the presence of running non-Gaussianity is capable of enhancing
the anisotropies in the CGWB energy density, otherwise constrained by isocurvature bounds due
to PBHs consisting of all the dark matter, but it still remains to be verified if the mechanism
we have proposed is truly admitted by experimental bounds and within an established theoretical
framework.



Appendix A

Perturbed Einstein tensor at first

order

In this appendix we provide with the expressions for the components of the perturbed Einstein
tensor δGµν at first order. We will only consider scalar perturbations of the metric (2.5), neglecting
vector and tensor degrees of freedom, as we have done deriving Einstein equations components in
Chapter 2.

The inverse of the perturbed metric (2.5) is found by imposing the condition gµνg
νρ = δ ρµ , from

which we get, at linear order:

gµν =

(

−1 + 2φ ∂iω
∂iω (1 + 2ψ)δij −Dijχ

)

. (A.1)

In order to compute Einstein tensor we start from the affine connection coefficients, which in
terms of the metric are expressed as:

Γµνρ = gµσ
(

∂νgρσ + ∂ρgσν − ∂σgνρ
)

. (A.2)

For the background FLRW metric, the non-vanishing unperturbed components are:

Γ0
00 =

a′

a
, Γi0j =

a′

a
δij , Γ0

ij =
a′

a
δij . (A.3)

The linear-order perturbation of expression (A.2) is:

Γµνρ = ηµσ
(

∂νδgρσ + ∂ρδgσν − ∂σδgνρ
)

, (A.4)

which has the following components:

δΓ0
00 = φ′,

δΓ0
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a
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a
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a′

a
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a
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2
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′,

δΓi0j = −ψ′δij +
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2
Di
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δΓijk = −∂jψδik − ∂kψδ
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1
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∂kD
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(A.5)
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The Ricci tensor is defined as:

Rµν = ∂ρΓ
ρ
µν − ∂µΓ

ρ
νρ + ΓρσρΓ

σ
µν − ΓρσνΓ

σ
µρ, (A.6)

which has the following non-vanishing unperturbed components for a spatially flat FLRW back-
ground:

R00 = −3
a′′

a
+ 3

(

a′

a

)2

, Rij =

[

a′′

a
+ 3

(

a′

a

)2]

δij . (A.7)

Perturbing expression (A.6) we get the following first-order perturbation:

δRµν = ∂ρδΓ
ρ
µν − ∂µδΓ

ρ
νρ + δΓρσρΓ

σ
µν + ΓρσρδΓ

σ
µν − δΓρσνΓ

σ
µρ − ΓρσνδΓ

σ
µρ, (A.8)

for which we compute the following components:
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(A.9)

The Ricci scalar is given by the following contraction:

R = gµνRµν , (A.10)

which at zero order is:

R =
6

a2
a′′

a
. (A.11)

The first-order perturbation of (A.10) is:

δR = δgµνRµν + gµνδRµν , (A.12)

such that it can be expressed as:

δR =
1
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(A.13)

We can finally compute the Einstein tensor, given by the following combination:

Gµν = Rµν −
1

2
gµνR, (A.14)

We actually consider the components with mixed indices, since in this way the derivation of Einstein
equations is simpler. On the unperturbed FLRW background the non-vanishing ones are:
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δij . (A.15)
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The linear-order perturbation of the Einstein tensor (A.14) has the following expression:

δGµν = δRµν −
1

2
δgµνR− 1

2
gµνδR, (A.16)

whose components are:
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Appendix B

Useful definitions and properties

In this appendix we list several definitions and properties useful throughout the computations in
the main text.

B.1 Associated Legendre polynomials

The Legendre polynomials Pℓ(x), of degree ℓ, are defined as the solutions of the following differential
equation:

d

dx

[

(1− x2)
dPℓ(x)

dx

]

+ ℓ(ℓ+ 1)Pℓ(x) = 0. (B.1)

The associated Legendre polynomials Pmℓ (x), of degree ℓ and order m, are then:

Pmℓ (x) = (−1)m(1− x2)m/2
dm

dxm
Pℓ(x), (B.2)

in such a way that Pℓ(x) ≡ P 0
ℓ (x). They satisfy the following normalization condition:

∫ 1

−1

dxPmℓ (x)Pmℓ′ (x) =
2(ℓ+m)!

(2ℓ+ 1)(ℓ−m)!
δℓℓ′ . (B.3)

The following recursive relations are also needed for the computations in Appendix D:

√

1− x2Pmℓ (x) = − 1

2ℓ+ 1

[

Pm+1
ℓ+1 (x)− Pm+1

ℓ−1 (x)
]

, (B.4)

√

1− x2Pmℓ (x) =
1

2ℓ+ 1

[

(ℓ−m+ 1)(ℓ−m+ 2)Pm−1
ℓ+1 (x)− (ℓ+m− 1)(ℓ+m)Pm−1

ℓ−1 (x)
]

, (B.5)

xPmℓ (x) =
1

2ℓ+ 1

[

(ℓ−m+ 1)Pmℓ+1(x) + (ℓ+m)Pmℓ−1(x)
]

. (B.6)

B.2 Spherical harmonics

Spherical harmonics can be defined in terms of the associate Legendre polynomials (B.2):

Yℓm(θ, φ) =

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pmℓ (cosθ)eimφ, (B.7)

so that the following orthonormality condition is satisfied:
∫

dΩYℓm(θ, φ)Y ∗
ℓ′m′(θ, φ) = δℓℓ′δmm′ . (B.8)

Spherical harmonics thus form an orthonormal basis over which functions depending on the angu-
lar variables θ and φ can be expanded. We use this property in the main text to project quantities
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onto the full sky.
Legendre polynomials can be expanded over spherical harmonics, obtaining the following expres-
sion:

Pℓ(k̂ · p̂) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ
Y ∗
ℓm(k̂)Yℓm(p̂). (B.9)

B.3 Spherical Bessel functions

The spherical Bessel functions jℓ(x), of order ℓ, are one of the solutions of the Helmoltz equation:

x2
d2jℓ(x)

dx2
+ 2x

djℓ(x)

dx
+
[

x2 − ℓ(ℓ+ 1)
]

jℓ(x) = 0. (B.10)

Qualitatively speaking, they are peaked near ℓ ∼ x, as can be seen in Figure B.1. This explains
how a perturbation mode with wavenumber k is projected onto the anisotropy on a scale ℓ−1 in
equation (4.15).

Figure B.1: Spherical Bessel functions squared as a function of ℓ, for x = 50 and x = 100. Notice
how the peaks occur for ℓ slightly smaller than x. Taken from [41].

Spherical Bessel functions satisfy the following closure relation:
∫ ∞

0

dxx2jℓ(ax)jℓ(bx) =
π

2a2
δ(a− b). (B.11)

Another useful relation is the following:

∫ ∞

0

dxxn−2j2ℓ (x) = 2n−4π
Γ
(

ℓ+ n
2 − 1

2

)

Γ(3− n)

Γ
(

ℓ+ 5
2 − n

2

)

Γ2
(

2− n
2

) , (B.12)

where Γ is the Euler Gamma function described in Appendix B.5. Other relations needed in
Appendix D are the following ones:

∫

dx

x
j2ℓ (ax) =

1

2ℓ(ℓ+ 1)
,

∫

dxjℓ(ax)jℓ−1(ax) =
1

2aℓ
,

∫

dxjℓ(ax)jℓ+1(ax) =
1

2a(ℓ+ 1)
.

(B.13)
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B.4 Wigner 3-j symbols

The Wigner 3-j symbols are introduced in quantum mechanics to add angular momenta as an
alternative to Clebsch-Gordan coefficients. They are written as:

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

, (B.14)

and they vanish unless the following conditions are satisfied:

m1 +m2 +m3 = 0,

ℓ1 + ℓ2 + ℓ3 = integer (an even integer if m1 = m2 = m3 = 0),

|ℓi − ℓj | ≤ ℓk ≤ ℓi + ℓj .

(B.15)

For our purposes, in the main text we just need the following orthogonality relation:

∑

m1m2m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

= 1. (B.16)

B.5 Euler Gamma function

The Euler Gamma function is a generalization to complex numbers of the factorial function, such
that for any positive integer n:

Γ(n) = (n− 1)! (B.17)

For complex numbers with a positive real part it is defined by the following integral:

Γ(z) =

∫ ∞

0

xz−1e−z. (B.18)

A useful property is:
Γ(z + 1) = zΓ(z), (B.19)

while a fundamental value for a non-integer argument is:

Γ

(

1

2

)

=
√
π. (B.20)
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Appendix C

Details on GWs sourced by scalar

perturbations at second order

In this appendix we share more details on the solution of equation (6.7) for the mode function h~k.
This can be obtained with the method of the Green’s function, which gives the particular solution
[74]:

h
(λ)
~k

(τ) =
1

a(τ)

∫ τ

τin

dτ ′Gk(τ, τ
′)a(τ ′)S(λ)(τ ′, ~k), (C.1)

where Gk is the Green’s function, solution of equation (6.7) with an impulse source:

G′′
k(τ, τ

′) +

(

k2 − a′′

a

)

Gk(τ, τ
′) = δ(τ − τ ′). (C.2)

In order to proceed, we remember that we are actually interested in second-order GWs produced
when enhanced small-scale scalar perturbations re-enter the horizon, which happens early during
radiation domination. In this case, the Green’s function is found to be [74]:

Gk(τ, τ
′) =

1

k
sin

[

k(τ − τ ′)
]

θ(τ − τ ′), (C.3)

where θ is the Heaviside step function.
In the absence of anisotropic stresses, we know from Chapter 2 that first-order perturbed Einstein
equations give φ = ψ. The explicit expression of the source term in Fourier space (6.8) for w = 1/3
is then [78]:

S(λ)(τ,~k) = 4

∫

d3~p

(2π)3
e(λ)ij(k̂)pipj

[

2ψ(~p)ψ(~k − ~p) +

(

ψ(~p) +
1

Hψ′(~p)

)(

ψ(~k − ~p) +
1

Hψ′(~k − ~p)

)]

≡
∫

d3~p

(2π)3
e(λ)(k̂, ~p)f(p, |~k − ~p|, τ)ζ(~p)ζ(~k − ~p),

(C.4)
where in the second line we have defined:

e(λ)(k̂, ~p) ≡ e(λ)ij(k̂)pipj , (C.5)

and:

f(k1, k2, τ) ≡ 4

[

2T (τ, k1)T (τ, k2) +

(

T (τ, k1) +
1

HT ′(τ, k1)

)(

T (τ, k2) +
1

HT ′(τ, k2)

)]

. (C.6)

The function T (τ, k) is the scalar transfer function defined in (5.75), relating scalar metric pertur-
bations to the primordial curvature ζ. Since the source term only includes terms quadratic in the
scalar perturbations, we just need to solve the linear evolution equation [82]:

ψ′′
~k
(τ) +

4

τ
ψ′
~k
(τ) +

k2

3
ψ~k(τ) = 0 (C.7)
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which gives the following non-decaying solution for the transfer function:

T (τ, k) =
6

(kτ)2

[

sin(kτ/
√
3)

kτ/
√
3

− cos(kτ/
√
3)

]

, (C.8)

and for super-horizon modes (kτ ≪ 1) reduces to T (τ, k) = 2
3 .

Substituting (C.3) and (C.4) back inside solution (C.1) we get:

h
(λ)
~k

(τ) =
1

a(τ)

∫ τ

τin

dτ ′
1

k
sin

[

k(τ − τ ′)
]

a(τ ′)

∫

d3~p

(2π)3
e(λ)(k̂, ~p)f(p, |~k − ~p|, τ ′)ζ(~p)ζ(~k − ~p)

=

∫

d3~p

(2π)3
1

k3τ
e(λ)(k̂, ~p)ζ(~p)ζ(~k − ~p)

∫ kτ

kτin

d(kτ ′)kτ ′
[

sin(kτ)cos(kτ ′)− cos(kτ)sin(kτ ′)
]

f(p, |~k − ~p|, τ ′),
(C.9)

where we have exploited the fact that during radiation domination the scale factor goes like a(τ) ∝
τ . It is possible to perform the integration over τ ′ and express the result in the following way:

h
(λ)
~k

(τ) =
4

9

1

k3τ

∫

d3~p

(2π)3
e(λ)(k̂, ~p)ζ(~p)ζ(~k−~p)

[

Ic(p, |~k−~p|)cos(kτ)+Is(p, |~k−~p|)sin(kτ)
]

, (C.10)

where the functions Ic and Is are defined as:

Ic(p, |~k − ~p|) ≡ −
∫ ∞

0

d(kτ ′)kτ ′sin(kτ ′)f(p, |~k − ~p|, τ ′),

Is(p, |~k − ~p|) ≡
∫ ∞

0

d(kτ ′)kτ ′cos(kτ ′)f(p, |~k − ~p|, τ ′).
(C.11)

The factor 4/9 in front of (C.10) is present because Ic and Is are written in terms of the transfer
function normalized to the super-horizon scalar metric perturbation ψ = 2

3ζ rather than the cur-
vature perturbation ζ itself.
Integrals in (C.11) receive the main contribution in the interval between the horizon re-entry of
the mode at τ ∼ k−1 (which we have previously identified with the instant of production of the
GW background) and a time a few order of magnitude larger than k−1. Since τ0 ≫ k−1, it is
reasonable to extend the integration to future infinity. The choice of τin = 0 is instead due to the
fact that in principle one should account also for the source mode while it is super-horizon, even if
damped [78]. In order to perform the analytical integration it is useful to introduce the following
variables:

d =
1√
3
|x− y|, s =

1√
3
(x+ y), (C.12)

with:

x =
p

k
, y =

|~k − ~p|
k

. (C.13)

The analytical integration gives then the following results [78]:

Ic(d, s) = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s2 − 1),

Is(d, s) = −36
(s2 + d2 − 2)

(s2 − d2)2

[

(s2 + d2 − 2)

(s2 − d2)
ln

(

1− d2

|s2 − 1|

)

+ 2

]

.

(C.14)



Appendix D

Linear corrections to the anisotropies

of CGWB from PBHs

In this appendix we discuss about linear corrections in expression (6.60) for the GW energy density
of the stochastic background arising at PBH formation, and consequently how they influence the
result for the anisotropies angular power spectrum. Recall, in fact, that in the main text we have
decided to stick with just the leading-order terms of expansion in q

k∗
≪ 1, which has allowed to

greatly simplify the actual computations. Because of such a drastic approximation, there is the
risk that some interesting features do not show up in the final result, and arise instead only when
accounting for higher-order contributions.
We thus want here to extend the computation in order to also account for terms linear in the
expansion parameter q

k∗
. The starting point is expression (6.60) for the energy density of the

CGWB, which we rewrite here explicitly, accounting for all the contributions arising from the first
order terms in (6.59):

〈ρGW (τ, ~x)〉 = M2
P

81τ2a2

∫

d3~k1
(2π)3

∫

d3~k2
(2π)3

∫

d3~p1
(2π)3

∫

d3~p2
(2π)3

ei(
~k1+~k2)~x

1

k21k
2
2

× 〈
2
∏

i=1

[

Is(pi, |~ki − ~pi|)cos(kiτ)− Ic(pi, |~ki − ~pi|)sin(kiτ)
]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(k̂2)e
(λ)(k̂1, ~p1)e

(λ′)(k̂2, ~p2)

× 6

5
(2π)3

[

ζl(~p1 + ~p2)δ
(3)(~k1 − ~p1 + ~k2 − ~p2)Pζ(|~k1 − ~p1|)

×
[

fNL(p1, |~p1 + ~p2|, p2)Pζ(p1) + fNL(p2, |~p1 + ~p2|, p1)Pζ(p2)
]

+ ζl(~p1 + ~k2 − ~p2)δ
(3)(~k1 − ~p1 + ~p2)Pζ(|~k1 − ~p1|)

×
[

fNL(p1, |~p1 + ~k2 − ~p2|, |~k2 − ~p2|)Pζ(p1)
+ fNL(|~k2 − ~p2|, |~p1 + ~k2 − ~p2|, p1)Pζ(|~k2 − ~p2|)

]

+ ζl(~k1 − ~p1 + ~p2)δ
(3)(~p1 + ~k2 − ~p2)Pζ(p1)

×
[

fNL(|~k1 − ~p1|, |~k1 − ~p1 + ~p2|, p2)Pζ(|~k1 − ~p1|)
+ fNL(p2, |~k1 − ~p1 + ~p2|, |~k1 − ~p1|)Pζ(p2)

]

+ ζl(~k1 − ~p1 + ~k2 − ~p2)δ
(3)(~p1 + ~p2)Pζ(p1)

×
[

fNL(|~k1 − ~p1|, |~k1 − ~p1 + ~k2 − ~p2|, |~k2 − ~p2|)Pζ(|~k1 − ~p1|)

+ fNL(|~k2 − ~p2|, |~k1 − ~p1 + ~k2 − ~p2|, |~k1 − ~p1|)Pζ(~k2 − ~p2)
]

]

.

(D.1)

Proceeding as in the main text, we solve the ~p2 integral by making use of the Dirac deltas. It is
then possible to perform the substitution ~p1 → ~k1− ~p1 in the last two contributions, in such a way
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that we can express the previous result in the following way:

〈ρGW (τ, ~x)〉 = M2
P

81τ2a2

∫

d3~k1
(2π)3

∫

d3~p1
(2π)3

∫

d3~q

(2π)3
ei~q~x

1

k21|~q − ~k1|2

×
{

〈
[

Is(p1, |~k1 − ~p1|)cos(k1τ)− Ic(p1, |~k1 − ~p1|)sin(k1τ)
]

×
[

Is(|~q − ~p1|, |~k1 − ~p1|)cos(|~q − ~k1|τ)
− Ic(|~q − ~p1|, |~k1 − ~p1|)sin(|~q − ~k1|τ)

]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(
̂
~q − ~k1)e

(λ)(k̂1, ~p1)e
(λ′)(

̂
~q − ~k1, ~q − ~p1)

+ 〈
[

Is(p1, |~k1 − ~p1|)cos(k1τ)− Ic(p1, |~k1 − ~p1|)sin(k1τ)
]

×
[

Is(|~k1 − ~p1|, |~q − ~p1|)cos(|~q − ~k1|τ)
− Ic(|~k1 − ~p1|, |~q − ~p1|)sin(|~q − ~k1|τ)

]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(
̂
~q − ~k1)e

(λ)(k̂1, ~p1)e
(λ′)(

̂
~q − ~k1, ~p1 − ~k1)

+ 〈
[

Is(|~k1 − ~p1|, p1)cos(k1τ)− Ic(|~k1 − ~p1|, p1)sin(k1τ)
]

×
[

Is(|~q − ~p1|, |~k1 − ~p1|)cos(|~q − ~k1|τ)
− Ic(|~q − ~p1|, |~k1 − ~p1|)sin(|~q − ~k1|τ)

]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(
̂
~q − ~k1)e

(λ)(k̂1,~k1 − ~p1)e
(λ′)(

̂
~q − ~k1, ~q − ~p1)

+ 〈
[

Is(|~k1 − ~p1|, p1|)cos(k1τ)− Ic(|~k1 − ~p1|, p1)sin(k1τ)
]

×
[

Is(|~k1 − ~p1|, |~q − ~p1|)cos(|~q − ~k1|τ)
− Ic(|~k1 − ~p1|, |~q − ~p1|)sin(|~q − ~k1|τ)

]

〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(
̂
~q − ~k1)e

(λ)(k̂1, ~k1 − ~p1)e
(λ′)(

̂
~q − ~k1, ~p1 − ~k1)

}

× 6

5
ζl(~q)Pζ(|~k1 − ~p1|)

[

fNL(p1, q, |~q − ~p1|)Pζ(p1)

+ fNL(|~q − ~p1|, q, p1)Pζ(|~q − ~p1|)
]

,

(D.2)

where we have also made the change of variable ~q = ~k1 + ~k2 and replaced the integration over
~k2 with the integration over ~q. In this way we see that terms involving the primordial curvature
power spectra and scale-dependent fNL have all been grouped into the final two lines.

It is possible to realize that expression (D.2) would simplify a lot if we were able to neglect
the ~q-dependence inside all the terms in the curly brackets. If this was the case, all these 4 con-
tributions would end up being identical to the one combination present in (6.23) for the Gaussian
case.
We do not prove explicitly that this approximation is reasonable, but, since we are considering here
an expansion up to first order in q

k∗
, the outcome can be twofold: either the contributions we are

neglecting are second order or higher, and then the result we will give at first order is the correct
one, or these neglected terms actually give rise to additional first-order contributions and thus our
result is incomplete. Either way, the computations we present here should come in handy when
looking for the correct way to derive an expression linear in q

k∗
. In the worst case scenario, our

result has to be complemented with linear terms coming from the contributions we are neglecting
here.
The fact that we are resorting to this further assumption should make clear why we have decided
to not include this treatment in the main text, and we have instead settled to just keep the leading-
order terms of the expansion.
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Having clarified the strength and limits of our approximations, we are now left with the following
expression:

〈ρGW (τ, ~x)〉 = M2
P

81τ2a2

∫

d3~k1
(2π)3

∫

d3~p1
(2π)3

∫

d3~q

(2π)3
ei~q~x

1

k21|~q − ~k1|2

〈
[

Is(p1, |~k1 − ~p1|)cos(k1τ)− Ic(p1, |~k1 − ~p1|)sin(k1τ)
]2〉T

×
∑

λ,λ′

e
(λ)
ij (k̂1)e

(λ′)ij(−k̂1)e(λ)(k̂1, ~p1)e(λ
′)(−k̂1,−~p1)

× 24

5
ζl(~q)Pζ(|~k1 − ~p1|)

[

fNL(p1, q, |~q − ~p1|)Pζ(p1)

+ fNL(|~q − ~p1|, q, p1)Pζ(|~q − ~p1|)
]

,

(D.3)

where the 4 previous contributions, linear in fNL, contribute equally under our assumption. The in
the last line can be made equal to the one in the line above by further making both the substitutions
~q − ~p1 → ~p1 and ~q − ~k1 → ~k1.
Following the treatment in the main text, we can now assume the coordinate system where the
third axis is directed in the k̂1-direction. In such a system we express the wavevectors in the
following way:

~k1 = k1(0, 0, 1),

~p1 = p1(sinθp, 0, cosθp),

~q = q(sinθqcosφq, sinθqsinφq, cosθq),

(D.4)

where all the angles are taken with respect to k̂1. It is then possible to exploit these expressions
in order to make explicit the rightmost dependence |~q − ~p1| in fNL:

|~q − ~p1| = q2 + p21 − 2qp1(sinθqcosφqsinθp + cosθqcosθp). (D.5)

Remembering to account also for the Gaussian parts of the 4-point correlator (6.59), we can now
perform the remaining integrations in the usual way and we obtain the following result, written in
terms of the GW energy density per logarithmic interval:

ΩGW (τ, ~x, k) = Ω̄GW (τ, k)〉
[

1 +
24

5

∫

d3~q

(2π)3
ei~q~xζl(~q)fNL(k∗, q, |~q − ~p|)

]

, (D.6)

where expression (D.5) for the dependence of fNL becomes:

|~q − ~p| =
[

q2 + k2∗ − 2qk∗

(

sinθqcosφq

(

1− k2

4k2∗

)
1
2

+ cosθq
k

2k∗

)

]
1
2

≃ k∗

[

1− q

k∗

(

sinθqcosφq

(

1− k2

4k2∗

)
1
2

+ cosθq
k

2k∗

)

]

,

(D.7)

which we have expanded up to first order in q
k∗

in the second line. Comparing result (D.6) with the
(6.61) in the main text, we see that, as a consequence of keeping the linear terms in the expansion,
the rightmost dependence in fNL has changed from the simple wavenumber k∗ and has acquired
new contributions dependent on q and q̂. Notice in particular that the third wavenumber on which
fNL depends is not equal to the first one anymore. This was in fact an approximated result which
held only at the leading order in q

k∗
. In this case, instead, the third wavenumber results indeed

from a combination of the small and large scales wavevectors.

We want now to explicitly express the scale-dependent fNL in (D.6) by means of the same two
parametrizations considered in the main text. It is straightforward to realize that expression (3.53)
for the running is not affected by the new contributions linear in q

k∗
, since it depends on the first
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two wavenumbers which are left unchanged from the leading-order treatment. Therefore, we con-
clude that, for such a parametrization of the running, our computations here would lead to the
very same result (6.69) of the main text for the CGWB anisotropies angular power spectrum. Of
course, it is still possible for eventual, additional contributions, linear in q

k∗
, to arise from the terms

we are neglecting, as already mentioned in the previous discussion.
We are then left to treat with just the simple power-law parametrization of the running (3.49),
which in fact depends on the third wavenumber and it is thus affected by the new linear contribu-
tions in q

k∗
. In this case we have explicitly:

fNL(k∗, q, |~q − ~p|) = A|~q − ~p|nfNL ≃ k
nfNL∗

[

1− nfNL

q

k∗

(

sinθqcosφq

(

1− k2

4k2∗

)
1
2

+ cosθq
k

2k∗

)

]

,

(D.8)
where in the second equality we have substituted (D.7) and kept only terms up to linear order in
q
k∗

. Repeating the procedure outlined in the main text to obtain (6.62), we now write the expansion
coefficients over spherical harmonic of the CGWB initial condition anisotropy term:

Γℓm,I(k) = 4π(−i)ℓ 3
5

∫

d3~q

(2π)3
ζl(~q)Y

∗
ℓm(q̂)jℓ

(

q(τ0 − τin)
)

f̃NL(k, k∗, ~q), (D.9)

where the rescaled non-linear parameter has the following expression:

f̃NL(k, k∗, ~q) = 8AknfNL∗

[

1− nfNL

q

k∗

(

sinθqcosφq

(

1− k2

4k2∗

)
1
2

+ cosθq
k

2k∗

)

]

(

4− ∂lnΩ̄GW
∂lnk

)−1

.

(D.10)
Combining the previous result (D.9) with the scalar sourced anisotropy term (5.78), in the large-
scale limit, we obtain the following 2-point correlation function:

〈Γℓ1m1,I+S(k)Γ
∗
ℓ2m2,I+S(k)〉 = 4π

9

25
(i)ℓ1(−i)ℓ2Pζl

∫

dq

q
jℓ1

(

q(τ0 − τin)
)

jℓ2
(

q(τ0 − τin)
)

×
∫

dΩqYℓ2m2(q̂)Y
∗
ℓ1m1

(q̂)

{

1 + 16A
(

4− ∂lnΩ̄GW
∂lnk

)−1

× k
nfNL∗

[

1− nfNL

q

k∗

(

sinθqcosφq

(

1− k2

4k2∗

)
1
2

+ cosθq
k

2k∗

)

]

+ 64A2

(

4− ∂lnΩ̄GW
∂lnk

)−2

× k
2nfNL∗

[

1− 2nfNL

q

k∗

(

sinθqcosφq

(

1− k2

4k2∗

)
1
2

+ cosθq
k

2k∗

)

]}

,

(D.11)
where the Dirac delta arising from 2-point correlators of the long mode ζl has already been inte-
grated. It is clear from this result that the new dependencies on the angular components of ~q have
to be considered carefully when integrating the spherical harmonics, since the orthonormality con-
dition (B.8) cannot be simply applied anymore. We need to perform, in particular, the following
two non-trivial integrations:

∫ 2π

0

∫ π

0

dφqdθqsinθqYℓ2m2
(q̂)Y ∗

ℓ1m1
(q̂)sinθqcosφq,

∫ 2π

0

∫ π

0

dφqdθqsinθqYℓ2m2
(q̂)Y ∗

ℓ1m1
(q̂)cosθq.

(D.12)

We show here explicitly the steps to solve the first one, with the treatment of the second being
analogous. We start by expressing the spherical harmonics in terms of the associated Legendre
polynomials via definition (B.7), in such a way that we can factorize the two integrals over θq and
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φq. The latter can be solved straightforwardly:

∫ 2π

0

dφqe
im2φqe−im1φqcosφq =

∫ 2π

0

dφqe
im2φqe−im1φq

eiφq + e−iφq

2

=
1

2

∫ 2π

0

dφq
(

ei(m2−m1+1)φq + ei(m2−m1−1)φq
)

= π
(

δm1−1,m2 + δm1+1,m2

)

.

(D.13)

In order to perform the integration over θq we now exploit the Legendre polynomials recursive
relations (B.4) and (B.5), along with the normalization condition (B.3). We obtain the following
result:

∫

dΩqYℓ2m2(q̂)Y
∗
ℓ1m1

(q̂)sinθqcosφq = Cℓ1−1,m1−1 + Cℓ1+1,m1−1 + Cℓ1−1,m1+1 + Cℓ1+1,m1+1, (D.14)

where the symbols after the equality are defined with the following notation:

Cℓ1m1
∝ δℓ1ℓ2δm1m2

. (D.15)

Their exact expressions can be computed to be:

Cℓ1−1,m1−1 = −1

2
δℓ1−1,ℓ2δm1−1,m2

√

(ℓ1 +m1)(ℓ1 +m1 − 1)

(2ℓ1 + 1)(2ℓ1 − 1)
,

Cℓ1+1,m1−1 =
1

2
δℓ1+1,ℓ2δm1−1,m2

√

(ℓ1 −m1 + 2)(ℓ1 −m1 + 1)

(2ℓ1 + 1)(2ℓ1 + 3)
,

Cℓ1−1,m1+1 =
1

2
δℓ1−1,ℓ2δm1+1,m2

√

(ℓ1 −m1)(ℓ1 −m1 − 1)

(2ℓ1 + 1)(2ℓ1 − 1)
,

Cℓ1+1,m1+1 = −1

2
δℓ1+1,ℓ2δm1+1,m2

√

(ℓ1 +m1 + 2)(ℓ1 +m1 + 1)

(2ℓ1 + 1)(2ℓ1 + 3)
.

(D.16)

Similar arguments to the one just outlined allow to also recover the following expression for the
second integral in (D.12):

∫

dΩqYℓ2m2
(q̂)Y ∗

ℓ1m1
(q̂)cosθq = Cℓ1−1,m1

+ Cℓ1+1,m1
, (D.17)

where the recursive relation (B.6) has been used and the exact expressions for the symbols on the
right side are:

Cℓ1−1,m1 = δℓ1−1,ℓ2δm1m2

√

(ℓ1 −m1)(ℓ1 +m1)

(2ℓ1 + 1)(2ℓ1 − 1)
,

Cℓ1+1,m1
= δℓ1+1,ℓ2δm1m2

√

(ℓ1 −m1 + 1)(ℓ1 +m1 + 1)

(2ℓ1 + 1)(2ℓ1 + 3)
.

(D.18)

Substituting results (D.14) and (D.17) back in (D.11), we are left to solve the integral containing
the spherical Bessel functions. Exploiting relations (B.13) we get the following expression for the
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2-point correlator (D.11):

〈Γℓ1m1,I+S(k)Γ
∗
ℓ2m2,I+S(k)〉 =

[

1 + f̃NL(k, k∗)
]2 2π

ℓ(ℓ+ 1)

9

25
Pζlδℓ1ℓ2δm1m2

− i
nfNL

k∗(τ0 − τin)

[

f̃NL(k, k∗) +
(

f̃NL(k, k∗)
)2]

×
[

1

ℓ1

(

(

Cℓ1−1,m1−1 + Cℓ1−1,m1+1

)

(

1− k2

4k2∗

)
1
2

+
k

2k∗
Cℓ1−1,m1

)

− 1

ℓ1 + 1

(

(

Cℓ1+1,m1−1 + Cℓ1+1,m1+1

)

(

1− k2

4k2∗

)
1
2

+
k

2k∗
Cℓ1+1,m1

)

]

,

(D.19)
where f̃NL(k, k∗) is defined as in equation (6.65). It has to be stressed that relations (B.13) have
been applied here in an approximate form. Remember in fact that the q-integration is cut off at the
largest wavenumber associated to a long mode of the split. As a consequence, in analogy to what
we have already pointed out in the main text, we conclude that result (D.19) describes correctly
only large-scales, i.e. low multipoles, anisotropies.

The inclusion of terms linear in q
k∗

in the treatment has brought up some interesting features
which we now briefly discuss.
Notice first of all that the first line in result (D.19) corresponds to expression (6.66) for the angular
power spectrum at leading order in q

k∗
. The other contributions are what comes instead from linear

terms in q
k∗

. Remembering the notation convention for the symbols (D.16) and (D.18), it is clear
that these are actually off-diagonal contributions to the angular power spectrum of the CGWB
anisotropies. This is a unique feature which does not arise when sticking only to the leading or-
der, as we have seen in the main text. Furthermore, this happens only with specific forms of the
running, since we know for example that it is not the case for the other parametrization (3.49).
Another interesting fact about result (D.19) is that the suppressed expansion term q

k∗
is converted

into 1
k∗(τ0−τin) after the integration over q. This is analogous to what happens in result (6.69) in the

main text, on which we have already commented. The corrective nature of the off-diagonal terms
in (D.19) is evident from the fact that the combination τ0 − τin ≃ τ0 approximately corresponds
to the largest observable scale, in such a way that 1

k∗(τ0−τin) ≪ 1 still holds.

Do keep in mind that all these conclusions may well change when correctly accounting for all the
terms linear in q

k∗
that we are currently neglecting. Nevertheless, we have decided to give in this

appendix the result of our calculations, even if incomplete, both because these ended up to be a
major part of our work and also with the hope that our findings may prove to be somewhat useful
for any future research on this same topic.
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