

“I’ve missed more than 9000 shots in my career.
I’ve lost almost 300 games.
26 times, I’ve been trusted to take the game winning shot and missed.
I’ve failed over and over and over again in my life.
And that is why I succeed.”

Michael J. Jordan

Abstract

In this thesis, an automatic products recognition system has been developed us-
ing deep learning techniques. After a detailed study of the state-of-the-art object
detection frameworks and the image classification networks, the dataset has been
acquired and manually labelled. Several frameworks have been trained and tested to
select the most suitable for this application. Results of each model are provided in
this thesis, together with some considerations. At the end, the most performing ob-
ject detection system has been encapsulated inside a web service environment that
provides a friendly and easy-to-use interface to load an image, detect the products
and return the results. The entire project has been developed using Python with
TensorFlow as deep learning framework and Flask as web service environment.

ii

Acknowledgements

I would like to thank the professor Stefano Ghidoni for giving me the opportunity to
carry on this project together with the company Technology Reply S.R.L. in Turin.
I would also like to thank him for supervising my work and for giving me important
advice on the completion of this thesis.

I would like to reserve a special thank to Francesco Coccia, the manager of
Technology Reply S.R.L. in Turin, who presented me the project more than a year
ago and kept in touch with me during my last semester in Padova before I went to
Turin. I would also like to thank him for providing assistance during the course of
this project.

I would like to thank Corrado De Bari, of Oracle, who participated in the project
by assisting me and other colleagues in the developing steps. He also provided the
hardware to train the models, one of the most important resource.

Finally, I would like to thank the company Technology Reply S.R.L. for giving
me the opportunity to develop my master thesis in their offices gaining experience
by working with more experienced colleagues. Moreover, I had the opportunity to
observe closely the corporate issues and to learn how different is the job from the
university.

iii

Contents

1 Introduction 1

2 State of the Art and General Concepts 4
2.1 General concepts . 4

2.1.1 Deep Neural Networks . 8
2.1.2 Convolutional Neural Networks 8

2.2 History of Object Recognition . 11
2.2.1 LeNet 1998 . 12
2.2.2 AlexNet 2012 . 13
2.2.3 OverFeat . 14
2.2.4 ZFNet . 15
2.2.5 GoogleNet and Inception v1 16
2.2.6 VGGNet . 18
2.2.7 Inception v2 and v3 . 19
2.2.8 ResNet . 20
2.2.9 Inception v4 and Inception ResNet v1 and v2 22
2.2.10 ResNext . 23
2.2.11 DenseNet . 24
2.2.12 MobileNet v1 and v2 . 25

2.3 Object Detection Frameworks . 26
2.3.1 R-CNN . 26
2.3.2 Fast R-CNN . 28
2.3.3 Faster R-CNN . 30
2.3.4 YOLO . 31
2.3.5 SSD . 33
2.3.6 YOLOv2 and YOLO9000 . 34
2.3.7 YOLOv3 . 35

3 Description of the Project 38
3.1 Object Detection Module . 38
3.2 Web Service Module . 40

4 Setup of Components 41
4.1 TensorFlow . 41

4.1.1 TensorFlow Model Zoo . 42
4.2 Hardware . 43
4.3 LabelImg . 44

iv

CONTENTS v

4.4 Flask . 44

5 Dataset and Models 46
5.1 Dataset . 46

5.1.1 Hierarchical representation of objects 47
5.1.2 Dataset Oracle . 48
5.1.3 Dataset Reply . 48
5.1.4 Dataset Test α . 51
5.1.5 Dataset Test β . 51

5.2 V0: Models trained with Dataset Oracle 51
5.3 V1: SSDLite MobileNet v2 . 54
5.4 V2: Faster R-CNN ResNet50 . 55
5.5 V3: Faster R-CNN Inception v2 . 56

6 Results and Discussion 57
6.1 V1: SSDLite Mobilenet v2 . 59
6.2 V2: Faster R-CNN ResNet50 . 64
6.3 V3: Faster R-CNN Inception v2 . 68

7 Applications 76
7.1 Oracle - Proxima Smart City . 76
7.2 Reply - Automatic Products Recognition 79

8 Conclusions 83

Bibliography 86

List of Figures

2.1 Matrix representation of an image . 6
2.2 Classification and detection . 6
2.3 Machine learning approaches . 7
2.4 Artificial neuron . 8
2.5 Convolution operation . 10
2.6 Activation functions . 10
2.7 Pooling operation . 10
2.8 LeNet-1 . 12
2.9 LeNet-5 . 12
2.10 AlexNet . 14
2.11 OverFeat architecture . 14
2.12 OverFeat phases . 15
2.13 Deconvolutional layer of ZFNet . 16
2.14 Inception module of GoogleNet . 17
2.15 GoogleNet . 18
2.16 VGGNet . 19
2.17 Inception v3 . 20
2.18 Residual block of ResNet . 21
2.19 ResNet . 22
2.20 Inception v4 . 23
2.21 DenseNet . 25
2.22 Selective Search algorithm results . 27
2.23 Selective Search algorithm . 28
2.24 R-CNN . 28
2.25 Fast R-CNN . 29
2.26 Faster R-CNN anchors . 30
2.27 Faster R-CNN . 31
2.28 YOLO tensor . 32
2.29 YOLO algorithm . 33
2.30 SSD . 34
2.31 YOLO v2 boxes . 35
2.32 Word Tree . 36
2.33 YOLO v3 . 36

3.1 Project diagram . 38
3.2 Web app . 40

4.1 Example of TF code . 42

vi

LIST OF FIGURES vii

4.2 TF graph . 42
4.3 TensorFlow Model Zoo pipeline . 43
4.4 LabelImg tool . 44
4.5 LabelImg tool . 45
4.6 Flask Web Service example . 45

5.1 XML file with annotations . 47
5.2 BBox conventions . 48
5.3 Dataset Oracle classes distribution 49
5.4 Dataset Oracle examples . 49
5.5 Dataset Reply classes distribution . 50
5.6 Dataset Reply objects per image distribution 50
5.7 Dataset Reply examples . 51
5.8 Dataset Test α classes distribution 52
5.9 Dataset Test α objects per image distribution 52
5.10 Dataset Test α examples . 53
5.11 Dataset Test β classes distribution 53
5.12 Dataset Test β objects per image distribution 54
5.13 Dataset Test β examples . 54
5.14 Model v0 results . 55
5.15 Model v0 results . 55
5.16 Parameters of model v1 . 55
5.17 Parameters of model v2 . 56
5.18 Parameters of model v3 . 56

6.1 IoU definition . 58
6.2 Accuracy SSDLite MobileNet v2 (2292 × 1719) 60
6.3 Accuracy SSDLite MobileNet v2 (1024 × 768) 60
6.4 Accuracy SSDLite MobileNet v2 (800 × 600) 61
6.5 Accuracy SSDLite MobileNet v2 (4032 × 3024) 61
6.6 Accuracy SSDLite MobileNet v2 (2297 × 1292) 62
6.7 Accuracy SSDLite MobileNet v2 (800 × 450) 62
6.8 SSDLite MobileNet v2 metrics . 63
6.9 SSDLite output on dataset Test α . 64
6.10 SSDLite output on dataset Test β . 64
6.11 Accuracy Faster R-CNN ResNet50 (2292 × 1719) 65
6.12 Accuracy Faster R-CNN ResNet50 (1024 × 768) 66
6.13 Accuracy Faster R-CNN ResNet50 (800 × 600) 66
6.14 Accuracy Faster R-CNN ResNet50 (4032 × 3024) 67
6.15 Accuracy Faster R-CNN ResNet50 (2297 × 1292) 67
6.16 Accuracy Faster R-CNN ResNet50 (800 × 450) 68
6.17 Faster R-CNN ResNet50 metrics . 69
6.18 Faster R-CNN ResNet output on dataset Test α 69
6.19 Faster R-CNN ResNet output on dataset Test β 70
6.20 Accuracy Faster R-CNN Inception v2 (2292 × 1719) 70
6.21 Accuracy Faster R-CNN Inception v2 (1024 × 768) 71
6.22 Accuracy Faster R-CNN Inception v2 (800 × 600) 72
6.23 Accuracy Faster R-CNN Inception v2 (4032 × 3024) 72

LIST OF FIGURES viii

6.24 Accuracy Faster R-CNN Inception v2 (2297 × 1292) 73
6.25 Accuracy Faster R-CNN Inception v2 (800 × 450) 73
6.26 Faster R-CNN Inception v2 metrics 74
6.27 Faster R-CNN Inception output on dataset Test α 74
6.28 Faster R-CNN Inception output on dataset Test β 75
6.29 Inference time analysis . 75

7.1 Oracle Proxima Smart City . 77
7.2 JSON file for the request . 77
7.3 Detection information . 78
7.4 JSON file for the response . 79
7.5 JSON file for the request . 80
7.6 DM PRODOTTI . 80
7.7 DM SCAFFALI . 81
7.8 FT PRODOTTI SCAFFALI . 81
7.9 Power BI report . 82
7.10 Power BI report . 82

Chapter 1

Introduction

According to the Visual Networking Index (VNI) of Cisco, in 2022 the amount of
data generated and exchanged over the Internet will be the same of the previous
32 years. The reasons behind this exponential increase is the ever growing number
of digital devices that can generate data. Just to make some examples, nowadays’
social networks like Facebook, Instagram and YouTube enable to load images and
videos in a very simple way. Together with this evolution, there is the need for the
telecommunication companies to keep abreast and to design efficient transmission
protocols to manage the data traffic. On the other hand, the large quantity of
data, in particular images and videos, available online has opened the doors to new
frontiers in the statistical analysis. To be more specific, having the opportunity to
analyze big quantities of data is of extreme interest for the companies in many fields.
For example, having the transaction history is important for the banks in order to
estimate their profits. Moreover, in the financial field, data from the past can be
used to make predictions on the market stock.

This led to the development of a new field called machine learning. In short
words, the goal of machine learning is to use the available data to build and train
mathematical models with the objective to reproduce a real system and to handle
it. It is clear that, without data, it would have been impossible to develop such
models.

Machine learning has been a field of extreme interest for the last 40 years, and
its applications cover many aspects. One of this is computer vision, where machine
learning techniques have given the opportunity to develop better models (neural
networks). In this way, the huge amount of images and videos available online can
be used to train object detection models.

The goal of object detection is to determine whether there are instances of some
pre-defined objects in a given image and, if present, to return the spatial location
of each object instance. This raw information can be used to develop more com-
plex systems such as pedestrian detectors in self-driving cars, activities recognizer,
intelligent video surveillance and many others.

Nowadays, every daily-use electronic device equipped with a camera is able to
“see” the world, hence, it is able to acquire a huge quantity of data and information.
However, those are useless without a system that allows to understand the scene. If
we were able to process that data in an intelligent way, we could extract information
for higher level applications.

1

CHAPTER 1. INTRODUCTION 2

One of these applications of object detection is automated self-checkout. In the
age of e-Commerce, where companies sell their products on the Internet allowing
people to buy something with just a click, there is the need, for physical stores, to
invest on technologies that enable them to keep abreast. One of the main downsides
that emerges if you take a look at any store, is the huge checkout line, which is
the bottleneck of the time spent doing shopping. In the recent years, some stores
have placed some self-checkout where customers can get themselves the ticket by
passing the goods on the screen like the attendant did in the old checkouts. This
has speeded up the process, but what if we could make it completely automated?

What if we could watch over every customer in the store using some cameras
(this is actually already done by the surveillance cameras, although the registrations
are not processed for these purposes) and to detect when each of them takes a good
from the shell and put it in the shopping cart? If we were able to do it, then we
could build a sort of virtual ticket for each customer and, once he/she wants to exit,
he/she just has to swipe the credit card. While the second part of the process only
needs a database to be maintained and a web service running on it, the first part
is a computer vision application, since every input video from the cameras needs
to be processed by an object detection algorithm: some videos can be used to run
people detection and tracking algorithms, while others can be used for detecting and
classifying goods on the shelves. The final goal is to elaborate the inputs from all
the cameras and to transform them to an information like “Customer cust 15 has
taken 2 instances of product prod 34 ”. With this information, the virtual ticket of
customer cust 15 is updated with 2 instances of product prod 34. If the customer,
even after a while, goes back to the shelf and leave one of the two products he has
bought before, the system should update the virtual ticket accordingly. If such a
system works properly, the process of automatic self-checkout becomes relatively
simple, since the system only needs to associate each customer a credit card and,
when the customer leaves the store, the bill is payed automatically.

The information produced by the system for each customer interaction is the
result of a complex process that requires several parts: first of all, the surveillance
system should be able to recognize and precisely track every people in the store
since two different customers have to be associated with two different tickets; then,
assuming that each camera is dedicated to a particular shell, it should be able to
detect and identify each good in the particular shell; moreover, it should be able
to perform activity recognition to detect the gesture of the customer that takes the
product but also to discriminate whether the customer replaces it or puts it into the
shopping cart.

This has been actually already done by Amazon.com Inc, the most famous amer-
ican online retailer. In the recent years, they developed Amazon Go, which is a
checkout-free store. The idea of Amazon Go is to install a set of sensors and cam-
eras, as described above, to keep track of the customers’ inside the store and their
activity. When a customer enters the store and registers with his Amazon account,
an empty virtual bill is created and associated to that account. While he moves
through the store, the cameras track his activity real-time and, if he stops in front
of a shelf, the cameras that check the products on that shelf are activated. When
the customer takes a product and puts it into his shopping bag, his virtual bill is
updated with the correspondent item. In the end, each customer exiting the store

CHAPTER 1. INTRODUCTION 3

with some products will have accumulated a virtual bill, which is automatically
withdrew from the bank account associated to his Amazon account.

There are several aspects that emerge from such a system. The most impor-
tant one is that the system should be reliable and the integrity of data has to be
maintained. In fact, any error in the acquisition of information results in a incorrect
payment, which is a damage both for the customer and for the store. For example, if
a good is incorrectly classified by the object detection system, the ticket is wrongly
updated. Moreover, if the customer replaces that good in the shelf and the system
now correctly classifies it, it becomes aware that there was an error since the good
doesn’t appear in the virtual ticket. Also, mismatching of people should be handled
properly, since tickets may be assigned to the incorrect person, who will pay 100$
for some apples. Finally, if the transaction fails and the customer exits the store,
there should be a quick way to get aware of it and to handle the error.

However, this kind of technology is of interest not only for giant companies as
Amazon or Google. In fact, having a system that keeps a database updated in
real time with all the products in the shelves detected by cameras is helpful since
it reduces staff effort of doing the inventory. Moreover, if the store runs out of
a product, the cameras in the shelf detect it and may generate an order for the
supplier. In general, once the results of object detection system are available, it is
up to the company to decide how to use it.

Chapter 2

State of the Art and General
Concepts

In this chapter, an overview of the general concepts of object detection is given,
together with the analysis of the state-of-the-art in the field. Firstly, there is an
introduction of machine learning and computer vision fields. Then, deep learning
is introduced as a powerful tool to increase algorithm performances with its models
like recurrent neural networks and convolutional neural networks, with a particular
focus on the latter. Finally, the evolution of the object detection task is reviewed,
starting from the pioneer models in the 80s until the modern architectures like Faster
R-CNN, YOLO and SSD.

2.1 General concepts

Machine learning is the field of artificial intelligence which studies the algorithms
that enable the computers to learn from experience, without being explicitly pro-
grammed. The process of learning is carried on by feeding a model with real data
allowing them to find patterns and structures that may be useful in order to build
a mapping function which is able to solve a particular problem. Once the learning
process is over, the algorithm allows the system to interpret new data and to produce
an output which is consistent with training data. Hence, using a trained model, the
system is able to automatically interpret and process new incoming data.

Machine learning algorithms can be classified according to the philosophy of
their training phase, in particular when can distinguish, among all, two types of
algorithms:

• supervised learning: where the model is provided both with data and the
expected output, and so it is explicitly guided to the solution;

• unsupervised learning: where the model is provided only with data, giving it
the freedom to produce the output.

Supervised learning algorithms are used to solve tasks like classification or re-
gression, where the aim is to build a mathematical function that maps the input
data to an output, that is often a scalar value. In particular, in regression tasks the

4

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 5

output is a value sampled from real numbers, while in classification it is an integer
chosen from a restricted set, which is to be meant as an identifier of the belonging
class. These algorithms are useful when predicting some characteristic of data, bas-
ing on the other features of the sample: for example, a regression algorithm can be
used to predict the price of an house, giving its characteristics (location, number of
rooms, presence of domestic appliances); a classification algorithm can be used to
predict the correct letter, given a graphical representation of it (handwritten text
recognition). The major drawback of supervised learning algorithms is that they
need a “supervisor”, which is often a human, that has to manually label all the data
in order to make them available for the system. This procedure is time consuming
and, as it is done by humans, it is prone to errors, which are transferred permanently
to the machine.

Unsupervised learning algorithms are used to extract meaningful structures and
patterns in data. In particular, they are useful to group data into clusters, ac-
cording to some similarity measure. For example, they can be used to split people
into communities, according to some features like age, interactions, interests. Since
they don’t need labelled data, the preparation of the dataset is more comfortable.
However, they cannot be used to solve specific mapping problems as supervised
algorithms.

For this reason, the “brute-force” supervised learning algorithms are those used
in industrial applications, while unsupervised learning is mostly used for research
purposes.

Computer vision is an interdisciplinary field that deals with how computers can
gain high-level understanding form digital images or videos. In particular, a com-
puter is said to understand an image if it is able to extract meaningful information
from it. In human visual system, the raw input from the retina is a set of electrical
impulses that are transferred to the brain through the optical nerve; once there,
they are processed from the visual cortex in order to create a representation of the
scene that made us aware of what we are seeing. As it happens in our visual sys-
tem, a digital camera is able to acquire an image by elaborating the light entering
the lens aperture converting it to electrical impulses, which are further processed
by some sensors (for example using a Bayer filter) in order to produce a virtual
representation of the image. A digital image is a rectangular grid of pixels, where
each of them is associated to a physical point in the real image. According to the
type of image, each pixel can be represented with one (gray-scale image) or more
values. For standard color images, three values are associated to each pixel, and
they represent the RGB levels. Hence, the computer system “sees” an image as a
matrix of numbers (figure [2.1]).

Computer vision techniques translate the matrix of numbers to meaningful infor-
mation. For example, if we acquire an image of a dog, the aim is to translate the set
of pixels into the label “dog”. This task is often addresses as “image classification”
in the literature, but there are several similar tasks (figure [2.2]):

• image classification: which type of a given object is in this image?

• object segmentation: what pixels belong to the object in the image?

• object detection: what objects are in this image and where are they?

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 6

Figure 2.1: A computer “sees” an image as a matrix of
values, each one indicates the color intensity.

Figure 2.2: Left: image classification is assigning a label to
the picture. Right: object detection is localizing and

classifying objects in the image.

Before the introduction of deep learning, the computer vision algorithms were
based on traditional machine learning approaches where there is a feature extraction
phase followed by a classification phase. The idea was to collect as many features
as possible for a class of objects and then to use this definition (bag-of-words) to
look for that specific object in other images. Basiliar features can be edges, corners
or gradient masks. For example, the Viola-Jones algorithm uses Haar features to
detect faces in images; the SIFT and SURF algorithms extract features from an
image in order to be able to identify the same object in different images. However,
these algorithms need supervision, since we have to select the features to look for
depending on the application, and then to use those features to train an object
detector. For example, if we want to build a dog detector system, we have to
predispose the algorithm to look for eyes, ears and paws in order to label the image

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 7

as containing a dog. As a result, this type of approach is not scalable since we have
to manually adjust the algorithm for each desired application.

In order to be scalable, the entire system should be feature-independent, therefore
being able to self adapt the features on the specific object to detect or classify. This
is done with the introduction of the artificial neural networks in the machine learning
field. Those models are able to extract features without being specifically trained,
basing on the input image (figure [2.3]). A neural network is composed by three
parts:

• the input layer: it is a set of neurons that have the role to accept the input
data and forward it to the next layers;

• the hidden layers: typically 2 or 3, they are sets of neurons that transform the
input data using a linear combination of them followed by non-linear activation
functions that produce the input for the subsequent layer;

• the output layer: it is a set of neurons used by the network to present the
output.

Figure 2.3: Above: in traditional machine learning
approaches, the feature extractor has to be tuned by the

user for each application. Below: deep learning techniques
allow to hide this phase.

Each neuron (figure [2.4]) receives multiple inputs from the previous layer and
produces a single output after a combination of functions; then, this output is for-
warded to all the neurons of the subsequent layer. Such a structure is called fully-
connected architecture, since all the neurons of ith layer are connected to all neurons
of (i−1)th and (i+1)th layers. In particular, the neuron computes a weighted sum of
its inputs, then it adds a bias term and finally computes a non-linear transformation
to produce the output. So, during the training phase of the network, the weights
and the bias values are initialized according to some random distribution, then the
network is fed with each data sample from the input to the output layers (forward
propagation phase). Then, the error is calculated by comparing the expected output
to the actual one. Finally, the network computes the gradient of the error with the
respect to each weight and bias and updates them accordingly (back-propagation

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 8

phase). In this way, the network is guided to a configuration where the error is min-
imized (local/global minimum): hence, when fed with new data (test phase) that
belongs to the same distribution of training data, the network is able to produce the
correct output.

Figure 2.4: Representation of an artificial neuron model.
The input values are weighted and summed; the results is

given to an activation function to produce the output value.

2.1.1 Deep Neural Networks

A deep neural network is an artificial neural network with multiple hidden layers
between the input and the output layers. As a result, the model has an higher
number of variables, corresponding to an higher degree of freedom, that can be used
to model the input data and to process them to produce the desired output. Dif-
ferently from standard neural network, these networks have an arbitrary number of
hidden layers, from 3 to even 150. The major drawbacks of this type of architectures
are the computational power needed to train and run them, the high quantity of
data needed to train them, the vanishing gradient problem and the overfitting. In
general, increasing the number of hidden layers in a neural network leads to better
performances, and this motivates their employment.

The two most used types of deep neural networks are:

• Recurrent Neural Networks, that are used in applications like speech recogni-
tion or time-series prediction, where there is a time relationship between the
input data at different time steps;

• Convolutional Neural Networks, that are used in applications which operate
with 2D data, as images.

2.1.2 Convolutional Neural Networks

A convolutional neural network is a deep neural network that is designed to handle
2D data like images. The neurons in the hidden layers of this type of networks are
not fully connected as in standard artificial neural networks, but they are slightly

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 9

different, since they are grouped in filters. A filter is a set of neurons that are
spatially arranged into rectangles (typically squares) that are shared across the full
image. Indeed, if an image is reshaped into a one-dimensional vector to be fed into
a standard neural network, we would lose the spatial correlation of pixels, which
is extremely important in the extraction of visual features. In particular, this type
of approach gives acceptable results for gray-scale images, but it fails with RGB
images giving poor results. In convolutional neural networks, the input layer has
the same dimensions of the input data: if the image to be processed is 300×300×3,
where 3 refers to the number of channels (RGB), the input layer will accept the
structured 3D matrix as input. Then, each hidden layer is composed by a set of
three operations:

• Convolution

• Pooling

• Activation function

In the convolution operation (figure [2.5]), the filter is moved over the image
and a matrix multiplication is computed between the weights (filter) and the pixel
values considered, producing one output value. All the parameters related to the
filter dimensions and striding have to be set by the designer of the network. For
example, if we use a 5×5×3 filter over a 300×300×3 image, we have to decide both
the striding and padding values. The stride parameter refers to the amount of pixels
to skip when moving the filter over the image; the padding parameters is used to
decide the output dimension, since the convolutional operation reduces the original
one: in particular, it is possible to pad the input image with zeros in order to increase
its dimension in order to obtain an output that has the same input dimension. In
general, the convolutional operations is designed to maintain the dimensions, since
the pooling operations is meant to reduce them. The convolutional part is the only
one where there are weights that learn to adapt to catch the features.

The activation function (figure [2.6]) is applied right after the convolution op-
eration and it allows for the non linearity of the model, increasing its capabilities.
There are several types of activation function and it is up to the designer to decide it:
Sigmoid, Softmax, Tanh, ReLU, Leaky ReLU, Maxout, ELU. This function is applied
to each neuron by transforming its output accordingly. In the selection of the most
suitable activation function, both the range of the output and the differentiability
of the function must be considered.

The pooling operation (figure [2.7]) is performed to the output of the activation
function and it has the role to progressively reduce the data dimension. This oper-
ation starts from the output of the convolutional layer and selects one pixel among
a predefined spatial mask. The dimensions of the mask are other parameters of the
network. There are two types of pooling: average pooling, where the mean value
among pixels is computed inside the mask and used as output; the max pooling,
where the maximum value is selected as output.

These three operations form a hidden layer of a convolutional neural network.
Stacking more hidden layers led to the progressive reduction of the input image to an
activation map where the notable features are caught by the neurons in the previous

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 10

Figure 2.5: A representation of the convolution operation on
a 7 × 7 image, with a 3 × 3 kernel, 0 padding and stride

equal to 1.

Figure 2.6: A list of most used activation functions.

Figure 2.7: The pooling operation performs dimensionality
reduction. In this case, the max pooling is performed.

layers. Moreover, batch normalization operation can be interleaved between layers:
the output values of a layer are normalized in order to keep them bounded and to

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 11

rescale them in the same domain.
For the sake of simplicity, each hidden layer composed by these three operation

is referred in the literature as “convolutional layer”. Convolutional layers are able
to extract meaningful features from an image since the filter structure is designed
to exploit the spatial correlation between pixels, which is a key-point in images
comprehension. The features extracted from the image are then used to produce
the output of the network: usually, these types of networks solve a classification
problems by mapping an image into a category. The final part of the network is
composed by a set of fully connected layers, with a decreasing number of neurons.
Finally, the output layer has a neuron for each possible category.

Since the introduction of this type of architecture by Fukushima in 1980 with the
“neocognitron” model, the general trend has been either to develop deeper models
with an high number of parameters and to reuse information from previous layers in
the computation of final features. However, the base structure of the convolutional
layers is kept unchanged from the first architectures to nowadays complex models.

2.2 History of Object Recognition

Today’s object detection frameworks like YOLO, SSD and Faster R-CNN are the
result of an intense research on the convolutional networks field. This research was
guided by one worldwide challenge: ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC) that is an annual competition that evaluates object detection
and image classification algorithms at large scale in order to allow researchers to
compare their progresses. ImageNet group provides the dataset to be used both
for training and testing, which consists in more than 14 million of images with
annotations. Beyond object detection, there are also other challenges like object
detection from video, scene classification and scene parsing. For these reasons, the
most important achievements in this field can be found through the winners of each
competition during years. ImageNet is not the only open source dataset that can be
found online, but there are also PASCAL Visual Object Classes (PASCAL VOC)
and Common Objects in Contest (COCO). Those dataset are often used to train the
weights of object detection models, that will be fine-tuned on customized datasets
by the users. This is possible since the convolutional layers are essentially feature
extractor layers, while the fully connected layers at the end of the architecture use
these features to perform the classification task. Indeed, the entire image processing
can be divided into two phases:

• features extraction layers: convolutional layers that extract features, they are
referred as the “backbone” of the model

• classification and regression layers: fully connected layers that are used to
perform the classification and localization starting from the features, they are
referred as “classification” layers

In the first years, the most challenging task was to design powerful feature ex-
traction architecture and then to evaluate them by classifying entire images, where
the detection/localization task was almost neglected. Then, the ability of these

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 12

models was also exploited to perform both classification and localization of objects
in the image.

In this section, the most notable “backbone” architectures are analyzed in chrono-
logical order.

2.2.1 LeNet 1998

The first model designed to solve the image classification problem that used a set of
convolutional layers concatenated was introduced by Yan LeCun in [Lec+95]. They
introduced LeNet-1, LeNet-4, Boosted LeNet-4 and LeNet-5, a family of architectures
that used convolutional layers to extract features from the image and then were able
to classify the correct digit with some fully-connected layers.

The first proposed architecture is showed in figure [2.8], LeNet-1. It takes in
input a 28 × 28 gray-scale image, applies two blocks of convolution and average
pooling layers ending up with 12 feature maps with 4 × 4 dimension. These are di-
rectly connected to the 10-dimensional output vector that represents the probability
distribution of the input image over the 10 possible digits. This model was able to
achieve 1.7% error rate on the test data.

Figure 2.8: The architecture of the LeNet-1 model.

The model known as LeNet-4 is similar to the previous one, with differences in
the size of the input image, which is increased to 32 × 32, and in the output layer,
which is preceded by a fully connected layer with 120 neurons. This model was
slightly more efficient, with an error rate of 1.1% on test data.

The most popular architecture when referring to LeNet family is LeNet-5 (figure
[2.9]), in which authors started from LeNet-4 and, besides using an higher number
of filters in each of the convolution layers, they added another fully connected layer
before the output one. The two fully connected layers had, respectively, 120 and 84
neurons. The error rate reached with this architecture was 0.95%.

Figure 2.9: The architecture of the LeNet-5 model.

The last architectures has nothing new with the respect to these previously
discussed, but exploits the boosting technique to increase performances: in Boosted

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 13

LeNet-4 model, three LeNet-4 models are used in parallel to produce three results
that are summed to end up with just one output. In this way, they increased the
robustness of the overall model since, assuming that the probability that more than
one single LeNet-4 model makes an error on the same image is very low, the error
of each model is corrected by the other two. Thank to this, the error rate of this
architectures was 0.7%, even smaller than LeNet-5 model.

The LeNet family was a breakthrough for the time, since all other models relied
to features extraction techniques like SIFT, HOG and LPB, followed by classification
models like the state-of-the-art of that time, which was SVM. Moreover, the trend
suggested that adding more hidden layers helped reducing the error rate. However,
there were two main problems in going deeper:

• these models used Tanh as activation function, which suffered the problem of
vanishing gradient, hence going deeper would have resulted in no improvement

• the hardware of the time was not sufficient to train “deeper” models in a
reasonable time

2.2.2 AlexNet 2012

After 14 years from LeNet, AlexNet [KSH12] was the winner of ILSVRC2012 contest
for image classification. The authors of AlexNet could take advantage from a 1.2-
million-images dataset provided by ImageNet divided upon 1000 classes and the
GPUs to speed-up computations. Hence, they were able to reach a top-5 error rate
of 15.3% on the test data, outperforming the first running-up model, which reached
only 26.2%. The full 7-layers architecture is showed in figure [2.10]. In AlexNet, each
image is re-scaled to a 256×256×3 matrix and then, from each pixel, they subtract
the average of intensity over the training set as a sort of normalization. Moreover,
they used some techniques of data-augmentation to make the model more robust and
stable. In particular, from each image they extract 10 224 × 224 × 3 patches (from
each corner and the center, and then the horizontally-flipped versions). Besides
this, they also altered the RGB intensities by adding to each pixel a vector that is
a linear combination of eigenvalues and eigenvectors of the 3 × 3 covariance matrix
of RGB pixel values, weighted by a Gaussian random variable. These techniques
helped to reduce overfitting, as well as introducing a reduction of 1% in error rate.
Inside the model, the authors used some modifications with the respect to LeNet
models. First of all, they used ReLU as activation function instead of Tanh: this
helped solving the problem of vanishing gradient when the model is deep, as in this
case. Although ReLU activation function doesn’t require normalized input, authors
applied a sort of response normalization after the 1st and 2nd convolutional layers
that implements a kind of lateral inhibition between neurons that are forced to learn
more robust features. Based on the same principle, they used the recently-proposed
dropout technique with rate 0.5 during training, halving the weights of neurons at
test-time to cope with this. Finally, instead of using average pooling layers, they
used overlapping max pooling layers. All these tricks applied together allowed to
reduce the error rate of 2%, aside from reducing overfitting.

The model was trained for 90 cycles on 2 GPUs as to maximize the average
across training images of the log-probability of the correct label under the predicted

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 14

Figure 2.10: The architecture of the AlexNet model.

distribution. The training technique used is SGD with batch size = 128, momentum
= 0.9 and weight decay = 0.0005. The learning rate was initialized equal to 0.01 for
all layers and then reduced by a factor of 10 when error rate has stopped improving.
The entire training took 6 days to be completed.

Evidences provided by the authors are:

• the depth of the network is a crucial aspect for the accuracy

• removing any of the hidden layers results in a less accurate model

2.2.3 OverFeat

The main point of Sermanet et al. [Ser+13] was to show how to train end-to-end a
model to classify, locate and detect objects in the image. OverFeat was the winner
of the ILSVRC2013 localization task, that required a model able to classify the
objects in the images, besides localizing them with a rectangular bounding box.
The authors solved the problem by designing a network as shown in figure [2.11].

Figure 2.11: The architecture of the OverFeat model.

The features extraction layers are taken from AlexNet, with some modifications.
First of all, here authors didn’t use any contrast normalization and pooling regions

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 15

are non overlapping. Moreover, they used larger kernels in 1st and 2nd layers but
with smaller stride to increase the accuracy. The feature layers are trained accord-
ing to the classification task, as already done by AlexNet. In order to increase the
robustness, they trained the model over 6 different scaled versions of the original im-
age. Then, they removed classifier layers and substitute them with regression layers
(2 fully connected layers with 4096 and 1024 neurons) to perform the localization
task. Their weights are trained to minimize the `2 norm between the ground-truth
bounding box coordinates and the predicted.

At the detection time (as shown in figure [2.12]), the model firstly performs clas-
sification at each location. Then, it predicts object bounding boxes on all classified
regions generated by the classifier. Finally, it merges bounding boxes with sufficient
overlap from localization and sufficient confidence of being the same object from the
classifier.

Figure 2.12: The three phases of the OverFeat detection
model.

This pioneer model was able to integrate three different tasks related to computer
vision (classification, localization and detection) in a single model. The model was
able to outperform the other approaches in the localization task, reaching the top
positions also in the other two tasks.

2.2.4 ZFNet

The winner of ILSVRC2013 classification task was the model proposed by Zeiler
and Fergus in [ZF13]. They thought that without a clear understanding of how
CNNs encoded the images and how features look like in the hidden layers, it would
be impossible to design meaningful models. They started from the architecture of
AlexNet, but they inserted some deconvolutional networks in the features extraction
pipeline in order to reproject them back to the pixel input space. As show in figure
[2.13], the three steps of a convolutional network are performed in the inverse way:
max-pooling is a non-invertible operation, and so it is replaced by keeping track of
the max locations in the previous layer and placing there the maximum value, setting
all the others to zero; rectification is no longer needed, since only positive values are
returned from the previous operation; the inverse of convolution is performed using
transposed versions of those filters applied to rectified maps. The data-augmentation
strategy, together with the training pipeline, is the same used for AlexNet, except
for the fact that here only one GPU is used. During training, they observed the
learned features, making changes to cope with issues.

Authors found that layer 2 is responsible for learning corners, edges and color
conjunctions; layer 3 captured similarities in the texture, while layer 4 and layer 5
are more class-specific. During training, the first hidden layers converged after a few

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 16

Figure 2.13: The deconvolutional layer of the ZFNet
architecture.

epochs, whereas it took longer to train more deep layers. Moreover, they showed
that although the first layers are very sensitive to small intra-class variations, these
differences are absorbed in successive layers. The aliasing effects caused by the
large strides of kernels in the first and second layers are solved reducing both kernel
size and kernel stride. The authors also provided some experiments to understand
whether the model is localizing the object basing on the background boundaries
rather than on its internal structure. They occluded different portions of the input
images, showing that the model failed to correctly classify the objects when occluded.

With these modifications to AlexNet and combining different architectures vary-
ing the number of feature maps, authors were able to reach 14.8% of test error. Au-
thors also provided some results when using their model (trained on ImageNet 2012
dataset) with different datasets, like Caltech-101, Caltech-256 and PASCAL VOC
2012. They both tried to re-train the model from scratch or to use the pre-trained
weights of the feature extraction layers just modifying the classification neurons ac-
cording to the dataset specifics. They discovered that while training from scratch
ends in very poor results, using the feature extraction layers of their model they
were able to beat the state-of-the-art object detection algorithms on those datasets.
This confirmed the feature extraction power of their architecture.

2.2.5 GoogleNet and Inception v1

The previous work done in AlexNet and ZFNet papers has shown that going deeper
with hidden layers is the right direction to have more powerful object detection

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 17

models. On the other hand, increasing the number of layers also means exponentially
increasing the number of parameters to train. Hence, if we don’t have a system
capable to manage a wide quantity of variables in reasonable time, this results in
models impossible to train and, most importantly, to use. Moreover, since many real-
world applications are designed to be run over simple architectures like smartphones
with a reduce computing capability, those models have to be relatively thin.

In their paper [Sze+15], authors addressed this problem, designing an architec-
ture that, more than going deeper with layers in the conventional way, introduces
a new module named “inception” that goes wider. The “inception” module takes
in input the feature maps of the previous layer and then applies convolution using
different kernel sizes (1 × 1, 3 × 3 and 5 × 5). In addition, as introduced by Lin et
al. in [LCY13], “inception” layer uses 1 × 1 convolution as a dimensionality reduc-
tion technique. Before being passed to the next layer, the features extracted with
different kernel sizes are concatenated. The architecture can be seen in figure [2.14].

Figure 2.14: The Inception module of the GoogleNet
architecture.

Together with a very deep network comes the problem of vanishing gradient.
Hence, authors suggested a technique to propagate back the errors among all layers
in an effective manner, stacking some auxiliary classification layers in parallel in the
middle of the network. In this way, during training, not just the loss of the output is
computed, but also the loss at intermediate levels. The total loss is then computed
averaging these quantities.

At the end of the model, instead of using fully-connected layers that requires a
lot of parameters, authors exploited another technique proposed in [LCY13] which
consists of using global averaging pooling. In this way, only one value (the maximum)
is extracted from each feature map and weights are no longer needed.

The full model (figure [2.15]) consists of 9 “inception” modules stacked together,
with 2 auxiliary classifiers in the middle. All in all, the network has 27 layers,
which is a great step forward from 7-layers AlexNet of 2012. The network is trained
using asynchronous SGD with 0.9 momentum and fixed learning rate that decreases
by 4% every 8 epochs. From each image, a total of 144 crops are extracted for
data-augmentation. Finally, boosting technique is used averaging the results of 7
independently trained GoogLeNet models. The authors’ final submission to the

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 18

challenge obtains a top-5 error rate of 6.67%, outperforming every other competitor
and winning ILSVRC2014 classification task.

Figure 2.15: The full architecture of the GoogleNet model.

Authors also competed in the ILSVRC2014 detection task, using the “inception”
architecture to gain precision. They do not use bounding box regression. However,
they were able to reach 38.02% as mAP ranking second, just 2 points less than Deep
Insight model (40.2%) that used bounding box regression.

2.2.6 VGGNet

The winner of ILSVRC2014 localization task, that was able to beat GoogLeNet,
was VGGNet by Simonyan and Zisserman [SZ14]. The key characteristic of their
model is the small size of the convolutional filters. They showed that the feature
maps obtained using a cascade of two 3 × 3 filters is able to capture the same
spatial resolution of a unique 5 × 5 filter, but significantly reducing the number
of parameters. They also showed that the local response normalization used by
Krizhevskty et al. in [KSH12] after the 1st and 2nd convolutional layers can be
omitted without any loss of precision.

The authors compared different architectures (figure [2.16]) varying the number
of hidden layers from 11 up to 19, discovering that the model with 19 layers is
slightly worse than the one with 16 layers. This fixed the maximum depth in their
experiments. They also confirmed that a deep network with small filters outperforms
a smaller network with larger filters.

In addition, authors exploited multi-scale training, where every image is scaled
with smaller size in a pre-defined range and then multiple crops with fixed size of
224×224 are taken to feed the models. This helped reducing the error rate of about
1%. Moreover, also performing multi-scale testing led to a slightly improvement.
Finally, during testing, all the classification fully-connected layers are replaced by
convolutional layers, where 1 × 1 convolutions are used to reduce dimensionality.

When compared to GoogLeNet, VGGNet achieved comparable results (around
6.8%) using boosting with just 2 models instead of 7. Without exploiting the boost-
ing technique, VGGNet achieved 7% top-5 error, which is less than 7.9% achieved
by GoogLeNet.

Nevertheless, VGGNet was the winner of the ILSVRC2014 localization task with
25.3% top-5 test error. The classification layers are replaced by regression layers
to predict the coordinates of the bounding boxes, in particular their center and
the dimensions. Instead of using cross-entropy, the Euclidean distance between
predicted and ground-truth boxes is used as loss metric. The authors exploited
both single-class regression (SCR) where only one 4-D vector is predicted among

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 19

Figure 2.16: The different architectures tested by authors of
VGGNet.

all classes, or per-class regression (PCR) where 1000 4-D vectors are produced, one
for each class. They also tried both fine-tuning all layers and fine-tuning only the
fully-connected layers. They found that PCR outperformed SCR and fine-tuning all
layers led to better results instead of just tuning the fully-connected ones.

2.2.7 Inception v2 and v3

In 2015, the same authors of GoogLeNet proposed some design modifications specifi-
cally to reduce the computation complexity, more than increasing the performances.
This was because although VGGNet was a very simple architecture, it had an ex-
tremely high number of parameters making infeasible its use in real-time applica-
tions, for example with mobile devices. Moreover, the “inception” module intro-
duced in GoogLeNet is not easily up-scalable without introducing delays. These
modifications introduced a new generation of “inception” architectures that are ad-
dressed as Inception v2 and Inception v3.

The first modification, introduced in [IS15], is to use Batch Normalization to
normalize value distributions before going on to the next layer of the model. When
the distributions are almost fixed to the same range, the gradients are no longer
dependent on the precise value, but better on its variations. Hence, an higher
learning rate can be used and dropout can be reduced, with a significant reduction
in training time. Applying Batch Normalization to GoogLeNet led to a new model
called Inception v2 with a top-5 error rate of 4.82%.

Another issues was that using filters with a large spatial resolution like 5×5 and

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 20

7×7 led to bottlenecks in the pipeline. Hence, in [Sze+16], authors introduced some
techniques to tackle this issues, that results in 3 different new “inception” modules,
namely A, B and C. In module A, they used a cascade of multiple 3 × 3 filters to
produce the same result of higher dimensional filters but saving some parameters: for
example, a 5 × 5 filter has 25 parameters, while 2 3 × 3 filters have 18 parameters.
In module B, they divided the spatial factorization into asymmetric convolutions
(vertical and horizontal) using filters with dimensions 1 × n and n × 1 and then
merging the results: this way, a 3 × 3 filter with 9 parameters can be replaced by
a 1 × 3 and a 3 × 1 filters with a total of 6 parameters. Finally, in module C,
authors proposed an architecture to promote high dimensional representation where
convolutional operations are executed in parallel and then concatenated at the end.

Moreover, while in GoogLeNet three auxiliary classifiers are used to prevent
gradient vanishing, in Inception v3 only one classifiers is used for regularization.
Another regularization technique is to use label smoothing, keeping probability val-
ues well distributed among all classes, hence reducing the cross-entropy. Finally, an
efficient grid size reduction substitutes simple max pooling between different “in-
ception” modules. The overall architecture of Inception v3 can be seen in figure
[2.17].

Figure 2.17: The full architecture of the Inception v3 model.

The top-5 error rate achieved by Inception v3 is 4.2%, which outperformed both
Inception v2 and PReLU-Net. Using boosting, Inception v3 established a top-1 error
rate of 17.2% and a top-5 error rate of 3.58%, reaching 2nd position in ILSVRC2015
challenge.

2.2.8 ResNet

Although one of the most trivial technique for improving the learning accuracy of
the model is to stack layers to create very deep networks, this increases the number
of weights to be trained, resulting in a very computationally demanding model.
Authors of Inception networks have exploited the technique to go wider instead
of deeper with layers reaching quite good results. Their choice was motivated by
the vanishing gradient problem that occurs when the model is very deep. Batch-
Normalization techniques have been used to limit the range of weights values between

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 21

different layers in order to avoid saturation. However, experiments showed that the
train and test errors of deeper models are unexpectedly higher. This is mainly caused
by the degradation problem, a phenomena in which a cascade of multiple layers is
not able to approximate an identity mapping. To solve this, He et al. introduced
ResNet in [He+16a], an architecture in which shortcut connections with no weights
between layers are added to simplify the representation of features. Suppose that x
is the input of the first of a series of layers and H(x) is the underlying mapping to
be learned. Rather than train the weights to approximate H(x), they are trained to
learn the residual function F (x), defined as H(x) − x. In this way, the input x can
be added at the end of the layers, after some operations to match the dimensions, to
obtain the desired feature map. In the case an identity mapping has to be learned,
during training the weights are driven towards zero, and the input just skip the
layers and replicates at the end. This new module is illustrated in figure [2.18].

Figure 2.18: The residual block introduced in the ResNet
architecture.

This technique allows for deeper architectures to be trained without suffering
the vanishing gradient problem. Authors started from the VGGNet network with
19 layers and built a model with 34 hidden layers. They trained two models: one
without shortcut connections (plain) and one with residual modules as described
above. Those models are shown in figure [2.19]. They found that using residual
networks they are able to achieve a lower training error with a deeper model, over-
taking the vanishing gradient issue. With an architecture that could exploit the
advantages of going deeper without losing the gradients, the authors tested several
models adding more and more layers, using 1 × 1 convolutions, as introduced in
[Sze+15], to reduce the number of parameters. They were able to reach 19.38%
top-1 and 4.49% top-5 error rate using a single model approach with a 152-layer
network called ResNet-152. An ensemble of 6 ResNet models achieved 3.57% top-
5 error rate, winning ILSVRC2015 contest. They also built a 1202-layer network
and they trained it with no optimization difficulty. However, the test error was
7.93%, higher than 6.43% achieved with a 100-layer network. This is probably due
to overfitting, since authors didn’t register vanishing gradient problems.

ResNet was also the winner of both ILSVRC2015 detection and localization
tasks. The authors used their ResNet-50 and ResNet-101 models as backbone for

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 22

Figure 2.19: The two architectures (one with residual
connections) trained by authors, compared to VGGNet-19.

the Fast R-CNN framework. They found that the 101-layer model increased the
mAP by over 3% on PASCAL VOC and over 6% on MS COCO with the respect
to VGGNet-16 due to a better features learning strategy. For the localization task,
they used RPN framework designed in a per-class form with two modules: one for
classification and one for regression. An ensemble of networks they achieved 9.0%
top-5 error on the test set, which significantly improved the GoogLeNet results of
the previous year (26.7%).

In [He+16b] authors exploited the advantages of modifying the position of the
modules in the network pipeline. They found that moving the ReLU and BN layers
before activation can led to better accuracy. In particular, they were able to take
advantages of the depth of the network by training a 1001-layers model and making
it outperform the previous ResNet architectures and reaching 4.62% error rate on
CIFAR-10 and 22.71% on CIFAR-100.

2.2.9 Inception v4 and Inception ResNet v1 and v2

In [SIV16], Szegedy et al. applied the residual module introduced in [He+16a]
to the Inception architectures developed so far, building Inception ResNet-v1 and
Inception ResNet-v2. They also tried to make the Inception v3 model deeper and
wider, introducing Inception v4 network, which structure can be seen in figure [2.20].
In this model, all techniques used in the previous Inception architectures are used,
but the number of layers is increased to about 100.

In the Inception ResNet versions, a shortcut connection is added to by-pass each
inception layer. If compared to Inception v3, Inception ResNet-v1 has the same
computational cost but converged earlier. The same happens to Inception ResNet-
v2 if compared to Inception v4. These results both proved the benefit to have a
deeper model and also showed that the residual module technique can generalize to
more complex network structures improving their performances.

Wrapping up, the three new introduced architectures were compared to Inception
v3, showing that they all provide better results both with single and multiple crop
strategies. In particular, Inception ResNet-v1 reached 18.8% top-1 error rate and

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 23

Figure 2.20: The architecture of the Inception v4 model
with all its modules.

4.3% top-5 error rate; Inception v4 and Inception ResNet-v2 are slightly better, with
17.8% top-1 and 3.8% top-5 error rate. Ensembling 4 Resnet-type models allowed
to reach 16.5% top-1 and 3.1% top-1 error rate.

There is also another version of inception architectures that was introduced by
Chollet in [Cho17] and it is called Xception. In the previous inception architectures,
the authors assumed that the cross-channel and spatial correlations are sufficiently
decoupled and so they can be calculated separately by performing depth-wise first
and then point-wise convolution. Here, they assumed that those correlations are
perfectly separable, hence the Xception model has 36 convolutional layers structured
into 14 modules with linear residual connections among them. Inside each module,
1 × 1 convolution is performed one time and then shared by all the filters at each
kernel size. This model reached the state-of-the-art performances of Inception v3.

2.2.10 ResNext

The ResNeXt architecture by Xie et al. [Xie+17] aggregates the concepts of In-
ception modules and ResNet to build a new features extractor network that was
able to reach the second position in the ILSVRC2016 classification challenge with
17.7% and 3.7% top-1 and top-5 errors respectively with a single model structure,
outperforming its predecessors. The key idea of ResNeXt was to aggregate a set of
transformations with the same topology into a module and then to stack multiple
modules. They took the same split-transform-merge strategy of Inception networks,

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 24

where the input is splitted into lower dimension with 1× 1 convolution, then the fil-
ters with different sizes computes the features maps in parallel and finally those are
aggregated before passing to the next module. Inside each module, the cardinality
refers to the number of paths and each of them has the same topology. So, at the
end, the ResNeXt architecture has several residual blocks where, inside each block,
a set of transformations is computed in parallel and aggregated at the end before
adding the input.

In their experiments on ImageNet, they replaced every residual module in ResNet-
50 and ResNet-101 with ResNeXt modules. They found that the new module in-
creased the performances of ResNet architecture both for 50 and 101 layers models.
Moreover, they discovered that increasing the module’s cardinality instead of the
depth led to a more accurate network.

2.2.11 DenseNet

In [Hua+17], Huang et al. published a new backbone architecture based on the
concept of residual connections introduced in [He+16a] where short paths are created
between layers. However, they tried to take advantage from the connections by
allowing every layer to be directly connected to every succeeding layer. In this way,
each layer is discovering some knowledge about the features and, when passed to
the next layer, this knowledge is not fully transformed as in previous architectures
but it is kept unchanged by concatenating the feature maps of all preceding layers.
This compact structure was addressed as DenseNet. Although this concatenation of
feature maps is intuitively increasing exponentially the network complexity, authors
discovered that, since previous layers feature maps are available at each layer, the
number of filters could be significantly decreased, resulting in fewer parameters.
Moreover, since previous works that randomly dropped some layers in very deep
ResNet architectures showed that the features learned are somehow redundant, using
fewer feature maps combined with their availability at all levels resulted in significant
improvements in accuracy.

In order to keep the number of feature maps low, the full network is divided into
“dense” blocks. Inside each block, batch normalization, ReLU and 3×3 convolution
are used to produce new feature maps with the same size, so they can be easily
concatenated. At the end of each block, a 1 × 1 convolution is performed to reduce
the number of feature maps to a fixed value, k, that is an hyper-parameter of the
model and then 2 × 2 average pooling with stride 2 is performed to decrease the
input size. These two operations are addressed in the paper as bottleneck layers.
At the end of the last dense block, global average pooling is performed and then a
Softmax layer computes the output vector. Authors also investigated the possibility
to further decrease the number of feature maps between dense blocks by rescaling
them by a factor θ. The full architecture can be seen in figure [2.21].

The architecture with θ compression and bottleneck layers is the most efficient
reaching the same accuracy of ResNet using 1/3 of parameters. The best result of
the DenseNet architecture is on ImageNet dataset where a 264-layer model with
k = 48 reached 20.27% and 5.17% top-1 and top-5 errors.

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 25

Figure 2.21: The architecture of the DenseNet model.

2.2.12 MobileNet v1 and v2

MobileNet architecture was introduced by Google researchers Howard et al. in
[How+17] as a model that exploits the depth-wise separable convolution to build
light weight deep neural networks with around 30 layers. In this way, the model
can be run by simple devices with a limited capacity and computational power
like smartphones and, in general, portable devices. As in models like Inception v4
[SIV16], the convolutional operation is splitted into a depth-wise stage and a point-
wise stage. This allows to reduce the number of parameters (and multiplications)
by a factor of 9 when using, for example, 3 × 3 kernels.

In addition, authors proposed some modifications to the original MobileNet ar-
chitecture to further reduce the number of parameters and multiplications. They
introduced two hyper-parameters: α that is the width multiplier and ρ that is the
resolution multiplier. The α is used to shrink the feature maps uniformly at each
layer and helps reducing the complexity by a factor of α2. For example, using
α = 0.25 allows to reduce the number of parameters of the network by 8 times but
sacrificing 20% of accuracy. The ρ is used to reduce the input dimension and has a
milder effect if compared to α, allowing for a reduction of factor ρ2 in the number
of multiplications but keeping the number of parameters fixed.

Using it as backbone for object detection frameworks led to good results when
some points in accuracy are sacrificed but the number of parameters is highly reduced
by a factor of 5 in SSD to a factor of 23 in Faster R-CNN, much better than Inception
v2 and VGG-16.

In [San+18], the same group proposed some modifications to the MobileNet
architecture discussed above and released the model under the name MobileNet v2,
with two main innovations. The first is the addition of the 1 × 1 convolution called
expansion layers before the depth-wise convolution in each block. In this way, the
feature maps are projected into a tensor with an higher number of channels before
applying separated convolution as in MobileNet v1. The second modification is the
addition of residual connections as in ResNet that allows for better back propagation
of the gradient during training.

The main motivation of these choices is that keeping small tensors between layers
allows for lighter networks. On the other hand, if the feature maps is too small, it
is not capable of learning correlations in the image to classify the objects. The
compromise introduced in MobileNet v2 is to keep small tensors and then to expand
them temporarily inside the blocks using 1 × 1 expansion layers, reducing them

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 26

after the depth-wise convolution again using 1 × 1 piece-wise convolution. It is
like unzipping the tensor for the computations and then zipping it again before
propagating its values through the network. This allows to build architectures even
more efficient than MobileNet v1 both in terms of accuracy and model complexity.

2.3 Object Detection Frameworks

In the previous section, the most notable backbone architectures in the history of
object detection have been analysed. These models can be used as powerful feature
extractor networks to be used for detection and classification tasks. In the literature,
there are three main object detection frameworks that provide a complete end-to-
end processing pipeline to perform classification and localization of objects in an
image, and they are: Region based Convolutional Neural Networks (R-CNN), You
Only Look Once (YOLO) and Single-Shot multibox Detector (SSD). In this section,
each of these frameworks is analysed and strong and weak aspects are listed for each.

2.3.1 R-CNN

In [Gir+13], Girshick et al. combined AlexNet and the Selective Search algorithm
[Uij+13] to build the first powerful object detection framework that outperformed
any other approach. The algorithm was based on the observation that, even thought
AlexNet was an accurate classification model, real world images are generally not
focused on a single object, but they are better composed of many objects at different
locations and scales. An object detection algorithm should be able to output the
class of any object together with the bounding box coordinates of the patch con-
taining it. Hence, applying AlexNet to an image containing, for example, a cat in
the bottom-left corner, will probably be the same as applying it to an image where
the cat is at the center, occupying the entire image. In the first case, we would like
the model to draw a bounding box around the cat in the bottom-left corner, while
in the second case it doesn’t really matter.

A brute-force approach used at the time was to extract patches at different
locations and scales from the input image using a sliding window that passes the
whole image, and then to feed every patch to a CNN. In this way, there is an high
probability that there exists at least one patch that perfectly contains the object to
detect, and that patch will be classified by the CNN. It is clear that this approach
had some drawbacks:

• the number of patches exponentially grows with number of scales and image
size, making the approach computationally expensive

• even with an accurate model, the higher the number of patches, the higher the
number of false positives

In R-CNN framework, the authors used an algorithm to extract meaningful
patches from the input image in order to avoid the computationally expensive slid-
ing window approach. In this way, instead of feeding the CNN with hundreds of
thousands patches where the most of them are not significant, they only pass a

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 27

small fraction, addressed as candidates to contain objects. This algorithm is called
Selective Search. In figure [2.22] the result of the algorithm is shown.

Figure 2.22: The Selective Search algorithm progressively
aggregates pixels in the image that could represent objects.

The Selective Search [Uij+13] algorithm is a regional proposal algorithm that
takes in input an image and extracts a set of patches that are likely to contain
objects. It starts from making an over-segmentation of the image at very low level
using the Felzenszwalb and Huttenlocher segmentation method [FH04], based on
colors. Then, the algorithm extracts bounding box containing homogeneous patches
and adds them to the proposal regions list; finally, it hierarchically aggregates re-
gions. These two steps are repeated iteratively until the entire image falls on the
same area. The similarity measure used to aggregate regions is a linear combination
of four characteristics as color, texture, size and shape: for colors, a 25-bins his-
togram is calculated for each of RGB channel and the similarity is calculated using
histograms intersection; for texture, a 240-dimensional feature vector is computed
by extracting Gaussian derivative at 8 orientations and using 3 10-bins histograms;
for size, smaller regions are encouraged to merge together; for shape, a bounding
box is considered around the two regions and they are merged if one contains the
other. The pseudo-code of the algorithm is showed in figure [2.23].

With the Selective Search algorithm, the number of proposed regions is signifi-
cantly decreased, allowing to speed-up the overall process of detection and classifica-
tion. The R-CNN pipeline is shown in figure [2.24]. Proposed regions are extracted,
resized to 227× 227 and fed into the CNN model to extract a 4096-dimensional fea-
ture vector. Finally, class-specific linear SVMs are used to classify the patch. This
approach obtained above 50 mAP on the PASCAL VOC 2010 dataset. Moreover,
it outperformed the winner of ILSVRC2013 OverFeat (24.3%) by achieving 31.4%
in mAP. On PASCAL VOC 2007, authors used VGGNet-16 as feature extractor,
achieving 66% in mAP.

To improve localization performances, authors used a bounding box regression
stage in which a new set of coordinates are predicted for each detected object by
adjusting the RoIs towards objects. During the training, each ground-truth bound-
ing box is identified by a set of 4 values [Gx, Gy, Gw, Gh] where the first two are
the center, while the others are the dimensions. The procedure consists in mapping
the predicted set P towards the ground-truth G, learning the linear transformation
functions by optimizing the regularized least squares objective. Predicted boxes
that are too far from any ground-truth box are not considered, while those with

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 28

Figure 2.23: The pseudo-code of the Selective Search
algorithm.

Figure 2.24: The pipeline of the R-CNN object detection
framework.

an IoU above a certain threshold (fixed to 0.6 by authors in this framework) are
adjusted accordingly. Moreover, non-maximum suppression technique is used to
discard multiple detections for the same object.

2.3.2 Fast R-CNN

Fast R-CNN was proposed in [Gir15] as an improvement of the previous versions
R-CNN and SPP-Net. In this new framework, authors tackled the drawbacks of
their previous one R-CNN : the multi-stage training pipeline, the space and time
requirements during training and the inference time during testing. Together with
SPP-Net, R-CNN was very slow both during training and testing because a con-
volutional neural network is run for each proposed region (that are around 2000).
Hence, given a test image, the framework required 47 s to detect and classify objects.
With a fps lower than 0.03 it is almost impossible to build a real-time object detec-

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 29

tion system. Moreover, R-CNN has to be trained in a multi-stage pipeline, where
SVM weights are trained after the convolutional layers. This process is inelegant
and doesn’t allow for the convolutional weights to adapt to the SVM ones, prohibit-
ing hidden relationships. Despite accelerating both training and testing processes
by using a single convolutional network over the entire image, SPP-Net cannot be
completely fine-tuned since weights before the spatial pyramid pooling layer are
fixed.

The architecture of Fast R-CNN is shown in figure [2.25]. The backbones used
to extract features are the same of AlexNet and VGG-16. The model takes in input
an image and a set of proposed region generated by an algorithm like Selective
Search. The image is passed through convolutional layers to extract the feature
maps and then, for each proposed region, a RoI pooling layer extracts a fixed-
length vector. This vector is then passed through fully connected layers to extract
features. Finally, two separate modules are stacked above the features vector: one
is responsible for computing the probability distribution among classes; the other is
a bounding box regression layer that computes the box center (x, y) and dimensions
(h, w). Differently from R-CNN and SPP-Net that used SVM, this framework uses
softmax layer.

Figure 2.25: The pipeline of the Fast R-CNN object
detection framework.

One of the main advantages of Fast R-CNN is the possibility to jointly train
the classification, regression and convolutional layers end-to-end. This is done by
labelling each RoI with a ground-truth class and a ground-truth set of coordinates.
The loss function is a combination of the classification loss and the localization loss:
the classification loss is computed as the log loss with the respect to the ground-
truth class; the localization loss is a smoothed `1 loss that is considered by the
authors more stable than the `2 loss used in R-CNN and SPP-Net. The localization
loss is added only when a class different from “0” (which is the background class)
is predicted. A detection confidence is assigned to each bounding box and then
non-maximum suppression is performed for each class.

Finally, authors discovered that the 38.7% of time during testing is due to fully
connected layers, that are simple matrix multiplications. They proposed to use SVD
algorithm to extract singular values and reduce computational effort during testing.
With this technique, they were able to reduce the fraction of time for fully connected
layers to 17.5%.

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 30

The main drawback that authors leaved for future work is the need for an external
algorithm to extract the proposal regions. However, they were able to achieve good
results both in term of speed and accuracy. They reduced the training time by 8.8×
with the respect to R-CNN and they also reduced the testing time per single image
from 47 s to 0.32 s. The proposed framework outperformed every approach on all
PASCAL VOC datasets (2007, 2010 and 2012) reaching, respectively, 70.0, 68.8 and
68.4 as mAP. Finally, they tried to use SVM instead of softmax layer for the outputs
and they discovered that SVM performed worse by 1 point in mAP.

2.3.3 Faster R-CNN

Faster R-CNN was proposed in [Ren+15] to improve performances of Fast R-CNN,
where the speed bottleneck was due to the Selective Search algorithm that extracts
proposal regions. In Faster R-CNN, the model learns itself the interesting regions
where to look for objects by using a RPN (Region Proposal Network) that works
on top of the convolutional layers and uses the features map extracted to rank
the regions proposing the ones that are more likely to contain objects. This is
conceptually different from the Selective Search approach that is an external method
that doesn’t share computations with the convolutional layers. The feature maps,
alongside with the proposed regions, are then passed through the classification and
regression modules that are the same of Fast R-CNN framework. This allows for
very fast processing of a single image, hence approaching real-time object detection.

Figure 2.26: The anchors are pre-defined bounding boxes.

The input image is processed using a bunch of convolutional layers like ZFNet
or VGG-16 backbones and the last layer outputs the feature map. This is fed to
the RPN that extracts region proposals using anchors. Anchors (figure [2.26]) are
bounding boxes at different locations and with different sizes and aspect ratios that
are placed in the image and are fine-tuned during training phase towards ground-
truth object annotations. In Faster R-CNN, authors used 3 different sizes (128, 256
and 512) and 3 different aspect ratios (1 : 1, 1 : 2 and 2 : 1), leading to 9 anchors
for each location. For each anchor, the RPN outputs a classification loss for classes
“object” and “not-object” and a bounding box proposal regression (4 coordinates).
The anchors boxes are compared to the ground-truth boxes and only those with an

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 31

high IoU are kept. Non-maximum suppression is used to remove redundancy. The
regions with the higher scores are passed to the RoI pooling layer that computes
feature maps with fixed size and finally to the detector network on top of the model
that classifies the object in each bounding box and refines them to better enclose
the object. The detector network is similar to the one of Fast R-CNN. The full
architecture is shown in figure [2.27].

Figure 2.27: The pipeline of the Faster R-CNN object
detection framework.

The training pipeline of Faster R-CNN framework is composed by four steps.
In the first step, the RPN is trained minimizing a combination of localization and
classification loss. In the second step, a Fast R-CNN framework is trained using
the proposals generated by the first step. In the third step, the detector network is
used to fine-tune RPN layers. In the last step, the detection network is fine-tuned.

The Faster R-CNN framework outperformed the other methods by reaching
75.9 mAP in the PASCAL VOC 2012 with 300 proposals, less than the 2000 of Fast
R-CNN. Moreover, with VGG-16 backbone, the framework was able to elaborate
images at 5 fps and with ZFNet it was even faster reaching 17 fps, which is a 250×
speed-up with the respect to R-CNN.

2.3.4 YOLO

Introduced in [Red+16] by Redmon et al., You Only Look Once is the first object
detection algorithm that, as the name suggests, performs object localization and
classification by analyzing the full image once, without decoupling the region pro-
posal and classification stages as R-CNN models. In practice, the YOLO algorithm

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 32

starts by dividing the image into a grid of S × S cells (in the original paper S = 7).
Then, each cell predicts B = 2 bounding boxes, called anchor boxes, with different
shape. Each bounding box is identified by its center normalized coordinates and
dimensions (relative to the cell), together with the confidence, i.e. the probability
that it contains an object (without specifying the class), calculated as the IoU be-
tween the predicted box and any ground-truth box in the image. At the end, for
each cell we have a vector where the first ten numbers are coordinates, dimension
and confidence for the first and the second bounding box, followed by the condi-
tional probabilities for each class that we want to detect (20 in the original paper).
The predicted tensor can be seen in figure [2.28]. The confidence of the boxes are
combined with the class probabilities to compute the final object scores that are
used to draw the bounding boxes in the image, as seen in figure [2.29].

Figure 2.28: The tensors produced by the YOLO algorithm.

The YOLO network has 24 layers in which convolution and max pooling are
alternated, followed by two fully connected layers at the end. During training, the
IoU is calculated for each bounding box of each cell and the one with the highest
value is kept to predict the localization; hence, each cell can predict at most one
object. The loss function minimized by the algorithm is the combination of three
factors: the first is the classification loss, calculated as the square error of the class
conditional probability for each class; the second is the localization loss, calculated
as the mean squared error between the predicted box and the ground-truth box,
weighted using the hyperparameter λcoord; the third is the confidence loss, weighted
by hyperparameter λnoobj if the cell doesn’t contain any object. Non-maximum
suppression is performed by looking at the IoU between predicted boxes and keeping
only the one with the higher score.

The advantage of the YOLO architecture is that it can process an image much
faster compared to other object detection systems, making it a suitable framework
for real-time applications. In fact, YOLO can process 45 fps and authors also
provided a lighter version with just 9 convolutional layers that can reach 155 fps.
This is a significant improvement with the respect to Faster R-CNN that has an
elaboration speed of 17 fps, without sacrificing to much in accuracy, with results

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 33

Figure 2.29: Bounding boxes and class probability map are
used to produce the final detections.

near 63.4% as mAP. Moreover, YOLO is much better in background classification
if compared to R-CNN models, hence reducing false positive errors. On the other
hand, YOLO algorithm pays the speed in term of localization performances, with
more localization errors than Fast R-CNN. Moreover, the grid cell imposes spatial
constraints on detecting grouped small objects. However, being able to elaborate
the images at real-time can reduce the impact of these errors since they are related
to each frame and the flow of images somehow mitigates the effect.

2.3.5 SSD

The Single Shot Multibox Detector (SSD) was introduced by Liu et al. in [Liu+15].
It is an object detection framework that uses an approach similar to the one used
by YOLO, hence it is able to work with a single pass over the input image, proving
to be a valid approach to real-time object detection applications. It was introduced
soon after YOLO, outperforming it by running at 59 fps on the VOC2007 dataset
with a mAP of 74.3%.

The SSD framework uses VGG-16 as feature extractor network, but modifies the
layers on top of it for the localization and classification purposes. In particular, from
the 4th convolutional layer, the feature map is convolved with a 3 × 3 kernel that
produces an output with dimension m×n×k× (num class+ 4) where m×n is the
feature map dimension, k is the number of anchors to use at that level, num class is
the number of classes to detect (plus background class) and 4 is related to the offset
of the bounding boxes. In parallel, the feature map is again convolved and max-
pooled to further reduce the dimension. In this way, the subsequent classification
layers that operates over lower dimensional feature maps are suitable for detecting
larger objects. Finally, for the last two convolutional layers, the dilated convolution
... is used to increase the receptive field without having too much parameters. In
total, 6 additional convolutional layers are added upon VGG-16 network, some with

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 34

6 anchors and some with 4 anchors. The full architecture is shown in figure [2.30].

Figure 2.30: The pipeline of the SSD object detection
framework.

Compared to Faster R-CNN, the SSD framework performs badly with small
objects because the first feature map layer on which anchors are used to detect
objects has a dimension of 38 × 38, much smaller than the input resolution (300 or
500). Moreover, the higher the input resolution, the higher the classification and
localization accuracies, but the lower the frame rate (22 fps with SSD-512 and 59
fps with SSD-300).

2.3.6 YOLOv2 and YOLO9000

In [RF16], the authors of YOLO provided some modifications to their object de-
tection algorithm to make it namely “better, faster and stronger”. Moreover, they
trained the new YOLO architecture called YOLOv2 on 9000-class dataset organized
with a tree structure in order to refine the classification task and make the algorithm
more specific when predicting the class.

In the YOLO v2 algorithm, batch normalization is added for regularization
purposes and helps improving the accuracy. Moreover, higher resolution images
(448 × 448 instead of 224 × 224) are used to fine-tune the network in order to
increase the classification accuracy. Instead of hand-picking the bounding boxes
during training as in YOLO v1, here authors proposed to use k-means algorithm
on ground-truth boxes to extract the more frequent dimensions and aspect ratios.
According to the paper, the distance metric used is 1 − IoU(box, centroid). In this
way, the network is more likely to predict the correct bounding boxes because it
starts from similar ones. In the paper the number of clusters is 5, hence 5 anchors
are predicted for each grid cell. In addition, authors used logistic activation to con-
strain the offset predictions of the bounding boxes and relating its dimensions to the
grid cell, making the network more stable (figure [2.31]). To fine-tune the model on
higher resolution features and improve performances on small objects, a passthrough
layer concatenates the 26 × 26 features with the 13 × 13 features of the subsequent
layer (in a similar way of the residual connections in ...) to provide richer features.
Finally, multi-scale training is used randomly scaling the images.

In YOLOv2 a new backbone architecture called Darknet-19 is introduced with
19 convolutional layers and 5 max-pooling layers. This feature extraction network
is very powerful with 72.9% top-1 and 91.2% top-5 accuracy on ImageNet and a

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 35

Figure 2.31: The coordinates of the new bbox (blue) are
predicted with the respect to the grid cell coordinates and

the prior anchor (dashed black), in order to make the
network more stable.

reduction of a factor 6 in number of operations for a single image. On top of it,
other 11 layers are added for object detection.

In order to make the model stronger and more powerful in the classification task,
authors proposed to jointly train it on object detection and image classification,
using simply labelled images to expand the number of detectable classes. In this
way, it is possible to use multiple datasets to train the same network. In particular,
authors built a WordNet-inspired graph (figure [2.32]) fusing COCO and the 9000
top classes of ImageNet datasets. This dataset is used to train a model called
YOLO9000 where the predictions are class specific, for example predicting not only
“dog” but also the dog breed. In this case, only 3 anchors are computed for each
cell grid instead of 5. To cope with different tasks (detection and classification),
the loss for images where only classification is required is back-propagated only to
classification layers without refining the bounding box predictions.

For what concern performances, YOLO v2 has been tested with multiple size
images showing that it is more accurate than YOLO v1 with 78.6% mAP in PAS-
CALVOC2007 dataset running at 40 fps with 544× 544 input images. Compared to
SSD300 and SSD500, this algorithm has similar accuracy but can process images
at doubled speed.

2.3.7 YOLOv3

The YOLO v3 version was published in [RF18] as a technical report explaining
the improvements made over YOLO v2 model. Authors decided to increase the
dimension of the features extractor network in order to cope with the main issue
of the previous model: the detection of small objects. Besides being a bit slower,
running at 30 fps, this architecture improves the overall mAP and is able to detect

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 36

Figure 2.32: The hierarchical model for classification
obtained by fusing COCO dataset (blue) and ImageNet

dataset (red).

also small objects that are missed by YOLO v2.
The backbone architecture of YOLO v3 is a Darknet network with 53 layers for

features extraction pre-trained on ImageNet. Then, other 53 layers are stacked for
detection purposes, producing a 106-layers model. In figure [2.33] the full architec-
ture is shown.

Figure 2.33: The full architecture of the YOLO v3 model.

The most powerful feature introduced with YOLOv3 is the detection at multiple
scales. In fact, the previous models failed to detect small objects because, after many
max-pooling layers, the resolution is very low and details are lost. For multiscale

CHAPTER 2. STATE OF THE ART AND GENERAL CONCEPTS 37

detection, a 1 × 1 convolution kernel is used on feature maps three times in the
network. In this way, at the first scale (stride of 32) small objects are detected since
the resolution is still high. Then, the feature map is upsampled and concatenated
with the previous one before going deep with convolutions. At the second scale
(stride of 16), medium size objects are detected, while the last scale (stride of 8)
is responsible for detecting big objects occupying the most part of the image. The
connections between layers inspired by ResNet architecture are useful to keep track
of the features at different resolutions and this improves the accuracy. YOLO v3
uses 3 anchors for each scale selected using k-means clustering, for a total of 9
anchors. This led to a number of proposed boxes that is 10× higher than YOLO
v2. Finally, authors replaced softmax layer for classification with logistic regression
layer followed by a thresholding function because the classes, in general, are not
mutual exclusive (think, for example, at “person” and “woman”).

Chapter 3

Description of the Project

In this work, I exploited the state-of-the-art object detection algorithms and frame-
works developing a complete application for the fashion retail industry. The final
goal of the project is to build a system that can be used in the industry as a power-
ful tool for several applications both for the customers and for the staff. Examples
of applications are self-checkout, automatic inventory, products recommendation or
commercial contracts supervision. In order to build such applications, the funda-
mental requirement is a virtual mapping of the store and all the merchandise in
the shelves. The acquisition of the virtual mapping of the items on the shelves is
the topic of this thesis. The system can be divided in two modules: the Object
Detection and the Web Service (figure [3.1]).

Figure 3.1: The overall diagram of the project.

3.1 Object Detection Module

The object detection module is the core of the application. This module is basically
an artificial deep neural network trained on a customized dataset, which takes in
input an image and returns a series of annotations on the absolute position of some
predefined items, if they are present in the image. The common way to show the

38

CHAPTER 3. DESCRIPTION OF THE PROJECT 39

results of the detection is to draw the bounding boxes on the original image and to
indicate the class of each object, together with the accuracy of the detection. For
this module, the main tasks are:

• the acquisition of the dataset

• the annotation of the images

• the training of the models

• the selection of the most suitable model

• the post-detection processing

The acquisition of the dataset is the starting point of the processing pipeline.
Since all deep-learning based frameworks for object detection downsize the input im-
ages, high quality images are not needed. As a result, professional cameras are not
needed for this kind of applications, and images are acquired using smartphones.
Modern smartphones can acquire images with up to 4K resolution, hence images
have to be rescaled after acquisition. In acquiring the images, artifacts like illumi-
nation, contrast and camera position have to be considered: on one hand, having
images with some variance helps to have a more robust model; on the other hand,
if the artifacts are very strong, changes are that the model encodes the “errors” as
discriminating features. After the images acquisition, it is possible to rescale them
in order to be able to test the object detection models with different resolutions and
provide the one that performs better.

In the annotation phase, bounding boxes coordinates and product classes have
to be assigned to each image. To do this, there exist some open source software
with a graphical interface that gives helpful tools. This process is done just for one
resolution, since the bounding box coordinates can be rescaled for images with a
different resolution using some code.

In order to be trained, a model needs the images and the bounding box coor-
dinates. The annotation files created with the labelling tool are converted in the
correct format using some scripts. Then the model is fine-tuned to detect and clas-
sify only the desired items.

The model selection is dependent of the application, since each model has some
pros and cons: as a general rule, the more accurate is a model, the slower it is. As
a result, the correct model has to be chosen as a compromise between speed and
accuracy. In this project, since the application is not meant to work in real-time,
an higher accuracy is preferred over a fast model.

Since the object detection models don’t have always 100% accuracy, it is nec-
essary to further process their output in order to make the system more robust.
Dealing with object detection, the more frequent artifacts are false positives and
false negatives, together with localization and classification errors. In this project,
techniques are used to reduce those errors before providing results to users.

CHAPTER 3. DESCRIPTION OF THE PROJECT 40

3.2 Web Service Module

The Web Service module encapsulates the object detection module in order to use
it in an higher level application, in this case a client/server service. In particular,
this module takes care of receiving the client request with the image to elaborate
and to pass it to the detection module, together with elaborating the results before
replying to the client request. In this module, the main tasks are:

• the design of the architecture

• the front-end/back-end interaction

• the resource management

The object detection module is a routine that takes an image from a directory
and, after the elaborations, displays it with the bounding boxes. This routine is
suitable to rapidly test the model on a given image (or set of images), but not
for a client/server application. The architecture is designed in order to hide the
object detection module from the client perspective and to provide only the readable
information.

In this project, the front-end is a web page (figure [3.2]) that provides a form to
be filled with the image and information about it. The information flow between
the web page and the object detection routine and the other way around is handled
using classes.

Figure 3.2: The initial page of the web application provided
to the users.

When the number of requests is high, the information of each should be handled
correctly by classifying them and storing the essential data, together with logging
the actions performed by the system.

Chapter 4

Setup of Components

In this chapter, the framework and the software used for the project are illustrated.
Firstly, an overview of TensorFlow framework is given, by explaining why and how
it is used in this work. Then, other tools that are used are briefly presented.

4.1 TensorFlow

TensorFlow is python-friendly end-to-end open source framework for machine learn-
ing. It was developed by Google Brain team and provides a wide range of functions
to build, train and test mathematical models. Besides offering a set of tools to
develop any learning model, from SVM to deep neural networks, TensorFlow has
some built-in functions to manipulate and process data before feeding the mod-
els. Tensorflow provides also an easy-to-use API written in Python to assist the
model development, while running it with the highly-performing C++. This frame-
works enables users to create dataflow graphs, that are structures that describe how
the data moves inside the model. Each node in the graph is a specific operation,
while edges are multidimensional arrays, that are called tensors. Python language
provides high level of abstraction giving the user the possibility to write relatively
few lines of code, that are translated into C++ instructions by the compiler. The
major benefit of TensorFlow is the possibility to focus on the overall logic of the
applications instead of dealing with the precise implementation of the algorithms.
Moreover, it provides a web-based dashboard to monitor the training phase of the
models, which is TensorBoard.

Every graph in TensorFlow is composed by a set of elementary objects. In
particular, there are objects that store data (Tensors) and objects that make trans-
formations (Operational node). Any algorithm can be written in this form.

By concatenating these objects, it is possible to create a computational graph,
which is a set of nodes, each of them running a single operation. Then, a Tensorflow
Session is initialized and input data are fed to the graph. Once the computation is
over, output data are returned. A Session encapsulates the environment where all
the operations are computed.

An example of TensorFlow code is given in figure [4.1], where some elementary
operations are performed. In particular, after creating two vectors with dimension
1 × 3 (x and y), they are either added, multiplied and subtracted in 3 different
operational nodes (z1, z2 and z3). When the snippet of code is executed, the com-

41

CHAPTER 4. SETUP OF COMPONENTS 42

putational graph showed in figure [4.2] is generated, and output data are produced
only when the operational node has been given to the run() function.

Figure 4.1: This snippet of code performs some elementary
operations on two tensors.

Figure 4.2: This is the computational graph generated when
executing the snippet in figure [4.1].

4.1.1 TensorFlow Model Zoo

TensorFlow Model Zoo (figure [4.3]) is a collection of models that are pre-trained on
some datasets and are made available. The features extraction layers of each model
are adjusted during training and then fixed, while the classification layers can be
fine-tuned by users to adapt the model to the specific application. For each model,
authors provide:

• a graph proto, which is a dictionary id/class of the detectable items

• a checkpoint, which is the model state after the last training iteration

• a frozen graph proto, which is the model available for detection

• a configuration file, which contains training information

The frozen graph, which is actually the object detection model, can be directly
used to detect the objects listed in the graph proto in any image. However, it is also

CHAPTER 4. SETUP OF COMPONENTS 43

possible to fine tune the model on a customized dataset with specific classes. In
order to do this, the configuration file should be changed by indicating the location
of the training and test images and bounding bounding box files, together with
the training parameters (batch size, learning rate, images size, data augmentation
functions, ...). The graph proto should be changed in order to list the specific classes
of the customized dataset. After these settings, the checkpoint model is further
trained with the customized dataset and, at the end, the frozen graph is exported.

The available models are divided according to the dataset on which they are
pre-trained. The majority of models are pre-trained on the COCO dataset, but
there are some of them pre-trained on Kitti, Open Images, iNaturalist Species, AVA
datasets. The two most used object detection frameworks are SSD and Faster R-
CNN, that are available with different backbone architectures for feature extraction.
Each model is provided with speed and mean average precision. The speed is the
time needed by the model to produce the output on a 600 × 600 image using a
NVIDIA GeForce GTX Titan X card, and it is expressed in milliseconds. The mean
average precision is specific for each dataset, and it is a measure of the accuracy of
the model. As suggested by the authors, these measures are not to be considered
in an absolute way, but better for comparing the models before selecting the most
suitable for the customized application. The general rule is that the faster is the
model, the lower is its accuracy.

Figure 4.3: TensorFlow Model Zoo provides an end-to-end
way to fine-tune object detection models on customized

dataset.

4.2 Hardware

The training of the object detection models is the most computationally demanding
part of the project. In order to be able to train such powerful models with an high
quantity of images (about 800), a Virtual Machine and Bare Metal GPU provided
by Oracle Cloud has been used. The machine was powered by a NVIDIA Tesla P100
single GPU with 2.0 GHz Intel Xeon Platinum 8167M CPU. The object detection
models, together with the training images and the training pipeline configuration
files, were uploaded on a NVIDIA Docker instance running on the Oracle Cloud and
connected to the GPU. With this configuration, the time required to train a single
model on the entire dataset was from 16 to 24 hours.

CHAPTER 4. SETUP OF COMPONENTS 44

The laptop used to test the models and to develop the web service was a Dell
Inspiron 15 with a Quad Core Hyper Thread Intel Core i7-8565U@4 60Ghz (Turbo)
CPU and Ram 8GB DDR4@2.666Mhz.

4.3 LabelImg

LabelImg is a tool written in Python that can be used to label the images in order
to prepare the dataset to train an object detection model. This tool provides a
user-friendly way to store the bounding boxes coordinates of objects in the image
by supplying the user with a graphical interface. After uploading the image (figure
[4.4]), it is possible to draw a box with the mouse and then to select the correct class
from a drop-down menu (figure [4.5]). The bounding box coordinates can be saved
in the PASCALVOC format (an xml file for each image) or in the YOLO format (a
txt file for each image).

Figure 4.4: The LabelImg GUI after loading the image.

4.4 Flask

Flask is a lightweight WSGI (Web Service Gateway Interface) web application frame-
work, written on the top of Werkzeug, which is a Python library that allows to build
objects like HTML requests and responses, and Jinja, which is a template engine
for Python programming language.

With Flask, it is possible to create a web service and to handle some web pages.
Flask provides the structure of the service, while the content of the web page and
the functions to call are handled separately (figure [4.6]).

CHAPTER 4. SETUP OF COMPONENTS 45

Figure 4.5: After having drawn the bounding box, a
drop-down menu lets you choose the correct class.

Figure 4.6: The Flask environment allows to create a Web
Service where the function to run on the web page are those

called by the function “name of a function()”

Chapter 5

Dataset and Models

In this chapter, the datasets used for the application are presented and explained
after an introduction on the hierarchy of the classification task. Finally, the archi-
tectures chosen for the training are presented.

5.1 Dataset

Every application that uses a deep learning model needs an high number of images
to be successfully trained and so the dataset is one of the most important part of
the object detection module. While for image classification we just need a set of
images with one attribute (the class), for object detection we need a more structured
annotation file for each image.

The acquisition of a dataset is composed of three phases: in the first part, the
acquisition part, the images are physically acquired using a device; in the second
part, the processing part (which is not mandatory), it is possible to process the
images by resizing or cropping them, changing the illumination or the contrast and
so on; in the third part, the labelling part, every object in each image has to be
manually annotated.

In the first part, we have to consider the properties of the device as important
parameters for the system. In particular, the resolution of the image is directly pro-
portional to its dimension in the disk: hence, if we acquire images with an extremely
high resolution, the computational time required to process them increases. On the
other hand, choosing a very low resolution reduces the dimension of the image, but
details that are crucial for the classification may be lost. Moreover, we have to
consider also the illumination conditions and the background of the images. The
general rule is to have a dataset of images that is as much similar as possible to the
scenario where the application will work. In fact, if the images used for training are
too different from the images that the system will work with, changes are that the
model is not able to generalize and details that are typical of the training set are as-
sumed to be crucial for the specific object. For example, if we acquire all the images
using a black background, the contrast between the object and the background will
become a feature of the object that can affect the accuracy of the system in case
that images for real application are acquired with, for example. white background.

In the second part, we can digitally adjust the image properties using a frame-
work like OpenCV. However, since the aim is to have high variability in the dataset

46

CHAPTER 5. DATASET AND MODELS 47

in order to train the model to “see” all possible types of images, this part is often
used for a process called data augmentation. In data augmentation, the dataset
is enriched by providing copies of the real images with some changes in the scale,
illumination, contrast, noise and so on. There are two types of transformations: the
label-preserving and the label-changing. The former transformations don’t alter the
absolute coordinates of the bounding box in the image, so they can be performed
after labelling phase, since we just need to assign to the new image the same anno-
tation file of the real image. The latter transformations generate an image in which
the position of the object has changed, and so they have to be performed before
labelling.

In the third part, we use a labelling tool to annotate the bounding boxes class
and coordinates for each image. Since this procedure cannot be automatic, it is the
most onerous and we need to pass all the images one by one. For this reason, the
label-preserving operations are preferred over the others. The labelling tool used
in this project gives the possibility to produce two types of annotation file: the
default used by YOLO framework, where bounding boxes are saved in a txt file, one
line for each image; the one defined by PASCAL VOC 2007, where an xml file is
produced for each image (figure [5.1]). Each bounding box is defined by a set of 4
parameters, and there are two ways to define them (figure [5.2]): [x center, y center,
width, height] or [x min, x max, y min, y max]. In this project, the convention is
to use the second way.

Figure 5.1: For each image, the xml file contains information
about the coordinates and classes of the bounding boxes. In

this table, those information are resumed.

5.1.1 Hierarchical representation of objects

In object detection applications, an important aspect to consider is the hierarchy
of objects representation. Indeed, each object is not uniquely defined by a tag,
but can be indicated at different hierarchy levels. For example, if our aim is to
detect pedestrians in the street for self-driving car systems, we don’t need a fine
representation of each person in the city, because we are interested in detecting
the class “person” better than “John” or “Paul”. However, “John” and “Paul”
are instances of the class “person”, so these tags are not an error. On the other
hand, if our aim is to detect people in an office using surveillance cameras, the set

CHAPTER 5. DATASET AND MODELS 48

Figure 5.2: Two possible ways to represent the coordinates
of a bounding box. For this application, the left one is used.

of people allowed to enter the office is perhaps predefined. Here, a system that
labels each person with the tag “person” is too trivial, and we may need something
more sophisticated with a lower level of representation where the classes are “John”,
“Paul” and all the other employees. Again, while in the self-driving system we just
need to label cars as “car”, a dealership may be not interested in such a system,
since all objects that they deal with are cars. Hence, they need a finer representation
level, where classes are the specific car models.

In this project, where objects are specific perfume and shampoo phials, we are
not interested in marking them as “phials” or “bottles”, but we need a finer rep-
resentation, where we can assign the class names. For a specific application, the
datasets available online are not useful since they are made for an high level of hi-
erarchy, where classes are “car”, “ball”, “person”, “bottle” and so on. Hence, we
built a customized dataset to train the models.

5.1.2 Dataset Oracle

The first dataset of images is composed by a restricted set of 10 objects among the
16 available. For each object, almost 100 jpg images have been acquired using a fixed
camera and a mobile platform that rotates: in this way, each item is photographed
from 360◦ angles. The resolution of each RGB image is 640 × 360 and it contains
just one object in a neutral white background. In this dataset, objects are acquired
at only one scale since the distance between the camera and the platform is fixed.
The number of images per item is showed in figure [5.3].

5.1.3 Dataset Reply

The second dataset of images is composed by all the 16 class of objects. In total, 1000
jpg images have been acquired with a resolution of 4032×3024. Each image contains
from 2 to 7 objects arranged as in a shelf, with some of them in the foreground
and others in the background. Moreover, there are some objects that are partially
occluded by others. In order to have flat basement and background, white papers

CHAPTER 5. DATASET AND MODELS 49

Figure 5.3: Distribution of the classes in the dataset Oracle.
The empty bars are for items that were not used for this

dataset.

(a) “ambre” (b) “stressfrei”

Figure 5.4: Two images of dataset Oracle.

have been placed under and behind the objects. Differently from the other dataset,
this time the basement is fixed and the camera is moved to change the angles of
acquisition. In addition, each object has been slightly rotated or moved between two
acquisitions. The classes distribution is showed in figure [5.5] and the distribution of
the number of items per image in figure [5.6]. Since the resolution is extremely high,
in the processing phase those images has been scaled to 2592 × 1944 and 800 × 600
resolutions, that are more suitable to be fed to the deep neural network models.

CHAPTER 5. DATASET AND MODELS 50

Figure 5.5: Distribution of the classes in the dataset Reply.

Figure 5.6: Distribution of the items per image in the
dataset Reply.

CHAPTER 5. DATASET AND MODELS 51

(a) (b)

Figure 5.7: Two images of dataset Reply.

5.1.4 Dataset Test α

The third dataset of images is similar to version Reply. In fact, this dataset was
not intended to train a model, but it is used to test the already trained networks
comparing them according to the most used metrics in the field. The images of
this dataset are acquired placing the items in a shelf that is designed according to
one possible scenario of application of the system. In particular, the shelf is built
using white LEGO bricks and is composed by two corbels, each of which can contain
up to 7 items. In total, this dataset is composed by 100 jpg images. The classes
distribution of this dataset is showed in figure [5.8] and the number of objects per
image in figure [5.9].

5.1.5 Dataset Test β

This dataset was also intended to test the models and it is similar to dataset Test
α. While dataset Test α contains approximately 7/8 products in each image, this
dataset is mostly composed by images with only one item which is moved in different
places in the shelf, in order to study the performances of the model among all possible
positions in the shelf. The dataset is composed by 303 jpg images. In figure [5.11]
it is shown the classes distribution of the dataset, while in figure [5.12] it is shown
the distribution of the number of items for each image.

5.2 V0: Models trained with Dataset Oracle

The first attempt was to train some models using the dataset Oracle, with images
of just one item from different points of view. We trained on both SSD and Faster
R-CNN framework. These training stages were thought to infer the ability of the
models to learn to detect items and to analyze the strength of the model against
resizing and illumination changes in the scene. However, the results were very poor,
since each model was not able to correctly classify and locate any of the object. For
this reason, the results of these models are briefly presented in this chapter. The
model used to produce the following 2 figures has been trained only on the item

CHAPTER 5. DATASET AND MODELS 52

Figure 5.8: Distribution of the classes in the dataset Test α.

Figure 5.9: Distribution of the items per image in the
dataset Test α.

CHAPTER 5. DATASET AND MODELS 53

(a) (b)

Figure 5.10: Two images of dataset Test α.

Figure 5.11: Distribution of the classes in the dataset Test β.

“ambre” for simplicity. In figure [5.14], the image on the left is the original one
acquired with the camera, with very low contrast. The object detection model was
not able to detect the phial “ambre”. If the contrast is increased, as in the right
image, the model correctly detects the product at the right position.

In figure [5.15], the left image is the original one, with 9 items plus the “ambre” on
the bottom right corner. When the object detection algorithm is run over this image,
the class “ambre” is wrongly assigned to a bounding box that fills the majority of
the image. If the image is cropped, as in the right one, the algorithm correctly
identifies the item “ambre” at the correct position.

CHAPTER 5. DATASET AND MODELS 54

Figure 5.12: Distribution of the items per image in the
dataset Test β.

(a) (b)

Figure 5.13: Two images of dataset Test β.

5.3 V1: SSDLite MobileNet v2

The SSDLite model was selected instead of SSD because it is a lighter version,
faster than it and with a lower number of parameters. The goal was to have a
model which is suitable to be run on devices with low computation capabilities,
such as smartphones and laptops without the GPU. Moreover, it was meant to be
run on video streaming from a webcam, in order to build a real-time object detection
system. According to the GitHub repository, this model has a processing speed of 27
ms per image and an accuracy of 22 COCO mAP, which place it at the top positions
for what concern speed and at the end of the accuracy ranking. The model is pre-
trained on the COCO 2014 training set and evaluated on the COCO2014 validation
set. For this application, this model was fine-tuned on dataset Reply 2592 × 1944.

CHAPTER 5. DATASET AND MODELS 55

(a) Low contrast (b) High contrast

Figure 5.14: Results of models trained with dataset Oracle.

(a) Full image (b) Crop image

Figure 5.15: Results of models trained with dataset Oracle.

Figure 5.16: List of parameters used to train the SSDLite
MobileNet v2 model.

5.4 V2: Faster R-CNN ResNet50

As discussed in Chapter 2, the Faster R-CNN processing steps are different from
those of SSD framework, and the result is a model with different evaluation metrics.
A Faster R-CNN framework is always slower than an SSD, but we gain in accuracy
and precision. This model is pre-trained and evaluated on the COCO2014 dataset,
the same of SSDLite MobileNet v2, and its results reflect the general trend. This
model has a processing speed of 89 ms per image, 3 times slower than SSDLite, but
it has an mAP of 30. The dataset used to fine-tune the model is dataset Reply after

CHAPTER 5. DATASET AND MODELS 56

resizing all the images to 800 × 600.

Figure 5.17: List of parameters used to train the Faster
R-CNN ResNet 50 model.

5.5 V3: Faster R-CNN Inception v2

The last model used is similar to the previous, since it is again a Faster R-CNN
framework, but this one uses another feature extraction network, the Inception.
Again, also this model is pre-trained on the COCO2014 dataset and it is placed
between the other two in terms of metrics. The processing speed is 58 ms per
image, while the COCO mAP is 28. The dataset used for the fine-tuning phase is
dataset Reply with images of 800 × 600.

Figure 5.18: List of parameters used to train the Faster
R-CNN Inception v2 model.

Chapter 6

Results and Discussion

In this section, the results of each model will be illustrated. In order to compare
the three models used, they are run on a dataset of new images (dataset Test α and
dataset Test β) and the main important metrics are calculated. For each image in
each dataset, the location and class id of each item have been manually annotated.
Then, after running the object detection model on the image, the result is compared
with the ground-truth in order to calculate those metrics. In particular, the metrics
used are: FP (false positives), FN (false negatives), accuracy, IoU (intersection over
union) and inference time per image.

The metrics are defined as follows:

• FP : it is the total number of false detection in the image

• FN : it is the total number of items that are not detected by the model. For
this value, also the normalized version is calculated.

• IoU : it is the ratio between the total area of intersection of the ground-truth
box and the box produced by the algorithm and the total area of union (figure
[6.1])

• Accuracy : it is the ratio between the detected items over the total number of
items present for that class

• Inference time: it is the time required by the model to produce the results

Each bounding box produced by the object detection algorithm comes together
with a probability value, which indicates the confidence of the model about that
detection. The higher the confidence, the higher is the probability that the detection
is correct. However, the algorithm produces a lot of bounding box proposals and it
is up to the user to discard those with a low confidence value in order to keep only
the results that are expected to be correct. This selection is done using a threshold
parameter: only the boxes with a confidence value higher than the threshold are
drawn in the image.

The number of FP reflects the ability of the model to highlight only the true
items in the image, and it is highly correlated with the threshold on the confidence
level of the detection. Indeed, if this threshold is low (for example 15%), even
a bounding box with a confidence of 20% is drawn. However, since every model

57

CHAPTER 6. RESULTS AND DISCUSSION 58

Figure 6.1: The Intersection over Union score is the ratio
between the area of intersection and the total area of union

of the two bounding boxes.

used is able to label the correct bounding boxes with a very high confidence (over
85%), all those detection between 15% and 85% are likely to be wrong. Hence, the
threshold should be selected a posteriori, after having analyzed the confidence level
of the correct classifications. If the confidence threshold is low, there will be an high
number of FP, while with an higher threshold the number of FP is reduced. In this
project, the detection threshold has been fixed to 50%.

The FN (and the normalized FN) value reflects the ability of the model to detect
all the items in the image. A missing detection can be originated by two causes:
the bounding box around that item has a confidence level under the threshold or
the algorithm has not produced any bounding box around it. In the first case, it is
sufficient to tune the confidence threshold in order to minimize the FN, while in the
second case the error cannot be restored and it is due to the performances of the
model.

Since in this algorithm the image is given to the object detection module and
then all the other elaborations are made on top of its output, it is important to
ensure that all items are detected: indeed, if an item is missed, there is no way
to detect it anymore and it will be labelled as a FN. On the other hand, if all
items are detected and even some FP are picked out, it is possible to discard them
in subsequent steps by, for example, analyzing their position or by using another
classifier on top of the object detection model. Hence, the goal of the application is
to minimize the number of FN even without caring about the number of FP, since
the latter can be adjusted at a later time.

The IoU value indicates the ability of the model to draw the bounding boxes at
the correct location and with the correct dimension. In order to be compared, the
two bounding boxes need to have the same class id. If the IoU is high (over another
threshold) then the localization is correct, while if it is low there is a localization
error. An important aspect to point out is that if there are two items of the same
class that are adjacent in the shell, changes are that the two identified bounding
boxes are slightly overlapping and so the IoU is different from 0 and very low. In
this case, there would be 2 localization errors (one for each couple item/bbox of the

CHAPTER 6. RESULTS AND DISCUSSION 59

other item) even if it is all correct. In this application, since there is only one item
for each class, this problem does not subsist, but it is important to consider it for
future development. For this project, the IoU threshold has been fixed to 90%.

The accuracy is calculated over the entire dataset, since it is not possible to
calculate it for every image. Indeed, since there is just one item for each class, the
accuracy per image can only be 0 in case of missing detection or 1 in case of correct
detection. Hence, the accuracy is defined as the total number of detected items of
each class over the total number of items actually present.

The inference time is the time required to the model to produce the output
results on the image. Of course, this time is to be considered only for comparing the
different frameworks and the different image sizes. The results that are illustrated
below are calculated using a laptop computer with no GPU installed.

6.1 V1: SSDLite Mobilenet v2

The SSDLite model is the one with the lower inference time per image. Its con-
figuration allows to use large images for training (up to 2592 × 1944) and so the
model can work also with high resolution inputs. However, this has the counter
effect that the model is not very precise in detecting the items. The low number
of FP is balanced by the relatively high number of FN : the model is not able to
graphically catch the items, so it “forgets” some of them; however, this fact comes
with the advantage of having also low FP. Thanks to the low number of parameters,
this model is suitable to be run on small portable devices such as smartphones and
surveillance cameras, at the price of sacrifice some accuracy.

The most important analysis that can be done is on the accuracy of the model for
each class id. In the following graphics it is shown the fraction of items localized over
the total number of items actually present in the dataset. The figure [6.2] shows the
accuracy results with images with a resolution similar to those used for the training.
In figure [6.3] and [6.4] there are the results with the same images but resized. In
general, those results are good but far from optimum, since almost 2/3 of the items
are not detected by the model. The class with the lower accuracy is “mademoiselle”
with a score of just 23%. It can be noticed that the performances slightly increases
with low quality images, but these improvements are not remarkable: with this
considerations, it is clear that the best practice will be to use low quality image to
reduce the inference time, since the results will have almost the same accuracy. On
the dataset v3, this model is less accurate, and there are classes like “croyance”,
“lonia” and “mademoiselle” with a poor accuracy score (under 5%) ad so they are
almost never detected by the model (figures [6.5], [6.6] and [6.7]). Since the classes
“croyance” and “mademoiselle” are two of the less represented in the dataset v1
used for the training, these results can be explained by saying that the model didn’t
have enough images to memorize the graphical structure of them. In particular,
there are 120 images of “croyance” and 175 images of “mademoiselle”, while all the
other items are represented by over 200 images. Except for the class “ambre” which
is always detected, the scores for the other classes are around 50%.

It is also possible to exploit the ability of the model when the input image has
different resolutions. In particular, the following graphics represent the number of

CHAPTER 6. RESULTS AND DISCUSSION 60

Figure 6.2: Accuracy of the SSDLite MobileNet v2 model on
dataset Test α with images of 2292 × 1719 resolution.

Figure 6.3: Accuracy of the SSDLite MobileNet v2 model on
dataset Test α with images of 1024 × 768 resolution.

CHAPTER 6. RESULTS AND DISCUSSION 61

Figure 6.4: Accuracy of the SSDLite MobileNet v2 model on
dataset Test α with images of 800 × 600 resolution.

Figure 6.5: Accuracy of the SSDLite MobileNet v2 model on
dataset Test β with images of 4032 × 3024 resolution.

CHAPTER 6. RESULTS AND DISCUSSION 62

Figure 6.6: Accuracy of the SSDLite MobileNet v2 model on
dataset Test β with images of 2297 × 1292 resolution.

Figure 6.7: Accuracy of the SSDLite MobileNet v2 model on
dataset Test β with images of 800 × 450 resolution.

CHAPTER 6. RESULTS AND DISCUSSION 63

FP, normalized FN and localization errors when compared to the image resolution.
The FP value is obtained by averaging the number of FP for each image, while the
normalized FN is obtained in the same way, after having normalized the FN for
each image. Also the localization errors are normalized by the number of items in
the image and then averaged over the all dataset. In the figure [6.8] these results
are shown.

Figure 6.8: FP, NFN, IoU and localization errors for
different image resolutions for the SSDLite MobileNet v2

model.

The main consideration that emerges from this analysis is that the SSDLite
model is quite unpredictable to correctly identify and locate items in the image.
Indeed, there are classes for which the totality of occurrences are detected, while
there are also classes with a very low accuracy. For example, the “doucefaute” class
always obtains an accuracy value near 0.8, while the class “mademoiselle” has very
poor results. Also, the FP is always near 0.5, so there are not many cases where the
pruning algorithm has to remove false detection. The NFN is even lower, around
0.2, but here it is useful to analyze the FN values without normalizing: in the
dataset Test β, where there the majority of images have just one item, the FN is
around 0.8, so there is 80% of probability that the algorithm will not be able to
detect the item in the image. This is reflected by very low accuracy results in the
graphics above. In a real scenario, if the image contains an high number of items
and someone is not detected by the algorithm, then it is not a big problem but, if in
the image there is just one item and that one is not detected, the application is far
from optimum. This is what happens with dataset Test α, where images have more
items in the shelf: the FN is around 2, so we have 2 missed detection in the average

CHAPTER 6. RESULTS AND DISCUSSION 64

case, and this is a more acceptable result. The normalized localization error value
is very low, around 0.01 so, when there is a detection, this is at the right position.
This fact is reflected also by the IoU indicator, which is always around 0.8.

For what concerns the inference time, the analysis is made at the end with the
data from the other two models. An anticipation is that this model is thought to
sacrifice the accuracy in order to be very fast in processing an image, so it is the
model with the lowest inference time.

In figures [6.9] and [6.10] there are some examples of the output of this model.

(a) (b)

Figure 6.9: SSDLite output on dataset Test α.

(a) (b)

Figure 6.10: SSDLite output on dataset Test β.

6.2 V2: Faster R-CNN ResNet50

The Faster R-CNN ResNet model is the second model considered for this application.
It uses an higher number of weights, compared to the SSDLite model, and this has
two effects: on one hand the model is more precise and the accuracy scores increases;
on the other hand, the inference time for processing one image is higher and also the
model requires more space to be run on the device. The accuracy scores are shown
in the following graphics. In figures [6.11], [6.12] and [6.13] there are the results
for the dataset v2, where the number of items per image is around 6/7. It is clear
that the accuracy scores increases with the respect of the previous model: here, the

CHAPTER 6. RESULTS AND DISCUSSION 65

majority of classes are always detected and the few mistakes are due to illumination
artifacts and partial occlusions. However, for all classes the accuracy score is above
85%, which is a great result. Moreover, when reducing the image resolution, these
accuracy scores increase up to 90% even for the class “mandelbluten”, which is the
Achille’s heel of this model. These results are quite the same for dataset v3 (figures
[6.14], [6.15] and [6.16]), with scores that are above 90% for all the classes except
for the class “mademoiselle” for which the model is not able to go beyond 52% of
accuracy even with the images with lowest quality.

Figure 6.11: Accuracy of the Faster R-CNN ResNet50 model
on dataset Test α with images of 2292 × 1719 resolution.

The results in figure [6.17] show that the NFN value is considerably reduced
to 0.01 for dataset Test α and 0.04 for dataset Test β. Moreover, the FN value
without normalization is under 1 for both the datasets, so the probability to have
a false negative is very low. On the other hand, as a counter effect, the FP value
increases. This is because the model’s weights have learn the graphical features of
the items in such a precise way that it “sees” items also in other positions in the
image, obviously with a lower confidence score. The reason for which the number
of FP in higher for dataset Test β is that those images were acquired with some
coloured objects in the background that are interpreted by the model as items to
detect, while dataset Test α has always a flat background. These performances are
accompanied with an higher localization precision, so there are 0 localization errors
and the IoU is a bit higher than those of SSDLite.

The inference time per image, for this model, is higher than SSDLite for two
reasons: the first is intrinsic in the framework, since the Faster R-CNN module
needs more computational effort than SSD; the second is that the ResNet50 feature

CHAPTER 6. RESULTS AND DISCUSSION 66

Figure 6.12: Accuracy of the Faster R-CNN ResNet50 model
on dataset Test α with images of 1024 × 768 resolution.

Figure 6.13: Accuracy of the Faster R-CNN ResNet50 model
on dataset Test α with images of 800 × 600 resolution.

CHAPTER 6. RESULTS AND DISCUSSION 67

Figure 6.14: Accuracy of the Faster R-CNN ResNet50 model
on dataset Test β with images of 4032 × 3024 resolution.

Figure 6.15: Accuracy of the Faster R-CNN ResNet50 model
on dataset Test β with images of 2297 × 1292 resolution.

CHAPTER 6. RESULTS AND DISCUSSION 68

Figure 6.16: Accuracy of the Faster R-CNN ResNet50 model
on dataset Test β with images of 800 × 450 resolution.

extraction network is a very deep architecture (50 layers).
In figures [6.18] and [6.19] there are some examples of the output of this model.

6.3 V3: Faster R-CNN Inception v2

The third model used in this application is again a Faster R-CNN, but with a
different feature extraction architecture, the InceptionNet. This model is used to
compare the same framework with two different backbone networks. The accuracy
scores are comparable to the one of the previous model and are illustrated in the
graphics below. For dataset Test α (figures [6.20], [6.21] and [6.22]), the accuracy is
above 92% for all classes, with many of them with a score of 100%. In particular,
this model with 1024×768 images gave the best results of the application, with just
3 classes that are not perfectly recognized, but with significantly high scores: 93%,
96% and 97%. Also for dataset Test β the accuracy scores are very high, with almost
all classes at 100%; however, the model failed to recognize the class “entspannung”
with all the resolutions, with results of 55%, 47% and 73%.

One of the main drawbacks that emerges from the analysis of the metrics (figure
[6.26]) is that the number of FP for dataset Test β is around 3 for every image. This
indicates that this model is prone to errors when detecting graphical features. For
the other dataset, the results are comparable with the other model. However, the
FN score is close to 0, as for the previous model, so the majority of items are always
detected by the model. In the analysis, no localization errors are registered on both
the datasets, and the IoU score is always above 80%, as for the other models.

CHAPTER 6. RESULTS AND DISCUSSION 69

Figure 6.17: FP, NFN, IoU and localization errors with
different image resolutions for the Faster R-CNN ResNet50
model. The peaks in the FP are due to the variety of the

two datasets.

(a) (b)

Figure 6.18: Faster R-CNN ResNet output on dataset Test
α.

In figures [6.27] and [6.28] there are some examples of the output of this model.
The inference times of the three models are compared in figure [6.29]. As ex-

pected, the SSDLite model has always the lower value, while the Faster R-CNN
model requires more time to compute the results. Furthermore, the inference time
increases with the image resolution, since there are more pixel to analyze. In the
best case, the time required to process one 800 × 450 image is above 1 second,

CHAPTER 6. RESULTS AND DISCUSSION 70

(a) (b)

Figure 6.19: Faster R-CNN ResNet output on dataset Test
β.

Figure 6.20: Accuracy of the Faster R-CNN Inception v2
model on dataset Test α with images of 2292 × 1719

resolution.

so none of this models is suitable for building a real-time object detection system.
However, it is important to remember that these data are calculated on a laptop
without any GPU, so they can be substantially reduced by using a different hard-
ware architecture. The time required to the system to process a 4K image goes from
the 10 seconds for the SSDLite model to 15.6 seconds for the Faster R-CNN with
ResNet50. This interval, besides being prohibitive for a real-time system, is also
restrictive for any other application which uses this image. However, as said before,
changes are that using a highly performing GPU will reduce this delay even under
1 second. On the other hand, the real-time systems usually work with low quality
images (for example surveillance cameras), so there’s no need to process 4K images.

CHAPTER 6. RESULTS AND DISCUSSION 71

Figure 6.21: Accuracy of the Faster R-CNN Inception v2
model on dataset Test α with images of 1024 × 768

resolution.

Finally, it is important to point out that the resizing of an image is an instantaneous
operation and, hence, it is possible to create a system that receives in input images
of any resolution and then resizes them to the same (low) quality before feeding the
object detection model.

CHAPTER 6. RESULTS AND DISCUSSION 72

Figure 6.22: Accuracy of the Faster R-CNN Inception v2
model on dataset Test α with images of 800× 600 resolution.

Figure 6.23: Accuracy of the Faster R-CNN Inception v2
model on dataset Test β with images of 4032 × 3024

resolution.

CHAPTER 6. RESULTS AND DISCUSSION 73

Figure 6.24: Accuracy of the Faster R-CNN Inception v2
model on dataset Test β with images of 2297 × 1292

resolution.

Figure 6.25: Accuracy of the Faster R-CNN Inception v2
model on dataset Test β with images of 800× 450 resolution.

CHAPTER 6. RESULTS AND DISCUSSION 74

Figure 6.26: FP, NFN, IoU and localization errors with
different image resolutions for the Faster R-CNN Inception

v2 model. The peaks in the FP are due to the variety of the
two datasets.

(a) (b)

Figure 6.27: Faster R-CNN Inception output on dataset
Test α.

CHAPTER 6. RESULTS AND DISCUSSION 75

(a) (b)

Figure 6.28: Faster R-CNN Inception output on dataset
Test β.

Figure 6.29: Time required by the model to produce the
output given the image resolution.

Chapter 7

Applications

In this chapter, two applications of the object detection system are presented. In-
deed, as discussed in chapter 3, the object detection module is encapsulated inside
a more complete system which is thought to be used in real industrial applications.
These are self-checkout, marketing analysis on the stores or customers’ advisor on
products. Both the application has been fully developed using the Flask library in
Python.

7.1 Oracle - Proxima Smart City

The Oracle Proxima Smart City (figure [7.1]) is a project made my Oracle whose aim
is to show the possibilities of creating a city where the main services are automated.
The Proxima is built with LEGO and it is powered by a set of sensors and open
source gateways (Raspberry PI, Arduino) that are connected to the Oracle Cloud.
In the demo, it is possible to observe the typical day of a citizen in the smart city and
how the automated services can help him. For example, it is possible to adjust the
light of the street lamps according to the presence of vehicles in order to save energy;
moreover, is it possible to ask for park availability to a Digital Assistant which search
for free parks using machine learning techniques. These services are thought in two
ways: the first is to help the citizens’ life by automating some processes; the second
is to make an intelligence surveillance over the environment in order to save energy
and to increase the standard of living.

An idea for the Oracle Proxima Smart City is an automated self-checkout system
which will help customers inside a store to reduce the time spent shopping. Ideally,
the system should be able to track the activity of any customer in real-time and to
produce a virtual ticket of his/her purchases. On the other hand, if the customer
acquires a photo of the goods in the shelf, the system could enrich that image with
information on the product and so on. All these services can be run only if the
system is firstly able to detect and classify the items on the shelf and return their
position. On top of that, any kind of elaborations can be made.

In this thesis, the object detection module described in the previous chapters is
used to detect and classify the items on the shelf starting from an image of it. Since
the acquisition of the photo is up to the customer, the system needs a front-end
part (an App) that can be used by people to send images to the detection module,
which is running on a remote server. In order to perform this, a Web Service has

76

CHAPTER 7. APPLICATIONS 77

Figure 7.1: Representation of the Oracle Proxima Smart
City. Source of the image:

https://www.oracle.com/it/corporate/pressrelease/italia-
startup-milan-digital-week-2019-03-07.html

been developed.
From the front-end perspective, the user is asked to acquire a photo and to

select the store ID and the shelf ID from a list in order to identify the specific shelf.
Indeed, the shelves could have different sizes and structures. Then, after acquiring
the picture, this information is sent to the server which feeds the object detection
model with the image and uses the shelf identifier to retrieve the structure and to
place the items at the correct position. For example, if the shelf is identified by the
code S001 and is composed by two trays (upper and lower), then the system will
place the items either on one of these trays depending on the position calculated by
the object detection module.

The image is sent to the server in the payload of an HTTP request, while the
other information are encapsulated inside a JSON file which is automatically pro-
duced by the system (figure [7.2]). The JSON file also contains a field with the image
name. The JSON file request is serialized into a Python class named ProximaRequest
whose attributes are the JSON fields:

Figure 7.2: The JSON file produced by as an HTTP request
and sent to the server, together with the image to analyze.

CHAPTER 7. APPLICATIONS 78

• meta is an unassigned field

• storeID is the identifier of the store

• shelfID is the identifier of the shelf inside the store

• imageName is the name of the loaded image

When the server receives that request, it checks both the imageName, that has
to be not empty and the image extension, that should be in a list of allowed (jpg,
jpeg). If these tests don’t succeed, an ErrorResponse class creates an error message
and sends it to the user deserializing it into a JSON file in order to be readable.
Otherwise, the server saves the image inside a specific directory and creates another
object of class ProximaResponse that somehow extends the ProximaRequest class
and that will be populated with the information from the object detection module.

At this point, an object of class Detection is created by passing the absolute
path of the image saved in the server. This method has a private attribute which is
called detect info that is an array where the results of the detection are saved (figure
[7.3]). The coordinates of the center of the bounding box are calculated so that the
items can be ordered from left to right in the image.

Figure 7.3: A representation of the array that contains the
information extracted by the object detection module. The

last two columns (x c and y c) are calculated from the other
coordinates and they are the center of the bounding box.

The last step is to populate the attributes of the class ProximaResponse with the
detection information. In particular, the response contains the same attributes of
the request (meta, storeID, selfID and imageName) but is enriched with two others:

• numProd is the number of items detected by the algorithm

• products is a list where each element is composed by:

– name of the detected item

– bbox as a list of the 4 rectangle coordinates: [xmin, xmax, ymin, ymax]

This response is deserialized to a JSON file and returned to the user (figure
[7.4]). There are several ways to return the information to the user: for example, it
is possible to return the original image with the bounding box and the class names.
However, this format has been discarded to reduce the response time of the system.
Indeed, if the object detection module runs on a server with high computational

CHAPTER 7. APPLICATIONS 79

capabilities, the bottleneck of the entire system is the transmission of the image
from the client to the server. If the server has to process the image and then
return it to the client, the time required for the response would have been doubled.
However, since drawing the bounding box on an image could be done locally, the
server just sends to the client the coordinates in a JSON file, which is softer.

Figure 7.4: The JSON file produced by the server and sent
back the client.

When the file is correctly received by the client, then it is up to the front-end
to present it to the user, depending on the application. This last part is out of the
scope of this thesis, but all the possible applications just need the information on
the JSON file.

7.2 Reply - Automatic Products Recognition

The second application of the object detection module, in this thesis, is an automatic
product recognition for marketing analysis. Indeed, when the suppliers sell their
goods to the stores, they virtually “buy” the shelves to place their products. Once
the trade agreements are concluded, the suppliers need to check whether their goods
are placed in the correct way. On the other hand, the store manager can carry out
some marketing analysis on the number of sales as a function of the product position.
For example, people that buy chips are likely to buy also ketchup if it is placed close
to them as against it is placed on another shelf. Another example, two companies
that produce the same good are more interested in placing them as far as possible.
On the other side, the store manager has the interest in placing similar goods in

CHAPTER 7. APPLICATIONS 80

the same sector to facilitate the customers. Hence, for both the parts, a system
that automatically detects the goods in the shelves and highlights also the empty
positions would be of great interest.

In this case, the real-time system is not needed, since the analysis is made on
images acquired by the analysts. The system uses a Web Service where the object
detection module is at the server side, while at the client side there is an App that
allows for loading an image with some information. In the real scenario, since the
post processing operations are done by the server, the response given to the client is
less detailed. Once the client has sent the image to the server, the server just returns
an ACK for the correct reception and then further process the image locally. The
detection info that are produced by the object detection module are the same for
the previous application (figure [7.3]), but are elaborated in a different way. The
JSON file attached to the image sent by the client contains the shelf identifier and
the image name/path (figure [7.5]).

Figure 7.5: The JSON file produced by the client and sent
to the server, together with the image file.

In the server, there are two tables “DM SCAFFALI” and “DM PRODOTTI”
that contain the information about the shelves and the products, with a key value
to identify them. These tables are shown in figures [7.6] and [7.7].

Figure 7.6: The table DM PRODOTTI that contains the
information about the products to detect in the shelves.

CHAPTER 7. APPLICATIONS 81

Figure 7.7: The table DM SCAFFALI that contains the
information about the shelves. The number of rows is the

number of trays of the shelf.

With the information extracted by the object detection module and post pro-
cessed, the server fills out another table “FT SCAFFALI PRODOTTI” (figure [7.8])
where each product is assigned to a position in the shelf, according to its bounding
box coordinates.

Figure 7.8: The table FT PRODOTTI SCAFFALI that
contains the information about the products placed in the
shelf. The row column indicates the tray in the shelf, from

down on). The col column is referred to the relative position
of the items in the same row, from left to right.

Once this table is filled with the products, then it is possible to use another
software for the analysis of the merchandising, for example Power BI. Microsoft
Power BI is a software for the visualization of data, which retrieves the information
from a database and allows to create an interactive report with tables and graphics.
In the following pictures (figure [7.9] and [7.10]), there are some screenshots from
the Power BI products analysis.

CHAPTER 7. APPLICATIONS 82

Figure 7.9: Top left: disposition of the items on the shelf.
Top right: pie chart of the occupation of the products.

Bottom left: price analysis. Bottom center: histogram of the
product brands. Bottom right: pie charts of the category

and brand occupation.

Figure 7.10: Left: comparison between occupied slot and
agreed slot. Top right: analysis of agreed correspondence.

analysis of the adjacent categories of the products.

Chapter 8

Conclusions

In this thesis, an object detection framework has been used to build an automatic
products recognition system that is able to detect a catalogue of 16 types of items
placed on a shelf. As discussed in chapter 1, such a system is of extreme importance
in the mapping of the store and the information extracted with it can be used in
several applications. Two of these applications have been analysed and discussed
in chapter 7: the Oracle Proxima Smart City and a commercial brand analyzer.
While the first aims at introducing a new kind of shopping where cameras and
sensors are able to detect and take care of the customers’ bills without creating a
bottleneck at the check-out, the second application is more related to the monitoring
of the commercial agreements. These are two examples of the various applications
achievable with an object detection system. Indeed, the main important thing, as
discussed in chapter 1, is to maintain an updated database of the items in the shelves,
and then this information can be used as wished. This is what is actually done by
the Object Detection module of this project, which uses a deep neural network to
identify and locate the items in the image.

The choice of TensorFlow as deep learning environment is justified by the fact
that it is the most widespread and documented tool for this kind of applications.
Moreover, it provides some easy-to-use classes and Python scripts to train and test
the neural networks. Finally, it comes with some pre-trained models (TensorFlow
Model Zoo) that can be fine-tuned by users on some specific datasets, as it was our
case. The only drawback was the preparation of the dataset, since every image had
to be manually labelled. The dataset preparation phase is perhaps the bottleneck
of these kind of applications, since the network has to be retrained with new images
every time that an item is added to the catalogue. Indeed, the models trained in
this thesis are able to detect with high accuracy all of the 16 items of the list, but
adding a new item would require a completely new dataset and a new training phase.
This is the main open issue of this project, since any amendment in the catalogue
of items requires a lot of work. On the other hand, we can be satisfied with the
results on the restricted dataset used. Moreover, as suggested by the authors of the
pre-trained models, the maximum number of item classes that can be detected and
classified can reach also 90, which is enough to cover the catalogues of many specific
stores.

The model selection is guided by the QoS required by the application. The
general trend of the object detection models is that the accuracy is inversely pro-

83

CHAPTER 8. CONCLUSIONS 84

portional to the inference time required to produce the result. As discussed in
chapter 6, among the three models, the SSDLite is the fastest and the less precise
at the same time. If the model was installed on a powerful server with high com-
putational capabilities, the SSDLite would probably be the most suitable choice for
building a system that works in real-time. The low accuracy would be compensated
with an high number of possibility to identify the items. Things are different when
considering applications that works offline, since the object detection module is not
required to give results instantly. In this case, the inference time is sacrificed in
favour of a more accurate and precise network, as Faster R-CNN.

The analysis of the different networks, together with their capabilities and limits
is the part where I focused the most during the development of the project. Indeed,
the Web Service module has nothing to do with the deep learning system, but it is
thought to give users a readable and easy-to-use interface to send the image to the
server and receive the results.

Bibliography

[Lec+95] Yann Lecun et al. “Comparison of learning algorithms for handwritten
digit recognition”. In: Jan. 1995.

[FH04] Pedro Felzenszwalb and Daniel Huttenlocher. “Efficient Graph-Based
Image Segmentation”. In: International Journal of Computer Vision 59
(Sept. 2004), pp. 167–181. doi: 10.1023/B:VISI.0000022288.19776.
77.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Neural Infor-
mation Processing Systems 25 (Jan. 2012). doi: 10.1145/3065386.

[Gir+13] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object De-
tection and Semantic Segmentation”. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(Nov. 2013). doi: 10.1109/CVPR.2014.81.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In:
CoRR abs/1312.4400 (2013).

[Ser+13] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization
and Detection using Convolutional Networks”. In: International Con-
ference on Learning Representations (ICLR) (Banff) (Dec. 2013).

[Uij+13] J. R. Uijlings et al. “Selective Search for Object Recognition”. In: Int. J.
Comput. Vision 104.2 (Sept. 2013), pp. 154–171. issn: 0920-5691. doi:
10.1007/s11263-013-0620-5. url: http://dx.doi.org/10.1007/
s11263-013-0620-5.

[ZF13] Matthew Zeiler and Rob Fergus. “Visualizing and Understanding Con-
volutional Neural Networks”. In: vol. 8689. Nov. 2013. doi: 10.1007/
978-3-319-10590-1_53.

[SZ14] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: arXiv 1409.1556 (Sept.
2014).

[Gir15] Ross Girshick. “Fast r-cnn”. In: (Apr. 2015). doi: 10.1109/ICCV.2015.
169.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: (Feb.
2015).

[Liu+15] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325
(2015). arXiv: 1512.02325. url: http://arxiv.org/abs/1512.02325.

86

BIBLIOGRAPHY 87

[Ren+15] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 39 (June 2015). doi: 10.1109/
TPAMI.2016.2577031.

[Sze+15] Christian Szegedy et al. “Going deeper with convolutions”. In: June
2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

[He+16a] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
June 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[He+16b] Kaiming He et al. “Identity Mappings in Deep Residual Networks”.
In: vol. 9908. Oct. 2016, pp. 630–645. isbn: 978-3-319-46492-3. doi:
10.1007/978-3-319-46493-0_38.

[RF16] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”.
In: (Dec. 2016).

[Red+16] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: June 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

[SIV16] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning”.
In: AAAI Conference on Artificial Intelligence (Feb. 2016).

[Sze+16] Christian Szegedy et al. “Rethinking the Inception Architecture for
Computer Vision”. In: June 2016. doi: 10.1109/CVPR.2016.308.

[Cho17] Francois Chollet. “Xception: Deep Learning with Depthwise Separable
Convolutions”. In: July 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.
195.

[How+17] Andrew Howard et al. “MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications”. In: (Apr. 2017).

[Hua+17] Gao Huang et al. “Densely Connected Convolutional Networks”. In:
July 2017. doi: 10.1109/CVPR.2017.243.

[Xie+17] Saining Xie et al. “Aggregated Residual Transformations for Deep Neu-
ral Networks”. In: July 2017, pp. 5987–5995. doi: 10.1109/CVPR.2017.
634.

[RF18] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: (Apr. 2018).

[San+18] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks”. In: June 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.
00474.

