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Abstract

In this thesis we address the problem of building a Quantum Resource
Theory in infinite dimension. In particular, we study bosonic non-classicality
as a Quantum Resource in continuous-variable Quantum Information. After
reviewing the formalism of open quantum systems and Quantum Optics, we
introduce the framework of Quantum Resource Theories and we discuss the
case of non-classicality, and its applications in Quantum Optics and Quantum
Technologies. Finally, we study a Resource Theory of non-classicality based
on the standard and measured relative entropies of non-classicality as resource
monotones and we prove, for the first time in an infinite-dimensional Resource
Theory, a bound for asymptotic conversion rates.
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Introduction

More than a century after the seminal works which led to the complete formalisation of
Quantum Mechanics, scientists are still far from making their peace with the disruptive
innovations they introduced. Nonetheless, there is a rapidly increasing effort devoted to
exploring how we can make use of the rules of Quantum Mechanics in order to obtain
technological advantages. Interestingly enough, the most counterintuitive and debated
features of Quantum Theory seem to be precisely the ones allowing for better perfor-
mances with respect to classical technologies. It is likely that we will learn how to exploit
these peculiar aspects of Quantum Theory in (every-day?) technological devices much
before we will, if ever, get used to them.
The exploration of concepts such as quantum entanglement and quantum coherence paved
the way for the birth of what is now called Quantum Information Theory, a flourishing
subfield of Quantum Physics. Throughout this thesis, we will employ the language and
technical tools of Quantum Information Theory and the theory of quantum open systems;
at any rate, we will introduce in detail the large majority of the objects we will make use
of, and point to references otherwise.
Technological implementations that make use of properties of Quantum Mechanics such
as entanglement or coherence are collectively known as Quantum Technologies and, as we
already anticipated, represent a very active area of research. While many challenges are
faced at the experimental level, in the last few decades these developments has motivated
a whole new line of theoretical research: Quantum Resource Theories. Actually, this
rapidly emerging branch of Quantum Information Theory is deeply rooted in experimen-
tal research, as it sprang directly from the awareness that quantum objects are incredibly
hard to manipulate. Indeed, if on one hand QuantumMechanics describes how a quantum
state can evolve in time in full generality, on the other hand Quantum Resource Theories
considers the question: which kinds of quantum dynamics can we reproduce in an actual
laboratory? In practice, any Quantum Resource Theory starts by identifying a set of
“allowed” (i.e., experimentally accessible) quantum states Df (H) and a set of allowed op-
erations Of (H → H′), based on some physically motivated assumptions. This peculiar
approach to Quantum Theory also justifies the choice of the word “resource”: just as min-
eral resources cannot be produced, but only consumed and exploited, quantum resources
cannot be generated in a quantum system once experimental limitations are taken into
account. Obviously, the notion of resources itself will vary depending on the particular
experimental setting considered and on the choice of Df (H) and Of (H→ H′): different
initial hypothesis lead to completely different Quantum Resource Theories.
In general, a quantum resource is a certain feature that quantum objects such as states
and operations may (or may not) display, that is not observed in our macroscopic, classical
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world, and that can be of some practical use. Quantum states and operations contain-
ing some amount of resources are said to be resourceful, and can usually be exploited
to enhance the performance of certain protocols, or even to achieve certain tasks that
otherwise would be absolutely impossible.
A central problem of any Resource Theory is that of quantifying the amount of resource
contained in a given quantum object, as our ability to make any quantitative statement
depends upon it. To this end, a resource quantifier F , assigning a “value” F(ρ) ∈ R+ to
any state ρ, can be defined; they are known also as resource monotones, as they cannot
increase in value as long as we apply only operations in Of (H → H′) to ρ. This is a di-
rect consequence of the fact that resources cannot be produced with the readily available
operations: otherwise, they would not be resources at all. We will see many examples of
resource monotones in the course of the thesis.
Entanglement theory, being the first and most studied Resource Theory, is a canonical
example. Here, all the ingredients of the Resource Theory are easily identifiable and
physically intuitive: the experimental limitation consists in the spatial separation be-
tween two or more laboratories, and the fact that quantum states cannot be reliably sent
over long distances; the quantum resource is, of course, entanglement itself (even though
it is not trivial to determine what entanglement actually is); an information-theoretic
task which cannot be performed without entanglement is the celebrated quantum tele-
portation of a quantum state; as for the resource monotones, many proposal have been
studied throughout more than two decades, and some of them will be discussed in this
thesis. For long, quantum entanglement was believed to be the most distinctive feature
of Quantum Mechanics. With the advent of Quantum Resource Theories, it became clear
that, depending on the context, different properties of quantum systems can emerge as
“quantum signatures”, i.e., as quantifiable departures from those behaviors Classical Me-
chanics got us accustomed to.
Now that we presented the questions which motivate the theoretical research in Quan-
tum Resource Theories, it is time to ask ourselves what kind of answers they manage
to provide. The most basic problem that can be addressed within a Quantum Resource
Theory regards the manipulation of resources via state interconversion. Usually, when a
certain amount of resource is at our disposal, it is not in the most useful form. Hence,
it is fundamental to understand to what extent we can transform certain states into oth-
ers once constraints on the set of operations are present. The monotonicity of resource
quantifiers can be exploited to prove useful upper bounds on the efficiency of such pro-
cesses: if resources cannot be generated during the evolution, the output state must be
less resourceful than the input one.
In the spirit of Resource Theories, we want to obtain results which can be of some use
in actual experimental situations. For instance, exact transformation between states are
far too ideal, as no realistic state can actually be noiseless, and small deviations from the
target are irrelevant for practical purposes. So, we want to relax the requirement from
exact transformation between states to approximate (in a sense that we will make rigor-
ous) ones. It is important to notice that this is not just a useless mannerism: typically,
many state conversions become possible only if we allow for small errors in the result.
Moreover, we want to allow for infinitely many identical copies of the input states, as in
many experimental situations copies of a quantum state can be generated in sequence.
In other words, we want to approximately convert the state ρ⊗n into ρ′⊗m, with n be-
ing large by hypothesis and m being as large as possible. This particular type of state
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conversion is known as asymptotic state conversion, and its maximum efficiency is given
in terms of the number of copies of the output state ρ′ per copy of the input state ρ.
Depending on whether we require the error of each single copy of the output state or their
sum to be “small”, we obtain two slighly different processes, with two different maximal
efficiencies, denoted respectively as R̃(ρ → ρ′) and R(ρ → ρ′). Since the latter case is
more stringent, it clearly holds R(ρ→ ρ′) ≤ R̃(ρ→ ρ′). Our aim is to arrive at a result
in the form

R̃(ρ→ ρ′) ≤ F(ρ)

F(ρ′)
(1)

for some resource quantifier F , by suitably exploiting its monotonicity.
A powerful characteristic of Quantum Resource Theories is their generality, as they do
not depend directly from the details of the particular physical system we are consider-
ing. Nonetheless, when one constructs a Resource Theory, he/she usually has in mind
a class of quantum systems motivating the choice of the constraints. For example, the
physical framework which we will mostly work with throughout this thesis is that of
Quantum Optics. Many Quantum Technologies, such as quantum computing, quantum
communication and many more, rely on quantum optical platforms. These quantum
systems represent some of the most promising realisations of quantum resources-driven
technological devices. The easiest quantum states to be generated and manipulated in a
quantum optical system are coherent states and their probabilistic mixtures. Moreover,
states which do not belong to this class may display operational advantages in some rel-
evant tasks such as entanglement generation, secure quantum key distribution, quantum
computing, and quantum metrology. So, in this case, the choice of the set of available
states is very natural. States which do not belong to the aforementioned set are said
to be non-classical, and can can be regarded as resourceful. These premises lead to the
Resource Theory of optical non-classicality.
Quantum optical systems are described by continuous variables; they display advan-
tages with respect to discrete ones but, at the same time, their mathematical treatment
is usually more cumbersome. For example, some mathematical results valid in finite-
dimensional spaces may fail for systems living on infinite-dimensional Hilbert spaces. In
particular, resource monotones usually becomes much “wilder”, loosing some interesting
analytical properties which can be crucial to prove certain results. For example, when
dealing with approximate transformations, some kind of continuity is required, as we need
to know whether similar states have also similar resource contents. Continuity is surpris-
ingly hard to have in infinite-dimensional spaces, and hence the efficiency of asymptotic
conversions typically cannot be bounded via resource monotones.
Despite the difficulties, we succeeded in proving a result in the form of (1) for the Resource
Theory of optical non-classicality by introducing a resource monotone based on the mea-
sured relative entropy, and showing that it displays the properties we need. In particular,
it is lower semi-continuous, meaning that small errors cannot cause the resource content
of a quantum state to drop abruptly. This implies that it cannot be “much easier” to
produce the approximate output state rather than the exact one. It is also super-additive,
meaning that the resource content of many copies of a state cannot be less than the sum
of the resource contents of each single copy. By combining these properties, we arrive
at the desired result. To the best of our knowledge, this is the first example of such a
bound in an infinite-dimensional Resource Theory. Furthermore, the whole machinery
developed throughout the work can be readily applied to other infinite-dimensional Re-
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source Theories. The bound can be easily approximated via a variational program as F
can be written as a maximisation, and it can be upper bounded by a quantity written as
a minimisation. By plugging suitable ansatzes in both the optimisations, we can easily
upper bound the numerator and lower bound the denominator, hence approximating the
bound over R(ρ → ρ′) up to an arbitrary precision. This is a crucial point, as many
bounds in Quantum Resource Theories are unmanageably hard to compute in practice,
even in finite dimensional spaces. Furthermore, we prove that the resource content of any
finite energy (and hence physical) state, is finite. This is a highly non-trivial yet crucial
result in an infinite-dimensional Resource Theory: if the resource monotone diverges, the
bound (1) may become meaningless.
Finally, we prove a number of additional results which help further the computation of
the aforementioned bound. A method for efficiently approximating, up to an arbitrary
precision, the resource content of general Fock diagonal states is given. It is then applied
to Fock states and noisy Fock states, i.e., classical mixtures of Fock and thermal states.
Noisy Fock states are often a good model for Fock states produced in a non-ideal labo-
ratory. The resource content is bounded for cat states as well, for different values of the
defining parameter. Protocols for the purification of Fock states and the concentration
of cat states are considered. Both these classes of quantum states find applications, for
instance, in linear optical quantum computation, where the considered experimental re-
strictions do apply.
In the following, we briefly summarize the content of the thesis.
In Chapter 1 we start by reviewing the Quantum Theory for open systems, which will
be our natural habitat for the rest of the work. We introduce all the basic objects we
need, such as density operators, quantum channels, POVMs, channels and measurements
dilations, alongside with some more specific results which will come in handy in the fol-
lowing chapters. Then, we review the well-established theory of Quantum Optics, which
will serve as the physical background for the last two chapters. After a brief review
of the theoretical fundaments of the field, we will concentrate mostly on some specific
concepts which will be extensively used afterwards: s-ordered characteristic functions,
quasi-probability distributions, gaussian states and gaussian operations, linear optical
operations. To conclude the chapter, we address a central problem of Quantum Infor-
mation Theory, namely quantifying the distance (in a loose sense) between quantum
states. To this end, we discuss some very popular quantifiers of such “distance”: trace
norm distance, relative entropy and measured relative entropy, and respective analytical
properties. Arguably, the most important result presented in this chapter is Lemma 1.16,
concerning a variational (i.e., expressed in terms of optimisations) representation of the
meaured relative entropy. Ultimately, this result will stand at the core of Chapter 4.
In Chapter 2, the framework of Resource Theories, and in particular Quantum Resource
Theories, is presented in detail. Here, the language and the majority of technical tools
exploited in the rest of the work are introduced. In section 2.1, the general philosophy
of Resource Theories is presented. Moreover, the difference between Quantum Resource
Theories defined at the level of states and at the level of operations is studied. The
discussion becomes more quantitative in Section 2.2: we present the notion of resource
monotones, with relevant explicit examples such as relative entropies and robustnesses
of resources, and many crucial analytical properties we might require for them. A basic
resource-theoretic task, namely the interconversion between resourceful quantum states
by means of free operations only, is addressed and discussed in detail for different scenar-
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ios. A particular case of state interconversion, namely the asymptotic interconversion,
will serve as a motivation for the definition of a new Resource Theory of non-classicality,
which Chapter 4 is devoted to. Finally, some of the most known examples of Quantum
Resource Theories are briefly considered: entanglement, coherence and quantum ther-
modynamics. They allow us to show some examples of resource monotones displaying
appealing analytical properties and some typical resource-theoretic results.
In Chapter 3, the concept of (optical) non-classicality is finally introduced. We define
the set of free states, i.e., classical states, and discuss possible choices for the set of free
(classical) operations. Different mathematical characterisations for classical states and
operations are discussed as well. Then, we start reviewing some past proposals for non-
classicality Quantum Resource Theories. Our aim is twofold: we want to familiarize with
the topic and, at the same time, to prepare the background for relating these Resource
Theories with the one developed in the following chapter.
Finally, in Chapter 4, we present in full detail our proposal for a Resource Theory of non-
classicality, based on the relative entropy and its measured version as resource monotones.
The heart of the Chapter is represented by Theorem 4.9. It allows us to prove crucial
properties for our monotones, and ultimately to prove a result which has no precedents in
an infinite-dimensional Resource Theory: a bound on (maximal) asymptotic conversion
rates. We also explain why other Resource Theories of non-classicality were not able to
prove a similar result. At last, applications to specific states are considered.
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1 | Preliminaries and formalism

1.1 Foundations

1.1.1 Axioms

We start by briefly reviewing the formalism of open quantum systems, which represents
the most sensible framework to deal with Quantum Resource Theories and Quantum
Information in general. An open quantum system is a physical system which obeys the
rule of Quantum Mechanics and interacts with an environment whose properties we
are not interested in. On the contrary, a closed quantum system is a quantum system
which does not interact with anything but itself. No realistic system can actually be
considered closed, as any effort to perfectly isolate it from the environment is doomed to
fail. Nonetheless, in many cases it is reasonable to approximate a physical system to be
closed; at any rate, closed systems can be regarded as a special case of open ones, so we
will focus our attention on the latter case from now on. For the theory of open quantum
systems we will refer mostly to [1], [2] and [3].
Mathematically, any quantum system is associated to a Hilbert space H [4]; their
formalism allows to define Quantum Mechanics by means of the following axioms.

A1) A physical system is completely described by its state, which is represented by a
density operator ρ ∈ D(H), i.e., an operator acting on H and satisfying:

S1) ρ† = ρ;

S2) Tr ρ = 1;

S3) ρ ≥ 0.

A2) The evolution of a quantum state is described by a completely-positive trace-
preserving (CPTP) map E : D(H)→ D(H′), i.e., a linear superoperator satisfy-
ing:

E1) E(ρ)† = E(ρ) for any ρ ∈ D(H);

E2) Tr E(ρ) = Tr ρ for any ρ ∈ D(H);

E3) (E ⊗ IE)(ρ) ≥ 0 for any ρ ∈ D(H ⊗HE) (complete positivity).

A3) Ameasurement is described by a positive operator-valued measure (POVM),
i.e., a set of operators {En}n satisfying:
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M1) E†n = En;

M2) En ≥ 0;

M3)
∑

nEn = I.

The probability of the n-th outcome is given by Tr(ρEn).

A4) Physical systems can be composed to form larger ones. The Hilbert space of a
composite system is the tensor product of the Hilbert spaces of its subsystems. If
each one of its subsystems is prepared in a state, the state of the total system is
given by their tensor product.

It is rather easy to show that these axioms can be derived from those for closed systems
in the case we have access to just a part of the total system, and the rest acts as an
environment.
Throughout the work, we will often refer to topologies which can be defined on a Hilbert
space, and to classes of operators acting on it. For a very brief compendium of these
topics, see Appendix A.

1.1.2 Pure and mixed states

What is the link between density operators and states in the closed systems formulation
of Quantum Mechanics? To begin with, an operator satisfying S1)-S3) has always a
spectral decomposition in the form

ρA =
d∑
j=1

pj |φj〉〈φj | , (1.1)

where the pj are real non-negative numbers summing up to 1, {|φj〉}j=1,...,d is an or-
thonormal basis for H and d = dimH. If we substitute the spectral decomposition of ρA
in the formula for the outcome probabilities we get

Pρ(n) =
d∑
j=1

pj 〈φj |En|φj〉 . (1.2)

By looking at this expression, we are enticed to interpret pj as the probability associated
to the state |φj〉, and ρA as an ensemble. Since these probabilities arise from ignorance
rather than quantum effects, we will sometimes refer to ρA as a classical mixture of
the states {|φj〉}j .
Finally, we can see that density operators generalize the notion of closed system states.
Indeed, a density operator

ψ = |ψ〉〈ψ|

can be associated to any state |ψ〉 of a closed system. Such a density operator is an
orthogonal projector, and represent what is called a pure state (what we would call
simply “a state” in the theory of closed systems). Density operators whose spectral de-
composition has more than just one term are not orthogonal projectors, and represent
mixed states instead.
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1.1.3 Quantum channels

Unitary operators emerge naturally in the context of closed quantum systems evolution
once we require that the normalization of any state vector must remain constant; similarly,
a superoperator fulfilling conditions E1)-E3) is clearly the most general object mapping
a quantum state of an open system into another. Such an object is often referred to as
a quantum channel, where the term “channel” is borrowed from classical information
theory. The following result that gives a more explicit expression for these particular
maps.
Theorem 1.1. [1, Theorem 8.1] A linear superoperator E satisfies E1)-E3) if and only
if

E(ρ) =
∑

a
KaρK

†
a , (1.3)

with ∑
a
K†aKa = I . (1.4)

In order to derive the previous result it is crucial that in E3) we require the map E to
be completely-positive and not only positive. From a physical point of view, this is well
justified: we want our map E to map states into states even if we consider our system to
be embedded in a larger one, with E acting trivially on the environment. It is not trivial
to see why complete-positivity is indeed a stronger condition than poisitivity; an example
of a positive-but-not-completely-positive superoperator is given by the transposition map
ρ 7→ ρT [2].
As in the case of states, quantum channels are a generalization of unitary evolution.
Indeed, if in equation (1.4) there is only one term, we are back to the definition of a
unitary operator. Unitary operations are a very special case of quantum channels: it can
be proven [2] that a quantum channel from a Hilbert space to itself is invertible if and
only if it is a unitary map.
To conclude this section, we introduce the notion of the dual or adjoint E∗ of a quantum
channel E , defined throught the following relation:

Tr (OE(ρ)) = Tr (E∗(O)ρ) , (1.5)

valid for any observable O. Obviously

E(ρ) =
∑

a
KaρK

†
a =⇒ E∗(O) =

∑
a
K†aOKa . (1.6)

One can always choose whether to evolve the state of a system with a quantum channel
(Schrödinger picture) or the observables with its dual (Heisemberg picture): by
definition of E∗, all measurable quantities will result the same. A dual of a quantum
channel has an important properties: from (1.4) and (1.6) we see that

E∗(I) = I .

A superoperator with this property is called a unital map.
Remark 1.2. Unital maps send POVMs into POVMs. Indeed:∑

a

∑
b
K†bEaKb =

∑
b
K†b

(∑
a
Ea

)
Kb =

∑
b
K†bKb = I .
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Unital maps stand at the core of the following Theorem, which will be extensively used
throughout the rest of the work.
Theorem 1.3. (Jensen’s operator inequality)[5, Theorem 2.1] Let H be a (possibly infinite-
dimensional) Hilbert space, and f : BIsa(H)→ Bsa(H) an operatorial map, where BIsa(H)
is the space of self-adjoint bounded operators with spectrum in the real interval I. Then,
the following statements are equivalent:

• f is operator-convex, i.e.:

f(λh1 + (1− λ)h2) ≤ λf(h1) + (1− λ)f(h2) ∀h1, h2 ∈ BIsa(H) andλ ∈ [0, 1] .

• For any unital map

Λ : (·) 7→
n∑
a=1

K†a(·)Ka ,

it holds that

f

(
n∑
a=1

K†ahKa

)
≤

n∑
a=1

K†af(h)Ka .

• For any projector P , s ∈ I and h ∈ BIsa(H) it holds:

Pf(PhP + s(1− P ))P ≤ Pf(h)P .

Remark 1.4. A notable example of an operator function which is operator concave (and
hence for which all the previous inequalities hold with opposite signs) is the operator
logarithm.

1.1.4 Generalized measurements

The first thing one should notice about axiom A3) is that, contrarily to what happens
for projective measurements on closed systems, it does not state anything about the state
of the system after the measurement. Indeed, not only POVMs can describe measure-
ments which are not projective, but they also encompass those cases in which the state
after the measurement is completely unknown, or it is destroyed during the process.
These generalized measurements are often obtained by entangling the system one
wants to extract information from with an ancilla system (the measurement apparatus),
and projectively measuring the latter. For example, starting from system S in the state
|ψS〉 we can add the ancillary system A and apply the entangling unitary

U
(
|ψS〉 ⊗ |0A〉

)
7→
∑

a
MS
a |ψS〉 ⊗ |aA〉 .

At this point, if we project the system A onto one of the (mutually orthogonal) states
|aA〉, system S will be brought in the (unnormalized) stateMS

a |ψS〉. StatesMS
a |ψS〉 and

MS
b |ψS〉 need not be orthogonal for a 6= b so, in turn, consecutive measures need not to

agree:

PψS (b|a) =
‖MS

b M
S
a |ψS〉 ‖2

‖MS
a |ψS〉 ‖2

6= δab .



Foundations | 5

Note that unitary transformation preserves the trace, so

1 = Tr
(∑

a
MS
a |ψS〉 ⊗ |aA〉

)
= 〈ψS |

∑
a
MS†
a MS

a |ψS〉 ;

being this relation true for any |ψS〉, it follows that∑
a
M

S†
a MS

a = IS .

So, any set of measurement operators {Ma}a identify a POVM {Ea}a = {M †aMa}a
satisfying M1)-M3), but left-multiplying any of the Ma by a unitary operator leads to
the same POVM: this is why a POVM alone does not give information about the post-
measurement state of the system.
Notice that even if they need not to be so, measurement operators might actually be
mutually orthogonal projectors. In this case, we are back to projective measurements.
This is also the only case in which the measurement operators and the POVM operators
coincide, since P †aPb = δabPa for any couple of mutually orthogonal projectors Pa and Pb.
Finally, we point out that any measurement with a discrete set of possible outcomes and
for which the measurement operators are specified, can be described with a CPTP map.
Indeed, if ρSa is the output state associated to the a-th outcome, we can encode the result
of the measurement in an ancillary system A, and (post-)select the resulting state only
at the end:

ρ 7→
∑

a
ρSa ⊗ |aA〉〈aA| .

Such a state is said to be the flagged outcome of a measurement, and the |aA〉 states
are know as flags.

1.1.5 Back again to closed systems, or: the Church of the larger
Hilbert space

Up to now, we introduced the framework of open quantum systems as a generalization
of the closed quantum systems one. Now it is time to close the circle: we want to show
that we can always consider an open system to be a part of a larger closed one, for which
“usual” axioms hold.
We start from the following result.
Theorem 1.5. For any mixed state ρS of the system S, it is possible to find a purifica-
tion, i.e., a pure state |ψSE〉 of the system SE such that:

ρS = TrE |ψSE〉〈ψSE | .

Moreover, any other state obtained via |ψSE〉 7→ (IS ⊗ UE) |ψSE〉 is a valid purification
of ρS. Finally, the dimension of E can be taken to be not larger than that of S.

Proof. Starting from the spectral decomposition of ρS ,

ρS =

d∑
j=1

pj |φSj 〉〈φSj | ,
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it is easy to see that the pure state

|ψSE〉 =

d∑
j=1

√
pj |φSj 〉 ⊗ |φEj 〉

for the system SE does the job:

TrE |ψSE〉〈ψSE | = ρS .

Here, {|φEj 〉}j is an arbitrary basis for the auxiliary system E: we could have chosen a
different basis as well, so

|ψSE〉 7→ (IS ⊗ UE) |ψSE〉

gives another valid purification of the state ρS .

As for quantum channels and generalized measurements, we state without proof the
following two fundamental results.
Theorem 1.6. (Stinespring’s dilation theorem) Given a CPTP map E : D(HS) →
D(HS′), there exist a system E, a pure state |0E〉 of E and a unitary transformation
U : HSE → HS′E′ such that

E(ρS) = TrE′
[
U
(
ρA ⊗ |OE〉〈OE |

)
U †
]

(1.7)

for any ρS ∈ D(HS).
Theorem 1.7. (Naimark’s dilation theorem) Given a POVM {ESn}n on the system S,
there exist a system E, a pure state |0E〉 of E, a unitary transformation U : HSE → HSE

and a set of orthogonal projectors {PEn }n on system E such that

Tr(Enρ) = Tr
[(
IS ⊗ PEn

)
U
(
ρA ⊗ |OE〉〈OE |

)
U †
]

(1.8)

for any ρS ∈ D(HS) and any ESn .

These three results ensure that any open system can always be seen as a subsystem of
a bigger, closed one. Hence, the theory for closed quantum systems can be completely
recovered from that for open ones. This paradigm is known as the Church of the larger
Hilbert space, and suggests that there is not a preferred point of view, but it is just a
matter of taste.

1.2 Elements of Quantum Optics

1.2.1 The physical background

Quantum optics [6, 7, 8, 9] is the study of a discrete set of electromagnetic modes
obeying the rules of Quantum Mechanics, as opposed to Quantum Field Theory which
deals with a continuum of modes, and their interaction with matter. In a typical quantum
optical system, the light can be considered to be constantly travelling in vacuum and
undergoing some discrete transformations or measurements every now and then: hence,
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the starting point of this story is just the free electromagnetic field. It is well known
that, after canonical quantisation, the dynamics of one mode of the electromagnetic field
in vacuum is governed by the Hamiltonian of a harmonic oscillator, where the roles of
position and momentum are played by the magnetic and electric fields respectively.
For m modes, the total Hilbert space of our system is then the tensor product of m
infinite-dimensional Hilbert spaces, so we can consider (and we will) Hm = L2(Rm). The
self-adjoint canonical operators acting on H are denoted with {x̂j}j and {p̂j}j and obey
the Canonical Commutation Relations (CCR):

[x̂j , p̂k] = iδjkI [x̂j , x̂k] = [p̂j , p̂k] = 0 , (1.9)

where we set ~ = 1. Canonical operators are sometime grouped as:

r̂ = (x̂1, p̂1, . . . , x̂m, p̂m)T (1.10)

Starting from these operators, one usually define the creation and annihilation oper-
ators (collectively known as ladder operators) respectively as:

â†j =
x̂j − ip̂j√

2
âj =

x̂j + ip̂j√
2

; (1.11)

they clearly fulfill the following relations:

[âj , â
†
k] = δjkI [âj , âk] = [â†j , â

†
k] = 0 . (1.12)

We will use ˆ symbols for canonical and ladder operators in order to avoid ambiguities
with real and complex variables.
The unique state which is mapped to the null vector by any of the annihilation operators is
called the vacuum and denoted with |0〉 =

⊗m
j=1 |0j〉; starting from it, we can construct

the (normalized) Fock states as |n〉 = |n1 . . . nm〉 :=
⊗m

j=1

(
â†j
)nj |0j〉 /√nj !, which

clearly obey the relations:

â†j |n1 . . . nj . . . nm〉 =
√
nj + 1 |n1 . . . (nj + 1) . . . nm〉 ,

âj |n1 . . . nj . . . nm〉 =
√
nj |n1 . . . (nj − 1) . . . nm〉 .

(1.13)

Thanks to the creation and annihilation operators, the Hamiltonian of the system can
now be written in the form

H = ω
m∑
j=1

â†j âj , (1.14)

where we already discarded the zero-point energy and set all the frequencies ωj to the
same value ω, because in this work we have no interest in considering modes with different
frequencies. Starting from the CCR, it is easy to show that the eigenstates of this
Hamiltonian are precisely the Fock states we just introduced [10]: as a consequence, they
form a complete and orthonormal basis for Hm.
The energy of a state is proportional to its photon number

N(ρ) = Tr

ρ m∑
j=1

â†j âj

 =

m∑
j=1

∞∑
nj=1

nj 〈nj |ρj |nj〉 , (1.15)

where ρj = Trĵ ρ is the partial trace of ρ with respect to all systems but the j-th.
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1.2.2 Coherent states

For any α ∈ Cm, we define the displacement operator as

D(α) :=e
∑
j(αj â

†
j−α

∗
j âj)

1
=e

1
2

∑
j |αj |2[â†j ,âj ]e

∑
j αj â

†
je−

∑
j α
∗
j âj

2
=e−

1
2

∑
j |αj |2e

∑
j αj â

†
je−

∑
j α
∗
j âj ,

(1.16)

where in 1 we applied the Baker-Campbell-Hausdorff (BCH) formula [11], which gives
a simple result in 2 because the commutator [âj , â

†
j ] ∝ I commutes with every other

operator in the algebra generated by âj and â†j (it is central). We can derive also the
equivalent expression

D(α) = e
1
2

∑
j |αj |2e−

∑
j α
∗
j âje

∑
j αj â

†
j (1.17)

by applying the BCH formula with âj and â
†
j in the opposite order.

Two basic properties of these operators are that D(α)† = D(−α) and D(α)†D(α) = I. A
slighly less trivial property can again be proven with the BCH formula:

D(α)D(β) =e−
1
2

∑
jk(αjβ

∗
k [â†j ,âk]+α∗jβk[âj ,â

†
k])D(α+ β)

=e
1
2

∑
j(αjβ

∗
j−βjα∗j )D(α+ β)

=e
1
2

(〈β,α〉−〈α,β〉)D(α+ β) ,

(1.18)

where 〈α,β〉 := α∗ · β =
∑m

j=1 α
∗
jβj is the usual hermitian product on Cn. From (1.18)

we derive also:
D(β)†D(α)D(β) = e〈β,α〉−〈α,β〉D(α) . (1.19)

But the most important property, and the main reason why we introduced these operators,
is the following:

âjD(α) |0 . . . 0〉 =D(α)D(α)†âjD(α) |0 . . . 0〉
4
=D(α)

(
âj +

[
−
∑

k
(αkâ

†
k − α

∗
kâk), âj

])
|0 . . . 0〉

=αjD(α) |0〉 ;

(1.20)

in 4 we used the well-known formula:

eABe−A =

∞∑
n=0

1

n!
[A,B]n , [A,B]n := A, [A, ..., [A,B]]...]︸ ︷︷ ︸

n nested commutators

, (1.21)

where all the terms with n > 1 vanish because of the CCR. Hence, the coherent state
|α〉 := D(α) |0〉 is an eigenstate of âj with eigenvalue αj . The last relation we describe is
the following partition of the identity:

I =
1

πm

∫
d2mα |α〉〈α| , (1.22)

which allows for writing the trace of an operator O as:

Tr (O) =
1

πm

∫
d2mα 〈α|O|α〉 . (1.23)
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Coherent states were introduced for the very first time by Schrödinger himself [12], and
then re-discovered and studied by Klauder [13], Glauber [14] (whom their paternity is
usually associated to) and Sudarshan [15]. Their expression in terms of Fock states can
be determined directly from their definition and from the expression appearing in the
last line of (1.16):

|α〉 = e−
|α|2
2 eα·â

†
e−α

∗·â |0〉 =

m⊗
j=1

e−
|αj |

2

2 eαj â
†
j |0j〉 =

m⊗
j=1

e−
|αj |

2

2

∞∑
nj=0

αnj√
nj !
|nj〉 .

Hence, multi-mode coherent states are just tensor products of single mode coherent states.
Coherent states display a number of interesting physical and mathematical properties.

• They form an over-complete basis for H, in the sense that any state can be written
as a superposition of coherent states, but they are not linearly independent. States
of an over-complete basis cannot be mutually orthogonal: indeed, by applying
equation (1.18) it is easy to see that

〈α|β〉 = e
1
2

(〈α,β〉−〈β,α〉)e−
|α−β|2

2 = e−
|α|2
2 e−

|β|2
2 e〈α,β〉 .

• They have a “classical” evolution in vacuum, in the sense that they oscillate with
constant velocity:

|αj(t)〉 = e−iωâ
†
j âjt |αj〉 = e−

|αj |
2

2

∞∑
n=0

αnj e
−inωt
√
n!

|n〉 = |e−iωtαj〉 .

In particular:
〈αj(t)|âj |αj(t)〉 = αj(t) = e−iωtαj ;

which implies that

〈x̂j〉αj(t) = 〈αj(t)|x̂j |αj(t)〉 = αj cosωt , 〈p̂j〉αj(t) = 〈αj(t)|p̂j |αj(t)〉 = −αj sinωt ;

thus, position and momentum follow (on average) the solutions of motion of a
classical harmonic oscillator.
Their temporal evolution is easily re-absorbed by moving to a “rotating reference
frame”, where any coherent state simply remain constant at any time if no other
physical operation is applied. So, in the following we will forget about the evolution
of the fields in vacuum.

• They saturate the uncertainty principle, because:

〈x̂2
j 〉αj − 〈x̂j〉2αj = 〈

(
âj + â†j√

2

)2

〉αj − 〈

(
âj + â†j√

2

)
〉2αj =

1

2
,

and an analogue expression can be found for p̂j .

• They are relatively easy to synthetize in a real laboratory, being a good model for
an ideal laser beam. For this reason, they are considered “operationally free”; we
will make this statement more precise in the next chapters.
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• The set of coherent states is mapped onto itself by a broad class of easily imple-
mentable unitaries (see [16, 17] and section 1.2.4). So, non-coherent states (more
precisely, states which are not classical mixtures of coherent states) are often con-
sidered “hard” to obtain in quantum optical settings (this is not necessarily the
case, for instance, in opto-mechanical settings). This idea is the backbone of the
Resource Theory of optical non-classicality.

Especially for the classical aspect of their evolution and the minimization of uncertainty
relations, coherent states are usually considered the “most classical” among quantum
states of a harmonic oscillator.
For later convenience, we define also the irreducible photon number, which physically
is the part of the energy that is not contained in the first moments:

N0(ρ) := min
α∈Cm

N
(
D(α) ρD(α)†

)
= N(ρ)−

∑
j

|Tr[ρ âj ]|2 . (1.24)

The last equality can be proven by simply setting the derivatives in the αj of the definition
of N0(ρ) to 0.

1.2.3 Gaussian states and gaussian operations

Coherent states are a special case of a more general family of quantum states: gaussian
states [18, 19, 20, 21]. Gaussian states can be directly defined through the following
parametrization [9]:

ρG =
e−βHG

Tr e−βHG
, (1.25)

where β ∈ (0,∞] and HG is a self-adjoint operator fulfilling the two following conditions:

• it is at most quadratic in all the âj and â
†
j ;

• its spectrum is bounded from below, so that Tr e−βHG is finite and the state is
normalizable.

Note that also the limiting case β → ∞ is encompassed; if we denote with λj and |λj〉
the eigenvalues and eigenstates of ĤG respectively, we can write:

ρG = lim
β→∞

e−β
∑∞
n=0 λn|λn〉〈λn|∑∞
n=0 e

−βλn

= lim
β→∞

e−β
∑∞
n=0(λn−λ0)|λn〉〈λn|

1 +
∑∞

n=1 e
−β(λn−λ0)

= |λ0〉〈λ0| .

So, in other words, gaussian states are all the thermal (for finite β) and ground (oth-
erwise) states of quadratic and bounded from below Hamiltonians. Here we presented
a characterisation of gaussian states based on their explicit parametrisation, following
the approach suggested in [9]. A more common, yet equivalent, definition of these states
can be given in terms of their associated quasi-probability distributions, which we will
introduce in the following sections. In particular, in section 1.3.4 a second definition of
gaussian states will be provided.
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We already encountered some gaussian states. For instance, the vacuum (which is at the
same time a gaussian, a coherent and a Fock state) is the ground state of the Hamiltonian
(1.14). Thermal states of the same Hamiltonian will be simply referred to as “thermal
states”, and parametrized as follows (for a single mode):

τν =
1

1 + ν

∞∑
n=0

(
ν

1 + ν

)n
|n〉〈n| ,

where ν = 1
eβω−1

is the photon number of the state. Finally, the single-mode coherent
state |α〉 is the ground state of the following Hamiltonian (driven harmonic oscillator):

D(α)â†âD(α)† =â†â+ [αâ† − α∗â, â†â] +
1

2
[αâ† − α∗â, [αâ† − α∗â, â†â]]

=â†â− αâ† − α∗â− 1

2
[αâ† − α∗â, αâ† + α∗â]

=â†â− αâ† − α∗â− |α|2 ,

since 〈α|D(α)â†âD(α)†|α〉 = 〈0|â†â|0〉 = 0.
In addition to gaussian states, gaussian operations can be defined too. They are those
operations which map any gaussian states into gaussian states. Let us consider for the
moment gaussian unitaries. By virtue of the Stone’s theorem [22], they can always be
expressed in an exponential form: Û = eiX̂ , with X̂ being self-adjoint. By applying the
BCH formula it is fairly easy to see that a unitary map is gaussian if and only if X̂ is
at most quadratic in all the âj and â†j (otherwise, higher order terms would appear), a
condition which resembles the definition of gaussian states themselves. For an exhaustive
treatment of gaussian operations, see for example [9]; we will focus mostly on a subset of
gaussian operations, which play a privileged role in the theory of optical non-classicality.

1.2.4 Linear optical operations

A very special set of gaussian unitaries in a quantum optical setting are linear optical
(LO) unitaries, which we are going to define throughout this section. An important
subset of these maps are passive linear (PL) unitaries. As the name suggest, they are
implemented without any external source of energy, and hence they preserve the total
number of particles:

U †
m∑
j=1

â†j âjU =
m∑
j=1

â†j âj

U †
m∑
j=1

â†jUU
†âjU =

m∑
j=1

â†j âj(
U †âU

)†
·
(
U †âU

)
= â† · â ,

(1.26)

where we defined the vector of operators â = (â1, . . . , âm)T . Clearly, for the last equation
to be satisfied, we must have:

U †âU = Uâ , (1.27)
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where U is a unitary m×m matrix and must not be confused with U , which is an infinite
dimensional operator. We cannot stress enough the fact that U and U are two completely
different objects: the former acts on â at the level of Hilbert space; the latter “sees” â
just as a vector. Furthermore, it is important to distinguish between the |αj〉’s, which
always denote coherent states as elements of L2(Rm), and the αj ’s, which are instead
m-uples of complex numbers and elements of Cm.
At this point, one may wonder whether it is possible to find some elementary PL unitaries,
from which any other can be derived by composition. Composition of PL unitaries results
in the composition of unitary matrices acting on â; the question then becomes: which
are the elementary building blocks in which we can decompose any unitary matrix? The
answer is quite simple: any m×m unitary matrix can be written as the product of 2× 2
unitary matrices (completed to the identity on the space of m ×m matrices) [23], and
any 2× 2 unitary matrix can be written in terms of phase-multiplications and rotations:

U2 = eiφ1
(
eiφ2 0

0 e−iφ2

)(
cos θ sin θ
− sin θ cos θ

)(
eiφ3 0

0 e−iφ3

)
.

Multiplications by a phase are achieved with phase-shifters:

eiϕâ
†ââe−iϕâ

†â =
∞∑
n=0

(iϕ)n

n!
[â†â, â]n

=

∞∑
n=0

(−iϕ)n

n!
â

=e−iϕâ ,

where we used the fact that [â†â, â] = −â. Instead, we obtain rotations by means of
beam-splitters:

e−θ(â
†
1â2−â1â

†
2)

(
â1

â2

)
eθ(â

†
1â2−â1â

†
2) =

∞∑
n=0

(−θ)n

n!

(
[â†1â2 − â1â

†
2, â1]n

[â†1â2 − â1â
†
2, â2]n

)

=

∞∑
n=0

(−1)nθ2n

(2n)!

(
â1

â2

)
+

∞∑
n=0

(−1)nθ(2n+1)

(2n+ 1)!

(
â2

−â1

)
=

(
cos θâ1 + sin θâ2

cos θâ2 − sin θâ1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
â1

â2

)
,

where we used the fact that [â†1â2 − â1â
†
2, â1] = −â2 and [â†1â2 − â1â

†
2, â2] = â1. We have

not only proved that any PL unitary can be obtained by composition of phase-shifters
and beam-splitters, but we also proved that any unitary matrix U acting on â one can
dream of can be obtained with a PL unitary. We summarize these results in the following
proposition (see also [24]).
Proposition 1.8. Any transformation of the type â 7→ Uâ can be obtained with a passive
linear unitary, and any such transformation can be decomposed as a product of only phase-
shifters and beam-splitters.
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Now it is also straightforward to show how PL unitaries act on coherent states:

âUPL |α〉 = UPLU
†
PLâUPL |α〉 = UPLUâ |α〉 = UαUPL |α〉 ; (1.28)

thus, UPL |α〉 = |Uα〉. If we add also displacements, we can transform coherent states as
follows:

|α〉 7→ eiφ(α) |Uα+α0〉 .

So, compositions of phase-shifters, beam-splitters and displacements map coherent states
into coherent states. Together, they form the aforementioned class of linear optical uni-
taries.
As we will prove in Proposition 1.11, the expression for φ(α) is fixed, up to an irrelevant
constant, by unitarity of UPL: φ(α) = φ0 − 1

2i(〈α0, Uα〉 − 〈Uα,α0〉) .
Remark 1.9. Obviously such an expression for φ(α) can always be achieved by means
of PL unitaries and displacements, for example by building U with only PL unitaries and
applying the displacement D(α0) only at the end. So, the most general expression for a
LO unitary is the following:

|α〉 7→ eiφ0e
1
2

(〈Uα,α0〉−〈α0,Uα〉) |Uα+α0〉 . (1.29)

Are there other unitaries, apart from LO ones, which preserve the set of coherent states?
The following results answer to this question.
Lemma 1.10. Let f : Cn → Cn be such that 〈f(α) − f(0),f(β) − f(0)〉 = 〈α,β〉 for
any α and β. Then f acts as

f(α) = Uα+ f(0)

for any α ∈ Cn, where U is unitary. In other words, f is a unitary affine map on Cn.

Proof. We start by defining g(α) := f(α) − f(0). Let {αj}j be an arbitrary orthonor-
mal basis for Cn: then 〈g(αj), g(αk)〉 = 〈αj ,αk〉, which implies that {g(αj)}j is an
orthonormal basis as well; we cannot conclude at this point because we do not know a
priori whether g is linear or not.
Now we define the matrix U such that U†g(αj) = αj for any j: this also ensures that U
is unitary. Hence, for an arbitrary α we have:

〈U†g(α),αj〉 = 〈U†g(α),U†g(αj)〉 = 〈g(α), g(αj)〉 = 〈α,αj〉 .

Being true for all the elements of a basis, we have necessarily U†g(α) = α for any α, so
g is indeed linear (and unitary) after all. This conclude the proof.

The previous result resembles the famous Wigner’s theorem [25] applied to Cn, but
with the big difference that we require also the phase of scalar products to be preserved,
and not only the modulus. This rules out antiunitary transformations.
Proposition 1.11. Linear optical unitaries are the only unitaries which map any coher-
ent state into another coherent state.

Proof. Let U be a unitary mapping coherent states into coherent states. Then, for any
α:

U |α〉 = eiφ(α) |f(α)〉 ,
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for some maps f : Cn → Cn and φ : Cn → R. Now we have

e−
|α|2
2 = 〈0|α〉

= 〈0|U †U |α〉
=ei[φ(α)−φ(0)] 〈f(0)|f(α)〉

=ei[φ(α)−φ(0)]e
1
2

(〈f(0),f(α)〉−〈f(α),f(0)〉)e−
|f(α)−f(0)|2

2 ,

which implies |f(α)−f(0)|2 = |α|2 and φ(α)−φ(0) = − 1
2i(〈f(0),f(α)〉−〈f(α),f(0)〉).

We also have:

〈α|β〉 = 〈α|U †U |β〉

=e
1
2

(〈f(0),f(α)−f(β)〉−〈f(α)−f(β),f(0)〉) 〈f(α)|f(β)〉
= 〈f(α)− f(0)|f(β)− f(0)〉 ,

which instead implies 〈α,β〉 = 〈f(α)−f(0),f(β)−f(0)〉. By virtue of Remark 1.9 and
Lemma 1.10, we prove the claim.

For the sake of completeness, and for later convenience, we mention that by adding
just ont type of unitaries to LO ones, one can obtain all gaussian unitaries. The missing
piece is represented by (single-mode) squeezing unitaries:

Ŝ(ζ) := eζ
∗â2−ζâ†2 . (1.30)

When applied to the vacuum, they give squeezed states:

|ψr,φ〉 =
1√

cosh r

∞∑
n=0

√(
2n

n

)(
−1

2
eiφ tanh r

)n
|2n〉 , (1.31)

with ζ = reiφ. Hence, squeezing unitaries does not map coherent states into coherent
states.
We end this section by briefly discussing the actual physical implementations of these
operations. As we already anticipated, they can be achieved with readily-accessible op-
tical elements [26]. Arguably, the simplest ones are phase-shifters: they are obtained
via dielectric plates, which change the dielectric constant of the medium in which the
light is travelling, and hence the velocity of rotation of coherent states. The net effect,
with respect to the “rotating frame” which already accounts for the evolution in vacuum,
is a discrete rotation of any coherent state, independent from α. Beam-splitter are ob-
tained via semi-reflective mirrors, with reflectivity r and transmittivity t, where different
modes are mixed. Finally, displacements can be implemented with a low-transmittivity
semi-reflective mirror and a high-intensity laser source [27]: indeed

ÛBS |αα′〉 = |(cos θα+ sin θα′)(cos θα′ − sin θα)〉 ≈ |(α+ α0)(α′ − εα)〉 ,

where we set θ = ε and α0 = εα′.
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1.3 Phase-space quantisation

1.3.1 The Fourier-Weyl transform

From now on, we will focus on a single electromagnetic mode, unless stated otherwise.
Displacement operators fulfill the following relation:

Tr
(
D(α)†D(β)

)
=

1

π

∫
d2γ 〈γ|D(α)†D(β)|γ〉

=
1

π

∫
d2γ 〈0|D(γ)†D(α)†D(γ)D(γ)†D(β)D(γ)|0〉

1
=

1

π

∫
d2γ e

1
2

[(β−α)γ∗−γ(β−α)∗] 〈α|β〉

=πδ2(β − α) ,

(1.32)

where in 1 we used (1.19). The expression we derived is formally analogue to the or-
thonormality condition of Fourier oscillatory factors. So, we might be enticed to define
an “operatorial Fourier transform”: this can indeed be done (at least for bounded opera-
tors), and it takes the name of Fourier-Weyl transform [9, 28]:

O =
1

π

∫
d2αTr (OD(α))D(α)† . (1.33)

The Fourier-Weyl transform of a density operator ρ is called the characteristic function
of ρ, and denoted with χρ0(α) or simply χρ(α). It obeys the following basic properties:

• χρ(0) = Tr ρ = 1;

• χρ(α)∗ = Tr (ρD(α)) = Tr
(
ρD(α)†

)
= χρ(−α);

• |χρ(α)| ≤ 1, since D(α) is unitary.

Since it depends on both position and momentum at the same time, the procedure of
describing a quantum state via its characteristic function is known as phase-space quan-
tisation.
Characteristic functions can also be used in order to compute the Hilbert-Schmidt
scalar product between two bounded operators:

Tr
(
O†1O2

)
=

1

π2

∫
d2αd2β χ1(α)∗χ2(β) Tr

(
D(α)†D(β)

)
=

1

π

∫
d2αχ1(α)∗χ2(α) .

(1.34)
In particular:

1 ≥ Tr(ρ†ρ) =
1

π

∫
d2α |χρ(α)|2 , (1.35)

so that χρ ∈ L2(C).

1.3.2 Characteristic functions

Starting from the characteristic function of a density operator we can define a whole
family of related objects: the s-ordered characteristic functions, defined as

χρs(α) = es
|α|2
2 χρ(α) = es

|α|2
2 Tr (ρD(α)) , −1 ≤ s ≤ 1 . (1.36)
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It is immediate to see that for any s it still holds that χρs(0) = 1 and χρs(α)∗ = χρs(−α),
while χρs(α) might not be bounded for a strictly positive s. The name “characteristic
function” is borrowed from probability theory, where characteristic functions can be used
in order to efficiently compute all the momenta of a probability distribution. Even though
s-ordered characteristic functions have indeed a similar property, as we are going to show
in a moment, they are not proper characteristic functions, as their symplectic Fourier
transforms are not proper probability distributions.
From (1.16) it is easy to see that:(

∂n

∂αn

)
|α=0

(
− ∂m

∂α∗m

)
|α=0

χρ1(α) = Tr
(
ρâ†nâm

)
= 〈â†nâm〉1 ,

where 〈·〉1 denotes the normal-ordered expectation value of an operator. Similarly,
it is easy to show that:(

∂n

∂αn

)
|α=0

(
− ∂m

∂α∗m

)
|α=0

χρ−1(α) = 〈â†nâm〉−1 ,

where 〈·〉−1 denotes the anti-normal-ordered expectation value of an operator. Fi-
nally, it holds:

(
∂n

∂αn

)
|α=0

(
− ∂m

∂α∗m

)
|α=0

χρ0(α) = Tr

ρ( ∂n

∂αn

)
|α=0

(
− ∂m

∂α∗m

)
|α=0

∞∑
j=0

(αâ† − α∗â)j

j!


=〈â†nâm〉0 ,

where 〈·〉0 denotes the normalized symmetrically-ordered expectation value, ob-
tained by summing over all possible re-orderings of the operators and dividing by

(
n+m
n

)
.

To obtain the last expression it is sufficient to note that the only terms which survive
after the derivation are those in which â† appears exactly n times and â m times. The
normalization and symmetric ordering in the result come from the explicit expression of
(αâ†−α∗â)n+m. More in general, we can just define the s-ordered expectation value
as

〈â†nâm〉s :=

(
∂n

∂αn

)
|α=0

(
− ∂

∂α∗m

)
|α=0

χρs(α) .

1.3.3 Quasi-probability distributions

We will often consider also the symplectic Fourier transform of the s-ordered charac-
teristic functions: the s-ordered quasi-probability distributions:

W ρ
s (β) =

1

π2

∫
d2α eβα

∗−αβ∗χρs(α) . (1.37)

AlsoW ρ
s (α) can be used to compute the s-ordered expectation values of â and â†. Thanks

to the properties of the Fourier transform we have indeed:

〈â†nâm〉s =

∫
d2β β∗nβmW ρ

s (β) .
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Quasi-probability distribution, just like standard probability distributions, are normalized
to 1: ∫

d2βW ρ
s (β) = χρs(0) = 1 ;

however, they can be negative (as functions or as distributions, as we will see) at some
points in phase space. Negativity of quasi-probability distribtions is often considered as
a signature (or even as a “measure”, in a sense that we will make more precise in the
next chapters) of “quantumness”. At any rate, the fact that they cannot be interpreted
as actual probability distributions (even when they are positive at every point!) can be
seen as a reflection of the uncertainty principle: we cannot associate to a quantum state
a probability distribution of position and momentum at the same time.
However, we can obtain actual probability distributions from theW ρ

s by marginalization.
Let us considerW ρ

0 , which we will denote simply withW ρ from now on. It was introduced
by Wigner himself [29], and hence it is also known as theWigner’s function of the state
ρ. Parametrizing α as α = x+ip√

2
and β as β = x′+ip′√

2
, we can prove the following relation

(see [9] for a slightly different derivation):∫
dpW ρ(x, p) =

∫
dp

∫
dx′dp′

2π2
ei(px

′−xp′)χρ(x′, p′)

=

∫
dx′dp′

2π2

∫
dp eipx

′
e−ixp

′
Tr
(
ρei(p

′x̂−x′p̂)
)

1
=

∫
dp′

π
e−ixp

′
Tr
(
ρeip

′x̂
)

2
=

∫
dp′

π
e−ixp

′
∫
dq 〈q|ρeip′x̂|q〉

=

∫
dq

∫
dp′

π
ei(x−q)p

′ 〈q|ρ|q〉

3
=2 〈x|ρ|x〉 ,

where in 1 we used the integral representation of δ(x′), in 2 we expressed the trace with
the eigenstates |q〉 of the position operator, and in 3 we used the integral representation of
δ(x−q). If we define the self-adjoint operators x̂φ = cosφx̂+sinφp̂ and the corresponding
eigenstates |xφ〉, we can repeat the above procedure and prove the more general formula
below:

1

2

∫
xφ+π

2
W ρ(x, p) = 〈xφ|ρ|xφ〉 . (1.38)

In this sense, marginalizations ofW ρ give proper probability distributions of observables.
By means of equation (1.17), we can rewrite χρ(α) as:

χρ(α) =
e
|α|2
2

π

∫
d2β 〈β|ρe−α∗aeαa† |β〉

=
e
|α|2
2

π

∫
d2α 〈β|eαa†ρe−α∗a|β〉

=
e
|α|2
2

π

∫
d2α eαβ

∗−α∗β 〈β|ρ|β〉 ,

(1.39)
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which implies that W ρ
−1(β) = 1

π 〈β|ρ|β〉. This quasi-probability distribution is knows
also as the Husimi Q-function, and often denoted with Qρ. The boundedness of χρ

implies that χρ−1 ∈ L1(C), which in turns implies that Qρ is a continuous function. Being
continuous and positive everywhere, it is the “most regular” of all quasi-probability distri-
butions: for this reason, it is widely used in Quantum Optics and Quantum Information,
as we will see in the next section.
On the other hand, the “wildest” of all quasi-probability distributions is W ρ

1 , which is
also known as Glauber-Sudarshan P-function and denoted with P ρ. It is easy to see
why this is the case: loosely speaking, the regularity of a function is correlated to the
asymptotic behaviour of its Fourier transform, and by definition χρ1 is the “most diver-
gent” of all s-characteristic functions. To be precise, W ρ

1 might not even exist not only
as a function, but also as a tempered distribution, as χρ1 might diverge exponentially.
For this reason, we will try to avoid using W ρ

1 directly, and we will do it only when it is
a well-defined object. However, when P can actually be constructed, it satisfies a very
important property; in order to prove it, let us compute the characteristic function for a
coherent state |α0〉:

χα0(α) = 〈α0|D(α)|α0〉 = eαα
∗
0−α0α∗e−

|α|2
2 , (1.40)

from which we derive the corresponding P -function:

Pα0(β) =
1

π2

∫
d2α eαα

∗
0−α0α∗ = δ2(β − α0) . (1.41)

Being the Fourier transform linear, we conclude that, when P ρ exists, it is possible to
write

ρ =

∫
d2αP ρ(α) |α〉〈α| . (1.42)

1.3.4 Some examples

For later convenience, we perform the explicit computation of the s-ordered character-
istic functions and quasi-probability distributions for some relevant quantum states. We
already computed the characteristic function for a coherent state in (1.40), from which
we also see that all of its characteristic functions and quasi-probability distributions are
(possibly degenerate) gaussians. More in general, it is easy to see from (1.25) that a state
is gaussian if and only if it has gaussian characteristic functions and quasi-probability
distributions. Actually, this is often taken to be the definition of a gaussian state, and
it will be helpful in the future. More precisely, if we define the quantum covariance
matrix of a state ρ as

Vjk =
1

2
Tr[ρ{r̂j − Tr(ρr̂j), r̂k − Tr(ρr̂k)}] , (1.43)

the Q-function of a gaussian state is a gaussian with classical covariance matrix equal to
V + 1

2 I.
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Let us consider for example a thermal state τν . We have:

Qν(α) =
1

π
〈α|τν |α〉

=
1

π(1 + ν)

∞∑
n=0

(
ν

1 + ν

)n
| 〈n|α〉 |2

=
e−|α|

2

π(1 + ν)

∞∑
n=0

1

n!

(
ν|α|2

1 + ν

)n
=

1

π(1 + ν)
e−
|α|2
1+ν .

(1.44)

Its characteristic function is then:

χν(α) = e−( 1
2

+ν)|α|2 , (1.45)

while its P -function is:

P ν(α) =
1

πν
e−
|α|2
ν . (1.46)

Another example of a gaussian state is the aforementioned squeezed state, defined in
(1.31). Again, we start from its Q-function:

Qr,φ =
1

π
| 〈α|ψr,φ〉 |2

=
1

π

∣∣∣∣∣∣ 1√
cosh r

∞∑
n=0

����
√

(2n)!

n!

(
−1

2
eiφ tanh r

)n e− |α|22 α∗2n

����
√

(2n)!

∣∣∣∣∣∣
2

=
1

π cosh r
e−|α|

2
∣∣∣e− 1

2
eiφα∗2 tanh r

∣∣∣2
=

1

π cosh r
e−|α|

2
e−<[eiφα∗2] tanh r

=
1

π cosh r
e−(1+cosφ tanh r)<[α]2−(1−cosφ tanh r)=[α]2−2 sinφ cosφ<[α]=[α] .

(1.47)

From this result it is easy to obtain the characteristic functions (we just have to Fourier
transform a gaussian function) and see that χr,φ1 (α) is exponentially divergent for any
r > 0: as a consequence, P r,φ is not even a tempered distribution.
Let us consider now a single-mode Fock state |n〉. We have:

χn(α) =e−
|α|2
2 〈n|eαâ†e−α∗â|n〉

=e−
|α|2
2 〈n|

( ∞∑
m′=0

αm
′
â†m

′

m′!

)( ∞∑
m=0

(−α∗)mâm

m!

)
|n〉

=e−
|α|2
2

(
n∑

m′=0

αm
′ 〈n−m′|√
m′!

)(
n∑

m=0

(−α∗)m |n−m〉√
m!

)

e−
|α|2
2

n∑
m=0

(−1)m|α|2m

m!
,

(1.48)
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from which we derive

χn1 (α) =

n∑
m=0

(−1)m|α|2m

m!
=⇒ Pn(α) = π2

n∑
m=0

∂mα ∂
m
α∗δ

2

m!
. (1.49)

This highly-singular P -function can only be written in terms of derivatives of a δ function.
The Q-function is:

Qn(α) =
1

π
| 〈α|n〉 |2 =

e−|α|
2 |α|2n

πn!
. (1.50)

The last quantum state we consider is the cat state, whose name is a tribute to the
famous dead-and-alive Schrödinger’s cat. Indeed, it consists of a superposition of two
coherent states with opposite amplitude:

|ψα〉 :=
|α〉+ |−α〉√
2 + 2e−2|α|2

(1.51)

The weird normalization factor is due to the non-orthonomality of the coherent states.
We start from the characteristic function:

χψα0 (α) = 〈ψα0 |D(α)|ψα0〉

=e−
|α|2
2 〈ψα0 |eαâ

†
e−α

∗â|ψα0〉

=
e−
|α|2
2

2 + 2e−2|α0|2

(
eαα

∗
0 〈α0|+ e−αα

∗
0 〈−α0|

)(
e−α

∗α0 |α0〉+ eα
∗α0 |−α0〉

)
=

e−
|α|2
2

1 + e−2|α0|2

(
cos(2=[αα∗0]) + e−2|α0|2 cosh(2<[αα∗0])

)
.

(1.52)

Hence, also χψα01 is exponentially divergent. The Q-function is:

Qψα0 (α) =
1

π
| 〈α|ψα0〉 |2

=
e−|α|

2
e−|α0|2

π(2 + 2e−|α0|2)

∣∣∣eα∗α0 + e−α
∗α0

∣∣∣2
=

2e−|α|
2
e−|α0|2

π(1 + e−|α0|2)
|cosh(α∗α0)|2 .

(1.53)

1.4 Quantum distances and quantum entropies

1.4.1 Trace distance

A fundamental question in Quantum Information Theory is: how far apart are two given
quantum states? As we will see, there are many ways to answer this question, but they all
start by defining a quantity which acts as a “distance” between states. Quotations marks
are needed as some of the most popular choices are not distances in the mathematical
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sense at all. Some of them, however, are so: an example is given by the trace distance.
The trace distance between A and B is defined as ‖A−B‖1, where ‖ · ‖1 is the L1 norm
of an operator defined in Appendix A. For a self-adjoint operator, the trace norm is just
the sum of the absolute values of its eigenvalues.
Trace distance has also a nice operational interpretation, as it is shown in the proposition
below.
Proposition 1.12. The trace distance between two density operators ρ and σ is equal
to the maximum L1 distance between the probability distributions associated to them by a
measurement {Ea}a.

Proof. Let us consider a generic POVM {Ea}a and the two probability distributions

pa = Tr(ρEa) , qa = Tr(σEa) .

Since ρ− σ is self-adjoint, we can write it as:

ρ− σ =
∑

a
λa |λa〉〈λa|

Now we have that: ∑
a
|pa − qa| =

∑
a
|Tr[Ea(ρ− σ)]|

=
∑

a

∣∣∣∑
b
λb 〈λb|Ea|λb〉

∣∣∣
≤
∑

a,b
|λb| 〈λb|Ea|λb〉

1
=
∑
b

|λb|

=‖ρ− σ‖1 ,

where in 1 we used the completeness relation
∑

aEa = I. Moreover, the inequality can
always be saturated by choosing Ea = |λa〉〈λa|. This completes the proof.

Being a true distance, the trace distance generates an actual topology as well (again,
see Appendix A).

1.4.2 Kullback-Leibler divergence

The Kullback-Leibler divergence [30, 31] is a very popular quantifier of the simi-
larity of two classical probability distributions. For p and q probability distributions on
the set D, it is defined as follows:

DKL(p‖q) :=

{∑
x∈D p(x) log

(
p(x)
q(x)

)
if supp(p) ⊂ supp(q)

+∞ otherwise
, (1.54)

where the convention 0 · log 0 = 0 has been adopted, and the the basis of the logarithm
is not specified. Note that the sum is replaced by an integral whenever D ceases to be a
discrete set.
DKL has some useful properties:



22 | Preliminaries and formalism

• DKL(p‖q) ≥ 0 for any p and q;

• DKL(p‖q) = 0 if and only if p = q;

• DKL(λp1 + (1−λ)p2‖λq1 + (1−λ)q2) ≤ λDKL(p1‖q1) + (1−λ)DKL(p2‖q2) for any
p1,2 and q1,2 and λ ∈ [0, 1] (joint convexity).

Despite the fact that in some sense it measures the “distance” between p and q, DKL is
not a distance: it fulfills neither the symmetry requirement nor the triangular inequality.
Another fundamental property of DKL is that it can be lower bounded by the L1 norm,
as a consequence of the famous Pinkser’s inequality [32, 33, 34].
Proposition 1.13. (Pinkser’s inequality) The following inequality holds for any proba-
bility distributions p and q:

DKL(p‖q) ≥ log e

2
‖p− q‖21 . (1.55)

1.4.3 Measured relative entropy

The trace distance we introduced is the quantum version of the L1 distance between
classical probability distributions. At this point, it is natural to ask whether the Kullback-
Leibler divergence can be “quantised” as well. A first approach is that of going back from
quantum states to classical probabilities via generalized measurements; in other words,
given two quantum states ρ and σ, we want to compute DKL for the outcome probability
distributions PMρ (x) = Tr(ρEx) and PMσ (x) = Tr(σEx), whereM = {Ex}x is a POVM.
Since we want to measure the distinguishability of two quantum states, it makes sense
to consider the POVM which makes the resulting probability distributions as diverse as
possible; we define the measured relative entropy as [35, 36]:

DM(ρ‖σ) := sup
M

DKL

(
PMρ

∥∥PMρ ) . (1.56)

DM inherits directly from DKL its properties:

• DM (ρ‖σ) ≥ 0 for any ρ and σ;

• DM (ρ‖σ) = 0 if and only if ρ = σ;

• DM (λρ1 + (1−λ)ρ2‖λσ1 + (1−λ)σ2) ≤ λDKL(ρ1‖σ1) + (1−λ)DM (ρ2‖σ2) for any
ρ1,2 and σ1,2 and λ ∈ [0, 1] (joint convexity).

Other useful properties of DM are summarized in the results below.
Lemma 1.14. DM is monotonically decreasing under the joint action of any CPTP map
Λ:

DM (Λ(ρ)‖Λ(σ)) ≥ DM (ρ‖σ) .

In particular, it is invariant under the joint action of any unitary map.
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Proof. The proof is straightforward:

DM (Λ(ρ)‖Λ(σ)) = sup
M={Ea}a

DKL(PMΛ(ρ)‖PMΛ(σ))

= sup
M={Λ∗(Ea)}a

DKL(PMρ ‖PMσ )

1
≥ sup
M={Ea}a

DKL(PMρ ‖PMσ ) ,

where in 1 we used Remark 1.2. The fact that unitary maps are invertible is enough to
conclude.

Lemma 1.15. For any quantum states ρ and σ it holds:

DM (ρ‖σ) ≥ log e

2
‖ρ− σ‖1 . (1.57)

Proof. Let us consider the spectral decomposition of ρ− σ:

ρ− σ =
∑

a
λa |λa〉〈λa| .

As we already saw in Proposition 1.12, we have:

‖ρ− σ‖1 =
∑

a

∣∣∣Tr
[
Êa(ρ− σ)

]∣∣∣ , (1.58)

where we defined the POVMM = {Êa}a = {|λa〉〈λa|}a. Now by definition we have also

DM (ρ‖σ) ≥ DKL(PMρ ‖PMσ )
1
≥ log e

2

(∑
a

∣∣∣Tr
[
Êa(ρ− σ)

]∣∣∣)2
=

log e

2
‖ρ− σ‖21 ,

where in 1 we used Proposition 1.13.

An interesting fact about the measured relative entropy is that it admits a nice vari-
ational expression, which will be used extensively in the final chapter of this work. The
following proof is an adaptation of [37, Lemma 1] to the infinite-dimensional case.
Lemma 1.16. Let ρ and σ be two density operators. Then

DM(ρ‖σ) = sup
h∈Bsa(H)

{
Tr ρh− log Trσeh

}
(1.59)

= sup
h∈Bsa(H)

{
Tr ρh+ 1− Trσeh

}
. (1.60)

Proof. Let us parametrize h as h = logL. Since h is bounded, there exists a finite M
such that L has spectrum in [1/M,M ]. Let us also fix ε > 0. We want to prove that
(1.60) is still valid if we restrict L to be in the form L = I+R, with rkR <∞. Construct
a finite-dimensional projector P such that ‖ρ− PρP‖1 , ‖σ − PσP‖1 ≤ ε. Then,

Tr ρ logL+ 1− TrσL
1
≤TrPρP logL+ 1− TrPσPL+ ε(logM +M)

2
≤Tr ρ log(PLP + 1−P ) + 1− TrσPLP + ε(logM +M)

3
≤Tr ρ log(PLP + 1−P ) + 1− Trσ(PLP + 1−P )

+ ε(logM +M + 1) .
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Here, 1 follows because ‖ logL‖∞ ≤ logM and ‖L‖∞ ≤ M (‖ · ‖∞ is the operator norm
defined in A), in 2 we applied the Jensen’s operator inequality (Theorem 1.3, and 3 is an
application of the estimate Tr[σ(1−P )] = Tr[σ−PσP ] ≤ ‖σ − PσP‖1 ≤ ε. We see that
up to introducing an arbitrarily small error we can substitute L 7→ PLP +1−P = 1 +R,
where rkR = rkP <∞.
Now, let R be of finite rank, and denote with R =

∑N
n=1 λnPn its spectral decomposi-

tion. Then L = 1 +R =
∑N

n=0(1 + λn)Pn, where P0 := 1−
∑N

n=1 Pn and λ0 = 0, and
consequently

Tr[ρ logL] + 1− Tr[σL] =
N∑
n=0

(
log(1 + λn) Tr[ρPn] + �1−���Tr[σ]− λn Tr[σPn]

)
=

N∑
n=1

(log(1 + λn) Tr[ρPn]− λn Tr[σPn])

4
≤

N∑
n=1

(
Tr[ρPn] log

Tr[ρPn]

Tr[σPn]
− Tr[ρPn] + Tr[σPn]

)
5
≤

N∑
n=0

(
Tr[ρPn] log

Tr[ρPn]

Tr[σPn]
− Tr[ρPn] + Tr[σPn]

)
6
=DKL

(
PMρ

∥∥PMσ )
≤DM(ρ‖σ).

Here, the inequality in 4 comes from the estimate a log(1 + x) − bx ≤ a log a
b − a + b,

(which can be proven simply by maximisation in x), 5 is a consequence of the fact
that a log a

b − a + b ≥ 0 for all a, b ≥ 0, and in 6 we introduced the measurement
M := {Px}x∈{0,...,N}.

The converse is proved with exactly the same argument as in the proof of [37, Lemma 1].
Namely, for a measurementM = {En}n∈X , introduce the set:

X̃ := {n ∈ X : Tr[ρEn] Tr[σEn] > 0} ,

and write:

DKL

(
PMρ

∥∥PMσ ) =
∑
n∈X̃

Tr[ρEn] (log Tr[ρEn]− log Tr[σEn])

= Tr

[
ρ
∑

n∈X̃

√
En log

(
Tr[ρEn]

Tr[σEn]
· 1
)√

En

]
7
≤Tr

[
ρ log

(∑
n∈X̃

Tr[ρEn]

Tr[σEn]
En

)]
8
= Tr [ρ logL] + 1− Tr[σL] ,

where 7 is again an application of Jensen’s operator inequality, and in 8 we defined
L :=

∑
n

Tr[ρEn]
Tr[σEn] En.

Starting from (1.60) it is easy to prove also (1.59): Indeed, from the inequality log x ≤
x− 1 we see that

Tr ρh− log Trσeh ≥ Tr ρh+ 1− Trσeh
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for any h. At the same time, the expression (1.59) is manifestly invariant under trans-
formations of the type h 7→ h + λI for any λ ∈ R. So, we can always choose a λ in
both expressions such that Trσeh = 1, which saturates hence the aforementioned in-
equality.

Lemma 1.17. It is possible to rewrite

DM(ρ‖σ) = sup
0<L∈Bsa(H)

{Tr ρ logL− log TrσL} (1.61)

= sup
0<L∈Bsa(H)

{Tr ρ logL+ 1− TrσL} . (1.62)

Proof. Expressions (1.61) and (1.62) might seem equivalent to (1.59) and (1.60), but here
we require only L to be bounded, and not logL. So, we are encompassing also the case
in which the spectrum of L is in the form (0,M ] for some M . Since we are including
more L, we just have to prove that

sup
h∈Bsa(H)

{
Tr ρh− log Trσeh

}
≥ sup

0<L∈Bsa(Hm)
{Tr ρ logL− log TrσL} .

For any positive and bounded L =
∑

j `j |`j〉〈`j | we can define Lδ =
∑

j `j,δ |`j〉〈`j | =∑
j max{`j , δ} |`j〉〈`j |. By construction Lδ > δ1: now we just have to prove that

lim
δ→0

Tr ρ logLδ − log TrσLδ ≥ Tr ρ logL− log TrσL (1.63)

for any ρ =
∑

j pj |aj〉〈aj | and σ. Thanks to the scale invariance in L of the expression
(1.61), we can assume L ≤ 1. Then the series

Tr ρ logLδ =
∑
j,k

pj | 〈aj |`k〉 |2 log `k,δ (1.64)

is well defined since all its terms are negative for δ < 1. Moreover, each one of its terms
is monotonically decreasing in δ, which ensures that the series is continue in δ:

lim
δ→0

Tr ρ logLδ = Tr ρ logL . (1.65)

We can apply a similar procedure for TrσA. Hence, (1.63) is actually an equality, and
the claim is proved.

Remark 1.18. The definition of the measured relative entropy can easily be extended
to σ ∈ T+(H) \ {0}. Indeed, if σ = λσ̃, with σ̃ ∈ D(H) and λ ∈ (0, 1], we simply
have: DKL(ρ‖σ) = DKL(ρ‖σ̃) − log λ, and all the variational expressions we proved so
far remain valid. If σ = 0, expression (1.60) gives +∞, as it should.

1.4.4 Other entropies

We want to introduce another quantised version of the Kullback-Leibler divergence. To
do so, we start introducing a functional of a single operator: the von Neumann entropy.
The von Neumann entropy (or simply “entropy”) of some quantum state ρ ∈ D(H) can
be defined as

S(ρ) := −Tr [ρ log ρ] . (1.66)
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This is clearly a quantised version of the Shannon entropy of a classical probability
distribution p(x) with domain D:

SS(p) = −
∑
x∈D

p(x) log p(x) .

Note that (1.66) is a well-defined although possibly infinite quantity. One way to define
it is via the infinite sum S(ρ) =

∑
i(−pi log pi), where ρ =

∑
n pn |an〉〈an| is the spectral

decomposition of ρ. Since all the terms of this sum are non-negative, to the sum itself
can be assigned a well-defined value, possibly +∞.
An alternative quantised version of the Shannon entropy is the Wehrl entropy, which
for a quantum state ρ is defined through its Q-function:

SW (ρ) = −
∫
d2αQρ(α) logQρ(α) . (1.67)

It holds that SW (ρ) ≥ S(ρ), and the minimum Wehrl entropy for a given von Neumann
entropy is attained for thermal states [38].
Following the same philosophy of the von Neumann entropy, we define the relative
entropy between two quantum states ρ, σ ∈ D(H) as [39]:

D(A‖B) := Tr [ρ(log ρ− log σ)] . (1.68)

Again, the above expression is well defined and possibly infinite [40]. To see why, we
represent it as the infinite sum D(A‖B) :=

∑
i,j |〈ai|bj〉|

2 (ai log ai − ai log bj + bj − ai) +
Tr[A−B], where A =

∑
i ai |ai〉〈ai| and B =

∑
j bj |bj〉〈bj | are the spectral decompositions

of A and B, respectively. As detailed in [40], the convexity of a 7→ a log a implies that
all terms of the sum are non-negative, making the expression well defined. Clearly, a
necessary condition for D(A‖B) to be finite is that suppA ⊆ suppB. D has three
interesting properties [41].

• It is additive on tensor product states:

D(ρA ⊗ ρB‖σA ⊗ σB) = D(ρA‖σA) +D(ρB‖σB) .

• It is jointly convex:

D(λρ1 + (1− λ)ρ2‖λσ1 + (1− λ)σ2) ≤ λD(ρ1‖σ1) + (1− λ)D(ρ2‖σ2)

for any λ ∈ [0, 1].

• It is monotonically decreasing under the joint action of CPTP maps:

D(Λ(ρ)‖Λ(σ)) ≤ D(ρ‖σ) ,

and hence in particular it is invariant under unitary maps.

Finally, it is well known that one has DM(ρ‖σ) ≤ D(ρ‖σ) for all pairs of states ρ, σ [35],
with equality if and only if [ρ, σ] = 0 [37, 42]. This also implies that Proposition 1.15
holds for D as well.
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2.1 An introduction to the framework

2.1.1 Physical motivations

Up to now, we were concerned with defining physical entities such as quantum states
and quantum operations, without questioning much whether they could be reproduced
and observed in a realistic experimental setting. Now we want to adopt a new point of
view, and start from the question: what are we actually able to do? As long as anything
can be achieved, nothing has value; on the contrary, whenever our capabilities turns out
to be limited, anything is beyond them suddenly becomes a precious resource.
This practical idea can be readily applied to Quantum Mechanics as well. As quantum
technologies grow in popularity, the following questions arise naturally.

• Which peculiar features of Quantum Theory are responsible for the supposed op-
erational advantages of quantum technologies with respect to classical ones?

• If, on the contrary, our devices cannot produce, manipulate and exploit “quantum-
ness” (whatever this means), which tasks become absolutely out of reach?

• How to establish which quantum states or processes are more precious than others
within a given scenario?

• Which physical properties are responsible for a certain exquisitely quantum phe-
nomenon?

In recent years, Quantum Resource Theories [43] emerged as the natural framework
where these questions can be addressed. In the context of Quantum Physics, resources
(or better, quantum resources) arise for instance whenever we have not access to some
quantum properties of a system due to experimental limitations. Usually, these properties
can be exploited in some practical task: by showing what we cannot do without them,
we prove why and how they are indeed precious. Quantum Resource Theories allow also
for rigorously quantifying the resourcefulness of quantum objects, and the price to pay,
in terms of resources, for completing certain tasks.
For the sake of concreteness, let us make some examples. Consider two experimentalists,
Alice and Bob, working in distant laboratories with only a classical phone for communi-
cating: this means that they can neither make their systems interact directly, nor freely
share quantum objects with each other. This is clearly an example of an experimental
limitation. To keep things simple (for the moment) let us stick to pure states and unitary
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evolution. If they start from a tensor product state |ψA〉 ⊗ |ψB〉 and apply only opera-
tions in the form UA ⊗ UB, they will inevitably end up in another tensor product state
|ψ′A〉 ⊗ |ψ′B〉. So, everything is not in such a form (entangled states) cannot be freely
generated. But would it be also useful for something? As it is well-known, the answer
is a resounding yes, and prominent examples of applications are quantum teleporta-
tion [44], dense coding [45, 46] and quantum criptography [47, 48, 49, 50]. But
entanglement initially drew attention [51, 52] as the culprit of locality violations [53]
via Bell’s inequalities[54, 55, 56]. Hence, in addition to being an example of a useful
resource which cannot be generated freely in many realistic scenarios, it is also a nice
example of how a property of a quantum system can be identified to be responsible (in
a loose sense, as entanglement do not implies violations of Bell’s inequalities in general
[57]) of a fundamental phenomenon. Entanglement theory [58, 59, 60, 61] has also the
honour to be the first quantum resource to be studied as such.
Another feature of Quantum Mechanics which has been elevated from being a counter-
intuitive quirkiness to being a desirable property to be exploited is coherence [62, 63,
64, 65, 66, 67]. This rather recent Resource Theory is motivated by the fact that, as we
pointed out at the really beginning of this work, interaction with the environment are
unavoidable. These interactions usually select a preferred basis (the incoherent basis)
for the Hilbert space, whose states are stable under the open dynamics of the systems.
Any state which is not a convex combination of them is unstable, and rapidly decay in
a stable one. This process is called decoherence, and is ubiquitous in open quantum
systems. Again, being quantum coherence hard to preserve, any state containing some
of it (for example, an undecohered Schrödinger’s cat) becomes a resource.
Finally, it was recently realized that Quantum Thermodynamics [68] can be rephrased as
a Quantum Resource Theory, with out-of-thermal-equilibrium states being the resourceful
ones [69, 70].

2.1.2 Free states or free operations?

We now start to introduce in a more systematic way the ingredients of a Resource
Theory. To begin with, we need to establish which are the freely accessible objects
within a certain experimental setting. The reason why we keep talking generically about
“objects” will be clear in a moment.
We could start by defining the set of free states (as opposed to resourceful, precious,
“costly” ones) Df (H) ⊂ D(H) as the state that can be prepared without effort in our
laboratory. In some cases, starting from Df (H) is the more natural approach, as free
states are particularly easy to characterize. An example is given by the resource theory
of coherence: as we said, interactions with the environment select a stable basis of states
{|φn〉}n, and all classical mixtures of these states, i.e. incoherent states, are considered
free. In this case, experimental conditions dictate in which states the system can be
prepared without immediately decohere in something else (in this sense they are easy
to prepare), but do not select unambiguously a set of easily implementable operations,
which can instead be chosen depending on additional conditions which can be specified
from case to case.
We have just seen an example of a much more general fact: whenever we build our
Resource Theory starting from the set of free states, a natural choice for the set Of (H→
H′) of free operations, i.e., operations which can be implemented at no cost, does not
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emerge (please note the slight abuse of notation: elements of Of (H→ H′) are not maps
from H to H′, but from D(H) to D(H′)). Indeed, there might be multiple classes of
quantum operations which are compatible with Df (H), i.e., which map free states into
free states. For certain, any operation which do not fulfill this basic requirement cannot
be considered free: if we could easily generate non-free states from free ones, the whole
concept of resources would not make much sense. Moreover, a class of free operation
must be closed under composition: if two or more operations are free, then also all the
operations obtained by combining them in sequence must be so. Identity must be a free
operation, as “doing nothing” is always possible. Wrapping up:

R1) ρ ∈ Df (H), Λ ∈ Of (H→ H′) =⇒ Λ(ρ) ∈ Df (H′);

R2) Λ1 ∈ Of (H→ H′), Λ2(H′ → H′′) =⇒ Λ2 ◦ Λ1 ∈ Of (H→ H′′);

R3) I ∈ Of (H→ H′).

Now we re ready to give a definition of a Quantum Resource Theory: a Quantum
Resource Theory defined on a class of Hilbert spaces H is a map which associates to any
couple of Hilbert spaces H and H′ in H the corresponding sets of free states Df (H) and
Df (H′), and a set of free operations Of (H→ H′) satisfying R1)-R3). If Df (H) is convex
for any H in H, then the Quantum Resource Theory is said to be convex as well. A
Resource Theory is instead affine if for any collection of free states {σa}a and (possibly
negative) real numbers {ca}a such that

∑
a ca = 1, also σ =

∑
a caσa is a free state (as

long as it is a physical state, i.e., if σ ≥ 0, which is not guaranteed a priori).
The majority of interesting Quantum Resource Theories have some additional constraints.
For examples, they are usually compatible with the tensor product. At the level of
states, this means that Df (H) is such that if ρ ∈ Df (HA) and σ ∈ Df (HB) then also
ρ⊗ σ ∈ Df (HA ⊗HB). Interestingly enough, some physically motivated Resource The-
ories do not have this property [71], which means that ρ ⊗ σ can contain some amount
of a resource even if ρ and σ alone do not. At any rate, we will not be concerned with
them.
At the level of operations, compatibility with the tensor product implies that free oper-
ations are “completely free”, i.e., they remain free even when acting on just a part of a
larger system. The partial trace must be a free operation as discarding a system is always
possible. Finally, we require appending free states to be a free operation. Summarizing:

• ρA ∈ Df (HA), ρB ∈ Df (HB) =⇒ ρA ⊗ ρB ∈ Df (HA ⊗HB);

• Λ ∈ Of (H→ H′) =⇒ Λ⊗ I ∈ Of (H ⊗HE → H′ ⊗HE);

• TrE(·) ∈ Of (H ⊗HE → H);

• Λσ : (·) 7→ (·)⊗ σ ∈ Of (H→ H ⊗H′) ∀σ ∈ Df (H′).

By combining channels which append free states with the partial trace, we can always
throw away any state and substitute it with a free one.
As we said, there is not a unique choice for the class of free operations. In any case, there
is a class which is “special”: the one which contains as much operations as possible, which
we will denote with Omaxf (H → H′). Equivalently, it is the unique class of operations
which is defined by all the condition we stated until now, and nothing else. Usually, such
a set has no strong operational motivations, as it encompasses much more operations
than those which are actually available in a laboratory. Despite this fact, it is often a
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smart choice because of its simplicity; since many of the results in a Resource Theory
take the form of no-go theorems or upper bound over the efficiency of some process, they
will still hold under stronger assumptions.
The other approach is to start from the set of free operations Of (H → H′), which are
usually motivated by limitations on our capabilities of manipulating quantum states. It
is easy to see that in this case, contrarily to what happened before, there is no freedom
in the choice of the set of free states Df (H). On one hand, any state which can be
freely obtained starting from any other state is necessarily free: if this was not the case,
either Df (H) is empty (and the Resource Theory is trivial), or we could freely generate
resource. On the other hand, as we already pointed out, we can always throw away the
state we have and substitute it with a free one. Hence:

Df (H) = {ρ ∈ D(H) : ∀ω ∈ D(H)∃Λ ∈ Of (H→ H) : Λ(ω) = ρ} .

2.2 General features of Quantum Resource Theories

2.2.1 Resource monotones

By introducing the concepts of free states and free operations, we addressed the problem
of formally distinguishing physical objects that can be considered free from those which
can instead be regarded as valuable. Now we need to take a step further and answer the
question: how much a given object is resourceful?
If we want a quantitative response, we need some sort of functional assigning to each
quantum object a value. We will stick to quantifying the resource content of quantum
states. The problem of quantifying the resourcefulness of quantum operations is a very
active area of research [72, 73, 74] at the moment but goes beyond the scope of this work.
Since we want to remain as general as possible, we ask ourselves which are the most
basic assumptions we need to make. For sure, any functional which aim for quantifying
the resource content of states, must attain the minimum value when computed on a free
state. Assuming that this minimum is different from −∞, we can always re-scale the
functional in such a way that its minimum becomes 0. The intuition that the resource
cannot be increased by free operations, otherwise it would be easily produced and hence
not a resource anymore, leads to the requirement that the functional must monotonically
decrease under free operations. For this reason, such a functional is usually called a
resource monotone, or simply a monotone.
Definition 2.1. Given a class of Hilbert spaces H and a Quantum Resource Theory
defined on it, a functional F : H → R, where H is any Hilbert space in H, is called a
resource monotone if:

• F(ρ) = 0∀ ρ ∈ Df (H);

• F(ρ) ≥ 0 ∀ ρ ∈ D(H);

• F(Λ(ρ)) ≤ F(ρ)∀ ρ ∈ D(H), ∀Λ ∈ Of (H→ H′).

A resource monotone can be defined in many ways. One of the most popular is based
on the following result.
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Proposition 2.2. Let consider a Quantum resource Theory on H. For any ρ ∈ D(H)
with H in H, we define the following functional:

Fr(ρ) := inf
σ∈Df (H)

δ(ρ, σ) , (2.1)

where δ : D(H)×D(H)→ R+ is a generic functional satisfying:

• δ(ρ, σ) ≥ 0 ∀ ρ, σ;

• δ(ρ, ρ) = 0;

• δ(Λ(ρ),Λ(σ)) ≤ δ(ρ, σ) for any CPTP map Λ.

Then, Fr is a resource monotone.

Proof. Being δ always non-negative, also Fr is so. Moreover, if ρ ∈ Df (H), it sufficies to
take σ = ρ and we get Fr(ρ) = 0. Now, if Λ ∈ Of (H→ H′) we have

Fr(Λ(ρ)) = inf
σ∈Df (H′)

δ(Λ(ρ), σ)

1
≤ inf
σ∈Λ(Df (H))

δ(Λ(ρ), σ)

= inf
σ∈D(H)

δ(Λ(ρ),Λ(σ))

≤ inf
σ∈D(H)

δ(ρ, σ) .

where in 1 we used the fact that Λ(Df (H)) ⊆ Df (H′). Hence, Fr is also monotonically
decreasing under free operations, and it is a proper resource monotone.

Definition 2.3. If we choose δ(· , ·) = D(M)(·‖·), we obtain the (measured) relative
entropy of resource.

Another important family of resource monotones is represented by robustness measures.
Below we report the two most important examples.
Definition 2.4. We define the absolute robustness of resource for a state ρ ∈ D(H)
as:

RA(ρ) := inf
σ∈Df (H)

{
r > 0 :

ρ+ rσ

1 + r
∈ Df (H)

}
. (2.2)

Definition 2.5. We define the global robustness of resource for a state ρ ∈ D(H)
as:

RG(ρ) := inf
σ∈D(H)

{
r > 0 :

ρ+ rσ

1 + r
∈ Df (H)

}
. (2.3)

Remark 2.6. It trivially holds that RG(ρ) ≤ RA(ρ) for any quantum state ρ ∈ D(H).

It is very easy to see that the robustness measures we just defined are resource mono-
tones as well.
Proposition 2.7. RA and RG are resource monotones.
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Proof. Non-negativity and vanishing of free states are trivial properties. Also monotonic-
ity is readily proven: indeed,

ρ+ rσ

1 + r
∈ Df (H) , σ ∈ D(f)(H) =⇒ Λ(ρ) + rΛ(σ)

1 + r
∈ Df (H′) , Λ(σ) ∈ D(f)(H′) ,

for any Λ ∈ Of (H→ H′).

In many cases, it is useful to define ad-hoc monotones, based on some peculiar feature
of a given Quantum Resource Theory rather than general structures of Quantum Re-
source Theories, as we have done until now. Usually, these functional have a more direct
operational meaning, but it is much harder to prove that they are indeed monotones. We
will see some example of such monotones in the following.

2.2.2 Properties of the monotones

Resource monotones are not just a way to merely assign to any state a number sym-
bolizing its corresponding resource content, but they represent the core of any Resource
Theory and the main tool in order to obtain results about what can and cannot be done
with a certain amount of resource. In order to prove something useful, we need our
monotone to have some additional properties; different properties are need for different
types of result.
The simplest property a resource monotone can have is convexity. Physically, it implies
that classically mixing states cannot increase their resource content.
Another basic property one can require for a functional is some sort of continuity. From
a physical point of view, continuity of resource monotones corresponds to the intuition
that similar states should have similar resource contents, and slightly perturbing a state
should not change dramatically its usefulness; from a practical point of view, dealing
with continuous function is much easier, as it allows for considering approximations of
the states we are actually interested in. Moreover, some tasks may require to produce
states within a certain error: without any kind of continuity we could state nothing. We
will see examples of this situation in the future. The best case scenario is to have a con-
tinuous resource monotones; a very strong type of continuity, crucial for the following, is
presented below.
Definition 2.8. A real-valued functional f : D(H) → R is said to be asymptotically
continuous [75] if

|f(ρ)− f(σ)| ≤ c‖ρ− σ‖1 log d+ η(‖ρ− σ‖1) (2.4)

for any ρ and σ, where d = dimH, c is a constant and η(x) is a dimension-independent
function which vanishes for x→ 0.
Remark 2.9. (2.4) makes sense only in finite-dimensional spaces.

In particular, it f is asymptotically continuous, it holds:

lim inf

ρ
TNT−−−→ρ0

f(ρ) = f(ρ0) . (2.5)
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Sometimes, it is too much to require asymptotic continuity. An example is given by
infinite-dimensional Quantum Resource Theories, as we already pointed out, but this
discussion is not restricted to them. Luckily, it is often enough to require something
much weaker than continuity, i.e., semi-continuity.
Definition 2.10. A real-valued functional f : D(H) → R is said to be lower semi-
continuous if

lim inf

ρ
TNT−−−→ρ0

f(ρ) ≥ f(ρ0) (2.6)

for any ρ.

The definition of upper semi-continuity can be easily derived from the previous
one. The physical meaning of lower semi-continuity is straightforward: it means that
the resource content of a state cannot decrease abruptly if it gets slightly perturbed;
equivalently, it implies that if we aim for approximating a state within a very small error,
we will need at least as much resource as to produce the exact state.
The next property we present is the following.
Definition 2.11. A resource monotone satisfying the condition F(ρ) = 0 ⇐⇒ ρ ∈
Df (H) is said to be faithful.

The concept of faithfulness is linked to the idea that is desirable to have a monotone
that never fails to detect the presence of resource. In any case, many important and useful
resource monotones are not faithful, and vanish on non-free states [76, 77]. Usually, this
is linked to the fact that some states contain resource, but it cannot be extracted from
them. At any rate, the results below ensure that a large class of resource monotones are
faithful.
Proposition 2.12. Let us consider again Fr as defined in Proposition 2.2. If we have,
in addition, the following conditions:

• any H in H is finite-dimensional;

• Df (H) is closed for any H in H;

• δ(· , ·) is lower semi-continuous in the second argument;

• δ(ρ, σ) = 0 ⇐⇒ ρ = σ.

then Fr is also faithful.

Proof. Being density operators normalized, D(H) is always limited. By hypothesis
Df (H) is closed and, being H finite dimensional, it is also compact. Note that we
do not have to specify in which topology Df (H) is closed since we are working in finite
dimension by hypothesis. Now let us assume that Fr(ρ) = 0: this means that it exists a
sequence {σn}n ⊂ Df (H) such that limn→∞ δ(ρ, σn) = 0. But being Df (H) compact we
can extract a subsequence {σkn}n converging at σ0 ∈ Df (H). By lower semi-continuity
we have:

0 ≤ δ(ρ, σ0) ≤ lim inf
n

δ(ρ, σn) = 0 =⇒ δ(ρ, σ0) = 0 =⇒ ρ = σ0 .

Thus, ρ ∈ Df (H) as well.
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An example of a δ(· , ·) functional which is lower semi-continuous in the second argument
is given by the relative entropy [41]. But in this proof it was crucial that dimH < ∞;
nonetheless, in many cases resource monotones based on relative entropies are faithful
even in infinite-dimensional Quantum resource Theories, as we prove in the following
results.
Proposition 2.13. If Df (H) is closed with respect to the norm topology for any H in
H and δ(· , ·) = DM (·‖·) or δ(· , ·) = D(·‖·), Fr is faithful.

Proof. Let us assume that ρ /∈ Df (H). Being Df (H) closed in trace norm, it exists a
ball (again, in trace norm) of radius δ > 0 centered in ρ and with no intersection with
Df (H). So, ‖ρ − σ‖1 > δ for any σ ∈ Df (H). Now it is sufficient to invoke Pinsker’s
inequality to conclude the proof.

Proposition 2.14. RA and RG are faithful whenever Df (H) is closed in trace norm.

Proof. Let us consider a non-free state ρ /∈ Df (H). Being Df (H) closed, it exists a ball
in trace norm with radius δ > 0 centered in ρ and with no intersection with Df (H). If
RG(ρ) = 0, it exists a sequence rn such that limn→∞ rn = 0 and a sequence {σn}n ⊂
D(H) such that

ρ+ rnσn
1 + rn

=: ωn ∈ Df (H) , ∀n .

But this means that

lim
n→∞

‖ρ− (1 + rn)ωn‖1 = lim
n→∞

‖ρ− ωn‖1 = 0

which is in contrast with the fact that ρ is at a non-zero distance in trace norm from
Df (H). We conclude by recalling that RA(ρ) ≥ RG(ρ).

Another class of properties we could want to require for our resource monotones is
related to how a resource monotone behave on bipartite states. The simplest condition
is the following.
Definition 2.15. A real-valued functional f : D(HA ⊗ HB) → R is said to be weakly
additive if

f(ρA ⊗ ρB) = f(ρA) + f(ρB)

for any ρA ∈ D(HA) and ρB ∈ D(HB); it is said to be strongly additive if

f(ρAB) = f(TrB ρ
AB) + f(TrA ρ

AB)

for any ρAB ∈ D(HAB).

If instead of an equality we have inequalities, we obtain the definition of weak/strong
sub-additivity and weak/strong super-additivity. Clearly, they extend automat-
ically to generic multipartite states. These properties are particularly useful when it
comes to convert many copies of a state into as may copies as possible of another; we will
come back on this later. We also mention that given a resource monotone F , it is always
possible to define the corresponding regularized monotone as follows:

F∞(ρ) := lim
n→∞

1

n
F(ρ⊗n) . (2.7)
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This new monotone is additive by construction; the drawback is that it is usually impos-
sible to compute exactly. An example of weakly sub-additive monotone is given by the
relative entropy of resource.
Proposition 2.16. The relative entropy of resource is a weakly sub-additive monotone.

Proof. The proof is straightforward:

inf
σAB∈Df (HA⊗HB)

D(ρA ⊗ ρB‖σAB) ≤ inf
σA∈Df (HA)

σB∈Df (HB)

D(ρA ⊗ ρB‖σA ⊗ σB)

1
= inf
σA∈Df (HA)

D(ρA‖σA) + inf
σB∈Df (HB)

D(H()ρ
B‖σB) ,

where in 1 we used the additivity of relative entropy on tensor product states.

Some monotones display a stronger form of monotonicity. In particular, for a functional
to be a resource monotone is required to monotonically decrease under any quantum
channel, but do not state anything about probabilistic transformations. If we require our
monotone not to increase even on average when probabilistic protocols are applied, we
obtain the following, stronger, property.
Definition 2.17. A resource monotone F is said to display strong monotonicity if,
for any free operation giving as a result a flagged outcome in the form:

ρ 7→
∑

n
pnρ
′
n ⊗ |nA〉〈nA| ,

it holds:
F(ρ) ≥

∑
n
pnF(ρn) . (2.8)

When a resource monotone displays strong monotonicity, resources cannot be increased
even on average, performing post-selection on the outcomes. It is obviously a stronger
condition than standard monotonicity.
To conclude this section, we give the following, last definition.
Definition 2.18. The resource monotone F is said to satisfy tensorisation if

F(ρ⊗ ρ′) = max
{
F(ρ),F(ρ′)

}
., (2.9)

for any ρ, ρ′ ∈ D(H).

2.2.3 States convertibility

When a limited amount of resource is available, the simplest task we can aim for is to
transform resourceful states from one another using only free operations. Indeed, in a
typical experimental setting, some amount of resource is given, but usually it is not in the
form it is needed. So, it is fundamental to understand to what extent we can manipulate
resources in order to pose stricter and more realistic constraints on the minimum amount
of resource needed for a certain task.
States convertibility is also the first and most striking example in which resource mono-
tones play a major role in proving rigorous results. Indeed, starting from the paradigm
that resources cannot be increased by free operations, we can rule out all the transitions
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which do not respect this simple yet unavoidable requirement. As we will see, there are
many types of state transformations, and different properties of the monotones are re-
quired in different scenarios.
Of course, in the context of a Quantum Resource Theory, the simplest question we can
ask ourselves is: can we go from state ρ to ρ′ with only free operations? A necessary, but
not sufficient in general, condition, is that

F(ρ) ≥ F(ρ′) (2.10)

for any resource monotone F we can define for our Resource Theory. To prove that we
cannot freely go from ρ to ρ′, then, it sufficies to find a monotone (with no particular
additional properties) such that condition (2.10) is not satisfied. However, this is not the
clever question we may ask, for several reasons:

• the requirement is too stringent, as in most cases the transformation cannot be
freely achieved even if F(ρ) ≥ F(ρ′);

• it might be easier to produce ρ′ probabilistically with some finite probability p,
instead of converting ρ with a deterministic CPTP map;

• it would sufficies to repreduce ρ′ within a certain, reasonably small, error;

• with the realistic experimental situation in mind, it does not make much sense to
talk about exact transformation;

• it might be more convenient to transform many copies of the input in many copies
of the output, instead of focusing on single-copy tasks.

Based on this observations, we can define many other types of states conversions; the
downside is that, being more general tasks, they require more specific monotones to be
constrained. In particular, some of the properties we presented in the previous section
might come in handy. The first kind of conversions we want to consider are probabilistic
conversions. More precisely, we ask whether it exists a free CPTP map acting as follows:

ρ 7→ p0ρ
′ ⊗ |0A〉〈0A|+

N∑
j=1

pjρj ⊗ |jA〉〈jA| ,

for some N ∈ N. Again, we used a flagged outcome to describe the result of a probabilistic
transformation. The question then becomes: what is Pmax(ρ→ ρ′), the maximum value
p0 can assume? The answer can be given via a monotone satisfying strong monotonicity:

F(ρ) ≥ p0F(ρ′) +

N∑
j=1

pjF(ρj) ≥ p0F(ρ′) =⇒ p0 ≤ Pmax(ρ→ ρ′) ≤ F(ρ)

F(ρ′)
.

Obviously, the question we started from at the beginning of the section corresponds to
the particular case in which we ask whether p0 can be equal to 1.
Another kind of conversions we will deal with in the following are asymptotic conver-
sions. In this case, the setting is much different: we start from n identical input states,
ρ⊗n, and we aim for obtaining as much copies of the output state as possible, within a
certain error. Then, we tke the limit n→∞ , and we require the error in the preparation
of the output to vanish in the limit. For the sake of precision, let us present the two
following definitions.
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Definition 2.19. Within a certain Quantum Resource Theory, the asymptotic con-
version rate from state ρ ∈ D(H) to ρ′ ∈ D(H′) is defined as

R(ρ→ ρ′) := sup

{
r : lim

n→∞
inf

Λ∈Of (H⊗n→H′⊗brnc)

∥∥∥Λ(ρ⊗n)− ρ′⊗brnc
∥∥∥

1
= 0

}
.

Definition 2.20. Within a certain Quantum Resource Theory, the maximal asymp-
totic conversion rate from state ρD(H) to ρ′D(H′) is defined as

R̃(ρ→ ρ′) := sup

{
r : lim

n→∞
inf

Λ∈Of (H⊗n→H′⊗brnc)
sup

j=1,...,brnc

∥∥∥Trĵ
(
Λ(ρ⊗n)

)
− ρ′

∥∥∥
1

= 0

}
.

Note that the integer part b·c is needed in order to obtain an integer number, but
it becomes irrelevant in the limit. In (2.20), as opposed to (2.19), we require only the
error associated to each copy to go to 0, while the global error might even diverge. It
is sensible reasonable choice whenever we want to use the output copies independently
from one another, for example if they have to be distributed to different non-interacting
parties. It trivially holds that R̃(ρ→ ρ′) ≥ R(ρ→ ρ′). Moreover, we also have Pmax(ρ→
ρ′) ≤ R(ρ→ ρ′), since we convert each input state independently with some probabilisitic
protocol in the asymptotic setting as well. These quantities can be bounded using resource
monotones, as the results below show.
Theorem 2.21. Let us assume that the resource monotone F is:

• asymptotically continuous;

• weakly additive;

Then:
R(ρ→ ρ′) ≤ F(ρ)

F(ρ′)
. (2.11)

Proof. Let us consider two quantum states ρ ∈ D(H) and ρ′ ∈ D(H′), with dimH′ =
d′. Let us assume that it exists a sequence of free operations {Λn}n such that Λn ∈
Of (H⊗n → H′⊗brnc) and:

lim
n→∞

‖Λn(ρ⊗n)− ρ′⊗brnc‖1 = 0 .

We define εn := ‖Λn(ρ⊗n)− ρ′⊗brnc‖1; then we have:

F(ρ) = lim
n→∞

1

n
F(ρ⊗n)

≥ lim
n→∞

1

n
F
(
Λn(ρ⊗n)

)
= lim
n→∞

1

n

[
F(ρ′⊗brnc) + cεn log

(
d′brnc

)
+ η (εn)

]
= lim
n→∞

[
brnc
n

[
F(ρ′) + cεn log d′

]
+
η(εn)

n

]
=rF(ρ′) .
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Remark 2.22. In the previous proof it was crucial the logarithmic scaling of the conti-
nuity bound. This is why simple continuity in trace norm is not enough, and asymptotic
continuity is required instead.

Sometimes, asymptotic continuity simply does not hold, or it does not even make
sense, for example when we consider infinite dimensional Resource Theories. Luckily, the
following result holds.
Theorem 2.23. Let us assume that the resource monotone F is:

• lower semi-continuous;

• weakly additive;

• strongly super-additive.

Then:
R(ρ→ ρ′) ≤ R̃(ρ→ ρ′) ≤ F(ρ)

F(ρ′)
. (2.12)

Proof. Again, let us consider two quantum states ρ ∈ D(H) and ρ′ ∈ D(H′). Let us
assume that it exists a sequence of free operations {Λn}n such that Λn ∈ Of (H⊗n →
H′⊗brnc) and:

lim
n→∞

‖Λn(ρ⊗n)− ρ′⊗brnc‖1 = 0 .

We define εn := supj=1,...,brnc ‖Trĵ Λn(ρ⊗n)− ρ′‖1; then we have:

F(ρ) = lim
n→∞

1

n
F(ρ⊗n)

≥ lim
n→∞

1

n
F
(
Λ(ρ⊗n)

)
≥ lim
n→∞

1

n

brnc∑
j=1

F
(

Trĵ Λ(ρ⊗n)
)

≥ lim
n→∞

1

n

brnc∑
j=1

[
F(ρ′) +O(εn)

]
≥ lim
n→∞

brnc
n

[
F(ρ′) +O(εn)

]
=rF(ρ′) .

Finally, we mention the fact that resource monotones fulfilling the tensorisation con-
dition (see Definition 2.18) can be used to prove that distillation of a resurce, i.e., the
conversion of many states into a single, more resourceful, one, is impossible with only
free operations. Indeed, if F satisfy tensorisation, we have:

F(ρ⊗n) = F(ρ) ≥ F(Λ(ρ)) ,

for any n ∈ N, no matter how big it is. Loosely speaking, Resource Theories displaying
tensorisation can be seen as physical realisations of the common saying “it’s quality, not
quantity”.
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2.3 Some celebrated examples

2.3.1 Entanglement

As we already anticipated, the operational limitations which select entanglement as
a quantum resource are those of a “distant laboratories and classical phones” scenario.
Namely, two or more experimentalists cannot make their quantum systems interact di-
rectly, but they can share classical probability distributions over a classical channel (us-
ing standard telecom communication, for instance), and perform operations according to
them.
The quantum channels one can construct with these restrictions are collectively called
local operations and classical communication (LOCC) channels. In the case of N
laboratories A1, . . . , AN , and by composing local (i.e., in a tensor product form) oper-
ations according to some shared probability distribution {pa}a, we can immediately see
that LOCC channels admit a Kraus decomposition in the following form:

Λ(·) =
∑

a

(
N⊗
n=1

KAn
a,n

)
(·)

(
N⊗
n=1

(
KAn
a,n

)†)
. (2.13)

Hence, if we starting from a quantum state which can be written as follows:

∑
a
pa

N⊗
n=1

ρAna,n ,
∑

a
pa = 1 , pa ≥ 0 ∀ a , (2.14)

and we apply operations in the form (2.13) we will always end up again in a state ad-
mitting a decomposition as in (2.14). Such states are known as separable states [57],
and we will denote their set with S(H) ⊂ D(H). Conversely, a state in the form (2.14),
can always be generated with only LOCC operations starting from a generic multipartite
state: since any local operation is allowed, we can just discard the state we have at the be-
ginning and command, accordingly to some a priori fixed probability distribution {pa}a,
the experimentalist An to prepare his system in the state ρAna,n. This simple argument
shows that, if LOCC channels are taken to be our free operations, we necessarily have:

DEf (H) = S(H) . (2.15)

Note that the condition
∑

a pa = 1 in (2.14) must be valid for any pysical state, while is
the pa ≥ 0 condition which distinguishes separable ones from the others. Entanglement
theory is an example of how choosing the set of free operations leaves no freedom in the
definition of the set of free states. It is also a convex Resource Theory.
Now we could ask ourselves whether LOCC channels are the most general quantum
operations mapping separable states into separable states. In fact, they are not, but
it is not completely trivial to see why. The set of LOCC operations is strictly smaller
than the set of operations which can be written as in (2.13), i.e., separable operations.
Perhaps surprisingly, neither separable operations are the most general operations which
cannot generate entanglement. The set of all operations mapping S(H) into itself is
unsurprisingly known as the set of non-entangling operations.
To understand why this set is bigger than those of both LOCC and separable channels,
let us notice that if ΛS is a separable operation (and then a LOCC one), also ΛS ⊗ IE is
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so. So, it cannot generate entanglement starting from separable states even when acting
on a part of a larger system. Now, ley us consider two isomorphic Hilbert spaces HA,B,
and the swap map:

|jAkB〉 7→ |kAjB〉 .

Clearly, this map will preserve the form (2.14) of a quantum state of the system AB, and
hence it is a non-entangling operation. Nonetheless, when acting on subsystems A and B
of the larger system AA′BB′ prepared in the separable (with respect to the bipartition
AA’/BB’) state:

ρ ∝
(
|0A0A

′〉+ |1A1A
′〉
)
⊗
(
|0B0B

′〉+ |1B1B
′〉
)
,

it will produce a non-separable (with respect to the same bipartition) state. Hence, it
cannot be a separable (or LOCC) operation [43].
Here we have a good example of how sometimes it is preferable to enlarge the set of free
operations in order to characterize it easily. Determining whether a generic operation can
be constructed with only LOCC protocols is indeed a very hard problem, while separable
operations, for instance, have a straightforward parametrisation. Doing so, however, we
encompass also physical maps which do not have a clear operational justification, such
as generic non-entangling operations. As we already pointed out, this allow us to prove
only weaker results than with LOCC, but with much less effort. So, there is a trade-off
between the manageability of the maps we define to be free in our Resource Theory, and
their relation with reality: where the optimum is strongly depends on the result we want
to prove.
For later convenience, let us introduce and discuss very briefly two very important pro-
posals for entanglement measures. We will focus on the bipartite setting, i.e., when only
two parties are considered.

• Relative entropy of entanglement. [61]. This measure of entanglement is based
on Definition 2.3:

Er(ρ
AB) := inf

σ∈S(HA⊗HB)
D(ρ‖σ) .

Thus, we have already proven that it is indeed a proper resource monotone. It is
also convex (as a consequence of the joint convexity of D(·‖·)), weakly sub-additive
(see Proposition 2.16) and, in the finite-dimensional case, asymptotically continuous
[78]. So, by virtue of Theorem 2.21, its regularized version can be used to upper
bounds asymptotic conversion rates:

R(ρ→ ρ′) ≤ E∞r (ρ)

E∞r (ρ′)
.

• Logarithmic negativity. Logarithmic negativity is defined starting from the
partial transpose of a state ρ:

ρ =
∑

j,k,l,h
ρjk
lh
|jl〉〈kh| 7→ ρΓ :=

∑
j,k,l,h

ρjk
lh
|jh〉〈kl| . (2.16)

As we already pointed out at the very beginning of this work, transposition is
a positive-but-not-completely-positive map: it maps physical states into physical
states only whe acting on the whole system. It can also be proven that if ρ is
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separable, ρΓ is a physical state, but the converse is not true [76, 77]. This means
that the logarithmic negativity, defined as follows:

EN (ρ) := log ‖ρΓ‖1 , (2.17)

is not a faithful resource monotone. However, entanglement cannot be distilled from
non-separable states with vanishing logarithmic negativity: they display bound
entanglement[79].
Despite the fact that it is not even convex, it displays strong monotonicity [80].
Moreover, it is one of the few entanglement monotone that can be computed effi-
ciently. Note that neither the choice of the basis nor that of the subsystem influence
EN .

2.3.2 Coherence

As for the Quantum Resource Theory of coherence, there is an obvious choice for the set
of free states. The decoherence process is modeled by the totally dephasing channel:

∆(·) =

d∑
n=1

|n〉〈n| (·) |n〉〈n| , (2.18)

with d = dimH and with {|n〉} being the incoherent basis. Given a generic quantum
state ρ expressed in the incoherent basis, the totally dephasing channel kills all of its
off-diagonal elements. Free states are those which are left unchanged by ∆, i.e., those
which are stable under the open dynamic of the system, and hence are easy to preserve:

DCf (H) =

{
ρ ∈ D(H) : ρ =

d∑
n=1

pn |n〉〈n| , pn ≥ 0 ∀n

}
. (2.19)

∆ fulfills the following conditions:

• ∆(σ) = σ ∀ σ ∈ Df (H);

• ∆(ρ) ∈ Df (H) ∀ ρ ∈ D(H).

In a general Resource Theory, such a map is called a resource-destroying map. A nec-
essary (but not sufficient) condition for a Resource Theory for admitting a linear resource-
destroying map is to be affine. Indeed, if {σa}a are free states, then ∆ (

∑
a caσa) =∑

a cs∆(σa) =
∑

a caσa. So, affine combinations of free states must be free, i.e., the
Resource Theory must be affine. For necessary and sufficient conditions for admitting a
linear resource-destroying map see [81].
Coherence theory is also a striking example of how starting from Df (H) leaves the door
open for a plethora of possible sets of free operations. We report some examples below.

• Maximally incoherent operations (MIO) [62]. This is the maximal set of free
operations, i.e., it encompasses any channel Λ such that

Λ(DCf (H)) ⊆ DCf (H′) .
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• Strictly incoherent operations (SIO) [67]. An operation Λ is in SIO if it can
be written by means of Kraus operators Ka such that:

〈n|KaρK
†
a|n〉 = 〈n|Ka∆(ρ)K†a|n〉 ,

for any incoherent state {|n〉}n. In other words, SIO are all those operations which
cannot exploit the coherence of the input state in order to obtain an effect which is
detectable by an incoherent measurement. In [82], an operational construction for
any element in SIO is given.
We cited this set of free operations because it provides an example of a Resource
Theory admitting tensorisation. In [83], it was introduced the following monotone:

η(ρ) := max
j 6=k

〈j|ρ|k〉√
〈j|ρ|j〉 〈k|ρ|k〉

,

where again |j〉 and |k〉 are incoherent states. It can be shown that η is indeed a
monotone under SIO, and that:

η(ρ1 ⊗ ρ2) = max{η(ρ1), η(ρ2)} ,

and hence, in particular, η(ρ⊗n) = η(ρ). Thanks to this property, it can br proved
that there are states from which we cannot distill coherence: they display bound
coherence (under SIO).

• Physical incoherent operations (PIO). They are all the incoherent operations
admitting a Stinespring dilation which is incoherent as well. This means that if Λ
is in PIO, it can be written as follows:

Λ(·) = TrE

[
U ((·)⊗ σ)U †

]
,

with σ being an incoherent state and U being an incoherent (i.e., diagonal in the
incoherent basis) unitary. We cited this set of free operations because the notion of
“free dilation” will come back in the next chapter.

It can be proven [84] that PIO⊂SIO⊂MIO.

2.3.3 Thermodynamics

Given a quantum system with Hilbert spaceH, HamiltonianH and inverse temperature
β, the set of free states for the Resource Theory of Thermodynamics is just the thermal
state τH := e−βH :

DTf (H) = {τH} . (2.20)

Also in this case there is more than just one possible set of free operations. For example,
we call thermal operations (acting on the system S) the set of physical maps Λ which
act on a state ρS as follows:

Λ(ρS) = TrE

[
USE

(
ρS ⊗ τEHE

)
USE†

]
, (2.21)
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where τE
HE is the thermal state of the system E for the Hamiltonian HE , and USE is a

unitary such that:
[USE , HS ⊗ IE + IS ⊗HE ] = 0 .

By construction, thermal operations have a free dilation. The maximal set of free opera-
tions is represented by Gibbs-preserving operations, i.e., all those operations which
leave the thermal state invariant.
Once again, a good resource monotone can be obtained via the relative entropy:

Tr(ρ) := D(ρ‖γ) . (2.22)

Then, if the dimension of H is finite, the following result can be proven.
Theorem 2.24. [69, Theorem 1] Using only thermal operations at background tempera-
ture T , asymptotic conversion at non-zero rate is possible between all non-thermal states
ρ and σ of a system with Hamiltonian H. Being τH the thermal state, the optimal rate
is given by:

R(ρ→ σ) =
D(ρ‖τH)

D(σ‖τH)
. (2.23)

It is easy to see that D(ρ‖τH) = βFβ(ρ)−βFβ(τH), with Fβ(ρ) := 〈H〉ρ− 1
βS(ρ) being

the free energy of the state ρ.
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3.1 What is non-classicality?

3.1.1 Classical and non-classical states

As we pointed out in section 1.2.2, there are several reasons to consider coherent states
as the most classical among the states of a quantum harmonic oscillator. By linearity,
this can be extended to probabilistic mixtures of coherent states. We then define the set
of classical states to be the closure (in trace norm) of the convex hull of the set of all
coherent states [85]:

Cm = C(Hm) := conv {|α〉〈α| : α ∈ Cm} , (3.1)

with Hm = L2(Rm) (we will denote H1 = H for simplicity). Any Quantum Resource
Theory of optical non-classicality (it will be usually referred simply as non-classicality
in the following for simplicity) [86] start from the following identification:

DNCf (Hm) = Cm . (3.2)

The Resource Theory of non-classicality is, by construction, a convex Resource Theory,
but obviously it is not affine. Different choices for Of lead to different Resource Theories.
In the following, we will make use of some results and terminology of distribution Theory:
a brief review of the topic is presented in Appendix B.
Every classical state σ ∈ Cm can be represented as

σ =

∫
d2mαP (α) |α〉〈α| , (3.3)

with P (α), which is the P -function of the classical state σ (see section 1.3.3), being a
proper probability distribution, i.e., a normalised and non-negative measure. Loosely
speaking, non-classical states are usually said to have a “negative” or “more singular than
a δ function” P -function. Actually, we can give a rigorous meaning to these colloquial
expressions: “negative” distributions are those to which we cannot associate a positive
sign at any point in phase space, while any distribution of order at least 1 is said to be
“more singular than a δ function”. From Proposition B.3 we see that the latter condition
implies the former one, but the converse is not true: in the following, we will se an
example of a state with a “negative” P -function, which is not “more singular than a δ”.
Since the P -function is defined as the Fourier transform of a well-defined object, χ1,
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and the Fourier transform is always unique as a distribution (once it is well-defined), this
definition of singularity of the P -function is unambiguous (in earlier works some confusion
has been made, see for example [87]).
At any rate, dealing with the P -function of a state is a bit awkward because it can
be a highly singular object. Thanks to the famous Bochner’s theorem [88], we have
an alternative characterisation of classical states via characteristic functions instead of
quasi-probability distributions: σ is a classical state if and only if its χ1 function is
positive-definite, i.e., if and only if the matrix

Mjk = χσ1 (αj −αk) (3.4)

is positive definite for any choice of {αj}j=1,...,n. This characterisation has the advantage
that χ1, contrarily to P , is well-defined and regular for any quantum state. Note that
if we choose α1 = 0 and α2 = α the positive-definiteness condition immediately imply
that:

0 ≤ det

(
χσ1 (0) χσ1 (α)
χσ1 (−α) χσ1 (0)

)
= 1− |χσ1 (α)|2 ,

where we used χ1(0) = 1 and χ1(−α) = χ∗1(α). So, we can state the following result.
Lemma 3.1. If σ ∈ Cm then |χσ1 (α)| ≤ 1 for any α ∈ Cm.

Non-classicality can manifest itself in the P -function in different ways. For example,
let us consider the thermal state with the vacuum removed:

τ̃ν =
1

ν

∞∑
n=1

(
ν

1 + ν

)n
|n〉〈n| . (3.5)

The state is non-classical: its P -function can be inferred from equations (1.41) and (1.46):

P τ̃ν (α) =
1 + ν

πν2
e−
|α|2
ν − 1

ν
δ2(α) , (3.6)

and clearly it is not positive at α = 0 (actually, it does not have a well defined weak sign).
Moreover, no classical state can have vanishing overlap with the vacuum [89], therefore
the state is definitely non-classical. Nonetheless, its P -function is a well-defined tempered
distribution, and it is not even more singular than a δ function.
Another example is given by Fock states. From equation (1.49) we see that the P -function
of |n〉 is a tempered distribution which must be expressed in terms of derivatives of δ
functions: it is not properly negative at some point, since it vanishes everywhere but in
0, where its weak sign is not even defined.
At last, we cite the case of squeezed and cat states, whose χ1 functions diverge exponen-
tially. Hence, their P -functions cannot be defined in the space of tempered distributions
either.
Note that the Resource Theory of non-classicality is somehow similar to that of coher-
ence, as in both cases the starting point is the identification of a preferred basis and the
definition of Df as its closed convex hull. However, there are two important differences:

• it is necessarily formulated in infinite-dimensional Hilbert spaces;

• the preferred basis is not an orthonormal one, and it is even over-complete.

As we will see, these two points will lead to many additional difficulties. We will come
back to this analogy later in this work.
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3.1.2 Classical and non-classical operations

The maximal set of free operations Omaxf is that of classicality-preserving opera-
tions (CPO). Unfortunately, there is not a clear characterisation or a strong operational
motivation for these operations. On the contrary, a set of operations which is well jus-
tified from an operational point of view is that of linear optical unitaries, discussed in
section 1.2.4. Indeed, as we already pointed out, they are easily implementable in linear
optical settings. Moreover, as proved in Proposition 1.11, they are the only unitaries
which preserve the set of coherent states: this also implies that they are the only unitary
CPOs. Therefore, by Stinespring dilation, we see that any quantum channel which can
be physically implemented by means CPOs only must be obtained from a linear optical
unitary applied to a larger system. More precisely, the only trace-preserving CPOs whose
dilation is still a CPO are those which can be written as follows:

ΛL(·) = TrE

[
UL
(
(·)⊗ σE

)
U †L

]
,

where σE is a classical state of HE and UL is a linear optical unitary. We call these op-
erations linear optical operations. We can encompass maps giving a flagged outcome
simply by taking as ancillary state σEE′ , where HE′ is the classical system containing
the classical flags.
In order to describe a more experimentally significant scenario, we might want to allow for
multiple linear optical operations with feed forward between them, i.e., the conditioning
of an operation to be performed on a state based on the result of a previous measurement.
In [17], the following sets of free operations are proposed:

• P0: any operations obtained by appending a classical ancilla, performing a linear
optical unitary and tracing out a set of modes;

• P1: the set of modes to be traced out can be measured first, and the information
about the outcome can be totally or partially retained (in other words, destructive
measurements are allowed);

• PN: multiple operations of P1 can be performed subsequently, and feed-forward is
allowed.

The following result ensures that PN is a subset of the set of CPOs.
Theorem 3.2. [17, Theorem 1] Every quantum operation from B(Hm) to B(Hm′) in PN

admits a set of Kraus operators in the following form:

Kn |α〉 = cn(α) |Mnα+ δn〉 ,

where cn(α) ∈ C, δn ∈ Cm
′ and Mn is a m×m′ matrix with singular value not exceeding

1.

Physically, this result implies that any operation in PN results in a combination of
contractions and displacements in phase space. From this theorem we immediately see
that any coherent state is mapped into a classical state by any element of PN. By writing
any classical state in terms of its P -function, it is easy to deduce than any element in
PN is also a CPO. However, it is not clear whether the inclusion of PN in the set of
CPOs is strict or not. In any case, the previous result gives a strong motivation to the
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Resource Theory of non-classicality, by proving that this quantum resource cannot be
generated when only operations in PN are available, which is a plausible assumption in
many situations. Actually, in standard quantum optical settings we cannot implement all
the operations in PN either, since the condition of “arbitrary destructive measurements”
is way too loose. At any rate, any result obtained with this set of operations holds true
when only a subset of them are actually available.
An example of a CPO is the totally dephasing map with respect to the Fock basis. Indeed,
from the following identity:

1

2π

∫ 2π

0
dϕ eiϕâ

†â |n〉〈m| e−iϕâ†â =
1

2π

∫ 2π

0
dϕ eiϕ(n−m) |n〉〈m| = δn,m |n〉〈m| ,

we see that the action of ∆ (for a single mode state) can be written as follows:

∆(ρ) =
1

2π

∫ 2π

0
dϕ eiϕâ

†âρe−iϕâ
†â .

We can use this expression to prove that ∆ is a classical operation, and in particular
∆(Cm) ⊂ CFDm , where CFDm is the set of states in Cm which are also diagonal in the Fock
basis. Indeed:

∆(ρ) =

∫
d2αP (α)

∫ 2π

0
dϕ eiϕâ

†â |α〉〈α| e−iϕâ†â

=

∫
d2αP (α)

∫ 2π

0
dϕ |eiϕα〉〈eiϕα|

=

∫
d2α

∫ 2π

0
dϕP (e−iϕα) |α〉〈α| .

Clearly, if P (α) is a positive and normalized measure, also
∫ 2π

0 dϕP (e−iϕα) is so.
Note that ∆ is a resource-destroying map for the Resource Theory of coherence, but not
for the Resource Theory of non-classicality: neither it leaves any free state invariant, nor
it maps any non-free state into a free one. Actually, no physical resource-destroying map
is allowed in the resource Theory of non-classicality, since it is not affine. At any rate,
we can define the following linear map:

Φ(ρ) =
1

π

∫
d2α |α〉〈α| ρ |α〉〈α| .

Its net effect is to substitute the P -function of a state with its Q-function: since the
latter is always non-negative and well-behaved, the resulting state is always classical. So,
Φ is a CPO. However, Φ(ρ) 6= ρ even if ρ is classical, so it is not a resource-destroying map.

3.2 Quantum Resource Theories of non-classicality

3.2.1 P-negativity and the absolute robustness of non-classicality

The first Resource Theory of non-classicality we want to consider [90] is based on a very
intuitive idea: if the P -function of a non-classical state is not non-negative at any point
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in phase space, it is reasonable to quantify the degree of non-classicality by measuring
the negative volume of P . However, as we already thoroughly discussed, P is usually a
highly singular object whose “negative part” might not be easily identifiable.
The solution is to consider the filtered P-functions introduced in [91], which consists
of a regularization of the actual P -functions, in such a way that the negative part is well-
defined. Since singularities of the P -function arise from divergences of the χ1 function
(with “singularities” we always refer to “beyond δ function singularities”), it seems a good
idea to multiply the latter for a filter Ωω(α) to make it bounded. For a single mode
quantum state, the filter has to satisfy the following conditions (note that [90] uses a
slightly different convention for the symplectic Fourier transform):

N1) Ωω(α) can be factorized as Ω1
ω(α)Ω2

ω(α), with Ω1
ω(α), Ω2

ω(α) ∈ L2(C);

N2) Ω1
ω(α)e

|α|2
2 ∈ L2(C);

N3) Ωω(0) = 1 and limω→∞Ωω(α) = 1∀α ∈ C.

Points N1) and N2) are justified by the fact that since D(α) is a unitary operator for any

α, it holds |χρ0(α)| ≤ 1 for any ρ. So, χρ1(α) does not diverge faster than e
|α|2
2 . Point N3)

is needed in order to obtain a sensible regularization, i.e., to go back to the non-filtered
P -function in some limit.
Starting from the filter Ωω, we can finally construct the filtered P -function Pω by taking
the symplectic Fourier transform. To begin with, we report the following result about
Pω.
Theorem 3.3. [90, Theorem 1] If Ωω satisfies N1) and N2), then Pω has no singularities
and is finite everywhere.

Hence, Pω can now be used to construct the following, well-defined, quantity.
Definition 3.4. The negativity of a state ρ is defined as:

N (ρ) := lim
ω→∞

∫
d2αP−ω (α) (3.7)

for some filter Ωω, and with P−ω being the negative part of the filtered P -function Pω.

A fundamental question that we may ask at this level is whether N is independent or
not from the filter Ωω. We will see in the following that this is indeed the case. Moreover,
N can be used as a resource monotone in a Resource Theory of non-classicality, as the
following result shows.
Theorem 3.5. [90, Theorem 2] If we identify the set of free operations Of with the set
of linear optical operations, the negativity N becomes a resource monotone. Moreover, it
satisfies:

• faithfulness;

• strong monotonicity;

• convexity.

The negativity can be related to another non-classicality monotone, i.e., the celebrated
absolute robustness. Indeed, the following result holds true.
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Theorem 3.6. [90, Theorem 3] N (ρ) = RNC
A (ρ)∀ ρ ∈ D(Hm), where RNC

A (ρ) is the
absolute robustness of non-classicality:

RNC
A (ρ) := inf

σ∈Cm

{
r > 0 :

ρ+ rσ

1 + r
∈ Cm

}
.

This Theorem also proves that the negativity does not depend on the choice of the
filter, because RNC

A (ρ) does not. This equivalence is quite intuitive: N quantifies, in
some sense, the negative volume of the P -function of a state ρ; in order to obtain a
classical state, such “negative part” must be compensated by adding a classical state σ,
which have a completely positive P -function. Since the P -function of σ is normalized,
its P -function has unital volume; the coefficient r must be such that rσ can “fill up” the
negative part of ρ.
Despite the premises, this Resource Theory has some major flaws. To begin with, N
has no manifest continuity or additivity property. So, we can use N to upper bound
conversion rates only on the exact, single-copy scenario; as we already discussed, this is
seldom the most interesting case. Strong monotonicity allows for studying probabilistic
protocols, too. The problem is that, as we are going to show in a moment, N is often
divergent, making the bound Pmax(ρ → ρ′) ≤ N (ρ)/N (ρ) meaningless. More precisely,
the following result, contained in [92], hold true.
Proposition 3.7. Let |ψ〉 be a non-classical pure state having a vanishing overlap with
a finite (possibly empty) set of coherent states. Then, RNC

A (ψ) =∞.

Proof. Let us write |ψ〉 =
∑∞

n=0 cn |n〉. The function f(α) = e|α|
2/2 〈ψ|α〉 =

∑∞
n=0

c∗n√
n!
αn

is a complex entire function of order at most 2 (otherwise, | 〈ψ|α〉 | would diverge). If
N <∞ is the number of zeros of f(α), its Hadamard factorisation [93] becomes f(α) =
eaα

2+bαPN (α), where PN (α) is a polynomial of degree N and |a| < 1
2 in order for | 〈ψ|α〉 |

to be bounded. The Husimi Q-function of |ψ〉 is then

Qψ(α) = e−|α|
2 |f(α)|2

= e−|α|
2
e2<[aα2+bα]|PN (α)|2

= e−r(α)TAr(α)+βT r(α)|PN (α)|2 ,

(3.8)

with

r(α) =

(
<α
=α

)
, A =

(
1− 2<a 2=a

2=a 1 + 2<a

)
, β =

(
2<b
−2=b

)
.

It is easy to see that the matrix A has eigenvalues 1 ± 2|a|. The Fourier transform of
a function in the form (3.8) has again the same structure, but with A−1 in place of A.
Now, let us suppose for the moment that a > 0. In this case, A has an eigenvalue strictly
bigger than 1, and hence A−1 has one strictly smaller than 1. Thus, χψ1 = e|α|

2
χψ−1, is

necessarily unbounded and, by virtue of Lemma 3.1, we conclude that RNC
A (ψ) =∞. If

instead a = 0, we have A = A−1. At this point, we have to make a subsequent distinction:
if PN is the trivial polynomial, |ψ〉 is a coherent state and hence is obviously classical; if
PN is not trivial we end up once again with a divergent χψ1 (in this case the divergence
is polynomial instead of exponential).
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Among the states which fulfil the hypothesis of the last result there are, for instance,
any finite superposition of Fock states and any non-classical Gaussian state. It is worth
noticing that the cat state |ψα〉 is a pure state with vanishing overlap with infinite coherent
states, but with unbounded χ1 and hence infinite absolute robustness of non-classicality.
In any case, the regularization of P by means of a suitable filter, despite being very
suggestive, turns out to be an overcomplication in practice. Indeed, whenever N (ρ) (and
hence RNC

A (ρ)) is finite, it exists a finite r such that the state ω = ρ+rσ
1+r is classical,

and hence its P -function Pω is a (positive) measure. But also σ is a classical state,
and hence its P -function P σ is a (positive) measure as well. This implies that also
P ρ = (1 + r)Pω − rP σ in a measure, and by Proposition B.3 we see that it has well-
defined positive and negative parts, without the need for any filtering. The filter comes in
handy only when such decomposition is not well-defined for the non-filtered P -function,
but in those cases N is divergent and it cannot be used for stating any useful result.
Finally, we point out that the existence of states with infinite absolute robustness of
non-classicality implies the following interesting result about the geometry of Cm.
Theorem 3.8. Cm does not have an internal part (in trace norm).

3.2.2 Non-classicality and entanglement generation

The generation of entanglement by means of linear optical operations is a well-studied
problem in entanglement theory. For example, in [94], a necessary and sufficient condition
for the existence of a passive linear operation mapping a given gaussian state into a
state having negative partial transpose is given. A formula for the maximum amount
of entanglement generated (quantified with the logarithmic negativity) is also reported.
Starting from this practical problem, an operationally meaningful Resource Theory of
non-classicality can be constructed. Indeed, it is known that only non-classical states can
generate entanglement by means of a beam splitter [95, 96, 97], which is the simplest
two-port operation in Quantum Optics. More precisely, sending a quantum state ρ and
the vacuum through a beam-splitter will generate an entangled state if and only if ρ is
non-classical. So, the idea is now to “map” a Resource Theory of non-classicality into a
Resource Theory of entanglement, by quantifying the maximum amount of entanglement
that can be generated with a given state and free operations. In particular, in [98], the
following experimental setup is considered:

• we start from an arbitrary single mode state ρ;

• we append a generic m-mode classical state;

• we perform an arbitrary passive linear unitary on the resulting state;

• we perform destructive measurements on all the modes but 2 (A and B);

• we quantify the entanglement generated between the two modes left with a suitable
entanglement monotone.

The goal is to find the maximum (with respect to the chosen monotone) entanglement
that can be generated starting from the state ρ. Clearly, such a functional (called en-
tanglement potential and denoted with EP ) assigning to ρ the maximum attainable
entanglement is a monotone under linear optical maps and destructive measurements by
construction. Optimizing over all possible entangling protocols would be an unfeasible
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task, but the problem can be greatly simplified, showing that the optimal protocol con-
sists of only one beam splitter mixing the state ρ with a vacuum ancilla, and sending
the output states to A and B. So, we just have to measure the maximum entangle-
ment generated by a beam-splitter, whose transmittivity can be optimized analytically
or numerically. The entanglement potential then simply becomes:

EP (ρ) = E
(
UBS(ρ⊗ |0〉〈0|)U †BS

)
, (3.9)

where E is the chosen entanglement monotone.

3.2.3 Non-classicality and Quantum Metrology

A typical problem in Quantum Metrology consists in estimating a physical parameter ϑ
whom a quantum operation Λϑ depends upon. A solution is to prepare a quantum system
in a state ρ, let it undergo such operation, measure the output and then try to infer the
parameter ϑ. The estimated parameter will have a standard deviation ∆ϑ associated to
it. Now the question has become: how good is a given state ρ for this task, i.e., how
small can ∆ϑ can be? Classically, the problem of parameters estimation is related to
the Fisher Information. For a classical probability distribution pϑ(x) depending on
a parameter ϑ the Fisher Information (with respect to the parameter ϑ) is defined as
follows:

Fϑ[pϑ] :=

∫
dx pϑ(x) (∂ϑ log pϑ(x))2 . (3.10)

Then, the Cramér-Rao bound [99] ensures that:

(∆ϑ)2 ≥ 1

Fϑ[pϑ]
. (3.11)

In a quantum setting, we can associate to any state an infinite number of classical prob-
ability distributions via POVMs. This adds an additional layer to the problem: not only
the state, but also the POVM can be optimized. We then define the Quantum Fisher
Information as follows:

FQϑ [ρ] := sup
MPOVM

Fϑ

[
PMρ

]
. (3.12)

Now, it can be proven [100] that, if we adopt the protocol suggested at the beginning of
this section, the bound (3.11) holds true for ∆ϑ with FQϑ in place of Fϑ.
Interestingly enough, one can find the following explicit characterization:

FQϑ [ρϑ] = Tr[ρϑL2
ϑ] , (3.13)

where we defined ρϑ := Λϑ(ρ), and the symmetric logarithmic derivative is implicitly
defined by:

1

2
{Lϑ, ρϑ} = ∂ϑρϑ .

If Λϑ is unitary operation generated by the operator ϑX, then one finds:

1

2
{Lϑ, ρϑ} = i[ρϑ, X] .
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Even more surprisingly, there is an explicit expression for the Quantum Fisher Informa-
tion in terms of the eigenvalues {pj}j and eigenstates {φj}j of ρ [100]:

FQϑ [ρϑ] = 2
∑
j,k

(pj − pk)2

pj + pk
|〈φj |X|φk〉|2 . (3.14)

Finally, in the case of multiple parameters {ϑj}j and observables {Xj}j , we introduce
the Quantum Fisher Information Matrix, defined as follows:

Fjk[ρϑ] :=
1

2
Tr [{Lj ,Lk}ρ] , (3.15)

where Lj is the symmetric logarithmic derivative associated to eiϑjXj . The following
explicit expression can be proven:

Fjk = 2
∑
h,l

(ph − pl)2

ph + pl
〈φh|Xj |φl〉 〈φl|Xk|φh〉 . (3.16)

In a recent proposal of a Resource Theory of non-classicality [17], applications of this
quantum resource in Quantum Metrology has been explored, by exploiting the Quantum
Fisher Information in order to build a resource monotone. We start from the Quantum
Fisher Information Matrix F[ρ] associated to am-mode quantum state ρ and the canonical
operators r̂, as defined in (1.10). The matrix is computed with all the parameters ϑj
set to 0. Then, we consider [F− 2I]+, which is the positive part (obtained by taking the
absolute values of the eigenvalues) of the matrix F − 2I. Finally, let T be an arbitrary
subspace of the global phase space with fixed dimension, and let TrT be the trace over
such subspace. We defined the quantity:

Fj :=
1

4
max

T : dimT=k
TrT [F− 2I]+ ,

for any j ≤ 2m. If fj [ρ] is the j-th biggest eigenvalue of the matrix [F−2I]+, we can write
Fj [ρ] =

∑j
k=1 fk[ρ]. Note that the operators eiθj r̂j are just displacement operators, so we

are basically quantifying the ability of ρ at sensing small displacements. Now, making
use of the sets of free operations defined in section 3.1.2, the following result holds true.
Theorem 3.9. [17, Theorem 3]

• Each one of the fj is a monotone under P0.

• Each one of the Fj is a monotone under P1, and the probability p of going from ρ
to ρ′ with operations in P1 is bounded as:

p ≤ Fj [ρ]

Fj [ρ′]
.

• F2m is a strong monotone under PN.

It is interesting to note that only F2m is a monotone under the most general set of free
operations, i.e., PN, the issue with the other quantities being feed-forward.
The previous Theorem strongly constraints our ability to manipulate states in order to
obtain metrological advantages when only certain operations are available. In this sense,
non-classicality is a quantum resource for Quantum Metrology. The Fj can also be
used to upper bound success rates of probabilistic processes, but, lacking some form of
continuity or additivity, it cannot be exploited for studying approximate or asymptotic
conversion rates.
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4 | On the relative entropies of
optical non-classicality

4.1 Introduction to the Resource Theory

4.1.1 Motivations

As we already thoroughly discussed, one of the most compelling problems in infinite
dimensional Quantum Resource Theories is the study of asymptotic conversion rates. As
asymptotic continuity looses meaning in infinite dimension, we cannot apply anymore
standard techniques such as Theorem 2.21. Then, we would like to exploit Theorem 2.23,
which instead makes sense also on infinite dimensional spaces; unfortunately, it is very
hard to build up a resource monotone fulfilling all the required properties.
Since lower semi-continuity and strong super-additivity appear to be crucial properties,
it seems reasonable to look for a monotone in the following form:

F(ρ) = sup
L∈A(H)

inf
σ∈Df (H)

f(ρ, σ, L) , (4.1)

for some suitable set A(H) of operators acting on H and with infσ∈Df (H) f(ρ, σ, L) being
continuous in ρ and weakly super-additive in L. Indeed, it is easy to see that the pointwise
sup of a continuous function is lower semi-continuous: if L0 is the operator for which the
sup is attained (within an error ε) for a state ρ, then:

lim inf
n→inf

sup
L∈A(H)

inf
σ∈Df (H)

f(ρn, σ, L) ≥ lim inf
n→inf

inf
σ∈Df (H)

f(ρn, σ, L0) = F(ρ) +O(ε) .

As for the super-additivity, we have:

sup
LAB∈A(HA⊗HB)

inf
σAB∈Df (HA⊗HB)

f(ρ, σAB, LAB)

≥ sup
LA∈A(HA)

LB∈A(HB)

inf
σAB∈Df (HA⊗HB)

f(ρ, σAB, LA ⊗ LB)

≥ sup
LA∈A(HA)

inf
σA∈Df (HA)

f(ρ, σA, LA)

+ sup
LB∈A(HB)

inf
σB∈Df (HB)

f(ρ, σB, LB) .
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However, resource monotones are usually defined in terms of minimisations rather than
maximisations (see Proposition 2.2). One might try to solve the problem by considering
a functional δ(· , ·) which can be written in terms of a sup, and then exchange the sup and
the inf. This is routinely done in finite dimensional Quantum Resource Theories thanks to
the celebrated Sion’s Theorem [101], which however requires some compactness property
of the set Df (H). Once again, the instrinsic infinite-dimensionality of the problem we
are considering conspires against us: indeed, compactness is a very subtle concept in
infinite dimensional spaces. But even if we succeed in proving compactness of Df (H),
the two nested optimizations seem to prevent any efficient computation of F(ρ). In this
chapter, we will be able to solve both problems and prove, for the first time in an infinite-
dimensional Quantum Resource Theory, a bound on asymptotic conversion rates. In our
Quantum Resource Theory, the set of free operations is as general as possible, i.e., it
contains all CPOs. Therefore, our bound remain valid in any Quantum Resource Theory
of non-classicality. All the results reported in this chapter are also part of [102]. We
mention that the idea of building super-additive monotones in the form (4.1) via Sion’s
Theorem was introduced in [103].

4.1.2 The monotones

An example of a functional that can be written in terms of a maximisation is DM (see
Lemmas 1.16 and 1.17). We start this section with the following definition.
Definition 4.1. The measured relative entropy of non-classicality of a quantum
state ρ ∈ D(Hm) is defined as follows:

NM
r (ρ) := inf

σ∈Cm
DM (ρ‖σ) . (4.2)

For later convenience, we define also the following auxiliary quantity.
Definition 4.2. The relative entropy of non-classicality of a quantum state ρ ∈
D(Hm) is defined as follows:

Nr(ρ) := inf
σ∈Cm

D(ρ‖σ) . (4.3)

The idea of using the relative entropy of non-classicality as a resource monotone was
already presented, though not worked out in detail, in [104]. Both the functional we just
introduced are proper non-classicality monotones. Indeed, the following result holds true.
Proposition 4.3. Nr and NM

r are non-classicality monotones under arbitrary CPOs.
Moreover, they possess the following properties:

• faithfulness, i.e., Nr(ρ) = 0, NM
r (ρ) = 0 if and only if ρ ∈ Cm;

• convexity.

• strong monotonicity.

Proof. Monotonicity follows from Lemma 1.14 and monotonicity under CPTP of D [41],
and Proposition 2.2; faithfulness descends from Proposition 2.13 and the fact that Cm is
closed in trace norm by construction; joint convexity of DM and D ensures the convexity
of the monotones. Finally, if we allow for encoding the outcome of any measurement in
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an incoherent orthonormal basis of “classical flags” {|jC〉}j , strong monotonicity follows
from standard arguments (see for example [105]).

Thanks to Lemmas 1.16 and 1.17, we can rewrite NM
r in terms of the following varia-

tional expression:

NM
r (ρ) = inf

σ∈Cm
sup

0<L∈Bsa(H)
{Tr ρ logL− log TrσL} (4.4)

= inf
σ∈Cm

sup
0<L∈Bsa(H)

{Tr ρ logL+ 1− TrσL} (4.5)

As we anticipated, our main goal is to put NM
r in the form (4.1) by exchanging the sup

with the inf. The problem is that in general, for a generic f , only the folowing expression
holds true:

sup
L∈A(H)

inf
σ∈Df (H)

f(ρ, σ, L) ≤ inf
σ∈Df (H)

sup
L∈A(H)

f(ρ, σ, L) . (4.6)

To obtain an equality one usually relies on the Sion’s theorem, whose hypothesis are the
following:

• A(H) is convex;

• Df (H) is convex and compact;

• f(ρ, σ, ·) is concave and upper semi-continuous in L ∀σ;

• f(ρ, ·, L) is convex and lower semi-continuous in σ ∀L;

Note that these conditions are topology-dependent: we need to find at least one topology
for which they are all satisfied, and we can exchange the sup with the inf. However, this
is much harder than it looks, as we are going to show with the following example.
Consider the sequence of coherent states {|αn〉〈αn|}n, with |αn| = n. Obviously, for any
quantum state |ψ〉 it holds limn→∞ | 〈αn|ψ〉 |2 = 0; hence, if such sequence has a limit, it
must be the null operator 0 (at least with any “reasonable” topology, i.e., any topology
which makes the inner product continuous). On the other hand, Tr[|αn〉〈αn| I] = 1 ∀n,
so {|αn〉〈αn|}n cannot converge to 0 in the weak topology. So, it simply does not have
any limit with such a choice of a topology. The same argument holds for any of its
subsequences, so Cm cannot be compact in the weak topology. On the other hand, the
fact that limn→∞ | 〈αn|ψ〉 |2 = 0 implies that |αn〉 WOT−−−→n→∞ 0, so {|αn〉〈αn|}n is convergent
in the weak operator topology. The problem is that now f(ρ, ·, L) cannot be lower semi-
continuous in σ, since the function

σ 7→ −Tr[σL]

is instead upper semi-continuous in the weak operator topology for some L’s. For example,
if L = I, we have limn→∞ (−Tr[|αn〉〈αn| I] = −1), but obviously −Tr[0I] = 0.
The problem cannot be solved by simply considering a “clever” topology which makes
at the same time Cm compact and f upper semi-continuous in σ. Indeed, whichever
topology we choose, we will always face the same problem: either Cm is compact, and
hence {|αn〉〈αn|}n (or a subsequence of its) converges to 0 and f is not lower semi-
continuous in σ, or f is lower semi-continuous, and hence none of the subsequences of
{|αn〉〈αn|}n can be convergent, and Cm is not compact. The only solution is to somehow
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change the expression itself of our monotone NM
r . The next section makes a step towards

this goal.

4.2 Main results

4.2.1 Restricted optimizations

The following two results ensure that we can restrict the optimizations over L and σ to
smaller sets, whenever suitable hypothesis are fulfilled. The first one will play a crucial
role in proving our main result, as we will see in the next section. However, it has a
modest practical utility in applications, since the restricted sets are still too wide to be
explicitly explored. On the other hand, the second result we will present will be used
later on for simplifying computations of NM

r in some specific cases.
Lemma 4.4. Let us consider the variational expression for NM

r (ρ). Then:

• if rk ρ <∞ we can assume L to be a finite rank operator;

• if S(ρ) <∞ we can assume L ∈ Tsa(Hm).

Proof. Obviously, any time we restrict the set of A the sup can only decrease. So, we
have to prove that for any couple of states ρ and σ and for any L ∈ Bsa(Hm), L > 0 we
can find a sequence LN in the restricted set such that

lim
N→∞

{Tr ρ logLN − log TrσLN} ≥ Tr ρ logL− log TrσL . (4.7)

We will denote the basis of eigenstates of ρ with {|φj〉}j , and the orthogonal projector
onto the subspace span({|φj〉}j≤N ) with ΠN .
Given a finite rank state ρ =

∑M
j=1 pj |φj〉〈φj |, we define LN := ΠN (L) and then, for any

N ≥M , it holds:

Tr ρ logL = Tr ΠN (ρ) logL

= Tr ρΠN (logL)

1
≤Tr ρ log ΠN (L)

= Tr ρ logLN ,

(4.8)

where in 1 we used Theorem 1.3. Moreover, TrσLN −−−−→
N→∞

TrσL for any fixed σ. This
proves that we can assume rkL < ∞, and hence also TrL < ∞. If we use expression
(4.4), we can also exploit the scale invariance in L to require TrL = 1, which means that
L is a finite rank state.
For a state ρ =

∑
j pj |φj〉〈φj | with finite entropy we define instead LN := ΠN (L) + ωN ,

with ωN = (1−ΠN )(ρ) = ρ−ΠN (ρ). Then

Tr[ρ logL] = Tr[(ΠN + 1−ΠN )(ρ)L]

= Tr[ΠN (ρ) logL] + Tr[ωN logL]

= Tr[ΠN (ρ)ΠN (logL)] + Tr[ωN logL]

2
≤Tr[ΠN (ρ) log ΠN (L)] + Tr[ωN logL]

= Tr[ρ logLN ]− Tr[ωN logωN ] + Tr[ωN logL] ,

(4.9)
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where 2 holds again because of Theorem 1.3. Moreover, if S(ρ) <∞ and |Tr[ρ logL]| <∞
(which can always be assumed since we are considering the sup over L), it holds:

Tr[ωN logωN ] −−−−→
N→∞

0 , Tr[ωN logL] −−−−→
N→∞

0 . (4.10)

Hence, we can assume L ∈ Tsa(Hm). Again, in (4.4), can assume L ∈ D(Hm) (and also
S(L) <∞).

Remark 4.5. Notice that S(ρ) < ∞ implies E(ρ) < ∞ as well. So, the previous result
holds true for any physically meaningful state.
Proposition 4.6. If the quantum state ρ ∈ D(Hm) is such that ρ = Λ(ρ) under a free
operation Λ ∈ Of (Hm → Hm), then:

NM
r (ρ) = inf

σ∈Λ(Cm)
DM(ρ||σ) = inf

σ∈Λ(Cm)
sup

0<L∈Λ†(Bsa(H))

{Tr[ρ logL]− log Tr[σL]} . (4.11)

Proof. We have the following lower bound:

NM
r (ρ) = inf

σ∈Cm
DM(ρ||σ)

1
≥ inf
σ∈Cm

DM(Λ(ρ)||Λ(σ))

= inf
σ∈Cm

DM(ρ||Λ(σ))

= inf
σ∈Λ(Cm)

DM(ρ||σ) ,

(4.12)

where 1 holds because of Lemma 1.14. Since by hypothesis Λ(Cm) ⊆ Cm, it also holds
that:

NM
r (ρ) ≤ inf

σ∈Λ(Cm)
DM(ρ||σ) , (4.13)

which proves the first equality.
Now, note that we can repeat the same procedure with Λ ◦ Λ in place of Λ. Moreover,
Λ† is a unital map, and then:

NM
r (ρ) = inf

σ∈Λ◦Λ(Cm)
sup

0<L∈Bsa(H)
{Tr[ρ logL]− log Tr[σL]}

= inf
σ∈Λ(Cm)

sup
0<L∈Bsa(H)

{Tr[Λ(ρ) logL]− log Tr[Λ(σ)L]}

= inf
σ∈Λ(Cm)

sup
0<L∈Bsa(H)

{
Tr[ρΛ†(logL)]− log Tr[σΛ†(L)]

}
1
= inf
σ∈Λ(Cm)

sup
0<L∈Λ†(Bsa(H))

{Tr[ρ logL]− log Tr[σL]} ,

(4.14)

where 1 holds because of Theorem 1.3.

Remark 4.7. All the restrictions we proved so far holds also for the other expression
for NM

r , (4.5), since the usual argument for proving their equivalence still holds with the
restricted sets.

A notable example of a free map which the previous result can be applied to is ∆.
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4.2.2 A bound on asymptotic conversion rates

In this section, we complete the program we presented at the beginning of the chapter,
and prove the main result of this thesis. We start by proving the following technical
result.
Lemma 4.8. The cone

Cm,+ := {λσ : λ ≥ 0, σ ∈ Cm} ⊂ Tsa(Hm) (4.15)

generated by the set of classical states is closed with respect to the weak* topology on
Tsa(Hm). Moreover, the set

C̃m := Cm,+ ∩ {T ∈ Tsa(Hm) : ‖T‖1 ≤ 1} = conv (Cm ∪ {0}) (4.16)

of sub-normalised classical states is weak* compact.

Proof. Let us consider the single-mode case for simplicity. The generalization tom modes
is straightforward. Let us define the following set of operators:

S :=


n∑

µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2 λâ

†âD(αµ − αν)λâ
†â : n ∈ N, ψ ∈ Cn, α ∈ Cn, λ ∈ [0, 1)

 .

Note that S ⊂ Ksa(H), since every operator in the set is a finite linear combination of
operators of the form λâ

†âD(αµ−αν)λâ
†â = elog λâ†âD(αµ−αν)elog λâ†â, which are clearly

compact (in fact, even trace class) as long as λ ∈ [0, 1).
The dual cone of S is defined as follows:

S∗ := {T ∈ Tsa(H) : Tr[TK] ≥ 0 ∀ K ∈ S} .

The functional

Tsa(H) 3 T 7→ Tr[TK]

is weak∗ continuous ∀ K ∈ Ksa(H), by definition of the weak∗ topology. Hence, any set

S∗K = {T ∈ Tsa(H) : Tr[TK] ≥ 0}

is weak∗ closed in Tsa(H) for any compact operator K. In turns, S∗ is closed because it
is the intersection of closed sets.
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It is elementary to see that |β〉〈β| ∈ S∗ for every β ∈ Cm, because

〈β|
n∑

µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2 λâ

†âD(αµ − αν)λâ
†â|β〉

=
n∑

µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2 〈β|λâ†âD(αµ − αν)λâ

†â|β〉

1
=

n∑
µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2e−(1−λ2)|β|2 〈λβ|D(αµ − αν)|λβ〉

2
= e−(1−λ2)|β|2

n∑
µ,ν=1

ψ∗µψν e
λ((αµ−αν)β∗−(αµ−αν)∗β)

= e−(1−λ2)|β|2
n∑

µ,ν=1

ψ∗µ e
λ(αµβ∗−α∗µβ) ψν e

λ(α∗νβ−ανβ∗)

= e−(1−λ2)|β|2
∣∣∣∑n

µ=1
ψ∗µ e

λ(αµβ∗−α∗µβ)
∣∣∣2

≥ 0 .

In 1 we used:

elog λâ†â |β〉 = e−
|β|2
2

∞∑
n=1

(λβ)n√
n!
|n〉

= e−(1−λ2)|β|2e−
|λβ|2

2

∞∑
n=1

(λβ)n√
n!
|n〉

= e−(1−λ2)|β|2 |λβ〉 ,

while in 2 we used (1.19). Obviously, any convex combination of coherent states, i.e. any
classical state, is in S∗ as well. Therefore, we conclude that Cm,+ ⊆ S∗.
Let us now prove the opposite inclusion. Pick T ∈ Tsa(H) such that Tr[TK] ≥ 0 for all
K ∈ S; then

0 ≤ lim inf
λ→1−

n∑
µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2 Tr

[
T λa

†aD(αµ − αν)λâ
†â
]

=

n∑
µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2 Tr [T D(αµ − αν)]

=
n∑

µ,ν=1

ψ∗µψν e
1
2
|αµ−αν |2 χT0 (αµ − αν)

=

n∑
µ,ν=1

ψ∗µψν χ
T
1 (αµ − αν)

for all α ∈ Cn and ψ ∈ Cn, where χT1 is the characteristic function of T (being trace-class,
it is proportional to a state). Hence, for all α ∈ Cn the matrix

(
χT1 (αµ − αν)

)
µ,ν=1,...,n

is
positive semi-definite. Applying the classical Bochner theorem, we see that the function
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χT1 (α) is the Fourier transform of a positive measure, and hence T is proportional to a
classical state.
We have then proved that Cm,+ = S∗, and hence that is weak∗ closed. Since the unit ball
of Tsa(H) is weak* compact by the Banach-Alaoglu theorem [106], C̃m is the intersection
of a weak* closed and a weak* compact set, and hence it is itself weak* compact.

Now we have all the elements to exchange the order of sup and inf in NM
r .

Theorem 4.9. For any quantum state ρ ∈ D(Hm) such that S(ρ) < ∞, the measured
relative entropy of non-classicality can be rewritten as follows:

NM
r (ρ) = sup

0<L∈Bsa(Hm)

{
Tr[ρ logL]− log sup

α∈Cm
〈α|L|α〉

}
= sup

0<L∈Bsa(Hm)

{
Tr[ρ logL] + 1− sup

α∈Cm
〈α|L|α〉

}
.

(4.17)

Proof. First of all, let us rewrite

NM
r (ρ) = inf

σ∈Cm
DM(ρ‖σ)

= inf
σ∈Cm, λ∈[0,1]

{
DM(ρ‖σ)− log λ

}
= inf

σ∈Cm, λ∈[0,1]
DM(ρ‖λσ)

= inf
σ∈C̃m

DM(ρ‖σ) ,

where C̃m is defined in (4.16). With the help of Lemma 4.4, we continue by introducing
the variational representation for the measured relative entropy:

NM
r (ρ) = inf

σ∈C̃m
sup

0<L∈Tsa(Hm)
{Tr[ρ logL] + 1− Tr[σL]}

= inf
σ∈C̃m

sup
0<L∈Tsa(Hm)

f(ρ, σ, L) ,

where
f(ρ, σ, L) := Tr[ρ logL] + 1− Tr[σL] .

Recall that Lemma 4.4 ensures that we can assume L ∈ Tsa(H), and thus obviously
L ∈ Ksa(H). Now:

(i) C̃m is weak* compact by Lemma 4.8, and manifestly convex;

(ii) {L ∈ Tsa(Hm) : L > 0} is convex;

(iii) f(ρ, ·, L) is a convex (actually, linear) function on C̃m for every fixed compact op-
erator L > 0; by definition of weak* topology it is also weak* continuous;

(iv) f(ρ, σ, ·) is a concave function on {L ∈ Tsa(Hm) : L > 0} for all σ ∈ C̃m, because
the operatorial logarithm is operator concave; it is also upper semi-continuous with
respect to the trace norm topology since L is trace-class and hence we can rewrite:

Tr[ρ logL] = −D(ρ‖L)− S(ρ) ,

with D(ρ‖·) being lower semi-continuous in L for any ρ.
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Since all assumptions of Sion’s minimax theorem are satisfied, we can exchange infimum
and supremum, and write

NM
r (ρ)

1
= sup

0<L∈Tsa(Hm)
inf
σ∈C̃m

f(ρ, σ, L)

= sup
0<L∈Tsa(Hm)

inf
σ∈C̃m

{Tr[ρ logL] + 1− Tr[σL]}

2
= sup

0<L∈Tsa(Hm)

{
Tr[ρ logL] + 1− sup

σ∈Cm
Tr[σL]

}
3
= sup

0<L∈Tsa(Hm)

{
Tr[ρ logL] + 1− sup

α∈Cm
〈α|L|α〉

}
4
= sup

0<L∈Bsa(Hm)

{
Tr[ρ logL] + 1− sup

α∈Cm
〈α|L|α〉

}
.

Here, the identity in 1 is Sion’s theorem; 2 comes from the fact that it is always convenient
to choose Trσ = 1; 3 is due to the fact the extreme points of Cm are coherent states [85],
and the sup of a convex function over a convex set is alway attained on an extreme point
of the set; finally, in 4 we extended the sup to all 0 < L ∈ Bsa(Hm), which can only
increase the result, and used the fact that in general equation (4.6) holds true. The
alternative expression for NM

r can be obtain with the usual argument.

Remark 4.10. The restrictions introduced in Proposition 4.6 are still valid in the alter-
native expression of NM

r : we can just repeat all the steps above with the restricted sets for
σ and L, which are obviously convex.
Remark 4.11. NM

r is lower semi-continuous in the trace norm topology, since we just
wrote it as a sup of a manifestly trace norm continuous (in ρ) objective function.

Thanks to Theorem 4.9, we can prove another fundamental property of NM
r .

Proposition 4.12. NM
r is strongly super-additive.

Proof. The proof is straightforward:

NM
r (ρAB)

= sup
LAB∈Bsa(HAm⊗HBm′ )

{
Tr[ρAB logLAB] + 1− sup

αAB∈Cm+m′
〈αAB|LAB|αAB〉

}

≥ sup
LA∈Bsa(HAm)

LB∈Bsa(HBqm)

Tr[ρAB log(LA ⊗ LB)]− log sup
αA∈Cm
αB∈Cm′

〈αA|LA|αA〉 〈αB|LB|αB〉


≥ sup
LA∈Bsa(HAm)

LB∈Bsa(HBm)

Tr[ρAB log(LA ⊗ LB)]− log sup
αA∈Cm
αB∈Cm′

〈αA|LA|αA〉 〈αB|LB|αB〉


≥ sup
LA∈Bsa(HAm)

{
Tr[ρAB(log(LA)⊗ IB)]− log sup

αA∈Cm
〈αA|LA|αA〉

}

+ sup
LB∈Bsa(HB

m′ )

{
Tr[ρAB(IA ⊗ log(LB))]− log sup

αB∈Cm′
〈αB|LB|αB〉

}
.
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Thus,
NM
r (ρAB) ≥ NM

r (ρA) +NM
r (ρB) ,

with ρA = TrB ρ
AB and ρB = TrA ρ

AB.

Up to now we proved lower semi-continuity and strongly super-additivity of NM
r . In

order to apply Theorem 2.23, we need also weak additivity. Unfortunately, it is not clear
whether NM

r is weakly additive or not, so we have to consider its regularized version

NM,∞
r (ρ) := lim

n→∞

1

n
NM
r (ρ⊗n) ,

which inherits all the nice properties of NM
r , but is also weakly addditive. Now we have

all the ingredients to finally prove our main result: a bound on asymptotic conversion
rates.
Theorem 4.13. For any two finite entropy states ρ ∈ D(Hm) and ρ′ ∈ D(Hm′), the
maximal asymptotic transformation rate R̃(ρ → ρ′) and the asymptotic transformation
rate R(ρ→ ρ′) under classicality-preserving transformations are bounded by

R(ρ→ ρ′) ≤ R(ρ→ ρ′) ≤ NM,∞
r (ρ)

NM,∞
r (ρ′)

≤ Nr(ρ)

NM
r (ρ′)

. (4.18)

Proof. The bound with NM,∞
r comes directly from Theorem 2.21. Now, strong super-

additivity of NM
r implies NM

r ≤ NM,∞
r , while Proposition 2.16 and Nr ≥ NM

r together
imply Nr ≥ NM,∞

r . This complete the proof.

Note that the bound with Nr and NM
r , despite being aesthetically less appealing, is

much more useful from a practical point of view than the other one. Indeed, Nr is written
in terms of a inf, while NM

r is written in terms of a sup: by plugging suitable ansatzes in
their expressions, we can upper bound their ratio. So, the bound (4.18) can be, at least
in principle, approximated up to any arbitrary precision.
It is noteworthy to mention that the same machinery can be replicated for other infinite
dimensional Resource Theories. For example, in the case of Quantum Thermodynamics,
the set of free states contains just one state, and then it is obviously compact. This
allows us, for instance, to extend Theorem 2.24 to the infinite-dimensional case. As for
the Resource Theory of infinite-dimensional coherence, we can just repeat all the steps
we went through for non-classicality. On the contrary, this construction does not work
for infinite-dimensional entanglement: the reason is that the extremal points of S(H) are
not tensor product states, which is a crucial fact we used in Proposition 4.12.

4.2.3 Bounds on the monotones

In this section, we develop some techniques to upper bound Nr and NM
r . In particular,

they are both finite for finite energy states, as the following result shows. This implies
that the bound (4.18) is never trivial for physically meaningful states.
Theorem 4.14. Let ρ ∈ D(Hm) be an m-mode state with irreducible photon number
N := N0(ρ), where the r.h.s. is defined by (1.24). Then

Nr(ρ) ≤ mg(N/m) , (4.19)
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where g(x) := (x+ 1) log(x+ 1)− x log x.

Proof. We start by noticing that since Nr is invariant under displacement, we can assume
w.l.o.g. that Tr[ρâj ] = 0 for all j ∈ {1, . . . ,m}, so that N(ρ) = N0(ρ) = N . Now, consider
the m × m covariance matrix W defined by Wjk := Tr[ρ â†j âk]. Since for an arbitrary
m ×m unitary matrix U we can induce the transformation âj 7→

∑
k U
∗
jkâk by passive

symplectic unitaries, which leave the relative entropy of non-classicality invariant, we
can w.l.o.g. assume that Wjj = Tr[ρ â†j âj ] = N/m. To see why, remember that given
a Hermitian matrix X with spectrum λ ∈ Rm and a vector µ ≺ λ, where ≺ denotes
majorisation, we can always find a unitary U such that diag(UXU †) = µ (this is known
as Schur–Horn theorem, see for example [107]). In our case, the vector of constant entries
TrW
m e = N

m e, where e := (1, . . . , 1)ᵀ ∈ Rm, is definitely majorised by the spectrum of W ,
which implies our claim. Therefore, hereafter we assume that Tr[ρ â†j âj ] = N/m. Now,
let us consider a one-mode thermal state:

τν :=
1

ν + 1

∞∑
n=0

(
ν

ν + 1

)n
|n〉〈n| = 1

ν + 1

(
ν

ν + 1

)â†â
. (4.20)

For an m-tuple ~ν = (ν1, . . . , νm) ∈ [0,∞)m, set σ(~ν) := τν1 ⊗ . . .⊗ τνm . Then

Nr(ρ) ≤ inf
ν1,...,νm≥1

D
(
ρ
∥∥σ(~ν)

)
= inf

ν1,...,νm≥1

{
−S(ρ)−

∑
j

(
− log(νj + 1) +

N

m
log

(
νj

νj + 1

))}
= −S(ρ) +mg (N/m) ,

where we used the variational representation

g(x) = inf
ν≥1

{
log(1 + ν)− x log

(
ν

ν + 1

)}
,

whose proof is elementary.

The next result gives another, independent, upper bound for the measured relative
entropy of nonclassicality.
Theorem 4.15. Let ρ ∈ D(Hm) be a m-mode state with finite Wehrl entropy:

SW (ρ) = −
∫
d2mαQρ(α) logQρ(α) <∞ .

Then the measured relative entropy of non-classicality is finite and in particular

− log ||Qρ||∞ ≤ NM
r (ρ) + S(ρ) +m log π ≤ SW (ρ) . (4.21)

Proof. Let us assume m = 1. Since ρ has finite Wehrl entropy by hypothesis, it has
also finite von Neumann entropy. By virtue of Proposition 4.4, we can assume L to be a
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density operator and write

NM
r (ρ) = sup

ω∈D(H)

{
Tr ρ logω − log sup

β
〈β|ω |β〉

}

= sup
ω∈D(H)

{
−S(ρ)−D(ρ‖ω)− log sup

β
πmQω(β)

}
≤ sup

ω∈D(H)

{
−DM(ρ‖ω)− log ‖Qω‖∞

}
− S(ρ)−m log π

1
≤ sup

ω∈D(H)
{−DKL(Qρ‖Qω)− log ‖Qω‖∞} − S(ρ)−m log π

≤ sup
ω∈D(H)

{
SW (ρ) +

∫
d2αQρ(α) log ‖Qω‖∞ − log ‖Qω‖∞

}
− S(ρ)−m log π

= SW (ρ)− S(ρ)−m log π .

Here 1 holds because in the definition of DM we can choose a specific POVM, and in
particular

1 =
1

π

∫
d2α |α〉〈α| ,

which physically corresponds to a heterodyne detection [9].

At the same time we can just choose ω = ρ:

NM
r (ρ) ≥ Tr ρ log ρ− log ||Qρ||∞ −m log π = −S(ρ)−m log π − log ||Qρ||∞ ,

which proves the claim.

The following result comes directly from the expression of the Q-function of Gaussian
states, which are gaussian functions.
Corollary 4.16. Let ρ be an arbitrary m-mode Gaussian state with quantum covariance
matrix V . Then

1

2
log det(V + I) ≤ NM

r (ρ) + S(ρ) ≤ 1

2
log det(V + I) +m log e .

4.2.4 Approximation by truncation

In this section we prove that, even though Nr and NM
r are not continuous in general,

they are so on spectral truncations of any state.
Lemma 4.17. Let ρ, σ ∈ D(Hm) be two m-mode states, and set ε := 1

2 ‖ρ− σ‖1. Assume
that E := N(|ρ− σ|) < ∞, where N(A) :=

∑
j Tr[A â†j âj ] is the mean photon number of

the operator A ≥ 0. Then

|Nr(ρ)−Nr(σ)| ≤ εmg

(
E

εm

)
+ (1 + ε)H2

(
ε

1 + ε

)
, (4.22)

where H2(p) := −p log p− (1− p) log(1− p) is the binary entropy function.
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Proof. The argument of [108, Lemma 7] carries over to our case. We find two states
∆,∆′ ∈ D(Hm) such that

ρ− σ = ε
(
δ − δ′

)
, |ρ− σ| = ε

(
δ + δ′

)
.

In particular, εN(δ) = N(εδ) ≤ N(|ρ− σ|) ≤ E. Let us construct the state

ω :=
1

1 + ε
ρ+

ε

1 + ε
δ′ =

1

1 + ε
σ +

ε

1 + ε
δ .

Then, on the one hand

Nr(ω)
1
≤ 1

1 + ε
Nr(σ) +

ε

1 + ε
Nr(δ)

2
≤ 1

1 + ε
Nr(σ) +

ε

1 + ε
mg

(
E

εm

)
.

Here, the estimate in 1 comes from convexity, while that in 2 is an application of Theorem
4.14. On the other hand, we can write

Nr(ω) = Nr

(
1

1 + ε
ρ+

ε

1 + ε
δ′
)

3
≥ 1

1 + ε
Nr(ρ) +

ε

1 + ε
Nr(δ

′)−H2

(
ε

1 + ε

)
≥ 1

1 + ε
Nr(ρ)−H2

(
ε

1 + ε

)
,

(4.23)

where the inequality in 3 follows e.g. from [109, Proposition 5.24]. Putting all together
we see that

Nr(ρ)−Nr(σ) ≤ εmg

(
E

εm

)
+ (1 + ε)H2

(
ε

1 + ε

)
.

Together with the corresponding inequality with ρ and σ exchanged, this yields the
claim.

Remark 4.18. Note that the same hold for NM
r . We can use the same upper bound since

NM
r ≤ Nr, and also the same lower bound because DKL fulfills an inequality similar to

that we used in (4.23). Therefore, the following Corollary hold for NM
r as well.

Corollary 4.19. Let ρ, σ ∈ D(Hm) be two m-mode commuting states with finite photon
number N(ρ), N(σ) ≤ E. Then

|Nr(ρ)−Nr(σ)| ≤ εmg

(
2E

εm

)
+ (1 + ε)H2

(
ε

1 + ε

)
. (4.24)

In particular, denoting with ρ =
∑

k pk |ek〉〈ek| the spectral decomposition of ρ, the se-

quence of spectral truncations ρn :=
(∑

k≤n pk

)−1∑
k≤n pk |ek〉〈ek| satisfies

Nr(ρ) = lim
n→∞

Nr(ρn) . (4.25)

Proof. Thanks to Lemma 4.17, in order to prove (4.24) it suffices to show thatN(|ρ−σ|) ≤
2E. Indeed, if ρ =

∑
k pk |ek〉〈ek| and σ =

∑
k qk |ek〉〈ek| then |ρ − σ| =

∑
k |pk −

qk| |ek〉〈ek| ≤
∑

k(pk + qk) |ek〉〈ek| = ρ+ σ, so that N(|ρ− σ|) ≤ N(ρ) +N(σ) ≤ 2E.
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To deduce (4.25), note that [ρ, ρn] = 0, with εn := 1
2 ‖ρ− ρn‖1 −−−→n→∞ 0. Also, eventually

N(ρn) ≤ 2N(ρ) =: 2N , so that

|Nr(ρ)−Nr(ρn)| ≤ εnmg

(
4N

εnm

)
+ (1 + εn)H2

(
εn

1 + εn

)
−−−→n→∞ 0 ,

where we used the well-known fact that limε→0+ ε g(δ/ε) = 0 for all δ > 0.

4.3 Applications

4.3.1 Relation with other Resource Theories

We want to briefly consider the relation between our Resource Theory of non-classicality
and those presented in section 3.2. To begin with, Nr (and hence also NM

r ) gives a lower
bound for log(1 + RG) [43, 92], and hence also log(1 + RA), with RA being equal to
the P -negativity defined in section 3.2.1. So, our monotones give a lower bound for N .
However, as we already pointed out, N is often divergent, so it cannot be used as a
sensible upper bound for our monotones. On the contrary, our monotones are always
finite for finite energy states.
If we choose E = Er (the relative entropy of entanglement) in equation 3.9, Nr (for
a single mode state) gives instead an upper bound for the entanglement potential EP .
Indeed:

Nr(ρ) = inf
σ∈C1

D(ρ‖σ)

1
= inf
σ∈C1

D(ρ⊗ |0〉〈0| ‖σ ⊗ |0〉〈0|)

2
≥ inf
σ∈C1

D(UBS(ρ⊗ |0〉〈0|)U †BS‖UBS(σ ⊗ |0〉〈0|)U †bs)

3
≥ inf
σ′∈S(H2)

D(UBS(ρ⊗ |0〉〈0|)U †BS‖σ
′) .

In 1 we used the weak additivity of D; in 2 we used its monotonicity under CPTP; in 3
we used the fact that classical states do not get entangled by linear optical operations,
and hence UBS(σ ⊗ |0〉〈0|)U †bs ∈ S(H).
Finally, unfortunately we know no explicit relations between our monotones and the
metrological monotone defined in section 3.2.3.

4.3.2 Fock diagonal states

We start this section with two results which follow trivially from Propositions 4.6 and
the fact that ∆ is a CPO.
Corollary 4.20. Let ρ ∈ D(H) be a Fock-diagonal quantum state. Then:

NM
r (ρ) = inf

σ∈CFDm
sup

0<L∈B(H)
LFock-diagonal

[Tr[ρ logL]− log Tr[σL]]
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Remark 4.21. If ρ is Fock-diagonal, also σ can be taken to be so, and hence they com-
mute. Then, Nr(ρ) = NM

r (ρ) for any Fock-diagonal state ρ.

Now we specialize Proposition 4.20 to the case rk ρ <∞.
Proposition 4.22. Let ρ be a single-mode finite rank Fock-diagonal state. Then:

NM
r (ρ) = sup

L̃

{
Tr ρ log L̃− log sup

α∈[0,
√
M ]

〈α| L̃ |α〉

}
, (4.26)

where we used the shorthand notation L̃ to denote hermitian, positive and Fock diagonal
operators satisfying supp(L) = supp(ρ), and M = max{n : 〈n| ρ |n〉 6= 0}.

Proof. Let Π be the projector over supp(ρ). We have that

NM
r (ρ)

1
= sup

0<L∈Bsa(H)
LFock-diagonal

{
Tr[ρ logL]− log sup

α∈C
〈α|L|α〉

}

= sup
0<L∈Bsa(H)
LFock-diagonal

{
Tr[Π(ρ) logL]− log sup

α∈C
〈α|L|α〉

}
2
= sup

0<L∈Bsa(H)
LFock-diagonal

{
Tr[ρ log Π(L)]− log sup

α∈C
〈α|L|α〉

}
3
= sup

L̃

{
Tr[ρ log L̃]− log sup

α∈C
〈α|L̃|α〉

}
4
= sup

L̃

{
Tr[ρ log L̃]− log sup

α∈[0,M ]
〈α|L̃|α〉

}

Here:

• 1 is a combination of Theorem 4.9, Corollary 4.20 and Remark 4.10;

• 2 comes as usual from Theorem 1.3;

• 3 holds because Π(L) is always in the same form as L̃, and obviously 〈α|Π(L)|α〉 ≤
〈α|L|α〉, so it is always convenient to take Π(L) in pace of L;

• 4 holds because for |α|2 > M the function

Tr ∆(|α〉〈α|)L̃ = e−|α|
2
M∑
n=0

|α|2n`n
n!

, (4.27)

where the `n are the eigenvalues of L̃, becomes monotonically decreasing in α.

Remark 4.23. From Corollary 4.19 we know that

NM
r

( ΠN (ρ)

Tr ΠN (ρ)

)
→

N→∞
NM
r (ρ) (4.28)
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Figure 4.1: (Measured) relative entropy of Nonclassicality for a Fock state, for different values of
n.

for any Fock diagonal state, where ΠN is the orthogonal projector onto span({|n〉}n≤N ).
Therefore, in principle we can use Proposition 4.22 to approximate numerically NM

r (ρ)
for any FD state ρ with arbitrary precision.

The simplest example of Fock diagonal states is given by Fock states themselves. For
a Fock state ψn = |n〉〈n| we can take L = |n〉〈n|, and thus:

NM
r (ψn) = − log sup

α∈C
| 〈n|α〉 |2 = log

(n!en

nn

)
≈
n�1

1

2
log 2πn .

The result is plotted in figure 4.1.

Another example of Fock diagonal states is represented by Fock state mixed with
classical Fock diagonal noise. For instance, a realistic case is represented by thermal
noise. We will call such states noisy Fock states:

ρn,ν(p) = p |n〉〈n|+ (1− p)τν (4.29)

In principle, we can approximate the exact value of NM
r (ρn,ν(p)) with arbitrary precision

for any n and ν, as pointed out in Remark 4.23. Let us first consider the simpler case
T → 0, which is a good approximation in certain regimes, for instance optical frequencies
at room temperature. The state then becomes ρn,0(p) = p |n〉〈n|+(1−p) |0〉〈0|, and thanks
to Proposition 4.22 we can assume L to be in the form L = ` |n〉〈n| + |0〉〈0| (we already
exploited the scale invariance). Now we have only to perform two nested optimizations
over one real parameter each:

NM
r (ρn,0(p)) = sup

`

{
p log `− log max

β∈[0,
√
n]

(e−β
2
(1 + `β2n/n!))

}
. (4.30)

For n ≤ 4 the maximization can even be carried out analitically, since the inner max-
imisation reduces to solving a n-th order algebraic equation. For example, for n = 1 one
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simply finds β =
√
p, ` = 1/(1− p) and NM

r (ρ1,0(p)) = p+ (1− p) log(1− p). For a finite
temperature one has to consider truncations of ρ and perform numerical optimizations
until some tolerance threshold is achieved. The results for different values of ν and n
are reported in Figures 4.2 and 4.3. Note that from the plots one can observe that the
content of non-classicality never reaches 0 for a (nontrivial) noisy state. This is because
Fock diagonal states have a unbounded χ1, and hence infinite absolute robustness of non-
classicality. Hence, their non-classicality content cannot be destroyed by classical noise.
By means of noisy Fock states, we are also able to construct an explicit example of a
non-trivial protocol which (asymptotically) saturates our bound 4.18. Let us consider
the state ρn,0(p) for 0 < p < 1 and the following protocol, implemented with only linear
optics, destructive measurements and feed forward:

i) we send ρn,0(p) through a beam splitter with transmittivity t = ε � 1
n and a

vacuum ancilla |0〉〈0| at the other port, obtaining the following entangled state
[110]:

ρout =(1− p) |00〉〈00|

+ p
n∑

m,m′=0

(ε− 1)2n−m−m′εm+m′

√(
n

m

)(
n

m′

)
|m,n−m〉〈m′, n−m′| ;

(4.31)

ii) we perform photon counting on the ancillary mode: we measure 0 photons with
probability 1 − p + p(1 − ε) = 1 − pε, 1 photon with probability p(1 − ε)n−1ε and
all the other outcomes with probabilities O(ε2) (the condition ε � 1

n ensure that
we can neglect the possibility of detecting more than 1 photon despite the growing
combinatorial factor in (4.31));

iii) If we measure 0 photons, we are left once again with the initial state ρn,0(p) in the
principal mode, and we re-send the state through the beam splitter and repeat the
procedure; if we measure 1 photon, we are left with ρfin = ψn−1 in the principal
mode

iv) with sufficiently many iterations we obtain with probability (almost) p the state
ψn−1.

By convexity of the monotone we also know that NM
r (ρn,0(p)) ≤ pNM

r (ψn), and hence
R(ρn,0(p) → ψn−1) ≤ p NM

r (ψn)
NM
r (ψn−1)

. But we just proved that the optimal transformation
rate is R(ρn,0(p) → ψn−1) ≥ p, which implies that NM

r (ρn,0(p) ≥ pNM
r (ψn−1). By

combining the results we find that, for large n, we have R(ρn,0(p) → ψn−1) ≈ p, which
is saturated by the protocol we presented. Moreover, we also proved that for large n
we have NM

r (ρn,0(p)) ≈ p log n, which is confirmed by the numerical analysis reported in
Figure 4.3.

4.3.3 Cat states

In this section, we will consider applications of our Resource Theories involving cat
states ψα = |ψα〉〈ψα|. To begin with, notice that the parameter α can always be taken
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Figure 4.2: Nonclassicality for noisy Fock states: varying ν at fixed n.

to be real, since rotations in phase space are implemented by phase shifters, which let
NM
r invariant. From now on, we will always assume α ∈ R. Any cat state with α ∈ R

is invariant under reflections in phase space with respect to the real or imaginary axis.
The totally symmetrizing map with respect to these symmetries, which we will denote
with ΛS , is obviously a projection and a free operation, since it sends coherent states into
manifestly classical states.
From Proposition 4.6 and Remark 4.10 we see that

NM
r (ψα) = inf

σ∈ΛS(C)
sup

0<L∈ΛS(Bsa(H))
rkL<∞

{〈ψα| logL |ψα〉 − log TrσL}

= sup
0<L∈ΛS(Bsa(H))

rkL<∞

{
〈ψα| logL |ψα〉 − log sup

β∈C
〈β|L |β〉

}
.

(4.32)

An upper bound can be found by plugging an ansatz for σ in the first line of 4.32. The
simplest choice which makes the result finite is

σ =
1

2
(|α〉〈α|+ |−α〉〈−α|) (4.33)
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Figure 4.3: Nonclassicality for noisy Fock states: varying n at fixed ν.

In this case we get

NM
r (ψα) ≤ sup

0<L∈ΛG(Bsa(H))
rkL<∞

{〈ψα| logL |ψα〉 − log 〈α|L |α〉}

1
= sup

0<L∈ΛG(Bsa(H))
L∈span(|α〉,|−α〉)

{〈ψα| logL |ψα〉 − log 〈α|L |α〉} .

Here 1 holds once again because of Theorem 1.3 (we projected onto span(|α〉 , |−α〉)).
Notice that thanks to the scale invariance and the phase space symmetry, the operator
L can be parametrized by a single real parameter:

L = |α〉〈α|+ |−α〉〈−α|+ `(|α〉〈−α|+ |−α〉〈α|), −1 ≤ ` ≤ 1 . (4.34)

In principle one can improve this esteem by considering more general classical states in
the form

σ =
p0

2
(|α〉〈α|+ |−α〉〈−α|) +

N∑
k=1

pk
2

(|βk〉〈βk|+ |−βk〉〈−βk|) , (4.35)
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Figure 4.4: Bounds for the measured relative entropy of non-classicality for a single mode cat
state. The shaded region represents the narrowest bound obtained.

and repeating the same steps with L ∈ span(|α〉 , |−α〉 , {|βk〉}k). In Figure 4.4 we re-
ported two different upper bounds, obtained with σ as in (4.33) and

σ =
q

2
(|α〉〈α|+ |−α〉〈−α|) + (1− q) |0〉〈0| , (4.36)

which allow to assume L to have rank 2 and 3 respectively.
A lower bound for NM

r (ψα) can be easily computed by setting a maximum rank for L in
the second line of (4.32) and then optimising numerically. In particular, for rkL = 2, we
get

NM
r (ψα) ≥ sup

L

{
〈ψα| logL |ψα〉 − log sup

β∈C
〈β|L |β〉

}
,

with L being in the form (4.34). For rkL = 3, in order to preserve the symmetry, we
have necessarily L ∈ span(|α〉 , |−α〉 , |0〉). In Figure 4.4 we reported two different lower
bounds, obtained with rkL = 2 and rkL = 3.
The ansatz (4.36) can be used to upper bound Nr(ψα) as well, by just plugging it into
D(ψα‖·). Then, the result, together with the lower bounds for NM

r (ψα), can be used for
upper bounding the rate of the following state conversion (concentration of cat states):

|ψα〉 7→ |ψ√2α〉 .

The result, given in terms of the efficiency r of the conversion, is compared with the rate
obtained with a protocol proposed in [111], and reported in Figure 4.5. Our bound is much
bigger than the efficiency of the protocol, but this is not surprising: the protocol represents
a non-asymptotic and exact transformation, making use of only ancillary coherent states,
beam splitters and photodetection. The framework we considered is just much more
general.
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Conclusions

We introduced a new Resource Theory of optical non-classicality based on the mea-
sured relative entropy of non-classicality. Our resource monotone displays a number of
interesting properties, which are usually hard to obtain in infinite-dimensional Quan-
tum Resource Theories, or even in some finite-dimensional ones: lower semi-contintuity,
strong super-additivity and finiteness on finite energy quantum states. Thanks to this
properties, we were able to prove an upper bound on asymptotic conversion rates, which
is never trivial for physically meaningful states. As we already pointed out, this is the
first similar result in an infinite-dimensional setting. We studied several applications of
our Resource Theory, and we proved a number of additional results which help in the
computation or estimation of the resource content of states: in particular, we presented
a method for numerically computing, up to any arbitrary precision, the resource content
of Fock diagonal states. We also obtained universal upper and lower bounds for our re-
source monotone, differing by an additive constant in the case of gaussian states. Finally,
we applied our results to several experimentally relevant scenarios, such as the purifica-
tion of Fock states and the concentration of cat states. Once again, we stress the fact
that many ideas developed in this thesis can be helpful in order to study other infinite-
dimensional Quantum resource Theories, such as Entanglement Theory and Quantum
Thermodynamics in infinite dimension. These should be considered as future directions
of research.
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A | Some topology

Consider a possibly infinite-dimensional Hilbert space H. Several fundamental classes
of operators on H are defined as follows.

• Tsa(H): the space of trace class (self-adjoint) operators on H, i.e., operators for
which a base-independent trace can be defined.

• T +
(sa): the cone of positive semidefinite (self-adjoint) trace class operators on H;

• D(H): the set of density operators on H;

• K(sa): the Banach space of compact (self-adjoint) operators on H, i.e., operators
whose singular values approach 0;

• K+
(sa): the cone of positive semidefinite (self-adjoint) compact operators on H;

• B(sa): the Banach space of bounded (self-adjoint) operators on H, equipped with
the operator norm.

Clearly, one has that T (H) ⊆ K(H) ⊆ B(H), with equality if and only if H is finite-
dimensional. Also, the duality relation T (H)∗ = B(H) holds at the level of Banach
spaces.
Two norms that can be defined on a Hilbert space are:

• ‖ · ‖∞: the operator norm, defined as ‖A‖∞ := sup|ψ〉∈H 〈ψ|A|ψ〉;

• ‖ · ‖1: the trace norm, defined as: ‖A‖1 = Tr
√
A†A.

There are several topologies that one can define on these spaces [112]. Here is a quick
guide.

• The weak operator topology (WOT) on B(H) (and hence on respective sub-
spaces) is the coarsest topology that makes all functionals A 7→ 〈ψ|A|ψ〉 continuous,
for all |ψ〉 ∈ H.

• The weak* topology (W∗T) on T (H) is the coarsest topology that makes all
functionals T 7→ Tr[TK] continuous, for all K ∈ K(H).

• The weak topology (WT) on T (H) is the coarsest topology that makes all func-
tionals T 7→ Tr[TA] continuous, for all A ∈ B(H).

• The trace norm topology (TNT) on T (H) is the one induced by the trace norm
‖ · ‖1.
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• The operator norm topology (ONT) on B(H) is the one induced by the operator
norm ‖ · ‖∞.

When we write a limit, we specify the topology by writing the respective acronym
above the arrow. For example, “ TNT−−−→n→∞ ” means convergence in trace norm for n→∞.
A consequence of [113, Lemma 9] is the following.
Lemma A.1 (‘SWOT’ convergence lemma [114, Lemma 4.3]). For a net (ωα)α ⊆ T +

sa

of positive semidefinite trace class operators, if ωα
wot−−→α ω ∈ T +

sa in the weak operator
topology, and moreover Trωα −→α Trω, then ωα

n−→α ω in norm.
Corollary A.2. The weak topology and the norm topology coincide on T +

sa . They also
coincide with the weak operator topology on D(H).

The norm topology does not coincide with the weak operator topology on T +
sa . For in-

stance, the sequence of Fock states (|n〉〈n|)n converges to 0 in the weak operator topology,
but it is clearly not convergent in the norm topology.
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A distribution [115] T is a linear functional defined on the space of test functions,
i.e., smooth functions on R (the generalisation to more general domains is straightforward)
with compact support: T : C∞c (R)→ R. We want to introduce two fundamental concepts
related to distributions.
The weak sign at point x0 ∈ R of a distribution T is defined as follows.
Definition B.1. T is weakly positive (negative) in x0 if it exists an open neighbourhood
A0 ⊂ R of x0 such that for any non-negative test function ϕA0 ∈ C∞c (A0) with support in
A0 it holds:

T (ϕA0) ≥ 0 (≤ 0) .

In the following, for ease of terminology, we will drop the attribute “weak” when no
ambiguities can arise. An example of a positive distribution is the usual δ function, while
it suffices to put a minus in front of it in order to obtain a negative one. Note that, con-
trarily to standard real-valued functions, distributions does not have to be either positive
or negative at each point: derivatives of the δ function are straightforward counterexam-
ples.
Another fundamental property of distributions is the order.
Definition B.2. The order of a distribution T is the smallest integer m ∈ N such that
for any compact set K ⊂ R it exists a constant CK <∞ such that:

|T (ϕK)| ≤ CK sup
x∈K

sup
α≤m
|∂αϕ(x)| ,

for any test function ϕK ∈ C∞c (K) with support in K.

Clearly, an example of a distribution of orderm is them-th derivative of the δ function.
A distribution of order 0 is also called a measure. Note that the order can be +∞ as
well.
It is not a coincidence that, among all the derivatives of the δ function, only the δ function
itself, which is a measure, has a definite sign. Indeed, the following result holds true.
Proposition B.3. A distribution T : C∞c (R) → R is a measure if and only if it can
be decomposed as T = T+ − T−, with T± being positive distributions on C∞c (S±), and
S+ ∪ S− = R and S+ ∩ S− = ∅.

Proof. We start start by assuming that such a decomposition is possible. Let us consider
T+ first, and let K ⊂ R be an arbitrary compact set. By hypothesis, for any x ∈ K it
exists an open setAx such that T+(ϕ) ≥ 0 for any non-negative test function ϕ ∈ C∞c (Ax).
Clearly, K ⊂

⋃
x∈K Ax; being K compact, by definition it exists a finite set of indices J
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such that K ⊂
⋃
j∈J Axj =: A, with xj ∈ K for any j ∈ J [112]. It is easy to construct a

non-negative test function f ∈ C∞c (A) such that f(x) = 1∀x ∈ K and f(x) = 0∀x /∈ A.
Now, Let ϕK ∈ C∞c (K) be an arbitrary test function. We define the two auxiliary test
functions g± ∈ C∞c (A) as follows:

g± := ‖ϕ‖∞f ± ϕ .

Clearly, both g+ and g− are non-negative. So, it holds that:

0 ≤ T+(g±) = ‖ϕ‖∞T+(f)± T (ϕ) ,

which implies that
|T+(ϕ)| ≤ CK‖ϕ‖∞ ,

where we defined CK := T+(f), meaning that T+ is indeed a measure. A similar procedure
can be carried out for T−. The fact that the sum of two measures is again a measure
follows trivially from triangular inequality:

|T (ϕ)| ≤ |T+(ϕ)|+ |T−(ϕ)| ≤ CK,+‖ϕ‖∞ + CK,−‖ϕ‖∞ ≤ 2 max{CK,+, CK,−}‖ϕ‖∞ .

The other direction of the proof is just the Hahn decomposition Theorem [116].

Note that the fact that a measure can always be decomposed in a positive and a negative
part does not implies that it has a definite sign at any point, a counterexample being
(3.5).
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