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Introduction 
 

 

 

 “As a consequence of the worldwide tendency in reducing CO2 emissions by 

producing lighter and more energy-efficient products, the demand for accurate 

predictions regarding material behavior and material failure has greatly increased 

in recent years. In particular in the automotive industry, there is also an 

increasing interest in effectively closing the gap between forming and crash 

analysis, since the forming operations may highly affect the crashworthiness of 

the produced parts. In this scenario, a correct depiction of material mechanical 

degradation and fracture seems indispensable.” [On the prediction of material 

failure in LS-DYNA, F. Andrade, M. Feucht, A. Haufe].   

This contribution by Haufe et al. directed my studies along the line of 

investigating the behavior of metals and whether also the first invariant of the 

stress tensor and the third deviatoric invariant have some influence on the yield 

surface of these materials, in addition to the second deviatoric invariant, which 

has been widely used since now in the metals yield functions.  

This thesis concerns the experimental work done in order to investigate the 

behavior of metals, in particular of aluminum, and inserts in a wider research 

work, which is now being led by Professor K. Willam and his research group, 

which aim is that to propone a new asymmetric yield function for metallic 

materials depending on the first invariant of the stress tensor and the second and 

third invariant of stress deviator. In this larger research a model will be 

formulated as a function in the gap between Tresca and von Mises yield criteria 

and will be based on experimental results, on which I worked on and on which 

this thesis is about. The tests were performed on aluminum specimen tested 
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under different load scenarios, which generate different stress tensor invariants. 

Haigh–Westergaard coordinates were used and the corresponding lode angle for 

each scenario has been obtained. 

In the different loading scenarios, the lode angle parameter is changing from 0 

degrees, which corresponds to uniaxial tension condition and goes up to 30 

degrees, which is pure shear condition. The results can show how the third 

invariant of stress deviator affects the behavior of aluminum material.  

To look at the compressive behavior, which is not included in this thesis, and 

capture the possible difference between compressive and tensile behavior, 

Professor K. Willam and his research group are going to perform further 

experiments to go beyond 30 degrees up to 60 degrees, which represents the 

uniaxial compression case. Since the difference between compression and 

tension cannot be captured by only considering second and third invariants, there 

will be a need to introduce stress triaxiality measure or the first invariant of stress 

tensor to capture the difference in behavior of aluminum under tension and 

compression. 

Digital Image Correlation (DIC) was used as a full-field measurement method 

for displacement field and calculation of the strain distribution of the Aluminum 

specimen under abovementioned loading scenarios. Using this method, plastic 

flow rule can be obtained by integration of the plastic strain rate through the 

physical domain of the specimen and it can be expressed in terms of first 

invariant of stress tensor and the second and third invariant of stress deviator. 

The results can be used to investigate the crack growth based on the local and 

global strain distribution. 

In the larger work led by Professor K. Willam and his research group the 

pressure- sensitivity of Aluminum will be investigated based on the observed 

localization angle using the captured images by DIC. In case the observed angle 

of failure for both tension and compression tests is equal to π/2, one can say that 

the behavior of Aluminum follows the Tresca yield criterion and it should be 

considered to behave like a pressure-insensitive material. In case the angle of 
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friction Ф for Aluminum is not equal to zero, according to the Mohr–Coulomb 

yield criterion, the observed failure angle will be π/2+Ф/2, which shows that 

Aluminum is behaving like a pressure-sensitive material. 

The model, which will be proponed, will be implemented in a finite element 

code, and the results will be verified with the ones obtained in the experiments. 

Analytical and numerical localization analysis will be done using an associated 

flow rule in 3D to calculate the orientation of failure surface considering von 

Mises, Tresca, developed two invariant formulations and the three invariant 

formulations. The localization analysis results will be compared with 

experimental results. 

 

This thesis is essentially divided in two parts. The first section of the thesis, 

which includes the parts from Chapter 1 to Chapter 8, summarizes the theoretical 

background needed to develop the work dealt in the second section, from 

Chapter 9 to Chapter …, which includes the description of the experiments, the 

experiments results and the conclusions. 
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The engineering design of structures often involves a two-stage process: first the 

internal force field acting on the structural material must be defined, and second, 

the response of the material to that force field must be determined. The first stage 

involves an analysis of the stress acting within the structural elements; the second 

involves the knowledge of the properties of the structural material. The linear 

relationship between stress and strain in an idealized material forms the basis of 

the mathematical theory of elasticity, which has been applied widely in practice 

to actual materials to estimate stresses and strains in the structural elements under 

a specific working load condition. These stresses are restricted to be less than the 

specified working or allowable stress that is chosen as some fraction of the yield 

strength of the material. An actual structure is a very complex body with an 

extremely complicated state of stress: many secondary stresses arise due to 

fabrication and localization. The combination of unknown initial stress, 

secondary stresses and stress concentration and redistribution due to 

discontinuities of the structure defy an idealized calculation based on the theory 

of elasticity. The theory of plasticity represents an extension of the theory of 

 1 Classical Theory and Literature 
review 

 1.1 Classical Theory 
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elasticity and is concerned with the analysis of stresses and strains in the plastic 

as well as the elastic ranges. It gives more realistic estimates of load carrying 

capacity and provides a better understanding of the reactions to the forces 

induced in the material. Theory of elasticity and plasticity are the formalization 

of experimental observations of the macroscopic behavior of a deformable solid. 

The first task of plasticity theory is to give relationships between stresses and 

strains under a complex stress state that can describe adequately the observed 

plastic deformations. The second task of the plastic theory is to develop 

numerical techniques for implementing these stress-strain relationships. Because 

of the nonlinear nature of the plastic deformation rules, solutions of the basic 

equations of solid mechanics inevitably present considerable difficulties. 

However in recent years, the development of computers and modern techniques 

of finite element analysis has provided the engineer with a powerful tool for the 

solution of nonlinear problems.  

 

Origin of plasticity and of the studies of the behavior of the materials dates back 

to a series of papers (1864-1872) by Tresca on the extrusion of metals, in which 

he proposed the first yield condition, which states that a metal yields plastically 

when the maximum shear stress attains a critical value. The actual formulation of 

the theory was done in 1870 by St. Venant, who introduced the constitutive 

relations for rigid, perfectly plastic materials in plane stress. The salient of this 

formulation was the suggestion of a flow rule stating that the principal axes of 

the strain increment coincide with the principal axes of stress. Levy in 1870 

obtained the general equations in three dimensions. A generalization similar to 

that of Levy was given by von Mises in 1913 accompanied by his well-known 

pressure-insensitive yield criterion (J2 theory). In 1924 Prandtl extended the St. 

Venant-Levy-von Mises equations for the plane continuum problem to include 

the elastic component of strain and Reuss in 1930 carried out their extensions to 

the three dimensions. In 1928 von Mises generalized his previous work for a 

rigid, perfectly plastic solid to include a general yield function and discussed the 
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relations between the direction of plastic strain rate and the regular and smooth 

yield surface, thus introducing the concept of using the yield function as a plastic 

potential in the incremental stress-strain relation of flow theory. Since greater 

work was placed on problems involving flow or perfect plasticity in the years 

before 1940, the development of incremental constitutive relationships foe 

hardening materials proceeded more slowly. The nearly twenty years after 1940 

saw the most intensive period of development of basic concepts and 

fundamentals ingredients in what is now referred to as theory of metal plasticity. 

Independently of the work of Milan in 1938, Prager, in a significant paper 

published in 1949, arrived at a general framework for the plastic constitutive 

relations for hardening materials with smooth (regular) yield surfaces. The yield 

function (also termed the loading function) and the loading-unloading conditions 

were precisely formulated. Such conditions as the continuity condition (near 

neutral loading), the consistency condition (for loading from plastic states), the 

uniqueness condition, and the condition of irreversibility of plastic deformation 

were formulated and discussed. Also, the interrelationship between the convexity 

of the (smooth) yield surface and the normality to the yield surface was clearly 

recognized. In 1958, Prager further extended this general framework to include 

thermal effects by allowing the yield surface to change its shape with 

temperature. 

A very significant concept of work hardening, was proposed by Drucker in 1951 

and amplified in his further papers.  

Postulates providing assumptions which play an important role in the 

development of plasticity relations have been given by Hill in 1948, and 

extended by Bishop and Hill in 1951 in a study of polycrystalline aggregates. 

Further generalization of the plastic stress-strain relations for singular yield 

surfaces (i.e., in the presence of corners or discontinuities in the direction of the 

normal vector to the yield surface), is due to Koiter published in 1953. 

He introduced the device of using more than one yield (or loading) function in 

the stress-strain relationships, the plastic strain increment receiving a  
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contribution from each active yield (loading) surface and falling within the fan of 

normals to the contributing surfaces.  

 
 
 
 
 

This section includes a literature review regarding the research that has been 

done since now on the influence of the first stress invariant and of the third 

deviatoric invariant of the stress tensor on the behavior of metals. 

 

Maximum stress, maximum strain and Tresca theories are known from failure 

criteria that use one parameter to predict failure of structures. The experiments 

by Bridgman [1] show that the strain at ductile fracture initiation is affected by 

hydrostatic stress which also is known as stress triaxiality effect and after that 

several researches have been done that prove the effect of hydrostatic stress on 

failure of ductile materials. Some of these researches are based on the 

micromechanical methods by Mc Clintock [2], Rice and Tracey [3], Gurson [4] 

and Tvergaard and Needleman [5]. Another group is thermodynamics based 

methods that works by Lemaitre [6] and Chow and Wang [7,8] are some 

samples. Purely experimental methods, for example works by Atkins [9], 

Johnson and Cook [10] and Bao [11], is the third group.  

Recently, it is understood that besides the effect of stress triaxiality, another 

parameter which is related to third invariant of deviatoric stress tensor has an 

effect on the fracture of ductile materials. This parameter which usually is known 

as Lode angle was studied by Wilkins et al. [12] in the field of ductile fracture. 

Later Wierzbicki and his colleagues, for example Wierzbicki et al. [13], have 

started a series of researches on the effect of Lode angle on the fracture initiation.  

Xue and Xue and Weirzbiki [14] have developed a fracture criterion with the 

effect of Lode angle and stress triaxiality. Their experiments show that in order 

to have more accurate results, it is necessary to combine the effects of Lode 

 1.2 Literature Review 
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angle and triaxiality factor. In this work the failure strain is calculated by 

multiplying two functions. One of these functions shows the effect of Lode angle 

and the other shows the effect of triaxiality. In a work by Bai and Weirzbicki 

[15] a general form of asymmetric metal plasticity considering both the pressure 

sensitivity (hydrostatic pressure) and the Lode dependence (Lode angle 

parameter) was presented. 21 experimental tests were performed on aluminum 

2024-T351 to validate the new material model. Besides, a new 3D asymmetric 

fracture locus, in the space of equivalent fracture strain, stress triaxiality and the 

Lode angle parameter, was determined experimentally from two types of test 

procedures. One is based on classical round specimens or flat specimens in 

uniaxial tests, and the other one uses a series of tests on a double curvature 

butterfly specimen subjected to biaxial loading under different combination of 

tension/shear and compression/shear. Based on the results, a linear incremental 

dependence of the damage function Dep on the equivalent plastic strain was 

shown to work well for monotonic loading. In the case of reverse straining or 

more complicated loading paths, a nonlinear incremental rule must be 

considered. Bai and Weirzbicki, according to experiments, suggested a fracture 

envelope in which fracture strain is an exponential function of triaxiality and a 

second order polynomial function of Lode angle. According to experiments and 

analysis done on aluminum 5083 alloy, by Gao et al. [16], failure strain is an 

exponential function of triaxiality while Lode angle does not have a considerable 

effect on the failure. In the paper by Gao, Zhang and Roe (2009) a fracture 

criterion was expressed in terms of the equivalent failure strain as a function of 

the stress triaxiality and the Lode angle by conducting a series of 

micromechanics analyses of void-containing unit cells to identify important 

parameters and show general trends. Besides, experimental studies were 

performed for a wide range of stress states. 7 different types of specimens were 

used in this study including smooth and notched round bars, plane strain 

specimens, plane stress specimens, Lindholm-type torsion specimen, and 

modified plane stress and plane strain specimens containing holes and/or cut 
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slots. Numerical modeling was carried out using the finite element software 

ABAQUS to analyze all the specimens. This failure function was further 

calibrated for a DH36 steel plate. The results showed that the numerical 

predictions agreed very well with experimental measurements for a wide range 

of specimens. 

 Coppola et al. [17] suggested that based on different values of Lode angle, 

different branches of failure strain as a function of triaxiality can be considered. 

In this paper, the dependence of ductile fracture and fracture limit εf in metals on 

the triaxiality level (T) of the stress tensor and the deviatoric parameter (X) of the 

stress state was studied. Several special fracture tests comprising tensile, torsion, 

flattening and bending have been devised to define the formability limits for 

three steel grades under different stress conditions. In addition, numerical 

simulations have been carried out to provide additional information whenever 

direct measures could not be feasible. The results stated that fracture limits in the 

εf – T plane can be confined between two boundary curves, characterized by two 

limits (X = 0 and X = 1) which are due to the application of Tresca criterion for 

shear failure and are linked together through the material hardening behavior. 

Furthermore, an asymmetry between tension and compression states could exist 

as a consequence of the proposed approach. The present results can be directly 

applicable to monotonic loading paths only, condition which is usually not 

verified on components of actual applications. For the damage evolution 

description in complex stress paths (non-proportional and non-monotonic), non-

linear damage accumulation mechanisms may be present and, eventually, should 

be taken into account.   

 In the research done by Li et al. [18], a comprehensive review and comparison 

of the ductile failure models are done. In the latest study by Mirone and Corallo 

[19], it is found that, for the metals they tested, the hydrostatic stress has a 

significant role in failure, while the Lode angle does not affect the failure strains. 

The phenomenon of ductile failure was analyzed considering the influence of 

plastic strain, stress triaxiality and Lode angle parameters. In this study, different 



1. Classical Theory and Literature 

 15 

metals (mild steel, stainless steel, pure copper and ASTM steel) and different 

combinations of load specimen geometry were considered according to three 

theories (the Tresca criteria and two models by Wierzbicki et al.) and to a 

procedure previously developed for the stress–strain characterization in the post-

necking range. Experimental tests were performed by pulling tensile specimens 

and notched flat samples up to failure and finite element simulations were 

performed with the commercial code MSC-MARC to calculate the required 

failure related variables within the volume of failing specimens. According to the 

results, failure predictions according to the shear criterion by Tresca were not 

very accurate, while Wierzbicki models provided good results in predicting 

failure in terms of both global displacements and local strains. According to the 

results, within the ranges of triaxiality and Lode angle investigated, θN 

(normalized Lode angle) plays a minor role on the damage process. On the 

contrary, θN shows a considerable influence on the evolution of hardening while 

the neglected effect of triaxiality on the hardening was inferred to be negligible. 

 

In a work done by Mirone et al. (2014) the failure of APIX-100 steel was 

experimentally investigated considering the effect of Lode angle along with 

triaxiality factor on the strain of the material ay failure. The experiments were 

performed on smooth and notched round bars and flat notched specimens with 

different notch radius. Simple tension tests up to failure have been performed on 

the specimens and deformations in different points and different directions were 

measured. Besides, a series of static, implicit, elastoplastic large deformation 

(updated Lagrangian) FE analysis were done using nonlinear commercial 

software MSC Marc to model the above mentioned specimens. The results of the 

experiments and FE analysis showed that failure strain decreases with TFavg; 

moreover Xavg has no effect on failure strain, where the subscript “avg” implies 

the plastic strain averaged values of these two parameters. 
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In a work done by Bardet, 1990, [21] experimental investigations indicate that 

the third stress invariant; Lode angle α affects significantly the behavior of 

isotropic pressure-sensitive elastoplastic materials. Seven Lode dependences 

were reviewed. A new one, referred to as LMN, was proposed to generalize Lade 

and Duncan, and Matsuoka and Nakai failure surfaces. The performance of the 

modified model was estimated by comparing experimental and analytical results 

in the case of true triaxial loadings on normally consolidated clay. 

In a paper by M. Alves and N. Jones [22] to investigate the role of the hydrostatic 

stress on failure, some static and dynamic tensile tests on mild steel 

axisymmetric notched specimens were performed. Finite Element results and 

experimental data indicated that the failure site for specimens having a small 

notch radius occurs in regions of low triaxiality. Comparisons are made between 

Finite Element and Bridgman analyses and the influence of some material 

parameters on the triaxiality levels was explored. According to finite element 

results, large errors are possible when the Bridgman analysis is used to predict 

stresses and strains at the minimum cross section of the notched specimens. It 

was observed that the actual value of the triaxiality is a material and geometric 

dependent parameter. The finite element simulation showed that the triaxiality is 

highest at the middle (r=0) of the minimum cross section of the notched 

specimens, regardless of the notch radius. Experimental result on the notched 

specimens pulled in tension at various speeds revealed that the average strain rate 

measured by the change in the necking diameter increases significantly, in some 

cases up to three orders of magnitude during a test. The present results suggest 

that the stress triaxiality is not the only fundamental parameter for the triggering 

of failure in the mild steel studied in this paper; the plastic strains appear to be 

important. It is suggested that a relationship between the stress triaxiality and the 

plastic strains might determine the actual location where failure commences.
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In this chapter it will be presented the set of notations that will be used. It is 

convenient to use both matrix and tensor notation depending on the particular 

application.  

 
 

 

 

In general, a matrix consists of a collection of certain quantities, which are 

termed the components of the matrix. The components are ordered in rows and 

columns and if the number of rows or columns is equal to one, the matrix is one-

dimensional, otherwise it is two-dimensional. A treatment of matrix algebra can 

be found in many textbooks. The intention here is not to provide a resume of 

matrix algebra, but simply to present sufficient information of the notation used. 

A column matrix is denoted by a bold-face, usually lower-case letter, for instance 

 
 

 
 

(2.1) 

 

 

a =
a1
a2
a3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 2 Notation and Cartesian tensors 
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where a1, a2, a3 are the components of the matrix a. The dimension of a matrix is 

given by the number of rows and columns, i.e. the column matrix a of (2.1) has 

the dimension 3x1. The transpose aT of a is given by the row matrix: 

 (2.2) 

 

The length of a or aT is denoted by |a| and we have 
 

 
(2.3) 

 
The scalar product of two column matrices a and b having the same dimensions 

is defined according to 

 

(2.4) 

where a and b in the present case are given by (2.1). Therefore, the length |a| of a 

can be written as 

 (2.5) 

 

A two-dimensional matrix is denoted by a bold-face, usually an upper-case letter, 

for instance 

 (2.6) 

 

a = a1
2 + a2

2 + a3
2( )1/2

aTb = a bT = b1 b2 b3⎡
⎣

⎤
⎦

a1
a2
a3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= b1a1 + b2a2 + b3a3

a = (aTa)1/2

B =
B11 B12 B13
B21 B22 B23
B31 B32 B33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

aT = a1 a2 a3⎡
⎣

⎤
⎦
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where B is termed a square matrix since the number of rows and columns is 

equal. The transpose BT of B is obtained by interchanging rows and columns in 

B, i.e. 

 (2.7) 

 

and the matrix B is symmetric if B = BT. The unit matrix I is defined 
 

 (2.8) 

 
A zero matrix is defined as a matrix where all components are zero. Examples 

are 

  

 (2.9) 

 

We note that the inverse B-l of a square matrix B is defined by 
 

 (2.10) 

 
and that B-1 exists if the determinant detB of B is different from zero. If detB≠0, 

then B is nonsingular, otherwise it is singular. For matrices having the correct 

dimension the matrix product AB exists and we recall that 

 

 (2.11) 

 

BT =
B11 B21 B31
B12 B22 B32
B13 B23 B33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

I =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 = 0 0 0
0 0 0

⎡

⎣
⎢

⎤

⎦
⎥;        0 = 0

0
⎡

⎣
⎢

⎤

⎦
⎥

B−1B = BB−1 = I

(AB)T = BTAT  ;              (AB)−1 = B−1A−1
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and for two square matrices we have:  
 

 (2.12) 

 
For a square matrix A, consider the quantity xTAx, which is a number; this 

quantity is called a quadratic form. If 

 (2.13) 

 
then the matrix A is said to be positive definite. It is recalled that 
 

If  A is positive definite then detA ≠ 0  
 

We also mention that a matrix A is called positive semi-definite if 
 

xTAx ≥ 0      for  all  x ≠ 0

det(AB) = detA detB

xTAx > 0      for  all  x ≠ 0
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Whenever a coordinate system is employed in the following, we will for 

simplicity only make use of the standard orthogonal, rectangular and right-

handed coordinate system shown in Fig. 2.1. The word rectangular signifies that 

the coordinate axes are straight orthogonal lines. For reasons that will be 

unfolded in a moment we label the coordinate axes by x1, x2 and x3 instead of the 

usual notation of x, y and z. 

 

In order to maintain the standard definition of distance between two points in this 

coordinate system, the unit length along all the coordinate axes is equal to the 

unit length scale. Such a coordinate system is termed a Cartesian coordinate 

system in recognition of the French philosopher and mathematician Descartes 

(1596-1650), whose Latin name is Cartesius and who introduced the concept of a 

coordinate system. It is obvious that a certain set of coordinates, i.e. a certain set 

of x1, x2 and x3-values defines uniquely the position of a point in the coordinate 

system. 

 2.2 Cartesian coordinate system 

Figure  2.1: Cartesian coordinate system 
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Index notation is often used in tensor algebra and it is therefore often termed as 

tensor notation. Index notation implies that complicated expressions can be 

written in a very compact fashion that emphasizes the physical content of these 

expressions and greatly facilitates mathematical manipulations.  

The coordinate axes xl, x2 and x3 in Fig. 2.1 can be written more briefly as xi, 

where the index i takes the values i = 1, 2 and 3. The column matrix a given by 

(2.1) can then be written as [ai] where the brackets [ ] around ai emphasize that 

we in the present case interpret the quantity ai as a matrix. Therefore 

 

 (2.14) 

 

where, again, the index i takes the values 1, 2 and 3. In what follows, Latin 

indices, unless otherwise specified, assume the values 1, 2 and 3, on the other 

hand, Greek indices will extend over a range to be specified in each case. If 

reference is made to ai we refer to the entire quantity given by ai, whereas a 

specific component of ai like the one given by, for instance, i = 2 is referred to as 

a2.  

An important convention in index notation is the so-called summation 

convention, which states that if an index is repeated twice then a summation over 

this index is implied. As an example, the product bi ai, where the index i is 

repeated twice, means: 

biai = b1a1 + b2a2 + b3a3  

a = [ai ] =
a1
a2
a3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 2.3 Index notation 
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and a comparison with (2.4) shows that bTa = biai. It is also a convention in 

index notation that an index cannot be repeated more than twice. If it is repeated 

twice, it is called a dummy index and if it is not repeated, it is called agree index, 

i.e 

index→
! free if  it  appears once
! dummy if  it  appears twice

An index  can only be free or  dummy 

 

 

It is obvious that the specific letter used for a dummy index is immaterial and we 

have, for instance, biai=bkak. However, for a free index the specific letter used is 

of extreme importance. It should also be noted that whereas the position of a 

quantity in a matrix expression is of significance - we have for example bTa ≠ 

baT - this is not the case in index notation where, for instance, 

biai=aibi=aTb=bTa. 

 

It is also possible to work with quantities having two indices and it is evident 

that the matrix B given by (2.3) can be written as 

 

B = [Bij ] =
B11 B12 B13
B21 B22 B23
B31 B32 B33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

where the brackets [ ] around Bij again emphasize that in the present case we 

interpret the quantity Bij as a matrix. 

Using the summation convention, it follows that the inhomogeneous equation 

system Bx=a can be written as Bijxj=ai  and that 

 

Bii = B11 + B22 + B33  
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From the rules defined, it follows that each term in an expression must possess 

the same number of free indices, i.e. whereas Bijxj=ai is a valid expression, the 

formulations Bijxj=C  and Bijxj=Aij  are invalid. The operation, where two free 

indices are made equal to each other, so that a dummy index arises, is called 

contraction. As an example, contraction of Aij gives Aii. 

The Kronecker delta δij plays an essential role in index notation and tensor 

algebra and it is defined as 

 

 (2.15) 

 

i.e. it is equal to the unit matrix I given by (2.8). Using the summation 

convention it follows that 

 

 (2.16) 

 

This result follows from the fact that δij only contributes with the value of unity 

provided that j and k takes the same value. Alternatively, the trivial use of the 

summation convention yields 

Bijδ jk = Bi1δ1k + Bi2δ2k + Bi3δ3k  

and an evaluation of this relation for each i- and k-value results in expression 

(2.16). Another example of the use of Kronecker’s delta arises from the matrix 

equation AB = I. In index notation this is written as 

AikBkj = δ ij  

which shows that Aik is the inverse of Bik, cf. (2.10). A final important illustration 

of the use of Kronecker’s delta is the expression 

∂ai
∂aj

= δ ij  

This identity follows from the fact that  

δ ij =
1 if  i =  j
0 if  i ≠  j

Bijδ jk = Bik



2. Notation and Cartesian tensors 

 25 

∂ai / ∂aj =
0 if  i ≠ j
1 if  i = j

 

In accordance with the matrix notation, it follows that the quantity Mij is 

symmetric if 

Mij = M ji  

Moreover, a quantity Nij is termed anti-symmetric or skew-symmetric if 
 

Nij = −N ji  
 

This implies that all diagonal terms in Nij are equal to zero. Suppose we have an 

arbitrary quantity Pij. It is always possible to write Nij, according to 

 

 (2.17) 

 

where the symmetric part Pij
s of Pij

 is defined by 

 

 (2.18) 

 
and the anti-symmetric part Pij

a of Pij
 is defined by 

 

 (2.19) 

 

A problem often encountered is the multiplication of a symmetric quantity Aij
s 

with a quantity Bij not necessarily symmetric. It turns out that 

 

Aij
sBij = Aij

sBs
ij  

 

Pij = Pij
s + Pij

a

Ps
ij =

1
2
(Pij + Pij )

Pa
ij =

1
2
(Pij − Pji )
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A so-called comma convention is also used in index notation. It states that 

whenever a quantity is differentiated with respect to the coordinates xi, we use a 

comma to indicate this differentiation. Examples are 

 

∂f
∂xi

= f,i              
∂ai
∂x j

= ai, j  

 

It is finally observed that in matrix notation we are restricted to working with 

one- and two-dimensional arrays. This is not the case in index notation where, 

for instance, the quantity eijk exists and comprises 3x3x3=27 components. 

Likewise, the quantity Dijkl exists and comprises 3x3x3x3=81 components. 
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Now it will be presented a discussion of the concept of tensors and why they 

appear naturally when formulating physical relations. As we only use Cartesian 

coordinate systems, no difference exists between so-called covariant and 

contravariant tensors and therefore, by a tensor we always mean a Cartesian 

tensor.  

As previously mentioned, the essential issue of a tensor is that it behaves in a 

certain manner when a change of coordinate system is performed. We shall now 

establish this relation. 

 

We define a vector in the usual manner as a quantity having a length and a 

direction. In Fig. 2.2, the two fixed points P and Q have the coordinates xi
P and 

xi
Q in the old coordinate system and the coordinates x’i

P and x’i
Q in  the new x’i-

coordinate system. The components of the vector vi from P to Q in the old xi-

system are then given by 

 

 (2.20) 

 

 

vi = xi
Q − xi

P

 2.4     Cartesian tensors 

Figure  2.2: vector from P to Q 
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where v1, v2 and v3 are the components of the vector in the x1, x2 and x3 direction 

respectively. Likewise, the components of the vector v’i from P to Q measured in 

the new x’i-system are given by 

 

 (2.21) 

 

where v’1, v’2 and v’3 are the components of the vector in the x’1, x’2 and x’3  

direction respectively. We have then 

x 'Qi = Aij x j
Q − ci          x '

P
i = Aij x j

P − ci  

Insertion into (2.21) and recognition of (2.20) result in 

 

 (2.22) 

 

We have now established the important relation that shows how the components 

of a vector changes if a coordinate transformation is made. Here we have derived 

(2.22) from the usual definition of a vector, but we will now define a quantity vi 

as a vector if it transforms according to (2.22). A vector is also called a first-

order tensor, where first order refers to the fact that vi only possesses one index. 

Now we have an indication of the statement expressed previously that tensors are 

quantities, which behave in a certain manner when a coordinate change is 

performed. It is of extreme importance that whereas any quantity containing 

three pieces of information can be written in the index form bi, this does not 

make bi, a vector i.e. a first-order tensor as bi, will not, in general, transform 

according to (2.22). As an example, assume that a is a vector and consider the 

quantity bi= (|a|, θ1, θ2) where |a| = the length of a, θ1 = the angle between a and 

the xl-axis and θ2 = the angle between a and the x2-axis. In this case, bi is 

certainly not a vector, since each of the components of bi maintains its value 

irrespectively of the coordinate system, i.e. bi does not fulfill the transformation 

v 'i = x 'i
Q− x 'i

P

v 'i = Aijvj         or           v'=Av
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rule (2.22). It is now apparent why we have chosen to use the name column 

matrix for a given by (2.1). Even though a vector ai can be written in the same 

manner, the column matrix a is not necessary a vector. Multiplication by Aik  

gives vk=Aikv’I i.e. 

 

As indicated below, it is easy to show formally that velocity and acceleration 

vectors indeed are vectors. Consider a specific panicle of a body. This particle is 

described by its coordinates, which are functions of time, i.e. xi=xi(t) where t is 

the time. The velocity components vi are then defined by 

 

 

 

 

 (2.23) 

 (2.24) 

vi = Ajiv ' j         or         v=ATv'

vi = !xi
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where a dot denotes the derivative with respect to time and v1, v2 and v3 are the 

components of vi in the x1, x2 and x3 direction respectively. Likewise, in a new 

coordinate system the velocity v’i is defined by 

 

 (2.25) 

 

Differentiating (2.22) with respect to time and assuming that vi is the velocity 

vector it appears that also the acceleration vector is, in fact, a vector. 

As a force vector is defined as a quantity having a length and direction it follows 

in complete analogy with (2.20) and (2.21), which lead to (2.22), that a force 

vector is, in fact, a vector. 

We have already touched upon quantities containing one piece of information 

and which take the same value irrespectively of the coordinate system. Such a 

quantity b is called a scalar, an invariant or a zero-order tensor and it transforms 

according to 

b ' = b  

i.e. it takes the same value in the old coordinate system xi and in the new 

coordinate system x’i.  

We have dwelt on the fact that tensors are quantities, which transform in a 

particular manner when coordinate changes are made. It is now timely to ask 

why tensors are of relevance for our present purpose. The reason for this is of 

extraordinary importance, because it turns out that the relations of physics are 

conveniently expressed in terms of tensors. To illustrate this important aspect we 

write Newton’s second law for a particle in the old coordinate system xi 

according to 

 

 (2.26) 

 

vi ' = !x 'i

Fi = mai
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where Fi is the force vector, m is the mass and ai the acceleration vector. The 

vectors Fi and ai are interpreted in the usual way that, for instance, F2 is the 

component of Fi in the x2 direction. When writing (2.26), we did not specify our 

coordinate system in any manner so in another coordinate system x’i, we expect 

that Newton’s second law takes the form F’i=m’a’i i.e. 

 

 (2.27) 

 

where it has been assumed that the mass m is an invariant, i.e. independent of the 

coordinate system. As Fi and ai are vectors, they transform according to (2.22) 

i.e. we have 

F ' j = AjiFi             a ' j = Ajiai  

Multiply (2.26) by Aji and use the expressions above to obtain 

F ' j = ma ' j  

which is precisely the form stipulated in (2.27). It appears that irrespectively of 

the coordinate system, we write Newton’s law in the same form, either (2.26) or 

(2.27), and this is possible only because Fi and ai, in fact, are vectors, i.e. first-

order tensors and because the mass m is an invariant, i.e. a zero-order tensor. 

Therefore, the occurrence of vectors and scalars in physical relations is a result of 

the fact that we expect physical laws to be independent of the particular 

coordinate system we choose to work with. 

Above we illustrated that if a quantity like bi  appears in a physical relation, we 

expect it to be a vector. Let us pursue the argument above and assume that we 

have a physical relation, which in the xi-coordinate system states that 

 

F 'i = ma 'i
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 (2.28) 

 

where bi, and ci are assumed to be vectors and Bij some quantity. When writing 

(2.28) we did not specify our coordinate system in any manner, so we expect that 

in another coordinate system x’i the same physical relation is expressed through 

 

 (2.29) 

 

Or 

 

 (2.30) 

 

 
Multiply (2.29) by Aki and use (2.22) to obtain 
 

 (2.31) 

 
Transformation of cj according to (2.23) yields 
 

  (2.32) 

 
 
Subtraction of (2.30) and  (2.32) provides 
 

 (2.33) 

 
 
This expression should hold for arbitrary c’l values and Bij must therefore 

transform according to 

 

bi = Bijcj

b 'i = B 'ij c ' j

b 'k = B 'kl c 'l

b 'k = AkiBijc j

b 'k = AkiBijAljc 'l

(B 'kl− AkiBijAlj )c 'l = 0
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 (2.34) 

 

 
We have found that if it is allowable to write a physical relation as (2.30) in one 

coordinate system and as (2.31) in another coordinate system, then the quantity 

Bij must transform according to (2.34). A quantity Bij, which transforms 

according to (2.34), is defined to be a second-order tensor. It is obvious that 

whereas any square matrix containing 3x3 components can be written in index 

notation as Bij, this does not make Bij a second-order tensor. Only those Bij 

quantities, which transform according to (2.34), are second-order tensors. 

We started with (2.30) where bi and ci were assumed to be vectors and Bij some 

quantity. We then concluded that Bij must be a second-order tensor, which 

transforms according to (2.34). This conclusion is an example of the use of the 

so-called quotient theorem. 

Multiplication of (1.41) by Akm gives 

 
AkmB 'kl = BmjAil  

and multiplication by Ain yields 
 

Bmn = AkmB 'kl Ain  
 

which can be written as 
 

 (2.35) 

 
 

Let us finally consider the following physical relation expressed in the xi 

coordinate system by 

Bij = DijklMkl  

where Bij and Mkl are assumed to be second-order tensors. In the x’i  coordinate 

system we expect the relation 

 

B 'kl = AkiBijAlj         or         B'=ABAT

Bkl = AlkB 'ij Ajl         or         B=ATB'A
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B 'ij = D 'ijkl M 'kl  
 
If this is true, then by arguments like before, it is easily shown that the quantity 

Dijkl must transform according to 

 

 (2.36) 

 

Such a quantity is defined as a fourth-order tensor. It follows in a straightforward 

manner that 

 

Dijkl = AmiAnjD 'mnpq ApkAql  
 

Matrix formulations are often used instead of tensors, the main reason being that 

matrices are convenient when it comes to numerical computations. Often, tensors 

are used to derive the general relations governing the specific problem 

investigated and hereafter a corresponding matrix formulation is obtained from 

the tensor formulation. All boldface letters, like A, shall be viewed as matrices. 

D 'ijkl = AimAjnDmnpqAkpAiq
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It is essential to establish a quantity that only describe the deformation of the 

body, i.e. it should not be influenced by any rigid-body motions. Such a quantity 

is the strain tensor. It will be presented now a derivation of a number of 

properties of the strain tensor not only because of the importance of these 

properties but also because it turns out that many of the properties can be 

transferred directly to the stress tensor, which is treated in the next chapter. 

 

 

 

 

 

A body is said to be modeled as a continuum if to any configuration of the body 

there corresponds a region R in three-dimensional space such that every point of 

the region is occupied by a particle (maternal point) of the body. 

Any configuration may be taken as the reference configuration. Consider a 

particle that in this configuration occupies the point defined by the vector xi. 

When the body is displaced, the same particle will occupy the point x*i given by 

 

 3 Strain Tensor 

 3.1 Displacement 
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 (3.1) 

 

The difference x*i – xi is called the displacement of the particle and will be 

denoted ui. The reference position vector x will be used to label the given 

particle, the coordinates xi, are then called Lagrangian coordinates. Consequently 

the displacement may be given as a function of x, u(x), and it forms a vector field 

defined in the region occupied by the body in the reference configuration. 

Now consider a neighboring particle labeled by x+Δx.  In the displaced 

configuration, the position of this point will be 

 

 (3.2) 

 

so that 

 

 (3.3) 

 

or in indicial notation, 

 

 (3.4) 

 

 

But if Δx is sufficiently small, then ui(x+Δx)-ui(x)=ui,j(x)Δxj, the error in the 

approximation being such that it tends to zero faster than |Δx|. It is conventional 

to replace Δx by the infinitesimal dx, and then to write the approximation as an 

equality. Defining the displacement-gradient matrix α  by αij = uij, we may write 

in matrix notation 

 

x*i = xi + ui

x*+ Δx* = x + Δx + u(x + Δx)

Δx* = Δx + u(x + Δx)− u(x)

Δx*i = Δxi + ui (x + Δx)− ui (x)

 (3.5) dx* = (I +α)dx
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A body is said to undergo a rigid-body displacement if the distances between all 

particles remain unchanged; otherwise the body is said to be deformed. Let us 

limit ourselves, for the moment, to an infinitesimal neighborhood of the particle 

labeled by x; the deformation of the neighborhood may be measured by the 

extent to which the length of the infinitesimal vectors dx emanating from x 

change in the course of the displacement. The square of the length of dx* is 

 

 (3.6) 

 

where 

 (3.7) 

 

or, in indicial notation 

 

 (3.8) 

 

which defines the symmetric second-rank strain tensor E, known as the Green-St. 

Venant strain tensor. Clearly E(x) describes the deformations of the infinitesimal 

neighborhood of x, and the tensor field E that of the whole body; E(x)=0 for all x 

in R if and only if the displacement is a rigid body one. The deformation of a 

region R is called homogeneous if E is constant. It is obvious that a necessary 

and sufficient conditions for the deformation to be homogeneous is that ui,j are 

constant, or equivalently, that u varies linearly within x. 

Here we have described the displacement vector ui as function of its position xi 

before any deformations, i.e. ui=ui(xi, t) and such an approach is called a 

dx* 2 = dx* ⋅dx* = dxT (I +α T )(I +α T )dx = dxT (I + 2E)dx

E = 1
2
(α T +α +α Tα )

Eij =
1
2
ui, j + uj,i + uk,iuk, j( )

 3.2 Deformation 
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Lagrangian description. For that reason Eij is often called Lagrange’s strain 

tensor (occasionally, in the literature it is called the Green-Lagrange strain 

tensor, in fact, it was introduced by Green in 1841 and by St.-Venant in 1844). 

The alternative approach is the Eulerian description, often employed in fluid 

mechanics, where the displacement vector ui is given as function of the current 

coordinates x*i i.e. ui=ui(x*i, t). 

That Eij is, indeed, a second-order tensor follows from the fact that ui is a vector 

and ui,j therefore is a second-order tensor. 
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In the following, we will only consider situations where the displacement 

gradients ui,j are small, i.e. each component is small when compared to unity 

 

ui, j <<1  

 

In that case, the quadratic term in (3.6) can be ignored and the Lagrange strain Eij 

can be approximated by the small strain tensor εij defined by 

 

 (3.9) 

 

 

which is also symmetric, i.e. 

ε ij = ε ji  
 
It is obvious that Eij is a second-order tensor. 
 
 
 

 
 
 
 
 

Our aim was to establish a quantity, the strain tensor, that is independent of rigid-

body motions. Let us now prove that Eij possesses this property. Any rigid-body 

motion is characterized by the fact that during motion, the vector PQ of two 

neighboring material points changes into the vector P*Q* in such a way that its 

ε ij =
1
2
(ui, j + uj.i )

 3.3 Small strain tensor 

 3.4 Rigid-body motions 
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length remains constant. As ds = |PQ| and ds* = |P* Q*|, we can then write that 

during any rigid-body motion, we have  

ds*2 −ds2 = 0  

 

Making use of (3.6) and (3.8) and noting that dxi is arbitrary, we conclude that 

 

2Eij = ui, j + uj,i + uk,iuk, j  

 

We observe that Green-Lagranges strain tensor is unaffected by rigid-body 

motions and within our approximation of small displacement gradients we have 

Eij = εij, i.e. rigid-body motions do not influence the small strain tensor, which 

proves the desired property of this strain tensor. 

 

 

 

 

 

 

We shall now evaluate the physical significance of the strain tensor εij and its 

components. Within our assumption of small displacement gradients, we have 

Eij= εij, i.e. (3.6) reads 

 

ds*2 −ds2

ds2
= 2 dxi

ds
ε ij
dx j
ds

 

 

where ds is the length of the vector dxi between the two neighboring particles P 

and Q before any deformation takes place and ds* is the distance between these 

two particles after the deformation. Therefore 

 3.5 Physical significance of the strain tensor
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ni =
dxi
ds

 

 
is a unit vector in the direction of dxi. From this expression and (3.9) follow that 

 

 (3.10) 

 

As the displacement gradients are small the components of Eij are also small and 

this implies that the left-hand side of (3.10) is small. Consequently ds* is close to 

ds and we then obtain 

 

ds*2 −ds2

2ds2
= (ds*+ds)(ds*−ds)

2ds2
≈ 2ds(ds*−ds)

2ds2
= (ds*−ds)

ds  
 

 
Figure  3.1: strain component ε11 

ds*2 −ds2

2ds2
= niε ijn j
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We define the relative elongation or the normal strain ε of the vector PQ 

deforming into the P*Q* vector, by 

 

 (3.11) 

 

in accordance with the elementary definition of normal strain. A combination of 

(3.10) and (3.11) yields 

 

 (3.12) 

 

 

 

ε = (ds*−ds)
ds

ε = niε ijn j                     or                 ε=nTεn
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As an example, choose the direction ni so that ni=(1, 0, 0), then we obtain ε=ε11 

as illustrated in Fig. 3.1. Likewise, ni=(0, 1, 0), we obtain ε=ε22 whereas ni=(0, 1, 

0), yields ε=ε33. Therefore, we have achieved a physical interpretation of all the 

diagonal terms of the strain tensor and it appears from Errore. L'origine 

riferimento non è stata trovata. that the normal strain, i.e. the relative 

elongation, in an arbitrary direction given by the unit vector ni, is known once the 

strain tensor is known. 

To obtain a physical interpretation of the off-diagonal terms in the strain tensor, 

consider two directions dx i
 (1) and dx i

 (2) in the reference configuration before any 

deformations take place. These two directions are taken to be orthogonal, i.e.   

 

dx i
 (1)dx i

 (2) =0 (3.13) 

 

In accordance with Fig. 3.2, the lengths of dx i
 (1) and dx i

 (2) are given by ds(1)  

 

 

 
Figure  3.2: change of orthogonal angle in reference configuration due to the deformation 
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and ds(2) respectively, i.e. we have the following two orthogonal unit vectors 

 

 (3.14) 

 

Due to the deformation, the vector dx i
 (1) changes to dx* i

 (1) with length ds* (1) 

whereas the vector dx i
 (2) changes to dx* i

 (2) with length ds* (2), cf. Fig. 3.2. The 

angle 90°-γ between dx* (1) and dx* (2) is then given by 

 

 (3.15) 

 

From (3.5) we have 

 

dx*i
(1) = (δ ij + ui, j )dxj

(1);                        dx*i
(2) = (δ ik + ui,k )dxk

(2)  

 

Insertion into (3.15) yields 
 

 (3.16) 

 
 
Due to the small strain approximation, we can ignore the quadratic term and set 

ds*(1) ≈ds(1) and ds*(2) ≈ds(2) Consequently, (3.16) reduces with (3.9) to 

 

sinγ = dxk
(1)

ds(1)
dxk

(2)

ds(2)
+ 2ε jk

dx j
(1)

ds(1)
dxj

(2)

ds(2)
 

 

ni
(1) = dxi

(1)

ds(1)
;                            ni

(2) = dxi
(2)

ds(2)

cos(90° −γ ) = dx*i
(1)

ds*(1)
dx*i

(2)

ds*(2)

sinγ = (δ ik + uk, j + uj,k + ui, jui,k )
dxj

(1)

ds*(1)
dxk

(2)

ds*(2)
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As we assume small strains we have sinγ ≈ γ. With (3.13) and (3.14) we then 

obtain 

γ = 2ε jknj
(1)nk

(2)  

 

To emphasize that the vectors ni
(1) and ni

 (2) are orthogonal, we ante mi =ni
(1)    

and ni =ni
(2) and the expression above takes the more convenient form 

 

 

 (3.17) 

 

Hence, due to the deformation the right angle between the unit vectors ni
  and mi 

in the reference configuration decreases by the amount γ given by (3.17). 

As an example, choose ni =(1, 0, 0) then εijnj becomes εijnj =εi1. If we then choose 

mi =(0, 1, 0), we obtain γ=2ε21 and if we choose mi =(0, 0, 1), we obtain γ=2ε31 

I.e. 2ε21 is the decrease of the angle between the x2 and x1 axes due to 

deformation, whereas 2ε31 is the decrease of the angle between the x3 and xl axes. 

A similar evaluation holds for 2ε32. These off-diagonal terms of the strain tensor 

are called shear strains as they describe the shearing, i.e. the distortion of the 

material. With obvious notation we can then write 

 

γ nm = 2εnm  

where 

 

 (3.18) 

 

In this expression ni and mi are arbitrary unit vectors, which are orthogonal in the 

reference configuration. The angle decrease γnm between ni and mi caused by the 

deformation is termed the engineering shear strain to be distinguished from the 

γ = 2miε ijn j

εnm = niε ijmj = miε ijn j          or          εnm = nTεm = mTεn
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tensorial shear strain εnm. The shearing between two directions parallel with the 

x1 and x2 axes is illustrated in Fig. 3.4. 

It appears that the strain tensor contains information by which relative elongation 

in arbitrary directions and angle changes between arbitrary orthogonal directions 

can be determined. Consequently, the strain tensor describes the deformation 

completely and, in addition, we have achieved a direct physical interpretation of 

all the components of this tensor. These results were already obtained by Cauchy 

in 1822. 

 

 
Figure  3.3: illustration of shear component ε12=γ12/2 

 

 

 
 
 
 

The implications of coordinate system changes are important in many 

connections and we have already discussed this aspect in detail in Chapter 1. Let 

us consider the change from the old xi-coordinate system to the new x-coordinate 

system. We have  

 3.6 Change of coordinate system 
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 (3.19) 

 

where Aij is the transformation matrix. Suppose that we know the components of 

εij in the xi system and suppose that we want to determine the components of ε’ij 

in the x’i system. We have already proved that εij is a second-order tensor, i.e. it 

follows directly from (2.34) that 

 

 (3.20) 

 

The inverse relations follow from (2.35), i.e. 

 

 (3.21) 

 

 

 
 
 
 

We have previously obtained a physical interpretation of the strain tensor 

components. However, it turns out that for a special choice of coordinate system, 

the strain tensor takes a particularly simple form. For this purpose, consider a 

direction in the reference configuration given by the unit vector n. We then 

define the vector q by  

 

q=εn (3.22) 

 

 

 

x 'i = Aij (x j − ci )              or                 x ' = A(x − c)

ε 'ij = AikεklAjl              or              ε ' = AεA

 3.7 Principal strains and principal directions – Invariants 

ε ij = Aikε 'kl Ajl              or              ε = Aε 'A



3. Strain Tensor 

 48 

 
Figure  3.4: the vector q=εn and its components after direction n and m 

 

Referring to Fig. 3.4, the unit vector m is orthogonal to n. Following Fig. 3.4 and 

in accordance with Errore. L'origine riferimento non è stata trovata. and 

(3.21) the component of q in the direction of n is given by  

 

 (3.23) 

 

where εnn is the normal strain in the direction n. Likewise from (3.18) and (3.21) 

the component of q in the direction of m is given by 

 

εnm =mTq  

where εnm is the shear strain between the directions n and m. We now look for the 

situation where the direction n is chosen so that q is collinear with n, i.e. the 

shear strain εnm = 0. To achieve this situation, we must have 

 

 (3.24) 

 

 

εnn = n
Tq

q = λn
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where λ is an unknown parameter and from (3.23) we conclude that εnn=λ . 

Use of (3.21) in (3.24) yields the following requirement 

 

 (3.25) 

 

where 0 is defined as 0T=[0 0 0]. 

Expression (3.25) is an example of the well-known eigenvalue problem. It 

consists of a quadratic set of homogeneous equations and if a nontrivial solution 

n is to exist, we must require 

 

 (3.26) 

 

As ε-λI is a 3 x 3 matrix, the expression above provides a cubic equation for the 

determination of λ - the so-called characteristic equation. That is, (3.26) is 

fulfilled by three values of λ - the eigenvalues λ1, λ2 and λ3.When λ1, λ2 and λ3 

have been determined, then substitution of λ1 in (3.25) provides the solution n1, 

substitution of λ2 provides the solution n2 and substitution of λ3 provides the 

solution n3. 

The solutions n1, n2 and n3 are the eigenvectors. In accordance with the theory of 

homogeneous equations the lengths of the eigenvectors will be undetermined 

whereas the direction will be known. Accordingly, it is always possible to choose 

a solution so that n becomes a unit vector and this situation will be assumed in 

the following. In the present context, the λ-values are most frequently called the 

principal strains, whereas the n-vectors are called the principal strain directions. 

The importance of the λ-values comes from the fact that they are invariants, i.e. 

they take the same values irrespective of the coordinate system. From a physical 

point of view, this is rather obvious as the magnitude of a principal strain λ was 

found above to be given by the relative elongation εnn in the fixed direction n and 

ε − λI( )n = 0          or             ε ij − λδ ij( )nj = 0

det ε − λI( ) = 0
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this relative elongation must be independent of the coordinate system chosen. To 

prove this formally, assume that we change the coordinate system from the old xi 

system to the new x’i system in accordance with (3.20). Following (3.25), the 

principal directions and principal strains in the new coordinate system are 

determined by 

 

 (3.27) 

 

where λ' denotes the principal strain in the new coordinate system. Since n is a 

vector, we have from (2.22) that 

n ' = An  

 

Use of this expression and (3.20) in (3.27) yields 
 

AεATAn = λ 'An  
 

Premultiplication by AT and using that ATA = I, we find 
 

εn = λ 'n  
 
and a comparison with (3.25) proves that λ = λ' implying that the λ-values are 

invariants, i.e. independent of the coordinate system. However, since the 

components of the eigenvector n' are now measured in the new x’i coordinate 

system, these components differ from the components of the eigenvector n. 

Evaluation of the cubic equation (3.26) - the characteristic equation - gives after 

some algebra 

 

 (3.28) 

 
where θ1, θ2 and θ3 are defined by 
 

ε 'n ' = λ 'n '

−λ 3 +θ1λ
2 −θ2λ +θ3 = 0
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 (3.29) 

 
 

As the λ-values are invariants determined by the values of θ1, θ2 and θ3 is obvious 

that also the θ1, θ2 and θ3 values are invariants. They are called the Cauchy-strain 

invariants and any combination of these invariants is also an invariant. 

An important issue is that the eigenvectors are orthogonal and that the 

eigenvalues are real, this is a consequence of the matrix ε being real and 

symmetric and it is a well-known result in mathematics. However, we will take 

the opportunity to prove it here. 

To prove that the eigenvectors are orthogonal, assume that we have determined 

the two eigenvalues λ1 and λ2 and the corresponding two eigenvectors n1 and n2. 

We then have 

 (3.30) 

 

Transpose the first equation, utilize that ε is symmetric and postmultiply it by n2 

to obtain 

 (3.31) 

 

 

Premultiply (3.30) by n1
T to obtain 

 

 (3.32) 

 

θ1 = ε11 + ε22 + ε33 = ε ii

θ2 = ε11ε22 + ε22ε33 + ε11ε33 − ε23
2 − ε12

2 − ε13
2 = 1

2
θ1
2 − 1
2
ε ijε ji

θ3 = ε11ε22ε33 − ε11ε
2
23 − ε22ε

2
13 − ε33ε

2
12 + 2ε12ε13ε23 = det(ε ij )

εn1 = λ1n1
εn2 = λ2n2

n1
Tεn2 = λ1n1

Tn2

n1
Tεn2 = λ2n1

Tn2
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Subtraction of (3.31) and (3.32) yields 

 

(λ1 − λ2 )n1
Tn2 = 0  

 

If we assume that λ1≠ λ2 then it follows that n1 and n2 must be orthogonal. 

Similar arguments hold between n1 and n3 and between n3 and n2, i.e. we obtain 

the following fundamental property 

 

 (3.33) 

 

When proving this orthogonality, it was assumed that the principal strains were 

unequal. What happens if some of them are equal? Suppose that in a certain 

coordinate system, we have the following strain tensor 

 

ε =
a 0 0
0 a 0
0 0 a

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= aI  

 

It is obvious that in this coordinate system the principal strains are all equal and 

given by the quantity a. Suppose now that the coordinate system is changed from 

the present xi system to the new x’i system in accordance with (3.19). In this new 

x’i  system, the strain tensor transforms into the one given by (3.20), i.e. 

 

n1
Tn2 = n1

Tn3 = n2
Tn3 = 0      orthogonality of  eigenvectors
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ε ' = AεAT = aAIAT = aAAT = aI = ε  

Consequently, we have proved that if all three principal strains are equal, then 

any coordinate system corresponds to the principal directions. 

Suppose now that in a certain coordinate system, we have the following strain 

tensor 

ε =
a 0 0
0 b 0
0 0 b

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= bI +

a − b 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

i.e. two of the principal strains are equal. Suppose furthermore that we rotate the 

coordinate system according to (3.19). However, we will make the special choice 

that this rotation consists of a rotation about the x1 axis. This implies that 

e’1
T=[1; 0; 0], cf. Fig. 2.3. According to (3.20), the strain tensor in the new x’i 

system becomes 

 

′ε = bAIAT +A
a − b 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
AT

= bI +

′e1
T

′e2
T

′e3
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

a − b 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′e1 ′e2 ′e3⎡
⎣

⎤
⎦

 

 

 

As we only consider a rotation about the xl axis, i.e. e’1
T=[1; 0; 0], we obtain 

ε ' = bI +
a − b 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′e1 ′e2 ′e3⎡
⎣

⎤
⎦  

i.e. 
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ε ' = bI +
a − b 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= ε  

 

Consequently, we have proved that if two of the principal strains are equal, then 

any coordinate system obtained by rotation about that axis, which corresponds to 

the principal strain different from the other principal strains, corresponds to the 

principal directions. 

In conclusion, we find that it is always allowable to take the principal directions 

as orthogonal directions in accordance with (3.33). 

Remembering the physical interpretation of λ, cf. the discussion of (3.24), it is 

evident that the λ-values must be real. However, a formal proof is readily 

achieved. For the eigenvalue λ and the corresponding eigenvector n, εn=λn 

holds. Take the complex conjugate of this equation to obtain 

 

 (3.34) 

 

where an asterisk * for the time being denotes the complex conjugate and where 

it has been used that ε is real and that (λn)*= λ*n*. Premultiplying εn=λn by n*T 

gives 

 (3.35) 

 

whereas transposing (3.34), utilizing the symmetry of ε and postmultiplying by n 

provides 

 

 (3.36) 

 

 

εn* = λ *n*

n*Tεn = λn*Tn

n*Tεn = λ *n*Tn
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Then, finally, subtraction of (3.35) and (3.36) yields 

 

(λ − λ*)n*Tn = 0  

 

However, n*Tn is certainly different from zero implying that λ=λ* and it has then 

been proved that the eigenvalues are real. It follows immediately that also the 

eigenvectors are real, i.e. 

 
The eigenvalues and  the eigenvectors are real  

 

We are now in a position to illustrate a significant feature related to the 

eigenvalues and eigenvectors. As n1, n2 and n3 are orthogonal, we can change 

our coordinate system from the xi system to a x’i system collinear with the n1, n2 

and n3 directions. Following (3.19), we then have 

 

x ' = Ax − c       where       AT = n1 n2 n3⎡
⎣

⎤
⎦  

In this new x’i system the strain tensor becomes, cf. (3.20) 

 

ε ' =

n1
T

n2
T

n3
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε n1 n2 n3⎡
⎣

⎤
⎦ =

n1
T

n2
T

n3
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

εn1 εn2 εn3⎡
⎣

⎤
⎦  

 

Using that εn1=λ1n1 and the similar relations, cf. (3.25), we obtain 
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ε ' =

n1
T

n2
T

n3
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λ1n1 λ2n2 λ3n3⎡
⎣

⎤
⎦ =

λ1n1
Tn1 λ2n1

Tn2 λ3n1
Tn3

λ1n2
Tn1 λ2n2

Tn2 λ3n2
Tn3

λ1n3
Tn1 λ2n3

Tn2 λ3n3
Tn3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

However, as the n-vectors are unit vectors orthogonal to each other we finally 

obtain 

 (3.37) 

 

Accordingly, we have obtained the important result that if the coordinate system 

is chosen collinearly with the principal directions n1, n2 and n3, then the strain 

tensor becomes diagonal and the normal strains become equal to λ1, λ2 and λ3. 

This result is in accordance with the physical conditions, which were specified in 

the beginning when the eigenvalue problem was formulated. This important 

result also illustrates why the eigenvalues are called the principal strains and the 

eigenvectors the principal directions. The principal strains are often denoted by 

ε1, ε2 and ε3, i.e. ε1= λ1, ε2= λ2, and ε3= λ3.  The above result can be summarized 

by stating that if the coordinate system is collinear with the principal directions 

we have in accordance with (3.20) and (3.37) that 

 

 (3.38) 

 

 

 

 

ε ' =
λ1 0 0
0 λ2 0
0 0 λ3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ε ' = AεAT =
ε1 0 0
0 ε2 0
0 0 ε3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

      for        AT = n1 n2 n3⎡
⎣

⎤
⎦
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The normal strain ε in any direction ni is determined by Errore. L'origine 

riferimento non è stata trovata., i.e. 

 

ε = niε ijn j  

 

For different directions of ni, different ε -values are achieved. It will now be 

proved that the normal strain ε takes stationary values, i.e. maximum or 

minimum values, when the direction ni is in the direction of one of the principal 

axes. 

To find the stationary values of ε, the ni -vector is varied. However, the ni 

components cannot be varied arbitrarily, as we have the constraint 

nini −1= 0  

 

Accordingly, we employ the method of Lagrange and find stationary values of 

the function 

 

 (3.39) 

 

where now the ni-components and α are independent quantities, α being a 

Lagrangian multiplier. From (3.39), where ψ= ψ(ni, α) we obtain 

 

 (3.40) 

 

 

ψ = niε ijn j −α (nini −1)

∂ψ
∂nk

= εkjnj + εkini −α (nk + nk ) = 0

 3.8 Extremum values of the normal strain 
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and 

 (3.41) 

 

Equation (3.40) can be written as 
 

 (3.42) 

 
 

Therefore, stationary values for the normal strain ε are obtained by solution of 

the homogeneous equation system (3.42) subject to the condition (3.41). We 

immediately observe that this is exactly the same eigenvalue problem as stated 

by (3.25) proving that stationary values, i.e. maximum and minimum values, of 

the normal strain ε occur in the principal directions. 

 

 

 

 

 

We will now prove an interesting relation for the strain tensor (occasionally also 

called the strain matrix). 

Considering the eigenvalue problem (3.25), we premultiply this equation by ε, 

i.e. 

ε 2n = λεn = λ 2n  

where the notation 

 (3.43) 

 

has been used. Proceeding, we obtain the general result 

∂ψ
∂α

= nini −1= 0

εkjnj −αnk = 0       or         (ε ij −αδ ij )nj = 0

ε 2 = εε

 3.9 Cayley-Hamilton’s theorem 
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 (3.44) 

 

where α is any integer (positive, negative or zero). If α is negative, say α=-2 

then, in accordance with (3.43), we define 

ε −2 = ε −1ε −1  

 

Hence, (3.44) holds even for negative values of the integer α provided that ε-1 

exists i.e. provided that detε≠ 0. Moreover, in accordance with the usual 

definition that x0=1 we make the following definition 

ε 0 = I  

 

From this definition follows that (3.43) holds even when α=0. 

Equation (3.43) shows that if ε has the eigenvalue λ and eigenvector n, then εα 

will have the same eigenvector and the eigenvalue λα. Now, multiply the 

characteristic equation for λ, as given by (3.28), by n to obtain 

 

 (3.45) 

 

 

where 0 is given by 0T = [0 0 0]. Use of (3.44) in (3.45) gives 

 

 

 

 

εαn = λαn;              α = 0,±1,±2....

−λ 3n +θ1λ
2n −θ2λn +θ3n = 0

(−ε 3 +θ1ε
2 −θ2ε +θ3I)n = 0
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We know that this equation is fulfilled for n given by any of the three 

eigenvectors, i.e. these three matrix equations can be combined into the 

following format 

 

 (3.46) 

 

where 0 now denotes the 3 x 3 null matrix. As the unit vectors n1, n2 and n3 are 

orthogonal, we have that 

 

n1 n2 n3⎡
⎣

⎤
⎦ = A

T  

where A is some transformation matrix. Expression (3.46) therefore takes the 

form 

(−ε 3 +θ1ε
2 −θ2ε +θ3I)A

T = 0  
 

Postrnultiplication by A and noting that ATA = I give 

 

 (3.47) 

 

This equation is similar to the characteristic equation for λ, cf. (3.28) and the 

result is thus often stated by saying that 

 

The strain matrix  satisfies its own characteristic equation  

 

This important result is the Cayley-Hamilton theorem. Note that (3.47) is a 

matrix equation. 

(−ε 3 +θ1ε
2 −θ2ε +θ3I) n1 n2 n3⎡

⎣
⎤
⎦ = 0

−ε 3 +θ1ε
2 −θ2ε +θ3I = 0
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A significant implication of (3.47) is that an expression involving the term ε3 can 

always be simplified so that it only involves teams of ε2, and I. More generally, if 

we multiply (3.47) by εα, where α is any integer (positive, negative or zero), we 

obtain 

ε 3+α =θ1ε
2+α −θ2ε

1+α +θ3ε
α  

 

If α≥0 this means that any ε3+α term can be replaced by lower order powers of ε. 

If α≤0 (which presumes that ε-1 exists), then any εα term can be replaced by 

higher order powers of ε.  

 

 

 
 
 
 

Instead of the full strain tensor, it is often convenient to operate with the so called 

deviatoric strain tensor eij defined by 

 

 (3.48) 

 

where 1/3εkkδij is the volumetric or spherical strain tensor, which only involves 

diagonal terms. As both εij and δij are second-order tensors, it follows directly  

that so is eij. Therefore, by analogy with (3.20) and (3.21) we have 

 

e 'ij = AikeklAjl        or         e' = AeAT  

 and 

 

eij = Aike 'kl Ajl        or         e = Ae'AT  

 

eij = ε ij −
1
3
εkkδ ij

 3.10 Deviatoric strains 
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Moreover, we observe from definition (3.48) that 

 

 

 

 (3.49) eii = 0
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In a principal coordinate system the principal strains become ε1, ε2 and ε3. 

Referring to (3.11), this means that the relative volume change due to the 

deformation becomes 

 

dV *−dV
dV

= (1+ ε1)dx1(1+ ε2 )dx2 (1+ ε3)dx3 − dx1dx2dx3
dx1dx2dx3

 

where dV is the infinitesimal volume before deformation, which owing to the 

deformation changes to dV*.  In accordance with our assumption of small strains, 

we ignore higher order strain terms and the expression above becomes 

 

 (3.50) 

 

We conclude that εkk is equal to the relative volume change, i.e. an 

incompressible material is characterized by εkk =0. Moreover, it may be recalled 

that εkk is an invariant. 

Referring to (3.48), it appears that the off-diagonal terms of eij and εij are 

identical. Consequently, it can be concluded that the volumetric strain tensor 

only influences the volumetric changes whereas the deviatoric strain tensor only 

influences the shearing (distortion) of the material. 

Retuning to the eigenvalue problem (3.25), we may eliminate εij by means of 

(3.48) to obtain 

e − λ − εkk
3

⎛
⎝⎜

⎞
⎠⎟ I

⎡
⎣⎢

⎤
⎦⎥
n = 0  

 

It is concluded that the eigenvalues eij are given by λ-εkk/3  whereas the 

eigenvectors, i.e. the principal directions, are identical for the deviatoric strain 

tensor and the strain tensor. The fact that the principal directions of eij and εij  are 

dV *−dV
dV

= ε1 + ε2 + ε3 = εkk
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identical follows also directly from the observation that they have identical off-

diagonal terms, i.e. when εij is diagonal, so is  eij. 

 

 

 
 
 
 

We have seen quite a number of different invariants and it might be convenient 

to summarize these invariants and make use of the opportunity to introduce 

additional invariants which later turn out to be of importance. The Cauchy 

invariants are given by (3.29)  

 

 (3.51) 

 

In general, to prove that a quantity is an invariant, we must demonstrate that it 

takes the same value in all coordinate systems. As a prototype of such an 

evaluation we consider 

 

ε 'ij ε 'ij = AikεklAjlAisε stAjt = δ ksεklε stδ lt = ε slε sl  

 

where advantage is taken of the transformation rule (3.20). This demonstrates 

that the quantity εijεij is an invariant. Likewise, it is easily shown that εii and 

εijεjkεki  are invariants. We can therefore list the following so-called generic 

invariants, where the term generic reflects the systematic manner of their 

definition 

θ1 = ε ii;         θ2 =
1
2
θ 2
1 −
1
2
ε ijε ji;         θ3 = det(ε ij ) = ε1ε2ε3

 3.11 Important strain invariants 
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Occasionally, it is convenient to express these invariants in matrix notation and 

for that purpose, we define the trace of a 3 x 3 square matrix B by 

 

trB = Bii  

i.e. 
 

!I1 = trε  

 
Define the quantity Bij by 
 

Bij = ε ikεkj        or        B = εε = ε 2  
 

i.e. trB=Bii=εikεkj and we therefore obtain 
 

!I2 =
1
2
tr(ε 2 )          and  likewise         !I3 =

1
3
tr(ε 3)  

 
It turns out that it is possible to obtain a unique relation between the Cauchy-

invariants θ1, θ2 and θ3 and the generic invariants 𝐼!, 𝐼! and 𝐼!. We have 

 

 (3.53) 

 

The inverse relations of (3.53) provide the following expressions 

 

!I1 =θ1;          !I2 =
1
2
θ 2
1 −θ2;          !I3 =

1
3
θ 31 −θ1θ2 +θ3;

 

(3.52) 

!I1 = ε ii = ε1 + ε2 + ε3
!I2 =

1
2
ε ijε ji =

1
2
(ε 21 + ε

2
2 + ε

2
3)

!I3 =
1
3
ε ijε jkεki =

1
3
(ε 31 + ε

3
2 + ε

3
3)
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θ1 = !I1;          θ2 =
1
2
!I 21 − !I2;          θ3 = !I3 +

1
6
!I 31 − !I1 !I2;  

 

 

It appears that a unique relation exists between θ1, θ2, θ3 and 𝐼!, 𝐼!, 𝐼!.  

Now, let us turn to the generic invariants of the deviatoric strain tensor defined 

by analogy with (3.52). We have 

 

 (3.54) 

 

To prove the last relation that 𝐽! = 𝑒!𝑒!𝑒!, we first observe that 
 

(e2 + e3)
3 = e32 + e

3
3 + 3e2e3(e2 + e3)  
 

and since e2 + e3 =- e1, we obtain 
 
 

−e31 = e
3
2 + e

3
3 − 3e1e2e3  

 
From the definition of 𝐽! =

!
!
(𝑒!! + 𝑒!! + 𝑒!!), it then follows that 

 
!J3 = e1e2e3  

 
which was to be proved. Moreover, using the definition of the deviatoric strain 

tensor as given by (3.48) in (3.54), we obtain 

 

 (3.55) 

 
 

!J1 = eii = tr(e) = e1 + e2 + e3
!J2 =

1
2
eijeji =

1
2
tr(e2 ) = 1

2
(e21 + e

2
2 + e

2
3)

!J3 =
1
3
eijejkeki =

1
3
tr(e3) = 1

3
(e31 + e

3
2 + e

3
3) = e1e2e3

!J2 = !I2 −
1
6
!I 21;                 !J3 = !I3 −

2
3
!I1 !I2 +

2
27
!I 31
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and the inverse relations become 
 

 (3.56) 

 

Therefore, instead of using the set of invariants  𝐼!, 𝐼!, 𝐼! we may equally well 

use the set and 𝐼!, 𝐽!, 𝐽!. 

An octahedral plane is defined as a plane where the normal to that plane makes 

equal angles to the three principal strain directions. Eight such planes exist and 

one example is shown in Fig. 3.5 where the axes 1,2 and 3 refer to the principal 

strain directors. 

 

 
Figure 3.5: octahedral plane 

 

For the normal to the octahedral plane shown in Fig. 3.5, we have 
 

n = 1
3

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
In the coordinate system collinear with the principal strain directions, the strain 

tensor takes the form 

!I2 = !J2 +
1
6
!I 21;                 !I3 = !J3 +

2
3
!I1 !J2 +

2
27
!I 31
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ε =
ε1 0 0
0 ε2 0
0 0 ε3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

The vector q is defined by q=εn cf. (3.22). It then follows from Fig. 3.4 that the 

normal strain ε0 and tensorial shear strain γ0/2 on the octahedral plane are given 

by 

ε0 = nTq;                γ 0
2

= qTq − ε 20  

where ε0 is called the octahedral normal strain and γ0 is called the octahedral 

shear strain. It follows that 

ε0 =
1
3
!I1;                 

γ 0
2

= 1
3
(ε1

2 + ε2
2 + ε3

2 )− 1
9
!I1
2  

 

According to (3.48), we have 

 

ε1 = e1 +
1
3
!I1;           ε2 = e2 +

1
3
!I1;           ε3 = e3 +

1
3
!I1;  

 
i.e. 
 

γ 0
2

= 1
3
[e1

2 + e2
2 + e3

2 + 1
3
!I1
2 + 2
3
(e1 + e2 + e3) !I1]−

1
9
!I1
2  

 
Due to (3.49) and (3.54), we conclude that 
 

 (3.57) 

 
It is easily shown that these relations hold not only for the octahedral plane 

shown in Fig. 3.5, but also for all the other octahedral planes. Finally, it is 

emphasized that γ0 is the engineering shear strain as already suggested by the 

notation. 

ε0 =
1
3
!I1;                   γ 0 = 2

2
3
!J2
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Several special states of strain, which are often encountered in practice, will now 

be discussed. 

A state of uniform dilatation occurs, if the strain tensor is given by 

 

ε ij = bδ ij  

  

where b is an arbitrary scalar. It appears from (3.48) that the deviatoric strain 

tensor eij becomes eij = 0 and according to the discussion of (3.50), the strain 

state corresponds to a uniform dilatation, i.e. a volume change, where the 

extension - or contraction - in any direction is the same and equal to the 

parameter b. 

Uniaxial strain occurs if the displacement vector ui is given by 

 

ui[ ] =
u1(x1, t)
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 

which implies that ε!! = ∂𝑢!/ ∂𝑥!  and all other strain components being zero, 

cf. Fig.3.6. 

 3.12 Special states of strain 
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Figure 3.6: uniaxial strain 

 
 
 
Plane strain or plane deformation occurs if the displacement vector ui is given by

ui[ ] =
u1(x1, x2, t)
u2 (x1, x2, t)

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 

which implies 

 

 (3.58) 

 

This strain state occurs often in practice when a long prismatic or cylindrical 

body is loaded by forces which are perpendicular to the longitudinal elements 

and which do not vary along the length. In this case, it can be assumed that all 

cross sections are in the same state and if, moreover, the body is restricted from 

moving in the length direction, a state of plane strain exists. An example is an 

internally pressurized tube with end sections confined between smooth and rigid 

walls, Fig. 3.7. 

ε ij =
ε11 ε12 0
ε21 ε22 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Figure 3.7: example of plane strain. Pressurizes tube with end sections confined between smooth and 
rigid walls. 

 

 
So-called generalized plane strain or generalized plane deformation occurs if 

ui[ ] =
u1(x1, x2, t)
u2 (x1, x2, t)
u3(x1, x2, t)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

which leads to 

 

ε ij =
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 



3. Strain Tensor 

 72 

 
 

 
Figure 3.8: simple shear 

 
 
 

Finally, a state of simple shear exists if 
 
 

ε ij =
0 ε12 0
ε21 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
corresponding to u1 =u1 (x2 , t) and u2 = u3 = 0, as illustrated in Fig. 3.8. It appears 

that for simple shear, we have εii = 0, i.e. no volume change and it is easily 

shown that the principal strains become ε1 = ε12, ε2 =- ε12 and ε3 = 0. 
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Before we proceed discussing the characteristics of the uniaxial behavior of a 

material and subsequently generalizing these concepts to a combined state of 

stress, an analysis of the state of combined stresses is introduced to provide the 

necessary background for the subsequent study. 

 
 
 
 

Stress is defined as the intensity of internal forces acting between particles of a 

body across imaginary internal surfaces. Consider a body, which is supposed to 

be continuous and two kinds of forces are assumed: body forces (i.e. force per 

unit volume) and surface forces (i.e. force per unit area). 

 4 Stress Tensor 

 4.1 Stress at a Point and the Stress Tensor 
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Figure 4.1: force ΔP on area ΔA with outer unit normal vector 

 

Consider a surface of the body as shown in Fig. 4.1. This surface can be an 

external surface or an internal surface obtained by a section of the body. The 

vector n is a unit vector normal to the surface and directed out of the body. The 

incremental force vector ΔP acts on the incremental surface area ΔA. When ΔA 

approaches zero, it is assumed that the ratio ΔP/ΔA approaches a value t, 

i.e. 

lim
ΔΑ→0

ΔP
ΔA

= t                    t=
t1
t2
t3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

The vector t, with components t1, t2 and t3 in the x1, x2 and x3 directions 

respectively, is termed the traction vector and has the unit [N/m2]. 

The traction vector t defined above is related to a surface with the outer unit 

normal vector n. It is obvious that the traction vector will, in general, be different 

when other sections through the same point are considered. What we are looking 

for is a quantity - the stress tensor - which for a particular point, contains all the 

information necessary to determine the traction vector for arbitrary sections 

through that point. 
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Figure 4.2: stress components 

 

 
Let us first consider some special traction vectors, namely those obtained when 

sections perpendicular to the coordinate axes are considered. Assume that the 

outer normal vector n (see Fig. 4.1) is taken in the direction of the x1 axis. The 

corresponding traction vector is denoted by t1 and we can resolve this vector into 

its components along the coordinate axes, i.e. 

 

 (4.1) 

 

where σ11, σ12 and σ13 denote the components of tl  in the x1, x2 and x3 directions 

respectively. These components are illustrated in Fig. 4.2a. 

Likewise, if the outer normal unit vector n is taken in the direction of the x2 axis, 

we denote the corresponding traction vector by t2, i.e.  

 

 (4.2) 

 

where σ21, σ22 and σ23 denote the components of t2 in the x1, x2 and x3 directions 

respectively, cf. Fig. 4.2b. Finally, if the outer normal unit vector n is taken in 

the direction of the x3-axis, we denote the corresponding traction vector by t3, i.e. 

t1
T = σ11 σ12 σ13

⎡
⎣

⎤
⎦

t2
T = σ 21 σ 22 σ 23

⎡
⎣

⎤
⎦
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 (4.3) 

 

where σ31, σ32 and σ33 denote the components of t3 in the x1, x2 and x3 directions 

respectively, cf. Fig. 4.2c. 

The components given by (4.1)-(4.3) are termed the stress components and σ11, 

σ22 and σ13 are called normal stresses, whereas σ12, σ13, σ21, σ23, σ31 and σ32 are 

referred to as shear stresses. We observe the consistent notation of the stress 

components where, for instance, σ23 is the x3 component of the traction vector for 

a surface with the outer unit vector in the x2 direction. Likewise, σ1 is the x2 

component of the traction vector for a surface with the outer unit vector in the xl 

direction. 

Using the special traction vectors considered above, we define the quantity σij by 

 

 (4.4) 

 
We shall later prove that σij is a second-order tensor and σij is therefore called the 

stress tensor. 

 
Figure 4.3: moment about an axis through the center E and parallel to the x3 axis 

 

t3
T = σ 31 σ 32 σ 33

⎡
⎣

⎤
⎦

σ ij⎡⎣ ⎤⎦ =

t1
T

t2
T

t3
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
σ11 σ12 σ13

σ 21 σ 22 σ 23

σ13 σ 23 σ 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Let us first prove that σij is symmetric. From the body we cut a small 

parallelepiped with planes parallel to the coordinate planes. We then consider the 

moment equilibrium about an axis through the center E of this parallelepiped and 

parallel to the x3 axis, cf. Fig. 4.3. It appears that body forces do not provide a 

moment about this axis. It is also obvious that only forces acting on planes 

parallel to the moment axis can contribute to the moment equilibrium. 

On these planes, only shear stresses normal to the moment axis can give rise to 

the moments, see Fig. 4.3. 

Referring to this figure, the positive direction of the shear stresses along BC and 

DC is in accordance with the previous interpretation of the stress components, cf. 

Fig. 3.2. The positive direction of the shear stresses along AB and AD follows 

from the law of action and reaction. Taking moments as positive in the counter-

clockwise direction, moment equilibrium about point E yields 

(σ12 + Δσ12 )Δx2Δx3
1
2
Δx1 − (σ 21 + Δσ 21)Δx1Δx3

1
2
Δx2

+σ12Δx2Δx3
1
2
Δx1 −σ 21Δx1Δx3

1
2
Δx2 = 0

 

i.e. 
 

2σ12 − 2σ 21 + Δσ12 − Δσ 21 = 0  
 

Letting Δx1, Δx2 and Δx3 approach zero, both Δσ12 and Δσ21 also approach zero; 

that is, moment equilibrium requires that σ12=σ21. Likewise, considering moment 

equilibrium about axes parallel to the x1 and x2 axes implies that σ23=σ32 and 

σ13=σ31 respectively. In conclusion, we have proved that σij is symmetric, i.e. 

 

σ ij =σ ji           or           σ=σT  

Our aim was to establish a quantity which contains all the information necessary 

to determine the traction vector t for arbitrary sections through the point in 

question. We shall now prove that the stress tensor σij contains this information. 

Consider the small tetrahedron shown in Fig. 4.4a). At the surface ABC with the 
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outer unit normal vector n, we have the traction vector t. On the planes parallel to 

the coordinate planes, the traction vectors are t1, t2 and t3, cf. (4.1)-(4.3) (minus 

signs appear because of the law of action and reaction and because the outer 

normal vectors are in the negative direction of the coordinate axes). The area 

ABC is denoted by ΔA, the area AOC by ΔA1, the area AOB by ΔA2 and the area 

BOC by ΔA3. In Fig. 4.4b) the line CP is orthogonal to the line AB. As n is 

perpendicular to the surface ABC, it is also perpendicular to the lines CP and AB. 

The vector n is therefore located in the plane OCP. The components of the unit 

vector ni are given by ni = (n1, n2, n3) and by definition we have n2 = cosθ where 

θ is the angle shown in Fig. 4.4b). From Fig. 4.4b) follows that 

 

ΔA2 =
1
2
OP ⋅ AB ;                  OP = CP cosϑ = CP n2  

 

i.e. 
 

ΔA2 =
1
2
CP ⋅ AB n2 = n2ΔA  

 

 
Figure 4.4: a) traction vectors on a tetrahedron: t acts on ABC, -t1 on AOC, -t2 on AOB and –t3 on BOC ; 

b) determination of ΔA by geometrical arguments. Vector n is located in the plane OCP 

 
By analogous arguments we find that 
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 (4.5) 

 
The condition of force equilibrium of the tetrahedron of Fig. 4.4a) requires that 
 

 (4.6) 

 

where b is the body force per unit volume and ΔV is the volume of the small 

tetrahedron. The body force b has the components   

 

bT = b1 b2 b3⎡
⎣

⎤
⎦  

Use of (4.5) in (4.6) gives 
 

t − t1n1 − t2n2 − t3n3 + b
ΔV
ΔA

= 0  

 
Letting the size of the tetrahedron shrink towards zero, we have ΔV/ΔA → 0 

(volume has the unit m3 and area has the unit m2) and we then obtain 

 

t = t1n1 + t2n2 + t3n3  

 

which may be written as 

t= t1 t2 t3⎡
⎣

⎤
⎦

n1
n2
n3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= σ Tn  

where (4.4) was used. Due to the symmetry of σ we arrive at 

 

 (4.7) 

 

 

ΔA1 = n1ΔA;           ΔA2 = n2ΔA;           ΔA3 = n3ΔA;

tΔA − t1ΔA1−t2ΔA 2−t3ΔA 3+bΔV = 0

ti =σ ijnij          or         t=σn
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This expression proves that knowledge of the stress tensor a provides sufficient 

information for the traction vector t to be derived for any direction n. It should be 

observed that on the exterior surface of the body, (4.7) represents a boundary 

condition expressing a relation between the forces acting on the external surface 

and the stress tensor. Equation (4.7) was derived by Cauchy in 1822 and it is 

therefore occasionally referred to as Cauchy’s formula, the stress tensor is called 

the Cauchy stress tensor. When considering large deformations, it turns out that a 

number of different stress tensors exist, but for small strains and rotations they all 

reduce to the Cauchy stress tensor. 

Moreover, since ti and ni are first-order tensors (vectors), it follows from the 

quotient theorem that σij is a second-order tensor. 

 

 

 

 

 

If we instead of the xi-coordinate system change to a x’i-coordinate system, we 

have as usual that 

 

x 'i = Aij (x j − cj )         or           x'=A(x-c)  

 

where Aij is the transformation matrix and where ATA = I. 

Since σij is known to be a second-order tensor, we can directly write the 

following relations between the components σij in the xi-system and the 

components σ’ij in the x’i-system. 

 

 4.2 Change of coordinate system 
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 (4.8) 

 

and 

 

 (4.9) 

 

 

 

 

 

The traction vector t on a surface with the outer normal unit vector n is given by 

(4.7). The traction vector t can be resolved into a component parallel to n and a 

component perpendicular to n. The component parallel to n is called the normal 

stress in direction n and denoted by σn. From (4.7) we obtain 

 

 (4.10) 

 

 
Figure 4.5: illustration of normal stress σn and shear stress τn 

σ 'ij = Aikσ klAjl             or             σ'=AσAT

σ ij = Akiσ 'kl Ajl             or             σ =Aσ 'AT

σ n = niti = niσ ijn j           or            σ n = n
Tt = nTσn

 4.3 Principal stresses and principal directions - Invariants 
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The component of t perpendicular to n is called the shear stress and is denoted by 

τn. Both σn and τn are illustrated in Fig. 4.5, where the unit vector m is 

perpendicular to n and located in the plane ABCD. It readily appears that 

 

 (4.11) 

 

Alternatively we may write 

τ n
2 = titi −σ n

2  

 

With these preliminary results, we may obtain a physical interpretation of the 

important eigenvalue problem of the stress tensor and with the solution of the 

eigenvalue problem, we arrive at the stress invariants. Moreover, it turns out that 

for a special choice of coordinate system, the stress tensor takes a particularly 

simple form. 

Returning to Fig. 4.5, we look for a situation where the traction vector t is 

collinear with the unit vector n. From Fig. 4.5, the direction n should be chosen 

so that 

 

 (4.12) 

 

where λ is some factor and (4.10) implies that λ=σn. Since ni and mi are 

orthogonal, (4.11) gives in the present situation that the shear stress τn=0. 

Insertion of (4.7) into (4.12) yields 

 

 (4.13) 

 

τ n = miti = miσ ijn j              or              τ n =m
Tt =mTσn

ti = λni

(σ ij − λδ ij )nj = 0             or                σ -λI( )n = 0
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This constitutes an eigenvalue problem and a comparison with (3.25) shows a 

complete analogy. Therefore all the conclusions that were delved for the strain 

tensor apply also for the stress tensor. That is, the characteristic equation 

 

det σ -λI( ) = 0  

 

determines the three principal stresses σ1=λ1, σ2=λ2 and σ3=λ3 and for each λ-

value (4.13) provides the corresponding principal direction n. The principal 

stresses and directions are real, the principal stresses are invariants and the 

principal directions may always be taken to be orthogonal. If the coordinate 

system is taken collinear with the principal directions nl, n2 and n3, the stress 

tensor takes the following simple form 

 

σ ' = AσAT =
σ1 0 0
0 σ 2 0
0 0 σ 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

     where      AT = n1 n2 n3
⎡
⎣

⎤
⎦  

 

Also the stress tensor satisfies the Cayley-Hamilton theorem. Moreover, the 

coefficients in the characteristic equation are the Cauchy-stress invariants, but of 

more importance are the following generic stress invariants 

 

 (4.14) I1 =σ ii          I2 =
1
2
σ ijσ ji          I3 =

1
3
σ ijσ jkσ ki
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where the term ‘generic’ refers to the systematic definition of these invariants 

(we may refer to (3.52) for a comparison with the corresponding strain 

invariants).

 

 

 

 

 

Similarly to the exposition of the strain tensor, we define the stress deviator 

tensor by  

 

 (4.15) 

 

where σkk/3 is called the hydrostatic stress. The σij and sij tensors have identical 

off-diagonal elements and thus they have identical principal directions. 

The generic invariants of the stress deviator tensor are given by 

 

 (4.16) 

 

Similar to (3.54) we have 

 

 (4.17) 

 

Moreover, similar to (3.55) and (3.56) we find the following relations 

 

sij =σ ij −
1
3
σ kkδ ij

J1 = sii = 0;           J2 =
1
2
sijs ji;           J3 =

1
3
sijs jkski;

J3 = s1s2s3

 4.4 Stress deviator tensor 
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 (4.18) 

 

and 

 

 (4.19) 

 

Therefore, instead of using the set of invariants I1, I2 and I3 we may equally well 

use the set I1, J2 and J3. 

Finally, and in analogy with (3.57), we have the octahedral normal stress σ0 and 

octahedral shear stress τ0 defined by 

 

 (4.20) 

 

where σ0 and τ0 are the normal stress shear and stress respectively, that act on an 

octahedral plane. Here, the normal to an octahedral plane makes equal angles to 

the principal stress directions, when comparing (4.20) with (3.57) note the 

difference between engineering shear strain and tensorial shear strain. 

 

 

 

 

 

 

Several special states of stress, which are often encountered in practice, will now 

be discussed. 

J2 = I2 −
1
6

I21;                     J3 = I3 −
2
3

I1I2 +
2
27

I31

I2 = J2 +
1
6

I21;                     I3 = J3 +
2
3

I1I2 −
2
27

I31

σ 0 =
1
3

I1;                    τ 0 =
2
3

J2

 4.5 Special states of stress 
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Figure 4.6: hydrostatic state of stress 

 

A state of hydrostatic stress exists, if the stress tensor is given by 

σ ij = bδ ij  

where b is an arbitrary scalar. It appears that the deviatoric stress tensor sij is zero 

and that the loading consists of equal normal stresses having the amount b, cf. 

Fig. 4.6. 

Uniaxial stress occurs if the stress tensor is given by 

 

σ ij =
σ11 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

Plane stress exists if the stress tensor is given by 
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σ ij =
σ11 σ12 0
σ 21 σ 22 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 
Figure 4.7: plane stress 

 
 
and a disc loaded by in-plane stresses comprises an illustration of this type of 

loading, cf. Fig. 4.7. 

Finally, a state of pure shear exists, if 

σ ij =
0 σ12 0
σ 21 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

which holds for pure torsion of a cylindrical specimen. It is easily shown that the 

principal stresses become σ1 = σ12, σ2 = -σ12 and σ3 = 0. 

 

It is evident that the yield surface may be interpreted as a surface in the Cartesian 

coordinate system with axes σ1, σ2 and σ3 - the so-called Heigh-Westergaard 

coordinate system. Moreover, with this interpretation it will turn out that it is 

 4.6 Heigh-Westergaard coordinate system - Geometrical interpretation of 
stress invariants 
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possible to identify certain geometrical quantities related to the stress invariants 

I1, J2 and cos3θ.  

For this purpose, consider an arbitrary point P with coordinates (σ1, σ2, σ3) in the 

Haigh-Westergaard coordinate system, cf. Fig.4.8a). In this stress space, we may 

identify the unit vector ni along the space diagonal. This vector is given by 

 

 (4.21) 

 

If the stress point is located along the space diagonal, all principal stresses are 

equal and the space diagonal is therefore called the hydrostatic axis. 

 
Figure 4.8: a) Haigh-Westergaard coordinate system; b) deviatoric plane perpendicular to the 

hydrostatic axis and containing line NP 

 

For any stress point P we may locate a plane which is perpendicular to the 

hydrostatic axis and which contains the point P. This plane is called the 

deviatoric plane and it contains the line PN in Fig. 4.8a). When viewed in the 

direction of the hydrostatic axis, the projections of the σ1, σ2 and σ3 axes on the 

deviatoric plane are shown in Fig. 4.8b). The particular deviatoric plane that 

contains the origin O of the stress space is occasionally called the π-plane. 

n1 =
1
3
(1,  1,  1)
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The position of the arbitrary stress point P is given by the Cartesian coordinates 

(σ1, σ2, σ3). However, instead of these coordinates, we may equally well use the 

coordinates (ξ, ρ, θ) illustrated in Fig. 4.8. The coordinate ξ is then the distance 

from the origin O to the point N and ξ is a positive or negative quantity, if the 

vector ON has the same or opposite direction as the unit vector ni respectively. 

The coordinate ρ denotes the distance |NP| in the deviatoric plane of the point P 

to the hydrostatic axis. Finally, θ is the angle in the deviatoric plane between the 

projection of the σ1-axis on the deviatoric plane and the line NP. It appears that ρ 

and θ are the polar coordinates of point P in the deviatoric plane. 

With this qualitative description, we will now derive explicit expressions for the 

coordinates (ξ, ρ, θ). From Fig. 4.8a) and (4.21), the coordinate ξ is given by 

 

ξ = nTOP = 1
3

1 1 1⎡
⎣

⎤
⎦

σ1

σ 2

σ 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

i.e. 

 

 (4.22) 

 

It follows that the vector ON = ξn is given by 
 

ON = I1
3

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 

The vector NP in the deviatoric plane then becomes 

 

ξ = I1
3
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 (4.23) 

 

where s1, s2 and s3 are the principal deviatoric stresses. We recall that NP is 

located in the deviatoric plane and since NP is given entirely in terms of the 

deviatoric stresses, this suggests the notation of the deviatoric plane. The length 

ρ=|NP| of the vector 𝑁𝑃 is given by 𝜌! = 𝑁𝑃!𝑁𝑃 = 𝑠!! + 𝑠!! + 𝑠!! i.e. 

 

 (4.24) 

 

It should be observed that, by definition, both ρ and J2 are non-negative 

quantities. With (4.22) and (4.24), we have seen that the coordinates ξ and ρ can 

be expressed in terms of stress invariants. To obtain an expression for the angle 

θ, cf. Fig. 3.8b), some further manipulations are necessary. 

Referring to Fig. 4.8b), the unit vector mi located in the deviatoric plane and 

directed along the projection of the σ1-axis on the deviatoric plane must have the 

form 

 

mi = (a,−b,−b)  

 

where a > 0 and b > 0. Since mi is orthogonal to the hydrostatic axis we have 

mini=0, cf. Fig. 4.8, and this leads to b = a/2. Moreover, as mi is a unit vector, we 

conclude that 

 

 (4.25) 

 

NP =OP −ON =
σ1

σ 2

σ 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− I1
3

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

s1
s2
s3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ρ = 2J2

mi =
1
6
2,−1,−1( )
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The angle θ is measured from the mi -vector in the counter-clockwise direction 

towards the vector NP, i.e. we obtain with (4.23) and (4.25) 

 

ρ cosθ =mT NP = 1
6

2 −1 −1⎡
⎣

⎤
⎦

s1
s2
s3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 2s1 − s2 − s3
6

 

 

With ρ given by the above equation and since s2+s3=-s1 we obtain 
 

 (4.26) 

 
 Use of the trigonometric identity cos3θ = 4cos3θ-3cosθ then results in 

 

 (4.27) 

 
To obtain a more convenient expression for cos3θ, we shall perform some 

algebraic manipulations. From the definition of J2, and since s2+s3=-s1 we find 

 

 (4.28) 

 

We next note that the invariant J3 also can be written as 

 

J3 = s1s2s3  

 

Finally use of this expression and (4.28) in (4.27) provides the result 

cosθ = 3
2

s1
J2

cos3θ = 3 3
2J 3/22

s1(s
2
1 − J2 )

s1
2 − J2 =

1
2
s1
2 − s2

2 − s3
2( ) = 12 s2

2 + s3
2( )− s22 − s32⎡⎣ ⎤⎦ = s2s3
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 (4.29) 

 

i.e. we have established the relation and we have expressed the angle θ in terms 

of stress invariants. The angle θ is often called the Lode angle after Lode (1926). 

Clearly, the angle θ is also given by (4.26), but the advantage of (4.29) is that 

here θ is expressed in terms of the stress invariants and not the principal stresses. 

This implies that the eigenvalue problem does not have to be solved as the stress 

invariants are obtained directly from the stress tensor. 

Let us return to the formulation  

 

 (4.30) 

 

It appears that we have established a very convenient formulation where all the 

stress invariants can be interpreted geometrically. Moreover, formulation (4.29) 

separates the influence of the hydrostatic stress I1 from the influence of the 

deviatoric stresses as expressed by J2 and cos3θ. Whereas the invariant J2 tells us 

about the influence of the magnitude of the deviatoric stresses, cf. (4.24), the 

invariant cos3θ informs us about the influence of the direction of the deviatoric 

stresses. In addition, the presence of the term cos3θ enables us to derive a 

number of symmetry properties of the failure or initial yield criterion. 

A state of stress (σ1, σ2, σ3) can be expressed by (ξ, ρ, θ) where the relation 

between the two coordinate systems can be established in the following manner. 

From (4.26), we know 

 

s1 =
2
3

J2 cosθ  (4.31) 

 

cos3θ = 3 3
2

J3
J 3/22

F(I1, J2, cos3θ )
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In a similar manner the deviatoric stress components s2 and s3  can also be 

obtained in terms of the angle θ. These components are given by  

 

s2 =
2
3

J2 cos
2π
3

−θ⎛
⎝⎜

⎞
⎠⎟

 (4.32) 

 

and 

 

s2 =
2
3

J2 cos
2π
3

+θ⎛
⎝⎜

⎞
⎠⎟

 (4.33) 

 

These relations are satisfied only if the angle lies in the range  

 

0 ≤θ ≤ π
3

 (4.34) 

 

The three principal stresses of σij  are therefore given by  

 

σ1

σ 2

σ 3

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

p
p
p

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
+ 2

3
J2

cosθ
cos(θ − 2π / 3)
cos(θ + 2π / 3)

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

= 1
3

ξ
ξ
ξ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
+ 2

3
ρ

cosθ
cos(θ − 2π / 3)
cos(θ + 2π / 3)

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 (4.35) 
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In the previous chapter the concepts of 

strain and stress were established, with no reference to the material and within 

the assumption of small strains and small rotations, it was said that the results 

hold for any material. It is obvious however that stresses and strains must be 

related in some way and this specific relation is controlled by the specific 

material in question. The expression between stresses and strains is the 

constitutive relation and a variety of such relations has been established 

Examples are: elasticity, plasticity, viscoelasticity and viscoplasticity. In this 

chapter it will be considered the simplest constitutive model: the linear elasticity. 

 

 

 

 

In the absence of thermal, electromagnetic and chemical effects experimental 

evidence indicates that, within a certain allowable limit of deformation, most 

materials encountered in our daily life exhibit the following properties: 

1.  If it is not under the influence of any external disturbance, a body of material 

is free of any internal stress and can remain in this "unstressed" or "natural" state 

indefinitely. 

 5 Linear Elasticity 

 5.1 Elasticity 
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2.  When subject to external loads, the state of stress at each point in the body 

depends only on the state of strain at the same point and conversely. 

3.  The body returns to the unstressed state once the external loads are removed. 

 

We call such a body an elastic body and the properties l.-3. elasticity. 

For many materials at the working load level, the elastic range also includes a 

region throughout which stress and strain have a linear relationship.  

To indicate other possible modes of behavior, we note for instance that the stress 

state at a point of a body may depend on the time history of the strain state at that 

same point (viscoelasticity) or on the strain state of all points in some 

neighborhood of the given point (nonlocal theory). We are interested only in 

elastic bodies in this chapter 

 

 

 

 

 

The simplest mechanical test consists of placing a standardized specimen with its 

ends in the grips of a tensile testing machine and then applying load under 

controlled conditions. Uniaxial loading conditions are thus approximately 

obtained. A force balance on a small element of the specimen yields the 

longitudinal (true) stress as  

 (5.1) 

 

σ = F
A

 5.2 Introduction to linear elasticity 
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where F is the applied force and A is the (instantaneous) cross sectional area of 

the specimen. Alternatively if the initial cross sectional area A0 is used one obtain 

the engineering stress: 

 

 (5.2) 

 

For loading in the elastic regime, for most engineering materials σe ≈σ. 

Likewise, the true strain is defined as 

 

 (5.3) 

 

while the engineering strain is given by 

 

 (5.4) 

 

Again, for loading in the elastic regime, for most engineering materials εe ≈ε. 

Linear elastic behavior in the tension test is well described by Hooke’s law, 

namely 

 

 (5.5) 

 

where E is the modulus of elasticity or Young’s modulus. For most materials, 

this is a large number of the order of 1011 Pa. 

σ e =
F
A0

ε = dl
ll0

l

∫ = ln l
l0

⎛
⎝⎜

⎞
⎠⎟

ε = dl
l0l0

l

∫ = l − l0
l0

σ = Eε
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For sufficiently "small" external loads, experimental results indicate that strain 

components of an elastic medium will be small compared to unity and that the 

elastic stress strain relations are effectively linear.  We will be interested in these 

notes only in this particular range of elasticity.  In this range, the stress strain 

relations are essentially a generalization of Hooke's original observation and are 

often referred to as generalized Hooke's law, and the body is said to be linearly 

elastic. The most general form of the linear stress strain relations may then be 

written as 

 

 (5.6) 

 

where  σij  and εkl are respectively the stress and strain tensor components and 

both are second order tensors. The quantity Eijkl is the fourth order tensor of 

elastic constants and it characterizes the elastic properties of the material. Since 

the stress and strain tensors are symmetric, the elastic constants tensor consists of 

36 components. This may be further reduced to 21 elastic constants if we invoke 

major symmetry of the elasticity tensor i.e. 

 

 (5.7) 

 

This number of constant is further reduced in special cases. For instance for 

isotropic materials (elastic properties the same in all directions) the number of 

elastic constants is 2. For orthotropic materials (characterized by three mutually 

perpendicular planes of symmetry) the number of constants is 9. If the material 

σ = E : ε            or            σ ij = Eijklεkl

E = ET        or         Eijkl = Eklij      with      Eijkl = Eijlk      and       Eijkl = Ejilk

 5.3 Generalized Hooke' s Law 



5. Linear Elasticity 

 98 

exhibits symmetry with respect to only one plane, the number of constants is 13. 

An elastic body is homogeneous if the elastic moduli Eijkl are constants 

throughout the body.  It is inhomogeneous otherwise.  

 

 

 
 
 
 

 
For an isotropic material, the elastic constants in eq. (5.7) must be the same in all 

directions. Thus tensor Eijkl must be an isotropic fourth order tensor. It can be 

shown that the most general form for the isotropic tensor Eijkl is given by 

 

 5.4 Isotropic linear elastic stress-strain relations 



5. Linear Elasticity 

 99 

 (5.8) 

 

where 1=[δij] stands for the second order unit tensor. The three parameters 

expression may be recast in terms of symmetric and skew symmetric fourth order 

tensors components as 

 

 (5.9) 

 

where the symmetric fourth order unit tensor reads 

 

 (5.10) 

 

and the skewed symmetric one 

 

 (5.11) 

 

Because of the symmetry of stress and strain the skewed symmetric contribution 

is not present, b2=0, thus isotropic linear elasticity the material behavior is fully 

described by two independent elastic constants. The fourth order material 

stiffness tensor reduces to 

 

 (5.12) 

 

 

 
 

E = a01⊗1+ a11⊗1+ a21⊗1             or              Eijkl = a0δ ijδ kl + a1δ ikδ jl + a2δ ilδ jk

E = a01⊗1+ b1I + b2I
skew  

I = 1
2

1⊗1+1⊗1[ ]          or             Iijkl =
1
2

δ ikδ jl +δ ilδ jk⎡⎣ ⎤⎦  

Iskew = 1
2

1⊗1 -1⊗1⎡⎣ ⎤⎦           or             I skewijkl =
1
2

δ ikδ jl −δ ilδ jk⎡⎣ ⎤⎦

E = Λ1⊗1+ 2GI              or              Eijkl = Λδ ijδ kl +G[δ ikδ jl +δ ilδ jk ]
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where the two elastic constants Λ, G are the Lamè constants 
 

 (5.13) 

 
is the cross modulus, and 
 

 (5.14) 

 
denotes the shear modulus, which has a one to one relationship with the modulus 

of elasticity and Poisson’s ratio, E, ν. 

In absence of initial stresses and strains due to environmental effects, the linear 

elastic relation reduces to 

 

 (5.15) 

 

where the trace operator is the sum of the diagonal entities of the second order 

tensor corresponding to double contraction with the identity tensor trε=εkk=1:ε. 

 

 

 

 
 
 
 

Isotropic linear elastic behavior may be described also in a matrix format using 

the engineering definition of shear strain γij =2εij. The elastic stiffness matrix may 

be written for isotropic behavior as 

 

Λ = Eν
1+ν[ ] 1− 2ν[ ]

G = E
2 1+ν[ ]

σ = Λ trε[ ]1+ 2Gε                  or             σ ij = Λεkkδ ij + 2Gε ij

 5.5 Matrix form of elastic stiffness σ=Eε  
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 (5.16) 

 

 

 
 
 
 

In the isotropic case the normal stress σ11 gives rise to three normal strain 

contributions, the direct strain ε11 =1/E σ11 and the normal strains ε22 =-ν/E σ11 

and ε33 =ν/E σ11 because of the cross Poisson’s effect. The additional strain 

contributions due to σ22 and σ33 enter the compliance relation for isotropic 

elasticity in the matrix format 

 

 (5.17) 

 

In the isotropic case the shear response is entirely decoupled from the direct 

response of the normal components. Thus the compliance matrix expands into 

the partitioned form 

 

E =

Λ + 2G Λ Λ
Λ Λ + 2G Λ 0
Λ Λ Λ + 2G

G
0 G

G

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

ε11
ε22
ε33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 1
E

1 −ν −ν
−ν 1 −ν
−ν −ν 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

σ11

σ 22

σ 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 5.6 Matrix for of elastic compliance ε=Cσ 
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 (5.18) 

 

where isotropy entirely decouples the shear response from the normal stress -

strain response. This cross effect of Poisson is illustrated in Figure 5.1, which 

shows the interaction of lateral and axial deformations under axial compression.  

 

 
Figure 5.1: Poisson effect in axial compression 

 

The elastic compliance relation reads in direct and indicial notations 

 

 (5.19) 

 

 

C = 1
E

1 −ν −ν
−ν 1 −ν 0
−ν −ν 1

2[1−ν ]
0 2[1−ν ]

2[1−ν ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

C = − ν
E

1⊗1+ 1
2G

I             or             Cijkl = − ν
E
δ ijδ kl +

1+ν
2E

δ ikδ jl +δ ilδ jk⎡⎣ ⎤⎦
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Using the index notation, we can write the stress-strain relation in a concise form 

 

 (5.20) 

 

 

 

 

 

Decomposing the stress and strain tensors into spherical and deviatoric 

components  

 

 (5.21) 

 

leads to the stress deviator 

 

 (5.22) 

 

and the strain deviator 

 

ε ij =
1+ν
E

σ ij −
ν
E
σ kkδ ij

s = σ −σ vol1          where       σ vol =
1
3
trσ[ ]

e = ε − εvol1          where       εvol =
1
3
trε[ ]

s(x, t) =

1
3
2σ11 −σ 22 −σ 33[ ] σ12 σ12

σ 21
1
3
2σ 22 −σ11 −σ 33[ ] σ 23

σ 31 σ 32
1
3
2σ 33 −σ 22 −σ11[ ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 5.7 Canonical Format of isotropic Elasticity 
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 (5.23) 

 

which have the property trs = 0 and tre = 0. The decomposition decouples the 

volumetric from the distortional response, because of the underlying 

orthogonality of the spherical and deviatoric partitions, s:[σvol 1]=0 and e:[εvol 

1]=0. The decoupled response reduces the elasticity tensor to the scalar form, 

 

 (5.24) 

 

in which the bulk and the shear moduli, 

 

 (5.25) 

 

define the volumetric and the deviatoric material stiffness. 

Consequently, the internal strain energy density expands into the canonical form 

of two decoupled contributions 

 

 (5.26) 

 

 

 
 

e(x, t) =

1
3
2ε11 − ε22 − ε33[ ] ε12 ε12

ε21
1
3
2ε22 − ε11 − ε33[ ] ε23

ε31 ε32
1
3
2ε33 − ε22 − ε11[ ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

σ vol = 3Kεvol                and             s = 2Ge

K = E
3 1− 2ν[ ] = Λ + 2

3
G            and             G = E

2[1+ν ]
= 3
2
K − Λ[ ]

2W = σ : ε = σ vol1[ ] : εvol1[ ]+ s : e = 9Kε 2vol + 2Ge : e
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such that the positive strain energy argument delimits the range of possible 

values of Poisson's ratio -1≤ν≤0.5 

 

 

 

 

 

In the case of isotropic material behavior, with no directional properties, the size 

of a representative volume element may change due to thermal effects or 

shrinkage and swelling, but it will not distort. 

Consequently, the expansion is purely volumetric, i.e. identical in all directions. 

Using direct and indicial notation, the additive decomposition of strain into 

elastic and initial volumetric components, ε=εe +ε0 leads to the following 

extension of the elastic compliance relation: 

 

 (5.27) 

 

where ε0 = ε0 1 denotes the initial volumetric strain e.g. due to thermal expansion. 

The inverse relation reads 

 

 (5.28) 

 

Rewriting this equation in matrix notation we have 
 

ε = − ν
E
trσ[ ]1+ 1

2G
σ + ε01           or            ε ij = − ν

E
σ kkδ ij +

1
2G

σ ij + ε0δ ij

σ = −Λ trε[ ]1+ 2Gε − 3ε0K1           or            σ ij = Λεkkδ ij + 2Gε ij − 3ε0Kδ ij

 5.8 Isotropic Elasticity under Initial Volumetric Strain 



5. Linear Elasticity 

 106 

 (5.29) 

 
 

Considering the special case of plane stress, σ33=0, the stress strain relation 

reduces in the presence of initial volumetric strain to 

 

 (5.30) 

 

where the shear components are not affected by the temperature change in the 

case of isotropy. 

 

 

 
 
 
 

Under stress free conditions the thermal expansion ε0=α[T-T0]1 leads to ε=ε0 i.e. 
 

 (5.31) 

 
 

 
 

σ11

σ 22

σ 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

K + 4
3
G K − 2

3
G K − 2

3
G

K − 2
3
G K + 4

3
G K − 2

3
G

K − 2
3
G K − 2

3
G K + 4

3
G

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

ε11
ε22
ε33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− 3Kε0
1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

σ11

σ 22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= E
1−ν 2

1 ν
ν 1

⎡

⎣
⎢

⎤

⎦
⎥

ε11
ε22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
E
1−ν

ε0
1
1

⎡

⎣
⎢

⎤

⎦
⎥

ε11 =α T −T0[ ]
ε22 =α T −T0[ ]
ε33 =α T −T0[ ]

 5.9 Free thermal expansion 
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Thus the change of temperature results in free thermal expansion, while the 

mechanical stress remains zero under zero confinement, σ=E:εe =0. 

 

 

 
 
 
 

In contrast with the unconfined situation above, the thermal expansion is equal 

and opposite to the elastic strain εe =-ε0 under full confinement, when ε=0. In the 

case of plane stress, the temperature change ΔT=T-T0 leads to the thermal 

stresses 

 

 (5.32) 

 

 

 

σ11 = − E
1−ν

α T −T0[ ]

σ 22 = − E
1−ν

α T −T0[ ]

 5.10 Thermal stress under full confinement 
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As mentioned in the previous chapter the elastic response is independent of the 

load history, or, in other words, the elastic material response is path independent 

and it follows that the response for loading and unloading follows the same path 

as illustrated in Fig. 6.1. After removal of the loading, the material returns 

therefor to its original configuration. It should be emphasized that elastic 

response, in general, is nonlinear, as also illustrated in Fig. 6.1. 

 

 
Figure 6.1: nonlinear elasticity for uniaxial loading 

 

The linear elastic stress-strain relations discussed in the previous chapter are 

isotropic and reversible. A simple extension of these relations with the elastic 

moduli replaced by scalar functions associated with either stress and/or strain 

invariants have the properties of isotropy and reversibility also. For instance, 

 6 Nonlinear Elasticity 
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scalar function associated with the state of stress may include the values of the 

principal stresses σ1, σ2 and σ3, or equally the three independent invariants I1, J2 

and J3. Therefore different scalar functions such as F(I1,J2,J3) may be employed 

to describe various nonlinear elastic constitutive models. The nonlinear stress-

strain relations for each of these models reduce to the linear forms when the 

scalar functions are taken to be constants. 

 

 

 
 
 
 

The hyperelastic format of elasticity dates back to the original work of George 

Green. This is an integral description of elasticity and starts from the postulate of 

a strain energy function from which the stresses are derived by differentiation. 

Let us first introduce the concept of strain energy W per unit volume of the body, 

i.e. W has the unit [Nm/m3]. For a uniaxial stress state, the incremental strain 

energy is defined by 

 

 (6.1) 

 

 

where ε* is an integration variable whereas ε denotes the current strain. Equation 

(6.1) is illustrated in Fig. 6.2. 

Adopting this approach to the general situation we obtain 

 

 (6.2) 

 

dW =σdε        i.e.         W = σ (ε*)d
0

ε

∫ ε *

dW =σ ijdε ij          i.e.           W = σ ij (ε *kl )
0

εij

∫ dε *ij

 6.1 Hyper Elasticity – Green Elasticity 
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where εij denote the current strains whereas ε*ij denotes the integration variables. 

Even though the current stresses σij only depend on the current strains εij, we will 

in general have that the strain energy W as determined by (6.2) depends both on 

the current strains εij as well as on the manner in which these strains were 

achieved, i.e. 

 

 (6.3) 

 

This is just to say that W as determined by (6.2) depends not only on the current 

strains, but also on the integration path, where the integration path represents the 

load history. 

We will now make the assumption that W is independent on the integration path 

and (6.3) then reduces to 

 

 (6.4) 

 

From this expression follows that 

 

 (6.5) 

 

Subtraction of (6.5) from (6.2) gives 

 

 (6.6) 

 

W =W (ε ij,  load  history)

W =W (ε ij )

dW = ∂W
∂ε ij

dε ij

σ ij −
∂W
∂ε ij

⎛

⎝⎜
⎞

⎠⎟
dε ij = 0
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In general, the incremental strains dεij can be chosen arbitrarily and 

independently of each other and we therefore conclude from (6.6) that 

 

 (6.7) 

 

There is one exception where the incremental strains dεij cannot be chosen 

arbitrarily, namely the case of incompressible response. Since σij is obtained from 

W by a differentiation, one uses the phrase that W serves as a potential function 

for the stresses. 

We observe that (6.4) and (6.7) imply σij =σij(εij) and a material that obeys the 

constitutive relation (6.4) and thereby (6.7) is called a hyper-elastic material, 

hyper meaning to a higher degree. 

 

 
Figure 6.2: incremental strain energy dW and strain energy W for uniaxial loading 

 

Occasionally, the term Green-elasticity is used since this formulation was 

adopted by Green in 1839 and even today most work on elasticity is based on 

this format. 

Another feature often related to elasticity is reversibility also from a thermo-

dynamical point of view.  Therefore, hyper-elasticity implies reversibility not 

σ ij =
∂W
∂ε ij
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only between stresses and strains, but also reversibility in the thermo-dynamical 

sense.  

Let us return to (6.2) and (6.7) and the issue of the strain energy W being 

independent of the integration path i.e. independent of the load history. As an 

illustration consider the quantity Q given by 

 

Q = (Ldx +M dy)
A

B

∫  

 

which means that Q is obtained as an integration along some curve in the xy  

plane from point A to point B; moreover, L = L(x, y) and M = M(x, y). From 

standard mathematics, it is well known that Q only depends on the end points A 

and B and not on the path between A and B if Ldx+Mdy is a perfect deferential. 

The necessary and sufficient condition for Ldx+Mdy being a perfect differential 

is 

∂L
∂y

= ∂M
∂x

 

∂σ ij
∂y

= ∂M
∂x

 

Generalizing these concepts to (6.2), we see that W is independent on the 

integration path if 

 

 (6.8) 

 

and use of (6.7) demonstrates this condition to be fulfilled - as expected. 

Using the transformation rule for the second-order tensors σij and dεij it is readily 

shown that σijdεij is an invariant. It therefore follows from (6.2) that dW is an 

invariant, i.e. we have that  

 

∂σ ij

∂εkl
= ∂σ kl

∂ε ij
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 (6.9) 

 

The path independence of the line integral defines the internal strain energy 

 

 (6.10) 

 

in terms of the total differential dW. The traditional notion of elasticity, such as 

reversibility and lack of energy dissipation under closed cycles of strain, are a 

direct consequence of path independence, i.e. 

 

 (6.11) 

 

In other terms, the hyperelastic material description is non-dissipative and 

preserves energy under arbitrary strain histories. 

The corresponding hyperelastic stiffness tensor is a measure of the curvature of 

the strain energy function involving the second derivatives of W = W(ε), 

 

 (6.12) 

 

Consequently, the elasticity tensor is symmetric, Et =ET
t, if W(ε) is sufficiently 

smooth. This reduces the 36 elastic constants to 21 in the general case of 

anisotropic elasticity, and to two in case of isotropy. The positive definiteness of 

the hyperelastic tangent operator, det Et > 0, is directly connected to the 

convexity of the strain energy functional and the uniqueness argument of 

boundary value problems in elasticity. 

 

Strain energy W  is an invar iant

W (ε) = σdε
ε∫ = ∂W

∂ε
dε

ε∫ = dW
ε∫

W (ε) = dW = 0
ε!∫

!σ = Et
!ε                 where             Et =

∂2W
∂ε ⊗∂ε
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Having established the strain energy W and the fundamental relation (6.7), we 

will now perform an interesting reformulation. Define the function C - the 

complementary energy per unit volume – by 

 

 (6.13) 

 

It is obvious that C only depends on the current state and not on the manner in 

which this state was established. By differentiation we obtain 

 

 (6.14) 

 
which together with (6.7) gives 
 

 (6.15) 

 
 
We assume that the inverse relation of σij =σij(εij) exists i.e. 

 

 (6.16) 

 

and we obtain 

 

 (6.17) 

 

where σij is the current stress state whereas σ*kl, denotes the integration variable. 

C =σ ijε ij −W (ε ij )

dC = dσ ijε ij +σ ijdε ij −
∂W
∂ε ij

dε ij

dC = ε ijdσ ij

ε ij = ε ij (σ kl )

C(σ ij ) = εkl (σ *mn
0

σ ij

∫ )dσ *kl
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We mentioned that the complementary energy C only depends on the current 

state and not on the history. Moreover, we found that C=C(σij). 

We assume that C=C(σij ,εij) and obtain 

 

 (6.18) 

 

 

 

 

and a comparison with (6.15) indicates that 𝜕C/𝜕εij=0 i.e. C=C(σij). We therefore 

have 

 

 (6.19) 

 

It appears that by the format (6.13) we have shifted the old variable εij in 

W=W(εij) into a new variable σij, in C=C( σij) without knowing the explicit 

relation between εij and σij.  Subtraction of (6.19) from (6.15) yields 

 

(ε ij −
∂C
∂σ ij

)dσ ij = 0  

 

Since this relations holds for arbitrary stress states, it follows that 

 

 (6.20) 

 

dC = ∂C
∂σ ij

dσ ij +
∂C
∂ε ij

dε ij

dC = ∂C
∂σ ij

dσ ij

ε ij =
∂C
∂σ ij

;                  C = C(σ ij )
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i.e. the complementary energy C serves as a potential function for εij. In the 

uniaxial case, an illustration of C given by (6.17) is shown in Fig. 6.3. 

 

 
Figure 6.3: complementary energy C and strain energy W for uniaxial loading 

 

By arguments similar to those adopted when we evaluated the strain energy W, it 

follows that 

 

 (6.21) 

 

Moreover, from (6.20) appears that 

 

 (6.22) 

 

 

 
 
 
 

Complementary energy C  is invar iant

∂ε ij
∂σ kl

= ∂εkl
∂σ ij

 6.2 Isotropic hyperelastic models 
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The strain energy depends on the current strains εij through W=W(εij) and 

according to (6.9), the strain energy is an invariant. The strain tensor εij can be 

expressed by the principal strains ε1, ε2 and ε3 and the corresponding principal 

strain directions. Isotropy means that the material has no directional properties 

and this implies that we may write the strain energy as W=W(ε1,ε2,ε3). As the 

principal strains are given uniquely by the strain invariants, we may equally well 

write the strain energy W as 

 

 (6.23) 

 

Formulation (6.23) is evidently in accordance with (6.9), stating that W is an 

invariant. The choice of the set of invariants is particularly convenient, since we 

have the following neat relations 

 

 (6.24) 

 

We are now in a position to derive the most general constitutive law for isotropic 

hyper-elastic materials. From (6.7) and (6.23) we obtain 

 

 (6.25) 

 

 

With the notation 

 

W =W ( !I1, !I2, !I3)

∂!I1
∂ε ij

= δ ij;                  
∂!I2
∂ε ij

= ε ij;                  
∂!I3
∂ε ij

= ε ikεkj

σ ij =
∂W
∂!I1

∂!I1
∂ε ij

+ ∂W
∂!I2

∂!I2
∂ε ij

+ ∂W
∂!I3

∂!I3
∂ε ij
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 (6.26) 

 

(6.25) reduces with (6.24) to 

 

 (6.27) 

 

Instead of the index notation, we may write σij=σ and εij=ε, i.e. (6.27) can be 

written as 

 

 (6.28) 

 

From the definition of the parameters ϕ1, ϕ2 and ϕ3 it follows directly that they 

may depend on the strain invariants. However, these parameters are not 

independent, since (6.26) results in the following constraints 

 

 (6.29) 

 

On the issue of volumetric-deviatoric coupling we observe that the trace 

operation leads to 

 

 (6.30) 

 

 

 

φ1 =
∂W
∂!I1
;               φ2 =

∂W
∂!I2

;               φ3 =
∂W
∂!I3

σ ij = φ1δ ij +φ2ε ij +φ3ε ikεkj

σ = φ1I +φ2ε +φ3ε
2

∂φ1
∂!I2

= ∂φ2
∂!I1
;                   ∂φ1

∂!I3
= ∂φ3
∂!I1
;                   ∂φ2

∂!I3
= ∂φ3
∂!I2

trσ = 3φ1 +φ2trε +φ3trε
2
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Considering a simple shear deformation, with ε12=1/2γ, ϕ3 and thus the 

dependence of ϕ=ϕ(I1, I2, I3) on the third invariant is responsible for volumetric-

deviatoric interaction. On another note, the quadratic expansion of the strain 

energy density function leads exactly to the two Lamé constants of linear 

isotropic elasticity since ϕ3=0.  

Strain energy density function can be decomposed into two independent 

functions, one defining the volumetric and the other the deviatoric behavior. 

 

 (6.31) 

 

This infers, however, that the influence of the third invariant I3 remains 

negligible, since it is this term, which is responsible for coupling the volumetric 

and deviatoric response behavior. 

The decomposition of the strain energy function leads to the concept of nonlinear 

K-G models, because of their inherent simplicity, which retain the two-modular 

form of linear elasticity. Figures 6.4a and 6.4b illustrate the secant stiffness 

relations, which may be expressed best in the form of the octahedral components 

of stress σ0, τ0 and strain ε0, γ0 

 (6.32) 

 

where KS=K(trε) and GS=G(trε2). The so-called K-G models shown in Figures 

6.4a and 6.4b play a prominent role for modeling nonlinear material behavior. 

 

φ(ε) = φvol (trε) +φdev (trε
2 )

σ 0

τ 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

3Ks 0
0 2Gs

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε0
γ 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Figure 6.4: a) nonlinear volumetric response behavior; b) nonlinear deviatoric response behavior 

 

 

Combining the volumetric and deviatoric scalar relations leads to the secant 

stiffness relation 

 

 (6.33) 

 

where the elastic material constants have been simply replaced by their secant 

values.  

 

 

 
 
 
 

In this case the strain energy function is expressed in terms of the principal strain 

values, 

 

σ = Esε        where       Es = Ks −
2
3
Gs

⎡
⎣⎢

⎤
⎦⎥
1⊗1+ 2GsI

 6.3 Hyperelastic model in principal coordinates 
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 (6.34) 

 

whereby the underlying isotropy infers cyclic permutation of indices. Because of 

the underlying coaxiality of the principal axes of stress and strain, the stress-

strain relation involves only their principal values, i.e. 

 

 (6.35) 

 

The tangential stress-strain relation leads to the following matrix representation 

of the principal coordinates: 

 

 (6.36) 

 

This illustrates the symmetry of the tangential stiffness properties if the strain 

energy function is sufficiently smooth. Moreover, the tangential stiffness 

properties are positive definite if the strain energy function remains convex. 

Although the tangential relation appears to be anisotropic in principal 

coordinates, the nonlinear stress-strain rate relation maintains coaxiality between 

σ-ε as long as the tangential shear terms satisfy the condition 

 

W =W (ε1,ε2,ε3) =W (ε2,ε3,ε1) =W (ε3,ε2,ε1)

σ i =
∂W (ε1,ε2,ε3)

∂ε i

!σ1

!σ 2

!σ 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

∂2W
∂ε1∂ε1

∂2W
∂ε1∂ε2

∂2W
∂ε1∂ε3

∂2W
∂ε2∂ε1

∂2W
∂ε2∂ε2

∂2W
∂ε2∂ε3

∂2W
∂ε3∂ε1

∂2W
∂ε3∂ε2

∂2W
∂ε3∂ε3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

!ε1
!ε2
!ε3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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 (6.37) 

 

 

 
 
 
 

We will now deal with a type of elasticity, which is more general than the 

hyperelasticity. The stress-strain relation expresses stress in terms of a nonlinear 

function of strain. In this case, the triaxial state of stress is a nonlinear tensor 

function of the strain tensor and has an algebraic format, i.e. in indicial notation 

σij=fij(εkl).  Using the representation theorems of second order symmetric tensor 

functions the possibilities are restricted to a small set of possible choices when 

isotropy is invoked. In this case, the most general format of Cauchy elasticity 

may have one of the two representations, 

 

 (6.38) 

 

because of the Cayley-Hamilton theorem. Thereby, the three response functions 

Φi, and Ψi, are scalar functions of the three invariants of either stress or strain. It 

is important to keep in mind that Cauchy elasticity is based on a second order 

symmetric tensor function of a second order symmetric tensor. 

 

 

!τ12
!τ 23
!τ 31

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

σ 2 −σ1

ε2 − ε1
0 0

0 σ 3 −σ 2

ε3 − ε3
0

0 0 σ1 −σ 3

ε1 − ε3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

!γ 12
!γ 23
!γ 31

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

σ = φ11+φ2ε +φ3ε
2             or                 σ =ψ 11+ψ 2ε +ψ 3ε

−1

 6.4 Cauchy Elasticity σ = f(ε) 
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In the pseudo-elastic format of elasticity, the nonlinearity is incorporated into the 

fourth order secant stiffness tensor. This format is an algebraic format, that has 

been used early on in different engineering disciplines to develop nonlinear 

extensions of simple classes of linear elasticity. The so-called variable stiffness 

models retain the format of linear elasticity and simply replace the two elastic 

constants of linear elasticity by nonlinear functions: we have in fact to consider 

the modification of the linear relations of equation (5.24). The elastic bulk and 

shear moduli are taken as scalar functions of the stress and/or strain tensor 

invariants. Thus eq. (5.24) may now be written as  

 

 (6.39) 

 

where Ks and Gs are now the secant bulk modulus and the secant shear modulus, 

respectively. The scalar functional forms of Ks and Gs in terms of the stress and 

strain invariants are developed mainly from experimental data. For any given 

state of stress, σij the value of F(I1,J2,J3)  and consequently the strain components 

εij  are uniquely determined without regard to the loading path. However this 

does not imply that the strain energy W and the complementary energy C, 

calculated from such stress-strain relations, are path independent. Certain 

restrictions must be imposed on the chosen scalar functions in order to ensure the 

path independent character of W and C. This assures that energy is not generated 

during any loading-unloading cycle. We will see later on that the nonlinear K-G 

models are theoretically sound if the nonlinear response decouples the volumetric 

from the deviatoric response, i.e. K = K(εvol) and G = G(tre2) where tre2 =e:e. 

It is not very surprising that elastic damage models did start from this secant 

format of nonlinear elasticity using arguments of effective stiffness properties, 

σvol = 3Ksεvol                and             s = 2Gse

 6.5 Secant or Pseudo-Elasticity σ=Es:ε 
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which are in some sense equivalent to distributed micro-mechanical defects. In 

fact, the original proposal of scalar damage was nothing but a nonlinear pseudo-

elastic model in which the secant stiffness is in matrix notation 

 

 (6.40) 

 

In its basic format the secant matrix of elastic damage retains the structure of the 

initial elastic stiffness except for the factor [1 - d] 

 

 
(6.41) 

 

which measures the remaining integrity of the material when the damage variable 

increases from zero to one, 0 ≤ d → 1. Restricting damage to the format of 

isotropic linear elasticity, it is natural to decompose degradation into volumetric 

and deviatoric damage components such that 

 

 (6.42) 

 

From this expression we observe that the secant format of isotropic elastic 

damage is very simple because of the underlying decoupling of volumetric from 

deviatoric degradation. As long as we are only interested in a given state of 

σ = Esε             where             Es = 1− d[ ]E0             and              d =1- Es

E0

Es =
1− d[ ]E0

1+ v0[ ] 1− 2v0[ ]

1− v0 v0 v0
v0 1− v0 v0 0
v0 v0 1− v0

1− 2v0
2

0 1− 2v0
2

1− 2v0
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ks = 1− dvol[ ]K0         and          Gs = 1− ddev[ ]G0
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damage, this isotropic pseudo-elastic formulation suffices to describe the 

response behavior using effective material properties based on the principle of 

stress or strain equivalence.  

 

 

 
 
 
 

The hypoelasticity is a differential format with this formulation: 𝝈 = 𝒈(𝝈, 𝜺). In 

the differential format of elasticity the stress rate is expanded into a symmetric 

tensor function of two second order tensors. In the case of a stress-based 

formulation, the two independent arguments of the tensor function are the stress 

and the rate of strain tensors.  The irreducible set of base tensors encompasses 

the following terms: 

 

 (6.43) 

 

Consequently, an isotropic tensor function of two symmetric tensors involves in 

the most general case nine response functions, ϕ1,..ϕ9, which depend in turn on 

the six moment invariants of the stress and strain rate tensors below, 

 

 (6.44) 

 

The general format results in the general stress-strain rate relation, 

 

 (6.45) 

 

1,  σ ,  σ 2,  !ε,  !ε 2,  (σ ⋅ !ε + !ε ⋅σ ),  (σ ⋅ !ε 2 + !ε 2 ⋅σ ),  (σ 2 ⋅ !ε + !ε ⋅σ 2 ),  (σ 2 ⋅ !ε 2 + !ε 2 ⋅σ 2 )

I1
σ = trσ,        I2

σ = trσ2 ,        I3
σ = trσ3,               I1

!ε = tr!ε,        I2
!ε = tr!ε2 ,        I3

!ε = tr!ε3

!σ = φ11+φ2σ +φ3σ
2 +φ4 !ε +φ5!ε

2 +φ6 (σ ⋅ !ε + !ε ⋅σ) +

      +φ7(σ ⋅ !ε2 + !ε2 ⋅ σ) +φ8(σ
2 ⋅ !ε + !ε ⋅σ2 ) +φ9 (σ

2 ⋅ !ε2 + !ε2 ⋅ σ2 )

 6.6 Truesdell Elasticity or hypoelasticity 
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For rate independence, the expansion must be homogeneous of order one, thus 

the rate terms of the tensor function must be restricted to the first order. In other 

terms, the hypo-elastic material law is rate independent, if and only if, 

 

 (6.46) 

 

Among the numerous possibilities, two classes of hypoelastic constitutive models 

may be distinguished. 

 

a) Incrementally Linear Hypoelastic Models: 

The linear restriction of the hypoelastic stress-strain relations leads to the 

classical tangential stiffness format 

 

 (6.47) 

 

This stress-based format is reversible in the small, but not in the large. In other 

terms, the classical hypoelastic formulation leads to path-dependence 

 

 (6.48) 

 

This infers energy dissipation and irreversible behavior for arbitrary load 

histories as opposed to hyperelasticity. In fact, the hyperelastic property of path-

independence is recovered only if appropriate integrability conditions are 

satisfied, which assure that the stress is the gradient of a single potential function, 

i.e. 𝜎 = !"
!"

. 

The most general format of the hypoelastic tangent operator involves 12 

hypoelastic response functions which depend in general on all ten stress 

g(σ,α!ε) =αg(σ, !ε)

!σ = Et : !ε             where           Et = E(σ)

σ = E
ε∫ t
(σ) : dε

dt
dt
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invariants, Ci=Ci(Ij,Jk). The tensorial structure involves twelve fourth order 

tensor products between the second order unit tensor and stress tensors up to the 

fourth power. 

 

 (6.49) 

 

Under the name of variable moduli models, a good number of simplified 

hypoelastic material models have proposed and are still used in structural and 

geotechnical engineering. 

 

b) Incrementally Nonlinear Hypoelastic Models: 

Another rate independent restriction leads to a class of incrementally nonlinear 

models, which have been proposed under the name of hypoplastic models. 

Because of the incremental nonlinearity they are capable to distinguish between 

different loading and unloading stiffness properties in analogy to the endochronic 

time model introduced by K. Valanis [1975]. In the absence of a loading 

function, it is understood that the irreversible contribution leads to continuous 

energy dissipation under repeated load cycles in contrast to unload-reload cycles 

in elastoplasticity. 

Et =

C11⊗1 +C2σ⊗1 +C3σ
2 ⊗1

+C4σ⊗1 +C5σ⊗σ +C6σ
2 ⊗σ

+C71⊗σ2 +C8σ⊗σ2 +C9σ
2 ⊗σ2

C10[1⊗1+1⊗1] C11[σ⊗1+1⊗σ] C12[σ
2 ⊗1+1⊗σ2 ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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As a beginning to the plasticity theory, in this chapter it will be dealt with the 

criteria, which tell us whether plastic deformations - i.e. yielding of the material 

– or failure occurs. This chapter deals with the limits of elasticity and the limits 

of strength under all possible combinations of stresses. 

 

 
 
 
 

The simplest type of loading is represented by the uniaxial stress condition, e.g. 

the simple tension test, for which σ1>0, σ2=σ3=0, or the simple compression test, 

for which σ3<0, σ2=σ1=0. The uniaxial stress-strain diagram, in which the axial 

principal stress σ1 (or σ3) is plotted against the axial strain ε1 (or ε3), affords a 

useful representation of the plastic as well as the elastic behavior. 

 7 Yield and Failure Criteria 

 7.1 Uniaxial behavior 
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Figure 7.1: a) loading below the initial yield stress σy0; b) loading above the initial yield stress 

 

Consider then the uniaxial stress-strain curve shown in Fig. 7.1. If the stress is 

below the initial yield stress σyo the material is assumed to behave linear elastic 

with a stiffness given by Young’s modulus E, cf. Fig. 7.la). If the material is 

loaded to the stress σA, cf. Fig. 7.1b), yielding occurs and at unloading to point B 

we are left with the plastic strain εp. 

The unloading from A to B is assumed to occur elastically with the stiffness E. 

Reloading from point B first follows the linear path BA and at point A, yielding is 

again activated and the path AC is then traced as if the unloading at point A had 

never occurred. It appears that for unloading from point A and subsequent 

reloading, the stress GA that is needed to activate further plastic deformations has 

increased when compared with the initial yield stress σyo. We therefore have a 

hardening effect. 
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Figure 7.2: a) hardening and perfect plasticity; b) hardening and softening plasticity 

  
If the strain is increased sufficiently, we may reach the situations illustrated in 

Fig. 7.2. After a hardening phase, we reach in Fig. 7.2a) a maximum stress σf - 

the failure stress - and with continued straining, the stress remains at the value σf, 

that is we have now reached a situation of perfect or ideal plasticity. 

In Fig. 7.2b), on the other hand, after having obtained the failure stress σf, the 

stress decreases with continued deformation. This so-called softening behavior is 

typical for materials like concrete, soil and rocks and other cementitious 

materials when loaded in compression. 

In this chapter, we will be conceded with the identification of the initial yield 

stress σyo and the failure stress σf. Later on, in the plasticity theory, we will 

establish rules for how the material behaves when loaded beyond the initial yield 

stress. 

It is obvious that the initial yield stress and the failure stress are important 

engineering quantities. Whereas their identification is trivial for uniaxial stress 

states, this is not the case for general stress states. In general, the stress state is 

defined by the stress tensor, which comprises six independent stress components, 

the task is therefore to determine critical combinations of these components that 

result in initial yielding or failure of the material. We will see that for isotropic 

materials, it is possible to obtain a large amount of information on the general 

form of such criteria without knowing the specific material. 
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As apparent from Fig. 7.2, the term failure stress is slightly misleading since the 

material does not necessarily lose its load-carrying capacity when the failure 

stress σf is reached. Rather, the stress σf refers to that peak stress a 

homogeneously loaded specimen can carry and therefore the term ultimate stress 

seems more appropriate. However, by tradition we will use the word failure 

stress. While the identification of the failure stress is unambiguous, this is not the 

case for the initial yield stress σyo. The reason is that most materials exhibit a 

smooth transition from the elastic region to the elastic-plastic region with no 

distinct point where yielding is initiated, examples are shown in Fig. 7.2. The 

identification of the initial yield stress σyo, therefore becomes a matter of 

convention. In handbooks, the initial yield stress σyo for metals and steel is most 

often identified as the so-called σ0.2-stress, i.e. the stress at which the remaining 

plastic strain after unloading equals 0.2%.  

 

 

 

 

 

 

For general stress states, the conditions for failure or initial yielding are called 

failure or initial yield criteria respectively. We will see that stress invariants play 

an extremely important role in failure and yield criteria. 

In general, the material is anisotropic, i.e. for a given loading the orientation of 

the material influences its response. We seek a criterion, i.e. a function, which 

takes the value of zero when the conditions for initial yielding or failure are 

fulfilled. 

Consider a specimen of a homogeneous material loaded by a homogeneous stress 

state. Considering proportional loading, we will assume that the yield or failure 

criterion is independent of the loading rate. Under these conditions, the initial 

yield or failure criterion can only depend on the stress tensor σij, i.e. 

 7.2 General stress states 
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 (7.1) 

 

When this condition is fulfilled, initial yielding and failure occur in the material. 

By convention the function F is normalized in such a manner that if the stress 

state is below the yield or failure limit then F(σij)<0. This implies that if the 

stress state is above the yield or failure limit then F(σij)>0. The conditions that 

F(σij)<0, F(σij)=0 and F(σij)>0 hold when the stress state is below, equal to and 

above the yield or failure limit respectively, were established in an arbitrary xi-

coordinate system. To make sense they must therefore also hold when we adopt 

another x’i-coordinate system. This implies that the value of F is an invariant. 

The stress tensor σij can also be expressed by the principal stresses σ1, σ2 and σ3 

and the corresponding principal stress directions. As an isotropic material has no 

directional properties, it is expected that we can write F=F(σ1, σ2, σ3). As the 

principal stresses are given uniquely in terms of the three stress invariants, we 

may equally well write F as 

 

 (7.2) 

 

We will now show this result in a more formal manner. 

In the xi -coordinate system, we have F(σij) and if we instead adopt the x’i -

coordinate system, we have F*( σ’ij). Since the criterion is an invariant, we 

conclude that 

 

 (7.3) 

 

 

F(σ ij ) = 0

F(I1, I2, I3) = 0

F(σ ij ) = F *(σ 'ij )
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This condition is just a result of F being an invariant, i.e. a zero-order tensor. 

The function F is a response function and in accordance with the discussion 

following, the response function is denoted F in the xi -coordinate system and F* 

in the x’i -coordinate system. 

Isotropy means that the response function is the same in all coordinate systems. 

This implies 

 

 (7.4) 

 

Insertion of (7.4) in (7.3) and noting that σ’ij= AikσklAjl, we obtain 

 

 
(7.5) 

 

and this result shows that F is an isotropic scalar tensor function. 

Instead of (7.2) we may write alternatively 

 

 (7.6) 

 

where σ1, σ2, σ3 are the principal stresses. The principal stresses are invariants, 

but it is observed that σ1  is the principal stress in the first principal direction, σ2 

is the principal stress in the second principal direction and σ3 is the principal 

stress in the third principal direction. However, since the yield or failure criterion 

(7.6) only depends on invariants having no directional preferences, the ordering 

of σ1, σ2 and σ3 (7.6) is indifferent. That is, (7.6) should be interpreted as a 

function of principal stresses without any reference to specific principal axes. To 

emphasize this, we may write (7.6) as 

 

F(σ 'ij ) = F *(σ 'ij )        isotropy

F(σ ij ) = F(Aikσ klAjl )        cordinate invar iance +  isotropy

F(σ1,σ 2,σ 3) = 0
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 (7.7) 

 

Determination of the principal stresses requires the solution of an eigenvalue 

problem and this obstacle is avoided by expressing the criterion in terms of the 

stress invariants. However, instead of the invariants used in the format (7.2), it 

turns out to be more convenient to use another set of invariants and write the 

yield or failure criterion as F(I1, J2, J3) = 0 or, even more advantageously, as 

 

 (7.8) 

 

where  

 

 (7.9) 

 

where sij is the deviatoric stress tensor. 

One advantage of the format (7.8) is that it separates the influence of the 

hydrostatic stress I1 from the influence of the deviatoric stresses expressed by J2 

and cos3θ. Moreover, the invariants I1, J2 and cos3θ may be given an 

illuminating geometrical interpretation as shown in a moment. 

Identification of failure and initial yield criteria is one of the classical topics in 

constitutive mechanics and the literature on this subject is therefore very 

extensive. The intention of this chapter is not to provide an overview of all the 

different criteria proposed, but rather to present some main contributions. In 

addition to being of practical interest, each of the criteria presented therefore 

involves features not considered by the other criteria dealt with. Thus, the 

F(σ1,σ 2,σ 3) = F(σ 2,σ1,σ 3) = F(σ1,σ 3,σ 2 )
= F(σ 3,σ1,σ 2 ) = F(σ 3,σ 2,σ 2 ) = F(σ 2,σ 3,σ1) = 0

F(I1, J2, cos3θ )

J2 =
1
2
sijs ji;         cos3θ = 3 3

2
J3
J
3
2
2

;         J3 =
1
3
sijs jkski
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exposition in this chapter aims at a presentation of the mainstream within failure 

and initial criteria.  

 

 

It is evident that the failure or initial yield surface intersects the deviatoric plane 

in a certain curve, cf. Fig. 4.8. It turns out that due to the presence of the term 

cos3θ in criterion (4.30), we are able to derive a number of general symmetry 

properties. 

 
Figure 7.3: general symmetry properties of the failure or initial yield curve in the deviatoric plane; 

 a) 120° period; b) symmetry about θ=0°; c) symmetry about θ=60° 

 

Referring to the general criterion (4.30), the trace of this surface with an arbitrary 

deviatoric plane is obtained for I1 = constant. As the cos-function is periodic with 

a period of 360°, we conclude that the failure or yield curve in the deviatoric 

plane is periodic with a period of 120°. That is, the distance ρ, cf. Fig. 4.8.b), is 

the same for θ and for θ+120° as well as for θ+240°, this symmetry property is 

illustrated in Fig. 7.3a). Moreover, as cos3θ= cos(-3θ) we find that the curve in 

the deviatoric plane is symmetric about θ=0°; this symmetry property is 

illustrated in Fig. 7.3b). Due to the periodicity of 120°, the curve is also 

symmetric about θ = 120° and θ = 240°. Finally, setting θ = 60° + ψ, i.e. ψ= 0° 

corresponds to θ = 60°, we obtain cos3θ= -cos3ψ and setting θ = 60°- ψ yields 

 7.3 Symmetry properties of the failure or initial yield curve in the 
deviatoric plane 
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cos3θ= -cos3ψ. Accordingly, we have the same distance ρ for θ=60° + ψ and 

θ=60°- ψ, it is concluded that the curve in the deviatoric plane is symmetric 

about θ=60° and thereby also symmetric about θ=180° and θ=300°. This 

symmetry property is illustrated in Fig. 7.3c). In conclusion, the symmetry 

properties shown in Fig. 7.3 imply that the curve in the deviatoric plane is 

completely characterized by its form for 0°≤θ≤60° and that this shape is repeated 

in the remaining sectors of the deviatoric plane. We observe that this far-reaching 

conclusion is a consequence of the material being isotropic. 

 
Figure 7.4: possible shape of failure or initial yield curve in the deviatoric plane. T=tensile meridian, 

C=compressive meridian, S=shear meridian 

 

A possible shape of the failure or initial yield curve in the deviatoric plane 

fulfilling the above-mentioned 60°-symmetry property is illustrated in Fig. 7.3 

Here, the curve is shown as a convex curve, a property that does not follow from 

the mathematical analysis above, but which is strongly confirmed by 

experimental evidence, irrespective of the material in question. 

We found above that the shape of the curve in the deviatoric plane is 

characterized by its form for 0°≤θ≤60° and it may be of interest to identify the 

corresponding stress range. For this purpose, let us arrange the principal stresses 

according to 

 

 (7.10) 

 

σ1 ≥σ 2 ≥σ 3



7. Yield and Failure Criteria 

 137 

where tension is considered as a positive quantity. This allows us to write 

 
σ 2 = (1−α )σ1 −ασ 3;                0 ≤ a ≤1 

 
i.e. 
 

s1 =
1
3
(1+α )(σ1 −σ 3);             s2 =

1
3
(1+ 2α )(σ1 −σ 3);

s3 = − 1
3
(2 +α )(σ1 −σ 3)

 

 
With these expressions, (4.26) takes the form 
 

 (7.11) 

 
 
 
 

 

 
Figure 7.5: meridian plane obtained by the intersection of the failure or initial yield surface with a plane 

containing the hydrostatic axis 

 

For α in the range 0 ≤ α ≤1, it follows that 0 ≤ θ ≤60°, i.e. with the ordering of 

the principal stresses given by (7.10), all stress states are covered by the range 

0≤θ≤60°. The meridians of the failure or initial yield surface are the curves 

cosθ = 1+α
2 α 2 −α +1



7. Yield and Failure Criteria 

 138 

where θ = constant applies, i.e. they are obtained by the intersection of the failure 

or initial yield surface with a plane containing the hydrostatic axis. Meridians 

may conveniently be depicted in a ξ, ρ-coordinate system or in a I1, 𝐽! -

coordinate system, the so-called meridian plane, cf. Fig. 7.5. Three meridians are 

of particular interest. 

If σ1>σ2 = σ3 applies then α=1 and it follows from (7.11) that θ=0. This meridian 

is termed the tensile meridian, as the stress state σ1>σ2 = σ3 corresponds to a 

hydrostatic stress state superposed by a tensile stress in the σ1-direction. We have 

 

σ1 >σ 2 =σ 3        i.e.         θ = 0     ⇒      tensile meridian  

 

Uniaxial tensile stress states are located on the tensile meridian, cf. Fig. 6.6a), 

and so are biaxial compressive stress states when the two compressive principal 

stresses are equal. 

If σ1=σ2>σ3 holds then α=0 and (7.11) shows that θ=60°. This meridian is termed 

the compressive meridian, as the stress state σ1=σ2>σ3 corresponds to a 

hydrostatic stress state superposed by a compressive stress in the σ3-direction. 

Consequently 

 

σ1 =σ 2 >σ 3        i.e.         θ = 60°     ⇒      compressive meridian  
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Figure 7.6: simple examples of stress states located on different meridians; a) uniaxial tension; 

b)uniaxial compression; c) pure shear 

 

 
Uniaxial compressive stress conditions are therefore located on the compressive 

meridian, cf. Fig. 7.6b). 

Finally, if σ1>σ2=(σ1+σ3)/2 >σ3 then α=1/2 and it follows from (7.11) that θ=30°. 

This meridian is termed the shear meridian, as the stress state 

σ1>σ2=(σ1+σ3)/2>σ3 corresponds to a hydrostatic stress state superposed by a 

positive stress, τ, in the σ1 -direction and a negative stress, -τ, in the σ3-direction. 

That is 

 

σ1 =σ 2 =
σ1 +σ 3

2
>σ 3        i.e.         θ = 30°     ⇒      shear  meridian  

 
A stress state corresponding to pure shear is therefore located on the shear 

meridian, cf. Fig. 7.6c). 

The points where the tensile, compressive and shear meridians intersect the 

deviatoric plane are illustrated in Fig. 7.4. (Points T, C and S). 
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Figure 7.7: sketch of von Karman pressure cell allowing to test cylindrical specimens under multiaxial 

stress states 

 
To identify points on certain meridians for multiaxial stress states, the von 

Karman pressure cell is often used, especially for soil and cementitious materials 

like concrete and rocks. This type of pressure cell is named after von Karman in 

recognition of his triaxial tests on marble and sandstone using this kind of 

equipment, cf. von Karman (1911). A cylindrical specimen is inserted into a 

pressure chamber, cf. Fig. 7.7. The oil inside the pressure chamber is pressurized 

providing stresses on the lateral surface of the specimen and, via a piston, an 

ordinary testing machine supplies a pressure to the end surfaces of the specimen. 

It is evident that the von Karman pressure cell enables one to test materials along 

two meridians only: the tensile meridian for which σ1>σ2 = σ3 and the 

compressive meridian where σ1=σ2 > σ3, cf. Fig. 7.8 (recall that tension is 

considered as a positive quantity). 
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Figure 7.8: stress states that can be obtained in a von Karman pressure cell 

 
Previously, we deduced the general symmetry properties of the curve in the 

deviatoric plane, cf. Figs.7.3 and 7.4, and we will now establish some additional 

symmetry properties, which hold under some specialized conditions. 

Let us assume that the occurrence of failure or initial yield is independent of the 

hydrostatic stress I1, i.e. (4.30) reduces to 

 

 
(7.12) 

 

This implies that the corresponding surface in the principal stress space consists 

of a cylindrical surface with the meridians parallel with the hydrostatic axis. 

Consequently irrespective of the deviatoric plane considered the same trace of 

the failure or initial yield surface is obtained. For metals and steel, yielding turns 

out to be independent of the hydrostatic stress, i.e. (7.12) is a valid assumption. 

Let us further assume that criterion (7.12) is fulfilled both for the stress state σij 

and the stress state -σij. As an example, for metals and steel the initial yield stress 

is the same for uniaxial tension and uniaxial compression. Let us now investigate 

the consequences of the two assumptions mentioned above. For the stress state 

σij, we may determine J2, J3 and thereby cos3θ, cf. (4.29). 

F(J2, cos3θ ) = 0 !
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Figure 7.9: Symmetry about θ=30° when (6.12) holds and when σij and-σij both fulfill the criterion 

 
Likewise, for the stress state σ*ij=-σij, we obtain J2 = J*2, J3 =- J*3 i.e. cos3θ*=-

cos3θ. This means that for the same J2-value, criterion (7.12) is fulfilled both for 

cos3θ and for - cos3θ, i.e. both θ as well as θ±180° fulfill the criterion. Consider 

now θ=30°+ψ, i.e. ψ=0° corresponds to ψ=30°, cf. Fig. 7.9. We found above 

that both θ and θ-180° fulfill the criterion, therefore, when θ=30°+ψ fulfills the 

criterion, so does θ=30°+ψ-180°=-150°+ψ. 

The latter value leads to cos3θ=cos(-450°+3ψ) = cos(-90°+3ψ) = cos(90°-3ψ), 

which may be interpreted as θ=30°-ψ. It is concluded that both θ=30°+ψ and 

θ=30°-ψ fulfill the criterion and in addition to the general symmetry properties 

shown in Fig. 7.3, we also have symmetry about θ=30°. This symmetry property 

is illustrated in Fig. 7.9 and it implies that the tensile and compressive meridians 

have the same distance to the hydrostatic axis. 
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Figure 7.10: upper and lower bounds for curve in the deviatoric plane when (6.12) holds and when σij 

and-σij both fulfill the criterion 

 

The general symmetry properties imply that the curve in the sector 0°≤θ≤60° is 

repeated in the remaining sectors of the deviatoric plane, cf. Fig. 7.4. With the 

assumptions described above, we also have a symmetry line about θ=30°. 

If we, in addition, assume that the trace in the deviatoric plane is convex - an 

assumption that is strongly supposed by experimental evidence for all materials - 

we are led to the upper and lower bounds for the trace in the deviatoric plane as 

shown in Fig. 7.10. 

Let us recall the assumptions that led to these upper and lower bounds. As 

discussed, these assumptions are in close agreement with the initial yield 

properties for metals and steel and it is therefore convenient to make the 

following summation 

 

 (7.13) 

 

Initial  yields of  metals and  steel  is characterized  in that :
⋅the idrostatic stress has no inf luence
⋅if  σ ij  results in the yielding,  so does -σ ij

⋅the trace in the deviatoric plane is convex
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Recalling that (7.12) implies that the surface in the stress space is a cylindrical 

surface with the meridians parallel with the hydrostatic axes and observing the 

upper and lower bounds in the deviatoric plane illustrated in Fig. 7.10, we 

conclude that there are very narrow bounds within which a valid initial yield 

criterion for metals and steel can be chosen. Indeed, we shall later see that the 

circle of Fig. 7.10 corresponds to the von Mises yield criterion whereas the lower 

bound of Fig. 7.10 corresponds to the Tresca yield criterion. 

Having discussed issues that are of relevance for metals and steel, it may be of 

interest to evaluate the general experimental evidence for another large group of 

materials, namely concrete, soil and rocks. These materials are characterized by 

smooth stress-strain curves exhibiting no well defined initial yield stress. 

Moreover, the analysis of constructions involving these materials is often 

focused on the determination of the ultimate load capacity and whereas the ratio 

εf /εyo, cf. Fig. 7.2b, is large for metals and steel, it is much smaller for concrete, 

soil and rocks. For these reasons, the failure criterion is of primary importance 

for concrete, soil and rocks. Quite generally, the experimental evidence for these 

materials may be summarized as follows 

 

 (7.14) 

 

It follows that we expect the failure curve in the deviatoric plane to take the form 

sketched in Fig. 7.4. We finally observe that experimental observations for cast 

iron fall somewhere between the characteristics defined by (7.13) and (7.14). 

Since elasticity, per definition, only occurs within the initial yield surface, this 

surface is independent of the previous load history. On the other hand, to reach 

the failure surface significant inelastic strains are developed and, in principle, the 

failure surface is therefore expected to depend on the load history. However, 

Failure of  concrete soil  and  rocks is characterized  that :
⋅the hydrostatic stress has a strong inf luence
⋅inclusion of  the terms cos3θ  s of  impor tance
⋅the failure surface is convex
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experimental evidence shows for concrete (cf. China and Zimmerman (1965), 

Schickert and Winkler (1977)), soil (cf. Scott (1963)) and rocks (cf. Swanson and 

Brown (1971)) that whether the loading is proportional or non-proportional only 

influences the failure surface to a very modest degree. 

 

 

 
 
 
 

Failure of a material is usually defined in terms of its load-carrying capacity. 

However, for perfectly plastic materials, yielding itself implies failure, so the 

yield stress is also the limit of strength. As in the case of the yield criteria, a 

general form of the failure criteria can be given by 

 

f = (σ ij,k1,k2,...) = 0  (7.15) 

 

for anisotropic materials and by 

 

f = (σ1,σ 2,σ 3,k1,k2,...) = 0  (7.16) 

 

through 

 

f (ξ,ρ,θ,k1,k2,....) = 0  (7.17) 

 

for isotropic ones. 

As we already know, yielding of most ductile metals is hydrostatic pressure 

independent. However, the behavior of many nonmetallic materials, such as 

 7.4 Failure criteria for pressure dependent materials 
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soils, rocks and concrete is characterized by its hydrostatic pressure dependence. 

Therefore, the stress invariant I1 or ξ should not be omitted from eqation 

 

f = (I1, I2, I3,k1,k2,...) = 0  (7.18) 

 

and equation (7.17) respectively. The general shape of a failure surface, f(I1, I2, 

I3)=0 or f(ξ,ρ,θ)=0, in a three-dimensional stress space can be described by its 

cross-sectional shapes in the deviatoric plane, which is perpendicular to the 

hydrostatic curves between this surface and a plane (the meridian plane) 

containing the hydrostatic axis with θ=const. 

For an isotropic material, the labels 1, 2, 3 attached to the coordinate axes are 

arbitrary; it follows that the cross sectional shape of the failure surface must have 

a threefold symmetry of the type shown in fig. 7.11b). Therefore, when 

performing experiments, it’s necessary to explore only the sector θ=0° to 60°, the 

other sectors being known by symmetry. 

 
Figure 7.11: general shape of failure surface for an isotropic material: a)meridians; b) deviatoric section 

 

The typical sector shown in fig. 7.11b) by a heavy line corresponds to the regular 

ordering of the principal stresses, σ1 ≥ σ2 ≥ σ3. Within this ordering, there are two 

extreme cases: 
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σ1 =σ 2 >σ 3  (7.19) 

 

and 

 

σ1 >σ 2 =σ 3  (7.20) 

 

corresponding to θ1=60° and θ2=0°, respectively. To show this, we substitute 

equations (7.19) and (7.20) into equation (4.26) and get 

 

cosθ1 =
3
2

s1
J2

= 2σ1 −σ1 −σ 3

2 3 2
6
σ1 −σ 3( )2

= 1
2

 

and 

cosθ2 =
2σ1 −σ 3 −σ 3

2 3 2
6
σ1 −σ 3( )2

=1

 
 

respectively. The meridian corresponding to θ1=60° is the compression meridian 

in that equation (7.19) represent a stress state corresponding to a hydrostatic 

stress state with a compressive stress superimposed in one direction. The 

meridian determined by θ=0°, corresponding to equation (7.20), represent a 

hydrostatic stress state with a tensile stress superimposed in one direction and is 

therefore called the tensile meridian. The meridian determined by θ=30° is the 

shear meridian. Based on the above considerations, a general shape of the failure 

surface for an isotropic material may be illustrated in the Haigh-Westergaard 

stress space as shown in fig.7.11a). 
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7.4.1 Drucker-Prager criterion 
 

The general failure properties for such materials are summarized in (7.14) and 

we note that the hydrostatic stress I1 is of paramount importance. All terms in the 

general criterion (4.30) must therefore be considered. Even though the term 

cos3θ is of great importance, this term complicates the criterion considerably, 

thus we may, as an approximation, simply ignore its influence. We are thereby 

left with 

 

 (7.21) 

 

The Drucker-Prager criterion, formulated in 1952, is a simple modification of the 

von Mises criterion, where the influence of a hydrostatic stress component on 

failure is introduced, by inclusion of an additional term in the von Mises 

formulation. This formulation is often referred to as an octahedral criterion since 

the octahedral normal stress so and the octahedral shear stress τ0 are related to I1 

and J2 via (4.20), i.e. 

 

 (7.22) 

 

The simplest possible explicit form of (7.21) is a linear relation between I1 

and 𝐽!, i.e. 

 

 (7.23) 

 

F(I1, J2 ) = 0

σ 0 =
1
3
I1;            τ 0 =

2
3
J2

3J2 +α I1 − β = 0
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where α and β are material parameters. Moreover, α is dimensionless whereas β 

has the dimension of stress. The reason for the factor 3 in front of J2 is that for 

α=0, (7.23) then reduces exactly to the von Mises criterion.  

Both the octahedral normal stress σ0 and the octahedral shear stress τ0 act on the 

octahedral plane. Thus, a physical interpretation of the Drucker-Prager criterion 

is to claim that failure (or yielding) occurs when the octahedral shear stress τ0 

exceeds a certain value that depends on the octahedral normal stress. 

Using variables ξ and ρ equation (7.23) leads to 

 

 (7.24) 

 

The failure surface in equation (7.24) in principal stress space is clearly a right 

circular cone as shown in Fig. 7.13. 

The deviatoric plane is defined by I1 = constant, i.e. (7.23) implies that 3𝐽! or ρ 

is constant in the deviatoric plane. It follows that we have the same meridian 

irrespective of the θ-angle and that this meridian makes a certain slope with the 

hydrostatic axis.  

These features are shown in Fig. 7.12. 

 
Figure 7.12: Drucker-Prager criterion; a) deviatoric plane; b) meridian plane. 

 
 

3αξ + ρ − β = 0
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Figure 7.13: Drucker-Prager surface in the principal stress space 

 
 
Since 3𝐽! is a non-negative quantity, we conclude from (7.23) with I1 =0 that β 

is a positive material parameter. Moreover, as illustrated in Fig. 7.12b) the 

Drucker-Prager surface intersects the I1-axis for I1= β/α. Considering failure 

conditions, it is evident that a material like rock or concrete will break for a 

sufficiently large hydrostatic tension. Therefore, the dimensionless parameter α 

must be a non-negative quantity as illustrated in Fig. 7.12b). For plane stress 

conditions, i.e. σ3 = 0, (7.23) reduces to 

 

 (7.25) 

 

which obviously reduces to the von Mises expression for α = 0. As shown in Fig. 

7.14, (7.25) represents an off-center ellipse in the σ1σ2-plane. 

σ1
2 +σ 2

2 −σ1σ 2 +α (σ1 +σ 2 )− β = 0
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The uniaxial tensile strength σt, uniaxial compressive strength σc, biaxial tensile 

strength σbt and biaxial compressive strength σbc are illustrated in fig 7.14 and 

from equation (7.25) we derive that 

 

 (7.26) 

 

These relations may be used to identify the material parameters α and β. 

Due to the elimination of the cos3θ –term, the Drucker-Prager criterion should be 

used with caution. In practice, it can only be used with sufficient accuracy when 

α is small, i.e. when the influence of the hydrostatic stress I1 is moderate. 

Cast iron may be representative of such a material. 

 
Figure 7.14: Drucker-Prager off-center ellipse in the σ1 σ2 plane 

 

 

σ t =
β

1+α
;              σ c =

β
1−α

;  

σ bt =
β

1+ 2α
;           σ bc =

β
1− 2α

;   
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7.4.2 Coulomb criterion 
 

 

We will again consider failure characteristics for concrete, soil and rocks, but 

instead of the formulation (4.30), we will adopt the description given by (7.6), 

i.e. 

 

 (7.27) 

 

with the convention that 

 

 

 
Figure 7.15: a) Mohr’s circle of stress; b) corresponding interpretation of σ and τ 

 

 
In general, (7.27) is quite complicated and in order to simplify the expression, it 

is tempting to assume that the intermediate principal stress σ2 is of minor 

importance, i.e. we assume that 

 

  

The most simple expression of this form is then provided by a linear relation 

between σ1 and σ3, i.e. 

F(σ1,σ 2,σ 3) = 0

σ1 ≥σ 2 ≥σ 3

F(σ1,σ 3) = 0
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 (7.28) 

 

where k and m are material parameters. Requiring that this expression should 

predict the uniaxial compressive strength value σc the stress state (σ1,σ2,σ3) 

=(0,0,-σc) should fulfill (7.28) and we find 

 

 (7.29) 

 

This so-called Coulomb criterion was suggested by Coulomb (1776) and is the 

oldest criterion ever proposed. 

Mohr’s circle of stress is shown in Fig. 7.15a). In Fig. 7.15b), the x1, x2, x3 

coordinate system is collinear with the principal directions of σ1, σ2 and σ3 and 

the interpretation of the stress point (σ, τ) in Fig. 6.15a) is shown in Fig. 7.15b). 

That is, the normal stress σ and the shear stress τ act on the section having a 

normal, which makes the angle α with the σ1-direction. From Fig. 7.15a), the 

center position P and the radius R of Mohr’s circle are given by 

 

 (7.30) 

 

 

kσ1 −σ 3 −m = 0

kσ1 −σ 3 −σ c = 0

P = 1
2
(σ1 +σ 3);                   R = 1

2
(σ1 −σ 3)
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Figure 7.16: Coulomb criterion in Mohr’s diagram 

 
 
It is assumed that the stress state fulfills Coulombs criterion. Therefore, insertion 

of σ3 as determined by (7.29) into (7.30) yields 

 

 

 
and elimination of σ1 provides 
 

 

 
Thus, the radius R varies linearly with the center position P. Consequently, and 

as shown in Fig. 7.16, all Mohr’s circles of stress that fulfill the Coulomb 

criterion have two symmetrically positioned straight lines as their envelopes. 

These straight lines can be written as 

 

 (7.31) 

 

P = 1
2

k +1( )σ1 −σ c⎡⎣ ⎤⎦;                        R = 1
2

σ c − k −1( )σ1⎡⎣ ⎤⎦  

R = σ c

k +1
− k −1
k +1

P

τ = c − µσ



7. Yield and Failure Criteria 

 155 

where c and µ are non-negative material parameters. It appears that (7.31) 

provides an alternative formulation of the Coulomb criterion. 

Referring to Fig. 7.16 and (7.31), we see that |τ| = c is the shear strength when 

the normal stress σ = 0, i.e. c is the cohesion of the material. If σ is negative, i.e. 

σ corresponds to a pressure, it follows that the shear strength |τ| is increased and 

µ is therefore called the friction coefficient of the material. 

Consequently, we have obtained a direct physical interpretation of the Coulomb 

criterion and, most frequently, this criterion is postulated directly in the form 

given by (7.31). 

With this discussion, it is no surprise that the linear expression (7.31) may be 

generalized to achieve 

 

 (7.32) 

 

where h(σ) denotes an arbitrary function of σ. This so-called Mohr criterion was 

suggested by Mohr (1900) and it is illustrated in Fig. 7.17. Just like the Coulomb 

criterion, the Mohr criterion (7.32) serves as the envelope of all Mohr’s circles of 

stress when the material is loaded to failure. 

 
Figure 7.17: Mohr criterion; illustration of current friction angle ϕ 

τ = h(σ )



7. Yield and Failure Criteria 

 156 

 

Returning to the Coulomb criterion, it is of interest to compare the material 

parameters k and σc   in (7.29) with the material parameters c and µ in (7.31). 

First, we observe from Fig. 7.16 that 

 

 

 

where ϕ is termed the friction angle. Let us next consider a hydrostatic stress 

state (σ1,σ2,σ3) =(σ,σ,σ). It follows from (7.29) that σ=σc/(k - 1) and from Fig. 

7.16, we have σ = c/µ. This provides 

 

 (7.33) 

 

Observing that P for the situation displayed in Fig.7.16 is a negative quantity, cf. 

(7.30), we obtain from Fig. 7.16, (7.33) and (7.30) that 

  

 

i.e. 

 

 

A comparison with (7.29) reveals that 

 

 

 

tanφ = µ

c
µ
= σ c

k −1

sinφ = R
c
µ
− P

=

1
2
(σ1 −σ 3)

σ c

k −1
− 1
2
(σ1 +σ 3)

1+ sinφ
1− sinφ

σ1 −σ 3 −
2σ c

(k −1)
sinφ

(1− sinφ)
= 0

k = 1+ sinφ
1− sinφ

         i.e.          k ≥1
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Figure 7.18: Coulomb criterion in meridian plane 

 
 
 
i.e. 
 

 (7.34) 

 
 
As tanϕ=sinϕ 1 − 𝑠𝑖𝑛𝜙! this implies 
 
 

 (7.35) 

 
 
Moreover, this expression and (7.33) yield 
 

 (7.36) 

 
 

 
 

sinφ = k −1
k +1

µ = tanφ = k −1
2 k

c = σ c

2 k
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With this discussion of the relations between the various material parameters, we 

return to the Coulomb criterion given in the form of (7.29). Suppose that the 

stress state (σ1,σ2,σ3) fulfills the criterion. Let us on this stress state superpose a 

hydrostatic stress state given by the quantity p, this results in the stress state 

(σ1+p,σ2+p,σ3+p). It is evident that this new stress state fulfills criterion (7.29) 

only if p(k - 1) = 0, i.e. if k = 1. It is concluded that criterion (7.29) depends on 

the hydrostatic stress state if k ≠ 1, i.e. 

 

 (7.37) 

 

Criterion (7.29) defines a plane in the principal stress space, i.e. the meridians 

take the form of straight lines. Moreover, the trace in the deviatoric plane 

(0°≤θ≤ 60° corresponding to σ1≥σ2≥σ3) is also a straight line. Let us now examine 

the compressive and tensile meridians. 

Along the compressive meridian (θ= 60° corresponding to σ1=σ2>σ3) we obtain 

 

 (7.38) 

 

where subscript c refers to the compressive meridian. Expressing σ1 and σ3 in 

terms of I1c and 𝐽!! and insertion into (7.29) result in 

 

 (7.39) 

 

 

 

 

The Culomb criterion depends 
on the hydrostatic stress if  k ≠1

I1c = 2σ1 +σ 3;                     J2c =
1
3
(σ1 −σ 3)

J2c +
k −1
3(k + 2)

I1c −
3σ c

k + 2
= 0
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As expected 𝐽!! is independent on the hydrostatic stress when k=1. 

Along the tensile (θ= 0° corresponding to σ1>σ2=σ3), we have 

 

 (7.40) 

 

where subscript t refers to the tensile meridian. Expressing σ1 and σ3 in terms of 

I1t and 𝐽!! and insertion into (7.29) provide 

 

 (7.41) 

 

Expressions (7.39) and (7.41) are illustrated in Fig. 7.18. 

To determine the trace in the deviatoric plane, we recall that here I1 =I1t = I1c, i.e. 

elimination of this quantity from (7.39) and (7.41) yields 

 

 (7.42) 

 

where ρ= 2𝐽!. Recalling that the trace of the Coulomb criterion in the deviatoric 

plane is a straight line when σ1≥σ2≥σ3 corresponding to 0°≤θ≤ 60°, we obtain the 

result shown in principle in Fig. 7.19. 

 

I1t =σ1 + 2σ 3;                     J2t =
1
3
(σ1 −σ 3)

J2t +
k −1
3(2k +1)

I1t −
3σ c

2k +1
= 0

ρc
ρt

=
2Jc
2Jt

= 2k +1
k + 2
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Figure 7.19: Coulomb criterion in the deviatoric plane 

 

In order to further elucidate the properties of the Coulomb criterion, we consider 

its predictions for plane stress conditions. From (7.29), the results shown in Fig. 

7.20 are easily obtained (note that in this figure the usual convention of σ1≥σ2≥σ3 

has been abandoned). It appears that the predicted uniaxial tensile strength 

becomes σt = σc/k. 

Due to its simplicity, the Coulomb criterion is widely used in analytical 

applications, cf. for instance Chen (1975) for soil applications and Nielsen 

(1984) for concrete applications. In numerical applications, however, its use is 

impeded by the corners of the surface, cf. Fig. 7.19. By calibration of the 

parameter k, the criterion can be used to model a large variety of material, but, as 

we will see later, the ignorance of the influence of the intermediate principal 

stress σ2 implies that the criterion, in general, will underestimate the 

experimentally determined failure stresses. 
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Figure 7.20: Coulomb criterion for plane stress conditions 

 

 

7.4.3 Mohr’s failure mode criterion 
 

This failure mode criterion dates back to Mohr (1900) and it is based on Fig. 

7.15b) and the discussion following (7.31). From Figs. 7.15 and 7.16, we may 

have the situation shown in Fig. 7.21. 

 
Figure 7.21: a) Coulomb criterion and Mohr’s circle; b) interpretation of σ and τ 
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Consider the stress state (σ, τ) that satisfies the Coulomb criterion (7.31) in 

accordance with Fig. 7.21a). From Mohr’s circle of stress, the interpretation of σ 

and τ is displayed in Fig. 7.21b) where the x1, x2, x3-coordinate system is 

collinear with the principal directions of σ1, σ2 and σ3. From Fig. 7.21 a) follows 

that 2α+90°+ϕ=180°, i.e. 

 

α = 45° − φ
2

 

 

It seems tempting to assume that the plane illustrated in Fig. 7.21b) on which the 

failure stresses σ and τ act is also a failure plane where failure takes place in the 

form of sliding. This plane is also called a slip plane since the failure mode is 

postulated to be a movement along the plane. The angle β, which the failure 

plane makes with the largest principal stress direction (σ1) becomes β= 45°+ϕ/2 

as shown in Fig. 7.21b). 

 

 
Figure 7.22: a) Coulomb criterion and Mohr’s circle; b) interpretation of σ and τ 

 

Consider next the situation where the stress state (σ, τ) that satisfies the Coulomb 

criterion is located as displayed in Fig. 7.22a), the corresponding interpretation of 

σ and τ is shown in Fig. 7.22b). From Fig. 7.22a) follows that 360°-

2α+90°+ϕ=180°, i.e. 
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α =135° + φ
2  

 
Figure 7.23: illustration of Mohr’s failure mode criterion; a) uniaxial tension; b) uniaxial compression 

 
 

Again it is assumed that the plane in Fig. 7.22b) on which the failure stresses σ 

and τ act is a failure plane. The angle β which this failure plane makes with the 

largest principal stress direction (σ1) becomes β = 45°+ϕ/2 as illustrated in Fig. 

7.22b). It is observed that the two failure planes shown in Figs. 7.21b) and 7.22b) 

both contain the direction of the intermediate principal stress direction (σ2). From 

the discussion above we conclude that 

 

 (7.43) 

 

Mohr 's failure mode criterion postulates that  two failure 
planes exist. These planes contain the direction of  the 
intermediate principal  stress direction and  they both make 
the angle β = 45° +φ / 2 with the l argest  principal  stress  direction
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It is emphasized that the angle β = 45°+ϕ/2 is the angle to the largest principal 

stress direction (σ1) and that σ1≥ σ2≥ σ3, where tension is considered as a positive 

quantity. From the discussion above follows directly that if a Mohr criterion is 

used and if ϕ denotes the current friction angle, cf. Fig. 7.17, then conclusion 

(7.43) also holds. Conclusion (7.43) is illustrated in Fig. 7.23. 

It turns out that Mohr’s failure mode criterion is often in fair agreement with 

experimental results for a variety of materials.  

 

7.4.4 Rankine criterion and modified Coulomb criterion 
 

The Mohr-Coulomb criterion is a generalization of the Tresca criterion, to which 

it reduces for ϕ=0. The other extreme, ϕ=90°, leads to the Rankine criterion 

(1858), which provides the simplest basis for plasticity modeling for concrete. 

 
Figure 7.24: Rankine criterion viewed as a Coulomb criterion with the friction angle ϕ=90° 
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Figure 7.25: Mohr’s failure mode criterion for Rankine failure 

 

 
Figure 7.26: modified Coulomb criterion in the principal stress space 

 
 

This so-called Ranking criterion has the form 

 

 (7.44) 

 

and for obvious reasons, it is occasionally referred to as the maximum principal 

stress criterion. In a Mohr diagram, (7.44) takes the form shown in Fig. 7.24 and 

σ1 −σ t = 0;                σ1 ≥σ 2 ≥σ 3
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it is evident that (7.44) may be viewed as the envelope of all Mohr’s stress circles 

for which the stress state fulfills (7.44).  

With ϕ=90° and Mohr’s failure mode criterion (7.43) we obtain the failure plane 

for uniaxial tension as shown in Fig. 7.25, only one failure plane exists and it is 

perpendicular to the maximum principal stress direction. This result is in close 

agreement with experimental results for concrete and rocks where the failure 

manifests itself as a crack perpendicular to the maximum principal stress 

direction. 

Let us return to the Coulomb criterion and its prediction given by Fig. 7.20. 

To remedy the too high uniaxial tensile strength predicted by the Coulomb 

criterion, we may use a combined failure criterion, which states that failure is 

obtained, if 

 

 (7.45) 

 

is fulfilled. This is the modified Coulomb criterion, which due to its simplicity 

often is used in analytical calculations, cf. Nielsen (1984). 

 

kσ1 −σ 3 −σ c = 0               or               σ1 −σ t = 0
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Figure 7.27: modified Coulomb criterion for plane stress conditions 

 

Often the Rankine criterion is called a tension cut-off criterion and the 

appearance of the modified Coulomb criterion in the principal stress space is 

shown in Fig. 7.26. For biaxial stress state the modified Coulomb criterion is 

illustrated in Fig. 7.27. 

 

 

 

 

 

 

The yield criterion defines the elastic limits of a material under combined state of 

stress. As we know, the elastic limit in a simple tension test is the yield stress σ0, 

while in a simple shear test, it is the yield stress τ0. In general the elastic limit or 

 7.5 Yield criteria independent of Hydrostatic Pressure 
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yield stress is a function of the state of stress, σij. Hence, the yield condition can 

generally be expressed as 

 

 (7.46) 

 

where k1, k2, … are material constants, which, like σ0 and τ0  are to be determined 

experimentally. 

For isotropic materials, the orientation of the principal stresses, is immaterial, 

and the values of the principal stresses suffice to describe the state of stress 

uniquely. A yield criterion therefore consists in a relation of the form 

 

 (7.47) 

 

It has been shown that the three principal stresses σ1, σ2 and σ3 can be expressed 

in terms of the combinations of the three stress invariants I1, J2 and J3, where I1 is 

the first invariant of the stress tensor σij and J2 and J3 are the second and the third 

invariants of the deviatoric tensor sij . Thus, one can replace eq. (7.47) by 

 

 (7.48) 

 

Furthermore, these three particular principal invariants are directly related to 

Haigh-Westergaard coordinates ξ, ρ, θ in stress space. Therefore eq. (7.48) can 

also be written as  

 

 (7.49) 

 

 

 

f (σ ij,k1,k2,....) = 0

f (σ1,σ 2,σ 3,k1,k2,...) = 0

f (I1, J2, J3,k1,k2,...) = 0

f (ξ,ρ,θ,k1,k2,...) = 0



7. Yield and Failure Criteria 

 169 

 

Yield criteria of materials should be determined experimentally. An important 

experimental fact for metals, shown by Bridgman and others (1950), is that the 

influence of a hydrostatic pressure effect means that the yield function can be 

reduced to the form 

 

 (7.50) 

 

A stress-strain curve in simple tension does not, in itself, provide any information 

on the behavior under combined stress. The combined stress tests, analogous to 

simple tension, are termed proportional or radial loading tests. In these tests, all 

stresses are increased proportionately. In a biaxial state of stress, for example, σ1 

and σ2 are increased so as to keep the ratio σ1/σ2 constant. It seems that we would 

need to perform a number of tests in order to construct a yield locus. However, 

we will show that one point on the yield locus may give rise to twelve points  

(fig. 7.28) if the material (1) is isotopic, (2) is hydrostatic pressure independent, 

and (3) has equal yield stresses in tension and compression. Now suppose that a 

material yields in a state of stress, (3σ, σ, 0). Point A1 (3σ, σ, 0) in fig. 7.28 then 

lies on the yield locus on the σ1 – σ2 plane. If the material is isotropic, there is no 

reason why we should not relabel the axes in alternative way. We thus conclude 

that point A1 (σ, 3σ, 0) also lies on the yield locus. Further, if the material has the 

same response to tension and compression, points A3 (-3σ, -σ, 0) and A4 (-σ,-3σ,0) 

will also lie on the yield locus. Now considering A1 and A2 or A3 and A4, we see 

that they are mirror images about a lane aa’ bisecting the σ1 and σ2 axes. 

Similarly, A1 and A4 or A3 and A2 are symmetric about another line bb’ 

perpendicular to aa’. Hence, there are two symmetric axes for the yield locus. 

Moreover, if hydrostatic pressure has no effect on yielding we can add a 

hydrostatic state of stress, (h, h, h), to a yield stress state to generate another 

yield point. For example, if a hydrostatic pressure (-3σ, -3σ, -3σ) is added to the 

f (J2, J3,k1,k2,...) = 0
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yield stress point (3σ, σ, 0) then the stress state (0, -2σ, -3σ) is another yield 

point. Now we alter its coordinate such that a yield point B1 (-2σ, -3σ, 0) is 

obtained on the σ1 - σ2  plane. Similarly, one can get a new yield point C1 (2σ,σ,0) 

on the σ1 - σ2 plane by adding (-σ, -σ, -σ) to (3σ, σ, 0) and altering the coordinates 

correspondingly. Finally, because of symmetry, points B1 and C1 like point A1, 

can generate four positions B1, B2, B3, B4 and C1, C2, C3, C4 respectively, lying on 

yield locus. 

 
Figure 7.28: yield locus on σ1σ2 plane (σ3=0) generated from one test point A1 

 

Now, we have generated a total of twelve yield points on the σ1 - σ2  plane from 

one test point. Connecting these points with a smooth curve, we construct a yield 

locus as shown in fig. 7.28. Noting that this locus is generated from only one 

radial test point, it can be considered an approximation of the yield function of a 

biaxial state of stress for a material with isotropy, with the same response in 

tension and compression, and with no hydrostatic pressure effect on yielding. 
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We have discussed so far the general form and some characteristics of a yield 

function. The very useful yield criteria of Tresca and Von Mises for metals will 

be studied in the following sections. 

 

7.5.1 The Tresca Yield Criterion 
 
Historically the first yield criterion for a combined state of stress for metals was 

that proposed in 1864 by Tresca, who suggested that yielding would occur when 

the maximum shearing stress at a point reaches a critical value c. Stating this in 

terms of principal stresses, one half of the greatest absolute value of the 

difference between the principal stresses taken in pairs must be equal to c at 

yield, namely, 

 

 (7.51) 

 

where the material constant c, which is the cohesion, may be determined from 

the simple tension test. Then 

 

 (7.52) 

 

in which σ0 is the yield stress in simple tension. 

We recall that the hydrostatic stress has no influence on yielding and we may 

achieve this property by choosing the parameter k = 1 in Coulomb criterion, cf. 

(7.37). In this case (7.29) reduces to 

 

 (7.53) 

 

Max 1
2
σ1 −σ 2 ,

1
2
σ 3 −σ 2 ,

1
2
σ1 −σ 3

⎛
⎝⎜

⎞
⎠⎟ = c

c = σ 0

2

σ1 −σ 3 −m = 0;                σ1 ≥σ 2 ≥σ 3
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where m is a parameter. Requiring that this expression for uniaxial tension 

should provide the initial yield stress σy0 cf. Fig. 7.1, we obtain 

 

 (7.54) 

 

 
Figure 7.29: Tresca criterion in Mohr diagram 

 
Since k = 1, we conclude from (7.34) and (7.36) that the friction angle ϕ and the 

cohesion c are given by 

 

φ = 0;                 c =
σ y0

2
 

 

i.e. in terms of the formulation (7.31), (7.53) is equivalent with 

 

τ = c  

 

Therefore, in analogy with Fig. 7.16, we achieve the interpretation of this 

expression as shown in Fig. 7.29. 

σ1 −σ 3 −σ y0 = 0
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There are six different expressions in various regions of the σ1 - σ2 plane, 

depending upon the relative magnitudes and the signs of σ1 and σ2 (see fig. 7.30). 

In the first quadrant, between the σ1 axis ant the bisector of the two axes, the 

order of the stress requires that 

 

 (7.55) 

 

Hence, the yield criterion becomes σ1 = σ0 and gives the line AB. In the same 

quadrant, between the bisector and the σ2 axis, we have 

 

 (7.56) 

 

and the yield criterion σ2 = σ0 is represented by the lane BC. In the second 

quadrant we have 

 

 (7.57) 

 

Thus the yield criterion becomes σ2 – σ1  = σ0, and line CD is obtained. By 

proceeding similarly for the third and fourth quadrants, it can be found that the 

yield locus for plane stress is hexagon ABCDEF as shown in fig. 7.30. 

τmax =
σ1

2

τmax =
σ 2

2

τmax =
σ 2 −σ1

2
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Figure 7.30: yield criteria matched in tension in the coordinate plane σ3 =0 

 

 

To represent the yield surface in the principal stress space, eq. (4.35) is used here 

for the principal stresses. Assuming the ordering of stresses to be σ1 >σ2 >σ3, we 

can write eq. (7.51) in the form 

 

 (7.58) 

  

Expanding this equation and noting eq. (7.52), we obtain the Tresca criterion in 

terms of invariants, 

 

 (7.59) 

 

or identically in terms of the variables ξ, ρ, θ 

 

 (7.60) 

 

1
2
(σ1 −σ 3) =

1
3

J2 cosθ − cos θ + 2
3
π⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= k          (0 ≤θ ≤ 60°)

f (J2,θ ) = 2 J2 sin θ + 1
3
π⎛

⎝⎜
⎞
⎠⎟ −σ 0 = 0          (0 ≤ q ≤ 60°)

f (ρ,θ ) = 2ρ sin(θ + 1
3
π )−σ 0 = 0
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Since the hydrostatic pressure has no effect on the yield surface, eq. (7.59) or eq. 

(7.60) must be independent of hydrostatic pressure I1 or ξ, representing a 

cylindrical surface whose generator is parallel to the hydrostatic axis. On the 

deviatoric plane, eq. (7.59) or eq. (7.60) is a straight line passing through point A 

(with θ=0 and ρ= !
!
𝜎!) and point B (with θ=60° and ρ= !

!
𝜎!), as shown in fig. 

7.33. This is one sector of the yield locus on the deviatoric plane. Each of the 

five other possible orderings of the magnitude of the principal stresses gives 

similar lines in the appropriate sectors of the yield locus on the deviatoric plane 

and a regular hexagon ABCDEF is thus obtained. 

 
Figure 7.31: Tresca criterion; a) deviatoric plane; b) meridian plane 

 

 
Figure 7.32: Tresca surface in the principal stress space 
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Figure 7.33: yield criteria matched in tension in a deviatoric plane 

 

Now we can see that the yield surface is a regular hexagonal prism in principal 

stress space, as shown in fig. 7.32. The yield locus for a biaxial state of stress 

shown in fig. 7.30 is the intersection of the cylinder with the coordinate plane 

σ3=0. 

Isotropy means that there is no need to draw the yield surface in a general stress 

space (σij). Nevertheless, some intersections of particular planes with the surface 

in general stress space are of interest, e.g., the intersection with the σx –τxy plane. 

The latter intersection is the yield locus for combined normal stress and shear 

(fig. 7.35),  

 

 (7.61) 

 

which represents an ellipse in the σ-τ-plane. Expression (7.61) may be compared 

with the corresponding result using the von Mises criterion. 

σ x
2 + 4τ xy

2 =σ 0
2
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Figure 7.34: Tresca criterion for plane stress conditions 

 

 
Figure 7.35: Tresca ellipse in the στ plane 

 

 
 

From  (7.61) with σ = 0, the initial yield shear stress becomes 

 

 (7.62) 

 

τ y0 =
σ y0

2
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Figure 7.36: Mohr’s failure mode criterion for Tresca yielding; a) uniaxial tension; b) uniaxial 

compression 

 

As this shear stress is located along the shear meridian and as the maximum 

deviation between the von Mises criterion and the Tresca criterion occurs along 

this meridian, cf. Fig. 7.31a), a comparison between (7.67) and (7.62) reveals 

that any Tresca yield stress, at most, is 13.4% lower than the corresponding von 

Mises yield stress. 

Since the friction angle ϕ = 0 for Tresca’s criterion, Mohr’s failure mode 

criterion (7.34) states that any failure plane (slip plane) makes 45° with the 

maximum principal stress direction. This is illustrated in Fig. 7.36 and this 

prediction is in close agreement with experimental results for metals and steel. 

 

 

7.5.2 The Von Mises Yield Criterion 
 
Although the maximum shearing stress criterion is simple, it does not reflect any 

influence of the intermediate principal stress. The octahedral shearing stress or 

the strain energy of distorsion is the key variable for causing yielding of 

materials, which are pressure independent. The invariant J2 is in fact proportional 

to the distorsional strain energy, i.e. to the energy due to the changes of shape. 

Consequently, the von Mises criterion is equivalent to the condition that the 
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distorsional strain energy at the onset of yielding reaches a critical value. For 

initial yielding of metals and steel, the general experimental evidence is 

summarized in (7.13). As the hydrostatic stress I1 has no influence on the 

yielding, the general criterion (4.30) reduces to (7.12). The simplest assumption 

is then to ignore the influence of the complicated term cos3θ, which leads to 

F(J2) = 0, i.e. it is assumed that J2 takes a constant value at yielding, i.e. 𝐽!-c=0 

where c is a constant. This relation may be written in various manners, but the 

most convenient expression is obtained by 

 

 (7.63) 

 

where, for convenience, the factor 3 in front of J2 is inserted since 3𝐽! for 

uniaxial tension reduces to   3𝐽!=σ. According to the criterion, 3𝐽! takes a 

constant value for initial yielding and this constant value then becomes σy0 i.e. 

the initial yield stress in tension. Note that the second deviatoric invariant J2 is 

always nonnegative, and so its square root is a real number. The theory based on 

von Mises yield condition is often referred to as a J2 -plasticity. 

Criterion (7.63) is independent of the hydrostatic stress Il, i.e. it represents a 

cylindrical surface in the principal stress space with the meridians being parallel 

with the hydrostatic axis. This means that only the deviatoric stresses influence 

the criterion. Moreover, it is evident that (7.63) in the deviatoric plane represents 

a circle, i.e. all meridians are located at the same distance to the hydrostatic axis. 

These properties are illustrated in Fig. 6.37 and it appears that the circle in the 

deviatoric plane falls between the lower and upper bounds shown in Fig. 7.33. 

With these properties, the appearance of the yield surface in the principal stress 

space takes the form shown in Fig. 7.38. The von Mises yield condition means 

that the material yields when the distance of the corresponding stress point from 

the hydrostatic axis in the principal stress space reaches a certain limit value, 

3J2 −σ y0 = 0
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ρ0=τ0 2. In the deviatoric plane, the points satisfying the yield condition fill a 

circle. Since the hydrostatic component of stress has no effect on the J2  invariant, 

the yield surface corresponding to the von Mises criterion is a cylinder, 

rotationally symmetric with respect to the hydrostatic axis. 

 
Figure 7.37: von mises criterion (6.63); a) deviatoric plane; b) meridian plane 

 
Figure 7.38: von Mises surface in the principal stress space 

 

 
The criterion (7.63) was suggested by Von Mises (1913) and it is therefore called 

the von Mises criterion, it was anticipated, to some extent, by the proposal of 

Huber (1904) and the criterion is thus occasionally called the Huber-von Mises 

criterion. Hencky (1924) suggested an interesting physical interpretation of the 

criterion. Inside the initial yield surface given by (7.63), the material behaves 

linear elastic. The strain energy W of a linear elastic and isotropic material can be 

written as 
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W =Wd +Wv  

where 

 

Wd =Geijeij;               Wv =
1
2
Kεkkεmm  

 

It appears that Wd represents the deviatoric strain energy whereas Wv is the 

volumetric strain energy. Moreover, as eij and εkk are decoupled Wd and Wv are 

also decoupled. With Hookes law for the deviatoric response, we obtain 

 

Wd =
1
4G

sijsij =
1
2G

J2  

i.e. the von Mises yield criterion may be interpreted by saying that initial yield 

occurs when the deviatoric strain energy achieves a certain value. 

The octahedral shear stress τ0 is given by 𝜏! =
!
!
𝐽!. 

Another physical interpretation of the von Mises criterion is therefore to claim 

that the yielding occurs when the octahedral shear stress τ0, that acts on the 

octahedral plane exceeds a certain value. Expressed in the principal stresses, 

criterion (7.63) takes the form  

 

 (7.64) 

 

For plane stress conditions for σ3=0 holds, it follows that 
 

 (7.65) 

 
 
 

1
2

σ1 −σ 2( )2 + σ1 −σ 3( )2 + σ 3 −σ 2( )2⎡
⎣

⎤
⎦ −σ y0 = 0

σ1
2 +σ 2

2 −σ1σ 2 −σ y0 = 0
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Figure 7.39: von Mises ellipse in the σ1σ2  plane 

 

 
Figure 7.40: von Mises ellipse in the στ plane 

 

which represent an ellipse in the σ1σ2 plane as shown in fig. 7.39. Another stress 

state of interest is obtained by simultaneous uniaxial stressing and torsion of, for 

instance, a thin walled tube. This stress state is given by 
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σ ij =
σ τ 0
τ 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

             i.e.                sij =

2
3
σ τ 0

τ − 1
3
σ 0

0 0 − 1
3
σ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

 
We then obtain from (7.63) that 
 

 (7.66) 

 
 
which represent an ellipse in the στ plane, cf. Fig. 7.40. It may be of interest to 

determine the initial yield shear stress τy0 when σ=0 and from (7.66) we find that  

 

 (7.67) 

 

 

7.5.3 Experimental results for metals and steel - von Mises versus Tresca 
 

 

For initial yielding of metals and steel, we have already summarized the general 

experimental evidence in (7.13). Moreover, in relation to Figs. 7.33, 7.37 and 

7.31 it can then be argued that Tresca’s criterion must provide a lower bound 

whereas the von Mises criterion is located between the lower and upper bound. 

We also found that any Tresca yield stress, at most, is 13.4% lower than the 

corresponding von Mises yield stress. Let us now investigate whether these 

conclusions are in accordance with experimental data. 

It was claimed that initial yielding of metals and steel is independent of the 

hydrostatic stress Il. According to the extensive test series of Bridgman (1952), 

σ 2 + 3τ 2 −σ yo = 0

τ y0 =
σ y0

3
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this assumption is closely fulfilled when |Il| ≤ about 4σy0 i.e. for all cases of 

practical interest. The next issue mentioned in the summary (7.13) is that if the 

stress state σij results in initial yielding so does the stress state - σij. Also this 

assumption is closely fulfilled and as an example, the initial yield stress is the 

same for uniaxial tension and uniaxial compression. The last issue mentioned in 

(7.13) is the convexity of the yield surface and we will see that this assumption is 

also closely fulfilled. 

The classical results of Taylor and Quinney (1931) shown in Fig. 7.41 were 

obtained by subjecting thin-walled tubes to combined tension and torsion. The 

figure also shows the ellipses of von Mises and Tresca in accordance with (7.66) 

and (7.62) and it appears that the von Mises criterion fits the experimental data 

considerably better than the Tresca criterion. 

 

 
Figure 7.41: experimental results of Taylor and Quinney (1931) 
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Figure 7.42: deviatoric plane; experimental data of Lianis and Ford (1957) 

 
 
The same conclusion may be drawn from the experimental results of Lianis and 

Ford (1957). They tested commercially pure aluminum specially treated so that a 

well defined yield stress is obtained. They used a specially designed notched 

specimen whereby arbitrary uniform states of combined stresses can be 

produced, the results are illustrated in the deviatoric plane in Fig. 7.42 together 

with the predictions of von Mises and Tresca. This figure also demonstrates the 

convexity of the yield surface. 

It is concluded that the general experimental evidence summarized in (7.13) is 

well-founded and that the von Mises criterion fits the experimental data very 

closely and it should therefore, in general, be preferred as compared with the 

Tresca criterion. 
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The salient property for which the behavior of a material is called plastic is the 

irreversibility of deformation upon unloading. In fact in plasticity, strains exist 

when the material is unloaded and these residual strains are the plastic strains. In 

the previous chapter, we discussed various initial yield criteria, i.e. conditions for 

which plastic effects are initiated. When the stress state exceeds the initial yield 

criterion, plastic strains will. 

The basic behavior of an elasto-plastic material is summarized in Fig. 8.1. 

 
Figure 8.1: basic response of elasto-plastic material 

 
The behavior is linear elastic with stiffness E until the initial yield stress σy0, is 

reached, after that plastic strains develop. Unloading from point A, see Fig. 8.1, 

 8 Theory of Plasticity 
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occurs elastically with the stiffness E so that at complete unloading to point B, 

the residual strain amounts to the plastic strain εp developed at point A. 

Therefore, at point A, the total strain ε consists of the sum of the elastic and 

plastic strains, i.e. 

 

 (8.1) 

 

If we reload again from point B, cf. Fig. 8.1, the material responds elastically 

until the stress reaches the value σy at point A. The value σy is therefore the 

current yield stress, which, in general, differs from the initial yield stress σy0. 

On loading beyond point A the material behaves as if the previous unloading 

from point A had never occurred.  

The behavior sketched in Fig. 8.1 is our model for the real material behavior, but 

it turns out that this model behavior closely agrees with the real behavior of 

elasto-plastic materials. 

 
Figure 8.2: a) stiff-ideal plastic behavior; b) elastic-ideal plastic behavior 

 
To characterize plastic behavior, a number of idealized responses have been 

identified. For the simplest response shown in Fig. 8.2a), the behavior is termed 

stiff-ideal plastic since no deformation occurs before the yield point has been 

reached and since the yield stress is unaffected by the amount of plastic strains. 

ε = εe + ε p
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The behavior shown in Fig. 8.2b) is termed elastic-ideal plastic behavior: for 

many practical applications, a material may be idealized and assumed to have a 

negligible strain hardening effect, i.e. its uniaxial stress-strain diagram beyond 

the yield point can be approximated by a horizontal straight line, with a constant 

stress level σy0. Thus, plastic deformation is assumed to occur under a constant 

flow stress.  

In Fig. 8.3a) hardening plasticity is displayed. The material hardens in the sense 

that the stress needed to induce plastic flow increases. The hardening response 

shown in Fig. 8.3a) means that the current yield stress σy increases with 

increasing plastic strain, cf. Fig. 8.1, and this behavior is characteristic for 

alloyed steel and aluminum; moreover, aluminum lacks a sharply defined initial 

yield stress. 

In Fig. 8.3b), combined ideal and hardening plasticity is shown and this behavior 

is characteristic for mild steel. 

 
Figure 8.3: a) hardening plasticity characteristic for alloyed steel and aluminum; b) combined ideal and 

hardening plasticity characteristic for mild steel 
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Figure 8.4: hardening plasticity followed by softening plasticity; characteristic for rocks and concrete in 

compression 

 
Finally, Fig. 8.4 shows the development of hardening plasticity followed by 

softening plasticity, this response is typical for concrete, soil and rocks loaded in 

compression. 

The stress-strain plastic models in uniaxial case as shown in fig 8.1 are rather 

simple. However, the general behavior of the material under a complex stress 

state is not straightforward, because it involves six stress and six strain 

components. The question arises as to how the simple stress-strain relationship 

observed from a uniaxial stress test can be generalized to predict the behavior of 

the material under any general combined stress state. Thus a general framework 

for plasticity formulations will be established in this chapter. 

 

 
 
 
 

Let’s recall that a perfectly elastoplasic material subjected to uniaxial loading 

yields at a constant stress. During plastic flow under general multiaxial loading, 

the stress state can move along the yield surface, but the surface itself remains 

the same. However, in reality the microstructure of the material changes as 

plastic flow continues, and this results in a change of the properties observable in 

the macroscale. Under uniaxial loading, the stress transmitted by a yielding 

material can increase or decrease. An increase of the yield stress can be referred 

 8.1 Hardening  
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as to hardening, and its decrease is called softening. Typically, many materials 

initially harden and later soften. We will sometimes use the term hardening in a 

broader sense, meaning yield stress changes of any sign, negative hardening 

meaning softening. 

During hardening in a broad sense, the elastic domain undergoes an evolution. 

The elastic domain of a material is bounded by the initial yield surface, also 

called the elastic limit envelope. Due to microstructural changes in the material 

introduced by plastic flow, the elastic domain changes in size or position, or 

both. Its boundary at an intermediate state is usually called a loading surface.  

Loading surface is the yield surface for an elastoplastically deformed material, 

which defines the boundary of the current elastic region. If a stress point lies 

within this region, no additional plastic deformation takes place. If the stress state 

is on the boundary of the elastic region and tends to move out of the current 

loading surface, additional plastic deformation will occur, in addition to a change 

of configuration in the current loading surface. The current loading surface will 

change its configuration when plastic deformation takes place. 

This change of yield surface is called the hardening rule, i.e. 

 
Hardening rule =  rule for  how the yield  
surface changes with the plastic loading

 

 

Since the yield surface is fundamental to the plasticity theory, we will first 

discuss this issue. 

In general, we describe the initial yield surface by 

 

F(σ ij ) = 0;                   initial  yield  surface  

 

Since the yield surface in general varies with the development of plastic strains, 

we may express the current yield surface by 
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 (8.2) 

 

 

 

 

where we have introduced the so-called hardening parameters K1, K2,... that 

characterize the manner in which the current yield surface changes its size, shape 

and position with plastic loading. Before any plasticity is initiated, we know per 

definition that Kα=0. As yet, the number of hardening parameters is unknown, 

and, as indicated, we may have one, two or more hardening parameters. 

Moreover, at this point we do not know the type of the hardening parameters, 

which may be scalars or higher-order tensors. Therefore, we may collect all these 

hardening parameters into the notation Kα and use the following definition 

 

 (8.3) 

 

i.e. eq. (8.2) can be written as 

 

 (8.4) 

 

Since Kα=0 holds initially, it follows that 

 

 (8.5) 

 

 

 

f (σ ij,K1,K2,...) = 0

Kα = hardening paramers (α =1,  2,  ...)
Kα = 0 initially

f (σ ij,Kα ) = 0         current  yield  surface

f (σ ij, 0) = F(σ ij )
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i.e. when the hardening parameters are zero, the current yield surface coincides 

with the initial yield surface. Through the hardening parameters, (8.3) describes 

how the size, shape and position of the current yield surface vary with plastic 

loading and the explicit manner in which this occurs is given by the hardening 

rule, i.e. 
Choice of  hardening parameters =  choice of  hardening rule  

 

The hardening parameters Kα vary with the plastic loading. To model this, we 

assume that there exist some internal variables that characterize the condition, i.e. 

the state of the elasto-plastic material. As internal variables we may, for instance, 

use the plastic strains εp or some combinations of this tensor. 

The important point is that the internal variables are used to memorize the plastic 

loading history. As the internal variables characterize the state of the material, 

they are often termed state variables. 

Starting with the simplest case of ideal plasticity, as illustrated in Fig. 8.2b), the 

yield surface is unaffected by the plastic deformations, i.e. it remains fixed in the 

stress space.  

 
Figure 8.5: ideal plasticity where the yield surface remains fixed; a) deviatoric plane; b) meridian plane 
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This situation is illustrated in Fig. 8.5, where C refers to the compression 

meridian and T to the tensile meridian. In that case, no hardening parameters 

exist, i.e. (8.4) reduces with (8.5) to 

 

 (8.6) 

 

i.e. the current yield surface coincides with the initial yield surface. We conclude 

that 
For  ideal  plasticity,  the yield  surface
remains fixed  in the stress space

 

 

 

8.1.1 Isotropic Hardening 
 

Let us next assume that the shape and position of the yield surface remain fixed 

whereas the size of the yield surface changes. This situation is called isotropic 

hardening and is usually attributed to Hill (1950). As an example, we may 

consider the von Mises criterion where the initial yield surface is given by 

 

 (8.7) 

 

we may accomplish isotropic hardening by writing 

 

 (8.8) 

 

 

 

 

f (σ ij,Kα ) = F(σ ij ) = 0         ideal  plasticity

F(σ ij ) = 3J2 −σ y0 = 0

f (σ ij ) = 3J2 −σ y0 −K = 0
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Instead of the formulation (8.8), we may write 

 

 (8.9) 

 

 
Figure 8.6: isotropic hardening of the von Mises criterion; a) deviatoric plane; b) meridian plane 

 
Figure 8.7: isotropic hardening of the Drucker Prager criterion; a) deviatoric plane; b)meridian plane 

 
Isotropic hardening of the von Mises criterion is shown in Fig. 8.6. In this figure, 

the yield surface expands with increasing plastic deformation and this increase of 

the current yield stress evidently corresponds to the case of hardening plasticity 

illustrated in Figs. 8.1 and 8.3a). Mathematically, this is obtained by letting the 

function K in (8.9) increase with increasing plastic deformation. It is of interest 

that if, at some stage, we let the function K decrease with increasing plastic 

f (σ ij,Kα ) = F(σ ij )−K = 0
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deformation then the von Mises surface shanks in size and this decrease of the 

current yield stress corresponds to softening plasticity as illustrated in Fig. 8.4.  

As the next example of isotropic hardening, consider the Drucker-Prager 

criterion. Referring to (7.23), the initial yield surface is here given by 

 

F(σ ij ) = 3J2 +α I1 − β = 0  

 

where α and β are parameters and α is dimensionless. We observe that if α=0 

then the Drucker-Prager criterion reduces to the von Mises criterion of (8.7). 

The interpretation of the parameters α and β is illustrated in Fig. 8.7b). To obtain 

an isotropic hardening concept for the Drucker-Prager criterion, we recall that 

isotropic hardening is characterized by the shape and position of the yield surface 

being fixed while the size of the yield surface changes. Referring to the 

interpretation of the parameters α and β in Fig. 8.7b) we therefore obtain 

isotropic hardening by the formulation 

 

 (8.10) 

 

This isotropic hardening formulation is illustrated in Fig. 8.7 and we observe that 

it is possible to write (8.10) as 

 

f (σ ij,Kα ) = F(σ ij )−K = 0  

 

i.e. a format identical to that achieved for isotropic von Mises hardening, cf. 

(8.9). 

With this discussion, we may generally formulate isotropic hardening for an 

arbitrary yield function as 

 

f (σ ij,Kα ) = 3J2 +α I1 − β −K = 0
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 (8.11) 

 

which may be expressed as 

 

For  isotropic hardening,  the position and  shape of
the yield  surface remain fixed,  whereas the size of
the yield  surface changes with plastic deformation

 

 

Returning to isotropic hardening of the von Mises criterion, it is obvious that we 

may write (8.8) as 

 

 (8.12) 

 

where σy is the current yield stress. For uniaxial loading, (8.12) reduces to |σ|= σy. 

As illustrated in Fig. 8.9a), this implies that if we reverse the loading from point 

A where σ= σy, the isotropic hardening model will predict elastic unloading until 

we reach point B where |σ|=-σy. As a result, even after plastic strains have 

developed, the isotropic hardening model of von Mises predicts the same yield 

stress in tension and in compression. 

This prediction does not agree well with experimental results for metals and 

steel. Referring to Fig. 8.9b), experimental results show that point B, where 

plastic effects are again encountered, occurs much earlier than that predicted by 

the isotropic hardening model. This phenomenon was first observed by 

Bauschinger (1886) and is therefore called the Bauschinger effect.  

 

 

 

f (σ ij,Kα ) = F(σ ij )−K = 0;                  isotropic hardening

3J2 −σ y (κ ) = 0;              σ y (κ ) =σ y0 + K
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8.1.2 Bauschinger Effect 
 

The isotropic hardening model is simple to use, but it applies mainly to 

monotonic loading without stress reversals. Because the loading surface expands 

uniformly (or isotropically) and remains self similar with increasing plastic 

deformation (Fig. 8.8), it cannot account on the Bauschinger effect exhibited by 

most structural materials. 

 
Figure 8.8: subsequent yield surface for isotropic hardening material 

 
The term Bauschinger effect refers to a particular type of directional anisotropy 

induced by a plastic deformation; namely, an initial plastic deformation of one 

sign reduces the resistance of the material with respect to a subsequent plastic 

deformation of the opposite sign. The behavior predicted by the isotropic 

hardening rule is, in fact, contrary to this observation. The rule implies that 

because of work hardening, the material will exhibit an increase in the 

compressive yield stress equal to the increase in the tension yield stress. This is 

illustrated in fig.8.8, where the yield limit in the first loading direction (OAB) and 

in the reversed loading direction (OCD) are equal in magnitude. Since plastic 

deformation is an anisotropic process, it cannot be expected that the theory of 

isotropic hardening will lead to a realistic result when complex loading path with 

stress reversal are considered. 
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Figure 8.9: a) isotropic hardening; b) Bauschinger effect 

 
Figure 8.10: metals and steel; a) tension and compression test; b) kinematic hardening model for 

uniaxial loading 

 

 

8.1.3 Kinematic hardening 
 

The kinematic hardening rule assumes that during plastic deformation, the 

loading surface translates as a rigid body in stress space, maintaining the size, 

shape and orientation of the initial yield surface. This hardening rule, due to 
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Prager, provides a simple means of accounting for the Bauschinger effect. This 

rule is illustrated in fig. 8.11. As the stress point moves along its loading path 

from point A to point B, the yield surface translates as a rigid body. Thus the 

subsequent yield surface will wind up in the position indicated in fig. 8.11 when 

the stress point has reached position B. The new position of the yield surface 

represent the most current yield function, whose center is denoted by αij. Note 

that if the stress is unloaded from point B along the initial path of loading, i.e., if 

B now traces out path BAO, the material behaves elastically from point B to point 

V but then begins to flow again before the stresses are completely relieved. In 

fact the subsequent yield surface may or may not enclose the origin in stress 

space. As a consequence of assuming a rigid body translation of the loading 

surface, the kinematic hardening rule predicts an ideal Bauschinger effect for a 

complete reversal of loading conditions. For kinematic hardening, the equation of 

the loading surface has the general form 

 

 (8.13) 

 

where K is a constant and αij are the coordinates of the center of the loading 

surface (vector OO1), which changes with the plastic deformation. 

Equation (8.13) may be expressed as 

 

For  kinematic hardening the size and  the shape of  the 
yield  surface remain fixed  whereas the position of
yield  surface changes with plastic deformation

 

 

f (σ ij ) = F(σ ij −α ij )−K
2 = 0
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Figure 8.11: subsequent yield surface for kinematic hardening material 

 

 
 
 
 

 
Figure 8.12: for a given strain ε*, the corresponding stress is unknown unless we know the load history 

 

Consider the uniaxial loading in Fig. 8.12 where we unload to point B where the 

strain is ε*. It is obvious that if only the strain value ε* is known, we do not know 

whether the corresponding stress is σB or σC. We conclude that in plasticity, no 

 8.2 Plastic strains-Remarks 
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unique relation exists between the stress state σij and the strain state εij. 

Therefore, the constitutive relation for elasto-plasticity must be of an incremental 

nature. This means that for a given strain state the corresponding stress state is 

obtained by an integration of the incremental constitutive relations and the result 

of this integration will depend on the integration path, i.e. the load history. This 

load history dependence is illustrated in Fig. 8.12. 

The total strain ε is assumed to consist of the elastic and plastic strains, i.e. 

 

 (8.14) 

 

The elastic strains are determined by Hooke’s law i.e. 

 

 (8.15) 

 

 

 
Figure 8.13: linear elasticity. Normality of strain tensor εij to the surface in the stress space described by 

C(σij)=constant 

 
In solid mechanics, as well as in other branches of mechanics, many problems 

may be formulated by means of a potential function. This means that one 

quantity is obtained by differentiation of a scalar function, the potential function. 

ε = εe + ε p               or              ε ij = ε eij + ε
p
ij

σ ij = Dijklε
e
kl                 or                    ε eij = Cijklσ kl
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In the previous chapters, we also encountered such a potential function, namely 

the complementary energy C(σij) from which we obtain the strains by a 

differentiation, i.e. 

 

 (8.16) 

 

and this relation is characteristic for hyper-elasticity. For linear elasticity, the 

complementary energy C is given by  

 

 (8.17) 

 

which proves that the flexibility tensor Cijkl is positive definite. From (8.16) and 

(8.17) we conclude that 

 

 (8.18) 

 

If we consider the expression C(σij) = constant, then this expression describes a 

surface in the stress space as illustrated in Fig. 8.13. According to (8.16), the 

strain tensor is orthogonal to this surface and following (8.18) the scalar product 

σijεij is positive, i.e. εij is directed outwards, as shown in Fig. 8.13. 

We have observed that the strain tensor εij is normal to the surface 

C(σij)=constant. Let us next prove that C is convex. For a one-dimensional 

function g(x), convexity requires that d2g/dx2>0, cf. Fig. 8.14.  

ε ij =
∂C
∂σ ij

C = 1
2
σ ijε ij =

1
2
σ ijCijklσ kl > 0

σ ijε ij =σ ij
∂C
∂σ ij

> 0
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Figure 8.14: convex function in one dimension 

 
For the multidimensional function C(σij), the requirement of convexity is that the 

quantity 𝜕!𝐶 𝜕𝜎!" 𝜕𝜎!" is positive definite. From Hooke’s law εij=Cijklσkl and 

(8.16) we obtain 

∂ε ij
∂σ kl

= Cijkl =
∂2C

∂σ kl∂σ ij

 

 

Since Cijkl is positive definite so is 𝜕!𝐶 𝜕𝜎!" 𝜕𝜎!", i.e. C is convex. 

 

 

8.2.1 Drucker’s postulate  
 
We have already said what hardening and softening plasticity mean, and for 

uniaxial loading these phenomena are illustrated in Figs. 8.3 and 8.4. To obtain 

definitions applicable to general stress states, we will adopt the Drucker’s 

postulate (1951, 1964) and it will turn out that this postulate leads to the 

associated flow rule as well as to the convexity of the yield surface and the 

normality of the plastic flow. 

Because of the irreversible character of plastic deformation, work expended on 

plastic deformation cannot be reclaimed. This means that the work of the stresses 

on the change of plastic strain is positive whenever a change of plastic strain 

occurs. In this section we shall investigate what restrictions this irreversibility 

condition imposes on the plastic stress-strain relationship. Consider a unit 
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volume of material in which there is a homogeneous state of stress σ*ij on or 

inside the yield surface (Fig.8.15a). Suppose an external agency adds stresses 

along a path ABC lying inside the surface until σij on the yield surface is just 

reached. Only elastic work has taken place so far. Now suppose that the external 

agency keeps the stress state σij on the yield surface for a short time. Plastic flow 

must occur, and only plastic work takes place during the flow. The external 

agency then releases σij and returns the state of stress to σ*ij along an elastic path 

DE. As all purely elastic changes are completely reversible and independent of 

the path from σ*ij to σij and back to σ*ij, all the elastic energy is recovered. The 

plastic work done by the external agency on this loading and unloading cycle is 

the scalar product of the stress vector σij-σ*ij and the plastic strain increment 

vector dεpij. The requirement that this work is positive for plastic deformation 

leads to  

 

 (8.19) 

 

The geometric interpretation of the above expression is given below. If plastic 

strain coordinates are superimposed upon stress coordinates, as in fig 8.15, the 

positive scalar product requires an acute angle between the stress vector σij-σ*ij 

and the strain vector dεpij. Since all possible stress vectors, σij-σ*ij, must satisfy eq 

(8.19), this leads inevitably to the following consequences: 

•  Convexity: the yield surface must be convex. If not convex as shown in 

fig. 4.6b, the possible directions of dσij cover more than 180°for some 

planes through dεpij. Thus the angle between σij-σ*ij and dεpij may be 

greater than 90°. However eq.(8.19) requires the angle between them less 

than 90°. Hence the surface must be convex. 

• Normality: the plastic strain increment vector dεpij must be normal to the 

yield surface at a smooth point and lie between adjacent normal at a 

corner. As shown in fig. 8.15c, if the surface is convex and smooth at 

(σ ij −σ ij*)dε
p
ij ≥ 0
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point A, dεpij must be normal to the surface so that it makes a right angle or 

less with all possible σij-σ*ij, and condition (8.19) is satisfied. If the 

surface has a corner at point B, there is some freedom in the direction of 

dεpij but the vector must lie between the normal at an adjacent point to the 

corner so that eq (8.19) is satisfied.  

 

The irreversible character of plastic deformation requires the increment of plastic 

work to be positive 

 

 (8.20) 

 

Since the scalar product of the radius vector σij on the yield surface and the 

exterior normal of the yield surface 𝜕𝑓 𝜕𝜎!" is non-negative, they must make an 

acute angle for a convex surface. The multiplier dλ in is seen to be related to the 

magnitude of the increment of plastic work dWp, and this factor dλ must always 

be positive when plastic flow occurs in order to assure the irreversible nature of 

plastic deformation. Note that the yield function is f=F-K=0; thus, 𝜕𝑓 𝜕𝜎!" =

𝜕𝐹 𝜕𝜎!", and eq (8.20) can be reduced to  

 

dWp = dλσ ij
∂F
∂σ ij

= dλnF  

when F is a homogeneous function of degree n in the stresses, as it is for most 

theories of plasticity. 

dWp =σ ijdε ij
p = dλσ ij

∂f
∂σ ij

≥ 0
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Figure 8.15: convexity of the yield surface and normality of the plastic flow 
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Generalization of the elastic limit has been discussed in the previous chapter, 

where the elastic limit of a material under all possible combinations of stress was 

defined as a yield function in terms of stress σij in the form 

 

 (8.21) 

 
The significance of this yield function can best be interpreted geometrically as a 

surface in stress space. For a perfectly plastic material, the yield function is 

assumed to remain unchanged: the parameter k in eq. (8.21) is constant and the 

yield surface is therefore fixed in stress space. 

 

 
 
 
 

The flow rule or plastic flow, gives the ratio or the relative magnitudes of the 

components of the plastic strain increment tensor 𝜺p. Since the increment 𝜺p may 

be represented geometrically by a vector with nine components in strain space, 

the flow rule therefore also defines the direction of the plastic strain increment 

vector 𝜺p in the strain space. We have seen in the previous chapters that the 

elastic strain can be derived directly by differentiating the elastic potential 

function or complementary energy density function with respect to stresses σij. In 

1928 von Mises proposed the similar concept of the plastic potential function, 

which is a scalar function of the stresses, g(σij). Then the plastic flow equations 

can be written in the form 

 

f (σ ij ) = F(σ ij )− k = 0

 8.3 Elastic Limit and Yield Function 

 8.4 Flow rule 
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 (8.22) 

 

where 𝜆 is the plastic multiplier, is a positive scalar factor of proportionality, 

which is nonzero only if plastic deformations occur. The equation g(σij)=constant 

defines a surface of plastic potential. The direction cosines of the normal vector 

to this surface at a point σij on the surface are proportional to the gradient 

𝜕𝑔 𝜕 𝜎!". The relation above implies that the plastic flow vector 𝜺p, if plotted as 

a free vector in stress space, is directed along the normal to the surface of plastic 

potential. 

Of great importance is the simplest case when the yield function and the plastic 

potential function coincide, f=g. Thus 

 

 (8.23) 

 

and plastic flow develops along the normal to the yield surface with direction  

𝜕𝑓 𝜕 𝜎!"  and is directed outwards. We have then established the important 

property of 𝜺p being normal to the yield surface Fig 8.13. From now on we will 

recall the direction 𝜕𝑓 𝜕 𝜎!" with n. The above equation is called the associated 

flow rule because the plastic flow is connected or associated with the yield 

criterion, while relation (8.23) with f≠g is called a nonassociated flow rule. Von 

Mises used the associated flow rule for the development of his plastic stress-

strain relations for metals. 

 

 

 
 
 

!ε p
ij = !λ

∂g
∂σ ij

!ε p
ij = !λ

∂f
∂σ ij

 8.5 Prager consistency condition 
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Suppose that we have determined the potential function g, which for associated 

plasticity is taken as the yield function. Then use of the flow rule only determines 

the direction of the incremental plastic strains. However, the magnitude of 𝜺p is 

still unknown since the plastic multiplier it is as yet unknown. The next task is 

therefore to determine this quantity. 

It is a fundamental property of plasticity theory that during plastic development, 

the current stress state is always located on the current yield surface. The current 

yield surface changes in general during plastic loading but, by definition, the 

current stress state is always located on the current yield surface during this 

evolution. 

Having chosen the hardening rule, i.e. the hardening parameters, the current yield 

function is given in its general form by  

 

 (8.24) 

 

where Kα are the hardening parameters. Since f=0 during plastic loading, we can 

express the so-called consistency relation by 

 

 (8.25) 

 

which leads to 

 

 (8.26) 

 

 

 

f (σ ij,Kα ) = 0

!f = 0

∂f
∂σ ij

!σ ij +
∂f
∂Kα

!Kα = 0
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The consistency relation was introduced by Prager (1949) and (8.26) tells us that 

during plastic loading where the stress state varies, also the hardening parameters 

Kα vary in such a manner that the stress state always remains on the yield surface. 

The consistency condition is the key how to establish the magnitude of the 

plastic multiplier. In fact 

 

 (8.27) 

 

Since elastic strains can be written as the difference between the total strain and 

the plastic strain and plastic strains due to the flow rule can be written as  

 

 (8.28) 

 

we obtain the relation which expresses the magnitude of the plastic multiplier 

 

 (8.29) 

 

If Hp=0 we have the elastic perfectly plastic behavior of the material;  

If Hp>0 we are in the hardening part of the behavior of the material;  

If Hp<0 we are in the softening part of the behavior of the material.  

!σ = E !εe

!ε p
ij = !λ

∂f
∂σ ij

!λ = 1
hp

nE !ε           with          hp = Hp + nEm          where        Hp =
∂f
∂Kα

∂Kα

∂λ
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Figure 8.16: interpretation of the plastic modulus H 

 
We have a restriction in the softening behavior, in fact Hp has a limit condition in 

order to avoid having a 0 value in the denominator of the expression of 𝜆 

 

 (8.30) 

 

 

 

 
 
 
 

Substituting the plastic multiplier into the elastoplastic stress-strain relation 

yields 

 

 (8.31) 

 

Rearranging results in the elasto-plastic tangent operator Eep which relates the 

stresses and strains rates 

 

Hp < -nEm

!σ = E(!ε − !λm) = E !ε −m nE!ε
Hp + nEm

⎛

⎝⎜
⎞

⎠⎟

 8.6 Elastoplastic stiffness relation 
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 (8.32) 

 

where the elastoplastic material operator is 

 

 (8.33) 

 

 

 

 
 
 
 

Loading surface is the yielding surface for an elastoplastically deformed 

material, which defines the boundary of the current elastic region. If a stress 

point lies within this region, no additional plastic deformation takes place. If the 

state of stress is on the boundary of the elastic region and tends to move out of 

the current loading surface, additional plastic deformations will occur with a 

changed current loading surface, when plastic deformation takes place. Thus, the 

loading surface may be generally expressed as a function of the current state of 

stress (or strain) such that 

 

 (8.34) 

 

in which K is the hardening parameter. The response of the material after initial 

yielding differs in the various plasticity theories. This post yield response, called 

the hardening rule, is described by specifying the rule for evolution of the 

subsequent yield surfaces or loading surfaces. Several hardening rules have been 

proposed in the past in plastic analysis. Since the configuration change of the 

!σ = Eep !ε

Eep = E − 1
hp
E:m⊗ n:E = E − 1

hp
E:m( )⊗ n:E( )

f (σ ij,ε ij
p,K ) = 0

 8.7 Loading surface and loading criterion 
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loading surface is related to the plastic loading, it’s necessary to discuss the  

loading criterion for a work hardening material. For uniaxial behavior, the 

concepts of loading and unloading are evident. However, this is not the case 

under a mutiaxial stress state, and load/unload must be clearly specified. The 

loading surface itself is an essential part of defining loading and unloading. 

Loading or plastic flow occurs only when the stress point is on the loading 

surface and the additional loading or stress incremental vector dσij is directed 

outward from the current elastic region. To express the above statement more 

precisely, we introduce a unit vector n normal to the loading surface in stress 

space (fig. 8.17) whose components are given by 

 

nij =
∂f ∂σ ij

∂f
∂σ kl

∂f
∂σ kl

⎛
⎝⎜

⎞
⎠⎟

1
2

 

 
Figure 8.17: loading criterion for a work hardening material; a) uniaxial case; b) multiaxial case 

 
 
If the angle between the vector dσij and nij is acute, additional plastic deformation 

will occur. Thus, the criterion for loading is 
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 (8.35) 

 

On the other hand, if the two vectors dσij and nij form an obtuse angle, unloading 

will occur. Thus, the criterion for unloading is 

 

 (8.36) 

 

In the neutral loading case, the additional load vector dσij is perpendicular to the 

normal vector nij, and no additional plastic deformation will occur. The criterion 

for neutral loading is 

 

 (8.37) 

 

Recall the loading criterion for an elastic-perfectly plastic material: in this case, 

the initial yield surface becomes the limit surface with plastic deformation taking 

place only when f=0 and dσij is tangent to the yield surface. Thus, for a perfectly 

plastic material, there is no neutral loading case such as by eq. (8.37). 

 

 
 
 
 

We shall now take the von Mises yield function 
 

 (8.38) 

 
Then the flow rule has the simple form: 
 

if  f = 0 and  nijdσ ij > 0,  then !ε ij ≠ 0

if  f = 0 and  nijdσ ij < 0,  then !ε ij = 0

if  f = 0 and  nijdσ ij = 0,  then !ε ij = 0

f (σ ij ) = J2 − k
2 = 0

 8.8 Flow rule associated with von Mises Yield function 
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 (8.39) 

 
 
where sij  is the deviatoric stress tensor and 𝜆 is a factor of proportionality with 

the value  

 

 (8.40) 

 

Equation (8.39) can also be expressed in terms of the components of the strain 

increment and stresses as 

 

 (8.41) 

 

The above relation is known as the Prandtl-Reuss equations. The relationship 

between the plastic strain increment 𝜀p
ij

  and the von Mises yield function f=J2 or 

the flow rule associated with the von Mises yield condition can be shown 

graphically in the three dimensional principle stress space. It is best shown by a 

cross section on the hydrostatic plane and by a cross section on the deviatoric 

plane of the three-dimensional surface as in fig. 8.18. The normal to the yield 

surface as viewed along the hydrostatic axis is a radial line that is parallel to the π 

plane.  

!ε ij
p = !λ ∂f

∂σ ij

= !λsij

!λ =
= 0               whenever  J2 < k

2  or  J2 = k
2,  but  dJ2 < 0

> 0               whenever  J2 = k
2  and  dJ2 = 0                  

⎧
⎨
⎪

⎩⎪

!ε x
p

sx
=
!ε y
p

sy
=
!ε z
p

sz
=
!γ yz
p

2τ yz

=
!γ zx
p

2τ zx
=
!γ xy
p

2τ xy

= !λ
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Figure 8.18: flow rule associated with von Mises yield function 

 
Its direction is therefore parallel to the direction of the projection of the 

appropriate stress vector σij onto the π plane, which is precisely its deviatoric 

stress component vector sij. Equation (8.39) or (8.41) states that a small 

increment of plastic strain 𝜀p
ij

   depends only on the current state of deviatoric 

stress sij, not on the stress increment dσij, which is required to maintain plastic 

flow. Also the principal axes of stress σij or sij and the plastic strain increment 𝜀p
ij

 

coincide. Note that these equations are only statements about the ratio or the 

relative magnitudes of the components of the plastic strain increment tensor; they 

give no direct information about its absolute magnitude. According to eq. (8.39), 

there is no plastic volumetric deformation; that is, 

 

 (8.42) 

 

This can be seen in fig. 8.18a where the plastic strain increment vector 𝜀p
ij

   is 

normal to the hydrostatic axis, and the hydrostatic strain component, 𝜀p
oct

 is 

therefore zero. The total strain increment 𝜀ij is the sum of the elastic and the 

plastic strain increments. If Hook’s law is applied for the elastic component 𝜀e
ij

 

and the flow rule for the plastic component 𝜀p
ij

   we have 

 

!ε ij
p = !λsij = 0
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 (8.43) 

 

Equation (8.43) may also be separated into expressions for the volumetric and 

deviatoric or shear strain increments of the forms 

 

 (8.44) 

 

In practical applications, we expand eq. (8.43) explicitly in terms of stress and 

strain components, giving rise to three equations for the normal strains of the 

form 

 

 (8.45) 

 

and three equations for the shear strains of the form 

 

 (8.46) 

 

 

 

 
 
 
 

 

!ε ij =
1+ν
E
!σ ij −

ν
E
!σ kkδ ij + !λsij =

!σ kk

9K
δ ij +

!sij
2G

+ !λsij

!ε ij =
1
3K
!σ kk

!eij =
1
2G
!sij + !λsij

!ε x =
1
E
!σ x −ν !σ y + !σ z( )⎡⎣ ⎤⎦ +

2
3
!λ σ x −

1
2
σ y +σ z( )⎡

⎣⎢
⎤
⎦⎥
,   etc.

!γ yz =
1
G
!τ yz + 2 !λτ yz,   etc.

 8.9 Flow rule associated with Tresca Yield function 
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Figure 8.19: flow rule associated with Tresca yield function; a) normality of the plastic strain increment 

vector; b) vertex A as a limit of smooth surface 

 
We take the Tresca yield function as the plastic potential, which in principal 

stress space is a hexagonal prism consisting of six planes. The deviatoric section 

of the prism is shown in fig. 8.19a). Suppose that the principal stresses are σ1> 

σ2> σ3; the corresponding yield function is then 

 

 (8.47) 

 

According to the associated flow rule, the principal plastic strain increments 

satisfy the following relations 

 

 (8.48) 

 

f = F(σ ij )− 2K =σ1 −σ 3 − 2K = 0

!ε1
p = !λ ∂f

∂σ1

= !λ

!ε2
p = !λ ∂f

∂σ 2

= 0

!ε3
p = !λ ∂f

∂σ 3

= − !λ
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Similar results can be derived for the other five possible combinations of 

algebraic orders of magnitude of principal stress / principal strain increment 

space as shown in fig.8.19a). Anywhere on the plane AB where σ1> σ2> σ3 the 

directions of the plastic strain increments are parallel to each other and 

perpendicular to the plane AB of the Tresca hexagon. Similar relationships can be 

developed for other planes of the hexagon. If for example σ1> σ2= σ3, the 

situation is more involved, because the maximum shear stress is equal to the 

yield value K not only on the 45° shear planes parallel to the x2 axis but also on 

the 45° planes parallel to the x3 axis. We have therefore the freedom to assume 

that the shear slip may occur along either of the two possible maximum shear 

planes 

• 
σmax =σ1,     σmin =σ 3

!ε1
p, !ε2

p, !ε3
p( ) = !λ 1, 0,−1( )        for  !λ ≥ 0

 

 

• 
σmax =σ1,     σmin =σ 2

!ε1
p, !ε2

p, !ε3
p( ) = !µ 1,−1, 0( )        for  !µ ≥ 0

 

In this case we shall assume that the resulting plastic strain increment vector is a 

linear combination of the two increments given above, i.e. 

 

 (8.49) 

 

this situation corresponds to the special case where the current state of stress 

state σij lies on a vertex of the hexagon. As a result, the plastic strain increment 

vector must lie between the directions of the normal to the two adjacent sides of 

the hexagon (fig.8.19a). This vertex or singular point at a potential surface can 

!ε1
p, !ε2

p, !ε3
p( ) = !λ 1, 0,−1( )+ !µ 1,−1, 0( )        for  !λ ≥ 0,  !µ ≥ 0



8. Theory of Plasticity 

 220 

also be viewed as a limiting case of a smooth surface, and the flow rule can still 

be applied for a smooth surface at this corner point (fig. 8.19b). 

In general, at a singular point where several smooth yield surfaces intersect, the 

strain increments can generally be expressed as a linear combination of those 

increments given by the normal of the respective surfaces intersecting at the 

point. As a result, at the vertex, the direction of the strain increment vector 

cannot be determined uniquely. Further, if the yield surface contains a flat part 

(fig.8.19a), there also exist no unique relationship between the stress and the 

strain increment. In general, the correspondence between the plastic strain 

increment vector 𝜀p
ij

  and the stress vector σij is not always one to one. However, 

it will be shown in the following example that the incremental plastic work dWp 

done or the rate of dissipation of energy is always uniquely determined by the 

magnitude of the plastic strain rate given by 

 

 (8.50) 

 

where max|𝜀p| denotes the absolute value of the numerically largest principal 

component of the plastic strain increment vector. 

 

The Mohr-Coulomb yield surface is an irregular hexagonal pyramid. Its 

deviatoric sections are irregular hexagons as shown in Fig. 8.20. The yield 

function takes the following form 

 

 (8.51) 

 

dWp =σ1 !ε1
p +σ 2 !ε2

p +σ 3 !ε3
p = 2Kmax !ε p

σ1
1+ sinφ
2ccosφ

−σ 3
1− sinφ
2ccosφ

=1

 8.10 Flow rule associated with Mohr-Coulomb Yield Function 
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Figure 8.20: flow rule associated with Mohr-Coulomb yield surface 

 
where φ is the angle of internal friction and c is the cohesion. The above equation 

can also be written in a more compact form 

 

 (8.52) 

 

where f’c is the uniaxial compressive strength and m is the strength ratio between 

f’c and f’t, the uniaxial tensile strength. To obtain the expression for the plastic 

strain increment, the following three cases must be considered separately. 

 

Case1. The yield stress point lies on the surface plane of the pyramid, for 

example on face AB (see fig. 8.20) where σ1> σ2> σ3 and eq. (8.52) holds. 

According to the associated flow rule, we have the following plastic strain 

increments 

 

 (8.53) 

 

mσ1 −σ 3 = f 'c         for  σ1 ≥σ 2 ≥σ 3

ε1
p = m !λ,                ε2

p = 0,                ε2
p = − !λ                for  !λ ≥ 0



8. Theory of Plasticity 

 222 

or, in compact form 

 

 (8.54) 

 

Similar results can be obtained for the other five possible algebraic orderings of 

the principal stresses σ1, σ2 and σ3. These results are summarized and shown 

graphically in fig. 8.20. 

Notice that the plastic volumetric strain increment is 

 

 (8.55) 

 

since m= f’c /f’t ≥1, it follows that the Mohr-Coulomb material model with the 

associated flow rule aleays predicts volume dilatation except in the special case 

m=1, which reduces to the case of Tresca material model. From eq. (8.55) we 

can separate the sum of the principal plastic strain increments into two parts: the 

compressive part 

 

 (8.56) 

 

and the tensile part  

 

 (8.57) 

 

Such a separation can be done as well for the other five plans of the pyramid. 

Then we have 

 

!ε1
p, !ε2

p, !ε3
p( ) = !λ m, 0,−1( )          for  !λ ≥ 0

!εv
p = !ε1

p + !ε2
p + !ε3

p = !λ(m −1)

!εc
p = !λ∑

!ε t
p = m !λ∑
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 (8.58) 

 

and 

 

 (8.59) 

 

Now consider further the plastic work increment dWp. By definition, we have 

 

 (8.60) 

 

Using eq. (8.52) and (8.56) eq. (8.60) becomes 

 

 (8.61) 

 

 

Case2. The yield stress point lies on the edges of the pyramid, for 

example, along the edge A (fig.8.20), where σ1> σ2= σ3 and the two surfaces 

 

mσ1 −σ 3 = f 'c  

and 

 

mσ1 −σ 2 = f 'c  

 

!ε t
p∑
!εc
p∑
= m

!εv
p = !ε t

p∑ − !εc
p∑

dWp =σ1 !ε1
p +σ 2 !ε2

p +σ 3 !ε3
p = σ1m −σ 3( ) !λ

dWp = f 'c !εc
p∑

or

dWp =
f 'c
m

!ε t
p∑
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intersect. In this case, the following equation can be applied 

 

!ε ij
p = !λk

∂fk
∂σ ijk=1

n

∑  (8.62) 

 

Thus, the corresponding plastic strain increments are expressed as  

 

 (8.63) 

 

This strain vector lies between the directions of the normal to the two adjacent 

surfaces. Similar relations can be obtained for the other five edges. 

The plastic volume change is obtained from eq. (8.63) as 

 

!εv
p = m !λ1 + !λ2( )− !λ1 + !λ2( )  

which is the sum of two parts: the compressive part  

 

!εc
p∑ = !λ1 + !λ2  

 

and the tensile part 

 

!ε t
p∑ = m( !λ1 + !λ2 )  

 

and we can see that 

 

 (8.64) 

 

!ε1
p, !ε2

p, !ε3
p( ) = !λ1 m, 0,−1( )+ !λ2 m,−1, 0( ) = !λ1 + !λ2( )m,− !λ2,− !λ1⎡

⎣
⎤
⎦

!εv
p = !ε t

p∑ − !εc
p∑
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It can be seen that 𝜖v
p >0 for m>1, and that eq. (8.58) and (8.59) are still valid. 

By a similar deviation to that of eq. (8.60), we can obtain the plastic work 

increment expression dWp in the following form 

 

 (8.65) 

 

 

Case 3. The yield stress point coincides with the apex of the pyramid, 

where six surfaces intersect. Following the same procedure, a similar expression 

to eq. (8.63) for the plastic strain 𝜖p
t, can be obtained. We can also show that 

equations (8.59) and (8.61) are still valid. 

 

  

dWp = σ1m −σ 3( ) !λ1 + σ1m −σ 2( ) !λ2 = f 'c !λ1 + !λ2( ) = f 'c !εc
p∑
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In order to propose a new asymmetric yield function for metallic materials on the 

first invariant of the stress tensor and the second and third invariant of stress 

deviator some experiments on aluminum specimens were done, which results are 

reported in this thesis, and also some experiments on steal material will be 

performed in the next months. The aluminum specimens are tested under 

different load scenarios, which generate different stress tensor invariants and are 

transformed into Haigh–Westergaard coordinates and the corresponding Lode 

angle for each scenario has been obtained. 

In the different loading scenarios, the Lode angle parameter is changing from 0 

degrees, which corresponds to uniaxial tension condition and goes up to 30 

degrees, which is pure shear condition. The results can show how the third 

invariant of stress deviator affects the behavior of aluminum material. 

To look at the compressive behavior, and capture the possible difference between 

compressive and tensile behavior, further experiments has been done to go 

beyond 30 degrees up to 60 degrees which represents the uniaxial compression 

case. Since the difference between compression and tension cannot be captured 

by only considering second and third invariants, there is a need to introduce 

stress triaxiality measure or the first invariant of stress tensor to capture the 

difference in behavior of aluminum under tension and compression. 

 9 Specimens Geometry and 
Experimental Scenarios 
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Digital Image Correlation (DIC) was used as a full-field measurement method 

for displacement field and calculation of the strain distribution of the Aluminum 

specimen under abovementioned loading scenarios. Using this method, plastic 

flow rule can be obtained by integration of the plastic strain rate through the 

physical domain of the specimen and it can be expressed in terms of first 

invariant of stress tensor and the second and third invariant of stress deviator. 

The results can be used to investigate the crack growth based on the local and 

global strain distribution. 

The pressure- sensitivity of Aluminum has been investigated based on the 

observed localization angle using the captured images by DIC. In case the 

observed angle of failure for both tension and compression tests is equal to π/2, 

one can say that the behavior of Aluminum follows the Tresca yield criterion and 

it should be considered to behave like a pressure-insensitive material. In case the 

angle of friction Ф for Aluminum is not equal to zero, according to the Mohr–

Coulomb yield criterion, the observed failure angle will be π/2+Ф/2, which 

shows that Aluminum is behaving like a pressure-sensitive material. 

Analytical and numerical localization analysis has been done using an associated 

flow rule in 3D to calculate the orientation of failure surface considering von 

Mises, Tresca, developed two invariant formulations and the three invariant 

formulations. The localization analysis results were compared with experimental 

results and the difference between them has been discussed in this paper. 

 
 

 

 

The experimental program is designed such that it provides insight in the 

dependence of the yielding and plastic behavior of aluminum on the Lode angle 

parameter and on the first invariant of the stress tensor over a wide range of 

stress states. It includes experiments on specimens which are machined from  

round bars of two inches diameter, such that they have the two ends with a wider 

 9.1 Specimen’s geometry 
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diameter, gradually linked to the central part, which has a smaller diameter of 1 

and 1/6 inches. The ends have a wider diameter in order to fasten the specimens 

in the grips of the axial torsion machine. The central part has a smaller diameter 

in order to localize the yielding, plastification and eventually failure of the 

aluminum in a confined zone. The geometry of the specimens was designed 

depending on the capabilities of the Axial-Torsion Machine, which was used to 

perform the tests. The maximum torque the Axial-Torsion Machine is capable to 

apply to the specimen is T = 11.3 kNm (=100 kip-in), the maximum axial force 

in tension and compression is F =1201.02 kN (=270 kips) and the maximum 

angle of twist is α=120°. The nominal geometry of the specimens is shown in the 

figure below. 
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Figure 9.1:nominal  geometry of the aluminum specimen 

 

 

The calculations that were made to make sure the specimens with the proposed 

geometry could have reached at least yielding with the capabilities of the Axial-

Torsion Machine are  straightforward and are reported in the table below. 
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The actual geometry of the specimens, which were machined with the lathe, is a  

little different from the nominal geometry due to the shaping of the specimens. 

The diameter of the central part of the specimens was measured in five different 

sections in order to capture the possible imperfections due to the degree of  

precision of the lathe machine. 

The actual dimensions of each specimen are reported below. 

 

 

 

 
 

 

Specimen 1A- Tension Test 

Lode angle θ=0° 

L = 310 mm 

G = 81.1 mm 

D = 25.4 mm 

B = 110 mm 

A = 100 mm 

Diameter(D 30 [mm]
Length(B 127 [mm]

E 68900 [Mpa]
G 26000 [Mpa]
J 39760.8 [mm^4]
σy 260 [Mpa]
σp 310 [Mpa]
τy 150.11 [Mpa]

Fy Fp Ty Tp Ncr
[kN] [kN] [kNm] [kNm] [kN] [rad] [°]

183.783 219.126 0.796 1.061 1676.357 0.048882 2.80
<F=1201;kN;OK <F=1201;kN;OK <T=11.3;kNm;OK <T=11.3;kNm;OK >Fy=183.783kN;OK <α=2.09rad;OK <α=120°;OK

φy
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d1 = 29.87 mm 

d2 = 29.89 mm 

d3 = 29.92 mm 

d4 =29.89 mm 

d5 = 29.85 mm 

 

 

 

 

Specimen 6A- Tension-Torsion Test 

Lode angle θ=10° 

L = 305 mm 

G = 81 mm 

D = 25.4 mm 

B = 110 mm 

A = 97.5 mm 

d1 = 29.95 mm 

d2 = 29.92 mm 

d3 = 29.92 mm 

d4 =29.92 mm 

d5 = 29.92 mm 

 

 

Specimen 7A- Tension-Torsion Test 

Lode angle θ=20° 

L = 310 mm 

G = 88.1 mm 

D = 25.4 mm 

B = 120 mm 

A = 95 mm 

d1 = 29.69 mm 

d2 = 29.67 mm 

d3 = 29.64 mm 
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d4 =29.67 mm 

d5 = 29.67 mm 

 

 

 

 

 

 

 

 

 

Specimen 4A- Torsion Test 

Lode angle θ=30° 

L = 305 mm 

G = 94 mm 

D = 25.4 mm 

B = 125 mm 

A = 90 mm 

d1 = 29.92 mm 

d2 = 29.95 mm 

d3 = 29.92 mm 

d4 =29.95 mm 

d5 = 29.92 mm 

 

 

 

Specimen 10A- Compression-Torsion 

Test 

Lode angle θ=40° 

L = 308 mm 

G = 91 mm 

D = 25.4 mm 

B = 125 mm 

A = 91.5 mm 
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d1 = 29.72 mm 

d2 = 29.69 mm 

d3 = 29.69 mm 

d4 =29.67 mm 

d5 = 29.72 mm 

 

 

 

 

Specimen 9A- Tension-Torsion Test 

Lode angle θ=50° 

L = 308 mm 

G = 88.3 mm 

D = 25.4 mm 

B = 125 mm 

A = 91.5 mm 

d1 = 29.87 mm 

d2 = 29.85 mm 

d3 = 29.82 mm 

d4 =29.87 mm 

d5 = 29.92 mm 

 

 

 

Specimen 8A- Tension-Torsion Test 

Lode angle θ=50° 

L = 307 mm 

G = 89.6mm 

D = 25.4 mm 

B = 124 mm 

A = 91.5 mm 

d1 = 29.77 mm 

d2 = 29.77 mm 
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d3 = 29.77 mm 

d4 =29.77 mm 

d5 = 29.79 mm 

 

 

 

 

 

 

 

 

The aluminum used in the specimens is the alloy 6061-T6 Aluminum. The 

specimens are obtained from turning cold rolled round bars. The mechanical 

properties and the alloy composition are reported in the tables below. 

 

 

Alloy composition 

Aluminum (Al) 95.9 to 98.6 % 

Magnesium (Mg) 0.8 to 1.2 % 

Silicon (Si) 0.4 to 0.8 % 

Iron (Fe) 0 to 0.7 % 

Copper (Cu) 0.15 to 0.4 % 

Chromium (Cr) 0.04 to 0.35 % 

Zinc (Zn) 0 to 0.25% 

Manganese (Mn) 0 to 0.15 % 

Titanium (Ti) 0 to 0.15 % 

Residuals 0 to 0.15 % 

 

 

 

 9.2 Material 
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Material properties 

Density 2.7 g/cm3 

Elastic modulus 69 GPa 

Elongation at break 17 % 

Poisson’s ratio 0.33 

 Shear strength 270 MPa 

Ultimate tensile strength 310 MPa 

Yield tensile strength 260 MPa 

Thermal expansion 23.5 µm/m-K 

 

 

 

 

 

To look at the different behavior aluminum exhibits depending on the Lode 

parameter and on the first invariant of the stress tensor, different testing scenarios 

were designed in order to vary the Lode angle θ, where θ in the Haigh-

Westergaard coordinate system represents the angle in the deviatoric π-plane 

between the projection of the σ1 axis and the line, which connects the hydrostatic 

axis and the stress point (cfr. 4.6). 

The different loading scenarios are the following: 

 

θ=0° Pure Tension Test 

θ=10° Tension-Torsion Test 

θ=20° Tension-Torsion Test 

θ=30° Pure Torsion Test 

θ=40° Compression-Torsion Test 

θ=50° Compression-Torsion Test 

θ=60° Pure Compression Test 

 

 9.3 Experimental scenarios 
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Figure 9.2: a) uniaxial compression, θ=60°; b) uniaxial tension, θ=0°; c) tension-torsion test, θ=10°, 

θ=20°; d) compression-torsion test, θ=40°, θ=50°. 

 

For each of the seven scenarios, three specimens were tested in order to have a 

consistent experimental data point for each scenario. With a MatLab code, for 

each scenario the first invariant of the stress tensor and the second and third 

invariant of the stress deviator have been calculated in addition to the ratio 

between the torque and the axial force (tension or compression) as it regards the 

combined tension-torsion and compression torsion tests. 

 

 

 

 

For each scenario the stress state was found out with a MatLab code. In order to 

perform the tension-torsion and the compression-torsion tests, the ratio between 

the axial force and the torque was also calculated depending on the actual 

geometry of the specimens for each scenario.  

 

 9.4 Characterization of the stress state for each scenario 
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θ = 0° (uniaxial  tension) →  σ =
1 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ =10° (tension + torsion) →  σ = 0.42
1.62 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ = 20° (tension + torsion) →  σ = 0.55
0.64 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ = 30° (puretorsion) →  σ =
0 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ = 40° (compression + torsion) →  σ = 0.55
−0.64 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ = 50° (compression + torsion) →  σ = 0.42
−1.62 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ = 60° (uniaxial  compression) →  σ =
−1 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

Figure 9.3:stress state for each scenario. 
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θ =10° (tension + torsion) →  Specimen 6A

σ = 0.42
1.62 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A6A =
π ⋅1.1782

4
=1.089in2

F =σ11 ⋅A =1.7656lb

T = σ12 ⋅π ⋅r3

2
= 0.3209lb ⋅ in

F
T

= 5.5

 

 
Figure 9.4: ratio between the torque and the axial force for θ=10° 

 
 

 
θ = 20° (tension + torsion) →  Specimen 7A

σ = 0.55
0.64 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A7A =
π ⋅1.1772

4
=1.088in2

F =σ11 ⋅A = 0.6963lb

T = σ12 ⋅π ⋅r3

2
= 0.3201lb ⋅ in

F
T

= 2.175

 

 
Figure 9.5: ratio between the torque and the axial force for θ=20° 
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θ = 40° (compression + torsion) →  Specimen 10A

σ = 0.55
−0.64 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A10A =
π ⋅1.1682

4
=1.071in2

F =σ11 ⋅A = −0.6857lb

T = σ12 ⋅π ⋅r3

2
= 0.3128lb ⋅ in

F
T

= −2.192

 

 
Figure 9.6: ratio between the torque and the axial force for θ410° 

 
 
 
 

θ = 50° (compression + torsion) →  Specimen 8A

σ = 0.42
−1.62 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A8A =
π ⋅1.1722

4
=1.083in2

F =σ11 ⋅A = −1.7536lb

T = σ12 ⋅π ⋅r3

2
= 0.3177lb ⋅ in

F
T

= −5.5

 

 
Figure 9.7: ratio between the torque and the axial force for θ=50° 
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In order to investigate the influence of the Lode angle parameter, of the second 

invariant of the stress deviator and of the first invariant of the stress tensor on the 

behavior of metals, experiments on aluminum specimens were performed using 

an Axial Torsion Machine, which has the capability to apply torque, axial forces 

in tension and in compression and combinations of the two abovementioned 

actions. The Axial Torsion Machine is connected and controlled by a software in 

which the user can set all the testing features. The same software collects the 

experimental data as forces and displacements during the whole test. To collect 

the strain distribution data during the test a Digital Image Correlation System 

was used. 

 

 
 
 
 

The Axial Torsion Machine used to perform the tests is a load frame structure 

designed to provide a high rigidity for high force axial-torsion applications. It 

features a 4-column symmetrical construction with a fixed platen and moveable 

crosshead on hydraulic lifts. It’s equipped with linear and rotatory actuators, 

servo valves, service manifold, biaxial load cells, LVDT (linear variable 

 10 Experimental Setting 

 10.1 Shore Western Axial Torsion Machine  
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differential transformer: is a type of electrical transformer used for measuring 

linear displacement) and RVDT (rotary variable differential transformer); it is 

supplied with hydraulic crosshead locks, load cells, grips and extensometers. The 

Axial Torsion Machine utilizes four smooth chrome plated precision ground 

columns to provide long life and low friction crosshead position changes with 

high alignment accuracy. The crosshead is vertically adjustable using hydraulic 

lifts via a simple control panel. 

 

 
Figure 10.1: Shore Western Axial Torsion Machine 
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The Shore Western Control System (SWCS) is a program that is graphically built 

using a series of steps, defined in a flow-based diagram, that can perform simple 

or very complex multi-threaded tasks. The user interface can be built by Shore 

Western engineers, or you may choose to build them or modify them yourself. In 

our case we built it ourselves. Once the user-interface has been built, we simply 

selected from a menu of pre-defined screens that provided us with all the 

parameters we need to run our test.  A very powerful feature of the SWCS is its 

Block Programming capability. A feature rich menu of blocks are available to 

string together to perform highly complex process control tasks. Blocks are 

added from a pallet into the program, and wired together on the output tab of 

one, and on the input tab of another. Blocks can easily be rewired or deleted too. 

With a right click, they can be copied and pasted within the program, or across to 

another one. The blocks can be moved on a grid, and named to create a visual 

view of the block program that is very easy to understand at a glance. The block 

programmer provides automatic branching when the system encounters a 

Warning, Soft Stop, Hard Stop, Station Stop or E-Stop event, so that users can 

define actions that are responses to those conditions. The programmer supports 

multiple threads, with inter-thread communication via virtual switches or flags, 

so that multiple actions can be performed in parallel. For example, you may want 

to ramp up in displacement control, while monitoring load. When a certain load 

is reached, you may want to ramp to a different level. In this case, you can define 

the ramps in the main program, and create a second thread that monitors loads. 

When the load is reached, the second thread notifies the main thread via a virtual 

switch, and the main thread moves on to the next step.  

 10.2 Shore Western Software 
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Blocks are available in the following categories:  

Algorithm  

• Mode Switch. For example, from displacement control to load control.  

• Auto balance. This block is typically used in a program that turns on low 

pressure to the actuator. Before applying pressure, you need to be sure the 

servo loop output is zero, to close the servo valve and prevent actuator 

motion.  

Data Acquisition  

• Start/Stop Data Acquisition and Logging  

• Taring. To remove transducer and command offsets. For example, if you 

load a specimen in displacement control, and the actuator is not at 

midstroke, you may want to call the new position “zero” so that your test 

data is easier to read.  

• Level Switches. These blocks are used to monitor response channels, and 

switch when they reach a certain levels. The levels can be absolute, or 

there is a block that can watch for a level drop, or level increase. This is 

useful for monotonic tests, where you want to detect specimen failure, or 

perhaps you need to wait for a pressure to rise before continuing. 
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Figure 10.2: Shore Western Block Programming 

 

One of the reasons Block Programming is so powerful is that it can be linked in 

to a custom user interface. The user environment is set up in hierarchical layers: 

Controls and Panels.  

Custom Controls  

Controls are individual groupings of buttons, lights, meters and sliders that can 

be invoked as floating windows, or embedded into Panels. Controls can be nested 

within each other, so that a given layout can be used in many places throughout 

the user environment. For example, you may have a control for turning-on the 

hydraulics. One button runs a Block Program that checks the status of the 

system, asks the user a question or two, auto balances the servo loops, and turns 

the hydraulics to low pressure. Another button may turn from low pressure to 

high pressure. The panel may also include buttons to reset interlocks, indicate E-
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Stop status, and so on. The control can be created, and embedded anywhere in 

the software. All the elements in a custom control can be copied and pasted 

within the control, and also across controls. Controls can be saved to disk or 

imported from another source.  

 

Custom Panels  

The user interface is divided into four quadrants. The quadrants can be split and 

resized, to create custom views. Any one quadrant can fill the window. The 

quadrants themselves contain panels. These may be predefined, such as the 

Multi-Axis Function Generator, or the Calibration screen, or they can be custom 

built. Custom buttons, lights, meters, sliders, and pop-up controls can be 

embedded into the Panels, as can Controls (above). This means that you can 

create a panel to perform PID tuning, for example, that takes an instance of the 

Multi-Axis Function Generator, adds hydraulic controls, and pop-ups for the PID 

tuning sliders. The panel includes a scope, and the function generator parameters, 

the settings of which can all be saved in the Application (see below). All the end-

user needs to do, is select the tuning window from the Applications list, and 

everything is at their fingertips.  

Panels can be saved to disk or imported from another source. Note that Card 

Diagrams, the Block Program Editor, and Event Log are not panels that can be 

customized.  
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Figure 10.3: Custom Panel 

  
 

 

Displays  

Three different data displays are available in the software, a time history 

oscilloscope, a frequency domain analyzer, and an X-Y plotter. The displays 

feature the following capabilities:  

• Multiple Axes for plotting different variables (scope only)  

• Auto Scaling  

• Manual Scaling  

• Zoom Scaling  

• Filtering and decimation of displayed signals (scope and X-Y)  

• Setting colors and line widths  

• Saving, exporting, and importing  
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Data Acquisition  

Two types of data acquisition can be defined for a test: continuous logging, or 

cycle-based logging.  It is possible to trigger continuous data collection 

manually, by using the start button on the Multi-Axis Function Generator, or via 

a block in the Block Programmer. You can define cyclic logging where, for 

example, you can collect 10 cycles of data every 1000 cycles of testing. At the 

same time, we collect data into a circular buffer, typically 200 cycles long. If 

something happens in the test, you can step back through the buffer, and examine 

each cycle in turn, to see where the change occurred.  

 

Figure 10.4: Shore Western Software 
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In addition to the data acquisition from the Axial Torsion Machine trough the 

Shore Western software, also a Digital Image Correlation System was used in 

order to capture the displacements and the strains which occurred during the 

tests. Digital image correlation is an optical method that employs tracking and 

image registration techniques for accurate 2D and 3D measurements of changes 

in images. This is often used to measure deformation (engineering), displacement 

and strain. DIC tracks the position of the same physical points shown in a 

reference image and a deformed image. To achieve this, a square subset of pixels 

are identified on the speckle pattern around point of interest on a reference image 

and their corresponding location determined on the deformed image. The digital 

images are recorded and processed using an image correlation algorithm.  

Many parameters are included while obtaining accurate DIC results. Some of the 

parameters include speckle size, speckle density, type of algorithm, subset size, 

subset overlap, gray level interpolation, etc. Highly optimized input parameters 

provide very accurate results.  

Before starting with the measuring procedure with the DIC system it was 

necessary to prepare the specimens. The specimens were painted with a white 

varnish and subsequently, black random dots were drawn on the smooth surface 

of the specimens to generate a speckle pattern, which needed to have a good 

contrast to allocate the pixels in the images and it had to be  non glossy. 

 10.3 Digital Image Correlation System (DIC) 
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Figure 10.5: specimens painted with a white varnish and black random dots 

 

After being painted, the specimen was fixed in the grips of the Axial Torsion 

Machine. Before starting the testing, two 12 megapixel Gigabit cameras with 50 

mm fixed local lenses were placed in front of the sample as shown in the figure 

below and calibration procedures were done in order to determine the correct 

working distance of the device and the position and the position of the cameras 

with respect to each other. 
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Figure 10.5: test setup and position of the DIC system 

In order to eliminate interruptions from surrounding light, a powerful light source 

was employed to illuminate the sample and a corresponding filter was utilized to 

let only the reflected light go through the cameras lenses.  

 

Figure 10.6: light source with a filter 
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Calibrating the DIC system is a key process to ensure that the measured results 

are accurate. Both cameras can be calibrated at the same time. DIC calibration 

gives the metric information to relate the ideal model of camera to the actual 

physical device and to determine the position and orientation of the camera with 

respect to a world reference system. This metric information includes two kinds 

of parameters, intrinsic parameters and extrinsic parameters. The intrinsic 

parameters indicate the internal geometric and optical characteristics of the 

camera, such as focal length of the lenses, distortions of the lenses, and the 

positions between the lenses and CCD image device. The extrinsic parameters 

indicate the external geometric relation between the camera and the specimen, 

such as rotation matrix and translation vector. With the calibration data, DIC 

system can translate the image coordinate to geometric coordinate. The 

calibration plate should be placed in the same plane as that of the CCD chip of 

the cameras and at a same distance as that of the specimen or in front of the 

specimen.  

The calibration can be initiated when the software shows the color pattern of dots 

as shown in the live image as shown below, this indicates that the plate is in the 

same plane or it is parallel to the CCD Chip plane. An image of the calibration 

plate is also shown below.  

 

Figure 10.7: Calibration Plate 
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The two cameras took pictures at presetted time intervals during the test and 

measure the movement of target points on the surface of the specimen. The first 

image corresponds to the undeformed or reference state. The cameras were 

connected to a computer in which the images are recorded and the data are 

acquired and evaluated using the ARAMIS software from GOM.  

The processing of the data is done by using the ARAMIS software in order to 

obtain displacements and strains. ARAMIS in fact computes the motion of each 

point comparing the images at different stages. The software indicates on the first 

image several square boxes known as facets or subsets on the surface of the 

specimen, where each of these facets contains n x n pixels. The spatial position of 

the center point of these subsets is calculated by averaging the position of the 

corners. The facets are monitored in each successive image. The basic principle 

of this technique is the matching of the same subsets between the images 

recorded before and after deformation. A facet is chosen rather than an individual 

pixel, is that it includes a wider variation of grays and in this way it is more 

distinguishable from other facets and therefore more uniquely identifiable in the 

target of deformed state. In order to evaluate the similarity degree between the 

reference and the deformed facets, a correlation criterion is needed. 

The basic principle of the processing work is done by the software ARAMIS we 

used; it calculates the average gray scale intensity over the subset in the reference 

image and deformed image and compares them. Equation (10.1) shows the basic 

form of the cross-correlation term using the two consecutive images.  

 

c(u,v) = L1(ri, sj )L2 (ri + uL, sj + vL )j∑i∑  (10.1) 
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uL = u +
∂u
∂r

⋅ (rL − rC )+
∂u
∂s

⋅ (sL − sC )  (10.2) 

 

vL = v +
∂v
∂r

⋅ (rL − rC )+
∂v
∂s

⋅ (sL − sC )  (10.3) 

 

where, u and v are the displacements of the center point of a subset located at 

(rC,sC) and uL and vL are the displacement of an arbitrary point (rL,sL) in the 

subset. L1 represents the intensity of pixel in the deformed image. Solving for the 

variables u and v gives the in-plane deformation in the x direction and y 

direction, respectively. The size of the subset is 2n x 2n. The complete term from 

Equation (10.1) gets different values at different positions in the deformed image. 

The maximum value of the term shows the matched position of the most similar 

pattern in the deformed image compared to the reference image. A more accurate 

approach is the normalized correlation equation. Equation (10.4) shows the 

normalized correlation equation.  

C(u,v) =
L1(ri, sj )L2 (ri + uL, sj + vL )j∑i∑

L1
2 (ri, sj ) L2

2 (ri + uL, sj + vL )j∑i∑ L2 (ri + uL, sj + vL )j∑i∑
 (10.4) 

In the Equation (10.4) the normalized correlation coefficient C (u, v) reaches its 

maximum at one. The in- plane displacements can be determined by identifying a 

subset around a point at one position in the reference image and comparing it to 

the subset around a point in the deformed image having the same intensity 

distribution.  
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Figure 10.8:Digital Image Correlation System setup: lightning source, two cameras and ARAMIS 
software 

 

 
 
 

 

 

 

 

 

 

 

 

For each experiment the acquisition of the data was done both with the Shore 

Western software and the Digital Image correlation System. The Shore Western 

software was directly connected with Axial Torsion Machine and gave 

information regarding the force and/or the torque applied at each step to the 

 11 Results 
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specimen and the axial displacement and/or the angle of twist the specimen was 

undergoing in each phase of the test. 

The DIC system on the other hand allowed us to collect the data regarding the 

actual displacement and the strains (cfr.10.3) of the aluminum specimen, which 

were taking place during the whole testing. 

In this section are presented the data collected not for all the tests which were 

performed (three for each scenario) but only the data of one test for each 

scenario. 

 

 

 

 

 

The uniaxial tension test was performed on specimen number 1A, whose actual 

geometry is reported in section 9.1. The nominal values of the yield stress, yield 

strain and yield force were calculated from the mechanical properties of the 

material and from the actual geometry of the specimen: 

 
 

 

The experiment was performed in displacement control and two displacement 

rate stages were defined: 

 

Diameter(D 29.85 [mm] 1.175 [in]
Length(B 110 [mm] 4.33 [in]

σy 260 [Mpa] 37709.88 [lb/in^2]
E 68900 [Mpa] 9993118.2 [lb/in^2]
A 699.81 [mm^2] 1.08 [in^2]
Fy 181.95 [kN] 40.89 [kips]
εy 0.42 [mm] 0.016 [in]

Specimen(1A8nominal(values

 11.1 Tension Test – Lode angle θ=0°  
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• I rate: 0.005inches/60sec (0.127mm/60sec) for the elastic region; 

• II rate: 0.025inches/60sec (0.635mm/60sec) for the plastic region. 

 

Some graphs representing the data collected from the Shore Western software 

and from the DIC system are reported and commented below. 

 

 
Figure 11.1: force-displacement diagram of the Shore Western data recorded each 10 seconds 

 

 
Figure 11.2: stress-strain diagram of the Shore Western data recorded each 10 seconds. 

 
From figure 11.2 it is possible to observe the behavior of the specimen under 

uniaxial tension. The strain is reported in µε and is calculated as the true strain: 
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ε true =
dl
l
= ln l1

l0

⎛
⎝⎜

⎞
⎠⎟l0

l1

∫ = ln l0 + Δl
l0

⎛
⎝⎜

⎞
⎠⎟
= ln 1+ Δl

l0

⎛
⎝⎜

⎞
⎠⎟

 

where l0  is the length of the undeformed specimen and Δl is the amount of 

elongation due to the tensile force applied. 

The aluminum specimens shows a linear behavior in the first part of the diagram 

and at a certain stress between 350 and 400 MPa yielding occurs. After yielding 

we have an hardening behavior till the peak is reached at around 410 MPa. The 

post peak behavior shows some softening till failure is reached at a stress of 

about 320 MPa. 

In order to evaluate the Young modulus E of the material, the elastic part of the 

previous diagram is considered and a trend line is drawn. 

 
Figure 11.3: first part of the stress-strain diagram before yielding of the Shore Western data recorded 

each 10 seconds interpolated with a trend line 

 
The slope of the trend line represent the Young modulus which from the Shore 

Western data turns out to be equal to 35490 MPa. The nominal value of E for the 

aluminum 6061-T6 is 69000 MPa, almost two times the one obtained from the 

Shore Western data. For this reason it was necessary to check the accuracy of 

this value, looking at the data obtained with the DIC system. 
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Figure 11.4: stress-strain of the DIC data recorded each 10 seconds  

 

 
Figure 11.5: first part of the stress-strain diagram before yielding of the DIC data recorded each 10 

seconds interpolated with a trend line 

 
As it regards the DIC data, we obtain from the ARAMIS software the strains in 

five vertical sections of the specimen and for this reason an average strain of this 

five was then calculated. The slope of the trend line, which interpolates the DIC 

data represents the Young modulus, which turns out to be equal to 75747 MPa. 

This value of E is closer to the nominal one, which is for the aluminum 6061-T6 

is 69000 MPa. For this reason, comparing the Young Modulus obtained from the 

Shore Western data and the one provided by the DIC data, we concluded that we 

had some errors during the record of the Shore Western data, probably due to a 

slip of the specimen  in the grips in the first moments of the testing, which 
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caused an increased value of strain and a lower slope of the trend line, which 

interpolates the Shore Western data.   

 
Figure 11.6: comparison between the stress-strain DIC curve and the stress-strain Shore Western curve. 

The different slopes in the elastic region are probably due to a slip of the specimen in the grips. 

 
 

 
Figure 11.7: different slopes in the elastic region are probably due to a slip of the specimen in the grips. 

 
To detect the precise point of yielding, since this point was not completely clear 

from the test data, it is evaluate as the so-called σ0.2%-stress, i.e. the stress at 

which the remaining plastic strain after unloading is equal to 0.2%.  
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Figure 11.8: yielding point evaluate as the σ0.2%-stress 

 

 
Figure 11.9: detail of the yielding point 

 

The intersection between the DIC data curve and the 0.2% strain straight line 

locate the yielding point, which in this case occurs at a stress equal to 382MPa. 

 

Below is reported a table, which summarizes the most important values of this 

test. 
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Name of the specimen 1A 
Lode Angle 0° 
Length (mm) 110 
Diameter (mm) 29.85 
Tensile Yield point: stress (MPa) 382 
Tensile Yield point: strain (µε) 0.0072 
Peak point: stress (MPa) 410.22 
Peak point: strain (µε) 0.059 
Failure point: stress (MPa) 315.10 
Failure point: strain (µε) 0.173 
Yield load (kN) 267 
E (GPa) 75.7 
 
 

Some pictures of the specimen and its failure are now reported. 

 
Figure 11.10: tension test, starting of the necking 
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Figure 11.11: tension test, evident necking taking place 

 

 
Figure 11.12: failure mode 
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Figure 11.13: failure of the traction specimen 

 

 
Figure 11.13: contour of  the strain in the vertical direction: image obtained by post processing of the 

DIC data recorded 
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The tension torsion test was performed on specimen number 6A, whose actual 

geometry is reported in section 9.1. The nominal values of the yield stress, yield 

strain and yield force were calculated from the mechanical properties of the 

material and from the actual geometry of the specimen: 

 
 

 

The experiment was performed in torque and consequently in traction control 

since the ratio between tension and torsion in the imperial units must be kept 5.5 

(cfr. section 9.4).  

 

Some graphs representing the data collected from the Shore Western software 

and from the DIC system are reported and commented below. 

 

Diameter(D 29.92 [mm] 1.178 [in]
Length(B 110 [mm] 4.33 [in]

σy 260 [Mpa] 37709.88 [lb/in^2]
E 68900 [Mpa] 9993118.2 [lb/in^2]
A 703.09 [mm^2] 1.09 [in^2]
Fy 181.58 [kN] 40.82 [kips]
Ty 0.84 [kNm] 7.420 [kip;in]

Specimen(6A8nominal(values

 11.2 Tension - Torsion Test – Lode angle θ=10°  
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Figure 11.14: axial force-displacement diagram of the Shore Western data recorded each 10 seconds 

 

 
Figure 11.15: torque-twist diagram of the Shore Western data recorded each 10 seconds 
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Figure 11.16:axial stress-axial strain diagram of the Shore Western data recorded each 10 seconds. 

 

 
Figure 11.17: shear stress-shear strain diagram of the Shore Western data recorded each 10 seconds. 

 
From figures 11.16 and 11.17 it is possible to observe the behavior of the 

specimen under tension-torsion. The strain is reported in µε and is calculated as 

the true strain. 

The aluminum specimens shows a linear behavior in the first part of the axial 

stress-axial strain diagram and at a certain stress between 250 and 300 MPa 

yielding occurs. After yielding we have an hardening behavior till the peak is 

reached at around 340 MPa. As it regards the behavior of the specimen under 

torque we notice a linear behavior in the first part of the shear stress-shear strain 

diagram and at a certain stress between 160 and 180 MPa yielding occurs. After 
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yielding we have an hardening behavior till the peak is reached at around 180 

MPa. The post peak behavior shows some softening till failure is reached at a 

stress of about 170 MPa. 

In order to evaluate the shear modulus G of the material, the elastic part of the 

shear stress-shear strain diagram is considered and a trend line is drawn. 

 

 
Figure 11.18: first part of the shear stress-shear strain diagram before yielding of the Shore Western 

data recorded each10 seconds, interpolated with a trend line 

 

The slope of the trend line represent the shear modulus G which, from the Shore 

Western data turns out to be equal to 32110 MPa. The nominal value of G for the 

aluminum 6061-T6 is 26000 MPa, very similar to the value obtained from the 

Shore Western data. 

In order to evaluate the Young modulus E of the material, the elastic part of the 

axial stress-axial strain diagram is considered and a trend line is drawn. 
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Figure 11.19: first part of the axial stress-axial strain diagram before yielding of the Shore Western data 

recorded each 10 seconds interpolated with a trend line 

 
The slope of the trend line represent the Young modulus which from the Shore 

Western data turns out to be equal to 34866 MPa. The nominal value of E for the 

aluminum 6061-T6 is 69000 MPa, almost two times the one obtained from the 

Shore Western data. For this reason it was necessary to check the accuracy of 

this value, looking at the data obtained with the DIC system. 

 

 
Figure 11.20: axial stress-average Y strain of the DIC data recorded each 10 seconds  
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Figure 11.21: first part of the axial stress- average Y strain diagram before yielding of the DIC data 

recorded each 10 seconds interpolated with a trend line 

 
As it regards the DIC data, we obtain, from the ARAMIS software, the strains in 

five vertical sections of the specimen and for this reason an average strain of this 

five was then calculated. The slope of the trend line, which interpolates the DIC 

data represents the Young modulus, which turns out to be equal to 69958 MPa. 

This value of E is much closer to the nominal one, which is for the aluminum 

6061-T6 is 69000 MPa. For this reason, comparing the Young Modulus obtained 

from the Shore Western data and the one provided by the DIC data, we 

concluded that we had some errors during the record of the Shore Western data, 

which caused an increased value of strain and a lower slope of the trend line, 

which interpolates the Shore Western data.   
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Figure 11.22: comparison between the axial stress-average Y strain DIC curve and the axial stress-

average Y strain Shore Western curve: different slopes in the elastic region. 

 
 
To detect the precise point of yielding as it regards the axial force, it is evaluate 

as the so-called σ0.2%-stress, i.e. the stress at which the remaining plastic strain 

after unloading is equal to 0.2%.  

 
Figure 11.23: yielding point for the axial force evaluate as the σ0.2%-stress 
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Figure 11.24: detail of the tensile yielding point 

 

The intersection between the DIC data curve and the 0.2% strain straight line 

locate the yielding point, which in this case occurs at a stress equal to 274MPa. 

 

The same procedure is used to detect the precise point of yielding as it regards 

the torque. 

 
Figure 11.25: yielding point for the torque evaluate as the σ0.2%-stress 
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Figure 11.26: detail of the torque yielding point 

 
The intersection between the DIC data curve and the 0.2% strain straight line 

locate the torque yielding point, which in this case occurs at a stress equal to 

164MPa. 

 

Below is reported a table, which summarizes the most important values of this 

test. 

Name of the specimen 6A 
Lode Angle 10° 
Length (mm) 110 
Diameter (mm) 29.92 
Tensile Yield point: stress (MPa) 272 
Tensile Yield point: strain (µε) 0.0056 
Torque Yield point: stress (MPa) 164.96 
Torque Yield point: strain (µε) 0.0073 
Tensile peak point: stress (MPa) 326.51 
Tensile peak point: strain (µε) 0.093 
Torque peak point: stress (MPa) 180.77 
Torque peak point: strain (µε) 0.066 
Tensile failure point: stress (MPa) 326.51 
Tensile failure point: strain (µε) 0.093 
Torque failure point: stress (MPa) 170.93 
Torque failure point: strain (µε) 0.134 
Tensile yield load (kN) 191 
Torque yield load (Nm) 867.8 
Torque yield twist (°) 2.16 
Tensile failure load (kN) 229.2 
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Torque failure load (Nm) 898.79 
Torque failure twist (°) 61.78 
E (GPa) 69958 
G (GPa) 32110 
 
 

Some pictures of the specimen and its failure are now reported. 

 
Figure 11.27: specimen 6A placed in the grips 

 

 
 

Figure 11.28: collapse of the specimen 
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Figure 11.29: failure of the specimen 

 

 
Figure 11.30: contour of  the strain in the vertical direction: image obtained by post processing  the DIC 

data recorded 
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The tension torsion test was performed on specimen number 7A, whose actual 

geometry is reported in section 9.1. The nominal values of the yield stress, yield 

strain and yield force were calculated from the mechanical properties of the 

material and from the actual geometry of the specimen: 

 
The experiment was performed in torque and consequently in traction control 

since the ratio between tension and torsion in the imperial units must be kept 

2.175 (cfr. section 9.4).  

Two torque rate stages were defined: 

 

• I rate: 1 kip-in/60sec (0.113 kNm/60sec) for the elastic region; 

• II rate: 1 kip-in/300sec (0.113 kNm/300sec) for the plastic region. 

 

 

Some graphs representing the data collected from the Shore Western software 

and from the DIC system are reported and commented below. 

 

Diameter(D 29.64 [mm] 1.167 [in]
Length(B 120 [mm] 4.72 [in]

σy 260 [Mpa] 37709.88 [lb/in^2]
E 68900 [Mpa] 9993118.2 [lb/in^2]
A 690.00 [mm^2] 1.07 [in^2]
Fy 93.95 [kN] 21.12 [kips]
Ty 1.10 [kNm] 9.710 [kip;in]

Specimen(7A8nominal(values

 11.3 Tension - Torsion Test – Lode angle θ=20°  
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Figure 11.31: axial force-displacement diagram of the Shore Western data  

 
 

 
 

Figure 11.32: torque-twist diagram of the Shore Western data  
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Figure 11.33:axial stress-axial strain diagram of the Shore Western data. 

 

 
Figure 11.34: shear stress-shear strain diagram of the Shore Western. 

 
From figures 11.33 and 11.34 it is possible to observe the behavior of the 

specimen under tension-torsion. The strain is reported in µε and is calculated as 

the true strain. 

The aluminum specimens shows a linear behavior in the first part of the axial 

stress-axial strain diagram and at a certain stress between 130 and 150 MPa 

yielding occurs. After yielding we have an hardening behavior till unloading is 

applied. The second cycle shows a wider linear behavior in fact in the second 

cycle, plastification occurs at an axial stress between 160 and 170 MPa. The peak 

is reached at around 179-180 MPa. As it regards the behavior of the specimen 
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under torque we notice a linear behavior in the first part of the shear stress-shear 

strain diagram and at a certain stress between 190 and 200 MPa yielding occurs. 

After yielding we have an hardening behavior till unloading is applied. The 

second cycle shows a wider linear behavior in fact in the second cycle, 

plastification occurs at an axial stress between 230 and 250 MPa. The peak is 

reached at around 250 MPa. The post peak behavior shows some softening till 

failure is reached at a stress of about 240 MPa. 

In order to evaluate the shear modulus G of the material, the elastic part of the 

shear stress-shear strain diagram is considered and a trend line is drawn. 

 

 
Figure 11.35: first part of the shear stress-shear strain diagram before yielding of the Shore Western 

data, interpolated with a trend line 

 

The slope of the trend line represents the shear modulus G, which, from the 

Shore Western data turns out to be equal to 27667 MPa. The nominal value of G 

for the aluminum 6061-T6 is 26000 MPa, very similar to the value obtained from 

the Shore Western data. 

In order to evaluate the Young modulus E of the material, the elastic part of the 

axial stress-axial strain diagram is considered and a trend line is drawn. 
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Figure 11.36: first part of the axial stress-axial strain diagram before yielding of the Shore Western data 

interpolated with a trend line 

 
The slope of the trend line represents the Young modulus, which from the Shore 

Western data turns out to be equal to 34801 MPa. The nominal value of E for the 

aluminum 6061-T6 is 69000 MPa, almost two times the one obtained from the 

Shore Western data. For this reason it was necessary to check the accuracy of 

this value, looking at the data obtained with the DIC system. 

 

 
Figure 11.37: axial stress-average Y strain of the DIC data recorded each 10 seconds  
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Figure 11.38: first part of the axial stress- average Y strain diagram before yielding of the DIC data 

recorded each 10 seconds interpolated with a trend line 

 
As it regards the DIC data, we obtain, from the ARAMIS software, the strains in 

five vertical sections of the specimen and for this reason an average strain of this 

five was then calculated. The slope of the trend line, which interpolates the DIC 

data represents the Young modulus, which turns out to be equal to 69746 MPa. 

This value of E is much closer to the nominal one, which is for the aluminum 

6061-T6 is 69000 MPa. For this reason, comparing the Young Modulus obtained 

from the Shore Western data and the one provided by the DIC data, we 

concluded that we had some errors during the record of the Shore Western data, 

which caused an increased value of strain and a lower slope of the trend line, 

which interpolates the Shore Western data.   
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Figure 11.39: comparison between the axial stress-average Y strain DIC curve and the axial stress-

average Y strain Shore Western curve: different slopes in the elastic region. 

 
 
To detect the precise point of yielding as it regards the axial force, it is evaluate 

as the so-called σ0.2%-stress, i.e. the stress at which the remaining plastic strain 

after unloading is equal to 0.2%.  

 
Figure 11.40: yielding point for the axial force evaluate as the σ0.2%-stress 
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Figure 11.41: detail of the tensile yielding point 

 

The intersection between the DIC data curve and the 0.2% strain straight line 

locate the yielding point, which in this case occurs at a stress equal to 143MPa. 

 

The same procedure is used to detect the precise point of yielding as it regards 

the torque. 

 
Figure 11.42: yielding point for the torque evaluate as the σ0.2%-stress 
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Figure 11.43: detail of the torque yielding point 

The intersection between the DIC data curve and the 0.2% strain straight line 

locate the torque yielding point, which in this case occurs at a stress equal to 

195MPa. 

 

Below is reported a table, which summarizes the most important values of this 

test. 

Name of the specimen 7A 
Lode Angle 20° 
Length (mm) 120 
Diameter (mm) 29.64 
Tensile Yield point: stress (MPa) 143 
Tensile Yield point: strain (µε) 0.0043 
Torque Yield point: stress (MPa) 195 
Torque Yield point: strain (µε) 0.0096 
Tensile peak point: stress (MPa) 163.59 
Tensile peak point: strain (µε) 0.036 
Torque peak point: stress (MPa) 250.36 
Torque peak point: strain (µε) 0.216 
Tensile failure point: stress (MPa) 180 
Tensile failure point: strain (µε) 0.059 
Torque failure point: stress (MPa) 242.25 
Torque failure point: strain (µε) 0.429 
Tensile yield load (kN) 98.67 
Torque yield load (Nm) 997.01 
Torque yield twist (°) 3.27 
Tensile failure load (kN) 124.2 
Torque failure load (Nm) 1238.6 
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Torque failure twist (°) 199.22 
E (GPa) 69746 
G (GPa) 27667 
 
 

Some pictures of the specimen and its failure are now reported. 

 
Figure 11.44: specimen 7A failed 

 

 
 

Figure 11.45: collapse of the specimen 
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Figure 11.46: failure of the specimen 
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Figure 11.47: contour of the strain in the vertical direction: images obtained by post processing  the DIC 
data recorded 

 
 

 

 

The torsion test was performed on specimen number 4A, whose actual geometry 

is reported in section 9.1. The nominal values of the yield stress, yield strain and 

yield force were calculated from the mechanical properties of the material and 

from the actual geometry of the specimen: 

 11.4 Torsion Test – Lode angle θ=30°  
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The experiment was performed in torque control.  

 

Some graphs representing the data collected from the Shore Western software 

and from the DIC system are reported and commented below. 

 
 

 
 

Figure 11.48: torque-twist diagram of the Shore Western data  

 

 

Diameter(D 29.92 [mm] 1.178 [in]
Length(B 125 [mm] 4.92 [in]

σy 260 [Mpa] 37709.88 [lb/in^2]
E 68900 [Mpa] 9993118.2 [lb/in^2]
A 703.09 [mm^2] 1.09 [in^2]
Ty 0.79 [kNm] 6.99 [kip:in]
αy 0.05 [rad] 2.764 [°]

Specimen(4A8nominal(values
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Figure 11.49: shear stress-shear strain diagram of the Shore Western. 

 

 
Figure 11.50: shear stress-shear strain diagram of the first cycle; Shore Western data 

 
From figures 11.49 and 11.50 it is possible to observe the behavior of the 

specimen under torsion. The strain is reported in µε and is calculated as the true 

strain. 

The aluminum specimen under torque shows a linear behavior in the first part of 

the shear stress-shear strain diagram and at a certain stress between 190 and 200 

MPa yielding occurs. After yielding we have an hardening behavior till 

unloading is applied. The second cycle shows a wider linear behavior in fact in 
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the second cycle, plastification occurs at an axial stress between 260 and 270 

MPa. The peak is reached at around 280 MPa.  

In order to evaluate the shear modulus G of the material, the elastic part of the 

shear stress-shear strain diagram is considered and a trend line is drawn. 

 

 
Figure 11.51: first part of the shear stress-shear strain diagram before yielding of the Shore Western 

data, interpolated with a trend line 

 

The slope of the trend line represents the shear modulus G, which, from the 

Shore Western data turns out to be equal to 27440 MPa. The nominal value of G 

for the aluminum 6061-T6 is 26000 MPa, very similar to the value obtained from 

the Shore Western data. 

 

 
To detect the precise point of yielding as it regards torque, it is evaluate as the 

so-called σ0.2%-stress, i.e. the stress at which the remaining plastic strain after 

unloading is equal to 0.2%.  
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Figure 11.52: yielding point evaluate as the σ0.2%-stress 

 

 
 

Figure 11.53: detail of the torque yielding point 

 

The intersection between the DIC data curve and the 0.2% strain straight line 

locate the yielding point, which in this case occurs at a stress equal to 193MPa. 

 

Below is reported a table, which summarizes the most important values of this 

test. 

Name of the specimen 4A 
Lode Angle 30° 
Length (mm) 125 
Diameter (mm) 29.92 
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Torque Yield point: stress (MPa) 193 
Torque Yield point: strain (µε) 0.0094 
Torque failure point: stress (MPa) 310 
Torque yield twist (°) 3.36 
Torque failure twist (°) 945 
Torque failure load (Nm) 1015.01 
G (GPa) 27440 
 
 

Some pictures of the specimen and its failure are now reported. 

 
Figure 11.54: specimen 4A in the grips 
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Figure 11.55: specimen 4A failed 

 

 
 

Figure 11.56: collapse of the specimen 
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Figure 11.57: contour of the strain in the vertical direction: images obtained by post processing  the DIC 
data recorded 

 
 

 
 

 

 

The compression torsion test was performed on specimen number 10A, whose 

actual geometry is reported in section 9.1. The nominal values of the yield stress, 

yield strain and yield force were calculated from the mechanical properties of the 

material and from the actual geometry of the specimen: 

 
The experiment was performed in torque control and consequently in traction 

control since the ratio between tension and torsion in the imperial units must be 

kept 2.175 (cfr. section 9.4).  

Two torque rate stages were defined: 

 

• I rate: 1 kip-in/60sec (0. 113 kNm/60sec) for the elastic region; 

• II rate: 1 kip-in/150sec (0.113 kNm/120sec) for the plastic region. 

 

Some graphs representing the data collected from the Shore Western software 

and from the DIC system are reported and commented below. 

 

Diameter(D 29.67 [mm] 1.68 [in]
Length(B 125 [mm] 4.92 [in]

σy 260 [Mpa] 37709.88 [lb/in^2]
E 68900 [Mpa] 9993118.2 [lb/in^2]
A 691.39 [mm^2] 2.22 [in^2]
Fy 893.95 [kN] 821.12 [kips]
Ty 1.10 [kNm] 9.710 [kip8in]

Specimen(10A9nominal(values

 11.5 Tension - Torsion Test – Lode angle θ=40°  
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Figure 11.58: axial force-displacement diagram of the Shore Western data  

 
 

 
 

Figure 11.59: torque-twist diagram of the Shore Western data  
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Figure 11.60:axial stress-axial strain diagram of the Shore Western data. 

 

 
Figure 11.61: shear stress-shear strain diagram of the Shore Western. 

 
From figures 11.61 and 11.62 it is possible to observe the behavior of the 

specimen under compression-torsion. The strain is reported in µε and is 

calculated as the true strain. 

The aluminum specimen shows a linear behavior in the first part of the axial 

stress-axial strain diagram and at a certain stress around -120 MPa yielding 

occurs. After yielding we have an hardening behavior till unloading is applied. 

The peak is reached at around -180 MPa in the first cycle. As it regards the 

behavior of the specimen under torque we notice a linear behavior in the first part 

of the shear stress-shear strain diagram and at a certain stress between 180 and 
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190 MPa yielding occurs. After yielding we have an hardening behavior till 

unloading is applied.  

In order to evaluate the shear modulus G of the material, the elastic part of the 

shear stress-shear strain diagram is considered and a trend line is drawn. 

 

 
Figure 11.62: first part of the shear stress-shear strain diagram before yielding of the Shore Western 

data, interpolated with a trend line 

 

The slope of the trend line represents the shear modulus G, which, from the 

Shore Western data turns out to be equal to 27881 MPa. The nominal value of G 

for the aluminum 6061-T6 is 26000 MPa, very similar to the value obtained from 

the Shore Western data. 

In order to evaluate the Young modulus E of the material, the elastic part of the 

axial stress-axial strain diagram is considered and a trend line is drawn. 
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Figure 11.63: first part of the axial stress-axial strain diagram before yielding of the Shore Western data 

interpolated with a trend line 

 
The slope of the trend line represents the Young modulus, which from the Shore 

Western data turns out to be equal to 38313 MPa. Checking this value with the 

DIC data it can be noticed that the true value is 69875 MPa. The nominal value 

of E for the aluminum 6061-T6 is 69000 MPa.  

 

 

 
 
To detect the precise point of yielding as it regards the axial force, it is evaluate 

as the so-called σ0.2%-stress, i.e. the stress at which the remaining plastic strain 

after unloading is equal to 0.2%.  
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Figure 11.64: yielding point for the axial force evaluate as the σ0.2%-stress 

 
 

Figure 11.65: detail of the tensile yielding point 

 

The intersection between the Shore Western data curve and the 0.2% strain 

straight line locate the yielding point, which in this case occurs at a stress equal 

to -156 MPa. 

 

The same procedure is used to detect the precise point of yielding as it regards 

the torque. 
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Figure 11.66: yielding point for the torque evaluate as the σ0.2%-stress 

 

 
Figure 11.67: detail of the torque yielding point 

 
The intersection between the DIC data curve and the 0.2% strain straight line 

locate the torque yielding point, which in this case occurs at a stress equal to 

182MPa. 

Below is reported a table, which summarizes the most important values of this 

test. 

 

Name of the specimen 10A 
Lode Angle 40° 
Length (mm) 125 
Diameter (mm) 29.67 
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Tensile Yield point: stress (MPa) -156 
Torque Yield point: stress (MPa) 182 
Tensile yield load (kN) -107.86 
Torque yield load (Nm) 933.37 
Torque yield twist (°) 3.15 
Number of cycles performed 14 
E (GPa) 69875 
G (GPa) 27881 
 
 

Some pictures of the specimen and its failure are now reported. 
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Figure 11.68: specimen 10A in the grips after 3 cycles 
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Figure 11.69: specimen 8A under compression-torsion 
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Figure 11.70: specimen 10A after 7 cycles 
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Figure 11.71: specimen after 14 cycles; a shortening of  3.8 cm is noticed. 
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Figure 11.72: contour of the strain in the vertical direction: images obtained by post processing  the DIC 
data recorded 

 
 
 

 

 
 

 

 

 

The compression torsion test was performed on specimen number 8A, whose 

actual geometry is reported in section 9.1. The nominal values of the yield stress, 

yield strain and yield force were calculated from the mechanical properties of the 

material and from the actual geometry of the specimen: 

 
The experiment was performed in torque control and consequently in traction 

control since the ratio between tension and torsion in the imperial units must be 

kept 5.5 (cfr. section 9.4).  

Two torque rate stages were defined: 

 

• I rate: 4 kip-in/120sec (0.452 kNm/120sec) for the elastic region; 

• II rate: 1 kip-in/120sec (0.113 kNm/120sec) for the plastic region. 

 

Some graphs representing the data collected from the Shore Western software 

and from the DIC system are reported and commented below. 

 

Diameter(D 29.77 [mm] 1.172 [in]
Length(B 124 [mm] 4.88 [in]

σy 260 [Mpa] 37709.88 [lb/in^2]
E 68900 [Mpa] 9993118.2 [lb/in^2]
A 696.06 [mm^2] 1.08 [in^2]
Fy 7181.58 [kN] 740.82 [kips]
Ty 0.84 [kNm] 7.420 [kip7in]

Specimen(8A8nominal(values

 11.6 Tension - Torsion Test – Lode angle θ=50°  
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Figure 11.73: axial force-displacement diagram of the Shore Western data  

 
 

 
 

Figure 11.74: torque-twist diagram of the Shore Western data  
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Figure 11.75:axial stress-axial strain diagram of the Shore Western data. 

 

 
Figure 11.76: shear stress-shear strain diagram of the Shore Western. 

 
From figures 11.76 and 11.77 it is possible to observe the behavior of the 

specimen under compression-torsion. The strain is reported in µε and is 

calculated as the true strain. 

The aluminum specimen shows a linear behavior in the first part of the axial 

stress-axial strain diagram and at a certain stress around -250 MPa yielding 

occurs. After yielding we have an hardening behavior till unloading is applied. 

The peak is reached at around 350 MPa. As it regards the behavior of the 

specimen under torque we notice a linear behavior in the first part of the shear 

stress-shear strain diagram and at a certain stress between 140 and 150 MPa 
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yielding occurs. After yielding we have an hardening behavior till unloading is 

applied. The peak is reached at around 200 MPa. The post peak behavior shows 

some softening. 

In order to evaluate the shear modulus G of the material, the elastic part of the 

shear stress-shear strain diagram is considered and a trend line is drawn. 

 

 
Figure 11.77: first part of the shear stress-shear strain diagram before yielding of the Shore Western 

data, interpolated with a trend line 

 

The slope of the trend line represents the shear modulus G, which, from the 

Shore Western data turns out to be equal to 23021 MPa. The nominal value of G 

for the aluminum 6061-T6 is 26000 MPa, very similar to the value obtained from 

the Shore Western data. 

In order to evaluate the Young modulus E of the material, the elastic part of the 

axial stress-axial strain diagram is considered and a trend line is drawn. 
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Figure 11.78: first part of the axial stress-axial strain diagram before yielding of the Shore Western data 

interpolated with a trend line 

 
The slope of the trend line represents the Young modulus, which from the Shore 

Western data turns out to be equal to 38186 MPa. The nominal value of E for the 

aluminum 6061-T6 is 69000 MPa, almost two times the one obtained from the 

Shore Western data. For this reason it was necessary to check the accuracy of 

this value, looking at the data obtained with the DIC system. 

 

 
Figure 11.79: axial stress-average Y strain of the DIC data recorded each 10 seconds  
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Figure 11.80: first part of the axial stress- average Y strain diagram before yielding of the DIC data 

recorded each 10 seconds interpolated with a trend line 

 
As it regards the DIC data, we obtain, from the ARAMIS software, the strains in 

five vertical sections of the specimen and for this reason an average strain of this 

five was then calculated. The slope of the trend line, which interpolates the DIC 

data represents the Young modulus, which turns out to be equal to 72267 MPa. 

This value of E is much closer to the nominal one, which is for the aluminum 

6061-T6 is 69000 MPa. For this reason, comparing the Young Modulus obtained 

from the Shore Western data and the one provided by the DIC data, we 

concluded that we had some errors during the record of the Shore Western data, 

which caused an increased value of strain and a lower slope of the trend line, 

which interpolates the Shore Western data.   
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Figure 11.81: comparison between the axial stress-average Y strain DIC curve and the axial stress-

average Y strain Shore Western curve: different slopes in the elastic region. 

 

 
Figure 11.82: comparison between the axial stress-average Y strain DIC curve and the axial stress-

average Y strain Shore Western curve: different slopes in the elastic region. 

 
To detect the precise point of yielding as it regards the axial force, it is evaluate 

as the so-called σ0.2%-stress, i.e. the stress at which the remaining plastic strain 

after unloading is equal to 0.2%.  
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Figure 11.83: yielding point for the axial force evaluate as the σ0.2%-stress 

 
 

Figure 11.84: detail of the tensile yielding point 

 

The intersection between the DIC data curve and the 0.2% strain straight line 

locate the yielding point, which in this case occurs at a stress equal to 262 MPa. 

 

The same procedure is used to detect the precise point of yielding as it regards 

the torque. 
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Figure 11.85: yielding point for the torque evaluate as the σ0.2%-stress 

 

 
Figure 11.86: detail of the torque yielding point 

 
The intersection between the DIC data curve and the 0.2% strain straight line 

locate the torque yielding point, which in this case occurs at a stress equal to 

140MPa. 

Below is reported a table, which summarizes the most important values of this 

test. 

 

Name of the specimen 8A 
Lode Angle 50° 
Length (mm) 124 
Diameter (mm) 29.77 
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Tensile Yield point: stress (MPa) -262 
Tensile Yield point: strain (µε) -0.0078 
Torque Yield point: stress (MPa) 140 
Torque Yield point: strain (µε) 0.0082 
Tensile peak point: stress (MPa) -387 
Tensile peak point: strain (µε) -0.126 
Torque peak point: stress (MPa) 196.7 
Torque peak point: strain (µε) 0.171 
Tensile yield load (kN) -182.37 
Torque yield load (Nm) 725.26 
Torque yield twist (°) 2.90 
E (GPa) 72267 
G (GPa) 23021 
 
 

Some pictures of the specimen and its failure are now reported. 
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Figure 11.87: specimen 8A in the grips 

 



11. Results 

 318 

 
 

Figure 11.88: specimen 8A under compression-torsion 
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Figure 11.89: contour of the strain in the vertical direction: images obtained by post processing  the DIC 
data recorded 
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The classical J2 theory of metal plasticity assumes that the hydrostatic pressure 

on plastic flow is negligible, and further assumes that the flow stress is 

independent of the third stress invariant of the stress deviator. The experimental 

data obtained, show some difference between the behavior of aluminum and the 

behavior described by J2 metal plasticity. 

In order to detect the influence of the Lode angle parameter on the behavior of 

aluminum 6061-T6 as it regards yielding, it seemed to be useful to compare the 

von Mises and Tresca yield conditions with the experimental results. In the polar 

coordinate system, the equivalent stress becomes the radial coordinate, which 

allows to draw the von Mises yield curve, while the circumferential coordinate is 

the Lode angle θ. In the deviatoric stress plane, the von Mises yielding condition 

is represented by a circle. The Tresca yielding is a hexagon inscribed on the von 

Mises circle. A MatLab code was written for plotting the data points obtained in 

the experiments in the π-plane.  

 12 Conclusions 
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Figure 12.1: representation of the data poinst on the π-plane 
 

 

Looking at the representation of the data points in the π-plane it is possible to 

observe that there is a deviation between them ant the Von Mises yield surface, 

which represent J2 plasticity. It is therefore possible to assert that an influence of 

the Lode angle parameter on the yield behavior of aluminum is identified. A 

possible curve, which interpolates the data points, is reported in figure 12.1, but 

it is necessary to perform the same testing scenarios also on steel specimens 

before defining the equation of a new yield curve. 
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Figure 12.2: detail of the experimental data points 

 

It is in addition possible to notice from figure 12.2 that yielding in tension is 

clearly different from yielding in compression. The data values derived from the 

tension test are in fact used to calibrate the von Mises circle. For J2 metal 

plasticity we should have the same values of yielding both in tension and in 

compression, but from the experimental observation we can deny this assumption 

and assert that, not only a dependence on the Lode angle parameter of the 

aluminum behavior in yielding is highlighted, but also a dependence on the first 

invariant of the stress tensor. 



11. Results 

 324 

As it regards the post yielding behavior, a great difference between the 

experimental scenarios is observed, both if the Lode parameter is considered or 

the first invariant of the stress tensor. 

To clarify this statement, let us compare the behavior after yielding of the 

aluminum specimen subjected to the 10° Lode angle scenario with the one 

subjected to the 50° Lode angle scenario and also the aluminum specimen 

subjected to the 20° Lode angle scenario with the one subjected to the 40° Lode 

angle scenario. 

The experimental scenario related to the 10° Lode angle parameter and the 50° 

Lode angle parameter have in fact the same proportion between axial force and 

torque (P/T=5.5), the only difference is that the axial force for the 10° Lode angle 

scenario is a tension force; instead the axial force for the 50° Lode angle scenario 

is a compression force. The same thing can be said for 20° and 40° Lode angle 

scenarios: the experimental scenario related to the 20° Lode angle parameter and 

the 40° Lode angle parameter have the same proportion between axial force and 

torque (P/T=2.175), the only difference is that the axial force for the 20° Lode 

angle scenario is a tension force, the axial force for the 40° Lode angle scenario 

is a compression force. For this reason if we neglect the influence of the first 

invariant of the stress tensor, the behaviors of the abovementioned couples of 

aluminum specimens should be the same. The experimental results however 

show a relevant difference in their post-yielding behavior: 
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Figure 12.3: specimen 6A, Lode angle θ=10°, axial force-axial displacement

 

 
Figure 12.4: specimen 6A, Lode angle θ=10°, torque-twist 
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Figure 12.5: specimen 8A, Lode angle θ=50°, axial force-axial displacement 

 
 

 
Figure 12.6: specimen 8A, Lode angle θ=20°, torque-twist 

 
Comparing images 12.3 with 12.5 and 12.4 with 12.6 it is possible to observe 

that, as it regards the loading scenario corresponding to θ=10° where we have 

torsion and tension, failure occurs after the first cycle of loading; as it regards the 

loading scenario corresponding to θ=50° where we have compression and 

tension, failure doesn’t occurs after the first cycle of loading. Unfortunately, due 

to some problems with the axial torsion machine we haven’t been able to 

continue the testing after the first cycle, but the specimen didn’t show any signal 
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of failure. Most probably we would not have been able to reach failure after 

several cycles. 

 
Figure 12.7: Figure 12.8: specimen 7A, Lode angle θ=20°, axial force-axial displacement 

 

 
 

 
Figure 12.9: specimen 7A, Lode angle θ=20°, torque-twist 
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Figure 12.10: specimen 10A, Lode angle θ=40°, axial force-axial displacement 

 

 

 
Figure 12.11: specimen 10A, Lode angle θ=40°, torque-twist 

 

 
 

The same thing said for specimen 6A and specimen 8A is valid also for 

specimens 7A and 10A. 

Comparing images 12.8 with 12.10 and 12.9 with 12.11 it is possible to observe 

that, as it regards the loading scenario corresponding to θ=20° where we have 

torsion and tension, failure occurs after the second cycle of loading; as it regards 

the loading scenario corresponding to θ=40° where we have compression and 

tension, failure doesn’t occurs after the first cycle of loading. As a matter of fact 
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we haven’t been able to reach failure not even after several cycles of loading and 

we were forced to stop the test in order to avoid problems to the Axial Torsion 

Machine. It is in fact possible to notice that for the compression torsion test, the 

strength increases after each cycle. 

These observations reveals how the difference of the behavior of aluminum 

specimen subjected to different first invariants of the stress tensor values is 

evident and not only the Lode angle parameter but also this parameter must been 

taken in regard. 
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