
Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA “TULLIO LEVI-CIVITA”

Corso di Laurea Magistrale in Matematica

Deep K-SVD for image denoising

Relatore: Laureanda: Maddalena Ardini

Prof. Fabio Marcuzzi 2044677

Correlatore:

Dott. Erik Chinellato

19 Aprile 2024

Anno Accademico 2023/2024

Contents

Nomenclature iii

Introduction v

1 Image Denoising 1

1.1 Problem Definition . 1

1.2 K-SVD denoiser . 2

1.3 Introduction to Deep K-SVD denoiser 4

2 Algorithmic Approaches 9

2.1 Deep K-SVD denoising . 9

2.2 Architecture . 10

2.2.1 Sparse coding . 10

2.2.2 ¼ Evaluation . 10

2.2.3 Patch reconstruction . 11

2.2.4 Patch Averaging . 11

2.3 Learnable Parameters Initialization 12

2.3.1 Dictionary settings . 12

2.3.2 Averaging weight settings 13

2.3.3 MLP initialization . 13

2.4 Training . 13

2.4.1 Training Dataset . 14

2.4.2 Forward propagation . 15

2.4.3 Backward Propagation . 15

2.4.4 Optimizer . 18

2.5 Loss Function . 19

2.5.1 Minimum Mean Squared Error 21

2.5.2 Perception-Distortion Tradeoff 22

2.5.3 Multi-Scale Structural Similarity combined to Mean Ab-
solute Error . 24

2.5.4 Mean Squared Error combined with Structural Similarity
Index Measure . 26

2.5.5 Test image quality . 29

i

ii CONTENTS

3 Applications 33

3.0.1 Parameters Setting . 34
3.0.2 Output examples . 35

Conclusions 51

Implemented deep K-SVD algorithm 53

Nomenclature

AWGN Additive White Gaussian Noise

DCT Discrete Cosinus Transform

DFT Discrete Fourier Transform

ISTA Iterative Soft-Thresholding Algorithm

MAE Mean Absolute Error

MAP Maximum a Posteriori

MLP Multi-Layer Perceptron

MMSE Minimum Mean Squared Error

MS − SSIM Multi-Scale SSIM

MSE Mean Squared Error

NCP Normalized Cumulative Periodogram

ODCT Overcomplete DCT

OMP Orthonormal Matching Pursuit

PDF Probability Density Function

ReLU Rectifier Linear Unit

SSIM Structural Similarity Index Measure

iii

Introduction

Image denoising, which is the problem of removing noise from an image, is one
of the most important studied problems in image processing. This is due to its
significant applications in various problems including enhancing the clarity of
medical images like ultrasound or thermal images, which may suffer from noise
interference during sensor acquisition. Additionally, it extends to the improve-
ment of images obtained by spacecraft, which can be compromised by adverse
environmental conditions or equipment limitations. Moreover, a more recent
everyday application is noise reduction in images captured by digital cameras
in smartphones. Noise removal has been utilized for numerous tasks in imaging
sciences and recent discoveries have sparked renewed interest in studying and
improving this problem. For instance in (7) it was explored whether a denoiser
D : RN → R

N could solve general inverse problems of the form

y = Hx + v,

where H is a known matrix, v is the noise and y the given measurement vector.
Notably, for H = I it represents the denoising problem. Such investigations
hold potential for various image processing tasks such as deblurring, demo-
saicing, super-resolution etc., depending on the degradation matrix H. Another
intriguing application area is image synthesis, which involves generating natural-
looking images without conditioning on any input or initialization. This aspect
is also mentioned in (7). Regarding the specific problem of denoising many
algorithms have been proposed and improved over the years, each employing
different constructions and tools, and more recently, involving Artificial Intel-
ligence. Figure 1 illustrates the annual publication trends concerning image
denoising, highlighting the growing interest in the problem. The most studied
denoising problem is the removal of zero-mean White Gaussian Noise, while
preserving the image content, which will be explored in our thesis. Significant
progress has been made in the first 10 years of research, with various algorithms
employing diverse approaches. However, interest in further improving results
waned. Nonetheless, as will be discussed in the following sections, the best
results in terms of noise removal can be achieved mathematically. With the
advent of deep learning, as depicted in figure 1 , this has led to the develop-
ment of new denoisers and improvements to existing ones. In this thesis we will
focus on one such algorithms, the Deep K-SVD denoiser introduced in 2021 in

v

vi INTRODUCTION

Figure 1

(1). This algorithm is the deep version of a classical denoiser that applies the
K-SVD algorithm to image denoising, first proposed in 2006 in (2). We will
theoretically describe the algorithm in chapter 1, delve into the deep architec-
ture in chapter 2, and study the theoretical considerations for implementing the
architecture. For implementation, we considered the original Python code (3),
translating all structures using only the NumPy library to enhance understanding
of the architecture, particularly regarding training improvements and algorithm
performance enhancements. We focused on the training loss function, deter-
mining how to choose the optimal regularization parameter of a combination of
two different functions. This have been done using a Normalized Cumulative
Periodogram, which is a technique introduced by Hansen a few years ago in (14)
and we apply it here in a novel context of accuracy for a perception-distortion
tradeoff. Finally, in Chapter 3, we showcase some of the results obtained.

Chapter 1

Image Denoising

1.1 Problem Definition

Image denoising is an ill-posed problem, meaning that there not exist an unique
solution for it. The general problem is that given a clean image, X ∈ R

N ,
assumed to be in in the grayscale range for simplicity, we measure its noisy
version Y ∈ R

N , given by
Y = X + V. (1.1)

Here V ∈ R
N is a zero-mean white Gaussian noise, V ∼ N (0, Ã2I), randomly

computed. A noise signal, in this case, an image, is called white noise when it
satisfies

E(V) = 0 and Cov(V) = Ã2I. (1.2)

In other words it is a zero-mean random vector whose elements are uncorrelated
and have the same standard deviation Ã, so it refers to the way it is distributed,
while Gaussianity refers to the probability of the signal falling within any par-
ticular range of amplitudes. The choice for this type of noise is very specific,
but searching in the literature on image denoising, reveals that this noise model
is very popular and covered by most of the developed algorithms. There are
many explanation for this choice: for example, in imaging, noise arises due for
physical reasons and usually follows a Gaussian distribution; moreover it can
approximate the Poisson distribution noise, and finally, mathematically, it is
simple to formulate and it is related with Minimum Mean squared error, as will
be seen.
The denoising task is that of estimating X from Y, knowing Ã, thus a denoiser
is a function of the form X̂ = D(Y, Ã). To recover the nearest estimate of X,
the denoiser has to be trained in a wise way, to achieve the best performance
in terms of computational cost, error and quality, in order to obtain a clean
image without losing important details. The most commonly used metric is the
Mean Squared Error (MSE), which computes the expected error over the image
distribution:

MSE = E(∥X − X̂∥22) = E(∥X −D(Y, Ã)∥22). (1.3)

1

2 CHAPTER 1. IMAGE DENOISING

However, the choice of the error metric is of crucial importance and will be
discussed later in detail. As anticipated, the goal of the denoiser is to attenuate
the noise, but this process can degrade the image content by losing some details,
such as edges, or damage the image texture, resulting in a blurry version. In the
next sections, we will describe one of the algorithms used for denoising, which is
formulated starting from a classical algorithm, the K-SVD and then improved
to a learnable version. Its strengths and weaknesses will be discussed.

1.2 K-SVD denoiser

Figure 1.1: structure of the classical K-SVD algorithm for denoising (2)

1.2. K-SVD DENOISER 3

In this section, we will briefly describe the K-SVD denoising algorithm, as
described in (2) in 2006, state of-the-art classical algorithm for many years, it
was later improved in its deep version (1) in 2021, to be compared to the most
recent learnable denoising networks.

The model works with images X to which white Gaussian noise Ã is added,
obtaining Y as shown in equation 1.1. Therefore, the input of the algorithm
(shown in figure 1.1) will be the corrupted image Y, and the image to be ob-
tained is set as X = Y, which is then decomposed into small patches such that
xk = RkX. For each of these patches, the algorithm obtains their sparse repre-
sentation ³k using an overcomplete dictionary D, which is updated using SVD
decomposition. Finally, the algorithm restores the image X using this updated
dictionary.

In the formulation of the K-SVD algorithm for denoising (2), the global
Maximum a Posteriori (MAP) estimator for the denoising is given as a minimizer
of a well-defined global penalty term which takes into account sparseness and
proximity. It is defined by:

min
{αk}k,X

µ

2
∥X − Y∥22 +

∑

k

(¼k∥³k∥0 +
1

2
∥D³k − RkX∥22). (1.4)

As we can see from the first term, there needs to have proximity between the
measured image Y and its denoised version X, while the second term controls
that in the constructed image X, every patch xk has a sparse representation,
which will be assured in the structure of the network. Assuming then that
the dictionary D is known, in the objective function 1.4 we have to know the
sparse representation ³k for each patch k, and the measured image X. Given
that X = Y, the minimization algorithm seeks to ensure the optimal sparse
representation for every patch k, controlled by the error ∥D³k − RkX∥22. The
minimization problem is then:

³̂k = argmin
α

∥³k∥0 s.t. ∥D³k − yk∥22 f pÃ2, (1.5)

which is solved in (2) using Ortonormal Matching Pursuit (OMP) when the
second term goes below pÃ2. Once the sparse representation {³̂k}k is obtained,
the second part of 1.4 has to be solved

X̂ = argmin
X

µ

2
∥X − Y∥22 +

∑

k

1

2
∥D³̂k − RkX∥22, (1.6)

whose solution is close to the form:

X̂ =

(

∑

k

RT
k Rk + µI

)−1(

µY +
∑

k

RT
k D³̂k

)

(1.7)

which returns the denoised image.

4 CHAPTER 1. IMAGE DENOISING

1.3 Introduction to Deep K-SVD denoiser

Before describing the deep version of the previous mentioned K-SVD algorithm
for denoising, proposed in 2021 in (1), we will delve into the mathematical the-
ory used for it. From equation 1.1, we obtain a noisy measurement of X. In
general terms, the original image can be written as a sparse linear combination
of elementary images; thus, what we obtain is a sparse linear combination of
these elementary images that has been contaminated with additive noise. Math-
ematically, considering a patch xk ∈ R

p of the original image and a dictionary
D ∈ R

p×m, it can be expressed as :

xk = D³k, (1.8)

where ³k ∈ R
m is a representation of xk that we want to be sparse. However,

what we get is the noisy image patch yk such that:

yk = D³k + v. (1.9)

The goal of denoising using sparse representation is to find an approximation
of ³k given yk. In synthesis we want to find a vector as sparse as possible with
noise allowance. In mathematical terms

³̂k = argmin
αk

¼k∥³k∥0 +
1

2
∥D³k − RkX∥22 (1.10)

which is equivalent to 1.5. Unfortunately the L0 formulation rarely has a unique
solution, as many feasible variants of it sharing the same support can be built.
Therefore, an approximation algorithm has to be used; in the K-SVD algorithm,
the optimal approximated representation is achieved using OMP and using the
level of noise Ã as a stopping criterion. In the deep version it is substituted
with a learnable alternative. Another way to approximate is to find the closest
convexification replacing the L0 norm with L1 as it is shown in (10) and (11),
which can be cast as a linear programming problem.

The sparse coding 1.10 is then approximated by solving the minimization
problem:

³̂k = argmin
αk

¼k∥³k∥1 +
1

2
∥D³k − RkY∥22 (1.11)

where the parameter ¼k manages a trade-off between the approximation er-
ror and the sparsity of the coefficient vector. Once this formulation has been
minimized to find ³̂k, it approximates the ideal coefficient vector ³k. In the
architecture under consideration, 1.11 is solved using the learnable version of
the Iterative Soft Thresholding Algorithm (ISTA) (12). This is a regularization
method that minimizes a functional obtained by adding a penalization term to
the discrepancy between the input image and the ideal one. (12) gives a gener-
alization for the sparse coding: if we write the images as functions in a Hilbert
space we have that the ideal representation 1.8 is given by

Kf = h (1.12)

1.3. INTRODUCTION TO DEEP K-SVD DENOISER 5

where K is a bounded operator from H to H′, f ∈ H what we want then to be
a sparse coefficient vector and h ∈ H′ the image seen as a function. The noisy
image is now defined as g ∈ H′, satisfying:

g = h+ e = Kf + e (1.13)

where e represents the noise. Furthermore, the functional that the ISTA al-
gorithm has to minimize, takes into account a penalization term, which is a
weighted Lp norm of the coefficients of f , with respect to a given orthonormal
basis in H, with 1 f p f 2 and f ∈ H. Moreover, given an orthonormal basis
(φγ)γ of H, and given a sequence of strictly positive weights w = (wγ)γ , the
functional Φw,p(f) is defined as

Φw,p(f) = ∆(f) +
∑

γ

wγ |ïf, φγð|p = ∥Kf − g∥2 +
∑

γ

wγ |ïf, φγð|p, (1.14)

For p = 1, keeping the weights fixed at µ, meaning wγ = µ ∀µ, the minimiza-
tion procedure promotes sparsity of the expansion of f with respect to the φγ ,
which is what we are considering. With p = 1 and ïf, φγð, ïg, φγð written as fγ ,
gγ , in the ideal case which we want to approach, the minimizer of the functional
is given by

f∗ =
∑

γ

f∗
γφγ =

∑

γ

Sµ(gγ)φγ , (1.15)

where Sµ is a thresholding operator, from R to R, defined as:

Sµ(x) =

x− µ

2
if x g µ

2

0 if |x| < µ

2

x+
µ

2
if x f −µ

2

(1.16)

The cited article (12), adopts a surrogate function instead of the defined func-
tional 1.14. This surrogate function is subjected to minimization, and an itera-
tive process aims to approach the minimizer. The subsequent section elaborates
on these procedures, offering a generalized formulation:

Teorema 1.3.1. Suppose the operator K maps an Hilbert space H to another

Hilbert space H′, with ∥K∗K∥ < 1 and suppose g is an element of H′. Let (φγ)γ
be an orthonormal basis for H, and let w = (wγ)γ be a sequence of strictly

positive numbers. Pick arbitrary p g 1 and a ∈ H. Define the functional

ΦSUR
w,p (f ; a) on H by

ΦSUR
w,p (f ; a) = ∥Kf − g∥2 +

∑

γ

wγ |fγ |p + ∥f − a∥2 − ∥K(f − a)∥2. (1.17)

Then ΦSUR
w,p (f ; a) has a unique minimizer in H. This minimizer is given by

f = Sw,p(a+K∗(g −Ka)), where the operators Sw,p are defined by

Sw,p =
∑

γ

Swµ ,pφγ , (1.18)

6 CHAPTER 1. IMAGE DENOISING

with the functions Swµ ,p from R to itself is the thresholding defined by (Fw,p)
−1

for p > 1 where (Fw,p) = x+ wp
2 sign(x)|x|(p−1) and as

Swµ ,1 =

x− w

2
if x g w

2

0 if |x| < w

2

x+
w

2
if x f −w

2

(1.19)

for p = 1. For all h ∈ H we have

ΦSUR
w,p (f + h; a) g ΦSUR

w,p (f ; a) + ∥h∥2. (1.20)

With the same hypothesis of the theorem, having found the minimizer of
ΦSUR

w,p (f ; a), it follows

Corollary 1.3.2. Pick f0 ∈ H, and define the functions fn recursively by the

algorithm

f0 arbitrary; fn = argmin(ΦSUR
w,p (f ; fn−1)) n = 1, 2

Then

fn = Sw,p(f
n−1 −K∗(g −Kfn−1)). (1.21)

For a generalization, the operator K∗K can be upper bounded by a general
operator D diagonal in the φγ basis: Dφγ = dγφγ ; such that

K∗K + ¸I f D for some ¸ > 0,

and the construction 1.21 become

fn = Sw/D,p(f
n−1 −D−1

[

K∗(g −Kfn−1)
]

). (1.22)

From (12) is stated the following

Teorema 1.3.3. Let K be a bounded operator from H to H, with norm strictly

bounded by 1. Take p ∈ [1, 2], and let Sw,pbe the shrinkage operator defined in

1.18, where the sequence w = (wγ)γ is uniformly bounded below away from zero.

Then the sequence of iterates defined in 1.21, with f0 arbitrarily chosen in H,

converges strongly to a minimizer of the functional

Φw,p(f) = ∥Kf − g∥2 + |∥f∥|p
w,p, (1.23)

where |∥f∥|w,p denotes the norm

|∥f∥|w,p =

[

∑

γ

wγ |ïf, φγð|p
]1/p

1 f p f 2.

1.3. INTRODUCTION TO DEEP K-SVD DENOISER 7

So far, we have discussed the construction of the minimizer. However, it is
also important to consider the balance between the discrepancy ∥Kf − g∥2 and
the penalty term |∥f∥|pw,p in 1.23. This term, can be regularized with a term µ
to which the functional depends.

Φw,p(f) = ∥Kf − g∥2 + µ|∥f∥|pw,p. (1.24)

Considering this formulation, we can apply the above discussion to the problem
we are taking in account. In (13) the ISTA algorithm is applied to find the
optimizer of the sparse code 1.11. In our considered problem, we have to find
the minimization 1.11 of the sparse code, which can be written as a functional
1.24 of the form:

¼k∥³k∥1 +
1

2
∥D³k − RkY∥22, (1.25)

with p = 1.
Summarizing the preceding discussions in simpler terms, given an input vector
yk, we can determine the minimizer of 1.25 through the following recursive
iterations:

³̂k
t+1 = S¼k

c

(³̂k
t − 1

c
DT (D³̂k

t − yk)); ³̂k
0 = 0. (1.26)

Here, the function Sθ(V) represents the component-wise function with a vec-
tor of threshold ¹, as defined in 1.19. Specifically, [Sθ(V)]i is computed as

sign(Vi)(|Vi| − ¹i)+, where all thresholds are set as ¹i = λk

c . Here, ¼k is a

Figure 1.2: the structure of ISTA algorithm. Here X is the input image, Z the sparse
vector, Wd the dictionary and α a parameter which control sparseness.

coefficient which regularize 1.25 and controls sparseness, while the constant c
defines the upper bound on the largest eigenvalue of DTD; in our case c will
be represented by the squared spectral norm of the dictionary and the role of
sparseness coefficient is taken by ¼k, which has to be chosen in an appropriate
way in the algorithm. In fact this will be done in a learnable way using Multi-
Layer Perceptron (MLP). Once the sparse representation for each patch has
been obtained, the algorithm proceeds to reconstruct the image. However, the
reconstruction method differs from that described in 1.7. Instead, it involves a
weighted average of the patches.
In the next chapter the architecture of the algorithm will be explained in detail.

Chapter 2

Algorithmic Approaches

2.1 Deep K-SVD denoising

In this section, we will delve into a comprehensive examination of the deep K-
SVD denoising algorithm as outlined in the preceding chapter. This detailed
understanding will serve as the foundation for initiating our subsequent work.
The original formulation proposed (1), focuses on removing noise from images.
To better understand the algorithm operation, we will analyze its architecture,
depicted in Figure 2.1, as well as examine its implementation code on a specific
dataset of images. This analysis will provide insights into the inner workings of
the algorithm.

Figure 2.1

The model works with images described as matrices X ∈ R

√
N×

√
N , to which

is added white Gaussian noise Ã, obtaining Y ∈ R

√
N×

√
N as in 1.1. Therefore,

the input of the algorithm will be a corrupted image Y, which is then decom-
posed into small overlapping patches of size

√
p×√

p pixels, ordered as vectors

9

10 CHAPTER 2. ALGORITHMIC APPROACHES

yk ∈ R
p such that yk = RkY, with Rk ∈ R

p×N an operator to select the
patches and Y reshaped to be a vector of dimension N . For each of these
patches the algorithm obtains their sparse representation ³k using a learned
dictionary D and averaging these overlapping patches, the algorithm restore

the image X̂ ∈ R

√
N×

√
N .

2.2 Architecture

The core of the model (figure 2.1) is the patch denoiser which will be described
below in three stages: sparse coding, ¼ evaluation and patch reconstruction.

2.2.1 Sparse coding

Given all patches yk of a corrupted image Y, during the sparse coding stage
the algorithm must compute a sparse vector for each of these vectors patches.
This is done as we have described in the previous chapter, iterating 1.26 until
t+1 = T for a given value of T . As we have shown, this approximates the sparse
representation of the related clean patch xk, trying to minimize the noise. This
is done accordingly to a learned dictionary D ∈ R

p×m, as it is done in the
original K-SVD algorithm. However, in the deep version we obtain the sparse
coding in a learnable way. In simpler terms, after T iterations, we have obtained
the following using the recursive equation 1.26:

³̂T = S¼
c
(³̂T−1 −

1

c
DT (D³̂T−1 − y)).

In this context, we treat y as the collection of all patches yk, and similarly,
³̂t and ¼ are considered for every k. Additionally, c represents the squared
spectral norm of D, as it serves as the upper bound of the eigenvectors of DTD.
This treatment is applied to each patch individually during the execution of the
algorithm. During this phase the network tries to find an estimate of every patch
xk of X, given the noisy patch yk, minimizing the discrepancy term ∥D³k −
RkY∥22. What differs respect to the previously described ISTA algorithm, is the
choice of the regularization parameter ¼, which in order to quantify better the
tradeoff between sparseness and discrepancy, has to be learned. This is done
using MLP and will be discussed in the next paragraph. Moreover, in order to
make the ISTA learnable, the code fixes the number of iterations T and treats
the dictionary D and its squared spectral norm c as learnable parameters. These
parameters are updated during the backpropagation process of the algorithm.

2.2.2 λ Evaluation

To optimize sparse coding, the model needs to determine the appropriate regu-
larization parameter ¼. This is achieved by training a Multi-Layer Perceptron
(MLP) network from the patches yk to their corresponding regularization pa-
rameters ¼k for each k: ¼ = fθ(y).

2.2. ARCHITECTURE 11

The MLP network consists of an input layer with p nodes, followed by three
hidden layers. Each hidden layer comprises a fully connected linear mapping
followed by a Rectified Linear Unit (ReLU) activation function, defined as:

ReLU(x) =

{

x if x g 0

0 otherwise

Finally, the output layer consists of a single node representing ¼. The structure
is the following:

y → [2p×p] → ReLU → [p×2p] → ReLU → [p/2×p] → ReLU → [1×p] → Act → ¼
(2.1)

where [a× b] symbolizes a multiplication by a matrix of that size. Going more
in depth we have

¿ = ReLU(
[

b0 A0

]

[

1
y

]

) (2.2)

µ = ReLU(
[

b1 A1

]

[

1
¿

]

) (2.3)

¸ = ReLU(
[

b2 A2

]

[

1
µ

]

) (2.4)

¼ = Act(
[

b3 A3

]

[

1
¸

]

). (2.5)

In the formulation given in (1) the output layer ¼, is not followed by a ReLU,
while in our formulation we will put the option to add the proper activation
function, that here is denoted as Act(); so to be more precise in the original
formulation Act() is the identity function. However, as the input layer can
achieve negative values, they can be propagated in the output layer. For that
reason, to avoid negative values for ¼ and make the sparse code operate correctly,
in the simplest way we can apply a ReLU to it, moving all the values in the
positive range.

2.2.3 Patch reconstruction

Once the appropriate ¼ is obtained, the sparse representation ³̂ of the patches
can be computed using the dictionary D within a fixed number T of iterations
of the ISTA algorithm. Consequently, the network reconstructs the cleaned
version x̂ of y by calculating x̂ = D³̂, which approximates 1.8.

2.2.4 Patch Averaging

Summing it all together, the network begins by dividing the corrupted image Y

into fully overlapping patches using the operators {Rk}k. Then, in the sparse
stage, each of these patches is denoised, resulting in x̂.
The final stage consists in averaging all these cleaned patches together, using a

12 CHAPTER 2. ALGORITHMIC APPROACHES

learned weighted combination of them. The reconstructed image is obtained in
the following way:

X̂ =

∑

k RT
k (x̂ ◦ w)

∑

k RT
k w

, (2.6)

where w ∈ R
p weights the values of the reconstructed patch, and is one of the

learnable parameters of the net.

2.3 Learnable Parameters Initialization

The initialization of learnable parameters is a crucial step to optimize the perfor-
mance of the network and prevent issues such as exploding or vanishing weights
during backpropagation. In our model the weights to be learned are the dic-
tionary D, its squared spectral norm c, the averaging weight w for the image
reconstruction and finally the matrices Ai with biases bi, for i = 0, 1, 2, 3 in the
MLP. They will be initialized as follows.

2.3.1 Dictionary settings

Figure 2.2: Overcomplete Discrete Cosinus Transform of size 64× 256

In (1) and (2) the dictionary is initialized as the 2-D Overcomplete Discrete
Cosinus Transform (ODCT), which is a variant of the Discrete Cosinus Trans-
form (DCT) that uses an overcomplete set of basis functions. In our implemen-
tation of the algorithm we built the 2-D Discrete Cosinus Transform (DCT)
consisting in taking the 1-D DCT performed along the rows (1 dimension) and
then along the columns:

Xij =

m−1
∑

k=0

(

m−1
∑

l=0

xkl cos
(Ã

m
lj
)

)

cos
(Ã

m
ki
)

. (2.7)

To that purpose in the implementation we use the Kronecker product of the 1-D
basis functions against themselves, to combine each basis function with every
other basis function. This assure to obtain a new set of basis functions extending
them into two dimensions (row and columns). Indeed, this initialization process
is crucial for achieving redundancy, as it enables the resulting dictionary to
contain more basis functions than the original set. This ensures the construction
of an overcomplete dictionary, which is essential for capturing all the patterns
present in the data, especially in the context of synthetic image generation. An
illustrative example showcasing the construction of the dictionary is provided

2.4. TRAINING 13

in figure 2.2. From the dictionary we also obtain the parameter c, which has to
bound the largest eigenvalue of DTD in the LISTA algorithm; to that purpose
it is chosen to be the squared spectral norm of D.

2.3.2 Averaging weight settings

In line with the original implementation methodology, we have employed ran-
dom initialization for the averaging weight w utilized in image reconstruction.
Specifically, w is initialized following a normal distribution w ∼ N (1, 1

101p),
where 1p denotes a vector of ones of dimension p. This initialization strategy
has been chosen for its efficacy in handling both the forward and backward
processes of training, thus mitigating potential issues such as vanishing or ex-
ploding gradients. Furthermore it helps maintaining diversity among the weight,
offering efficacy in the learning process.

2.3.3 MLP initialization

To initialize the Multi-Layer Perceptron (MLP) for ¼ evaluation, the matrices Ai

and biases bi are randomly initialized using a uniform distribution U(−√
n,

√
n),

where n denotes the size of the incoming node. Specifically, if the incoming node
is represented as x ∈ R

n and the outgoing node as y ∈ R
m, the matrix operation

is defined as:

y =
[

b A
]

[

1
x

]

where A ∈ R
m×n represents the matrix and b ∈ R

m represents the bias vector.
Both A and b are computed with entries drawn randomly from the uniform
distribution.

2.4 Training

So far, we have illustrated how the model operates: given a corrupted image Y

as input, it returns its denoised version X̂. Referring to the denoising algorithm
as DΘ, where Θ represents the learnable parameters of the net, we express this
relationship as X̂ = DΘ(Y, Ã).
The final step involves training the model, minimizing a loss function εΘ =
∑N

k=1 dist(xk, x̂k) =
∑N

k=1 dist(xk,DΘ(yk, Ã)). Here, dist(x, x̂) represents a
pixel-wise distance function between the clean image X and the denoised image
X̂, aiming to obtain a denoised image as close as possible to the original X.
This is accomplished through backpropagation, where gradients of ε with respect
to each of the learnable weights of the network are computed and updated using
an appropriate optimizer.
For the training process, the dataset and certain parameters need to be set.
In the article (1) and the corresponding code (3), the Berkeley Segmentation
Dataset (BSDS) is utilized. This dataset comprises 432 images for training and

14 CHAPTER 2. ALGORITHMIC APPROACHES

68 for testing, all converted to grayscale, with the two sets being completely
disjoint.

2.4.1 Training Dataset

Figure 2.3: Original clean image and randomly selected cropped image

Figure 2.4: Process of denoising cropped images during training; from left to right:
clean subimage, noisy subimage and denoised subimage.

From the training set of images, which are of dimensions W ×H and may
be vertically or horizontally oriented, we extract cropped images to a size of√
N ×

√
N pixels (see figure 2.3). Gaussian noise with zero mean and a speci-

fied level of noise Ã is then added to each of these cropped images. The subim-
ages are obtained from a list of all training images. By specifying an index,
a specific image is selected, and given the dimensions of the desired subimage,
it is then extracted. This process yields a dataset composed of pairs of clean
subimages and their corresponding noisy versions, transformed to be within the
range of values [−1, 1] to deal better with values. During the training process,
the dataset is loaded randomly, with the option to specify the batch size. One
cropped image at a time is selected, and as described above, a random pair of
clean/noised subimages is chosen, and the noised one is taken as input for the
network.
For the loss function, we adopt at first the Mean Squared Error (MSE) func-
tion, defined as εMSE = 1

N

∑

n(xn − x̂n)
2, where xn represents the clean image

pixel and x̂n represents the denoised image pixel. This loss function is mini-

2.4. TRAINING 15

mized through backpropagation using the ADAM Stochastic Gradient Descent
optimizer, with the learning rate set to lr = 10−4, ´1 = 0.9, ´2 = 0.999, and
ϵ = 10−16. We update the weights Θ of the network after each mini-batch,
whose dimension is one cropped image.
The choice of the training function is crucial to achieving optimal performance
in noise removal without sacrificing important image information. Therefore,
in the next paragraph, we will discuss this in detail and propose alternative
approaches.

2.4.2 Forward propagation

Before discussing backpropagation, let’s summarize what the network does dur-
ing the forward pass, as outlined in Section 2.2. Given a noised subimage (or
subimages, depending on the batch size) Y as input, it operates the following
process:

1. Patch Decomposition: the input image Y is decomposed into small patches
of dimension

√
p×√

p. This is achieved using a specific operator Rk, which

iterates through the rows and columns of the
√
N ×

√
N input image,

selecting all possible patches.

2. Sparse Coding: each patch yk obtained from the input is processed through
MLP to obtain its corresponding regularization parameter ¼k. These pa-
rameters are then used in the ISTA to obtain the cleaned patches.

3. Denoised Image Reconstruction: the denoised patches are averaged using
equation 2.6 to obtain the denoised image (see Figure 2.4). This denoised
image serves as the output of the forward pass and will be utilized in the
subsequent backward step.

2.4.3 Backward Propagation

During backpropagation, we utilize an optimizer to minimize the error func-
tion and update the weights. We process one mini-batch at a time, with each
mini-batch containing one cropped image. To apply the optimizer, we need to
compute the gradients of the loss function ε with respect to the learning param-
eters of the model for every patch k, for every hidden layer t, and for the last
one T . This involves computing ▽Θ(t)ε, where Θ(t) represents the parameters
of the model at layer t. Additionally, we compute the gradient for the sparse
code: ▽ak

t+1
ε. At layer T , we compute the gradients as follows:

• Gradient with respect to the sparse representation akT :

▽ak
T
ε = 2D(T)T

(

RT
k · X̂ − X
∑

k RT
k w

◦ w

)

,

16 CHAPTER 2. ALGORITHMIC APPROACHES

• Gradient with respect to the dictionary D(T):

▽
D(T)ε = 2

∑

k

(

Rk · X̂ − X
∑

k RT
k w

◦ w

)

akT
T
,

• Gradient with respect to the weight w:

▽wε = 2
∑

k

[[(

Rk · X̂ − X
∑

k RT
k w

)

◦ x̂k

]

− Rk ·
[

X̂ − X

(
∑

k RT
k w)2

◦
(

∑

k

RT
k (x̂k ◦ w)

)]]

.

To recursively compute the gradients with respect to the parameters in the hid-
den layers, we can employ the chain rule of calculus and propagate the gradients
backwards through the layers of the network. Let’s break down the recursive
computation of gradients with respect to the parameters in the hidden layers.

• Gradient with respect to the Dictionary D(t):

▽
D(t)ε =

(

∂ε

∂(D(t))p,m

)

p,m

which, using the chain rule is

∂ε

∂(D(t))p,m
=
∑

k

∑

j

∂ε

∂(akt+1)j

∂(akt+1)j

∂(D(t))p,m

and we will compute the first term of the sum recursively with a function
▽ak

t
ε = F (▽ak

t+1
ε):

▽ak
t
ε = (Im − 1

c(t)
D(t)TD(t))(▽ak

t+1
ε ◦ ∂vS) ∀k,

while the second can be computed by hand, which bring us to the recursive
function ▽

D(t)ε = G(▽ak
t+1

ε):

▽
D(t)ε = − 1

c(t)

[

∑

k

(D(t)akt − yk)(▽ak
t+1

ε ◦ ∂vS)
T +

∑

k

D(t)(▽ak
t+1

ε ◦ ∂vS) (a
k
t)

T

]

with v =
[

akt − 1
c(t)

D(t)T (D(t)at
k − yk)

]

the second argument of the soft

thresholding 1.26 written as S(¹, v).

• Gradient with respect to the parameter c(t):
Similarly, we compute the gradient respect to the parameter c(t) at layer
t:

▽c(t)ε =
∂ε

∂(c(t)
=
∑

k

∑

j

∂ε

∂(akt+1)j

∂(akt+1)j

∂c(t)

2.4. TRAINING 17

finding

▽c(t)ε =
1

c(t)
2

∑

k

(

(▽ak
t+1

ε ◦ ∂vS)T · (D(t)T (D(t)at
k − yk))

)

− ¼k
(t) ONES(1×m) · (▽ak

t+1
ε ◦ ∂θS).

• Gradients with respect to the MLP parameters biAi
(t): Finally,

in the same way:

▽
biAi

(t)ε =

(

∂ε

∂(biA
(t)
i)r,c

)

r,c

,

where

∂ε

∂(biAi
(t))r,c

=
∑

k

∑

j

∂ε

∂(akt+1)j

∂(akt+1)j

∂¼
(t)
k

∂¼
(t)
k

∂(biAi
(t))r,c

Therefore, considering the equations 2.5, 2.4, 2.3, 2.2, we obtain

▽
b3A3

(t)ε =
∑

k

ARG ·
(

ARGη ·
[

1
¸(t)

]T
)

,

▽
b2A2

(t)ε =
∑

k

ARG ·
(

ARGµ ·
[

1
µ(t)

]T
)

,

▽
b1A1

(t)ε =
∑

k

ARG ·
(

ARGν ·
[

1
¿(t)

]T
)

,

▽
b0A0

(t)ε =
∑

k

ARG ·
(

ARGy ·
[

1
yk

]T
)

,

where

ARGη = Act′
(

[

b3 A3

](t)
[

1
¸(t)

])

ARGµ = ReLU ′
(

[

b2 A2

](t)
[

1
µ(t)

])

◦
(

A
(t)
3

T
· ARGη

)

ARGν = ReLU ′
(

[

b1 A1

](t)
[

1
¿(t)

])

◦
(

A
(t)
2

T
· ARGµ

)

ARGy = ReLU ′
(

[

b0 A0

](t)
[

1
yk

])

◦
(

A
(t)
1

T
· ARGν

)

ARG =
1

c(t)

[

ONES(1×m) ·
(

▽ak
t+1

ε ◦ ∂θS
)]

18 CHAPTER 2. ALGORITHMIC APPROACHES

After computing gradients for each layer t and parameter within each layer,
they are aggregated over all layers using the chain rule: ▽Θε =

∑

t ▽Θ(t)ε. This
combined gradient represents the overall gradient of the loss function ε with
respect to all the learnable parameters Θ of the entire neural network. Subse-
quently, this aggregated gradient is utilized to update all parameters within the
optimizer.

2.4.4 Optimizer

Having computed the gradients of the loss function respect to every weight, they
can be optimized using the proper algorithm. We consider at first the Stochas-
tic Gradient Descent (SGD), then for better results we consider the Adaptive
Moment estimation (ADAM) (fig.2.5), in which the learning rate is adjusted
respect to the parameter to be updated through momentum adaptation. In

Figure 2.5: Structure of the ADAM algorithm

2.5. LOSS FUNCTION 19

fact what we want is to minimize the loss function respect to all the learnable
parameters, so we want that the gradients approach zero. In SGD the weights
are updated in the following way

Θ = Θ− lr · ▽Θε

with lr the learning rate appropriately chosen. In our algorithm, as in (1),
we used one cropped image as mini-batch picked randomly from the dataset.
In the ADAM algorithm the learning rate and the gradients are adapted to
the parameter, so at every update, with batch size equal to 1, the first and
second momentum, previous set to be zero for initialization, are updated at
every iteration as

mi = ´1mi−1 + (1− ´1) · ▽Θε,

vi = ´2vi−1 + (1− ´2) · (∇Θε)
◦2;

where (∇Θε)
◦2 denotes the element-wise square of the gradient of ε, and the

gradients are updated using

m̂i =
mi

1− ´i
1

,

v̂i =
vi

1− ´i
2

as

▽Θεi =
m̂i√
v̂i + ϵ

.

Finally the weights are substituted by

Θ = Θ− lr · ▽Θεi.

In the end, having updated the weights correctly, using them in the forward
propagation, it should return the image correctly denoised and reconstructed.
However the performance of the algorithm is something that can be addressed
to the correct choice of the loss function: In fact the goal is to remove all the
possible noise, but also reconstruct images as close as possible to the origi-
nal ones, preserving small details, textures and avoiding splotchy artifacts and
blurry structures. This choice will be discussed better in the next paragraph.

2.5 Loss Function

Denoisers are frequently assessed using MSE 1.3. This metric offers several ad-
vantages, such as yielding zero when the denoiser perfectly restores the image
and being easily differentiable during backpropagation. Additionally, in many
libraries, like PyTorch, MSE is one of the few pre-built loss functions. However,
depending on the simplicity of the clean image manifold—indicating the level
of image complexity—MSE can sometimes produce overly blurry images that
fall outside this manifold. For instance, in figure 2.6, it is evident that certain

20 CHAPTER 2. ALGORITHMIC APPROACHES

Figure 2.6: image noised, original and denoised, MSE < 0.004

details, such as the mountain profile in the denoised image, lack sharpness com-
pared to the original, and the sky’s texture appears noticeably rough, despite
the low MSE value. This highlights the necessity of defining a criterion for as-
sessing denoising techniques that not only aims to minimize the error caused
by noise but also ensures the preservation of intricate image structures such as
edges, fine details, and textures. It emphasizes the need to create evaluation
methods or loss functions that consider both reducing noise and maintaining the
fine details and features of the original image. For instance, the Structural Sim-
ilarity Index Measure (SSIM) (4) serves to compare the structures and patterns
of two images, evaluating their similarity in luminance, contrast, and structures.
Mathematically, it is expressed as:

SSIM(X, X̂) =
2µXµ

X̂
+ C1

µ2
X
+ µ2

X̂
+ C1

· 2Ã
XX̂

+ C2

Ã2
X
+ Ã2

X̂
+ C2

= l(X, X̂) · cs(X, X̂). (2.8)

This formulation, interpreted as a loss function, will be discussed in more detail
later. In their work (5), the authors explore the potential substitution of MSE
with alternative metrics, beginning with SSIM. They then introduce additional
alternatives such as Multi-Scale Structural Similarity (MS-SSIM), and discuss
the possibility of combining various metrics to formulate a more suitable loss
function within the domain of image processing.We aim to investigate whether
adopting alternative metrics, particularly SSIM and MS-SSIM, could lead to
enhanced outcomes for the implemented Deep K-SVD algorithm. Initially, we
will delve into theoretical considerations to find the potential benefits of these
metrics. Subsequently, we will experiment with the network to empirically val-
idate our theoretical insights and assess the practical efficacy of incorporating
these metrics into the algorithm. In the subsequent paragraph, we will delve
into a more detailed illustration of the concepts previously discussed. Specifi-
cally, we will specify the significance of MSE as a loss function and discuss what
constitutes a desirable value for it, often referred to as the Minimum Mean
Squared Error (MMSE). Furthermore, we will compare MSE with other loss

2.5. LOSS FUNCTION 21

functions to gain a comprehensive understanding of their respective strengths
and limitations.

2.5.1 Minimum Mean Squared Error

As we have seen in Section 1.1, the MSE function can be stated as

MSE = E(∥X − X̂∥22) =
1

N

∑

i

(Xi − X̂i)
2, (2.9)

and the less the value of MSE is, the better estimator X̂ is. If the noise is an
additive Gaussian noise with zero mean and variance Ã2, as in our considered
case, we can find a relation between the clean/denoised image distance (the
MSE) and the variance of the noise. Putting all together we want to minimize

the value of MSE, and finding the estimator X̂ such that the function achieves
such minimum, helping us to understand how well noise can be removed from
a given image. This is independent from the denoiser we are using. So first
of all we will find a way to find the best estimator X̂MMSE and the related
MSE value, to set a parameter to understand if our model is able to achieve the
best performance in terms of noise removal which, as discussed before, does not
guarantee structural perfection of the image. We want, in fact, to find

x̂MMSE = argmin
x̂

E(∥X − x̂∥22). (2.10)

From (6) and (7) we obtain that this evaluation is given using the Bayesian
approach. In this way we can reach information of an unknown variable X,
drawn by the probability density function, fX(x), which is a prior distribution,
using a related random variable Y . Therefore, having the value y of Y , we are
able to find the posterior distribution of X, fX|Y (x|y), which is found through
the Bayes’ formula:

fX|Y (x|y) =
fY |X(y|x) fX(x)

fY (y)
, (2.11)

and which contains all the informations we know about X. Starting from that
we can find the estimate of X. It is given by x̂ = g(Y), then to find the best
one we have to minimize the expected mean squared error

MSE = E((X − x̂)2 | y) = E((X − g(Y))2 | y). (2.12)

Calling a our estimate, we want to minimize the function

h(a) = E((X − a)2 | y) = E(X2 | y)− 2aE(X | y) + a2, (2.13)

and deriving respect to a, and nulling it we obtain that the minimum is reached
by

x̂MMSE = E(X | y), (2.14)

22 CHAPTER 2. ALGORITHMIC APPROACHES

which is the Bayes’ estimate of X. Translating the above discussion into our
case, we want to reach information of an unknown image X, drawn by the prob-
ability density function, fX(x), using its measurement Y related to it through
the conditional probability fY|X(y|x). Starting from that we can find the best
estimate minimizing

MSE = E(∥X − g(Y)∥22 | y) =
∫

∥X − g(Y)∥22 fX|Y(x|y) dX (2.15)

Thus, we have to derive it respect to g(Y) and null it, finding

gMMSE(y) =

∫

X

X fX|Y(x|y) dX = E(X|Y), (2.16)

where the last equality come from 2.14 and the above discussion, meaning that
the expectation is seen as the mean of the posterior conditioned probability. Fi-
nally using Bayes’ formula 2.11, we are able to compute fX|Y(x|y), and putting
it in 2.16, we have found the minimum value

x̂MMSE = E(X|Y). (2.17)

Therefore if we want to know the MSE for this estimator we have to compute

MSE = E(∥X − E(X|Y)∥22) =
1

N

∑

(X − E(X|Y))2, (2.18)

which gives us the lower bound of MSE for the image X, and we can use it as
a stopping criterion: when for an image the MSE between X and its denoised
version is near that value, then we have reached a good denoised image. Finding
X̂MMSE , however, is nearly impossible with the built network, in fact it is an
ideal computation. This is relevant in terms of the noise; if we want to consider
also the structure of the image, without losing important contents, we have to
make other considerations.

2.5.2 Perception-Distortion Tradeoff

In (7) is discussed if, even reaching the maximum noise removal, it can result
in blurry images, compromising perceptual quality of the image. Has, in fact,
been proved that there exists a "perception-distortion tradeoff", where in our
case distortion means noise; this tradeoff implies that optimizing one results
in deteriorating the other (see figure 2.7). With this knowledge we can then
improve our research stating that trying only to minimize the MSE between the
clean image and its denoised version is useless if we want to restore the image
wisely. For that reason it is necessary to consider a good mean in minimizing
distortion getting good visual quality. First of all we will follow other roads, for
example substituting the MSE loss function with some alternatives that consider
the structure of the image. We can ask why this can be a wise approach, so
before describing the measures, we will see that the answer relies on the cited

2.5. LOSS FUNCTION 23

Figure 2.7

tradeoff. As we have seen before, we can draw an ideal image X from the image
manifold, represented by the PDF fX(x), measure the noised image relating it
with a conditional probability fX|Y(x|y) and using it, we can get an expectation

X̂ of it. We have also seen that to evaluate how well the image has been denoised,
we need a distance function ∆(X, X̂), and to measure the distortion of the

estimator we average between the values using E(∆(X, X̂)). On the other hand
to evaluate the perceptual quality of an estimator is used a divergence between
the PDFs of the ideal image and the reconstructed one d(fX, f

X̂
). The best

perceptual quality is attained when fX = f
X̂

, meaning when the output image
belongs to the original image manifold. Following the consideration described
above we can state that generally fX ≁ f

X̂MMSE
, implying that low distortion

does not implies good perceptual quality. We can observe that this represent
a Pareto frontier, indeed in 2.7 an increasing in distortion influences positively
the perception quality, and viceversa. We can see that defining

P (D) = min
f
X̂|Y

d(fX, f
X̂
) s.t. E(∆(X, X̂)) f D, (2.19)

where P (D) is the minimal deviation between the PDFs fX and f
X̂

that can
be attained by an estimator with distortion D. In (8) is stated the following
theorem, which assume that the perception-distortion tradeoff does not depend
on ∆(·, ·), so it exists for every distortion measure.

Teorema 2.5.1 (The perception-distortion tradeoff). Following the previous

24 CHAPTER 2. ALGORITHMIC APPROACHES

assumptions on distortion and perceptual quality, if d(fX, fX̂) is convex in its

second argument, then the perception-distortion function P (D) in 2.19 is

1. monotonically non-increasing;

2. convex.

However, this does not imply that all the distortion measure have the same
perception-distortion function, indeed the tradeoff can be better for distortion
measures that control structural similarity between images.

For that reason, following (5) we will focus on a mix function which combine
the multiscale version of SSIM and the Mean Absolute Error (MAE) and inspired
by that and (9) we will consider the combination of SSIM with MSE.

2.5.3 Multi-Scale Structural Similarity combined to Mean

Absolute Error

In (5), is proposed the multiscale version of 2.8,

MS − SSIM(X, X̂) = lM (X, X̂) ·
M
∏

j=1

csj(X, X̂). (2.20)

If we want to consider local structures of images we can consider a patch P of
the image, in which pixels are denoted as p. Going more in depth in 2.8, we
have

l(X, X̂) =
2µXµ

X̂
+ C1

µ2
X
+ µ2

X̂
+ C1

, (2.21)

where the mean is computed respect to the central pixel. So it results

µx =

N
∑

i=1

GσG
(xi) xi, (2.22)

with x the image X or X̂, and xi the pixels in the related image. This is the
mean computed with a 2D Gaussian blur

GσG
(x) =

1√
2ÃÃG

e
− r2x+c2x

2Ã2
G (2.23)

with standard deviation ÃG and rx, cx the coordinates of pixel x from the cen-
tral pixel, meaning that the one nearer to the origin has more impact on the
function. Therefore, l(X, X̂) compares the local luminance between two im-
ages using mean intensity and brightness weighting the pixels inside a patch.
The constant C1 in 2.21 controls the stability of denominator. Furthermore,
the term cs(X, X̂) combines the formulas of contrast comparison and structural

2.5. LOSS FUNCTION 25

similarity multiplying them. The first is determined using standard deviation
computed with the Gaussian smoothing

Ãx =

(

N
∑

i=1

GσG
(xi)(xi − µx)

2

)

1
2

(2.24)

with x as before equal to X or X̂, and a stabilizing constant C2,

c(X, X̂) =
2ÃXÃ

X̂
+ C2

Ã2
X
+ Ã2

X̂
+ C2

. (2.25)

The structural comparison term works with luminance subtraction and variance
normalization of the images and a constant which in this case is posed equal to
C3 = C2

2

s(X, X̂) =
Ã
XX̂

+ C3

ÃXÃ
X̂
+ C3

, (2.26)

where

Ãxy =

N
∑

i=1

GσG
(xi)(xi − µx)(yi − µy), (2.27)

with x and y denoting respectively X and X̂. All this formulas are then trans-
posed in multi-scale terms, which is done using a dyadic Pyramid of M levels in
which an image is processed by smoothing and subsampling through a Gaussian
filter, reducing noise and emphasizing important structures of the image. The
luminance comparison 2.21 is made only at last scale M , while contrast and
structure comparison 2.25 and 2.26 are computed at every scale j = 1, . . .M .
The related loss function is defined as

εMS−SSIM (X, X̂) = 1−MS − SSIM(X, X̂), (2.28)

comparing all pixels p for patch P . The multi-scale method is a convenient way
to incorporate image details at different resolutions, which permits to achieve
better results than SSIM. Indeed, due to its multiscale nature, MS-SSIM solves
the issue of noise better near edges, where the change of color (in grayscale) is
neat, than that in flat areas, where it can cause shift in brightness and colors.
However, still preserves contrast at high frequencies better than the other loss
functions. On the other hand is considered the MAE

εMAE =
1

N

∑

i

|Xi − X̂i|, (2.29)

computed pixel-wise, where Xi is the i-th element of the image X. It preserves
colors and luminance, because the error is weighted in the same way for every
pixel, so does not depend on the image patch structures, however does not
produce the same contrast as MS-SSIM. From that reason the MIX loss function
is proposed

εMIX = ³ · εMS−SSIM + (1− ³) ·GσM
G

· εMAE , (2.30)

26 CHAPTER 2. ALGORITHMIC APPROACHES

where ³ gives the right weight to the two losses to capture the best charac-
teristics of both. For the MS − SSIM , instead of computing the M levels of
Pyramid, in (5) it is approximated using M different values of Ãi

G at level i, each
one being the half of the previous. This is done assuming csi = Gσi

G
· cs0(p̃),

where the Gaussian filter is centered at pixel p̃. The point-wise multiplication
between εMAE and GσM

G
is set because MS-SSIM control the error for pixel p

based on its distance with the central pixel p̃. From the above we can eas-
ily conclude that the benefit of the MIX loss can be various in denoising and
preserving the structure of the image. However for our purpose the discussion
can be simplified: in fact working with gray-scale images and white Gaussian
noise it is not necessary to get a multiscale decomposition of the image so to
still preserve structural content of the image we can consider the simpler non
multiscale version, SSIM. Moreover we can state that for our use is sufficient lu-
minance, contrast and structure similarity in the global image as the noise does
not strictly depend from local structures, while using the Gaussian blur permits
to give different weights to the local structures of the images, from central pixel,
to which is given more importance, to periferical pixels which are blurred. On
the other hand as the simplest version analyzes the mean luminance, contrast
and structure similarity on the global image, to avoid for example change of
brightness we should also control the content pixel by pixel, so basically we can
combine the SSIM with the already used MSE.

2.5.4 Mean Squared Error combined with Structural Sim-

ilarity Index Measure

The SSIM loss function is computed as the inverse of 2.8, meaning that mini-
mizing the loss, the SSIM index is maximized. In formulas we have

εSSIM (X, X̂) = 1− SSIM(X, X̂) = 1− l(X, X̂) · cs(X, X̂), (2.31)

where luminance l and contrast-structure cs similarity are defined as follow.

l(X, X̂) =
2µXµ

X̂
+ C1

µ2
X
+ µ2

X̂
+ C1

, (2.32)

where

µx =
1

N

N
∑

i=1

xi (2.33)

is the mean of image x,

cs(X, X̂) = c(X, X̂) · s(X, X̂) =
2ÃXÃ

X̂
+ C2

Ã2
X
+ Ã2

X̂
+ C2

· Ã
XX̂

+ C3

ÃXÃ
X̂
+ C3

, (2.34)

where

Ãx
2 =

1

N

N
∑

i=1

(xi − µx)
2 (2.35)

2.5. LOSS FUNCTION 27

is the variance and

Ãxy =
1

N

N
∑

i=1

(xi − µx)(yi − µy) (2.36)

the covariance of the ground truth image and the denoised one, and all the
summations are done pixel-wise. Using C3 = C2

2 as in (5), cs become

cs(X, X̂) =
2Ã

XX̂
+ C2

Ã2
X
+ Ã2

X̂
+ C2

(2.37)

Following the idea in (5) and (9) we consider the following loss function

εMIX = ³ · εSSIM + (1− ³) · εMSE , (2.38)

As mentioned before MSE compares images pixel by pixel, and due of the square
difference it penalizes larger errors and in an equivalent way more tolerant to
small errors meaning that it results in smoothing the image removing noise, but
it can results in blurring them. For example in flat regions it strongly attenuates
the noise, but can results in splotchy artifacts. On the other hand the sharpness
of the edges is well preserved when the contrast is neat, however where the
noise does not affect the image content in a neat way, meaning the error is small
it tends to not to consider it. On the other hand the SSIM controls details
and textures which can be lost by MSE. However in flat region colors can be
shifted or brightness can be changed by SSIM, but MSE preserve it because
compares singular pixels. In conclusion if the goal is to get a better result for
our implemented net, removing the noise but still preserve the images contents,
this is the path to follow, also because more it is more understandable for the
use in backpropagation if we want to analyze an application.

If we want to train our network with this new loss function, we will then
need to compute its gradient respect to the network weights Θ(t) and choose ³
in a proper way. For the gradients, most of the computations remain the same
as in 2.4.3 for the chain rule, a part from the weights in the loss layer i.e. the
gradients respect to akT , DT and w, which we will now call in general as Θ(T).
In fact, we will compute

▽Θ(T)εMIX = ³ · ▽Θ(T)εSSIM + (1− ³) · ▽Θ(T)εMSE . (2.39)

More specifically we will only need to compute ▽Θ(T)εSSIM , in particular for

the chain rule ∂εSSIM (X,X̂)
∂Θ(T)(i,j)

=
∑

r
∂εSSIM (X,X̂)

∂X̂r

· ∂X̂r

∂Θ(T)(i,j)
, where the first term

is computed as follow for each r,

∂εSSIM (X, X̂)

∂X̂r

= −∂l(X, X̂)

∂X̂r

· cs(X, X̂)− l(X, X̂) · ∂cs(X, X̂)

∂X̂r

(2.40)

while the second has already been computed. In the end we will only need
∂µ

X̂

∂X̂r

,
∂σ

X̂

∂X̂r

and
∂σ

XX̂

∂X̂r

which are the only terms in 2.32 and 2.37 that depends on X̂r.

Finally we find
∂µ

X̂

∂X̂r

=
1

N
∀r

28 CHAPTER 2. ALGORITHMIC APPROACHES

∂Ã
XX̂

∂X̂r

=
1

N
(Xr − µX) ∀r

∂Ã
X̂

∂X̂r

=
1

Ã
X̂
N

(

X̂r − µ
X̂

)

∀r.

Denoting

µ̄X = µX ·ONES(N)

with point-wise multiplication, and writing

∂l(X, X̂) =
µ̄X − µ̄

X̂
· l(X, X̂)

µ2
X
− µ2

X̂
+ C1

and

∂cs(X, X̂) =
(X − µ̄X)− (X̂ − µ̄

X̂
) · cs(X, X̂)

Ã2
X
− Ã2

X̂
+ C2

we can conclude

∂εSSIM (X, X̂) = − 2

N

(

cs(X, X̂) · ∂l(X, X̂) + l(X, X̂) · ∂cs(X, X̂)
)

.

In conclusion we find:

• Gradient with respect to the sparse representation akT :

▽ak
T
εSSIM = − 2

N
D(T)T

(

RT
k · ∂ε

SSIM (X, X̂)
∑

k RT
k w

◦ w

)

,

• Gradient with respect to the dictionary D(T):

▽
D(T)εSSIM = − 2

N

∑

k

(

Rk · ∂ε
SSIM (X, X̂)
∑

k RT
k w

◦ w

)

akT
T
,

• Gradient with respect to the weight w:

▽wεSSIM = − 2

N

∑

k

[[(

Rk · ∂ε
SSIM (X, X̂)
∑

k RT
k w

)

◦ x̂k

]

− Rk ·
[

∂εSSIM (X, X̂)

(
∑

k RT
k w)2

◦
(

∑

k

RT
k (x̂k ◦ w)

)]]

Starting from that, with the same computations of 2.4.3, we can backpropagate
the output with the new mix loss function.

2.5. LOSS FUNCTION 29

2.5.5 Test image quality

To check the quality of reconstructed images the Peak signal-to-noise ratio
(PSNR) is used. It depends on MSE and it is defined as

PSNR = 10 · log10
max2i X̂

εMSE(X, X̂)
,

for an output image X̂ and maxi X̂ the maximum possible pixel value in the
image. It has been used in various image denoising tasks to check quality of
processed images, for example in (1) it is used to compare the performance of
deep K-SVD denoiser to the near state-of-the-art denoisers. The PSNR value
approaches infinity as the MSE approaches zero; this shows that a higher PSNR
value provides a higher image quality, while a small value of the PSNR implies
high numerical differences between images. Knowing that the PSNR depends on
the MSE, based on what we have discussed before it is able to check the quality
of the image depending on how well the noise has been removed. However
to check quality depending on structural content of the image it is wise to use
SSIM index 2.8 which takes values between [0, 1]. As we can see in the definition
2.8 the two images are equal if SSIM is 1. Furthermore in (16) we can find a
relationship between the two metrics and compute the related quality. In fact,

PSNR = 10 · log10

[

2Ã
XX̂

(l(X, X̂)− SSIM)

max2i X̂ · SSIM
+

(

µX − µ
X̂

maxi X̂

)2
]

.

This follows rewriting 2.9 as

εMSE(X, X̂) = Ã2
X + Ã2

X̂
− 2Ã

XX̂
+ (µX − µ

X̂
)2

This will be explained better in the next chapter, where we will analyze the
implemented code structure and how the network perform with examples.

Another interesting path to follow is inspired by (14), that beyond taking
care of the error using a likelihood function to control how the algorithm has to
remove the noise, it gives importance to the residual given by the original image
and the output image with the noisy image. It should have a AGWN nature,
in fact the discrepancy between the original image and its noisy version is the
noise V, while the discrepancy between the denoised image and the noisy is a
residual R that during training should get closer and closer to the given noise.
If it is not of this nature other errors are maybe involved, meaning that the
network is not operating in the right way, still leaving some signal components.
In the paper the Normalized Cumulative Periodogram (NCP), or Bartlett test,
is used to verify if the residual is white noise.

Therefore, we first define the NCP and then compute the theoretical NCP
applied to V and the empirical one applied to the residual R to compare them
and verify that the second is something like the first. The 2D periodogram, or

30 CHAPTER 2. ALGORITHMIC APPROACHES

power spectrum, of an M ×N image X is a p× q matrix P, where its elements
are defined as

Pkl = |dft2(X)kl|2, k = 1, . . . , p, l = 1, . . . , q.

with

dft2(X)kl =
M
∑

m=1

N
∑

n=1

Xmne
−2πi((k−1)(m−1)

M
+

(l−1)(n−1)
N) =

[

FT
2 XF1

]

kl
,

the 2D Discrete Fourier Transform (DFT), defining

[F2]mk = e−2πi((k−1)(m−1)
M) (2.41)

the transform along the columns and

[F1]nl = e−2πi((l−1)(n−1)
N) (2.42)

the transform along the rows. The NCP for the image X is then defined as the
c(X) vector of length p · q + 1 with components

c(X)k =
∥p̂(2 : k + 1)∥1
∥p̂(2 : p · q)∥1

, k = 1, . . . , pq − 1, (2.43)

where
p̂ = Π vec(P)

obtained multiplying the vector which stacks all the columns of P into a vector
of length p · q with a permutation matrix Π such that p̂ holds all the power
spectrum elements in order of increasing spatial frequency.

Recalling that our problem is of type 1.1, where V is white noise, we now
discuss the NCP test and how to use it for our problem. More precisely consid-
ering 1.2 and the 2D DFT of V, then denoting dft2(V) = FT

2 VF1 and know-
ing that F1 and F2 are unitary matrices and computing dft2(V) dft2(V)T =
FT

2 VVTF2, it results

Cov(dft2(V)) = E(dft2(V) dft2(V)T) = FT
2 E(VVT)F2 =

= FT
2 Cov(V)F2 = Ã2FT

2 F2 = Ã2
I

(2.44)

From here we know that the diagonal of the covariance matrix, which in this
case is equal to the variance of the signal, is constant and it is equal to the
expected value of the scaled power spectrum, meaning that all the frequencies
have the same expectation. This is how the white noise behaves, deducing
that the expected values of the NCP lies in a straight line between (0, 0) and
(p · q, 1). If we want to test if the residual is white noise as in (14), then we
have to check if the NCP of R lie within the Kolmogorov-Smirnoff limits of the
straight line. Finally if we want to track if the residual is of white noise nature
could be interesting to compute the deviation of the NCP of the residual from

2.5. LOSS FUNCTION 31

the straight line and how it varies for the different computed residuals. We can
do that computing the following for the related residual:

N = ∥s − c(R)∥1, (2.45)

where the components of s are si =
i

p·q−1 .

The question is how can we get advantage of these considerations to improve
our study. On the one hand we will apply the test to the residuals related to
the different networks trained with the different loss functions to verify if our
previous theoretical examinations are relevant. For example, as we will illustrate
in the next chapter, we can compare how the NCP defined in 2.43 and 2.45 varies
in our different cases depending on the parameter ³ of the MIX loss function,
and compare those values with the results related to the MSE loss function.

Chapter 3

Applications

In this chapter we will discuss the construction of our NumPy network, justifying
some choices and discussing the results we have found. Following the architec-
ture described in section 2.2, we test it using some images, disjoint from the
ones we used during the training. The images in our dataset are the same used
in the architecture (3) to which (1) is referred, for a comparison. It consists on
500 images in gray scale of dimensions 481 × 321 or 321 × 481. As outlined in
2.4, this dataset is partitioned into two separate subsets: 432 for training, 68
for testing. In order to have a larger number of images for training and faster
the process, all 432 training images are cropped to dimensions 128× 128. This
augmentation yields a dataset comprising nearly 70, 000 images, which are sub-
sequently normalized to fall within the range of values [−1, 1]. Throughout the
training phase, our network randomly selects images one at a time, matching
the batch size, and introduces AWGN. Subsequently, it processes the resulting
noised image to produce the denoised cropped image, as depicted in 2.4.2. The
output is then compared to the original cropped image using a chosen loss func-
tion; the value is then saved to have control on the performance the training
process. Finally the output is back-propagated as in 2.4.3 in order to optimize
the weights of the network. All these steps are applied for each cropped image in
the dataset until the training is finished. A crucial question is decide when the
training process can be stopped avoiding over-fitting or under-fitting of data.
In our case we trained the algorithm for 20 hours as it is done in (1) saving the
last weights update.
In order to test the algorithm, we first load the trained weights and use vari-
ous types of full-dimensional images as input to assess the effectiveness of noise
removal and image restoration across diverse data. In the following sections,
we will present the algorithm, its settings, and the resulting outputs, providing
empirical insights into the theoretical discussions presented in previous chapters.

33

34 CHAPTER 3. APPLICATIONS

3.0.1 Parameters Setting

The parameters to be set in the network are discussed below; given a cropped
image the function 1 in Appendix 3.0.2 adds noise to it, which consist on a matrix
of dimensions equal to the image, whose entries are picked randomly following
a uniform distribution, and then multiplied element-wise with the chosen level
of noise Ã. Moreover, in our implemented network we decompose the input
cropped image Y into overlapping patches yk of dimensions

√
p×√

p, selected
by an operator Rk for forward propagation. The construction of the operator is
shown in 2. Furthermore, during the sparse coding stage, an important step lies
in determining the number of iterations T of the LISTA algorithm, as depicted
in 4. We choose

• Ã = 25 as noise level;

•

√
p = 8 as dimension of the patches;

• T = 7 as number of layers in the sparse code.

We tested also with less layers, T = 5 but the training results less efficient.
Moreover, the initialization of the learnable weights of the network is illustrated
in 6. For these we have to set

• the dimensions of dictionary D: 82 × 162;

• the dimension of the MLP nodes depends on p;

• the activation function of last node is chosen as ReLU;

• c is a scalar, the squared spectral norm of D;

• the weight w has the dimensions of the patches.

Finally for back-propagation we choose

• as batch size one cropped image, but it is possible to do the training using
more images;

• ADAM as optimizer with ´1 = 0.9, ´2 = 0.999, epsilon = 10−16 and
learning rate lr = 10−4, but also the SGD optimizer is implemented;

• MSE as loss function, but we trained the net also with the MIX loss
function 2.5.4 to verify the theoretical considerations.

For the last point, the choice of the loss function, we trained the network
with MSE loss function and MIX function with several values of ³, to check if
the theoretical considerations in 2.5.4 corresponds to empirical computations.
To implement the MIX loss function we followed (4), where the stabilizing
constants in 2.32 and 2.37 are defined as C1 = (LK1)

2 and C2 = (LK2)
2,

with K1,K2 j 1 and L the dynamic range for pixels values, which is 255 for
grayscale images, but 1 for normalized images as the data in our dataset. In

35

(4) K1 = 0.01 and K2 = 0.03 meaning that C1 = 10−4 and C2 = 9 · 10−4

as we choose. We utilized a range of values for ³ in our experiments, specif-
ically ³ = 0, 0.2, 0.4, 0.6, 0.69, 0.7, 0.71, 0.8. The initial value of ³ = 0 served
as a baseline to verify the implementation accuracy of the MIX loss function
by comparing it against MSE. Subsequent values were chosen to assess if the
impact of increasing weights on structural similarity could result in an improve-
ment in the performance. The decision to focus values around 0.7 lies in the fact
that we begin our analysis with a value of ³ = 0.6, as suggested in (5) and (9),
in order to test the network and check if it could have any improvement. Fur-
thermore, we experimented with values around this range and we could observe
that ³ = 0.7 yielded the optimal balance between denoising efficacy and visual
quality. Finally, we tested all these deductions using NCP for the behaviour of
the residual, PSNR to check the performance of denoising in the output image,
and to have a comparison with other denoisers; in the same way we computed
SSIM, to check structural similarity between the denoised image and the input
image. We will discuss better this last point, with concrete examples, in the
following section.

3.0.2 Output examples

To begin our analysis we first discuss the results found training the network
with the MSE loss function; the denoiser will be from now on denoted as DMSE

for simplicity. We set the AGWN with Ã = 25 as in (1). In figure 3.1 we

Figure 3.1: Denoiser DMSE applied to the input image with values MSE ∼ 0.006,
PSNR ∼ 22: (a) Top left: Original clean image, (b) Top right: Image with added
noise, (c) Bottom left: Image denoised using DMSE , (d) Bottom right: Image denoised
using D

0.7

MIx.

can see one of test images to which has been added AGWN. The bottom left

36 CHAPTER 3. APPLICATIONS

image has been denoised using DMSE , while in the right the image has been
denoised using D0.7

MIX , where with Dα
MIX we denote the denoiser trained using

2.5.4, with ³ the regularization parameter. Here we can notice that, where the
contrast between colors is neat, the image has been denoised and restored in
a good way, however some details in uniform surfaces , such as the bricks on
the wall or some details on the shirt of the man are lost. We can make almost

Figure 3.2: Denoiser DMSE applied to the input image with values MSE ∼ 0.009,
PSNR ∼ 20, 5: (a) Top left: Original clean image, (b) Top right: Image with added
noise, (c) Bottom left: Image denoised using DMSE , (d) Bottom right: Image denoised
using D

0.7

MIX .

the same considerations for image 3.2, where the details of the zebras are well
restored; however, the background, which is almost blurry in the original image,
in the denoised version is not well detailed and presents some splotches. When
analyzing a more uniform image, whether it’s bright or dark as depicted in
3.3, we observe a loss of details. This observation leads us to conclude that our
algorithm performs better for images with high frequencies. However, in the case
of low frequencies, while the algorithm effectively removes noise, it struggles to
fully restore the image, often resulting in blurry areas. If we analyze the MSE
values, we can confirm what we have discussed in Section 2.5. In fact a low value
of MSE corresponds to an higher value of PSNR which is related to the quality
of the image in terms of noise. However if we observe the denoised image, it
is not well reconstructed in terms of structure and contents. We will below
compare DMSE and Dα

MIX ; for the second, we choose some values of ³ in [0, 1],
as explained in the previous section.
We computed the NCP for all the considered denoisers, to test which residual
is nearest to the added Gaussian white noise together with the deviation from
the straight line 2.45:

N = ∥s − c(Rα)∥1. (3.1)

37

Figure 3.3: Denoiser DMSE applied to the input image with values MSE ∼ 0.004,
PSNR ∼ 24: (a) Top left: Original clean image, (b) Top right: Image with added
noise, (c) Bottom left: Image denoised using DMSE , (d) Bottom right: Image denoised
using D

0.7

MIX .

Based on this, we can visually assess whether the regularization parameter ³,
which results in the residual vector closely resembling white noise, offers the
optimal balance between denoising effectiveness and preservation of the input
image’s content. In fact 3.1 compute the largest difference, in absolute value,
between the estimated and the theoretical NCP; we can then choose the param-
eter that minimizes this difference. We finally compared the values of PSNR and
SSIM to test quality of the denoised images in terms of noise the first and struc-
ture similarity the second. In this way we are able to verify if, using MIX loss
function as training function, the algorithm can have an improvement in terms
of denoising and perception. Below we show the results plotting the Normalized
Cumulated Periodogram of all the cases comparing them with the added white
noise; we then plot the values of SSIM and PSNR and visualize them better in a
table, together with the deviation N . Finally we show the results displaying the
original image, noised and the image denoised with DMSE and D0.7

MIX , which as
we will discuss, improves the task of denoising, preserving structural similarity.

We can take under consideration the images in 3.5. From figure 3.4, or
better in the table 3.1, we can observe that the residuals between the original
image and the reconstructed one, closest to the white noise, are those related
to the MIX loss with ³ = 0.7, 0.69. An ulterior confirm for that is in figure 3.9,
which show how the deviation goes with some values of ³, taking into account
mean and standard deviation for 10 iteration of the test. This is done to assure
that the variability of the random choice of the noise does not affect results
in a significant way. We computed also mean and standard deviation due to

38 CHAPTER 3. APPLICATIONS

random settings during different training of the network. We can then compare
the values for PSNR and SSIM for different values of ³, shown in 3.12 and
3.1, and note that D0.69

MIX has the highest value for SSIM, together with D0.7
MIX .

Furthermore, the PSNR values for the first two denoisers are the highest, which
means that the best tradeoff is reached by the said values of ³. Finally, we can
observe that for ³ = 0.7, the deviation 2.45 is minimized. We can show these
results in the denoised images in figure 3.5.
We can consider another example in which this is the case, demonstrating that
the improvement is usually relevant. We can then take into account image 3.6.
In table 3.2 we can observe that, also in this example, the minimal discrepancy
of the residual from the straight line is achieved by the denoiser with value
of ³ = 0.7, while the highest values of SSIM and PSNR are achieved with
³ = 0.6, 0.7. Nevertheless, comparing the output images 3.6, the best result is
achieved by D0.7

MIX .
We can then consider an example in which the quality values are higher for
DMSE respect to D0.7

MIX , as we can notice in table 3.3. However, in this case
the resulting tradeoff is very close for the various denoisers as we can observe
in 3.14.
We finally give a last example in which the values for SSIM and PSNR are
noticeably higher for D0.6

MIX compared to D0.7
MIX as shown in 3.4, despite the

fact that the residual for this last denoiser approximates better the white noise.
We can confirm that in figures 3.15 and 3.4. From these graphs we can also
observe that the best tradeoff between SSIM and PSNR is achieved by D0.6

MIX ,
and also that the minimal deviation from the straight line is achieved again by
D0.7

MIX . We can have a proof for that in figure 3.8.
In conclusion the best results are achieved for a value of ³ between 0.7 and

0.6, when the values of PSNR and SSIM are relatively high and the discrepancy
from the white noise is minimized. However, the best performance is achieved
by D0.7

MIX , for which the deviation N is always the minimal one, even though
the values of PSNR and SSIM are not the optimal. On the other hand, in
almost all the examples, those values are not so far away from the highest ones.
This means that may exist a relation between these parameters which plays
a role into obtaining a good denoising while preserving the image structures.
For instance, if the residual between the denoised image and the noisy original
resembles white noise, it suggests that the residual primarily consists of noise
information rather than image structures, which could potentially compromise
the quality of the reconstructed image.

39

Figure 3.4: Normalized Cumulative Periodogram for the residual related Dloss and for
the added white noise associated to image 3.5. In the legend we specify which curve
is represented by Dloss.

Noise MSE (MIX0), std MIX0.2 MIX0.4 MIX0.6 MIX0.69 MIX0.7 MIX0.71 MIX0.8

PSNR_mean 13.537 18.508, 0.1 18.478 18.415 18.640 18.760 18.754 17.170 12.888
PSNR_std 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.03 0.03
SSIM_mean 0.905 0.948, 0.009 0.934 0.958 0.955 0.964 0.968 0.946 0.901
SSIM_std 0.0004 0.002 0.006 0.0004 0.003 0.003 0.0007 0.001 0.001
N_mean 49.440 433.120, 42.5 474.648 461.568 388.567 386.376 268.484 823.513 3474.57
N_std 20.017 33.8 32.4 31.6 31.1 30.6 28.8 33.9 31.2

Table 3.1: In the table are saved the values of PSNR, SSIM and deviation of the resid-
ual N , related to the denoiser Dloss for image 3.5 from the straight line; the optimal
values are underlined in red. For α = 0 we computed mean and standard deviation
due to the random settings of noise and dataset during different training processes.
Furthermore, for each value of α, we computed mean and standard deviation for 10

iteration of the same image in the testing phase, to check if the random distribution of
noise has impact on the results. From the table we can see that it is limited, then the
results are reproducible. This considerations can be extended for the other examples.

40 CHAPTER 3. APPLICATIONS

Figure 3.5: Comparison of implemented denoisers applied to the input image: (a) Top
left: Original clean image, (b) Top right: Image with added noise, (c) Bottom left:
Image denoised using DMSE , (d) Bottom right: Image denoised using D0.7

MIX . We can
observe that in the image denoised with DMSE , in the monument are lost almost all
contents, and the image results to be more smoothed compared to the one denoised
with D0.7

MIX , which preserves details better.

Noise MSE (MIX0), std MIX0.6 MIX0.69 MIX0.7 MIX0.71 MIX0.8

PSNR 14.153 20.064, 0.2 20.525 20.383 20.489 18.893 14.611
SSIM 0.912 0.974, 0.01 0.977 0.976 0.977 0.964 0.922
N 45.058 350.909, 49.7 289.684 371.333 208.634 557.801 1186.568

Table 3.2: In the table are saved the values of PSNR, SSIM and deviation of the
residual related to the denoiser Dloss for image 3.6 from the white noise; the optimal
values are underlined in red.

Noise MSE (MIX0), std MIX0.6 MIX0.69 MIX0.7 MIX0.71 MIX0.8

PSNR 14.016 22.783, 0.2 23.116 23.146 22.685 22.807 13.722
SSIM 0.886 0.983, 0.001 0.984 0.984 0.983 0.982 0.885
N 45.058 258.002, 15.5 243.565 311.308 192.680 295.051 2492.851

Table 3.3: In the table are saved the values of PSNR, SSIM and deviation of the
residual related to the denoiser Dloss for image 3.7 from the white noise; the optimal
values are underlined in red. For a better comparison between DMSE and D0.7

MIX the
PSNR values, which are higher for MSE, are underlined in blue.

41

Figure 3.6: Comparison of implemented denoisers applied to the input image: (a) Top
left: Original clean image, (b) Top right: Image with added noise, (c) Bottom left:
Image denoised using DMSE , (d) Bottom right: Image denoised using D0.7

MIX . Here
image (c), the one denoised with DMSE , results smooth in the brightest profile of the
mountain, losing all the shades in that part. Although, image (d) results more defined.

Noise MSE (MIX0), std MIX0.6 MIX0.69 MIX0.7 MIX0.71 MIX0.8

PSNR 13.876 21.879, 0.3 22.297 22.423 21.962 21.722 13.487
SSIM 0.880 0.977, 0.002 0.980 0.980 0.979 0.972 0.877
N 45.058 209.316, 12.7 191.667 232.977 120.121 264.742 2408.696

Table 3.4: In the table are saved the values of PSNR, SSIM and deviation of the
residual related to the denoiser Dloss for image 3.8 from the white noise; the optimal
values are underlined in red. For a better comparison between DMSE and D0.7

MIX the
PSNR values, are underlined in blue.

42 CHAPTER 3. APPLICATIONS

Figure 3.7: Comparison of implemented denoisers applied to the input image: (a)
Top left: Original clean image, (b) Top right: Image with added noise, (c) Bottom
left: Image denoised using DMSE , (d) Bottom right: Image denoised using D0.7

MIX .
In this case we can observe that the improvement is less noticeable compared to the
previous figures. The image (d) appear most degraded for example in the darkest
clouds. However, image (c) appears smoother, losing some shades variations. Also the
arms of the person are more neat in image (d).

43

Figure 3.8: Comparison of implemented denoisers applied to the input image: (a)
Top left: Original clean image, (b) Top right: Image with added noise, (c) Bottom
left: Image denoised using DMSE , (d) Bottom right: Image denoised using D0.7

MIX , (e)
Bottom right: Image denoised using D0.6

MIX , (f) Bottom right: Image denoised using
D0.69

MIX . In this figure we added also the outputs for D0.6

MIX and D0.69

MIX , to visually
show that, although the highest values of SSIM and PSNR of these compared to
D0.7

MIX , image (d) results less smooth and presents some splotchy artifacts. However,
it preserves better structures, for examples, the different shades in the clouds.

44 CHAPTER 3. APPLICATIONS

Figure 3.9: Plot of deviation N 3.1 with respect to value α in comparison with the
deviation with respect to α = 0 (MSE), related to figure 3.5. The graph takes into
account mean and standard deviation during 10 test iterations and different training.
See table 3.1 for specific values. The plot trend can be extended to the other examples
too.

45

Figure 3.10: The above image shows image in 3.5 denoised using D
0.7

MIX , while in the
bottom is shown the image denoised using D

0.8

MIX . Observing figure 3.9 too, we can
confirm that the second image still presents noise.

46 CHAPTER 3. APPLICATIONS

Figure 3.11: The first image shows image in 3.5 denoised using D
0.7

MIX , while the second
shows the image denoised using D

0.8

MIX . With the acknowledge that with α = 0.7 we
reached the optimal deviation from white noise, while with α = 0.8 this value explodes,
we can confirm that the second image, still presents noise.

47

Figure 3.12: Plot of Structure Similarity Index Measure (SSIM) vs Peak Signal to
Noise Ratio (PSNR) for image 3.5. The optimal result maximizing PSNR together
with SSIM is given by D0.7

MIX . For a legend specifying the values see the legend in 3.4.

48 CHAPTER 3. APPLICATIONS

Figure 3.13: Plot of Structure Similarity Index Measure (SSIM) vs Peak Signal to
Noise Ratio (PSNR) for image 3.6. The highest values for both PSNR and SSIM are
achieved by D0.6

MIX followed by D0.7

MIX . See legend in figure 3.4.

49

Figure 3.14: Plot of Structure Similarity Index Measure (SSIM) vs Peak Signal to
Noise Ratio (PSNR) for image 3.7. Notice that the values of SSIM are very close for
the denoisers we are considering. See legend in figure 3.4 to specify the values.

50 CHAPTER 3. APPLICATIONS

Figure 3.15: Plot of Structure Similarity Index Measure (SSIM) vs Peak Signal to
Noise Ratio (PSNR) for image 3.8. Here the optimal values are achieved by D0.69

MIX

and D0.6

MIX . See legend in figure 3.4.

Conclusions

In this thesis, we have studied the improvement of the K-SVD algorithm using
deep learning, applied on the denoising of images. As mentioned in the previous
chapters, we considered an algorithm studied and implemented few years ago
and analyzed its strengths and weaknesses, starting from the baseline. Taking
into considerations studies related to the problem of denoising while preserving
the image content, we acknowledged the existence of a perception-distortion
tradeoff. This helped us to focus not only on the enhancement of the denoising
task during the training phase of the network, but also on minimizing the loss of
structure similarity between the original image and the denoised one. As a first
step we focused on the most commonly used loss function in the literature: the
Mean Squared Error loss function, to determine if it is effectively the optimal
choice for training the network, or if there could be improvements. By compar-
ing the qualitative performance of the algorithm, indicated by a low MSE value,
with the image outputs, we were able to observe that while the images were
correctly denoised, they appeared smooth and exhibited a loss of image details.

Furthermore, inspired by recent studies which combine different loss functions,
we choose to preserve the MSE which is suitable for denoising high frequencies
images, combining it with a function that compute the structure similarity, lu-
minance and contrast between images - the Structural Similarity Index Measure.
However, an important step was to decide how to weight the two components
of the function, to achieve the best tradeoff in terms of noise removal and pre-
serving image contents. For this, we were inspired by a study that provides
a criterion for choosing regularization parameters by exploiting residual infor-
mation for discrete ill-posed problems. This criterion involves computing the
Normalized Cumulative Periodogram of the residual and noise, where white
noise should exhibit a flat power spectrum and lie within a straight line. Specif-
ically the criterion addresses the choice of the regularization parameter on the
computed residual that minimize the maximal deviation from the straight line.

We applied this study in a novel context, focused on the choice of the parame-
ter to guarantee the best perception-distortion tradeoff. Using this criterion we
considered the residual between the denoised image and the one to which has
been added noise, and it is then compared to the original added noise. Ana-
lyzing the behaviour of the residual for various trained denoisers, depending on

51

52 CONCLUSIONS

the regularization parameter ³, we found that a specific value, whose residual
optimize the deviation from the straight line, assumes good values in terms of
quality measured with Peak to Signal Noise Ratio, which depends on the value
of Mean Squared Error, and the Structural Similarity Index Measure. Most
importantly, visually, it results in the best reconstructed image, enhancing our
initial results. This is attributed to the fact that the residual, being dominated
on noise components, contains as less remaining image contents as possible, re-
sulting in a reconstructed image more similar to the original one.

In conclusion, further research could explore this new approach to test image
quality in denoising tasks, improving not only the performance of the studied
algorithm, for example exploring more values of ³, but also other architectures
related to image processing, while maintaining control over how the network
operates.

Implemented deep K-SVD

algorithm

Listing 1: Noise Addiction

1 def __getitem__(self, idx):

2 idx_im, idx_sub_image = np.unravel_index(idx, (number_images,

number_sub_images))↪→

3

4 image = self.dataset_list[idx_im]

5 sub_image = self.extract_sub_image_from_image(image,

self.sub_image_size, idx_sub_image)↪→

6

7 np.random.seed(idx)

8 noise = np.random.randn(self.sub_image_size,

self.sub_image_size)↪→

9

10 sub_image_noise = sub_image + self.sigma * noise

Listing 2: Patches Selection

1 patches = np.array([in_out_patch.R(Y, patch_size, k) for k in

range(number_patches)])↪→

2 np.save('patches_%d.npy', patches)

where in_out_patch.R(Y, patch_size, k) is implemented as follows

1 def R(image, patch_size, k):

2 """given an image of size=image_size select from it the kth

3 patch of size p=patch_size, and reshape it to a vector"""

4

5 N, C, w, h = image.shape

6

7 if k < 0 or k >= (w - patch_size + 1) * (h - patch_size + 1):

53

54 IMPLEMENTED DEEP K-SVD ALGORITHM

8 raise ValueError('Index out of range')

9

10 row_start = int(k // (h - patch_size + 1))

11 col_start = int(k % (h - patch_size + 1))

12 patch = image[row_start : row_start + patch_size,

13 col_start : col_start + patch_size]

14

15 return np.reshape(patch, (patch_size**2,1))

Listing 3: MLP Lambda Evaluation

1 def MLP(b0, b1, b2, b3, A0, A1, A2, A3, yks, activation):

2 argnu = A0 @ yks + b0

3 nu = argnu.clip(min=0)#ReLU

4 argmu = A1 @ nu + b1

5 mu = argmu.clip(min=0)#ReLU

6 argeta = A2 @ mu + b2

7 eta = argeta.clip(min=0)

8 arglam = A3 @ eta + b3

9

10

11 if activation == 'ReLU':

12 lam = arglam.clip(min=0)

13

14 if activation == 'Identity':

15 lam = arglam

16

17 #save output MLP

18 keys =

['argnu','nu','argmu','mu','argeta','eta','arglam','lambda']↪→

19 values = [argnu, nu, argmu, mu, argeta, eta, arglam, lam]

20 MLP_collection = {k : v for k, v in zip(keys, values)}

21

22 return MLP_collection

Listing 4: Sparse Coding

1 self.MLP = MLP.MLP(self.b0, self.b1, self.b2, self.b3, self.A0,

self.A1, self.A2, self.A3, patches, self.activation)↪→

2 lam = self.MLP['lambda']

3

4 l = lam / c

5 y = Dt @ patches

6

7 z = soft_thresh(y, l)

8 z_list[i][0] = z

55

9 for t in range(T):

10 v = S @ z + (1 / c) * y

11 dv_S, dl_S = Partial_Sk(v, l)

12 z = soft_thresh(v, l)

13 dv_S_all[t] = dv_S

14 dl_S_all[t] = dl_S

15 z_list[t+1] = z

Listing 5: Patch Reconstruction

1 image_size = Y.shape

2 x_pred = Dict @ z

3 x_pred = w * x_pred

4

5 num = in_out_patch.num(x_pred, image_size, number_patches)

6 den = in_out_patch.den(w, image_size, number_patches)

7

8 res = num / den

with,

1 def den(weight, size, number_patches):

2 """compute the weighted normalization of the reconstructed

image"""↪→

3 Rkt_w = lambda k: Rt(weight, size, k)

4 den = np.sum(np.array([Rkt_w(k) for k in

range(number_patches)]), axis=0)↪→

5 return den

6

7 def num(sparse, size, number_patches):

8 """compute the weighted reconstructed image"""

9 Rkt_s = lambda k: Rt(sparse[k], size, k)

10 num = np.sum(np.array([Rkt_s(k) for k in

range(number_patches)]), axis=0)↪→

11 return num

Listing 6: Weights Initialization

1 def initialize_weights(patch_size, m, D_in, H_1, H_2, H_3,

D_out_lam):↪→

2

3 bound0=np.sqrt(1/D_in)

4 bound1=np.sqrt(1/H_1)

5 bound2=np.sqrt(1/H_2)

6 bound3=np.sqrt(1/H_3)

56 IMPLEMENTED DEEP K-SVD ALGORITHM

7

8 ## initialize Dict using Discrete Cosinus Transform

9 Dict_init = init_dct(patch_size, m)

10 ## initialize c as the squared norm of Dict

11 c_init = np.reshape(np.float64(np.array((linalg.norm(Dict_init,

ord=2))** 2)), (1,1))↪→

12 ## initialize w using normal distribution

13 w_init = np.float64(np.random.normal(loc=1, scale=1 / 10 *

np.ones((patch_size ** 2,1))))↪→

14

15 ## initialize the MLP weigths using uniform distribution

16 A0_init = np.random.uniform(-bound0, bound0, size=(H_1, D_in))

17 A1_init = np.random.uniform(-bound1, bound1, size=(H_2, H_1))

18 A2_init = np.random.uniform(-bound2, bound2, size=(H_3, H_2))

19 A3_init = np.random.uniform(-bound3, bound3, size=(D_out_lam,

H_3))↪→

20 b0_init = np.random.uniform(-bound0, bound0, size=(H_1, 1))

21 b1_init = np.random.uniform(-bound1, bound1, size=(H_2, 1))

22 b2_init = np.random.uniform(-bound2, bound2, size=(H_3, 1))

23 b3_init = np.random.uniform(-bound3, bound3, size=(D_out_lam,

1))↪→

24

25

26 initialize_weights = {'Dict': Dict_init, 'c': c_init, 'w':

w_init, 'b0': b0_init, 'b1': b1_init, 'b2': b2_init, 'b3':

b3_init, 'A0': A0_init, 'A1': A1_init, 'A2': A2_init, 'A3':

A3_init}

↪→

↪→

↪→

27

28 return initialize_weights

Bibliography

[1] M. Scetbon, M. Elad, and P. Milanfar, Deep K-SVD denoising, IEEE Trans-
actions on Image Processing, (2021), vol. 30, pp. 5944-5955.

[2] M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for design-
ing overcomplete dictionaries for sparse representation, IEEE Transactions
on Signal Processing, (Nov. 2006), vol. 54, no. 11, pp. 4311–4322.

[3] https://github.com/meyerscetbon/Deep-K-SVD,

[4] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli: Image quality assess-
ment: from error visibility to structural similarity, IEEE Transactions on
Image Processing, (2004), vol. 13, no.4, pp. 600–612.

[5] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, Loss Functions for Image
Restoration With Neural Networks, IEEE Transactions on Computational
Imaging, (Jan 2017), vol. 3, no. 1.

[6] H. Pishro-Nik, Introduction to probability, statistics, and random pro-
cesses, available at https://www.probabilitycourse.com, Kappa Research
LLC, 2014.

[7] M. Elad, B. Kawar, G. Vaksman, Image Denoising: The Deep Learning
Revolution and Beyond - A Survey Paper, SIAM Journal on Imaging Sci-
ences, (2023), vol. 16, no. 3, pp. 1594–1654.

[8] Y. Blau, T. Michaeli, The Perception-Distortion Tradeoff, Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, (2018), pp. 6228–6237, 8578750.

[9] Y. Yang, C.-H. Chou, J.P. Allebach, Mix-loss trained bias-removed blind
image denoising network, IS and T International Symposium on Electronic
Imaging Science and Technology, (2022), vol. 34, no. 8, 288.

[10] D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable Recovery of Sparse
Overcomplete Representations in the Presence of Noise, IEEE Transactions
on Inf. Theory, (Jan. 2006), vol. 52, no. 1, pp. 6–18.

57

58 BIBLIOGRAPHY

[11] D. L. Donoho and M. Elad, Optimally sparse representation in general
(nonorthogonal) dictionaries via L1 minimization, Proc. Nat. Acad. Sci.
USA, (Mar. 2003), vol. 100, no. 5, pp. 2197–2202.

[12] I. Daubechies, M. Defrise, and C. D. Mol, An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint, Commun. Pure
Appl. Math., (2004), vol. 57, no. 11, pp. 1413–1457.

[13] K. Gregor and Y. LeCun, Learning Fast Approximations of Sparse Coding,
in Proc. ICML. Norristown, PA, USA: Omnipress, (2010), pp. 399–406.

[14] P.C. Hansen, M.E. Kilmer, R.H. Kjeldsen, Exploiting residual informa-
tion in the parameter choice for discrete ill-posed problems, BIT Numerical
Mathematics, (2006), vol.46, no.1, pp. 41–59.

[15] W. A. Fuller, Introduction to Statistical Time Series, 2nd edn., Wiley, New
York, 1996.

[16] A. Horé, D. Ziou, Image quality metrics: PSNR vs. SSIM , Proceedings -
International Conference on Pattern Recognition, (2010), no. 5596999, pp.
2366-2369.

