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Abstract

Uncertainties about the description of core-collapse supernova mechanisms still make our un-
derstanding of the mass spectrum of black holes difficult. Thanks to the numerous detections
of gravitational wave events, the mass distribution of black holes finally represent an observable
and can be used to test stellar evolution. In my thesis I have considered different core-collapse
supernova models and I have studied their effect on the population of binary black hole systems
with the population synthesis code SEVN [Spera et al., 2019]. I have simulated the evolution
of a set of single and binary stars with fixed metallicity in the range [10−4, 2 · 10−2], no spin,
pair-instability model taken from Mapelli et al. [2020] and Farmer et al. [2019], and three differ-
ent core-collapse supernova models: rapid, delayed and compactness with different compactness
thresholds ξt.

The single stellar evolution scenario is useful to understand the role of metallicity, pair-
instability supernova and dredge-up events on the black holes population. The binary case,
instead, shows the effect of mass transfer episodes on the spectrum.

The impact of core-collapse supernova choice is mainly seen in the production of black holes
in the lower edge of the mass distribution. With the rapid model the minimum black hole mass
is 5M⊙, which reproduces the observed mass gap between neutron stars and black holes; delayed
model does not predict any gap, having the transition at 3M⊙; with compactness model instead
the minimum mass is determined by the threshold of compactness chosen. It goes from ≈ 3M⊙
for ξt = 0.1 to ≈ 25M⊙ for ξt = 0.5. Each black hole mass spectrum shows a peak around
10M⊙ (except for ξt = 0.5) which can also be found in the rate of mergers obtained from the
LIGO/Virgo data [Abbott et al., 2022].

Finally I have discussed the incidence of each supernova type for each core-collapse supernova
model. I have found that the relative rate between electron-capture supernovae and core-collapse
supernovae is in the range 2% - 4%, which is in good agreement with observational results of
Thompson et al. [2009].

iii



iv



Contents

1 Introduction 1

2 Binary black holes from gravitational waves 3
2.1 LIGO and VIRGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Inspiral of compact binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Mass distribution of binary black holes . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Formation of black holes and binary black holes 7
3.1 Stellar evolution for massive stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Binary stellar evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Supernova classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Core collapse supernovae observations . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Theory of core-collapse supernova . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3 Electron-capture supernova (ECSN) observations . . . . . . . . . . . . . . 13
3.3.4 Electron-capture supernova theory . . . . . . . . . . . . . . . . . . . . . . 14
3.3.5 Pair instability and pulsational pair instability supernovae . . . . . . . . . 14

4 Methods 17
4.1 SEVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Stellar tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Core collapse supernova models . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Pair instability and pulsational pair instability . . . . . . . . . . . . . . . 19
4.1.4 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Results 23
5.1 Single star evolution (SSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Binary star evolution (BSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Rapid and Delayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Supernova channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusions 43

v



Contents vi



Chapter 1

Introduction

Gravitational wave (GW) events detected with ground based interferometers LIGO, Virgo,
and KAGRA (LVK) provide crucial insights on the astrophysics of binary black holes
(BBHs) systems. After the second-half of LVK third observing run (O3b) that took place
between November 2019 and March 2020, the total number of observed events reached
90 since LIGO–Virgo operations began. Important source properties can be studied by
analysing gravitational wave signals and in particular it is possible to determine the masses
of the compact objects in the binary system. This allows to build the mass distribution
of binary black holes (BBHs) with an accuracy increasing with the number of detections.
Since the number of events is becoming statistically relevant, the black hole (BH) mass
spectrum can be used to test stellar evolution models.

In my thesis, I have studied the BH mass spectrum obtained using the population
synthesis code SEVN (Spera et al. [2019]). In particular I run a set of simulations changing
the metallicity of the initial population of stars, the core-collapse supernova (CCSN)
mechanism and the pair instability model. Metallicity varies from 2 × 10−2 to 10−4 in
order to have a complete landscape of remnants coming from metal rich and metal poor
stars. Different CCSN models are implemented in the code SEVN and I chose to study
three of them: rapid, delayed [Fryer et al., 2012] and compactness [O'Connor and Ott,
2011]. For the description of pair and pulsational pair instability I adopted the two main
models implemented in SEVN: M20 from Mapelli et al. [2020] and F19 from Farmer et al.
[2019]. The comparison of the mass spectrum of these models is concentrated on the
amount of BHs produced at low masses (2 − 5M⊙), because of the dearth of compact
objects observed in that range, and on the upper mass gap (50 − 150M⊙) predicted by
the theory of pair instability (PI). Because of the crucial impact of CCSN models on the
population of BHs, it is important to understand which one better represent the data to
interpret future gravitational wave signals coming from BBH coalescence.
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Chapter 2

Binary black holes from

gravitational waves

2.1 LIGO and VIRGO

In 1916, the year after the final formulation of general relativity, Albert Einstein predicted
the existence of grvitational waves. He found that the linearized weak-field approxima-
tion had wave solution and it was generated by the time variation of the mass quadrupole
moment of the source. A century later, Einstein’s prediction has been verified with the
first direct gravitational wave event ever detected. On September 14th, 2015 the two
detectors of the Laser Interferometer Gravitational Wave Observatory (LIGO) simultane-
ously observed a gravitational wave signal coming from the coalescence of a BBH system
[Abbott., 2016]. Laser interferometers measure gravitational wave strain as a difference
in length of its orthogonal arm which are of the same length Lx = Ly = L. A passing
GW alters the arm length such that the measured difference is proportional to the GW
strain amplitude h(t): ∆L = δLx − δLy = h(t)L. This length variation alters the phase
difference of the two light fields that are propagating along the x and y arms. Then they
recombine at the beam splitter, transmitting an optical signal proportional to h(t) to
the output photodetector. A schematic representation of the detector setup is shown in
Figure 2.1

2.2 Inspiral of compact binaries

The typical example of a system which emits GWs is a binary made of two compact
objects (usually neutron star (NS)- NS or BH-BH). For these systems it is convenient to
define the chirp mass:

Mc =
(m1m2)

3
5

(m1 +m2)
1
5

(2.1)

where m1 and m2 are the masses of the binary components. Considering the approxima-
tion of circular orbit, it is possible to have a picture of the consequences of GW emission.
Let us start by noticing that the system described is stable and bound by the gravitational
potential. In this case it is possible to use the virial theorem which allows us to write the

3



Chapter 2. Binary black holes from gravitational waves 4

Figure 2.1: Advanced LIGO layout. Image of Sengupta [2016]

total energy as:

Etot = Ek + Ep =
Ep

2
(2.2)

= −G
m1m2

2R
(2.3)

where R is the radius and G the universal gravitational constant. Taking the time deriva-
tive:

dE

dt
=

Gm1m2

2R2

dR

dt
⇒ Ṙ =

2R2

Gm1m2
Ė = − 2R2

Gm1m2
Ėgw (2.4)

Thus the energy of the system is decreased by gravitational wave emission and at the
same time the radius shrinks, the orbital frequency increases and so does the emission of
gravitational waves. It is a runaway process which, on a sufficiently long time-scale, leads
to the coalescence of the binary system. This assumption is legitimate as long as ω̇s ≪ ω2

s

and it is called quasi-circular orbit motion [Maggiore, 2007]. The GW frequency can be
found to be related to the chirp mass:

ω̇gw =
12

5
21/3

(︃
McG

c3

)︃5/3

ω11/3
gw (2.5)

with ωgw = 2πfgw and fgw being the gravitational wave frequency. By integrating and
then inverting (2.5) it is possible to find the time to coalescence −τ = t− tcoal, with tcoal
time at which the frequency diverges:

τ =
5

256

(︃
1

πfgw

)︃8/3(︃ c3

GMc

)︃5/3

(2.6)

and then the relation between radius R and τ can be found to be:

R(τ) = R0

(︃
τ

τ0

)︃1/4

(2.7)
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where R0 is the value od R at initial time τ0. In the end, the gravitational wave strain
can be written as:

h+(t) =
1

r

(︃
GMc

c2

)︃5/4(︃ 5

cτ

)︃1/4 1 + cos2 θ

2
cosϕ(τ) (2.8)

hx(t) =
1

r

(︃
GMc

c2

)︃5/4(︃ 5

cτ

)︃1/4

cos θ sinϕ(τ) (2.9)

where h+ and hx are the two polarizations, θ is the azimutal angle between the observer
and the center of orbital plane and ϕ(τ) =

∫︁ t
t0
dt′ωgw(t

′).

The chirping signal described by h(t) has been found for the first time in September
2015 as shown in figure 2.2 and from that moment on, 90 gravitational wave events have
been measured. Sources of these signal represent the most exotic objects in the universe.
The study of their properties and formation channels is one of the most challenging aspect
in modern astrophysics.

Figure 2.2: First ever gravitational wave event GW150914 detected by LIGO Hanford H1
and Livingston L1. Image of Abbott. [2016]

2.3 Mass distribution of binary black holes

After the third campaign of observations, the number of gravitational wave events raised
to 76 in O3a, then to 90 in O3b. With this amount of information, LVK collaboration
was able to produce a confident description of the mass distribution of binary black holes
[Abbott et al., 2022]. In figure 2.3 they show the merger rate dR/dm1 (the number
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Figure 2.3: Rate of mergers per Gpc3, per year and per unit mass as a function of the
primary mass. Different lines represent different non-parametric model. Image of Abbott
et al. [2022]

of merger events per Gpc3, per year and per unit mass), as a function of the primary
mass m1. The distribution present multiple peaks, with the one at ∼ 10M⊙ and the
other at ∼ 35M⊙ in common to all models. The substructures present in the merger
rate were also found by Tiwari and Fairhurst [2021] after the analysis of gravitational
waves transient catalog 2 (GWTC-2). The best way to describe the mass distribution is
by using an unbroken power law with a global maximum at 10M⊙. If these structures
will be confirmed by future GW observations, they will provide a deeper insights on the
formation channels of binary black holes.

In next chapter I will present the evolution of massive stars both in isolated and binary
systems. The final fate of these stars is typically to form a BH or a NS.



Chapter 3

Formation of black holes and

binary black holes

3.1 Stellar evolution for massive stars

Stars with zero-age main sequence (ZAMS) mass in the range 10−100M⊙ are the so called
massive stars. On the main sequence, such massive stars have non-convective surfaces,
convective cores and are powered by the CNO cycle [Adelberger et al., 2011]. In this
process, reactions are characterized by large Coulomb barriers and the energy production
has a steeper dependence on temperature (ϵ ∝ T 18) with respect to the the pp-chain
(ϵ ∝ T 4), the other possible hydrogen burning process which happens for low-mass stars.

The evolution of massive stars is marked by a sequence of hydrostatic burning stages
in the interior, where hydrostatic means that there is balance between the gravitational
force, directed inward, and the pressure gradient, which pushes outward. The simple
equation that describe this process is:

−G
Mr ρ

r2⏞ ⏟⏟ ⏞
Gravitational force per unit volume

=
dP

dr⏞⏟⏟⏞
Pressure gradient

(3.1)

where Mr is the gravitational mass at radius r, ρ is the density, P is the pressure.

When all the fuel is extinguished, the core contracts and heats up because no force is
opposing the gravitational collapse. When the temperature becomes high enough, then
the second nuclear burning phase begins, bringing the system back to the hydrostatic
equilibrium. This is the so called mirror principle [Hekker et al., 2020]. In fact, after the
first nuclear burning stage, the core is mostly occupied by helium, while hydrogen will be
present in a burning shell above the core. The mirror principle occurs whenever a star
has an active shell burning source. The shell itself acts as a mirror between the core and
the envelope to maintain thermal equilibrium: the expansion of the envelope corresponds
to a compression of the core and vice versa.

The sequence of nuclear burning phases is showed in Table 1 of Woosley et al. [2002].
Evolution beyond helium burning is greatly accelerated by thermal neutrino losses, espe-
cially from electron-positron pair annihilation. It is the temperature sensitivity of these
neutrino losses, combined with the need to go to higher temperatures in order to burn
fuels with larger charge barriers, that leads to a rapid acceleration of the stellar evolution
during carbon, neon, oxygen, and silicon burning, the latter typically taking only a day

7
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Figure 3.1: Evolution of central temperature and density in stars of 15M⊙ and 25M⊙.
Image of Woosley et al. [2002]

or so [Clayton, 1983]. In fact, in these stages the luminosity of the nucleus is dominated
by neutrino emission Lν ∼ Ėnuc = Lnuc, where Lv is the neutrino luminosity from the
core, Enuc is the nuclear energy the dot represent the time variation; Lnuc is the nuclear
luminosity. The nuclear timescale is then obtained as:

τnuc =
Enuc

Ėnuc

=
Enuc

Lν
≪ Enuc

L
(3.2)

and it is much shorter than if neutrino losses were absent (L). The effect of neutrinos is
even clearer when looking at figure 3.1. In general trajectories follows ρ ∝ T 3, but, since
carbon burning, the deviations are caused by the emission of thermal neutrinos.

The sequence of burning phases ends when the core is converted into iron. Each fusion
process that leads to the formation of iron is exothermic because at each stage the binding
energy of the system increases. But iron has the most stable of all nuclear configurations,
so fusion of nuclei heavier than Fe would be endothermic and does not occur in nature. At
this point the star is composed of a degenerate Fe core and different layers corresponding
to the burning phases. Dynamical instability leads to the collapse of the core over its own
gravity. It is the beginning of core-collapse supernova process, described in section 3.3.2,
which will result in the formation of a compact object (NS or BH) depending on the final
mass of the progenitor star.

3.2 Binary stellar evolution

Evolution of a star may change when it is in a binary system. If the orbit of the binary
is wide enough, stars evolve as if they were without a companion (detached binary).
Otherwise, if the binary is tight enough, it will evolve through several processes which
might significantly change its final fate.
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Wind mass transfer

In a binary, stars can exchange each other matter going through the so called mass transfer
episodes. This can manifest via stellar winds or Roche lobe overflow. A star can accrete
material from the companion in case the latter manifests mass loss due to stellar wind.
The mean mass accretion rate can be estimated according to Hurley et al. [2002], based
on Bondi and Hoyle [1944] formalism:

ṁ2 = − 1√
1− e2

(︃
Gm2

v2w

)︃2 αw

2a2
1

(1 + v2)
3
2

ṁ1 (3.3)

where ṁ2 is the mass accretion rate of the secondary, e is the eccentricity, G is the
gravitational constant, vw is the wind velocity, αw is an efficiency constant, a is the
semi-major axis of the binary, ṁ1 is the mass loss rate of the primary and v2 is equal to:

v2 =
v2orb
v2w

(3.4)

and

vorb =

√︃
G(m1 +m2)

a
(3.5)

Since typically ṁ1 < 10−3M⊙yr
−1 and the wind velocity is quite high (> 1000 kms−1

for a line driven wind) with respect to the orbital velocity, this kind of mass transfer is
usually inefficient [Mapelli, 2022].

Roche-lobe mass transfer

The other possible mass transfer mechanism is Roche lobe overflow. The Roche lobe of
a star in a binary is a drop-like equipotential surface that surrounds the star. Eggleton
[1983] provide the approximation for the radius of the Roche lobe for the primary:

rL,1 = a
0.49q2/3

0.6q2/3 + log(1 + q1/3)
(3.6)

where a is the semi-major axis of the binary and q = m1/m2 is the mass ratio. One can
obtain the radius for the secondary star just by swapping m1 and m2. The intersection
point between the Roche lobes of the two stars is called Lagrangian point L1. When a
star fills its Roche lobe part of its mass is transferred to the other through L1 as shown in
figure 3.2. Mass transfer obviously changes the mass of the two stars in a binary, and thus

Figure 3.2: Cartoon of Roche lobe overflow mass transfer. Image of Podsiadlowski [2014]
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the final mass of the compact remnants of such stars, but also the orbital properties of the
binary. Mass transfer is usually non conservative and this leads to angular momentum
loss, which in turn reduces the orbital eccentricity circularizing the orbit. Mass transfer
is stable if the primary overfills its own Roche lobe. If also the secondary fills its Roche
lobe then the mass transfer is unstable and a contact binary is formed. In this scenario,
the typical subsequent process is the so called common envelope.

Common envelope

When two stars enter in a common envelope (CE) phase, their envelopes stop co-rotating
with the core and form a unique envelope which embeds the cores. Their orbital energy
decreases due to friction with the material of the envelope, which heats up and becomes
more loosely bound. If the envelope is ejected, the post-CE binary is composed of two
naked cores. Moreover their orbital separation is extremely smaller than the initial orbital
separation before CE. This particular scenario is really helpful to form BBHs that are
going to merge within Hubble time. In fact, assumed that both stars evolves and becomes
black holes, the BBH will have a short semi-major axis (a ≲ 100R⊙) which allows to enter
into the inspiral phase due to GW emission. If instead the envelope is not ejected, the
cores spiral in till they eventually merge. This prevents the system to become a BBH.

The most common formalism for common envelope is the αλ formalism. In practice
it uses the loss orbital energy as the only energy needed to eject the envelope.

α∆Eorb = α
Gmc1mc2

2

(︃
1

af
− 1

ai

)︃
=

Ebind

λ
, (3.7)

where ∆Eorb is the difference between the orbital binding energy before and after CE
phase, ai and af are the semi-major axis before and after the CE phase, mc1 and mc2

are the masses of the cores, α is a dimensionless parameter that measures which fraction
of the removed orbital energy is transferred to the envelope and λ measures the mass
distribution of the envelope.

The binding energy of the envelope is:

Eenv =
G

λ

(︃
menv,1m1

R1
+

menv,2m2

R2

)︃
(3.8)

where m1 and m2 are the masses of the binary members, menv,1 and menv,2 are the
envelope masses, R1 and R2 are the radii of the members. The higher is α, the more
efficient is the energy transfer to the envelope and the higher is the probability for the
binary to survive the CE phase.

GW emission

If the system successfully expels the envelop than two naked core stars remain in a tight
orbit. Peters [1964] showed that a binary system is induced to merge because of GW
emission. In fact there is an expression that connects the time variation of the semi-
major axis with the GW emission:

da

dt
= −64

5

G3m1m2(m1 +m2)

c5(1− e2)
7
2

a−3 (3.9)
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where c is the speed of light. This equation implies that the more eccentric the binary is,
the faster the system will merge due to GW emission.

3.3 Supernova classification

The final fate of a star’s life mainly depends on its mass. There are different possible
explosion scenarios which will now be presented.

The current scheme of supernova classification includes numerous supernova types and
sub-types defined according to observational properties, mostly visible-light spectra near
maximum light, as well as photometric properties. The two main groups of supernova
events are: Type-I, which have no observable hydrogen lines; Type-II which do have
strong hydrogen lines.

Type Ia

Type Ia supernovae have a spectrum that contains neither hydrogen nor helium lines. It is
dominated by absorption lines from intermediate-mass elements, and in particular it shows
a very prominent silicon II absorption line. These supernovae are thermonuclear explosion
of a carbon oxygen white dwarf in a binary system. There are two main progenitors com-
peting scenarios to explain Type Ia supernovae: single-degenerate and double-degenerate
model. In the single-degenerate case, a CO white dwarf accretes material from its non-
degenerate companion star, which typically is a main-sequence or a red giant star. As
more material is accreted, the central temperature increases, the mass reaches the Chan-
drasekhar limit and a runaway explosion is triggered. In the double-degenerate scenario
a binary-white dwarf system coalesce due to gravitational wave emission. In this picture
the merger product is represented by massive white dwarf accreting materials from an
envelope and an accretion disk. If the white dwarf can evolve to the Chandrasekhar mass
limit, then the system would undergo a runaway thermonuclear explosion. Type-Ia are
the only supernova type which is not caused by the collapse of the iron core [Hillebrandt
and Niemeyer, 2000, Maeda and Terada, 2016].

3.3.1 Core collapse supernovae observations

All the remaining supernova types and subtypes of supernovae come essentially from the
same process, the collapse of the iron core in an evolved massive star. Before presenting
the physical mechanism of core collapse, in the following sections we will see other two
subcategories of Type I and the four groups of Type II supernovae. These, as previously
mentioned, all contain strong hydrogen lines in their spectra.

Type Ib and Ic

Like Type Ia, they do not show hydrogen lines in their spectra. Type Ib show a strong
He I absorption line, while Type Ic supernovae do not. It is possible to assume that Type
Ib originate from the core collapse of a Wolf-Rayet star which has lost all its hydrogen
envelope. Similarly, progenitors of Type Ic supernovae have lost also the helium envelope.
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Type IIP

Above all the Type II supernovae, they are the most abundant component being the 70%
of all [Li et al., 2011]. They can be distinguished from other subtypes by the presence, in
the light curve, of a plateau lasting for the first 60-100 days followed by a sharp drop in
luminosity. Progenitors of these supernova type are identified to be red supergiants with
large hydrogen envelopes [Smartt et al., 2009].

Type IIn

These supernovae have narrow emission lines in their spectra. Type IIn are thought to
arise from the interaction between the supernova expanding shock wave and the dense cir-
cumstellar medium, which is surrounding the explosion because it was previously expelled
by the star itself through mass loss episodes. Ionisation of the surrounding circumstellar
material results in an excess of narrow Hα lines. Spectra present also broad line compo-
nents which are due to fast moving ejecta (v ≳ 100km/s) [Ransome et al., 2021]. Type
IIn accounts for the 7% of all the Type II supernovae [Li et al., 2011].

Type IIb

Type IIb progenitors are massive stars which have lost almost all their hydrogen envelope.
In fact, in the early phases, spectra show evident Balmer lines which are soon replaced
by He I lines. At this stage the spectra resemble the ones of Type Ib supernovae, making
these a transitional type between Type II and Type Ib. They account for 17% of all Type
II supernovae.

Type IIL

They are characterized by the linear uninterrupted decline of the light curve and a lack of
a prominent plateau phase. This is believed to be caused by the expulsion of most of the
hydrogen envelope of the progenitor star before the explosion takes place [Doggett and
Branch, 1985]. They are about 10% of all Type II supernovae [Li et al., 2011].

3.3.2 Theory of core-collapse supernova

At the end of the hydrostatic burning, a massive star (M ≳ 10M⊙) consists of a degen-
erate iron core and a series of concentric shells that are the relics of its previous burning
phases (hydrogen, helium, carbon, neon, oxygen, silicon). When the iron core grows
by silicon shell burning to a mass around the Chandrasekar mass limit (about 1.44M⊙
[Chandrasekhar, 1931]), electron degeneracy pressure can no longer stabilize the core and
it collapses. In the early stages of the collapse, the fraction of electron decreases due to
electron capture. It consists in a reaction between a proton and an electron, to form a
neutron with the emission of an electron neutrino.

p + e− → n + νe

This decreases the electron degeneracy pressure accelerating the collapse. Also, photo-
disintegration takes place in the core. Due to high temperature, very energetic photons
are produced that tend to destroy heavy nuclei into alpha particles, reversing the process
of fusion. This removes thermal energy that would otherwise be supporting the core.
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The collapse is strongly accelerated and an important change in the physics of the
mechanism occurs when the density reaches ρtrap ∼ 1012 g cm−3. At this point neutrinos
are trapped in the core, because their diffusion time becomes longer than the collapse
time. The collapse continue until nuclear densities are reached (ρ0 ∼ 1014g cm−3). Neu-
trons become degenerate and the equation of state (EoS) becomes stiff. Nuclear matter
has much lower compressibility, so the core decelerates and bounces in response to the
increased nuclear matter pressure. The shock wave propagates into the outer core, which
is the region that is still falling inwards at supersonic speed. This shock has not enough
energy to drive the explosion, so it is used to dissociate heavy nuclei of the outer core into
nucleons. This change in composition results in even more energy loss, because the elec-
tron capture rate on free protons is significantly larger than on neutron-rich nuclei. Huge
amount of neutrinos are then produced behind the shock, which leave the star quickly
with the so called neutrino burst. The shock is weakened so much that it finally stalls at a
radius between 100−200 km. Meanwhile a compact remnant begins to form at the center
of the collapsing star. The proto-neutron star is initially still proton-rich and contains a
large number of electrons and neutrinos. The latter are trapped because their mean-free
path is comparable with the size of the core. It takes a fraction of second to the trapped
neutrinos to diffuse out [Burrows, 1990]. The interactions between these highly energetic
neutrinos and the other particles heats up the stellar medium in the region between the
nascent neutron star and the stalled shock. This neutrino heating increases the pressure
behind the shock creating a ”hot bubble” between the shock and the proto-NS. The per-
sistent energy input by neutrinos drives the shock outwards again, leading to a successful
explosion. It is called ”delayed neutrino-heating mechanism” [Janka et al., 2007] and usu-
ally takes a few 100 ms and requires that a few percent of the radiated neutrino energy
are converted to thermal energy of nucleons, leptons, and photons.

Hardly any other astrophysical event is as complex and physically diverse as the death
of massive stars in a gravitational collapse and subsequent supernova explosion. All four
fundamental forces of nature take place and have important role in extreme regimes
conditions. The study of these phenomena is usually done through hydrodynamical sim-
ulations. The CCSN models implemented in the SEVN code are usually taken from
hydrodynamical studies of the collapse and explosion mechanism.

3.3.3 Electron-capture supernova (ECSN) observations

ECSNe are the primary candidates to explain some transients showing luminosity between
classical novae (Mv ∼ −8) and supernova explosions (Mv ∼ −17) [Cai et al., 2019].
Within this gap, a fraction of these transients are called ”supernova impostors” as they
mimic some observational properties of H-rich interacting supernovae, but deep late-time
imaging reveals that the progenitor stars survived [Van Dyk et al., 2000]. Their typical
peak absolute magnitudes are between −13 and −15mag. Giant eruptions of luminous
blue variables are considered a plausible interpretation for classical supernova impostors.

Another class of gap transient has double peaked light curves and fast evolving spec-
tra. They are conventionally named as ”luminous red novae” [Cai et al., 2019]. This
phenomenon is usually interpreted as a post common envelope ejections phase in a con-
tact binary system and may be followed by stellar coalescence [Pastorello et al., 2019].

The third group of gap transients are named intermediate luminosity red transients
(ILRTs) [Pastorello and Fraser, 2019]. These show a slow rise time (∼ 2 weeks) to max-
imum (−11mag < Mv < −14.5mag), followed by a linear decline lasting about 2-4
months. The origin of these transients remains mysterious, but ECSNe are plausible



Chapter 3. Formation of black holes and binary black holes 14

candidates to explain this scenario. ECSNe are predicted to display distinctive features:
luminous super-AGB progenitors (∼ 105 L⊙) [Poelarends et al., 2008], low explosion en-
ergies (∼ 1050erg) and low ejected 56Ni mass (few 10−3M⊙). The rate of observations of
these events is strongly dependent on the initial mass range, metallicity, and the details
of the stellar model. There have been some estimates of the ILRT rate compared with
CCSN rate, for example: Cai et al. [2021] found that, over a volume with radius 30Mpc,
the rate of ILRTs is 8% of that of CCSNe; Thompson et al. [2009] found ECSN rate of
2% − 10% of CCSNe in ten years before 2008. It is difficult to estimate the degree of
uncertainty on such numbers because surveys, up to 30Mpc, are incomplete.

3.3.4 Electron-capture supernova theory

Stars with initial masses between 8 and 10 M⊙ have an interesting transition from massive
white dwarf (WD) formation to core collapse supernova. In fact they are thought to
form a degenerate oxygen-neon-magnesium (O-Ne-Mg) core through non explosive carbon
burning. These objects are labelled as ”Super-AGB stars” and their fate is uncertain due
to the many complications involved in modelling their interiors and evolution, especially
regarding the role of mixing, convective overshooting and mass loss rates. Whether super-
AGB stars evolve in a O-Ne-Mg WD or undergo core collapse through electron capture is
still being investigated [Doherty et al., 2017]. Electron capture becomes very important
when we are dealing with a strongly degenerate O-Ne-Mg cores. In fact, when the core
mass grows to 1.38M⊙ due to shell burning, and the central density reaches 2×109g cm−3,
electron capture on Mg and Ne isotopes should lead to dynamical instability and therefore
collapse of the core, inducing what is called electron capture supernova. The structure of
the O-Ne-Mg core is distinctively different from the iron cores of more massive stars by
the fact that it has a steep density gradient in the outermost layers, surrounded by an
extremely extended, loosely bound H/He envelope [Wanajo et al., 2009].

3.3.5 Pair instability and pulsational pair instability supernovae

Pair-instability supernovae (PISNe) are theorized supernovae that have not yet been ob-
servationally confirmed. They are thought to exist in low metallicity environments. The
overall metallicity becomes lower at higher redshift, which means that near-infrared, high
redshift surveys may be able to find PISN events [Moriya et al., 2019].

PISNe comes from thermonuclear explosions of very massive stars and they are pre-
dicted to produce a large amount of radioactive 56Ni that heats supernova ejecta, increas-
ing the luminosity of the explosion. They were firstly associated with supernova events
which are more than 10 times more luminous then otheer supernovae, known as superlu-
minous supernovae (SLSNe) [Gal-Yam, 2019]. However, the light curve and the spectral
properties of SLSNe are now found to be different from those predicted for PISNe [Maz-
zali et al., 2019]. Revealing PISN events would be fundamental in order to test stellar
evolution, chemical evolution and mass distribution of BHs observed by GWs.

Physycs of the explosion

The core of very massive stars with initial masses higher than about 100M⊙ [Heger
et al., 2003] has relatively low density and high temperatures for which radiation pressure
is dominant over gas pressure. When the core temperature reaches 109K, the creation of
electron-positron pairs out of gamma-ray photons from the high energy tail of the black
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body spectrum becomes important. Dynamical instability of the core is controlled by the
adiabatic index:

γad =

(︃
∂ logP

∂ log ρ

)︃
ad

(3.10)

when it falls below 4/3 dynamical instability occurs and the gravitational collapse of the
core begins.

When this instability is encountered, the star contracts rapidly until implosive oxygen
and silicon burning, depending on the mass of the star, produce enough energy to revert
the collapse and completely disrupts the star if the released energy exceeds its binding
energy. For a pair instability supernova to occur, its progenitor needs to retain its mass
high enough to keep its helium core mass above about ∼ 65M⊙. This condition cannot
be easily fulfilled at high metallicity for which the evolution of very massive stars are
dominated by stellar wind mass-loss [Vink et al., 2011]. This requirement on the mass
of the star is set by the minimum temperature and density conditions in the core for the
pair instability to occur. On the other hand there is an upper limit on the Helium core
mass of the star MHe ≲ 133M⊙. It corresponds to the case when all the energy generated
in the explosive burning is equal to the binding energy of the star. Above this limit, the
infall is not reversed into an explosion and the star directly collapses to a BH.

If, instead, the amount of released nuclear energy is less than the binding energy of the
star, a fraction of the envelope may be ejected. After such an eruption, the star relaxes to
hydrostatic conditions on a thermal timescale. If the remaining stellar mass is sufficiently
high for pair creation, the star undergoes a second pair creation episode accompanied by
another eruption. This phenomena is the so called pulsational pair instability. It occurs
typically for stars with 100 < MZAMS/M⊙ ≲ 140. After the sequence of eruptions a star
may not be anymore able to undergo pair creation episodes. So it continue its evolution
as a massive star, typically ending its life as a BH.
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Chapter 4

Methods

4.1 SEVN

SEVN (Stellar EVolution for N-body) is a population synthesis code which calculates
stellar evolution by interpolating a set of pre-computed stellar tracks [Spera et al., 2019].
It includes binary evolution by means of analytic and semi-analytic prescriptions for wind
mass transfer, Roche lobe overflow, common envelope phase, gravitational waves emission.
To perform the interpolation, in SEVN the lifetime of a star is divided into different stellar
phases as shown in 4.1 and the final remnant is listed as Table 4.2.

Phase int Phase string Physics

0 PreMainSequence
1 MainSequence Core H-burning start
2 TerminalMainSequence Creation of a He core
3 HshellBurning He core almost formed
4 HecoreBurning Core He-burning start
5 TerminalHecoreBurning Creation of a CO core
6 HeshellBurning CO core almost formed
7 Remnant Star is dead

Table 4.1: List of integer values used for stellar evolution phases.

RemType int RemType string Physics

0 NotARemnant Star is not a remnant
1 HeWD Helium White-Dwarf
2 COWD CO White-Dwarf
3 ONeWD Oxygen-Neon White-Dwarf
4 NSECSN NS after ElectroCapture SN
5 NSCCSN NS after Core Collapse SN
6 BH Black Hole
-1 Empty Massless remnant

Table 4.2: List of integer values used for remnant types.
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4.1.1 Stellar tracks

The default stellar tracks of SEVN are computed with the stellar evolutionary code PARSEC
[Bressan et al., 2012]. These tables contain the information on star mass, star radius, core
radius, stellar metallicity and evolutionary stages. The metallicity and mass ranges for
these stellar tracks are Z = 10−4 ÷ 4 · 10−2 and 2.2 ≤ MZAMS/M⊙ ≤ 600. In addition
SEVN includes a set of tracks for bare Helium cores to describe the evolution of stars
which lose their whole hydrogen envelope after mass transfer phase. For these tables the
metallicity and mass ranges are: Z = 10−4 ÷ 5 · 10−2, 0.36 ≤ MHeZAMS

/M⊙ ≤ 350.

4.1.2 Core collapse supernova models

SEVN includes different models to describe the outcome of a CCSN event. In my thesis
I have compared three of them: rapid, delayed and compactness model.

Rapid

The rapid model, described by Fryer et al. [2012] and implemented in Spera et al. [2019],
assumes that the explosions either occurs quickly within 250ms after the core bounce or
not at all. With this model, the final mass of a compact object and the type of remnant
depend on the CO core mass MCO at the time of core bounce/explosion and on the final
mass of the star M . The proto-compact object mass is set to: Mproto = 1M⊙. Depending
on the amount of mass above the proto-compact object (M − Mproto) and the strength
of the explosion, the potential fallback may increase the compact object mass. The final
bayonic mass of the remnant is then calculated as:

Mrem,bar = Mproto +Mfb (4.1)

Mfb is the fallback mass and it is defined as:

Mfb = ffb (M −Mproto) (4.2)

with ffb being the fractional fallback parameter defined in [Fryer et al., 2012, equation
16], which describes the fraction of material that falls back on the compact object. It
depends on the CO core mass and when MCO > 11M⊙ the fractional fallback parameter
is equal to 1 and the CCSN mechanism ends with a direct collapse (BH formation).

Delayed

The delayed model is also described in Fryer et al. [2012] but in this case the SN explosion
can occur over a much longer timescale and includes a certain amount of fallback. Again
the final remnant mass is obtained with equation (4.1). The differences with the rapid
model lie in the amount of fallback [Fryer et al., 2012, equation 19]. Also in this case,
when the CO core mass is bigger than 11M⊙, the model predicts a direct collapse.

Compactness

The compactness model is based on the compactness parameter, defined as:

ξ2.5 =
M/M⊙

R(Mbary = M)/1000 km

⃓⃓⃓⃓
t=tbounce

(4.3)
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with M = 2.5M⊙ and R being the radial coordinate that encloses a mass equal to
M at the time of core bounce [O'Connor and Ott, 2011]. The evaluation of ξ2.5 at core
bounce is crucial, since this is the only physical and unambiguous point in core collapse
at which one can define a zero of time and can describe the true initial conditions for
postbounce evolution. In SEVN, the compactness is estimated using the fitting formula
of Mapelli et al. [2020], where ξ2.5 monotonically increases as the CO mass at the onset
of collapse grows:

ξ2.5 = a+ b

(︃
MCO

1M⊙

)︃c

(4.4)

with a = 0.55, b = −1.1, c = −1.0 It is possible to define a compactness threshold ξt
so that small compactness values (ξ2.5 ≤ ξt) produce a supernova explosion, while when
ξ2.5 > ξt a BH is formed by direct collapse. In SEVN the default value for the threshold is
ξ2.5 = 0.35. There is still no a single certain value of the compactness threshold: O'Connor
and Ott [2011] suggested that progenitors with ξ2.5 > 0.45 most likely form BHs, while
Horiuchi et al. [2014] used ξt = 0.2 and Mapelli et al. [2020] adopted ξt = 0.3. In my thesis
I run simulations with five different compactness thresholds: ξt = [0.1, 0.2, 0.3, 0.4, 0.5].

When the progenitor explodes leaving a NS, the mass of the NS is assigned ran-
domly following a gaussian distribution with mean ⟨MNS⟩ = 1.33M⊙ and dispersion
σ = 0.09M⊙ based on the distribution of binary NS systems of Özel and Freire [2016].

When the progenitor undergoes direct collapse the mass of the BH is obtained as:

MBH = MHe + fH (Mfin −MHe) (4.5)

where MHe is the mass of the He core at the onset of collapse, Mfin is the total final
mass at the onset of collapse, fH is a free parameter which can take values from 0 to 1
and it accounts for the fraction of hydrogen envelope that collapses. In my simulations
fH is fixed to 0.9.

4.1.3 Pair instability and pulsational pair instability

The new version of SEVN includes two main models to describe PPIs and PISNe: M20
and F19.

M20 is the same model implemented in Mapelli et al. [2020] based on Woosley [2017].
If He-core mass is in the range 64 ≤ mHe/M⊙ ≤ 135, the star undergoes PISN leaving no
remnant. If the He-core mass lies in 32 ≤ mHe/M⊙ < 64 the star undergoes pulsational
pair instability and the final mass of the compact object is calculated with the following
formula:

mrem = αP mno PPI (4.6)

with mno PPI being the mass predicted by the adopted core-collapse supernova model and
αP fitting parameter (see Equation 4 and 5 in the Appendix of Mapelli et al. [2020]).

F19 is based on MESA simulations of pure-He core stars made by Farmer et al. [2019].
They find that at the highest metallicities stellar winds also remove all the remainging
helium from the star, starting to eject C/O rich materials in the pre-pulses. For this reason
they use the CO core mass over the He core mass as a better proxy for the activation of
PPISN and PISN. The defined limits for the instability regions are: 38 < MCO/M⊙ < 60
for PPISN; MCO > 60M⊙ for PISN (see figure 2 of Farmer et al. [2019]). The mass of the
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BHs that form after pulsational pair-instability are estimated using the fitting formula:

MBH =

⎧⎪⎨⎪⎩
4 +MCO MCO < 38

a1M
2
CO + a2MCO + a3 log10(Z) + a4 38 ⩽ MCO ⩽ 60

0.0 MCO > 60

(4.7)

where Z is the metallicity, a1 = −0.096, a2 = 8.654, a3 = −2.07, a4 = −152.97 and all
masses are in units of M⊙. In general, for F19, SEVN derives the mass of the compact
remnant as:

mrem,PPISN = min(Mf , MF19) (4.8)

where Mf is the pre-supernova mass of the exploding star and MF19 is the BH mass of
equation (4.7).

In both models is assumed that a PISN explosion leaves no compact remnants.

4.1.4 Initial conditions

In my simulations of binary stellar evolution the initial conditions consist in a set of
106 binary systems with fixed metallicity. The primary stars are generated in the range
[5, 150]M⊙ following a Kroupa initial mass function (IMF) [Kroupa, 2001]:

p(m) = km−α (4.9)

α = 1.35 for m < 0.8 (4.10)

α = 2.35 for m > 0.8 (4.11)

where k is the normalization constant. The proportion between the part of Kroupa that
I am using and the one missing in my IMF gives a factor of 0.285 which will multiply the
BH population obtained with the simulations.

Secondary stars are generated assuming a distribution of mass ratios from Sana et al.
[2012]:

pdf(q) ∝ q−0.1 q =
M2

M1
∈ [0.1, 1.0]M⊙ (4.12)

For single stellar evolution I have done the same procedure, but generating single
stars following a Kroupa distribution in the range [10, 150]M⊙. Here I am not interested
in having all the domain filled, I just want to have a visual comparison between single
and binary stellar evolution. In figure 4.1 is shown the IMF used for binary and single
stellar evolution. SSE strictly follows the Kroupa mass function, while in BSE the little
deviation is caused by the presence of secondary stars, which are the ones that fill the
range of masses below 5M⊙.

In all my simulations I use a set of 14 metallicities: Z = [10−4, 2 × 10−4, 4 × 10−4,
6×10−4, 8×10−4, 10−3, 2×10−3, 4×10−3, 6×10−3, 8×10−3, 10−2, 1.4×10−2, 1.7×10−2,
2× 10−2].
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Figure 4.1: Initial mass function for binary stellar evolution (Blue) and single stellar
evolution (Green) with the theoretical trend in orange and red.
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Chapter 5

Results

5.1 Single star evolution (SSE)

Figure 5.1 shows the mass spectrum of black holes that are formed after the evolution of an
initial population of single stars. The two columns are obtained using M20 and F19 model
for pair-instability, respectively (4.1.3). We take into account six metallicity values, that
cover all the range from metal-poor to metal-rich stars. This figure shows how sensitive
the maximum mass of the BH and the PISN window are to the details of stellar evolution.
The first thing to notice is the role of metallicity on stellar evolution. Metallicity is a key
parameter that controls many aspects of the formation and the evolution of both stars
and galaxies, one of which is the mass loss through stellar winds [Leitherer et al., 1992,
Vink et al., 2001]. When metallicity increases, a star tends to lose more mass through
stellar winds and the evolution will lead to a lighter compact remnant. A clear example
of this can be seen for both M20 and F19 (top left and right panels of figure 5.1), where
at Z = 0.02 the mass of the produced BHs reaches at most 25M⊙ with the heaviest
ZAMS star. For lower metallicities, Z = 10−3 ÷ 10−4, at ZAMS masses between 30M⊙
and 60M⊙, the BHs almost follow the bisector, which means that the progenitor star
did not lose much mass during its life. For Z < 10−2 the spectra are characterized by
sharp oscillations because the PPISN region has been reached (figure 5.1 bottom panels).
In M20, when a star has a pre-supernova He-core mass between 37M⊙ and 64M⊙, it
enters the pulsational pair-instability range (between 32M⊙ and 37M⊙ PPISN is not
very efficient) and the final remnant mass decreases. This is clear looking at Z = 10−4:
atMzams ∼ 60M⊙, the corresponding He-core mass is above the lower limit for pulsational
pair instability. This translates into a steep decrease in the mass of the BHs. The same
happens for the F19 model, but at higher masses. As visible in the bottom-right panel
of this figure, at Z = 10−4, the lower edge of pulsational pair instability (MCO = 38M⊙)
corresponds to a ZAMS mass Mzams ∼ 80M⊙ and the BH mass steeply drops from values
of ∼ 80M⊙ to ∼ 40M⊙.

The non-monotonic trend of CO-core and He-core mass is due to the dredge-up events
that take place in several stellar models of the tables (4.1.1). Dredge-up occurs during
the evolution of a star when the convective outer layers penetrate down to the core. The
fusion products are then brought up to the surface and mixed in the outer layers of the
star, reducing the mass of the core. This can be seen by looking how the He(CO)-core
mass varies around Mzams = 80M⊙ and the consequent variation of the final mass of the
BH.

In some cases, dredge-up may enhance the formation of high mass black holes. If
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Mzams ∼ 100M⊙ and Z = 10−4, the decrease of MHe and MCO caused by the dredge-up
allows the star to avoid PPISN, producing a BH with masses up to 90M⊙ for M20 and
100M⊙ for F19.

Going to higher ZAMS masses, almost all the tracks reach the pulsational pair-
instability regime in different points, depending on the metallicity. For Mzams ≳ 80M⊙
the BH mass is determined using equation (4.6) for M20 and (4.8) for F19, which give
the mass of the BH that forms from CCSN, having gone through a phase of pulsational
pair instability. This happens also for masses ∼ 150M⊙ at metallicity Z = 10−4.

In this Figure, we adopted the rapid CCSN model, but our previous discussion on
pulsational pair instability and pair instability is applicable to all the other models we
have taken into account. Figure 5.2, 5.3, 5.4, 5.5 show the same mass spectra presented
in figure 5.1 but with, respectively, delayed and compactness model with threshold at
ξt = 0.1, 0.3, 0.5. The trends above all the models are very similar for both M20 and
F19. There are, however, some clear differences between the different CCSN models
adopted. Comparing rapid and delayed (figures 5.1 and 5.2), the main difference between
the two is in the lightest BH produced. In the rapid model, there are no BHs below
5M⊙ and in general no compact remnant between 2M⊙ and 5M⊙. It mimics the lower
mass gap that we also have from observations: a dearth of compact objects has been
seen in that range, where the lower limit corresponds to the heaviest NS. The delayed
model, instead, does not present any gaps, allowing to form BHs down to 3M⊙, which
corresponds also to the highest mass value for a NS to form.

Compactness models [O'Connor and Ott, 2011] present a slightly different trend for low
ZAMS masses (at least in ξt = 0.1 and ξt = 0.3), with respect to Fryer et al. [2012] models
(rapid and delayed). Independently of metallicity, all the tracks stay on the bisector until
stellar winds become important (earlier for higher metallicities. See figures 5.3-5.5). This
happens because, for the compactness model, the parameter for the fractional fallback is
fixed to 0.9. For rapid and delayed, instead, the fractional fallback ffb depends on the
pre-supernova CO mass and it is defined following equation 16 of Fryer et al. [2012].

Now, comparing the three compactness thresholds, they differ only in the lower edge
of the spectrum. Higher ξt requires higher initial mass in order to form a BH and indeed
while the lightest BH for ξt = 0.1 has a mass around 5M⊙, it reaches ∼ 25M⊙ when
ξt = 0.5. With the highest compactness threshold (figure 5.5) there are no BHs formed
with metallicity Z = 0.02. At this metallicity, stars at the end of their evolution tend to
be less massive due to strong stellar winds and their final mass is not sufficiently high to
produce a compactness value bigger than the threshold.

5.1.1 Discussion

The most important thing that can be learned from these figures is that the mass distri-
bution of BHs is extremely sensitive to the PISN model used. Woosley [2017] and Farmer
et al. [2019] both do hydrodynamical simulations together with stellar evolution. They
are able to describe the physics of the explosions, for example estimating the amount of
mass lost during pulsations in a PPISN. SEVN, instead, can not do hydrodynamics, so
the details in the mass spectra must be taken as an indicative trend. The role of dredge-
up in this context is crucial and can determine whether a star goes completely disrupted
through PISN, or avoid that, falling in PPISN regime and forming a BH or else whether
it undergoes PPISN or it enters in the stable region of CCSNe.

Therefore, these trends, obtained for single stars, help to understand the effect that
certain models or parameter might have on stellar evolution and consequently on the
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populations of compact objects, in this case BHs, that are produced.
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Figure 5.1: BH and pre-supernova mass as a function of ZAMS mass from single stellar
evolution. The left-hand column is obtained using the pair-instability model M20 based
on Mapelli et al. [2020]; the right-hand column is obtained using the pair-instability
model F19 based on Farmer et al. [2019]. In both cases I adopted the rapid core collapse
supernova model (4.1.2). The bottom panels, from left to right, show the pre-supernova
mass of the He core MHe and the CO core MCO. In the model M20 the star is expected
to undergo pulsational pair instability in the range 32 < MHe/M⊙ < 64 (for MHe > 37
PPISN becomes more effective), while for MHe > 64M⊙ the star is completely disrupted
by pair-instability supernova. With the other model, F19, a star enters in the pulsational
pair-instability regime if 38 < MCO/M⊙ < 60. For masses bigger than 60M⊙ the star
undergoes PISN leaving no remnant. Different lines indicate different metallicity: Z =
0.0001 blue line; Z = 0.0006 green line; Z = 0.001 orange line ; Z = 0.006 red line;
Z = 0.02 purple line.
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Figure 5.2: Same as figure 5.1 but with the delayed model for CCSN.
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Figure 5.3: Same as figure 5.1 but with the compactness model for CCSN with the
threshold of the compactness parameter fixed at ξt = 0.1.
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Figure 5.4: Same as figure 5.1 but with the compactness model for CCSN with the
threshold of the compactness parameter fixed at ξt = 0.3.
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Figure 5.5: Same as figure 5.1 but with the compactness model for CCSN with the
threshold of the compactness parameter fixed at ξt = 0.5.
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5.2 Binary star evolution (BSE)

When dealing with binary evolution, SEVN takes into account the interaction between the
components of the binary system, which can completely change the final fate of a star’s
life. Stars with a certain value of ZAMS mass may end their life producing a BH that is
way more(less) massive with respect to the SSE case because they have accreted(donated)
mass through mass transfer episodes.

Figure 5.6 shows the mass spectrum of all the BHs in binary systems produced after the
simulation using the rapid CCSN model. The two columns represent the spectra obtained
with PISN models M20 and F19. Different rows correspond to different metallicities and
the red line superimposed to the image represent the track of SSE, the one described in
the previous section. The red line is important to understand whether a star accreted
mass and created a more massive BH, or else it donated mass, leaving a lighter compact
remnant. For example, if we fix a final mass value Mrem = 20M⊙, except for Z = 0.02,
we see that a significant amount of BHs is present both above and below the red SSE line.
BHs that are below the red track have a progenitor that donated mass, in fact they form
a BH with the same mass but starting from a bigger initial mass, while, for the opposite
reason, BHs above the red line are formed by an accretor star. In general, the majority
of BHs that are located below the single stellar evolution curve come from primary stars
(the heavier star on the zero-age main sequence in the binary system), while the region
above the red curve is mostly populated by secondary stars. From figure 5.6 it also
appears that most of most compact remnants distribute along the SSE curve.

The differences between M20 and F19 (left- and right-hand column) are the same
already mentioned in the previous section. The heaviest black holes are always found
along the single stellar evolution line for each model and for each metallicity. This is
not surprising since primaries in binary systems go through mass transfer episodes, which
means that in the best case scenario (detached binary) they evolve as if they were single
stars. A comparison between BH masses obtained from binary and single stellar evolution
is shown in Table 5.1 for M20 and 5.2 for F19. The maximum mass of BHs in loose
binaries obtained from M20 and F19 is around 90M⊙ and 100M⊙, respectively.

In the following analysis, I will distinguish three populations of BHs:

1. all BHs in my simulations (hereafter, all BHs);

2. the sub-population of BHs that are members of BBHs at the end of my simulations
(hereafter, bound BHs);

3. the sub-population of BHs that are members of BBHs that will merge within one
Hubble time tH = 14 Gyr (hereafter, merging BHs).

Z Mzams,min SSE Mzams,min BSE MBH,maxSSE MBH,max BSE

10−4 22.5 M⊙ 14.8 M⊙ 90.3M⊙ 90.7 M⊙
6× 10−4 22.6 M⊙ 12.0 M⊙ 74.8 M⊙ 75.3M⊙
1× 10−3 22.6 M⊙ 12.2 M⊙ 59.6 M⊙ 60.3 M⊙
6× 10−3 22.8 M⊙ 8.6 M⊙ 45.9 M⊙ 47.6 M⊙
2× 10−2 22.8 M⊙ 10.6 M⊙ 24.8 M⊙ 29.0 M⊙

Table 5.1: Black hole and ZAMS masses with rapid and M20 models for CCSN and PISN
respectively.
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Z Mzams,min SSE Mzams,min BSE MBH,maxSSE MBH,max BSE

10−4 22.5 M⊙ 14.8 M⊙ 99.9 M⊙ 100.1 M⊙
6× 10−4 22.6 M⊙ 12.0 M⊙ 92.8 M⊙ 94.1 M⊙
1× 10−3 22.6 M⊙ 12.2 M⊙ 75.8 M⊙ 78.8 M⊙
6× 10−3 22.8 M⊙ 8.6 M⊙ 43.1 M⊙ 46.6 M⊙
2× 10−2 22.7 M⊙ 10.9 M⊙ 24.8 M⊙ 29.0 M⊙

Table 5.2: Black hole and ZAMS masses with rapid and F19 models for CCSN and PISN,
respectively.
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Figure 5.6: Mass of BHs ending up in compact-object binaries, as a function of the
ZAMS mass of the progenitor star using Rapid CCSN model. The logarithmic colour bar
represents the number of BHs per cell, normalized to the maximum cell-value of each plot.
Left-hand column is obtained using M20 model for pair instability; right-hand column is
obtained using F19 model for pair instability; each row shows the mass spectrum with
a fixed metallicity of the initial population: Z = 0.0001, 0.0006, 0.001, 0.006, 0.02. The
red curve represents the single-stellar evolution line.
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In the following sections I show how the mass distribution of binary black holes changes
as a function of the CCSN model.

5.2.1 Rapid and Delayed

Figure 5.7 shows the three sub-populations of BHs (all, bound and merging BHs) for all
the considered metallicities.

The first row of this figure shows all the black holes produced during the simulation
and it is complementary to figure 5.6. Indeed, we see clearly how many black holes there
are for each value of their mass and it confirms what we have seen so far. The maximum
black hole mass produced decreases with the metallicity going from around 90M⊙ for
Z = 10−4 to around 30,M⊙ for Z = 10−2. Low metallicity also implies that a higher
number of BHs are produced, because winds are quenched.

Bound black holes represent the vast majority of all the black holes produced and
their mass distribution is nearly the same as the one of all black holes.

The big difference appears between the merging black holes (third row) and the other
classes. The number of merging BHs drops significantly, reaching just few tens with the
highest metallicity Z = 0.02. The tail of massive BHs present in the first two rows here
disappears, leaving compact remnants with masses < 60M⊙.

Figure 5.8 shows the mass distribution of black holes with delayed model and M20.
The differences between rapid and delayed models are in the lower mass limit. By the
definition given in Fryer et al. [2012], rapid corresponds to a fast-convection mechanism,
in which explosions occur if they happen within 250ms after bounce.

Delayed explosions, instead, can occur over a much longer timescale. In both cases the
limit for supernova explosion energy is around a few times 1051 erg. Delayed explosions
tend to be weaker than rapid ones, producing many more explosions at energies below
1051erg (Fryer et al. [2012] figure 4). This broader range of energies allows the delayed
mechanism to create a continuous range in remnant masses, while rapid explosion leads
to a sharp transition between NSs and BHs. For this reason the lightest BH produced in
the rapid scenario has mass around 5M⊙, while in delayed it reaches ∼ 3M⊙.

5.2.2 Compactness

Figure 5.9 shows the mass distribution of BHs with compactness and M20 models. This
CCSN model is based on O'Connor and Ott [2011] compactness parameter ξ2.5. In SEVN,
the computation of ξ2.5 is done with the fitting formula (4.4), that reproduces the strong
correlation between compactness and CO mass found by [Limongi and Chieffi, 2018, figure
21], where ξ2.5 monotonically increases with MCO.

Each row of figure 5.9 shows the compactness threshold increasing from ξ = 0.1 to
ξ = 0.5. As shown in the mass spectra for SSE (see figure 5.3, 5.4, 5.5), these models
behave in the same way for large masses. That is true also in this binary case, in which,
independently of the chosen threshold, the maximum mass for each model is nearly the
same ∼ 83M⊙ at Z = 10−4.

The main difference between rapid and delayed models, and compactness model is
the minimum ZAMS mass required to form a BH. This difference manifests itself in the
specific choice of compactness and we can see it with two examples: by inverting equation
(4.4), with a threshold at ξt = 0.1, the corresponding CO mass is MCO = 2.4M⊙, while
if ξt = 0.5 the required CO mass must be MCO = 22M⊙. It is clear that the minimum
ZAMS mass necessary to form a BH is strongly correlated with the value of ξt. Increasing
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the threshold also increases the minimum BH mass, and this can be perfectly seen by
looking at figure 5.9 going from top to bottom row.
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Figure 5.7: Mass distribution of black holes with different metallicity adopting the rapid
and M20 models. The first row shows all black holes; the second row shows BHs in bound
systems; the third row shows BHs which are going to merge within the Hubble time.
Fourteen metallicities are taken into account ranging from 10−4 to 2× 10−2.
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Figure 5.8: Mass distribution of black holes with different metallicities adopting the
delayed and M20 models.
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Figure 5.9: Mass distribution of black holes with different metallicities using compactness

and M20 models. The left-hand column presents the complete population of black holes

produced; the right-hand column shows the BBH systems which are going to merge within

a Hubble time. Different rows corresponds to different compactness threshold from ξt =

0.1 to ξt = 0.5 with a step of 0.1. The metallicity varies in the range 10−4 ÷ 2× 10−2.
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5.2.3 Supernova channels

One essential way to compare our results with the data is to quantify the incidence of
different supernova types in our SEVN simulations with respect to the observations. The
list of supernova types is reported in table 5.3. From my simulation, I extracted and
compared the number CCSNe, ECSNe, PISNe and PPISNe. To count the number of
pulsational and pair-instabilities for M20 we have to check if the final He-core mass falls
inside the gap 32M⊙−64M⊙, while for F19 the final CO-core mass must fall inside the gap
38M⊙ − 60M⊙. The number of CCSN BH/NS depends on the model. In the rapid and
delayed models there is direct collapse (CCSN BH) when MCO > 11M⊙. If this condition
is not satisfied, the event is classified as CCSN NS. With the compactness model, if ξ2.5 at
the pre-supernova stage (determined with (4.4)) is larger than ξt, then the event counts
as a direct collapse (CCSN BH). If ξ2.5 < ξt it counts as a CCSN NS.
ECSNe are independent of the CCSN model used.

From figure 5.10 to 5.16 we show the number of events as a function of the metallicity
for al the CCSN models used, with M20. For the classification of the supernova types, it
is also specified, in the case of CCSN, the type of remnant. Between rapid and delayed,
the amount of all the possible supernovae is nearly the same. This is expected since they
basically differ in the creation of low-mass black holes, which do not alter significantly the
total number of direct collapses. For the compactness model the number of CCSN BHs
decreases when the threshold becomes bigger. At the same time the number of CCSN
NSs increases because those stars that previously formed a BH, start forming NSs when
the threshold grows. Independently of the model, the number of CCSN events decreases
when the metallicity increases. This is expected since at higher metallicity stellar winds
become important decreasing the final mass of the star, reducing the possibility to form
a NS or a BH.

The number of PISN and PPISN remains mostly the same for every model and for
every compactness threshold. The reason for this can be found by looking at SSE tracks
of figures 5.1-5.5 (left columns). While the low ZAMS mass range is strongly affected
by the CCSN model choice, when we enter into the PPISN the spectra look almost the
same. There are some deviations in the maximum BH masses, but the general behaviour
for each mass spectrum is identical for each CCSN. As expected, the CCSN model does
not affect the amount of PISN events, since they are determined by the pair-instability
model chosen (M20 or F19).

The number of ECSNe can be compared with the number of CCSN events. We
find that ECSNe are between 2% and 4% of all the CCSN events. These values can be
compared with the observational results. Thompson et al. [2009] found, within a volume
of 30Mpc, an observed ECSN rate of 2% − 10% of CCSNe. Cai et al. [2021] provide a
rate of ILRTs within 30Mpc is 8% of that of CCSNe. Our result is in the range found
by Thompson et al. [2009], but the degree of uncertainty of these ratios is still difficult to
estimate, because survey up to 30Mpc are incomplete.

5.2.4 Discussion

The comparison between BSE and SSE gives a lot of information on the effects of in-
teractions between binary components on the final mass of the compact objects (figures
5.1 and 5.6). The higher edge of the distribution is basically unchanged, because SSE
scenarios may verify in a well-separated non interacting binary systems. In fact, black
holes that originate from interacting binary systems tend to be smaller than single black
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SN type Int SN type str

0 Unknown
1 Electron Capture SN
2 Core Collapse SN
3 Pulsation Pair Instability SN (PPISN)
4 Pair Instability SN (PPISN)
5 la
6 WD

Table 5.3: Type of supernova mechanism and its correspondence integer reference number
in SEVN.
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Figure 5.10: Number of supernova events divided per supernova type as a function of
metallicity. Rapid (M20)
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Figure 5.11: Same as Fig. 5.10, but for the Delayed (M20) model.
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Figure 5.12: Same as Fig. 5.10, but for the Compactness model with ξt = 0.1 (M20).
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Figure 5.13: Same as Fig. 5.10, but for the Compactness model with ξt = 0.2 (M20).
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Figure 5.14: Same as Fig. 5.10, but for the Compactness model with ξt = 0.3 (M20).
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Figure 5.15: Same as Fig. 5.10, but for the Compactness model with ξt = 0.4 (M20).
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Figure 5.16: Same as Fig. 5.10, but for the Compactness model with ξt = 0.5 (M20).
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holes or black holes in loose binary systems, because mass transfer and common envelope
tend to remove the H-rich envelopes of the stars, producing smaller black holes.

The lower edge of the black hole mass distribution, instead, shows the effect of mass
transfer which lowers the limit for the minimum ZAMS mass. It is exactly in the lower part
of the spectrum where we see an overdensity of BHs (figure 5.6), which corresponds indeed
to the region mostly populated by BBH mergers (e.g., figure 5.7 bottom panel). This
feature is due to the adopted IMF (4.1.4, Kroupa [2001]), which generates a decreasing
number of initial stars as the mass increases and allows the formation of most of the black
holes in the initial part of the spectrum.

The structure of the mass distributions is similar to the one obtained by LVK collabo-
ration and described in section 2.3 figure 2.3. The models which show a first peak around
10M⊙ are rapid, delayed, ξt = 0.2, 0.3, 0.4 (figures 5.7,5.8, 5.9). Multiple peaks are more
appreciable in the compactness model, but still they are not well defined. The upper mass
limit for BBH mergers is for every model at ∼ 50M⊙. This is expected, since it is the
predicted lower edge of the pair instability region, where the progenitor are completely
destroyed leaving no compact remnants.

Mass distributions and supernova counts presented in the previous section were ob-
tained from M20 model. The results for F19 are presented in the appendix [6] for which
are valid the same arguments discussed up to now.
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Chapter 6

Conclusions

In this thesis, using the population synthesis code SEVN, I have investigated the impact
of different CCSN models on the population of BBHs. SEVN calculates stellar evolution
by reading a set of pre-computed stellar tracks and includes binary evolution processes by
means of analytic and semi-analytic prescriptions. I have simulated the evolution of a set
of single stars, starting from an IMF in the range [10, 150] M⊙, and a set of isolated binary
systems with ZAMS primary mass between 5M⊙ and 150M⊙. The spin of the stars was
set to zero and the metallicity was fixed at the beginning of each simulation to values in
the range Z = 2 × 10−2 ÷ 10−4. I have used two different PISN models, M20 [Mapelli
et al., 2020] and F19 [Farmer et al., 2019], which consider the pre-supernova He-core
mass and the pre-supernova CO mass, respectively, to estimate the regions of PPISN and
PISN. For each simulation I adopted three different CCSN models: rapid, delayed [Fryer
et al., 2012] and compactness [O'Connor and Ott, 2011], using five different compactness
thresholds ξt = 0.1, 0.2, 0.3, 0.4, 0.5.

I have firstly analysed the outputs of the SSE case. In this scenario it was possible to
understand the impact of metallicity, CCSN model and PISN model on the BH population
(see figures 5.1-5.5). The metallicity determines the production of heavy BHs. For metal-
rich stars at Z = 0.02 the heaviest BH produced has a mass of ≈ 25M⊙, while for
metal-poor stars (e.g., Z = 10−4) the maximum BH mass can reach 90M⊙ with M20
and 100M⊙ with F19. CCSN models, instead, mostly affect the lower edges of the BH
mass distribution: with the rapid model, the lightest BH is at 5M⊙ and reproduces the
upper edge of the observed mass gap between NSs and BHs (2 − 5M⊙); the delayed
model instead does not predict any gap, with the transition between NS and BH at 3M⊙;
for the compactness model the lightest BH produced depends on the threshold ξt. As
the threshold increases, so does the minimum BH mass. The PISN model determines
the sharp drops in the mass spectra, because when a star enters the PPISN region it
loses mass through a succession of pulses until it reaches the stable region of CCSN.
Consequently, the BH formed is less massive. Fluctuations in the spectra are caused by
dredge up events, which decrease the mass of the core allowing stars to exit the PPISN
regime.

From the binary stellar evolution (BSE) case, it was possible to visualize the effect of
binary interactions on the population of BHs (figure 5.6). The primary stars (the heaviest
in the binary) tend to donate mass and the resulting BH mass is lower than what it would
be if they were single stars. For the opposite reason, secondary stars accrete mass and
are able to form heavier BHs with respect to the SSE case.

With these binary simulations it was also possible to study the mass distribution of
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BBH mergers with different CCSN models (figures 5.7-5.9). It shows the peculiar peak
around 10M⊙ for all the models (except for ξt = 0.5) and then a decrease in the number
of BHs until the upper mass limit is reached. This corresponds to the lower edge of the
pair-instability mass gap. For almost every model the limit is placed between 50M⊙ and
60M⊙. Above it, stars undergo PISN and no compact remnant is created.

Finally, I have also quantified the incidence of different supernova types for each CCSN
model and for each metallicity (figures 5.10-5.16). I found that the number of ECSNe
is 2 − 4% of that of CCSNe, which is in good agreement with observational results of
Thompson et al. [2009].

Overall, CCSN models have a crucial impact on the mass function of BBHs. Trying
to understand which one better represents the data is fundamental in order to interpret
forthcoming gravitational waves signals coming from BBH coalescence.
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Appendix

Supplementary figures

Mass distribution F19
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Figure 6.1: Rapid F19
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Figure 6.4: Number of supernova events. Rapid F19
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Figure 6.6: Number of supernova events. Compactness ξt = 0.1 F19
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Figure 6.8: Number of supernova events. Compactness ξt = 0.3 F19
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Figure 6.9: Number of supernova events. Compactness ξt = 0.4 F19
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