
Università degli Studi di Padova

Dipartimento di Ingegneria
dell’Informazione

Scuola di Ingegneria
Corso di Laurea Magistrale in Ingegneria dell’Automazione

TESI DI LAUREA

IDENTIFICATION AND CONTROL OF AN
ILLUMINATION SYSTEM

Autore:
Enrico Franzon

Relatore:
Prof. Maria Elena Valcher

Co-Relatore:
Prof. Ignacio De La Nuez Pestana

Padova, 20 Aprile 2015

ANNO ACCADEMICO 2014/2015

CONTENTS

Contents

1 Introduction 4

2 The experimental device 5
2.1 PRODEL . 6
2.2 Arduino UNO board . 8
2.3 Base and circuit . 10
2.4 Oscilloscope . 12
2.5 Waveforms generator . 13
2.6 PC and circuit connections . 14

3 A/D conversion 15

4 System Identification 20
4.1 Identification by using a first-order model 21
4.2 Identification by using a second-order models 31
4.3 Identification by using a second-order models and delay 34

5 First PID controller 39
5.1 Simulink model . 45

6 PID controller improvement 49

7 Conclusions 54

A Appendix 55
A.1 Arduino code . 55
A.2 Processing code . 57
A.3 Matlab code . 59

A.3.1 Identification by using a first-order model 59
A.3.2 J 1 . 62
A.3.3 Identification by using a second-order models 63
A.3.4 J 1 dos . 66
A.3.5 Identification by using a second-order models and delay 67
A.3.6 J 1 Delta 1 dos . 69
A.3.7 PID Simulation . 70
A.3.8 PID frequency study 72

2

CONTENTS

B Bibliography 75

C Webliography 75

3

1. Introduction

1 Introduction

Modern world technology has done remarkable progresses in the last decade
as far as the world of automation and of control systems of different nature
are concerned. A big contribute came from the introduction of controllers in
the automated systems as the PID controller that thanks to the combination
of three actions (Proportional, Integral and Derivative) has solved a lot of
control problems for systems of various kinds.

In addition to that, in the last decade others devices were created that are
used as a part of a general control device. One of them is Arduino, an easy to
use open-source electronic platform, based on flexible hardware and software,
that is having a good success.
The Arduino board can interact with the surrounding environment by col-
lecting information from a big variety of sensors, controlling lights, engines
and others actuators.

This thesis regards the identification of the transfer function of an electronic
system device that allows to measure the luminous intensity that sorrounds
it; the system to identify is principally composed of a voltage generator and
a light sensor that displays the light intensity received from the generator.
An Arduino board is used to save analog signals taken from the voltage
generator and from the light sensor that are necessary to the identification
process.

The main problem of the light sensor are the disturbances from the surround-
ing that offsetting the read values, so a controller must be implemented to
ensure the correct reading of the light sensor. Let us start from the system
description.

4

2. The experimental device

2 The experimental device

The experimental device consists of a set of few electronic components and
a PC for the elaboration of the data and all calculations; in particular, the
system is composed of:

1. PRODEL that is a set of 6 electronic devices that are: the voltage
source, a connector that allows the voltage to pass from the generator
to the PID controller, the PID controller of the system, the light sensor,
a disturbance generator to possibly add a voltage noise, a power supply;

2. an Arduino UNO board for the input and output storage;

3. a base where the electronic circuit with resistances is realized to limit
the voltage values taken from the generator that is required not to
damage the Arduino board;

4. a function generator necessary for the system identification;

5. an oscilloscope to visualize the functions supplied by the waveforms
generator and by the system output;

6. a PC to elaborate and to realize the programs, for data storage and for
the system identification and calculation of the appropriate parameters
for the PID controller.

5

2.1 PRODEL

2.1 PRODEL

PRODEL is composed by 6 electronic pieces which are linked together and
it can be seen in the figure below:

Figure 1: Electronic components.

In particular, starting from the left of this set of devices, the apparatus
is composed of:

1. a voltage generator whose voltage value can be set by operating in
two different ways: looking to the surface voltage generator, there is
one disk that presents two rings; the bigger ring on the surface of the
generator provides voltages in the range between -10 [V olt] and 10
[V olt], while the smaller ring provides voltages in the range between 0
[V olt] and 10 [V olt];

2. an electronic device that connects the voltage generator to the light
sensor;

3. a PID controller acting on the error that exist between the input and
output signal of the sensor light that will be used after having identified
the system to compensate the aforementioned error;

4. a light sensor to measure the voltage supplied by the voltage generator.
In fact this sensor contains a voltage transducer that arrives in input

6

2.1 PRODEL

and it is shown on the panel of the aforesaid device; in addition it
also contains a voltage generator in the range between 0 [V olt] and
10 [V olt]. This generator can be used to add an electronic signal that
simulates external noises to the light sensor.

In between the electronic component that connects the voltage generator
to the light sensor it is necessary to insert a junction diode; this electronic
component starts conducting when the applied voltage is bigger than the
threshold voltage VS; this value depends on the materials that compose the
diode but for a silicon diode VS is approximately 0,6 [V olt].
It is always necessary to limit the current that passes through the diode to
guarantee that it does not exceed the maximum value settled for it, otherwise
it could break the electronic device.
To ensure to close the circuit that is necessary to avoid damages to the circuit,
a metal connector has been inserted in between the diode output and input.

During the data acquisition of the input and output signals of the sensor,
the PID controller is not inserted in the circuit because the identification of
the system transfer function must be realized without it; after having found
a mathematical description for the sensor light, it will be necessary to add
the PID in between the voltage generator and the light sensor. In this way
the PID controller is able to correct the error that exists between the sensor
input and output.

Figure 2: Electronic components with PID controller.

7

2.2 Arduino UNO board

2.2 Arduino UNO board

The acquisition of the input and output signals from the sensor light is pos-
sible by using the Arduino UNO board, a stand-alone device that has wide
application in the industrial sector; this is first due to its lower price com-
pared to other control systems used nowadays in the technology field, and
second due to the similarity of its programming language to Java and C, so
diffused in the industries.

Arduino is an open-source electronic platform based on flexible hardware
and software. The Arduino board is able to interact with the surroundings
and receives informations from a variety of sensors controlling lights, engines
and actuators.
One of the most important aspects of this device is that developed programs
can be stand-alone which means they can run on this device without having
to use an external computer for the calculations; furthermore this board can
communicate with the software that runs on the computer, for instance Flash
or Processing.

Figure 3: Arduino UNO board.

Arduino UNO has 14 input/output pins: 6 of them are used as PWM
outputs, 6 as analog inputs, one is a USB connection, then there is a power
jack and a reset button. It contains all that is needed for supporting the

8

2.2 Arduino UNO board

microcontroller; it can be easly powered from the computer through a USB
cable, or through an AC to DC adapter, or through a battery.
As far as the program language of the Arduino board is concerned, the de-
velopers, starting from the C and C++ languages, have defined a similar but
easier language.

To realize the system identification, the voltage generator and the light
sensor values must be saved and those signals can be taken from a serial
port of the PC; in fact, the analog data acquisition is performed by using
the serial port of the PC, by using another program studied by the Arduino
board developers called Processing.
Processing is a program language that allows to develop different applica-
tions such as games, animations and interactive contents. Processing has the
same syntax, commands and program paradigms object-oriented of the Java
language and in addition it offers a lot of high level functions to easly manage
the graphic aspects and multimedia.
Since Arduino does not allow to save analog data on a file, it is necessary to
use Processing to that purpose.

9

2.3 Base and circuit

2.3 Base and circuit

The acquisition of analog data must be done carefully. Indeed, the Arduino
board can acquire only voltage signals lower than +5 [V olt]: over this value
the board could burn and the device would not work anymore.
The voltage generator supplies voltage at a maximum value of 10 [V olt], so
an electronic circuit must be realized using resistances to limit the acquired
voltage at +5 [V olt].
The electronic circuit is illustrated in Figure 4 below:

Figure 4: Electronic circuit for the analog signals acquisition.

Two resistances of the same value must be taken and connected in series
for the input acquisition. In this way, the voltage drop on the first resistance
is the same as on the second one; therefore this halves the maximum voltage
value from +10 [V olt] to +5 [V olt], and hence it does not damage the Arduino
board. Then, during the data storage, it must be remembered that the

10

2.3 Base and circuit

acquired values from the voltage generator ad from the light sensor are the
half of the real generated ones.
The voltage generator value has to be taken from the middle of the two
resistances with a bridge that links it, with a copper cable, to the A0 analog
input pin of the Arduino board.

With regards to the acquisition of the values read in the light sensor, it
is possible to verify that the maximum value that the light sensor reveals is
higher than 12[V olt] and this damages the Arduino board; this comes from
the fact that the light sensor is subject to external disturbances of different
nature such as the surrounding lights. The solution is to use 4 resistances of
the same value connected in series and then acquire the signal from the last
resistance. In this way the acquired values are a quarter of the real ones.

11

2.4 Oscilloscope

2.4 Oscilloscope

Using the oscilloscope, an electronic measurement device, it is possible to
display the time trend of electronic signals such as voltages and currents.
The CH1 channel is linked with a probe to the waveforms generator, while
the CH2 channel is linked to the sensor light output.

Figure 5: Oscilloscope.

12

2.5 Waveforms generator

2.5 Waveforms generator

A waveforms generator or functions generator is an electronic device that
produces different signals of different shapes.
It is possible to change the parameters of the waveform such as the frequency,
the amplitude and the possible duty cycle of the signal.
For the identification purposes, a square waveform is used, with a frequency
equal to the minimum value produced by the generator, because it is neces-
sary to obtain a lot of signal samples, as the Arduino board takes data at
most at 115200 bps.

Figure 6: Waveform generator.

13

2.6 PC and circuit connections

2.6 PC and circuit connections

The use of the computer is necessary to do all the calculations and to allow
signal exchanges with the Arduino board. The system identification and the
controller realization are obtained through Matlab, an elaboration software
that provides a lot of important functions for the system management.
After having connected all the resistances as explained above, it is possible
to connect the waveforms generator to the system input and to the A0 pin of
the Arduino board, because the waveform must be stored for the subsequent
elaboration; the A1 pin is used to save the information given by the light
sensor.
Using the two oscilloscope channels, the input and output signals are shown
on the oscilloscope screen. Finally, the Arduino board is connected to the
PC through the USB port.

14

3. A/D conversion

3 A/D conversion

The first step for the system identification is the signal storage; data have
been taken by using the Arduino board that realizes an A/D conversion.
Arduino in fact can take data by selecting the acquisition rate as previous
explained; thus signals are saved by storing their samples and this process
allows the conversion from analog to the corresponding digital signal.
The signals acquisition is possible thanks to two specific programs; first of all
data are shown on the screen through the serial port using the Arduino soft-
ware, while data storage is realized using another program called Processing.

As previously mentioned, the acquisition rate has been set to the highest
possible bitrate compatible with the Arduino board, in order to obtain the
maximum number of samples, and hence to perform a good identification.

/* Global variables definition */
String tiem;
String entr;
String sal;
String video;

/* Program ’s part for the signals print on the screen */
void setup()
{

/* Bitrate per second speed is set at the biggest
value */

Serial.begin (115200);

Once the acquisition rate is chosen, data acquisition can start by creating
a loop where data are taken by using the Arduino pins; the code inside the
loop has been repeated 1500 times; this value was chosen sufficiently large
to ensure the storage of a sufficiently high number of wave front edges of
the input waveform provided by the waveform generator. In this case, the
waveform generator generates a square waveform with a period set to 0.5[Hz];
the half period of the waveform is 1[s].
After having realized some tests, it turns out that 300 samples represent half

15

3. A/D conversion

of a period of the waveform. Starting from the previous results it follows
that the sample time is: Tsample = 1/300 = 0.0033[s].

for(int i=0; i < 1500; i++)
{

/* Variables setting */
tiem=String ("\t");
entr=String ("\t");
sal=String ("\r\n");

/* Sample ’s number */
tiem=i+tiem;

/* Signal input ’s sample */
entr=analogRead(A0)+entr;

/* Signal output sample */
sal=analogRead(A1)*2+ sal;

/* String concatenation */
video=String(tiem+entr+sal);

/* String print */
Serial.print(video);

}

The three String variables tiem, entr and sal must be initialized; using
the Arduino program in fact it is not possible to realize the usual string
concatenation as in Java/C. First it is necessary to initialize the three string
variables and then to concatenate them with the corresponding acquired
value; finally one single string called video was created to concatenate all the
acquired values.
In this way it is possible to use only one Serial.print comand, so that the
storage process is faster and this allows to save more data.

In this data saving program the acquisition loop is written in the "Setup"
part of the program because it is enough to save only one complete wave front
edge of the input waveform to identify the system transfer function, but it is
not known if data acquisition starts after the starting of a wave front edge

16

3. A/D conversion

that is not useful because to realize a good identification it is necessary to
take a complete wave front edge of the signal, so some waves front edges have
been saved and then only the first complete one will be selected; the "loop"
part of the program that it must be inserted in every Arduino program to
ensure the correct functioning of it but in this case it is not used to acquire
data and it stays empty, without code. To perform the system identification
the sample number is saved together with the input sample taken from the
A0 pin and the output sample taken from A1 pin; finally the acquired output
samples must be multiplied by 2 to have them in the same scale as the input
samples.

Finally Processing is used to save the data on a file called Data.

/* It is necessary to import the processing.serial library */
import processing.serial .*;

/* Variables ’s initialization */
Serial mySerial;

/* This comand serves to print the acquired data on the
file */

PrintWriter output;

In the first part of the program the variables are initialized; the Serial
library reads and writes data to and from external devices one byte at a
time. It allows two computers to send and receive data. This library has the
flexibility to communicate with custom microcontroller devices and to use
them as inputs or outputs to Processing programs.
In addition, a PrinterWriter object is created with the purpose of printing
to a text-output stream on a specified file. Then, the two above mentioned
variables are initialized inside the "Setup" part of the program; in this part
of the program usually all general variables that can be used in others parts
of the program are initialized. "Setup" can be seen below:

17

3. A/D conversion

/* Setup is necessary to run the program */
void setup()
{

/* Selection of serial port and the acquisition speed */
mySerial = new Serial(this , Serial.list ()[1] , 115200);

/* Creation of the file on the same folder of the Processing
program */

output = createWriter ("Data.m");
}

In the Setup part of the program written above, a "Serial" object is
allocated; this object is used to save data taken from the Serial port of the
PC with the specified bitrate between the brackets; the instruction "output
= createWriter("Data.m");" creates the file "Data.m" where the input data
are stored.
To be sure to acquire data when the serial port is available and to avoid
getting null values, it is necessary to impose some controls on the read data
values as shown below.

/* This block of the program is realized to control that data
are available and if they are to save them by taking from
the serial port */

void draw()
{

/* If the serial port is ready takes the data */
if (mySerial.available () > 0)
{

/* Reads data to the serial port until new line */
String value = mySerial.readStringUntil(’\n’);

/* If the read value is not null then print it on the Data
file */

if(value!= null)
{

output.print(value);
}

}
}

18

3. A/D conversion

As far as the "Draw" part of the program is concerned, when the serial
port is available the incoming values are taken until the end of the read line
using " String value = mySerial.readStringUntil(’ n’);"; another control is
imposed to ensure that the acquired value is not null and in this case the
value is written in the "Data" file.

/* Exit to the program when any button is pressed */
void keyPressed ()
{

/* Writes the remaining data on the file */
output.flush ();

/* Close the file */
output.close ();

/* Exit to the program */
exit ();

}

The "keyPressed" part of the program allows to exit from the storage
phase when any button is pushed; for the file to be created correctly two
methods call are required: the first one by writing "output.flush()" that
ensures that everything in the stream of the serial port can be sent to the
file, a sort of "cleansing " of the stream, and the second one by writing
"close()" that closes the file.
When the program runs, the "Data.m" file is created and all the sample
values are stored in it.

19

4. System Identification

4 System Identification

When the "Data" file is ready, it is possible to perform the system identifi-
cation. The identification is achieved using Matlab; the first step consists in
creating the arrays for the acquisition samples time and input/output of the
system as well. Only one rising edge is enough to realize the identification
because it describes the behaviour of the sensor light to an input signal to
it. The file created to do that is called "Identification by using a first-order
model"; the name chosen refers to the Identification by using a first-order
model and this means one zero in the denominator of the system transfer
function. This is the first attempt to find out the mathematical description
of the system using a single pole transfer function, because it is the simplest
description of the system. This function is a rational transfer one with a
degree equal to 1.
Furthermore there is the possibility of introducing a delay expressed using
an exponential term; this can be used to improve the identification because
there is a delay between the light sensor output and input. If the identifi-
cation achieved in this way is not satisfactory, it is necessary to assume for
the system transfer function a two pole function in order to produce better
results.

20

4.1 Identification by using a first-order model

4.1 Identification by using a first-order model

To realize the system identification using a one pole model, the thing to do
is to take the storage data from "Data" file and organize them to be easly
treated.

% Data reading from "Data.m" file %
[samples referencias sensorValues]= textread(’Data.m’,’%d%d%d’);

From the code above, the keyword "textread" is used to read data from
the specified file, written in brackets, and to convert the strings in the file in
double-type values:

textread(’Data.m’,’%d%d%d’)}.

This way three arrays "samples", "referencias" and "sensorValues" have
been created: the first one contains the number of the samples, the second
one contains the input samples and the last one contains the light sensor
output samples.

Then it is necessary to take only a subset of values because the realization
of the system identification takes only a rising edge; the data are taken from
the first nonzero reference sample.

% Array declaration for data treatment %

help_array_tiempo =[];
help_array_refer =[];
help_array_sensor =[];

% Sample time %

21

4.1 Identification by using a first-order model

T_sample = 1/300;

% Time array %
tiempo_1 =[];

% Input array %
entrada_1 =[];

% Output array %
salida_1 =[];

% Array that saves the minimum function %
% cost with differents delta values %

J_1_delay_vect =[];

% Counter used as controller of the data %
count_1 =0;

The three arrays specified at the beginning of this part and called "help
array tiempo", "help array refer" and "help array sensor" are used to easly
manage the data. These arrays permit to take all the rising edge of the
waveforms; one sample before the begin of the steep has been taken with
the purpose to show better the time course of the light sensor. The zones
where reference and sensor values take null values are discarded; other three
arrays are created to take, as explained above, the first complete rising edge
of the waveform because the identification can be achieved by using only one
of those.
The "J1 delay vect" is used to save all J1 optimum values; J1 is a cost
function that represents the error value between the light sensor output and
the model output corresponding to the same input reference and it is used
to calculate the Correct Standard Deviation between those two outputs. It is
clear that a smaller Standard Deviation and J1 value as well ensures a better
identification.
J1 results:

J1 = σ =

√∑N
k=1(xmod − x̄ref)2

N − 1

22

4.1 Identification by using a first-order model

The J1 function is created apart to be called when it is requested.
The reason for saving the J1 value comes from the need to compare the
different J1 functions realized with different delay terms, so it is possible to
plot all those values in the same graphic and choose the delay value that
provides the smallest J1 value and hence the best identification.

All 1500 data are analized and treated by using a "for" loop to retain only
the useful samples and to discard the not useful ones:

j=1;

% Loop used to treat data stored %
for i=1:1500

% The firsts data aren ’t used because the reference %
% value is zero %
if((referencias(i)==0)&&(count_1 ==0))

count_1=count_1 +1;

end

% When the reference isn ’t equal zero data are taken %
% then is taken one previous sample to have a better %
% visualization on the screen %
if((referencias(i)~=0)&&(count_1 ==1))

help_array_tiempo(j)= samples(i-1);
help_array_refer(j)= referencias(i-1);
help_array_sensor(j)= sensorValues(i-1);
j=j+1;

end

With the introduction of the count 1 counter it is possible to control
when the first reference sample value is different from 0 for the first time;
after having performed the control, this variable value is set to 1 to record
that the data acquisition has already started.
After that, another control is imposed to be sure to save in the arrays only
samples taken from the rising edge.

23

4.1 Identification by using a first-order model

In the Figure 7 it is possible to see the input reference taken from the wave-
forms generator and the system output corresponding to it:

Figure 7: Waveforms.

Only the first subset of the useful data is taken from the start of the rising
edge until the drop of it:

% This variable counts the number of the first useful %
% rising edge sample %
help_1=help_array_tiempo (1) -1;

% 300 samples are the biggest number that is possible %
% take from the signals with the highest Arduino %
% bitrate %
for i=1: size(help_array_tiempo ’)

if(count_1 <301)
count_1=count_1 +1;

% Data are saved in the arrays that will be used %
% for the identification %

24

4.1 Identification by using a first-order model

tiempo_1(i)= help_1;
help_1=help_1 +1;
entrada_1(i)= help_array_refer(i);
salida_1(i)= help_array_sensor(i);

end
end

The variable "help1" is used to save the number of the samples of the
first complete rising edge, so the sample number is saved in the "tiempo 1"
array and then incremented by 1 at every loop iteration 1.
The input and output samples are saved respectively in the "entrada 1" array
and in the "salida 1" array to have a synchronized acquisition of the data.
To easly manage the arrays it is better to transposed them, then all the
acquired samples are converted to the right scale because Arduino maps the
data by using 10 bits that means 28 = 1024 values in the range [0, 1023]; as it
is shown below, the "tiempo 1" array is multiplied by Tsample to have the true
acquisition sample time; then the input and output samples are multiplied
by 10 because the samples conversion does not map them from 0 to 10 but
from 0 to 1:

% The arrays are transposed to manage them easly %
tiempo_1=tiempo_1 ’;
tiempo_1=tiempo_1*T_sample;
entrada_1=entrada_1 ’;
entrada_1 = ((entrada_1)/1023)*10;
salida_1=salida_1 ’;
salida_1 = ((salida_1)/1023)*10;

% Saving data %
save prueba_1.mat tiempo_1 entrada_1 salida_1

The three arrays are saved into a file called "prueba 1" to be used later
for the identification.

1It is necessary specify that the "tiempo 1" array has integer entries.

25

4.1 Identification by using a first-order model

After having done that, the identification process can start.
The "fminserach" function realizes a multidimensional unconstrained nonlin-
ear minimization Known as Nelder-Mead; fminsearch starts from the values
specified in between the brackets and it tries to find out a local minimizer
for the function J1:

\textit{parametros_ident_prueba_1 = fminsearch(’J_1’ ,[1 1]);}

The array called "parametros ident prueba 1" is created and it contains
the optimum parameter values that are obtained using the minimum J1 value.
The optimum J1 value is saved in the "J 1 delay vect" array:

% Print stored data and identification model output %
figure
parametros_ident_prueba_1 = fminsearch(’J_1’ ,[1 1]);
J_1_delay_vect (1) = J_1(parametros_ident_prueba_1);
hold on
plot(tiempo_1 ,entrada_1 ,’*r’)
title(’Grafico␣comparacion␣modelo␣y␣datos␣prueba␣1’)
xlabel(’Muestros ’)
ylabel(’Valores ’)
axis ([1.5 2.55 0 6])
grid on

The input reference and the system and model outputs are plotted in the
same graphic to prove the quality of the identified model of the system.
Then, the parameter values and the optimum J1 value are displayed in the
Command Window adding the code below:

% Print of the identified parameters %
fprintf(’Valores :\n␣K_1␣=␣%04.3f␣\n␣tau_1␣=␣%04.3f\n’, ...
parametros_ident_prueba_1 (1), parametros_ident_prueba_1 (2));

26

4.1 Identification by using a first-order model

The identified light sensor transfer function has "Km" value in the nu-
merator and the "Tm" value in the denominator and in this case represents
the only pole :

% First position (1) for the constant Km , second position %
% (2) for time constant Tm in the denominator of the %
% transfer function %

num_1=parametros_ident_prueba_1 (1);
den_1=[parametros_ident_prueba_1 (2) 1];
fprintf(’\nFuncion␣de␣trasferencia␣G_1␣identificada :\n’);
G_1=tf(num_1 ,den_1)

The cost function J1 that calculates the parameters starts by constructing
the light sensor model by using the initial parameters values written through
the function called 2:

% Function J_1 to calculate the transfer function parameters %
function J_1=prueba(x)

% Load data saved into prueba_1 %
load prueba_1;

% Transfer function definition %
num=x(1);
den=[x(2) 1];
g1=tf(num ,den);

The saved data are loaded from the file "prueba 1" and the transfer
function "g1" is created by using the input values taken from the x array;
the first element of the array is used as function numerator and the second

2The parameters are provided to the J1 function in the main program

27

4.1 Identification by using a first-order model

element of the array is used as the time constant in the function denominator.
The model is built by using the Matlab function "lsim":

% Construction of the model %
ymodelo_1=lsim(g1,entrada_1 ,tiempo_1);

The comand "lsim" simulates the time response of a dynamic system, the
one written as the first element in the brackets, to an arbitrary input. By
writing the expression above, the time response of the dynamic system g1 to
the input signal saved into "entrada 1" is printed and by using "tiempo 1 to
be synchronized with the output samples stored in the "salida 1" array.
To calculate the Standard Deviation that exists between the system and the
model output it is necessary to calculate the error between them:

% Error calculation between system output and model output %
err=(salida_1 -ymodelo_1);

After having calculated the error, the Standard Deviation can be ob-
tained:

% J_1 is equal to the standard deviation value between the %
% system output and the model output to the same input %
serr=sum(err.*err);
disp(’Valor␣funcion␣costo:’)
J_1=sqrt(serr)/max(size(tiempo_1)-1)

Only one graphic is realized to compare the input and output signals of
the system and the identified model output:

28

4.1 Identification by using a first-order model

% All the signals are compared in the same graphic %
plot(tiempo_1 ,salida_1 ,’g’,tiempo_1 ,ymodelo_1 ,’b’)

The identification results can be obtained by running "Identification by
using a first-order model"; the identified parameters and the system transfer
function are printed in the Command Window, so the results are:

Valor funcion costo:

J_1 =

0.0314

Valores:
K_1 = 0.903
tau_1 = 0.562

Funcion de trasferencia G_1 identificada:

G_1 =

0.9026

0.5624 s + 1

As it is possible see in the graphic below, the system identification is
not sufficiently good because the model output follows the behavior of the
system output but it is not sufficiently close to it; if a delay is added the
identification does not provide better results.
To improve the light sensor identification, one pole more will be added to the
transfer function of the model.

29

4.1 Identification by using a first-order model

Figure 8: Identification by using a first-order model.

30

4.2 Identification by using a second-order models

4.2 Identification by using a second-order models

A better identification can be realized by using a rational transfer function
with two poles, which means to have two zeros in the denominator of the
function. Starting from the previous identification, it is necessary change the
J1 function by adding one pole in the identification model; a new file called
"Identification by using a second-order models" is created that is similar to
the previous one:

% Print stored data and identification model answer %
% The first element inside fminsearch is the constant K %
% value of the system transfer function %

figure
parametros_ident_prueba_1 = fminsearch(’J_1_dos ’ ,[1 1 1]);
J_1_delay_vect_dos (1) = J_1_dos(parametros_ident_prueba_1);

The difference between the two solutions is that by adding one pole we
can ensure a higher precision in the identification process, and hence a lower
error value and J1 value are obtained; one parameter more is added in the
"fminsearch" function to initialize the new identification process.

In this second process the new J1 function presents only few differences;
the "g1" transfer function has a different denominator that derives from the
addition of the pole:

G(s) =
K

(τ1s+ 1)(τ2s+ 1)
exp−∆s =

K

(τ1τ2s2 + (τ1 + τ2)s+ 1)
exp−∆s

and it can be achieved by writing:

% Transfer function definition %
num=x(1);
den=[x(2)*x(3) (x(2)+x(3)) 1];
g1=tf(num ,den);

31

4.2 Identification by using a second-order models

Running the "Identification by using a second-order models" file, the iden-
tified parameters and system transfer function can be read from the Com-
mand Window:

Valores:
J_1_dos = 0.02555

Valores:
K_1 = 0.7350667811
tau_1_1 = 0.1799512302
tau_1_2 = 0.1800225230

Funcion de trasferencia F_1 identificada:

G_1 =

0.7351

0.0324 s^2 + 0.36 s + 1

In this case the two time constants take the same values; the comparison
between the system and model output is shown in Figure 9.

32

4.2 Identification by using a second-order models

Figure 9: Identification by using a second-order models.

The graphic shows that the system Identification by using a second-order
models provides considerable improvements, so it is better than the previous
one; looking at the graphic it is clear that the model output has a delay
compared to the system output and this gives a possible solution to improve
the identification by adding an exponential term.
This exponential term represents the model delay; the delay is progressively
increased by adding the sample time at every loop iteration until we find out
the minimum and optimum J1 value; the lowest J1 value obtained provides
the parameter value for the best identified model of the system and the
optimum delay as well.

33

4.3 Identification by using a second-order models and delay

4.3 Identification by using a second-order models and
delay

All the J1 optimal values are saved in the array called "J 1 delay vect" and
they are plotted in the same graphic; looking at this graphic it is possible
to choose the best delay value that gives the J1 lowest value; this is done by
using the "Identification by using a second-order models delta" file:

t=0;

for delta =1:30
t=t+1;
delta=delta*T_sample;
save delta

% The first element inside fminsearch is the constant K %
% value of the system transfer function %
figure
parametros_ident_prueba_1 = fminsearch(’J_1_delta_1_dos ’...
... ,[1 1 1]);
J_1_delay_vect(t+1) = J_1_delta_1_dos ...
...(parametros_ident_prueba_1);

In the code above there is a main loop created to calculate and save dif-
ferent J1 values by introducing different ∆ values that represent the different
proposed delay values to compare them later; the identification process is
the same as in the "∆ = 0" case. The delay must be added to the transfer
function:

% Delay %
s=tf(’s’);
delay_1=tf(exp(-s*delta));
G_1=tf(num_1 ,den_1);
F_1=G_1*delay_1

34

4.3 Identification by using a second-order models and delay

First the "delay 1" transfer function is created by using the delay value
starting from delay = Tsample = 1/300 to arrive in the last lap to the value
delay = Tsample ∗ 30 = 0.1[s] ; the exponential delay term is then multiplied
by the "G 1" transfer function to have the requested one.
Introducing a new loop, the J1 optimum values with different delays can be
compared to find out the optimum delay:

D = 0:1:30;
D = D*T_sample;
% J_1 comparison with different delay %
figure
plot(D,J_1_delay_vect ,’*r’)
title(’Grafico␣comparacion␣J_1_{dos}␣con␣diferentes␣retardos ’)
xlabel(’Delta’)
ylabel(’J_1␣delta_1␣dos’)
axis ([0 30* T_sample 0.023 0.042])
grid on
D = D/T_sample;

Looking at the resulting graphic below, it is clear that there is a minimum
J1 value:

35

4.3 Identification by using a second-order models and delay

Figure 10: Identification by using a second-order models with differents ∆.

The minimum and optimum J1 value is close to ∆ = 0.08[ms]; not all the
J1 values in the curve above takes value of the same order of the smallest one
because the identification process stops before at a higher value, so those J1

contain a not useful delay value.
After having analyzed the J1 values printed in the Command Window, the
optimum one is obtained for ∆ = 0.0767[ms]:

Valores:
J_1_delta_1_dos = 0.02360
delta = 0.0767

Valores:
K_1 = 0.6995959914

36

4.3 Identification by using a second-order models and delay

tau_1_1 = 0.1289396326
tau_1_2 = 0.1288624035

Funcion de trasferencia G_1 identificada:

F_1 =

0.6996
exp (-0.0767*s) * --------------------------

0.01662 s^2 + 0.2578 s + 1

The identification process has calculated the optimum F1 system transfer
function:

F (s) =
K

τ1τ2s2 + (τ1 + τ2)s+ 1
e−∆s =

0.6996

0.01662s2 + 0.2578s+ 1
e−0.0767s

As far as the graphic below is concerned, it is clear that the identification
by using two poles and a delay gives better results than the one by using only
one pole, in fact the identified model output is closer to the system output
and the J1 optimum value is lower.

37

4.3 Identification by using a second-order models and delay

Figure 11: Identification by using a second-order models with ∆ = 0.0767.

The next step is to realize a PID controller for the system to compensate
the error between the input reference and the system output taken from the
light sensor.

38

5. First PID controller

5 First PID controller

At the beginning of the PID realization it is necessary to simulate the light
sensor output by introducing the PID in between the voltage generator and
the light sensor; if the PID costants are calculated and tested directly in
the real circuit, this will be dangerous for the electronic components and the
circuit could break. To determine the PID constant it is used a particular
method, taken from a book called "HANDBOOK OF PI AND PID CON-
TROLLER TUNING RULES", written by Aidan O’Dwyer (Dublin Institute
of Technology, Ireland), 3rd Edition, for a transfer function with two poles;
the "PID simulation" file is used to find out the PID parameters.
This method is used for systems called SOSPD that means "Second Order
System Plus time Delay model" with a transfer function of the same kind of
the identified one:

Kme
−sτm

T 2
m1s

2 + 2ξTm1s+ 1

or

Kme
−sτm

(1 + Tm1s)(1 + Tm2s)

The first step is define the general variables and the found light sensor
transfer function that will be used for the calculations:

% System transfer function parameters $
K_m =0.6996;
T_m1 =0.1289;
T_m2 =0.1289;
tau_m =23;
T_muestreo =1/300;
ter=(T_m1*T_m2);
sec=(T_m1+T_m2);
xi=sec /(2* T_m1);

% Transfer function definition $
P=tf([K_m],[ter sec 1]);
s=tf(’s’);
Delay=tf(exp(-s*tau_m*T_muestreo));

39

5. First PID controller

G=P*Delay

After this preparation, the data storaged must be charged to be ready to
use them when requested:

% Load data %
load prueba_1_dos;

% Array declaration for data treatment %
datos_entrada = [];

% Saving data in the array %
for j = 0:296

datos_entrada(j+1 ,1)=j;
datos_entrada(j+1 ,2)= entrada_1(j+1);

end

As shown above the data has to be loaded by taking them from the "Data"
file created before; an array is created and its name is "datos entradas" which
is a matrix with 2 columns whose first column contains the sample number
and whose second one contains the sample value.

% Real delay value definition %
real_delay=tau_m*T_muestreo;

% Time constants ratio %
time_rap = real_delay/T_m1;

average = mean(datos_entrada (: ,2),1);
datos =[];
datos (:,1)= datos_entrada (:,1)* T_muestreo;
datos (:,2)= datos_entrada (:,2);

40

5. First PID controller

Then the delay must be defined as the time ratio between the values
"real delay" and "T m1". The real acquisition sample time has been saved
to emulate the real system behaviour and it is achieved by multiplying the
stored sample number by the sample time.

For the PID parameters, starting values have been evaluated by making
use of a procedure proposed in the book "HANDBOOK OF PI AND PID
CONTROLLER TUNING RULES"; in this book it is possible to find out a
lot of different techniques to realize a controller for many different systems
as the identified one, namely:

Gm(s) =
Kme

−sτm

(Tm1s+ 1)(Tm2s+ 1)
or

Kme
−sτm

(T 2
m1s

2 + 2ξmTm1s+ 1)
.

The PID controller transfer function can be expressed as:

GP (s) = KP (1 +
1

TIs
+

TD
1 + sTL

s)

This procedure calculates four PID constants by using the transfer func-
tion parameters. First of all it is necessary to calculate the three different
values called "x1", "x2", "x3"; those values can be found by looking to
the table proposed by the method used to this PID realization and they
are related first to the ratio τm/Tm1 that in this system is realdelay/Tm1 =
0.0767/0.1289 = 0.5948, then to the coefficient ξ that appears in the transfer
function denominator; in this case the two time constants in the denominator
take the same values that means there are two distinct real poles, so ξ = 1.

Looking at the table above, it is necessary to calculate the weighted aver-
age between two values for every "xi"; τm/Tm1 value stays in between [0.5, 1.0]
so:

"x1" results from the weighted average between "x1 = 4.0" and "x1 =
1.85"; "x2" results from the weighted average between "x2 = 1.06" and

41

5. First PID controller

Figure 12: SOSPD tuning method.

"x2 = 1.56"; "x3" results from the weighted average between "x3 = 0.59"
and "x3 = 0.82";

Thus the resulting values are:

x1 = 3.57 x2 = 1.16 x3 = 0.636

Then the three PID constants are calculated by using the equations pro-
posed: the first constant to be calculated has to be KP and the other two
depends on its value through the time constants TI and TD:

42

5. First PID controller

KP =
x1

Km

=
3.57

0.6996
= 5.1029

TI = x2 ∗ Tm1 = 1.16 ∗ 0.1289 = 0.1495

TD = x3 ∗ Tm1 = 0.636 ∗ 0.1289 = 0.082

In the derivative term a pole at high frequency has been added by intro-
ducting TL on the denominator of the derivative component and this solution
does not amplify the error at the high frequencies; this pole results from the
equation:

TL =
TD
β

=
0.082

15
= 0.055

The β constant is an integer chosen in the range [3, 15]; the β value is
chosen to ensure that the pole 1/TL is outside of the band of control; this time
constant introduces a limit at the high frequencies. If TL is such that 1/TL
is bigger enough than the crossing frequency ωc, its negative contribution
to the phase margin can be neglected; therefore 1/TL does not decrease the
phase margin. On the other hand, a too small TL amplifies the error in the
high frequencies. β is chosen close to 10 or bigger and it can be set till 15
without any significant change, but not bigger than that value because a
higher β brings a worse phase margin ΦPM .
These constants have been obtained by writing the code below:

% Proportional PID constant%
K_p = x_1/K_m;

T_i = x_2*T_m1;
T_d = x_3*T_m1;
T_l = T_d/beta;

Finally, the other two PID constants can be calculated from the KP value
as follows:

43

5. First PID controller

KI =
KP

TI
=

5.1029

0.1495
= 16.7392

KD = KP ∗ TD = 5.1029 ∗ 0.082 = 0.4183

44

5.1 Simulink model

5.1 Simulink model

The next step is to build the system model, by adding the PID controller
corresponding to the previously derived constants parameters:

Figure 13: Simulink model.

The system model is created by using the following blocks:

1. Two "Data" blocks, one to provide the input reference and one for
saving the output data;

2. One "Subsystem" block that contains the PID controller;

3. One "Transport Delay" block to introduce the delay;

4. One "Transfer function" block to introduce the light sensor transfer
function;

5. Two "Scope" blocks, the first one to display on the screen the error
between the system input and output, the second one to display on the
screen the system output.

45

5.1 Simulink model

The "Data" block called "Reference" provides the data that are taken
from the "datos" array to give to the simulated system the reference sam-
ples taken through the Arduino board; the other "Data" block called "Save
output" is used to save the data in the "datos salida" array.

The "Subsystem" block contains a parallel PID realization and it specifi-
cally contains:

1. three "Gain" blocks to realize the three PID constants;

2. two "Transfer function" blocks, the first one to introduce the null pole
for the integral action, the second one to introduce the null zero and
the last one for the TL pole introduced by the derivative term;

3. three "Scope" blocks to display on the screen the effects of the three
PID actions on the input signals;

4. one "Sum" block to add the three PID constants effects.

Figure 14: Simulated PID.

The first test has been run by using a classical parallel PID realization and
by setting as controller parameters those obtained with the SOSPD method.
The three obtained constants have been inserted respectively in the "Kd",

46

5.1 Simulink model

"Kp" and "Ki" "Gain" blocks and the TL time constant has been inserted
in the "Derivative Fcn" "Transfer function" block to realize the derivative
PID term.

The "Transport Delay" block has been used to introduce the delay:

∆ = Tsample ∗ τm = 0.0033[s] ∗ 23 = 0.0767[s] .

In the "Transfer function" block, the identified transfer function must be de-
fined; the transfer function numerator contains the Km constant, the trans-
fer function denominator contains the poles that have been found previ-
ously and they are expressed by using the equation (ter)s2 + (sec)s+ 1 that
represents the product between (Tm1s + 1) and (Tm2s + 1) , with
ter = (Tm1 ∗ Tm2) and sec = (Tm1 + Tm2).

Using the two "Scope" blocks, the error and the system output can be visu-
alized.

Running the "PID simulation" file, the parameters have been saved in the
Workspace to be ready for the simulation; the "Output" "Scope" block shows
the comparison between the model output and the input reference:

47

5.1 Simulink model

Figure 15: System output.

From the graphic above, it is possible to observe the first results: the
two signals intersect many times, the first one close to 0.13[s]; the simulated
system output has many overshoots and the highest one is 11.42[V olt], so the
maximum overshoot value in the step response is the double of the reference
signal, and the system output does not come close to the reference before the
end of the half period.
There are no limits imposed on the system response but to realize a good
PID controller that ensures good performance it is better to introduce two
specific: to the settling time of the system response on the input reference
and to the overshoot maximum value. These specific allow to realize a faster
controller to have a more precise light sensor response to the input reference
on it.

48

6. PID controller improvement

6 PID controller improvement

The timing constraints chosen to impose on the light sensor output are:

1. Settling time Tset at the 5%;

2. Overshoot S ≤ 10%.

The settling time of an output device is the time elapsed from the appli-
cation of an ideal instantaneous step input, in this case is the average of the
input reference samples to the light sensor because voltage that is provides
by the generator is subjected to electronic noises, to the time at which the
light sensor output has entered and remained within a specified error band,
in this case at 5%, usually symmetrical about the final value.
In signal processing or control theory, overshoot is when a signal or function
exceeds its target; in this case the request is S ≤ 10% that means that the
light sensor output must be lower than the sum of input reference, in this
case the average of the input samples value has been calculated for the same
reasons mentioned above, plus the 10% of that value for all the time.
By introducing three "Step" blocks that represent the two specific mentioned
above and that are linked to the same "Multiplier" component, the new
Simulink model results:

49

6. PID controller improvement

Figure 16: Simulated system with time limits.

So it is possible to display in the "Output" block the light sensor response
to the input reference together with the specific; in fact, from the graphic
below it is clear that the system output with this PID realization presents
some overshoots S, the maximum one exceeds the specific given; furthermore
the settling time Tset is not respected.

50

6. PID controller improvement

Figure 17: Simulated system output with timing constraints.

To improve the system performances, the three PID constants can be
manually tuned till we find out the best PID constants value that ensure the
system output to respect the constraints.
After having tried some attempts, a good choice of the PID parameters is:

KP =
x1

Km

− 2.8 =
3.57

0.6996
− 2.8 = 2.3029

TI = x2 ∗ Tm1 = 1.16 ∗ 0.1289 = 0.1495

TD = x3 ∗ Tm1 = 0.636 ∗ 0.1289 = 0.082

TL =
TD
β

=
0.082

15
= 0.055

KI =
KP

TI
− 5 =

2.3029

0.1495
− 5 = 10.4016

KD = KP ∗ TD = 2.3029 ∗ 0.082 = 0.1888

51

6. PID controller improvement

Running the Simulink model it is possible to see in the "Output1" "Scope"
block the PID improvement.

Figure 18: Simulated system output improvement.

Looking at the graphic that shown the light sensor output by using the
new PID realization, we see that the constraints on the step response have
been respected, and the resulting PID transfer function:

PID(s) = KP ∗ (1 +
1

TIs
+

TDs

(1 + TLs)
) = KP +

KI

s
+Kd

s

1 + TLs

corresponding to the above parameter values becomes:

PID(s) = 2.3029 +
10.4016

s
+ 0.1888

s

1 + 0.055s
52

6. PID controller improvement

Another method that can be implemented to find out the PID controller
parameters is to design the controller in the frequency domain but it will
not explained in this thesis because the resulting parameters do not provide
better result; the obtained parameters are:

Kp = 2.8654 Kd = 0.3359 Ki = 2.4445

and by running the same Simulink model previously used to the first
simulation, there are not better result as it is possible see by looking to the
"Output" "Scope" block:

Figure 19: Simulated PID in frequency.

A manually tuning should be done but it is not realized because it would
provide the same PID constants obtained in the first PID realization, so the
Matlab code to realize this PID controller has been inserted at the end of
the thesis only to consultation.

53

7. Conclusions

7 Conclusions

At the end of the identification process a light sensor transfer function of the
second order was obtained with an exponential delay term; a transfer func-
tion with one pole would not has been enough to a correctly identification.

The best PID controller realization results by starting from a method devel-
oped for SOSPD system as the transfer function that it has been identified
and then manually changing the PID constants values till find out the best
PID constant while the frequency study does not provide better result.

54

A. Appendix

A Appendix

A.1 Arduino code

/* This program saves analog signals with Arduino UNO */

/* Global variables definition */
String tiem;
String entr;
String sal;
String video;

/* Start of the main loop */
void setup()
{

/* Rate definition at maximum value */
Serial.begin (115200);

for(int i=0; i < 1500; i++)
{

/* Variables initialization to print on the screen */
tiem=String ("\t");
entr=String ("\t");
sal=String ("\r\n");

/* Sample number */
tiem=i+tiem;

/* Input sample */
entr=analogRead(A0)+entr;

/* Output sample */
sal=analogRead(A1)*2+ sal;

/* Data concatenation */
video=String(tiem+entr+sal);

/* Data are printed on the screen */
Serial.print(video);

}
}/* Loop end */

/* This method must be written although it isn ’t used */

55

A.1 Arduino code

void loop()
{
}

56

A.2 Processing code

A.2 Processing code

/* It is necessary import the processing.serial library */
import processing.serial .*;

/* Variables ’s initialization */
Serial mySerial;

/* This command serves to print on the file acquired data */
PrintWriter output;

/* Setup method necessary to run the program */
void setup()
{

/* Selection of serial port and the acquisition speed */
mySerial = new Serial(this , Serial.list ()[1] , 115200);

/* Creation of the file on the same folder of the
Processing program */
output = createWriter ("Data.m");

}

/* This method is done to storage all the rows printed on the
serial port */

void draw()
{

/* If the serial port is ready takes the data */
if (mySerial.available () > 0)
{

/* Reads data to the serial port until new line */
String value = mySerial.readStringUntil(’\n’);

/* If the read value is not null then print it on the Data
file */

if(value!= null)
{

output.print(value);
}

}
}

/* Exit to the program when any button is pressed */
void keyPressed ()

57

A.2 Processing code

{
/* Writes the remaining data on the file */
output.flush ();

/* Close the file */
output.close ();

/* Exit to the program */
exit ();

}

58

A.3 Matlab code

A.3 Matlab code

A.3.1 Identification by using a first-order model

%% System identification using Transfer function with one %%
%% pole %%
% Program initialization %
clc
close all

% Message errors disabled %
[msg , id] = lastwarn;
warning(’off’, id)

% Data reading from "Data.m" file %
[samples referencias sensorValues]= textread(’Data.m’,’%d%d%d’);

% Array declaration for data treatment %

help_array_tiempo =[];
help_array_refer =[];
help_array_sensor =[];

% Sample time %
T_sample = 1/300;

% Time array %
tiempo_1 =[];

% Input array %
entrada_1 =[];

% Output array %
salida_1 =[];

% Array that saves the minimum function %
% cost with differents delta values %

J_1_delay_vect =[];

% Counter used as controller of the data %
count_1 =0;

j=1;

59

A.3 Matlab code

% Loop used to treat data stored %
for i=1:1500

% The firsts data aren ’t used because the reference %
% value is zero %
if((referencias(i)==0)&&(count_1 ==0))

count_1=count_1 +1;

end

% When the reference isn ’t equal zero data are taken %
% then is taken one previous sample to have a better %
% visualization on the screen %
if((referencias(i)~=0)&&(count_1 ==1))

help_array_tiempo(j)= samples(i-1);
help_array_refer(j)= referencias(i-1);
help_array_sensor(j)= sensorValues(i-1);
j=j+1;

end
end

% This variable counts the number of the first useful %
% rising edge sample %
help_1=help_array_tiempo (1) -1;

% 300 samples are the biggest number that is possible %
% take from the signals with the highest Arduino %
% bitrate %
for i=1: size(help_array_tiempo ’)

if(count_1 <301)
count_1=count_1 +1;

% Data are saved in the arrays that will be used %
% for the identification %
tiempo_1(i)= help_1;
help_1=help_1 +1;
entrada_1(i)= help_array_refer(i);
salida_1(i)= help_array_sensor(i);

end
end

% The arrays are transposed to manage them easily %
tiempo_1=tiempo_1 ’;

60

A.3 Matlab code

tiempo_1=tiempo_1*T_sample;
entrada_1=entrada_1 ’;
entrada_1 = ((entrada_1)/1023)*10;
salida_1=salida_1 ’;
salida_1 = ((salida_1)/1023)*10;

% Saving data %
save prueba_1.mat tiempo_1 entrada_1 salida_1

% Print stored data and identification model output %
figure
parametros_ident_prueba_1 = fminsearch(’J_1’ ,[1 1]);
J_1_delay_vect (1) = J_1(parametros_ident_prueba_1);
hold on
plot(tiempo_1 ,entrada_1 ,’*r’)
title(’Grafico␣comparacion␣modelo␣y␣datos␣prueba␣1’)
xlabel(’Muestros ’)
ylabel(’Valores ’)
axis ([1.5 2.55 0 6])
grid on

% Print of the identified parameters %
fprintf(’Valores :\n␣K_1␣=␣%04.3f␣\n␣tau_1␣=␣%04.3f\n’, ...
parametros_ident_prueba_1 (1), parametros_ident_prueba_1 (2));

% First position (1) for the constant Km , second position %
% (2) for time constant Tm in the denominator of the %
% transfer function %

num_1=parametros_ident_prueba_1 (1);
den_1=[parametros_ident_prueba_1 (2) 1];
fprintf(’\nFuncion␣de␣trasferencia␣G_1␣identificada :\n’);
G_1=tf(num_1 ,den_1)

61

A.3 Matlab code

A.3.2 J 1

% Function J_1 to calculate the transfer function parameters %
function J_1=prueba(x)

% Load data saved into prueba_1 %
load prueba_1;

% Transfer function definition %
num=x(1);
den=[x(2) 1];
g1=tf(num ,den);

% Construction of the model %
ymodelo_1=lsim(g1,entrada_1 ,tiempo_1);

% Error calculation between system output and model %
% output %
err=(salida_1 -ymodelo_1);

% J_1 is equal to the standard deviation value between %
% the system output and the model output to the same %
% input %
serr=sum(err.*err);
disp(’Valor␣funcion␣costo:’)
J_1=sqrt(serr)/max(size(tiempo_1)-1)

% All the signals are compared in the same graphic %
plot(tiempo_1 ,salida_1 ,’g’,tiempo_1 ,ymodelo_1 ,’b’)

end

62

A.3 Matlab code

A.3.3 Identification by using a second-order models

%% System identification using Transfer function with two %%
%% poles %%
% Program initialization %
clc
close all

% Message errors disabled %
[msg , id] = lastwarn;
warning(’off’, id)

% Data reading from "Data.m" file %
[samples referencias sensorValues]= textread(’Data.m’,’%d%d%d’);

% Variables initialization %
% Array declaration for data treatment %
help_array_tiempo =[];
help_array_refer =[];
help_array_sensor =[];
T_sample = 1/300;

tiempo_1 =[]; % Time array %

entrada_1 =[]; % Input array %

salida_1 =[]; % Output array %

% Array that saves the minimum function cost with differents %
% delta values %
J_1_delay_vect_dos =[];

% Counter used as controller of the data %
count_1 =0;
j=1;

% Loop used to treat data stored %
for i=1:1500

% The firsts data aren ’t used because the reference value %
% is zero %
if((referencias(i)==0)&&(count_1 ==0))

63

A.3 Matlab code

% Here the initial reference value is zero %
count_1=count_1 +1;

end

% When the reference isn ’t equal zero are taken data , then %
% is taken one previous sample that makes a better %
% visualization on the screen %
if((referencias(i)~=0)&&(count_1 ==1))

help_array_tiempo(j)= samples(i-1);
help_array_refer(j)= referencias(i-1);
help_array_sensor(j)= sensorValues(i-1);
j=j+1;

end
end

% This variable counts the number of the first useful %
% rising edge sample %
help_1=help_array_tiempo (1) -1;

% 300 samples are the biggest number that is possible %
% take from the signals with the highest Arduino bitrate %
for i=1: size(help_array_tiempo ’)

if(count_1 <301)
count_1=count_1 +1;

% Data are saved in the arrays that %
% will be used for the identification %
tiempo_1(i)= help_1;
help_1=help_1 +1;
entrada_1(i)= help_array_refer(i);
salida_1(i)= help_array_sensor(i);

end
end

% The arrays are transposed to manage them easily %
tiempo_1 = tiempo_1 ’;
tiempo_1 = tiempo_1*T_sample;
entrada_1 = entrada_1 ’;
entrada_1 = ((entrada_1)/1023)*10;
salida_1 = salida_1 ’;
salida_1 = ((salida_1)/1023)*10;

% Saving data %
save prueba_1_dos.mat tiempo_1 entrada_1 salida_1

64

A.3 Matlab code

% Print stored data and identification ’s model answer %
figure
parametros_ident_prueba_1 = fminsearch(’J_1_dos ’ ,[1 1 1]);
J_1_delay_vect_dos (1) = J_1_dos(parametros_ident_prueba_1);

fprintf(’Valores :\n␣J_1_dos␣=␣%04.5f␣\n\n’, ...
J_1_dos(parametros_ident_prueba_1));

hold on
plot(tiempo_1 ,entrada_1 ,’*r’)
title(’Grafico␣comparacion␣modelo␣y␣datos␣prueba␣1’)
xlabel(’Muestros ’)
ylabel(’Valores ’)
axis ([1.5 2.55 0 6])
grid on

% Print of the identified parameters %
fprintf(’Valores :\n␣K_1␣=␣%04.10f␣\n␣tau_1_1␣=␣%04.10f␣...
\n␣tau_1_2␣=␣%04.10f\n’,parametros_ident_prueba_1 (1) ,...
parametros_ident_prueba_1 (2), parametros_ident_prueba_1 (3));

% First position (1) for the constant Km , second and third %
% position for time constants Tm1 and Tm2 in the denominator %
% of the transfer function %
num_1=parametros_ident_prueba_1 (1);

den_1=[parametros_ident_prueba_1 (2)*...
parametros_ident_prueba_1 (3) (parametros_ident_prueba_1 (2)...
+parametros_ident_prueba_1 (3)) 1];

fprintf(’\nFuncion␣de␣trasferencia␣F_1␣identificada :\n’);
G_1=tf(num_1 ,den_1)

run Identificacion_two_pole_delta_2

65

A.3 Matlab code

A.3.4 J 1 dos

% Function J_1 to calculate the transfer function parameters %
function J_1_dos=prueba(x)

% Load data saved into prueba_1 %
load prueba_1_dos;

% Transfer function definition %
num=x(1);
den=[x(2)*x(3) (x(2)+x(3)) 1];
g1=tf(num ,den);

% Construction of the model %
ymodelo_1=lsim(g1,entrada_1 ,tiempo_1);

% Error calculation between system output and model %
% output %
err=(salida_1 -ymodelo_1);

% J_1 is equal to the standard deviation value between %
% the system output and the model output to the same %
% input %
serr=sum(err.*err);
%disp(’Valor funcion costo:’)
J_1_dos=sqrt(serr)/max(size(tiempo_1)-1);

% All the signals are compared in the same graphic %
plot(tiempo_1 ,salida_1 ,’g’,tiempo_1 ,ymodelo_1 ,’b’)

end

66

A.3 Matlab code

A.3.5 Identification by using a second-order models and delay

%% System identification using Transfer function with two %%
%% poles and variable delay %%
t=0;

for delta =1:30
t=t+1;
delta=delta*T_sample;
save delta

% The first element inside fminsearch is the constant K %
% value of the system transfer function %
figure
parametros_ident_prueba_1 = fminsearch(’J_1_delta_1_dos ’...
,[1 1 1]);
J_1_delay_vect(t+1) = J_1_delta_1_dos ...
(parametros_ident_prueba_1);

% Print results %
fprintf(’Valores :\n␣J_1_delta_1_dos␣=␣%04.5f␣\n␣delta ...

␣␣␣␣=␣%01.4f\n\n’, J_1_delta_1_dos(parametros_ident_prueba_1)...
, delta);
fprintf(’Valores :\n␣K_1␣=␣%04.10f␣\n␣tau_1_1␣=␣%04.10f␣\n...

␣␣␣␣tau_1_2␣=␣%04.10f\n’, parametros_ident_prueba_1 (1) ,...
parametros_ident_prueba_1 (2), parametros_ident_prueba_1 (3));

% Transfer function definition %
num_1=parametros_ident_prueba_1 (1);

den_1=[parametros_ident_prueba_1 (2)*...
parametros_ident_prueba_1 (3) (parametros_ident_prueba_1 (2)...
+parametros_ident_prueba_1 (3)) 1];

fprintf(’\nFuncion␣de␣trasferencia␣G_1␣identificada :\n’);

% Delay %
s=tf(’s’);
delay_1=tf(exp(-s*delta));
G_1=tf(num_1 ,den_1);
F_1=G_1*delay_1
hold on

67

A.3 Matlab code

% Print stored data and identification ’s model answer %
plot(tiempo_1 ,entrada_1 ,’*r’)
title(’Grafico␣comparacion␣modelo␣y␣datos␣prueba␣1’)
xlabel(’Muestros ’)
ylabel(’Valores ’)
grid on

end

D = 0:1:30;
D = D*T_sample;
% J_1 comparison with different delay %
figure
plot(D,J_1_delay_vect ,’*r’)
title(’Grafico␣comparacion␣J_1_{dos}␣con␣diferentes␣retardos ’)
xlabel(’Delta’)
ylabel(’J_1␣delta_1␣dos’)
axis ([0 30* T_sample 0.023 0.042])
grid on
D = D/T_sample;

68

A.3 Matlab code

A.3.6 J 1 Delta 1 dos

% Function J_1 to calculate the transfer function parameters %
function J_1_delta_1_dos=prueba(x)

% Load saved data %
load prueba_1_dos;
load delta;

% Delay definition %
s=tf(’s’);
delay_1=tf(exp(-s*delta));

% Transfer function definition %
num=x(1);
den=[x(2)*x(3) (x(2)+x(3)) 1];
g1=tf(num ,den);
f1=g1*delay_1;

% Construction of the model %
ymodelo_1=lsim(f1,entrada_1 ,tiempo_1);

% Error calculation between system output and model %
% output %
err=(salida_1 -ymodelo_1);

% J_1 is equal to the standard deviation value between %
% the system output and the model output to the same %
% input %
serr=sum(err.*err);

%disp(’Valor funcion costo:’)
J_1_delta_1_dos=sqrt(serr)/max(size(tiempo_1)-1);

% All the signals are compared in the same graphic %
plot(tiempo_1 ,salida_1 ,’g’,tiempo_1 ,ymodelo_1 ,’b’)

end

69

A.3 Matlab code

A.3.7 PID Simulation

%% PID simulation $$
% Program initialization %
clc
clear all
close all

% System transfer function parameters $
K_m =0.6996;
T_m1 =0.1289;
T_m2 =0.1289;
tau_m =23;
T_muestreo =1/300;
ter=(T_m1*T_m2);
sec=(T_m1+T_m2);
xi=sec /(2* T_m1);

% Transfer function definition $
P=tf([K_m],[ter sec 1]);
s=tf(’s’);
Delay=tf(exp(-s*tau_m*T_muestreo));

G=P*Delay

% Load data %
load prueba_1_dos;

% Array declaration for data treatment %
datos_entrada = [];

% Saving data in the array %
for j = 0:296

datos_entrada(j+1 ,1)=j;
datos_entrada(j+1 ,2)= entrada_1(j+1);

end

% Real delay value definition %
real_delay=tau_m*T_muestreo;

% Time constants rapport %
time_rap = real_delay/T_m1;

70

A.3 Matlab code

% Time limits %
set_perc = 5/100;
average = mean(datos_entrada (: ,2),1);
range = set_perc*average;
datos =[];
datos (:,1)= datos_entrada (:,1)* T_muestreo;
datos (:,2)= datos_entrada (:,2);

% Settling time %
T_set = 0.25;

% Overshoot limit %
s = 10;
S = s/100* average;

% Selected constant for TL definition %
beta = 15;

% PID method for SOSPD model with two poles transfer function
%
x_1 = 3.57;
x_2 = 1.16;
x_3 = 0.636;

% Proportional PID constant%
K_p = x_1/K_m -2.8;

T_i = x_2*T_m1;
T_d = x_3*T_m1;
T_l = T_d/beta;

% Integrative PID constant%
K_i = K_p/T_i -5;

% Derivative PID constant%
K_d = K_p*T_d;

71

A.3 Matlab code

A.3.8 PID frequency study

%% PID frequency study %%
% Program initialization %
clc
clear all
close all

% System transfer function parameters $
K_m =0.6996;
T_m1 =0.1289;
T_m2 =0.1289;
tau_m =23;
T_muestreo =1/300;
ter=(T_m1*T_m2);
sec=(T_m1+T_m2);
xi=sec /(2* T_m1);

% Transfer function definition $
P=tf([K_m],[ter sec 1]);
s=tf(’s’);
Delay=tf(exp(-s*tau_m*T_muestreo));

G=P*Delay;

P=G

% Load data %
load prueba_1_dos;

% Array declaration for data treatment %
datos_entrada = [];

% Saving data in the array %
for j = 0:296

datos_entrada(j+1 ,1)=j;
datos_entrada(j+1 ,2)= entrada_1(j+1);

end

% Real delay value definition %
real_delay=tau_m*T_muestreo;

% Time costants rapport %

72

A.3 Matlab code

time_rap = real_delay/T_m1;

% Time limits %
set_perc = 5/100;
average = mean(datos_entrada (: ,2),1);
range = set_perc*average;
datos =[];
datos (:,1)= datos_entrada (:,1)* T_muestreo;
datos (:,2)= datos_entrada (:,2);

% Settling time %
T_set = 0.25;

% Overshoot limit %
s = 10;
S = s/100* average;

% Csi %
csi = cos(atan(-pi/(log(s/100))));

% Crossing pulsation calculation in the close loop %
omega_n = log(average)/(csi*T_set);

% Costant value to relation TI and TD taken from 3 to 10 %
alfa = 10;

% Selected costant for TL definition %
beta = 15;

% It is calculated the P(j*omega_n) phase margin %
M_phase=rad2deg (2*csi);

% Absolute and phase process calculation %
[ModP ,faseP]= bode(P,omega_n);

% Controller phase %
theta=M_phase -180- faseP;

polinomy = [1 -tand(theta)/ omega_n -1/(alfa*omega_n ^2)];
radici=roots(polinomy);
TD=radici(find(radici >0));
TI=alfa*TD;
T_l=TD/beta;

% PID parameters calculation %

73

A.3 Matlab code

K_p =1/(ModP*sqrt (1+(TD*omega_n -1/(TI*omega_n))^2));
K_i=K_p/TI;
K_d=K_p*TD;

74

B. Bibliography

B Bibliography

References
[1] Aidan O’Dwyer, HANDBOOK OF PI AND PID CONTROLLER

TUNING RULES, 3rd edition, Dublin Institute of Technology, Ireland,
Imperial College Press, 2009.

[2] Friedrich Heinz Effertz, Hans-Willi Huesch Fundamentos de los sistemas
automaticos de control II, Volumen 1, Introduccion experimental
al control de variables fisicas, Universidad de Colonia, Leybold
Didactic GmbH, Colonia, Alemana, 1992.

[3] Friedrich Heinz Effertz, Hans-Willi Huesch Fundamentals of Automatic
Control Technology II, Volume 2, Experiment-based Fundamentals
of Automation Systems, University of Cologne, Leybold Didactic
GmbH, Cologne, Germany, 1992.

C Webliography

References
[1] Arduino website, Arduino, in: http://arduino.cc/en/guide/introduction,

https://www.processing.org/reference/PrintWriterflush.html

[2] Processing website, Processing, in https://processing.org/

75

