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Chapter 1

Introduction

The aim of this thesis is to perform an analysis of Signal recognition and Background
rejection in order to outline a framework for data analysis based on Artificial Neural Network
(ANN) suitable to the discrimination of samples from the GERDA experiment.

To be more precise, this work will focus on setting up an ANN that, through Pulse Shape
Analysis techniques, is able to recognize a possible 0νββ decay from background events.
Before dealing with this issue, we will introduce the main arguments this thesis harks back; we
will briefly describe the GERDA experiment and the ANN theory.

1.1 GERDA

The GERmanium Detector Array (GERDA [1]) is a low background experiment at the
Laboratori Nazionali del Gran Sasso (LNGS) designed to search for the neutrinoless double
beta decay (0νββ) of 76Ge. Double beta decay is the simultaneous beta decay of two neutrons
in a nucleus. It is a second order weak process, predicted by the Standard Model:

(A,Z) → (A,Z + 2) + 2e− + 2ν̄e

The process (2νββ) has been experimentally observed in even-even nuclei and can be detected
only when the single beta decay is energetically forbidden. Typical half-lives of 2νββ are very
large (between 1018 yr and 1024 yr). Several extensions of the Standard Model predict that
also neutrinoless double beta decay (0νββ)

(A,Z) → (A,Z + 2) + 2e−

could occur. Its observation implies that the lepton number is violated by two units; it would
prove that neutrinos have a Majorana mass component and it would have far-reaching conse-
quences (in other words, it would be the signature of new physics). For experimental results
and a recent review on 0νββ see [2].

The GERDA experiment in Europe, and MAJORANA [3, 4] in the USA are the current
state of the art experiments to search for 0νββ in 76Ge using germanium detectors. The pro-
cess has a clear signature, with a mono-energetic line in the observed energy spectrum at Qββ

= 2039.061 ± 0.007 keV [5], corresponding to the sum of the two electrons energies. Two
previous experiments, Heidelberg-Moscow (HdM) and IGEX, have studied double beta decay
in germanium and set limits on the 0νββ half-life: T 0ν

1/2 > 1.91025 yr [6] and T 0ν
1/2 > 1.61025

[7, 8, 9], respectively.
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In 2004 part of the HdM collaboration claimed evidence for a 0νββ peak at Qββ which corre-
sponds to a half-life central value of T 0ν

1/2 = 1.19+0.37
−0.2310

25yr [10].

Recently, the GERDA experiment has published a first measurement on 0νββ decay in 76Ge,
partly excluding the previous claim. The experiment will continue the measurement with more
detector mass and improved background suppression [11].

The very long half-life characteristic of a 0νββ involves considerable experimental difficulties
for any purpose to highlight the decay. Background suppression techniques are crucial to
improve the experiment sensibility. In GERDA two kinds of background reduction are applied:

• Suppression of all the possible external background causes;

• Offline background discrimination using Pulse Shape analysis.

The latter has been investigated in this work.

1.1.1 GERDA suppression of external background

The experimental challenge of GERDA is to have nearly background free conditions in the
region of interest around Qββ. The main feature of the GERDA design is to operate bare Ge
detectors made out of material enriched in 76Ge (enrGe), immersed in 64 m3 of Liquid Argon
(LAr). This design allows a significant reduction in the cladding material around the diodes and
the accompanying radiation sources. Furthermore, the background produced by interactions
of cosmic rays is lower than for the traditional concepts of HdM, IGEX or MAJORANA due
to the lower Z of the shielding material and to the place where GERDA takes place (3800 m
under the Earth’s surface).

Figure 1.1: Scheme of the GERDA structure (taken from [1])

Background sources that have to be taken into account include neutrons and gammas
from the decays in the rock of the underground laboratory, radioactivity in support materials,
radioactive elements in the cryogenic liquid as well as internal backgrounds in the Ge diodes.
These backgrounds were considered in the design and construction of GERDA and resulted in
specific design choices, selection of materials used and also in how detectors were handled.
Natural Ge (natGe) contains about 7.8% 76Ge, and could in principle be used directly for a
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0νββ decay experiment. Indeed, the first searches for 0νββ decay did use natural Ge detectors
[12, 13, 14]. Enriched detectors allow a better signal-to-background ratio and also yield reduced
costs for a fixed mass of 76Ge in the experiment [1].

Figure 1.1 shows a model of GERDA design: the core of the experiment is an array of
germanium diodes suspended in strings into a cryostat filled with LAr. The latter serves both
as cooling medium and shield. The cryostat is a steel vessel with a copper lining used primarily
to reduce the gamma radiation from the steel vessel. The cryostat is placed in a large water
tank (590 m3) that fulfills the functions of shielding the inner volumes from radiation sources
within the hall, such as neutrons, as well as providing a sensitive medium for a muon veto
system. These installations are supported by a steel superstructure.

1.1.2 GERDA detectors

In GERDA, two kind of detectors are used: Coaxial Detectors and Broad Energy Germa-
nium Detectors (BEGe) [15].
This work will only focus on data taken from BEGe detectors. These, while operating, are
characterised by a low-strength electric field that allows to collect (through charges drifting)
all the pulses of events within the detector. Figure 1.2 shows the electric field potential in a
BEGe detector.

Figure 1.2: BEGe detector electric field profile (taken from [15])

1.2 Artificial Neural Network (ANN)

Artificial neural networks are mathematical models inspired by animal central nervous
systems that are capable of machine learning and pattern recognition. For a review on the
subject see [16, 17, 18]

The building unit of a neural network is a simplified model of what is assumed to be the
functional behaviour of an organic neuron. For almost all organic neurons roughly three parts
can be distinguished: a set of incoming fibers (the dendrites), a cell body (the soma) and one
outgoing fiber (the axon). See Figure 1.3.
The axons divide up into different endings, each making contact with other neurons. The
bulb-like structures where the fibers make contact are called synapses. Electrical pulses can
be generated by neurons (the so-called firing neurons) and are transmitted along the axon to
the synapses. When the electrical activity is transferred by the synapses to another neuron, it
may contribute to the excitation or inhibition of that neuron.
The synapses play an important role because their transmission efficiency for electrical pulses
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from an axon to the dendrites of other neurons can be changed depending on the ’profitability’
of that alteration. The learning ability of human beings is probably connected to the facility of
changing the transmission efficiency of those synapses. The change of the synaptic transmission
efficiency acts as memory for past experiences [16]. We can consider an ANN as a highly
simplified model of the structure of a biological neural network. In our artificial model of the

Figure 1.3: Example of biological neuron (taken from [16])

neuron, the synaptic transmission efficiency is replaced by a real number wi that weights the
dependence of the behaviour of the receiving neuron from the state of the firing neuron. The
emission of pulses by the neurons is modelled by the variable xi, which represents the state
of the neuron. If xi assumes only {0, 1} values, we talk about a binary artificial neuron, if
xi assumes all the values between [0, 1], then we talk about a continuous artificial neuron. In
almost all artificial models of neurons, all inputs xi are weighted by the synaptic transmission
efficiency and summed in the so-called transfer function:

S =
∑

xiwi

The S function determines through the activation function (φ) the output value oj of the
artificial neuron, see Figure 1.4.
In a binary neuron, for example, the output oj will be 1 (neuron firing) if the weighted input
exceeds a threshold θj , and will be 0 (the neuron is silent) if the weighted input is below the
threshold.
In a continuous artificial neuron, the activation function may be some monotone increasing
function of the weighted input. An ANN is a set of artificial neurons structured according to

Figure 1.4: Example of artificial neuron

precise topology classes. The network receives external signals on an input layer of neurons,
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each of which is connected with a number of internal nodes organized in several levels. Each
node processes the received signals and transmits the result to subsequent nodes.
It has been shown that an ANN built with this kind of artificial neurons behave in the same
way as a computer, more precisely, it is possible to implement networks reproducing all the
basic logical operations.
For an ANN all the information about its behaviour is stored in wi and θj values; it is therefore
clear that any change of wi and θj values involves modifications in the ANN behaviour.

1.2.1 ANN Learning

The most interesting property of ANN is their capability to learn, i.e.: Given a specific
task to solve (T), and a class of functions (F) that solves the problem, learning means find the
optimal f∗ ∈ F that solve the problem on the basis of ANN experience.

In this work we will focus on a classification problem using the Supervised Learning as
learning paradigm.
This means that first of all we will need to provide a set of data with known characteristics (i.e.
of known classification) for training our ANN. The fundamental aspect of the training phase
is the application of a back-propagation algorithm; an algorithm that by using the known set
of input data, modifies the ANN wi and θj values to better accomplish that classification [17].

1.2.2 ANN Topology

There is an incredible variety of types of neural networks, each of which is optimal for a
specific application. In this work we will use only two different configurations of MultiLayer
Perceptron (MLP), a class of networks characterized by the organization in subsequent layers
of the nodes. Each neuron in a layer receives input signals from the previous layer, and its
output signals are directed to neurons of the following layer. See Figure 1.5.
An important parameter to define a MLP is the number of hidden layers among the input

Figure 1.5: Example of single hidden layer MLP

and output layers. In our work two types of MLP will be used:

• Single Hidden Layer MLP;
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• Double Hidden Layers MLP.

MLP occupies a special role in ANN theory; a mathematical theorem, the Universal approx-
imation theorem, proves that a single hidden layer MLP can approximate arbitrarily closely
every continuous function that maps compact subsets of Rn [18].
This means that using a MLP for a classification problem, after the training with enough data,
data can be separated with an arbitrary precision.
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The main aspects of our work are here described:

• the fundamental properties and characteristics of the signals;

• a qualitative description of the energy spectrum analysed;

• the main software environments used for the elaboration;

• the organization of the data used for the analysis.

2.1 Signals and background characteristics

As explained in the introduction, the aim of this work is to create a methodology (or even
a tool’) to recognise a possible 0νββ decay.
Since the only products of the considered reaction are two electrons, all the reaction energy is
released in a precise position of the detector. Events of this type are called Single Site Events
(SSE).
On the contrary, events corresponding to the simultaneous release of energy in several places of
the detector (e.g. multiple Compton scattering) are classified as Multiple Site Events (MSE).
Examples of SSE or MSE in the detector are shown in Figure 2.1.

Figure 2.1: Scheme of SSE and MSE events in the detector (taken from [19])

The exact energy released in the 0νββ decay is equal to the Q-value of the reaction (Qββ);
the energy spread is given by the detector resolution.

The difficulty of the analysis (as stated in the introduction) comes from the very long half-
life time (T1/2) expected for 0νββ in 76Ge, which leads to a very small number of expected
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decays (considering a detector used in GERDA and supposing a year-running experiment, it is
expected to observe 4 decays).
It is known from the physics of detectors that any measuring apparatus is affected (in spite
of how many precautions are applied) by the inevitable presence of background. Considering
the smallness of the awaited sample, it is clear that even the slightest background signal can
greatly affect the measurement.

Since a priori techniques cannot remove background, we will need to develop off line tech-
niques to distinguish the good signal from the background. These techniques are called Pulse
Shape Analysis (PSA) [19].

Each event within the detector corresponds to an electrical pulse of precise shape (and
energy) recorded by the same. Two examples of signal detected by Germanium detectors are
displayed in Figure 2.2.

Figure 2.2: SSE and MSE examples (taken from [15])

Applying PSA means developing techniques that allow the recognition of 0νββ from the
recorded impulses. The first parameter that will be used is clearly the energy of the signal; the
second one is the signal shape.
In the GERDA apparatus of measurement the only ‘physical’ event expected at Qββ energy is
the 0νββ decay, so events recorded at Qββ energy would be due mainly to two causes: 0νββ
decay or multiple background events superimposing (characterized by Qββ summed energy).

The first target of this work is to determine the parameters that from the shape of the
signal allow to recognize whether it is a SSE or a MSE.

2.2 Energy Spectrum

As just introduced, the main features of the signal used to distinguish 0νββ from back-
ground events are pulses energy and shape; we are interested, in particular, in distinguish a
SSE or MSE by the signal shape analysis.

Since our goal is to use neural networks for discrimination, we need to find a sample of data
to train our network. This means we have to retrieve a set of events that are almost exclusively
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Single Site (to teach the networks to recognize good events), and a set of events that are almost
exclusively Multiple Site (to teach the networks to recognize bad events).
We retrieve such a set of events from the test measurements carried out on the detectors used
in GERDA. In these measurements the detectors are exposed to high-energy (γ) radiation by
known sources (in particular 228Th).
We expect that the detected γ radiation spectrum will be constituted by all the possible photon-
matter interactions: photoelectric effect, Compton scattering, Pair Production. The Pairs Pro-
duction spectrum is particularly interesting for our purposes [20].

Pair production is a process in which the energy of the photon is converted to a positron-
electron pair. The photon energy has therefore to be twice grater than the energy corresponding
to the rest mass of the electron (i.e. 2m0c

2 = 1022 keV). The excess energy, Eγ − 2m0c
2, is

shared between the two particles as kinetic energy. Both the electron and the positron produced
will be slowed down in the adjacent material and the positron will finally react with another
electron and annihilate. If this process occurs after the positron has lost all of its kinetic energy,
two photons with energy of about m0c

2= 511.0 keV are generated.
Although it is energetically possible from 1022 keV, pair production starts to play a role for

energies above 1.5 MeV. In small detectors, pair production mechanism is associated to multiple
peaks in the energy spectrum. If the two photons generated from the positron annihilation
escape from the detector, a Eγ − 2m0c

2 energy will be detected and a “double-escape” energy
peak (DEP) at this value can be observed in the spectrum. If one of the positron annihilation
generated photon interacts in the crystal, a “single-escape” peak (SEP) at Eγ −m0c

2 can be
observed in the spectrum. The interaction of both positron annihilation photons within the
detector leads to a “full-energy” peak (FEP) in the spectrum at the energy Eγ [20]. Look at
Figure 2.3 for a graphic representation of pair production interactions with the detector.

Figure 2.3: Example of FEP, SEP, DEP production mechanism (taken from [19])

FEP, DEP and SEP peaks, due to their production mechanism, are easily classifiable as
SSE or MSE. The SEP and FEP events are clearly MSE, while the DEP events are SSE.
Considering DEP peak events is therefore equivalent to considering a set of almost completely
SSE, therefore we obtained a set of “good” signals to train networks. To train the network in
recognizing MSE we will use signals belonging to a bismuth (Bi) emission peak at an energy
very close to that of DEP events; the characteristic of this peak is that it is composed mostly
by MSE. See Figure 2.4 for a graphical representation of used peaks.

We have identified at this juncture the two data sets required to train our neural networks.
We now need to build neural networks and proceed with the analysis.



10
Data analysis framework

Software Environment
2.3

Figure 2.4: Example of FEP, SEP, DEP peaks extracted from Bhima Detector

2.3 Software Environment

Our analysis is conducted through existing software environments, which are described
below.

2.3.1 ROOT

ROOT[21] is an object oriented framework for large scale data analysis officially developed
by CERN since 2002.
ROOT, as well as being a powerful tool for the analysis, also provides several libraries for data
organization and manipulation. Particularly useful for our work is the organization of files in
structures called Trees and substructures called Branches, with which we will organize all the
data we are dealing with. In general, all the work done in this thesis (including other software
environments) use ROOT (ver. 5.34/09 ) to organize and process the data.

2.3.2 Gelatio

Gelatio[22] is the framework for digital signal analysis specifically developed for GERDA. It
is based on MGDO[23] library, and it is designed to support multichannel and modular analysis.
Each module used by Gelatio handles a precise and self-consistent task of the signal processing.
We are now going to shortly describe the characteristic Gelatio signal processing flow and the
data structure.



2.3
Data analysis framework

Software Environment
11

GERDA data model

The charge pulses from the high purity Ge detectors operated in GERDA are digitized by
14-bit flash-ADCs (FADC) running at 100 MHz sampling rate. For each event, the FADC com-
putes in run-time two traces that are eventually written to disk. The first trace is sampled at
100 MHz and is 4 µs long (high-frequency-short trace). It includes the signal leading edge and
it is used to identify background events through pulse shape discrimination techniques. The
second trace has a sampling frequency of 25 MHz and is 160 µs long (low-frequency-long trace).
It is used for those operations, as energy reconstruction, which involve the integration of the
signal. The two traces are processed along different chains of Gelatio modules (see Figure 2.5)
[22]. Just to name some examples of information extractable from the signal, using specific

Figure 2.5: Gerda signal processing flow (taken from [22])

modules we can deduce direct information as the signal’s amplitude, energy and rise-time, or,
with other modules, we can obtain more complex information as the reconstruction of the cur-
rent associated to the event.
Every module is composed by smaller units, the MGDO transformations. Using MGDO trans-
formations is possible to implement custom modules in order to derive from electrical impulse
the desired information. In our analysis, we will implement a module to extract information
on the way the signal rises.

Data structure

The data analysis with Gelatio is organized in several consecutive steps. Data organizations
varies according to phases; data are organized in a hierarchical tier structure [24].

From the raw data, in which each event is associated to the signal as detected by the FADC
(tier0 ), is obtained by a software conversion a .root file in which all events are organized in
trees (tier1 ). Files from tier1 to tier2 are obtained by applying the modules implemented in
Gelatio (in tier2 modules value are associated to each event). If data are further manipulated
(e.g. quality cut or energy calibration) we than obtain the tier3.

2.3.3 TMVA

The Toolkit for MultiVariate Analysis (TMVA) [26] provides a ROOT-integrated environ-
ment for the processing, parallel evaluation and application of multivariate classification. All
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Figure 2.6: Gelatio data organization (taken from [25])

multivariate techniques in TMVA belong to the family of “supervised learning” algorithms.
They make use of training events, for which the desired output is known, to determine the
mapping function that describes a decision boundary (classification). TMVA package includes
Artificial neural networks MVA.

TMVA usage can be divided in two phases:

• Training and testing phase. In this phase the supervised learning is applied. Using the
good-signals data set, and bad-signals data set, TMVA teaches the selected MVA methods
to recognize the different events.
ANNs associate to every event a number in the real axe. In principle, good events are
associated to number 1 and bad events to 0; during this phase ANNs are trained (through
wi values modification) to evaluate the signals of the good data set with a number close to
1, and the signals of the bad data set with a number close to 0. At the end of this phase
a weight file that store all the final wi and θj values estimated by the chosen learning
algorithm is created. The ANN training and testing phase also provide a cut-value, that
is the optimal value in the real axe that allows to separate good from bad events. Once
the cut-value has been estimated and the weight file has been created, is possible to
proceed with the second phase.

• Application. In this phase the MVA methods previously trained are applied to an un-
known classification data set. The MVA parameters are loaded from the weight file. In
this phase (in ANN case) every event is evaluated by the network and associated to the
network response. If the response is higher than the cut-value, the event is considered
“good”, otherwise the event is considered “bad”. At the end of this phase, the results are
shown and stored in TMVApp.root file.
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3.1 Analysed signals

First of all, we have to choose the signals to analyse. We will use the data recorded by
BEGe detectors Bhima and Agamennone during a calibration measurement with 228Th. The
calibration conditions are listed below:

Detector name Voltage (V) Acquisition duration (s) Acquisition date

Bhima 4000 28200 26/09/2012
Agamennone 4000 25200 09/03/2012

The source data (tier0 ) contain the raw FADC signal recorded for the entire acquisition
duration. The first step is about generating a tier1 file from the raw data. In tier1 data are
stored in a .root file in the form of individual events; the corresponding recorded electrical sig-
nal is associated at each event. Such passage from tier0 to tier1 is accomplished by a Gelatio
script (Raw2MGDO).
Once the tier1 has been obtained, it is than possible to extract all the information related to
the signals using Gelatio modules. We now have to choose which signal parameters to use for
the classification.

3.2 Parameter choice

In Figure 3.1 two examples of signal taken from Bhima are shown. The upper graphs show
the events pulse (i.e. the electric signals as collected by the detector), the lower graphs show
the derived of the pulse (i.e. the current signal associated to the events). Looking at the lower
graphs it is easy to recognize which of the two events is a Single Site (SS) and which is a Mul-
tiple Site (MS); the two signals have been chosen at two comparable energies. The recognition
was possible through the observation of the current graphs. While the current graphs of SSE
show a single, well shaped, peak, the current graphs of MSE show multiple peaks. This is
connected to the non-simultaneous collection of signals associated to multiple site event.
If we observe with sufficient sensibility the pulse rising edge, we can notice that the pulse edge
of SS signals grow rapidly and all at once, while the edge of the MS signals have multiple
growth points (in this case two) due to the superimposition of different site events.

For training and application with ANNs we have to provide real number parameters that
efficiently describe the nature of the event (SSE or MSE). As we have just pointed out, the
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(a) Example of SSE pulse (DEP peak event) (b) Example of MSE pulse (Bi peak event)

Figure 3.1: Pulse examples taken from Bhima

analysis of the signal rising edge is an effective method to classify the signals. In this work we
choose to deduce the classifying parameters from the signal edge profile.
We will extract 50 values form the signal edge, corresponding to the normalized rise time when
the pulse reaches 1, 3, 5, ..., 99% of the full height; the time when the pulse height reaches 50%
serves as reference. In other words, for each pulse we calculate the time taken by the signal to
pass from 1% to 50% of its maximum amplitude, and we then divide it by the time taken by
the signal to pass from 1% to 99%. We repeat the same procedure for the intervals 3%-50%,
5%-50%, . . . , 47%-50%, 49%-50%, 50%-51%, 50%-53%, . . . , 50%-97%, 50%-99%.
See Figure 3.2 for a graphical representation of the procedure.
Since there is not any Gelatio module that derives these signal parameters, we have imple-

Figure 3.2: Pulse sampling example

mented one using MGDO libraries.
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3.3 Used ANN

Once the parameters for the pulse description have been chosen, we just have to choose
the ANN to use for the classification. In parallel, we will conduct the analysis with three
different ANN, the networks differ in topology and in the learning algorithm. Using TMVA,
the implementation of each neural network is very simple; to build an ANN it is sufficient use
a TMVA Factory object method specifying in the options the network type and topology. We
use the following ANN:

• MLP using TMVA learning algorithm with a single 54 nodes hidden layer. For an example
of a simple single layer structure see Figure 1.5;

• MLP using TMVA learning algorithm with double hidden layer (51 nodes in the first
layer, 50 nodes in the second layer). For an example of a double single layer structure
see Figure 3.3;

• MLP using root learning algorithm with double hidden layer (51 nodes in the first layer,
50 nodes in the second layer);

Figure 3.3: Double hidden layer ANN example

3.4 Efficiency evaluation

Having concluded the training of ANNs, we now need methods to evaluate the efficiency of
built networks. For this purpose, we will apply the criteria presented below.

TMVA testing efficency

At the end of every ANN training and testing, TMVA provides an ANNs ranking based on
efficiency. We will use the testing results as a first efficiency parameter.

Simulated pulse classification

Using the information on Bhima detector (shape and electrodes position), it is possible
to simulate pulse associated to SSE or MSE occurring in different detector positions. The
advantage of simulations is that the background-free pulses so obtained constitutes a good test
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case for ANNs. Simulations are particularly effective to verify if the chosen signal parameters
are good to identify SSE and MSE.
When using simulated pulses for parameters check only training/testing phase is executed.

DEP/Bi peak evaluation

After training and testing the networks with DEP and Bi peaks a good efficiency parameter
for the ANN is the ratio of accepted pulses over total pulses. This ratio quantifies how the built
networks recognize/reject events certainly MSE or SSE. We expect the most of DEP events to
be accepted and the most of Bi events to be rejected.

Compton edge cut

After training and testing the networks with DEP and Bi peaks, we can check how the
Compton edge events are classified. Physically the most of these pulses are MSE, and therefore
should be rejected by the network.
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Results

The analysis results are presented below.

4.1 Simulated Pulses

Table 4.1 shows the results of training and testing phase on the Bhima simulated events.
For each ANN type its efficiency and optimal cut-value are shown; the separation value, which
estimate the degree of separation of the two samples and so its classification efficiency, is par-
ticularly interesting. The listing order represents the efficiency ranking of ANNs. In Figure 4.1
a representation of the classification efficiency for two ANNs is given.

MLP_SingleLayer response
-0.5 0 0.5 1 1.5

dx / 
(1

/N
) 

dN

0

0.5

1

1.5

2

2.5

3 Signal
Background

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.1

, 0
.0

)%

TMVA response for classifier: MLP_SingleLayer

(a) Bhima simulation single hidden layer

MLP_DoubleLayer response
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

dx / 
(1

/N
) 

dN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 Signal
Background

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.1

, 0
.0

)%

TMVA response for classifier: MLP_DoubleLayer

(b) Bhima simulation double hidden layer

Figure 4.1: Bhima simulation testing distribution

ANN Type Separation value Optimal cut-value

root MLP Double Layer 0.580 0.3884
MLP Double Layer 0.572 0.3163
MLP Single Layer 0.558 0.2467

Table 4.1: ANN evaluation and cut-value for simulations
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4.2 ANN testing efficiency

Table 4.2 presents the TMVA testing results on Bhima and Agamennone detectors.

ANN Type Separation value Optimal cut-value

Bhima
MLP Single Layer 0.541 0.6158
MLP Double Layer 0.536 0.5671
root MLP Double Layer 0.531 0.5842

Agamennone
MLP Single Layer 0.563 0.6375
MLP Double Layer 0.562 0.5427
root MLP Double Layer 0.552 0.6354

Table 4.2: ANN evaluation and cut-value

Figure 4.2, 4.3, 4.4 and 4.5 show the networks evaluation for the test sample (the biggest
figures are associated to the more efficient ANN). These graphs show the distribution of network
evaluation of signal and background data set. The more the signal sample is close to 1 and the
background sample is close to 0, the better the classification is accomplished.
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Figure 4.2: Bhima testing distribution (double hidden layer and root double hidden layer ANN)
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Figure 4.3: Bhima testing distribution (single hidden layer ANN)
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(a) Agamennone double hidden layer
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Figure 4.4: Agamennone testing distribution (double hidden layer and root double hidden layer ANN)
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Figure 4.5: Agamennone testing distribution (single hidden layer ANN)

4.3 ANN DEP/Bi peak evaluation

After the ANNs training on DEP/Bi events, we have evaluated how the peaks were classified
by the ANNs. To do this, in Figure 4.7 and 4.6, we have superimposed a histogram with only
accepted events (by the ANN) to a histogram with all detected events, both for Bhima and
for Agamennone. Fitting the two peaks with Gaussian functions (red for all events, blue for
accepted events) we have estimated the peaks area before and after the ANN application; in
Table 4.3 the estimated areas and their ratio are displayed.

4.4 Compton edge cut

Figure 4.8 and 4.9 show the application of double hidden layer ANN on Bhima spectrum
and single hidden layer ANN on Agamennone spectrum respectively. The figures show both
the cuts on the complete spectrum and a magnification on the Compton edge (red histogram
for the Total Spectrum, blue histogram for the Accepted Spectrum).

Table 4.4 shows the
Accepted Events

Total Events
parameter for the Compton edge per each ANN and

detector.
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Total number of events
DEP Bi

Bhima 20284 11102
Agamennone 10478 9548

ANN Type DEP Acc. Bi Acc. DEPAcc.
DEPTot.

BiAcc.
BiTot.

Bhima
MLP Single Layer 18294 2130 0.902±0.002 0.192±0.004
MLP Double Layer 18618 2384 0.918±0.002 0.215±0.004
root MLP Double Layer 18608 2365 0.917±0.002 0.213±0.004

Agamennone
MLP Single Layer 8899 1110 0.849±0.003 0.116±0.003
MLP Double Layer 9115 1270 0.870±0.003 0.133±0.003
root MLP Double Layer 8966 1165 0.856±0.003 0.122±0.003

Table 4.3: DEP/Bi peack acceptance ratio
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Figure 4.6: Agamennone root Double Layer ANN peaks comparison (DEP peak on the left, Bi peak
on the right)
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Figure 4.7: Bhima Single Layer ANN peaks comparison (DEP peak on the left, Bi peak on the right)

Total Compton edge events
Bhima 318003
Agamennone 236410

ANN Type Compton edge ev. Accepted ComptonAcc.
ComptonTot.

Bhima
MLP Single Layer 5097 0.0160±0.0002
MLP Double Layer 6849 0.0215±0.0003
root MLP Double Layer 12664 0.0398±0.0003

Agamennone
MLP Single Layer 1603 0.0068±0.0002
MLP Double Layer 9294 0.0393±0.0004
root MLP Double Layer 8799 0.0372±0.0004

Table 4.4: Compton edge acceptance ratio
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Figure 4.8: Bhima Double hidden layer ANN application on the spectrum

Figure 4.9: Agamennone Single hidden Layer ANN application on the spectrum



Chapter 5

Conclusions

From the analysis of simulated events, emerges a good separation between SSE and MSE
after training and testing phase. The separation values obtained from simulations are good
and very close to those obtained from the testing phase with real events (although the best are
clearly those related to simulations). This first observation proves that the chosen classification
parameters allow to distinguish SSE from MSE, thus giving a first confirmation of the used
method efficiency.

We point out that during the analysis of both simulated and real events, the training and
testing sample was composed by 20000-30000 pulses. Due to the used classification method, the
ANNs topology is characterized by a lot of nodes and consequently a lot of nodes connection
(about 2500 wi,j for single layer MLP, and 5000 wi,j for double layer MLP, to estimate).

Real sample testing phase highlights the following ANN efficiency order:

1. Single hidden layer MLP

2. Double hidden layer MLP

3. Double hidden layer MLP with root learning algorithm

The single hidden layer MLP is the most efficient network both for Bhima and Agamennone
even though its the most simple ANN. This is probably due to the just outlined training sample
number of events. Considering the high number of wi,j to estimate, we should have a lot of
training events to reach an optimal training. Probably 20000-30000 pulses are not enough for
the training of our networks, especially for the more complicated ones. A possible cause of the
higher efficiency of single layer ANN is that being the network with less connections, its the
network that comes more close to the optimal training condition using a small training sample.

From DEP and Bi peaks acceptance ratio results that 80%-90% of DEP events are accepted,
while only 10%-20% of Bi evens are accepted. It can be noticed that ANNs trained with Bhima
events have a higher DEP acceptance ratio, while Agamennone trained ones have a higher Bi
rejection ratio. This is probably due to the different events number of DEP and Bi training
samples in the two cases. While for Bhima the DEP training sample is sized twice than the
Bi training sample (with a consequent higher DEP acceptance), for Agamennone DEP and Bi
training sample have the same size (with a consequent higher Bi rejection).
Overall, the acceptance/rejection ratios are very good, and therefore ANNs trained with this
method are a good instrument for background discrimination.
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All ANNs execute a good Compton cut, just about 1%-4% of Compton edge events (that
are principally MSE) are accepted. This result (the cuts are even too good) made us suspi-
cious, bringing us to analyse the entire detectors spectrum. From Figure 4.8 and 4.9 can be
noticed how very few events with an higher energy than the Bi peak are accepted, highlight-
ing the possibility that the ANN are executing an energy cut rather than a SSE, MSE selection.

We conclude our analysis stating the effectiveness of ANNs classifications, that have very
high performances in the DEP/Bi peak recognition and in Compton cut. We report, however,
some critical aspects of our analysis:

• an ANN with the same topology of those we used, needs a big-size training sample to
reach an optimal training;

• considering the impossibility of completely understand the working mechanism of an ANN
(that acts in a sense like a black-box), there is the need of support the ANN analysis with
another, more transparent, method with which confirm ANN effectiveness.

For further developments of the work we would suggest to:

• given the complexity of the used networks, increase the size of the training samples;

• obtain a training sample with the same number of acceptable and unacceptable events;

• verify if the used ANNs execute an energy cut, using alongside ANNs analysis an already
tested method (e.g. A/E cut).
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