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Abstract

In questo lavoro vengono confrontati diversi modelli sui tassi di interesse.  Tale confronto ha

come obiettivo principale quello di valutare se i tassi di interesse forward generati dal modello

SABR (Stochastic alfa, beta, rho) sono compatibili (in termini di valori e prezzi prodotti) con i

tassi di interesse a breve generati da Modelli Affini, quali il modello di Vasicek ed il modello di

Cox, Ingersoll e Ross. Per far ciò, vengono innanzitutto generate delle simulazioni dei tassi

forward utilizzando il modello SABR con dei parametri plausibili e tratteremo tali tassi come dati

reali.  Poiché i dati generati sono dei tassi forward, ed i modelli affini descrivono la dinamica del

tasso a breve, si procede con la fase di calibrazione, la quale ci consente di identificare il modello

Vasicek e il modello CIR che generano i tassi forward più “vicini” possibili a quelli generati col

SABR model. Utilizzando i modelli calibrati, si procede alle simulazioni del tasso a breve e, sulla

base di queste, si stimano i parametri dei modelli affini utilizzando la stima OLS e quella di

Massima Verosimiglianza.  Dopo la fase di stima, si simulano i tassi di interesse forward

utilizzando i modelli affini (stimati) e si procede al confronto di tali tassi con quelli generati

inizialmente con il modello SABR. Si procede poi col calcolo dei prezzi delle opzioni caplet e al

confronto degli stessi tra i diversi modelli. I risultati ottenuti mostrano che i tassi forward generati

con i modelli affini seguono traiettorie che si discostano in maniera rilevante rispetto ai tassi

generati con il modello SABR. Come conseguenza, anche i prezzi delle opzioni ottenuti usando

tali modelli risultano avere differenze significative.
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First Chapter

Affine Term Structure Models

Introduction

In this chapter we expose the most used affine term structure models (ATSM) for the short term

interest rate. Before exposing these models, we have to point out the differences between the

interest rate market and the stock market. In the latter, in fact, we use to model the behavior of

the asset price to estimate its price at a future date or the price of an option which have that

asset as underlying. As argued in Bjork, the short rate of interest r is not the price of a traded

asset, i.e. there is no asset on the market whose price process is given by r. Then, the short

interest rate is not a stand-alone object, and in order to give a definition we need to refer to the

zero coupon bond (ZCB) price.

A ZCB is an instrument which pays a certain amount, called face value ( for simplicity, we

assume that the face value is equal to 1 unity of currency) at its maturity date T. We express the

value at time t of a ZCB with maturity T > t by the notation P(t,T). It should be clear the

similarity between the investment in a zero coupon bond and the investment in a banking

account X(t), where we put money today to achieve an instantaneous return given by( ) ( ) 1 .

The short term interest rate r(t) can be described as the rate applied on instantaneous borrowing

(or lending). If we assume the absence of any kind of risk, lending money ( as investing in a

bank account ) during the time interval [0,T], is equivalent to a strategy in which at each time

t, with 0 ≤ t ≤ T, we buy a “just maturing” bonds, i.e bonds which will mature at “t + ∆ ” with∆ → 0. Let X(t) the value of a bank account at time t > 0, then at time + ∆ the value of the

bank account X( + ∆ ) will be:

( + ∆ ) = ( ) + ( ) ( )∆ 1.1
and applying the limit ∆ → 0 we get:

1 we assume that both ZCB and Banking account returns are risk free
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( ) ( ) = lim∆ → ( + ∆ ) − ( )∆ = ( ) 1.2
Then the value of the bank account X(t) is the solution of the following Cauchy problem:

( ) = ( ) ( )(0) = 1.3
Solving this problem, we get the bank account process:

( ) = ∫ ( ) 1.4
By analogy, letting P(T,T) = X(T) = 1 and = P(0,T) , we get the price of a bond as function

of r(t):

( , ) = ∫ ( ) 1.5
If we assume that rates were constant, the price would be simply given by ( ) . However,

in the real world, the short term interest rate is stochastic and then we need a model which

describe its dynamic in order to compute the value of a bond.

Another important relation is between the short term interest rate r(t) and the (continuously

compounded ) spot interest rate R(t,T), defined as:

( , ) = − log ( , )− 1.6
From which follows: ( , ) = ( ) ( , ) 1.7
Unlike r(t), the spot interest rate R(t,T) can be directly calculated by the price of the ZCB

observed in the market without any use of models which describe its dynamic. Now, we need

to give a deterministic relation between the price of a ZCB and r(t) in order to derive the relation

between r(t) and R(t,T). To do this we will use the so-called Affine term structure models. For
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these models, the spot price at time t, with 0 ≤ t < ≤ T, of a zero coupon bond (ZCB) with

maturity T can be expressed as:

( , ) = ( ( , ) − ( , ) ( )) 1.8
Where A and B are deterministic function of t and T. The values of A and B depend on the

affine model used to describe the dynamic of r(t).

Then , given an affine model for the short interest rate, the relation between r(t) and R(t,T) is

given by equating 1.7 and 1.8, and result in:

( , ) = − ( , )− + ( , )− ( ) 1.9
This relation will be useful when one want to calibrate an affine model from the data or would

simulate a path of R(t,T) using an affine model. In fact the only data we can observe in the

market is R(t,T), and it is crucial to understand the relation between the observed data and the

object to be estimated or simulated. However, the continuously compounded notation (1.6) is

used only in theoretical contexts. In the market practice, the bond price is expressed using the

simply compounded interest rate defined as:

( , ) = 1 − ( , )( − ) ( , ) 1.10
From which follows that the zero coupon bond price is given by:

( , ) = 11 + ( − ) ( , ) 1.11
Rearranging the equation 1.11 and substituting the value of P(t,T) as in 1.8 we get the explicit

relation between r(t) and L(t,T):

( , ) = ( , ) ( , ) ( ) − 1− 1.12
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Now, In order to link the theoretical quantity r(t) with the real world quantity R(t,T) (or L(t,T))

we need to find the value of A(t,T) and B(t,T) of 1.8 for the model considered. The values of

these functions must be such that the prices generated do not allow arbitrage opportunity. To

meet this issue, we have to derive the value of A(t,T) and B(t,T) starting from the term structure

equation for an arbitrage free bond market.

1.1 The term structure equation

The term structure equation is a Partial Differential Equation, which have as solution the family

of prices{ ( , ); 0 ≤ t ≤ T, T > 0}. Now, let us see how to derive this equation in an

arbitrage free bond market and how to combine this with an affine term structure model.

Assuming that the short interest rate follows the following stochastic differential equation under

the real measure P: ( ) = ( , ) + ( , ) ( ) 1.13
where ( , ) and ( , ) are two predictable function and ( ) is a standard P-Brownian

motion. For a fixed time T, the price of a zero coupon bond is only function of t and r, thus( , ) = ( , ). Assuming ( , ) twice continuously differentiable, we can apply Ito’s

lemma on 1.13 obtaining:

( , ) = + + ( )= + ( , ) + ( , ) ( ) + ( , ) + ( , ) ( )= + ( , ) + ( , ) + ( , ) ( ) 1.14

Where and are respectively the partial derivatives with respect to and . Finally, letting:

= + ( , ) + 12 ( , )( , ) 1.15
= ( , )( , )

we can rewrite 1.14 as:

( , ) = ( , ) + ( , ) ( ) 1.16
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Now, we proceed by constructing a risk-free self-financing portfolio of bonds [7] having

different times to maturity S and T (a similar procedure is used in the stock market to derive

the Black and Scholes equation), and imposing the no arbitrage condition which require that

this portfolio must have a rate of return equal to the short interest rate, we will get the term

structure equation for the arbitrage free bond market. Let and the relative fraction amount

of two bond ( , ) and ( , ), and denoting by the value of the portfolio consisting in this

two bonds, i.e = ( , ) + ( , ), then the return of this portfolio is given by

proportional return of the two bonds:

= ( , )( , ) + ( , )( , ) 1.17
Substituting 1.16 into 1.17 we get:

= + ( , ) + 12 ( , ) + ( , ) ( )( , )
+ + ( , ) + 12 ( , ) + ( , ) ( )( , )

Which can be rewritten as:

= ( + ) + ( + ) ( ) 1.18
Where and are as in 1.15. Now we want to eliminate the ( ) term in order to get the

risk-free portfolio, to do this we can only choose the quantities and in such way to have:

+ = 0ℎ + =  1 .

The solution of this linear system of equations is given by:

= − ,
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= − − ,
and substituting these solution into equation 1.l8 we get the risk free portfolio dynamic:

= − − − 1.19
Since the portfolio following this dynamic is risk-free, it must offer the same return of the bank

account (risk-free investment). As argued in the previous section this return of the bank account

is equal to the short term interest rate r(t), and then must hold true:

( ) = −−
Or, written in a different way:

− ( ) = − ( ) 1.20
The value of both-side hand value does not depend on the choice of the time to maturity. In

fact, if the time to maturity of the left-hand side changes, the right-hand side remains unchanged

and then even the left-hand side must remain the same, so we can define the process:

( ) = − ( ) 1.21
which holds for all and T. The process ( ) is called market price of risk .

Now, inserting equation 1.15 into 1.21 and rearranging, specifying the boundary ( , ) = 1,
we obtain the so called “term structure equation” in an arbitrage free bond market:

+ {μ( , ) − ( ) ( , )} + ( , ) − = 0( , ) = 1 1.22

Which represent the family of bond prices ( P(t,T) ; 0 ≤ t ≤ T, T > 0 ) which does not allow

arbitrage opportunity in the bond market.
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So, if we consider the following P-dynamic for the short term interest rate

( ) = ( , ) + ( , ) ( )
Assuming that this model possesses an ATS so that:

( , ) = exp( ( , ) − ( , ) ( ) )
If we introduce:

= ( , ) − ( , ) (drift term under Q measure )

= ( , )
We can rewrite the term structure equation as

+ + − = 0( , ) = 1 1.23

Now we can compute the partial derivatives  Pt , Pr and Pr r as:

PT
t = (At(t,T) – Bt(t,T) r ) PT

PT
r = - B(t,T) PT

PT
rr = B2(t,T) PT

And substituting into 1.23 we get:

( , ) – (1 + ( , )) − ( , ) + 12 ( , ) = 0 1.21
With boundary values

A(T,T) = 0

B(T,T) = 0



16

This equation give us the relation between A, B, and , and then allow us to compute the

price of a ZCB for an ATS model. In the next section, we use it in order to compute the zero-

coupon bond price for the model studied.

1.2 Short Interest Rate Models

Based on the stochastic differential equation 1.10, in the literature were built several parametric

models by giving to the functions ( , ) ( , ) a definite form. Most of the models

developed imply dynamics for the short-term interest rate r(t) that can be included within the

following SDE: ( ) = ( μ − ( ) ) + ( ) 1.25
Where α, μ, σ, are constant parameters and dW(t) is a standard P-Brownian motion. By

assigning different values to the parameters [α, μ, σ, ], we get different models. For μ=0, =0we get the Merton(1973) model; for = 0we get the mean reverting process used by Vasicek

model and for = 1/2 we get the square root process which appears in the Cox, Ingersoll and

Ross (CIR) model. The last two are the most popular model in the interest rate markets and are

those we will consider in this work.

1.2.1 The Vasicek Model

In this model the short term interest rate r(t) is solution of the SDE:

( ) = μ − ( ) + ( ) 1.26
where W(t) is a Q-standard Brownian motion2 and α , µ e σ are strictly positive constants. The

constant µ represents the risk-neutral long-term mean risk-free rate, α represents the rate at

which r(t) reverts back to this long-term mean and σ represents the volatility of short-term

interest rate. One of the main advantages of this model is to be a mean reverting process, but

against a negative characteristic is to have positive probability that the interest rate can assume

negative values.

2 We assume λ=0
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However, the feature that made the model of Vasicek one of the most used by traders is

undoubtedly due to the simplicity of the model and on the fact of giving a closed form solution

for pricing. One of the goals of this work consist in comparing the forward rate paths generate

by this model with those generated by the SABR model. Then, we need a discrete version of

1.26 that allow us to simulate the short term interest rate. Phillips[50] showed that the exact

discrete model corresponding to 1.26 is given by :

( + ∆ ) = ( ) ∆ + (1 − ∆ ) + (1 − ∆ )/2 1.27
where ~ . . (0,1). Looking at 1.27 it is easy to see that r(t) is normally distributed with

conditional mean and variance respectively given by :[ ( + ∆ | ( )] = ( ) + (1 − )μ
[ ( + ∆ | ( )] = ( 1 − )

The availability of a closed form expression for the transition density will be crucial when we

will try to estimate parameters using MLE method. Now we want to connect the short-term

interest rate given by this model with the price of the zero-coupon bond. We know that the price

of a ZCB in an arbitrage free market must be solution of the term structure equation 1.24. For

this model, we have: ̂ = ( μ − )
= σ

And the equation 1.24 became:

( , )– (1 + ( , )) ( ) − (μ − ( ) ) ( , ) + 12 ( , ) = 0
which, collecting the r(t) terms, result in:

( , )– 1 + ( , ) − ( , ) ( ) − μ ( , ) + 12 ( , ) = 0 1.28
This equation must holds for every t and r , so we have that the coefficient of r must be equal

to zero. Thus, we obtain the two ODE Cauchy problems:
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1 + ( , )– ( , ) = 0ℎ ( , ) = 0 1.29
and ( , ) − μ ( , ) + 12 ( , ) = 0ℎ ( , ) = 0 1.30
Where and are the partial derivatives with respect to .

For equation 1.29 it is easy to show that:

( , ) = 1 − ( ) 1.31
To solve 1.27 we have to integrate, then we have:

( , ) = 12 ( , ) − ( , ) 1.32
And Substituting 1.31 into 1.32 follows:

( , ) = 12 1 − ( ) − 1 − ( )

= 12 ( 1 − ( ) + ( )) − 1 + ( )
= 2 ( − ) − 2 2 ( , ) + 2 1 − ( )2 − ( − ) + ( , )
= 2 − ( − ) − ( , ) − 2 ( , ) + 2 1 − ( )2
= 2 − ( − ) − ( , ) − 4 ( , ) 1.33

Hence, the price of a bond in the Vasicek model is given by:( , ) = exp ( , ) − ( , ) ( ) 1.34
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with

( , ) = 2 − ( − ) − ( , ) − 4 ( , )
and

( , ) = 1 − ( )
In order to get the P-dynamic for the continuously compounded interest rate R(t,T) we use 1.9,

obtaining:

( , ) = ( , )− − ( , )− − ( , ) + ( , )− 1.35
Which can be rewritten in the same form of r(t):( , ) = ̌ − ( , ) + 1.36
With:

̌ = ( , )− − ( , )−
= ( , )−

Then, we can write the dynamic of R(t,T) in the same form of r(t) simply changing the

parameters. This means that both r(t) and R(t,T) have the same distribution, and in this particular

case are normal distributed. This aspect is very useful when we try to estimate the parameter

prom real data with a method like MLE, which use the marginal distribution to obtain the

parameters. The link between L(t,T) and r(t) in the Vasicek model can be derived from equation

1.12, we get:

( , ) = ( , ) ( , ) ( ) − 1− 1.37
where A(t,T) and B(t,T) are as in 1.34.
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1.2.2 The Cox, Ingersoll and Ross model (CIR model)

The stochastic differential equation of the model proposed by Cox, Ingersoll and Ross[16]  is:( ) = μ − ( ) + ( ) ( ) 1.38ℎ 2 >
where α, µ and σ are positive constant and W Q (t) is a standard Brownian motion under the risk

neutral measure Q. The condition 2 > is imposed to avoid that the short term interest rate

reach the zero value. As for the Vasicek model, we need a discrete version of 1.38 to simulate

r(t). Phillips [50] show that the discrete version of 1.38 is given by:

( + ∆ ) = ∆ ( ) + (1 − ∆ ) + ( ∆ ) ( )∆ ( ) 1.39
It is possible show that the conditional distribution of this process is, up to a scale factor, a non-

central chi-squared distribution [19] :

( + ∆ ) ( ) ~ (1 − ∆ )4 χ 4 ∆(1 − ∆ ) ( ) 1.40
Where χ ( ) denotes the noncentral chi-squared distribution with d degrees of freedom equal

to

= 4μ
and non-centrality parameter given by

= 4 ∆(1 − ∆ ) ( )
Straightforward calculation give the expected value and variance of r(t) as [16]:

( + ∆ ) ( ) = ( ) ∆ + (1 − ∆ ),
( + ∆ ) ( ) = ( ) ( ∆ − ∆ ) + 2 (1 − ∆ ) .
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Another way to represent the distribution of ( + ∆ )| ( ), which can be particularly

convenient for the simulation, is given by Feller[19]. He show that the transition density of the

square root model can also be expressed as:

( + ∆ ) ( ) = 2√ 1.41
Where:

= 2(1 − ∆ ) , = ( ) ∆ , = ( + ∆ ) , = 2 − 1
And 2√ is the modified Bessel function of the first kind and order q.

Now, as made for the Vasicek model, we are interested in computing the value of the function

A(t,T) and B(t,T) in order to determine the price of a zero coupon bond and the relation between

r(t,T) and R(t,T).

Then, by solving the term structure equation 1.24 with:

= α ( µ - r )= √
we get ( , ) – 1 + ( , ) − (μ − ) ( , ) + 1/2 ( , ) = 0.
Which can be rewritten as

( , )– μ ( , )– 1 + ( , ) − ( , ) − 12 ( , ) = 0. 1.42
Now we can made the same observation as for the Vasicek model obtaining the follow two

ODE Cauchy problems: ( , ) – μ ( , ) = 0
With boundary condition A(T,T) = 0 1.43

and 1 + ( , ) − ( , ) − 1/2 ( , ) = 0
With boundary condition B(T,T) = 0 1.44
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Here we skip the passages and give directly the solution for the term structure in the CIR model,

which is given by ( , ) = ( , ) exp − ( , ) ( ) 1.45
where

( , ) = 2 ( )(( )⁄ )( + )( ( ) − 1) + 2 ⁄

( , ) = 2( ( ) − 1)( + )( ( ) − 1) + 2
= + 2

Now, as for the Vasicek model, we can get the stochastic differential equation for R(t,T), that

is

= ( , )( − ) − ( − ) + ln( ( , )( , ) + ( − ) + ln( (t, T))( , )
Which cannot be written in the same form of 1.33, in fact in the CIR model r(t) follows a chi-

squared distribution. As for the Vasicek model we need also to derive the relation between r(t)

and L(t,T), this is given by combining equation 1.12 with equation 1.45. The result is:

( , ) = 1− ( , ) ( )( , ) − 1
1.3 Forward rate

The main object of this work is the comparison between the SABR model with the ATS model.

In particular ,we want study the forward-rate path generated by these models, and figure out if

any of these paths are compatible with those generated by the other models. To do this we need

to implement a Monte Carlo simulation of forward interest rate with the ATS model, therefore

we have to find the relation between the short rate of interest and the forward rate. The simply

compounded forward interest rate ( , , ) is the rate decided at present time t and applied

over a future period time [S,T], with ≤ ≤ . Let us determine the no-arbitrage value of this
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rate using the bonds prices ( , ) for various maturity T > t. Suppose that at time t our wealth

is equal to zero and that we carry out the following trading strategy:

1- We borrow at time t the amount ( , ) by shortselling one unit of bond with maturity

T, then we must refund the quantity 1€ at time T.

2- We invest the amount ( , ) over the period [t,S] by buying a (fractional) quantity( , )/ ( , ) of a bond with maturity S priced ( , ) at time t. This second operation

will yield the amount ( , )( , ) × 1€
at time S.

In order to avoid any arbitrage opportunity the simply compounded forward rate ( , , ) must

be chosen so that :

( , )( , ) 1 + ( − ) ( , , ) − 1€ = 0 1.46
What I must refund at time T

What I will receive with certainty at time T (using exponential compounding)

If this equality were not satisfy, there would be arbitrage opportunity, in fact:

a) If ( , )( , ) 1 + ( − ) ( , , ) − 1€ > 0
By starting from an initial wealth equal to zero, using the strategy described above it is possible

to get a profit at time T without any risk.

b) If ( , )( , ) 1 + ( − ) ( , , ) − 1€ < 0
One can borrow the quantity ( , ) shortselling the bond with maturity S and buy the quantity( , )/ ( , ) of the bond with maturity T. At time t the value in S of the bond with maturity

T is given by 1 x exp −( − ) ( , , ), then in S I will receive the quantity:
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( , )( , ) 11 + ( − ) ( , , )
Which is greater than 1 (because is the inverse of a value less than 1), and I will refund 1 at

time S. In this way I have get a profit without any risk. Rearranging 1.46 we obtain the explicit

formula for the no arbitrage continuously compounded forward interest rate, that is:

( , , ) = 1T − S P(t, S)P(t, T) − 1 1.47
Now, we can determine the bond price ( , ) and ( , ) in the ATS models and using 1.42

we can find the relation between r(t) and ( , , ) for each model.

1.3.1 Vasicek forward rate simulation

In this model, the forward rate is given by:

( , , ) = 1T − S 1 + ( − ) ( , )1 + ( − ) ( , ) − 1 =
= 1− ( , ) ( , ) ( )( , ) ( , ) ( ) − 1
= 1− exp A(t, S) − B(t, S)r(t) − A(t, T) + B(t, T)r(t) − 1
= 1− exp A(t, S) − A(t, T) + B(t, T) − B(t, S) r(t) − 1 1.48

And the substitution of the value A(t,S) and B(t,T) as given by 1.34 give as the relation

between the short interest rate and the forward rate:
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( , , ) = 1− exp ( ) 1 − ( ) − 1 − ( )

+ 2 − ( − ) − 1 − ( ) − 4 1 − ( )

− 2 − ( − ) − 1 − ( ) − 4 1 − ( ) − 1 1.49
This formula might seem very complicated, but contrary to appearances, it is very simple to

implement since all the object inside it are simply numbers.

Now we have all the tools needed for simulating the forward interest rate using the Vasicek

model. We implement the simulation follow the following steps:

1) Simulate the path of r(t) using the exact discrete model given by 1.27;

2) For each t calculate the value of A(t, S), A(t, T), B(t, S), B(t, S);

3) For each t calculate the value of the ZCBs with maturity S and T;

4) For each t calculate the forward rate using 1.49.

1.3.2 CIR  forward rate simulation

Before talking about the simulation of the forward rate, we must deepen the topic of the

simulation of the interest rate using the CIR model. Fortunately, many path simulation methods

for the CIR process are been developed in the literature in the last years. The main reason of

this is that the Heston model [28] has become in the recent years one of the most used stochastic

volatility model in the stock market. In this model, the volatility of the asset follows a CIR

process, then to sample path we can use the same methods used to simulate the path of the

volatility in the Heston model. A classical approach to constructing simulation schemes for

SDE 1.38 involves the application of the Euler approximation, which give the following

process:

( + ∆ ) = ( ) + − ( ) ∆ + ( )∆ , ~ (0,1). 1.50
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The main problem of this approximation is due to the fact that certain realization z of the

random variable Z ~ (0,1) can lead to negative values of r when

< − ( ) + − ( ) ∆( )∆ .
To address this problem, many authors have proposed different simulation scheme. Van

Haastrecht et. al [51] propose a non-central χ inversion scheme, Glasserman et.al[21]use the

gamma expansion scheme , Broadie and Kaya [11] propose an exact scheme, Andersen [6] use

instead a quadratic exponential scheme. The last two are the most reliable simulation scheme

and we will implement the Broadie and Kaya one for our path simulation. In their work the

authors sample the simulated value of r(t) directly from the non-central chi-squared distribution.

To do this they exploit the work of Johnson et al [37], which show that given a chi-squared

random variable χ with d >1 degree of freedom, the following equation is valid:

χ ( ) = χ ( ) + χ 1.51
Along the line of Patnaik[42] we use the following approximation:

χ ( ) = − √ 1.52
where Z is a standard normal random variable. Then, the algorithm we will follow to simulate

r(t) is composed by the following steps:

1) Calculate d and and verify that d > 1;

2) Draw a vector of standard normal random variable z;

3) Draw a vector of chi-squared random variable χ having d-1 degree of freedom;

4) Sample r(t) from χ ( ) using the relations:

χ ( ) = − √ + χ 1.53
and, ( + ∆ ) ( ) = (1 − ∆ )4 χ ( ) 1.54
With
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= 4μ ; = 4 ∆(1 − ∆ ) ( ).
5) For each t calculate the value of C(t,T), C(t,S), B(t,T), B(t,T);

6) For each t calculate the values of ZCB with maturity S and T;

7) For each t calculate the value of the continuously compounded forward rate from:

( , , ) = 1T − S 1 + ( − ) ( , )1 + ( − ) ( , ) − 1
= 1T − S⎝⎛

( , ) ( )( , )( , ) ( )( , ) − 1⎠⎞= 1T − S ( , )( , ) ( , ) ( )( , ) ( ) − 1
= 1T − S ( , )( , ) ( )( ( , ) ( , )) − 1 1.55
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MATLAB code

Vasicek forward rate
function pathFvas =
vasicekForwardSimulation(r0,k,mu,sigma,T_set,T_ex);

clc
clear all
close all

%r0=0.03;
%k=-0.18;
%mu=-0.080;
%sigma=0.04;
%T_set=2;
%T_ex=1;
%time_step=250;
%delta_t=T_ex/time_step;
%n_sim=500;

path_R = zeros(n_sim,time_step+1);
path_R(:,1) = r0;
zcb_set= zeros(n_sim,time_step*T_ex);
zcb_ex= zeros(n_sim,time_step*T_ex);
forward_rate=zeros(n_sim,time_step*T_ex);
B_Tex=zeros(n_sim,time_step*T_ex);
B_Tset=zeros(n_sim,time_step*T_ex);
A_Tex=zeros(n_sim,time_step*T_ex);
A_Tset=zeros(n_sim,time_step*T_ex);

for j=1:n_sim
for i=1:time_step

path_R(j,i+1)=path_R(j,i)*exp(-k*delta_t)+ mu*(1-
exp(-k*delta_t))+sigma*sqrt((1-exp(-
2*k*delta_t))/2*k)*randn();

end
end

for j=1:n_sim
for i=1:time_step*T_ex

B_Tex(j,i)= (1-exp(-k*(time_step*T_ex-
i+1)/time_step))/k;
B_Tset(j,i)= (1-exp(-k*(time_step-
i+1)/time_step))/k;
A_Tex(j,i)= (((sigma^2)/(2*k^2))-
mu)*((time_step*T_ex-i+1)/(time_step)-B_Tex(j,i))-
((sigma^2)/(4*k))*B_Tex(j,i)^2;
A_Tset(j,i)= (((sigma^2)/(2*k^2))-mu)*((time_step-
i+1)/(time_step)-B_Tset(j,i))-
((sigma^2)/4*k)*B_Tset(j,i)^2;
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________SimplycompoundedForwardrate___________
zcb_ex(j,i)=1/(exp(-

A_Tex(j,i)+path_R(j,i)*B_Tex(j,i)));
zcb_set(j,i)=1/(exp(-

A_Tset(j,i)+path_R(j,i)*B_Tset(j,i)));
forward_rate(j,i)=(1/(T_set-

T_ex))*(zcb_ex(j,i)/zcb_set(j,i)-1);

___________continuouslycompoundedfarwardrate________________
zcb_ex(j,i)=exp(A_Tex(j,i)-path_R(j,i)*B_Tex(j,i));
zcb_set(j,i)=exp(A_Tset(j,i)-

path_R(j,i)*B_Tset(j,i));
forward_rate(j,i)=(log(zcb_ex(j,i))-

log(zcb_set(j,i)))/(T_set-T_ex);
end

end

figure(1);
plot (forward_rate')

end

CIR forward rate (Kaya scheme)

function pathFcir =
CirForwardSimulation(r0,k,mu,sigma,T_set,T_ex);
clc
close all
clear all

%r0=0.03;
%k=0.25;
%mu=0.0270;
%sigma=0.03;
%T_set=2;
%T_ex=1;
time_step=250;
delta_t=T_set/time_step;
n_sim=1000;
c=((sigma^2)*(1-exp(-k*delta_t)))/(4*k)
path_R = zeros(n_sim,time_step+1);
path_R(:,1) = r0;
gamma=sqrt((k^2)+2*(sigma^2))

Z=randn(n_sim,time_step);
lambda=zeros(n_sim,time_step);
c=((sigma^2)*(1-exp(-k*delta_t)))/(4*k)
d=(4*mu*k)/(sigma^2);
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x=chi2rnd(d-1,[n_sim,time_step])

path_R = zeros(n_sim,time_step+1);
path_R(:,1) = r0;
zcb_set= zeros(n_sim,time_step*T_ex);
zcb_ex= zeros(n_sim,time_step*T_ex);
forward_rate=zeros(n_sim,time_step*T_ex);
B_Tex=zeros(n_sim,time_step*T_ex);
B_Tset=zeros(n_sim,time_step*T_ex);
C_Tex=zeros(n_sim,time_step*T_ex);
C_Tset=zeros(n_sim,time_step*T_ex);

for j=1:n_sim
for i=1:time_step

lambda(j,i)=path_R(j,i)*(((4*k*exp(-
k*delta_t)))/((1-exp(-k*delta_t))*sigma^2));

path_R(j,i+1)=((Z(j,i)+sqrt(lambda(j,i)))^2+x(j,i))*c;
end

end

for j=1:n_sim
for i=1:time_step*T_ex

n(i)=(T_set-(i-1)/time_step);
m(i)=(T_ex-(i-1)/time_step);

B_Tex(j,i)= (2*(exp(gamma*m(i))-
1))/((k+gamma)*((exp(gamma*m(i))-1))+2*gamma);

C_Tex(j,i)=((2*gamma*exp((k+gamma)*m(i)/2))/((k+gamma
)*((exp(gamma*m(i))-
1))+2*gamma))^((2*k*mu)/(sigma^2));

B_Tset(j,i)= (2*(exp(gamma*n(i))-
1))/((k+gamma)*((exp(gamma*n(i))-1))+2*gamma);

C_Tset(j,i)=((2*gamma*exp((k+gamma)*n(i)/2))/((k+gamm
a)*((exp(gamma*n(i))-
1))+2*gamma))^((2*k*mu)/(sigma^2));

forward_rate(j,i)=(1/(T_set-
T_ex))*((C_Tex(j,i)/C_Tset(j,i))*ex
p(path_R(j,i)*(B_Tset(j,i)-
B_Tex(j,i)))-1);

%
%continuously compounded forward interest rate

%           zcb_ex(j,i)=C_Tex(j,i)*exp(-
path_R(j,i)*B_Tex(j,i));
%           zcb_set(j,i)=C_Tset(j,i)*exp(-
path_R(j,i)*B_Tset(j,i));
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%           forward_rate(j,i)=(log(zcb_ex(j,i))-
log(zcb_set(j,i)))/(T_set-T_ex);

end
end
figure(1);
plot (forward_rate')

end

CIR interest rate using the Matlab function ncx2rnd to sampling directly from a non-
central chi-squared distribution ( )(as made in [36])

path_R = zeros(n_sim,time_step+1);
path_R(:,1) = r0;
B=zeros(n_sim,time_step);
A=4*k+mu/(sigma^2);
C=((sigma^2)*(1-exp(-k*delta_t)))/(4*k)

for j=1:n_sim
for i=1:time_step

B(j,i)=path_R(j,i)*((4*k*exp(-k*delta_t)))/(((1-
exp(-k*delta_t))*sigma^2));

path_R(j,i+1)=C*ncx2rnd(A,B(j,i));
end

end
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Second chapter

THE SABR MODEL

INTRODUCTION

One of the main problem that trader face is the managing of the volatility smile and skew in the

option market. It is well known that there is a one-to-one relation between the option price and

the volatility of the underlying: the call and the put price are indeed increasing function of the

volatility. Due to this, in many markets the price quotes are often expressed directly by the level

of the volatility (as in cap/floor market or swaption market). It is also well known that the value

of the implied volatility given by the option price vary across the different strikes producing the

volatility smile. The models which assume constant the volatility, as Black’s model[57], are

clearly unable to manage the volatility risk, and then do not allow to make a good vega-hedging.

It is sufficient to think at the case in which we hold two different option on the same asset with

different strikes K1 and K2 , and then different implied volatilities σ1 and σ2. If we would make

vega-hedging on this portfolio using a constant volatility model we would not know which

volatility we should put into the model. Another problem of using a constant volatility model

is the pricing of the exotic option: if we would price a call option with strike K1 which has a

barrier at a certain level K2 , what implied volatility we should put into the pricing formula? A

third problem evidenced in Hagan et. al.[23] concerns the evolution of the implied volatility

curve. Since the implied volatility depends on the strike K, it is likely to also depend on the

current value S of the asset price: In this case there would be systematic changes in volatility

as the asset price S of the underlying changes. Some of the vega risks of Black’s model would

actually be due to changes in the price of the underlying asset, and should be hedged more

properly as delta risks.

To solve this problem are been developed the local volatility model [18] where the volatility is

not a constant parameter, but it depend on the level of the underlying and on the time. However,

this models are not consistent with the behavior of the market since, as argued by Wilmott[54]:

“the dynamic behavior of smiles and skews predicted by local volatility models is exactly

opposite the behavior observed in the marketplace: when the price of the underlying asset

decreases, local volatility models predict that the smile shifts to higher prices; when the price

increases, these models predict that the smile shifts to lower prices. In reality, asset prices and

market smiles move in the same direction”. To solve this inconsistency, Hagan et. al. developed
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the SABR (stochastic , , ρ ) model, which is a two factor model where the dynamic of the

underlying (in our case a forward interest rate ( , , + ), ℎ ℎ ℎ ) is

given by a CEV process with a lognormal stochastic volatility  := ( ) ,= , 2.1
Where , and , are two correlated Brownian motion with E[ , , ]= ρS dt .

The parameter is the volatility of the forward rate, is a positive constant representing the

volatility of the volatility, and is a constant parameter representing the elasticity of variance.

All these parameters are specific to a particular forward rate, of expiry S and maturity + . In

the following sections, we will omit the subscript S to make clearer the exposition.

Plain-vanilla European option

Consider a European call option on the asset A with exercise date tex , settlement date tset and

strike K. If the older exercise the option on tex , then on the settlement date tset he receive the

underlying asset A and pays the strike K. The exercise of this kind of option is equivalent to

receive in tex a forward contract F(t) on the asset A with maturity date tset . Clearly, the option

will be exercised only if the value of the forward contract is positive, and the value of the option

at time zero is: (0) = (0, ){ [ ( ) − ] }
Where (0, ) is the value in t=0 of zero coupon with maturity . Using singular

perturbation techniques, Hagan et. al obtained the option price implied by the SABR model,

and from this, the associated implied volatility:

(0) = (0, ){ ( ) − ( )} 2.2
With = (0), and

, = log ± 12
This expression is the same of that given by the Black’s formula for European option, with the

difference that here the Black volatility is not constant, but given by:
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( , ) = ( )( )⁄ 1 + (1 − )24 ( ⁄ ) + (1 − )1920 ( ⁄ ) +⋯ .
. ( ) . 1 + (1 − )24 ( )( )( ) + 14 ( )( )/ + 2 − 324

Where

= ( )( )/ ( ⁄ )
And

( ) = − + 1 − 2 +1 −
Implementing SABR model for vanilla option is very easy thanks to the fact that the price can

be expressed by the Black’s formula, which is the standard in the interest rate option market.

2.1 Sabr simulation introduction

When we want to simulate a path using this model, the real problem is not the simulation of the

volatility process, which can easily be solved writing:

= exp , − 2.3
The real drawback is how to simulate the asset price given this behavior of the volatility. Many

authors have proposed methods to simulate the SABR model; Islah [32] proposes a scheme

based on relation of SABR to a squared Bessel process, Andersen et. al [5] propose a log-euler

approximation scheme, Chen et al. [14] propose a scheme which mix moment-matched

approximation and direct inversion(for small value of F). Following Chen et. al [14], we will

implement a simulation algorithm by exploiting the relation between the SABR model and the

squared Bessel process shown by Islha [32]. This relation will be shown in the subsequent

section and is obtained by applying an invertible transformation to the asset price process, i.e

X(F) = F1-β /(1-β) . This transformed process, conditional on and ∫ , results in a time-

changed Bessel process of which we know the dimension and the starting point. Therefore, we
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can sample from the Bessel process and applying an inversion scheme we can find our

simulated values in the original coordinate.

In order to simplify the presentation, we first describe the relation between the CEV process

and the Bessel process and then we will extend this relation to the SABR model.

2.1.1 Cev process

Let (Ω, F, Ft ,Ƥ) be a filtered probability space generated by one-dimensional  Brownian motion{ }. For all 0 ≤ t ≤ S, the CEV process is the solution of the following SDE:

= 2.4
With 0 ≤ ≤ 1 . We implement a series of transformation in order to connect the CEV process

with a squared Bessel (process of which we know the transition density). Then, starting from

the transition density of the squared Bessel process, using an inverse transformation, we can

obtain the transition density and the cumulative distribution function of the CEV process.

After letting Xt= S1-β /(1-β) for β≠1, we obtain by Ito lemma the following SDE for Xt [49]:

= (1 − ) 1 − , − 12 (1 − ) 1 −
= − (2 − 2 ) 2.5

Now, applying a second transformation, Yt = Xt
2 , we get a time-changed squared Bessel

process, which satisfies the following SDE:

= 2 + 2.6
Where δ:= (1-2β)/(1-β) is the dimension of the process.

Let v(t) = 2t , then Yt = Zv(t) , where { } is a squared Bessel process solution of the SDE[60]:

= 2 + 2.7
With degree of freedom δ.

It can be shown [4] that hold true the following results:
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1 – For 0<δ<2 we get β < ½ and the SDE 2.4 has a unique solution only if a boundary condition is

specified at S=0. When we specify an absorbing boundary condition, the density function does not

integrate to 1 and the shortcoming represent the absorption probability. The absorbing boundary

at S=0 is required to ensure the arbitrage free condition. As argued in [49], for β > 0 the price

cannot became negative. Then, when price process reaches zero, if there were a reflecting

boundary, we could buy this asset for zero and sell it when the barrier reflects the price process

toward positive area, realizing a risk-free profit.

2 – For -∞ < δ < 0 we get ½ ≤ β ≤ 1 . A unique strong solution to SDE 2.4 exists, and boundary

value zero is absorbing. The density function does not integrate to 1 and the shortcoming represent

the absorption probability.

These two results cover the entire range of value that we will assign to parameter β in the path

simulation. Indeed, for most financial application, parameter β ranges between 0 and 1.

Moreover, another fundamental result is that for δ ≤ 0 and for 0 < δ < 2, but only when the boundary

at zero is absorbing, the transition density qδ (t, x, y) for the squared Bessel process in eq. 2.7 is

(proof in [9]):

( , , ) = exp − √ 2.8
With y ≥ 0 , t > 0 .

Where Ia(x) denotes the Bessel function, defined by:

( ) = ( /2)! ( + + 1)
with (x) = ∫ du (Gamma function).

Based on 2.8, we can obtain the transition density for the CEV process. Inverting the

transformation used above we get:

= (1 − ) ( ) .

We can define a map

h ∶ → (1 − )√ ,    s ≥ 0,
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with inverse

ℎ : → ( )( ) , y ≥ 0

So, St = h(Zv(t)) and Zt = h-1 (S0) = S2(1-β) /(1-β)2 . Then Zv(t) has density  qδ(v(t), Z0 ,y), from

which follows that the conditional transition density for the CEV process is given by:

( | ) = ( ( ), ,ℎ ( )) ℎ ( )
By combining this density with the transition density of the squared Bessel process as in 2.8 we

get:

( | ) = ( ) exp − ( ) ( )( ) ( ) ( )( )( ) 2.9

Where v(t) = σ2 t and δ = ( 1 - 2β ) / ( 1 – β ). By integrating 2.9 we find that the cumulative

distribution function of the CEV process as in eq. 2.4 is given by the following formula:

Pr( ≤ | ) = 1 − χ ( ; , ). 2.10
With:

= ( )( ) ( ) , = , = ( )( ) ( )
where χ ( ; , ) is the non-central chi-square cumulative distribution function for the value

“a”, non-centrality parameter “b” and degree of freedom “c”.

2.2 Absorption probability

As said in the previous section, the density does not integrate to unity when the boundary is

absorbing. The difference between unity and the integral of the density function represent the

absorption probability at 0. Then, using the equation 2.10, we can obtain the formula for the

absorption probability:

For 0 < β < 1, the probability of St given the initial condition S0 is[14]:
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Pr( = 0| ) = 1 − χ ( ; , 0)
= 1 − χ ( )(1 − ) ( ) ; 11 − β 2.11

In the next section we extent the results concerning the CEV model 2.4 in the context of the

SABR model 2.1

2.3 SABR conditional distribution

We start by the simplest case to treat, that is the one where = 1. We rewrite the eq.1

considering the following Cholesky decomposition for the two Brownian motion:

, = , + 1 − 2.12
Wher Ut is a standard Brownian motion independent of W2,t . Then 2.1 begin:

= , + 1 −= , 2.13
Solving the SDE of F and integrating the SDE of we get:

= − ∫ + ∫ , + 1 − ∫ 2.14
∫ , = ( − ) 2.15

Substituting 2.15 into 2.14, we obtain

= − ∫ + ( − ) + 1 − ∫ 2.15
Since Ut and , (and then Ut and ) are independent , by Ito isometry, the integral ∫
has a normal distribution with mean zero and variance ∫ , and  follows that the conditional

distribution of , given , , ∫ is log-normal and satisfies
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ln ~ − 12 + ( − ) , (1 − ) 2.16
Then we can easily sample F from this distribution.

For the other case , i.e ≠ 1, we proceed  by applying to F the same transformation used for

the CEV process, i.e X(F)= F1-β /(1-β). However, here we have to consider that the volatility

process is stochastic, and the realization of Ft depends on the realization of σt .

We consider the transformation X(F), after the Ito lemma application we get:

= + , − (2 − 2 ) 2.17
and substituting the Cholesky decomposition 2.12 and the integral 2.15 into 2.17 we obtain:

= + ( − ) + 1 − − (2 − 2 ) 2.18
If we would condition on , we could introduce the shifted process , with initial condition:

= + ( − )
And by 2.18 we get.

= 1 − − (2 − 2 ) 2.19
Now, we define the variable transformation Yt= , which, after applying Ito lemma, gives

= 2 += 2 1 − + 1 − 2 − (1 − )(1 − )(1 − ) (1 − ) 2.20
Applying Ito isometry can be easily shown that the integral of is a Normal distribution

with mean zero and variance ∫ . Then, when we apply the time change transformation
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(which means a condition on integrated variance) ( ) = (1 − ) ∫ , the process

resulting is a Brownian motion distributed as 1 − ∫ [56], i.e:

( ) = 1 −
Substituting this time changed Brownian motion into 2.20 we get

( ) = 2 ( ) + 1 − 2 − (1 − )(1 − )(1 − ) ( ) 2.21
From which follows that, starting from the process for F as in 2.1, given the transformation

Y(F)= F2-2β / (1-β)2,3 and applying a time-change transformation ( ) = (1 − ) ∫ , the

resulting process Yv(t), conditional on the terminal volatility and integrated variance∫ , is a squared Bessel process solving the SDE:

( ) = 2 ( ) + ( ) 2.22
With initial condition = + ( − ) and dimension = ( )( )( )
and, proceeding as we did in the previous section to get the the cumulative distribution function

of the CEV process, we obtain that for some F0 > 0 , the conditional cumulative distribution of

Ft with an absorbing boundary at Ft = 0 given ∫ is:

Pr ≤ > 0, , ∫ = 1 − χ ( , , ) 2.23
Where

= 1( ) 1 − + ( − ) , = 2 − 1 − 2 − (1 − )(1 − )(1 − ) , = ( )(1 − ) ( ) ,
( ) = (1 − ) ∫

3 the second transformation Y = is not applied on , but on , and we have = only when = 0; nevertheless islah
2009 show how, if t is small, the result is applicable with a very small approximation error even when ≠ 0 )
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and χ ( , , ) ℎ ℎ − .

To verify the last result is sufficient to substitute the parameters and Y0 given in equation

2.22 into the distribution function presented in equation 2.10.

2.4 The integrated variance approximation

Several methods have been proposed in the literature to approximate the integrated variance. In

the following subsection we describe the most used approximation techniques.

2.4.1 Chen et. al approximation

Chen et al. propose a moments matching approximation method. This method is based on the

fitting of the first two conditional moments of ∫ in a lognormal distribution. The

conditional mean and variance of ∫ are approximated using a small disturbance

expansion. They reformulate the volatility process by introducing a small parameter ε in the

diffusion coefficient so that:

( ) = + ( ) , 2.24
Where α = .

After the small disturbance expansion around = 0, they get the following approximation for

the conditional mean “m” and variance “v”:= (1 + , + 13 2 , − 2 + 13 , − ,+ 15 23 , − 32 , + 2 2.25
= 13 2.26

In order to avoid that the integrated variance takes negative value (which would be

meaningless), it is convenient to choose log-normal distribution to reproduce the conditional

distribution of the integrated variance. Then, the corresponding mean and variance of the

lognormal distribution are obtained by setting:

= ln( ) − 12 1 + 2.27
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= 1 + . 2.28
And the integrated variance is given by the approximation:

≈ exp( ( ) + ) 2.29
Where U is a uniform random variable.

2.4.2 Kennedy’s approximation

Another way based on the moment matching is to calculate analytically the moments of the

integrated variance. As shown by Kennedy[35],the mean ̌ and the variance of the integrated

variance are given by the following analytical expressions:

̌ = √2
ln( )√ + √ − ln( )√ − √

ln( )√ + √

= − √4 1 +
ln √ + √ − ln √ − √

ln √ + √

+ √4
ln √ + 2 √ − ln √ − 2 √

ln √ + 2 √
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2.4.3 Andersen’s approximation

Andersen [6] proposes to approximate the integrated variance by applying a simple trapezoidal

rule:

≈ ( + ) 2.30
Where and are two constant parameter which can be chosen in several ways. The

simplest is given by choosing = 1, = 0 (which gives an Euler-like approximation).

However, the method used by Andersen is based on the central discretization, given by setting= = . An extension of this method could consist in the simulation of intermediate

volatilities in the interval (0,t). The idea is to split the interval (0,t) in n sub-steps, and

associating to any intermediate volatility the same weight w = 1/(1+n) we get the following

approximation

≈ 2.31
2.5 Simulation of the forward rate path

It is possible to distinguish two different methodology for SABR model simulation. The most

used and studied is the moment matching approach, which consist in the fitting of the first two

moment of process distribution with a distribution function chosen by the operator. The first

example of the application of moment matching applied in the contest of a stochastic volatility

model is the QE (quadratic exponential) scheme introduced by Andersen[6] to simulate an

underlying in the Heston model. Haven[59] extend the QE scheme to the SABR model

implementing an algorithm very similar to Andersen one, solving the problem given by the fact

that the QE scheme is based on a squared Bessel process with reflecting boundary at zero. The

other methodology use a scheme developed by Marakow and Glew [47], which is used for the

exact simulation of the squared Bessel process. Other methods may be used as the log-Euler

discretization, but these do not take into account the absorbing or reflecting condition at zero.

Chen et. al propose an algorithm which mix the use of the moment matching techniques under

certain condition ( F >> 0 and then “absorption probability” ≈ 0 ) and a direct inversion scheme

for small value of F. this last scheme is that we will use to simulate the forward rate.
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2.5.1 Chen simulation scheme

The simulation scheme proposed by Chen use the property of the SABR seen in the previous

section. In particular, we have seen that the asset price dynamic of the asset in the SABR model

is a CEV process, and this can be linked with a transformed squared Bessel process. It is argued

that, when the level of the asset price is high, the probability of hitting zero is very small and

could be approximate to zero, i.e Pr( { | = 0} < ∆) ≈ 0. Then, by using the conditional

cumulative distribution of Ft given in equation 2.23 and the properties of non-central chi-square

distribution, it is possible to make the following approximation:

Pr ≤ > 0, , ∫ = 1 − χ ( , , ) =
χ ( , 2 − , ) + Pr( { | = 0} < ∆) ≈ χ ( , 2 − , )

Where a, b, c are as in 2.23.

It is possible to show (see [37]) that the non-central chi-square distribution approaches to a

power function applied to a Gaussian variable when the non-centrality parameter is high. The

preferable transformation of the Gaussian function is the cubic one (used in [6]), but such

scheme does not guarantee positive value of F. Then, when the level of F is sufficiently high,

we can match the first two moment of the distribution χ ( , 2 − , ) to a quadratic Gaussian

function (as made in the QE scheme).

For small value of F, Chen et. al propose to implement a Newton-type root finding method to

invert directly the distribution given by equation 2.23. Specifically, first it is determined the

value of  c* which solves the equation 1 − χ ( , , ∗) − = 0 (where U is an extraction from

an uniform random distribution), and then an inversion scheme is applied to sample F from the

value of c*. In the next subsection we analyze more specifically the moment matching

approximation and the direct inversion scheme.

2.5.2 Moment matching approximation

The quadratic representation of the Gaussian process Yt used in Andersen[6] (and also in [14])

takes the form: = ( + ) 2.32
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Where ~ (0,1) and d and e are two constant to be determined by the moment matching so

that the mean and the variance of the quadratic Gaussian process Yt corresponds to those of the

non-central chi-square distribution given in 2.23. These constant parameters depend on t and

on the value of Y at zero.

The mean and the variance of a non-central chi-square distribution χ ( , , ) are defined

respectively by m:= k + λ  and s2 = 2(k + 2λ). We want that:

[ ] =[ ] =
And since: [ ] = (1 + )[ ] = 2 (1 + 2 )
Follows that: = (1 + ); = 2 (1 + 2 ) 2.33
Substituting = ( )into the second equation, we get:

= 2 − 1 + 2 2 − 1 ≥ 0ℎ = 2.34
Which can be solved only if ≤ 2. Then for High value of (corresponding to low value of

F), the moment matching fail.

In our case, we have from equation 2.23:

= 1( ) 1 − + ( − )
= 2 − ( )( )( )

From and we can derive the value of and , hence we can sample Ft by approximate the

process
( )/(1 − ) ( ) to the quadratic normal process Y:

( )(1 − ) ( ) = ( + )
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From which = ((1 − ) ( ) ( + ) ) ( ) 2.36
2.5.3 Direct inversion scheme

When the moment matching scheme fail, i.e when F is low or > 2 , we have to estimate F

using another method. Chen et. al propose to estimate F inverting the equation which gives the

non-centrality parameter c in equation 2.23. The main problem is that when F is small the

density function does not integrate to one, and then we have to compute c considering this. In

particular, we can determine the value c* which solves the equation H(a,b,c*):= 1 −χ ( , , ) − = 0 and find F by inverting the equation for c in equation 2.23, which result in:

= ( ∗(1 − ) ( )) 2.37
We can use several method to determine c*, such as interpolation or a Newton’s method. In

Chen et. al is used the last one, in their algorithm they get c0 = a and control if this value solves

the equation H(a,b,c*) := 1 − χ ( , , ∗) − = 0 with a certain degree of tolerance ε. If the

tolerance is not achieved, i.e H ( a,b,c*) := 1 − χ ( , , ∗) − > ε, the Newton’s method is

applied until the prescribed tolerance is reached:

= − ( , , )( , , ) 2.38
Where ( , , ) is the transition density for the squared Bessel process with an absorbing

boundary at zero given by equation 2.8. The implementation of this method require some

attention when is implemented with a programming language because  c* can became negative

and this would be meaningless.
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SABR PATH SIMULATION USING CHEN ET. AL SCHEME[36]

F0=0.05252;
T=1;
sigma_0=0.03;   %ANNUAL
alfa=0.60;      %ANNUAL
beta=0.5;
rho=-0.25;
time_step=250;
n_sim=500;

tollerance=0.001;
maxiter=200;

Delta = 1/time_step;
NSteps = T/Delta;
pathF = zeros(n_sim,NSteps+1);
pathF(:,1) = F0;

F_Delta = repmat(F0,n_sim,1) ;

for i = 1:NSteps

Z = sqrt(Delta)*randn(n_sim,1);
sigma_Delta = sigma_0.*exp(alfa*(Z-0.5*alfa*Delta));

m = sigma_0.^2*Delta.*(1 + alfa*(Z + alfa*((2*Z.^2-
0.5*Delta)/3 +    alfa*((Z.^3-Z*Delta)/3 +
alfa*(2/3*Z.^4-1.5*Z.^2*Delta+2*Delta^2)/5))));

v = sigma_0.^4*alfa^2*Delta^3/3;

% moment-mathched log-normal distribution
sigma2 = log(1+v./m.^2);
mu = log(m) - 0.5*sigma2;

%inverse transformation
U = randn(n_sim,1);
A_Delta = exp(sqrt(sigma2).*U + mu);

v_Delta = (1-rho^2)*A_Delta;

if beta == 1            % case: beta = 1
dW = rho*Z + sqrt(1-
rho^2)*sqrt(Delta)*randn(n_sim,1); %  cholesky

F_Delta = F_Delta.*(1 + sigma_0.*dW);
else

% Direct Inversion Scheme for Conditional CEV
Process

if alfa >0
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a = (F_Delta.^(1-beta)/(1-beta) +
rho*(sigma_Delta-
sigma_0)/alfa).^2./v_Delta;

else
a = (F_Delta.^(1-beta)/(1-beta)).^2./v_Delta;

end
b = 2 - (1-2*beta-rho^2*(1-beta))/(1-beta)/(1-

rho^2);

U1 = rand(n_sim,1);

P_absorb = 1 - chi2cdf(a,b);

% distinguish between the following cases

% (1)
I1 = F_Delta == 0;
F_Delta(I1) = 0;
% (2)
I2 = F_Delta ~= 0 & U1 <= P_absorb;
F_Delta(I2) = 0;
% (3)
I3 = F_Delta ~= 0 & U1 > P_absorb;

if sum(I3) > 0

% parameters for the moment-matched quadratic
% gaussian approximation,
k = 2-b;
lambda = a;
m = k+lambda;
s2 = 2*(k+2*lambda);
Psi = s2./m.^2;

Psi_thres = 2;

% moment matched quadratic gaussian
approximation

I4 = ((Psi > 0 & Psi <= Psi_thres) & m >= 0) &
I3 == 1;

if sum(I4) > 0
e2 = 2./Psi-1+sqrt(2./Psi).*sqrt(2./Psi-

1);
d = m./(1+e2);

F_Delta(I4) = ((1-
beta)^2*v_Delta(I4).*d(I4).*(sqrt(e2(I4))+randn(sum(I4),1)).^2
).^(1/(2*(1-beta)));

end

% Step 7 otherwise



50

I5 = ((Psi > Psi_thres |( m < 0 & Psi > 0 &
Psi <= Psi_thres)) & I3 == 1);

if sum(I5) > 0
% Newton method to determine the root c*
of the

% function : H(a,b,c) = 1-Chi^2(a,b,c)-U =
0

% c* is a random number from a squared
Bessel
% distribution with absorbing boundary at

zero

H = @(c,IVec)(1-ncx2cdf(a(IVec),b,c)-
U1(IVec));
qbar = @(c,IVec)

(0.5*(c./a(IVec)).^(0.25*(b-2)) .*
exp(-0.5*(a(IVec)+c)) .*
besseli(abs(0.5*(b-
2)),sqrt(a(IVec).*c)));

nVec = (1:length(a))';
indexVec = nVec(I5);

IndOfInterest=H(0,indexVec)<0;
iVec=indexVec(IndOfInterest);

c_star=a(iVec);
c_old=c_star; %initial counter
k=0;
i6=abs(H(c_star,iVec))>tollerance;
while k < maxiter && sum(i6) > 0

k=k+1;
step=1;
c_star(i6)=c_old(i6)-

step*H(c_old(i6),iVec(i6))./
qbar(c_old(i6),iVec(i6));

while sum(c_star<0)>0 && step>tollerance
i7 = c_star < 0;
step=0.5*step;
c_star(i7)=c_old(i7)-
step*H(c_old(i7),iVec(i7))./qbar(c_o
ld(i7),iVec(i7));

end
c_old(i6)=c_star(i6);
i6=abs(H(c_star,iVec))>tollerance;
end

F_Delta(iVec)=(c_star.*(1-
beta)^2.*v_Delta(iVec)).^(1/(2-2*beta));
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F_Delta(indexVec(~IndOfInterest)) = 0;

end
end

end

% update initial volatility
sigma_0 = sigma_Delta;
pathF(:,i+1) = F_Delta;
figure(3);
plot (pathF')
SABRsimulation= pathF;

end
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Third Chapter

Estimation of the ATSM parameters and pricing of Caplet

option

INTRODUCTION

The main purpose of this work is to try to answer questions like: are the forward rate paths

generated by a SABR model compatible with the interest rate paths generated by an affine term

structure model? Or, how diverge the option prices given by these models? In general, when

traders want to make a comparison between different models in order to find the best one to

use, they choose to do this starting from real data. Therefore, they estimates the parameters of

the models from the historical time series observed in the market, hence they make the

simulations of the paths and the pricing of the option using the estimated models, and finally

they compare the resulting paths and option prices with ones observed in the market. This

procedure is the market practice, and it is the best of what the operators can do. However, when

we work with real data we do not know the true data generating process, the only information

we have is the (unique) realization of this process. Then, the goodness of a model is measured

with respect to a very limited set of information about the true model. In this work, we do not

rely on the correspondence of each model with real data, but we compare each model directly

with the others. In particular, we assume that our true data generating process is the SABR

model and, on the basis of the data generated by this, we estimate the parameter of the Vasicek

and CIR model. After the estimation, we make the simulation path and the pricing of some

options and we compare them with those given by the SABR model. If the difference of the

options price is low and the paths generated are similar, we can conclude that using the SABR

model or the Vasicek and CIR models does not involve large differences. Then, we could use

the simplest ATS models. Otherwise, we can conclude that the SABR model own some features

that other models are not able to reproduce and then we should use this.  However, we must

emphasize that we are making only an econometric analysis, which does not include any

consideration about the already established superiority of the SABR model in the management

of the hedging strategy and of the volatility smile in the options market.
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The first step of the analysis is to assign a value to the SABR model parameters. We will assume

that these parameters refers to the dynamic of a specific forward rate ( , , ), i.e the forward

rate of expiry S = 1 year and maturity T=2 years.

In order to choose reasonable parameters, we have taken these from a SABR model estimated

on the swaption quotes4, getting the following values:

f(0,S,T) 0.05252

β 0.5

0.029

ρ - 0.25

0.61

Tab 3.1 SABR parameters

Then, we put this set of parameter values into the SABR model and, using the method described

in chapter 2, simulate n (=500) paths of the forward rate for 250 time steps (TS) and with∆ equal to 1/2505. Now, we have several paths generated by model we consider as “true” model

and we want to see if the Vasicek and CIR model are able to replicate the behavior of these

paths. To do this, we first need to estimate the set of parameters = ( , , ) for both affine

term structure models. In order to estimate the set of parameters we need the discretization

version of stochastic differential equation of the model considered. From equations 1.24 and

1.44 of chapter 1 we have the following discrete equations:

 Discrete version of the Vasicek model:( + ∆ ) = ( ) ∆ + (1 − ∆ ) + (1 − ∆ )/2 3.1
4 These data are taken from R.Rebonato et. al , The SABR/ Libor Market model pag. 29
5 This setup simulates a daily forward rate path
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where ~ . . (0,1).

 Discrete version of the CIR model:( + ∆ ) = ( ) + − ( ) ∆ + ( ) , 3.2
where ~ . . (0, ∆ ).

If the data generated by the SABR model were interest rates, we could directly estimate such

models on these data. However, since it is not so, we first have to implement a calibration

procedure which “convert” , as well as possible, the SABR forward rate in short term interest

rate ∗( ).

3.1 Calibration procedure

The In order to find the set of parameters ∗ = ( ∗, ∗, ∗) we use the one-to-one relation

between the forward rate ∗( , , ) and ∗( ) given in equation 1.55 for the CIR model and in

equation 1.49 for the  the Vasicek model6,mathematically we have:

∗( , , ) = ∗( ) ( ∗, , , ) 3.3
Where is a deterministic function of ∗, , .

The calibration procedure we will implement consist of the following steps:

1 – Assign a range of values to the parameters to be calibrated; i.e0 < ∗ < 0.30 < ∗ < 0.10 < ∗ < 0.1
And, within this range, we select each parameter by varying its value using a step equal to

0.001, so that we get 0.1/0.001 values of  and ∗ ∗ and 0.3/0.001 values of ∗
2 – Put any possible combination of ∗, ∗ ∗ 7into 3.1 and 3.2. For each combination,

generate m(=100) paths of ∗( ) starting from ∗(0), which is calculated by 3.2.1 putting

f(0,S,T) in the left side . Then, use 3.1 to generate the forward rates ∗( , , ).

6 Since analogous considerations can be made for the CIR model, to describe the calibration procedure we refer
only to the Vasicek model.

7 In our simulation we have 100x100x300=3.000.000 of combinations
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3 – To decide what combination of parameters is the best, compare each ∗( , , ) with each( , , ) and choose the combination of parameters that minimize the mean of root mean

square deviation:

1 ( , , ) − ∗( , , ) 3.4
Where TS is the number of observation for each path (in our case, TS=250).

The Matlab implementation of this procedure give us the following result:

Parameter Value Mean of

RMSerrors8

CV(RMSE)9

∗ 0.220

0.0042 8.1 %̅∗ 0.041∗ 0.038

Tab. 3.2 Vasicek calibrated parameters

Parameter Value Mean of

RMSerrors

CV(RMSE)

∗ 0.262

0.0033 6.36 %̅∗ 0.035∗ 0.029

Tab 3.3 CIR calibrated parameters

The value of CV(RMSE) show that the calibrated CIR model generate paths that, on average,

are closer (to SABR paths) then ones generated by the Vasicek model. A view of the figures

3.4 – 3.6 show that the “density” of 5000 forward rate at time t=1 generated by Vasicek and

CIR model is not so far from the SABR ones.

8 Of forward rate given using estimated model
9 Coefficient of variation of the RMSE calculated as the ratio RMSerror / ( , , ) , where the denominator represents the
mean of the forward value ( , , )
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Fig.3.4 forward rates density generated by the SABR model with parameters as in tab 3.1

Fig. 3.5 forward rate at time S=1 generated by calibrated CIR
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Fig. 3.6 histogram of  forward rate at time S=1 generated by calibrated Vasicek

The value of the CV(RMSE) for the CIR model indicates that, on average, the forward rates∗( , , ) generated by this model diverge by 6.36% (of the value ( , , ) ) respect to the

same ( , , ) .Then, looking at the value of CV(RMSE), the CIR model seems to fit better

than the Vasicek model the paths generated by SABR model.

Now, we consider the interest rates ∗( ) generated by the calibrated model as the “true” interest

rates resulting from the SABR model and apply the estimation procedure.

3.2 Parameter Estimation

In the literature, we can find several estimation methods for both the Vasicek and CIR model.

In the following paragraph we will describe and implement two of the most used: the OLS

estimation and the Maximum likelihood estimation.

3.2.1 OLS estimation

In order to apply the OLS to the studied model we have to consider the discrete version given

in equations 3.1 and 3.2. We assume that the relationship between two consecutive observations( ) ( + 1) , ℎ 0 ≤ < , is given by the following regression with an i.i.d random

term :
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( + 1) = + ( ) + 3.5
The OLS estimation consist of minimizing the variance of residual, or equivalently the sum of

the squared residual (SSR), which results in:

= = ( + 1) − ( + ( )) 3.6
Where T represent the number of observations.

Hence, the OLS estimators can be found by solving the following optimization

problem:

( + 1) − ( + ( )) 3.7
By differentiating 3.7 with respect to and with respect to b and setting these derivatives equal

to 0, we find the estimators , which are equal to[39]:

= −−= −
. ( ) = − − ( − )( − 2)

Where

= ( ), = ( + 1), = ( ) ,
= ( ) ( + 1), = ( + 1) ,

In Matlab it is possible to find by using the function fminsearch .



60

3.2.1.1 - Vasicek OLS parameter estimation

The discrete Vasicek equation 3.1 can be expressed by the linear relation 3.5 setting the

parameters as follow:

= ∆= (1 − ∆ ). ( ) = (1 − ∆ )/2
Rewriting these equation gives:

= − ln∆ 3.8= 1 − 3.9
= . ( ) −2 ln∆ (1 − ) 3.10

Then, to estimate the parameter of the Vasicek model it is sufficient to find solving

the equation 3.7 and apply the equation 3.8-3.9. To get we calculate the standard deviation of

residuals and substitute this into 3.10. The result are shown in tab.3.4

Calibrated

Parameter

Value Estimated

parameter

Value Mean of

RMSerrors10

CV(RMSE)

∗ 0.220 0.1550

0.0047 9.06 %̅∗ 0.041 ̂ 0.0665∗ 0.038 0.0233

Tab. 3.4 Vasicek calibrated and estimated parameters using OLS

10 Of forward rate given using estimated model
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3.2.1.2 CIR OLS parameter estimation

For the CIR process it is not possible to give an explicit relation between the parameters of 3.5

and the parameters of 3.2 because the diffusion term is affected by ( ). Then, we have to

perform OLS directly on the equation 3.2 by isolating :

= ( + ∆ ) − ( )( ) − ∆( ) + ( )∆
And the objective function corresponding to 3.7 is:

( + 1) − ( )( ) − ∆( ) + ( )∆ 3.11
which is solved by:

= − 2 + 1 + ∑ ( + 1) ∑ 1( ) − ∑ ( ) ∑ 1( ) − ( − 1) ∑ ( + 1)( )− 2 + 1 − ∑ ( ) ∑ 1( ) ∆ ,
̂

= ( − 1) ∑ ( + 1) − ∑ ( + 1)( ) ∑ ( )− 2 + 1 + ∑ ( + 1) ∑ 1( ) − ∑ ( ) ∑ 1( ) − ( − 1) ∑ ( + 1)( ) .
And is found as a standard deviation of residuals. As for the Vasicek model, it is possible

to solve 3.11 using fminsearch function in Matlab. The result of the estimation obtained by

using this function are shown in tab 3.5.
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Calibrated

Parameter

Value Estimated

parameter

Value Mean of

RMSerrors11

CV(RMSE)

∗ 0.262 0.1771

0.0038 7.32 %̅∗ 0.035 ̂ 0.0469∗ 0.029 0.0260

Tab. 3.5 CIR calibrated and estimated parameters using OLS

3.2.2 Maximum likelihood estimation

Given an observation r on a random variable, we define likelihood the value of the density

function associated to the random variable considered at r. The likelihood of a sample r =( , , … , ) is the product of the values of the density function at each . We can write:( | ) = ( | ). 3.12
The value of the density function at each point depend on the parameters , then, if the

parameters change, even the value of the likelihood will change. The Maximum likelihood

estimator of is the value of that maximize the likelihood function:

= max ( | )
In general, it is more convenient to work with the logarithm of the likelihood (log-likelihood )

because we have to differentiate the likelihood function to find the value of , and it is much

easier to differentiate the log-likelihood because is a sum of log-density:

ln ( | ) = ln ( , ). 3.13
The logarithmic function is a monotonic increasing function and then the value which

maximize the likelihood also maximize the log-likelihood.

11 Of forward rate given using estimated model
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3.2.2.1 Vasicek MLE

As show in chapter 1, in the Vasicek model ( ) is normally distributed with :

[ ( + ∆ | ( )] = ( ) + (1 − )

[ ( + ∆ )| ( )] = ( 1 − )
and the conditional probability density of ( + ∆ )| ( ) is given by:

( ( + ∆ )| ( ); , , )
= 12 1 − 2 exp − ( ( + ∆ ) − ( ) − (1 − ))2 1 − 2

Hence, the log-likelihood function of a set of observation r = ( , , … , ) results as follows:

ln ( , , | ) = ln ( ( + ∆ )| ( ); , , )
= − 2 ln(2 ) − ( 1 − 2

− ( ( + ∆ ) − ( ) − (1 − )) 3.14
The maximum of this function can be found differentiating with respect to , and

setting this partial derivative equal to zero [1]:

ln ( , , | ) = − ∆ ∆1 − 2 [( ( − ∆ ) − )( ( ) − ) − ( ( ) − ) ] = 0
= − 1∆ ln ∑ [( ( − ∆ ) − )( ( ) − )]−1=1 ∑ [( ( ) − )2]−1=1 3.15
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ln ( , , | ) = 11 − 2 ( + ∆ ) − − ( ) − 1 − − = 0
= ∑ ( ( + ∆ ) − ( ))(1 − ) 3.16

ln ( , , | ) = 1 − 2 − 1 − 2 [( ( + ∆ ) − ) − ( ( ) − ]

= 11 − 2 [( ( + ∆ ) − ) − ( ( ) − ] 3.17
And after straightforward calculation we get:

̂ = −− − ( − )
= − 1∆ ln − + +− 2 −

= 2(1 − ) − 2 + − 2 (1 − )( −+ (1 − )
Where:

= ( ), = ( + 1), = ( ) ,
= ( ) ( + 1), = ( + 1) .
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The Matlab implmementation of the MLE estimation give us the following result:

Calibrated

Parameter

Value Estimated

parameter

(MLE)

Value Mean of

RMSerrors12

CV(RMSE)

∗ 0.220 0.2044

0.0045 8.68 %̅∗ 0.041 ̅ 0.0565∗ 0.038 0.0411

Tab. 3.4 Vasicek calibrated and estimated parameters (MLE)

3.2.2.2 CIR Maximum Likelihood estimation

As shown in chapter 1, the distribution function of r(t) follows, up to a scale factor, a Non-

central chi-squared distribution. Then we have:

( + ∆ ) ( ) ~ (1 − ∆ )4 χ 4 ∆(1 − ∆ ) ( ) 3.18
Where χ ( ) denotes the non-central chi-squared distribution with d degrees of freedom equal

to:

= 4μ
and non-centrality parameter given by:

= 4 ∆(1 − ∆ ) ( )
Given this distribution of the r(t) we cannot find (as made for Vasicek) an explicit formulas for

the values of the parameters to estimate. Then, in the algorithm developed in Matlab we need

to calculate first the log-likelihood function using 3.13 and in order to maximize this we will

12 Of forward rate given using estimated model



66

minimize the value of  the log-likelihood function (using fminsearch )13. The result of the

estimation (see Matlab code in appendix C). The estimation is made for any simulation of ∗( ),

and the resulting parameters are calculated as mean of estimated parameter of each simulation.

The result is shown in the following table:

Calibrated

Parameter

Value Estimated

parameter

(MLE)

Value Mean of

RMSerror14

CV(RMS

E)

∗ 0.262 0.2703

0.0034 7.32 %̅∗ 0.035 ̅ 0.0334∗ 0.029 0.0292

Tab. 3.5 CIR calibrated and estimated parameters (MLE)

3.3 Pricing

Another comparison that can be made between the different models analyzed regards the prices

of the options that they generate. Of course, to make this kind of comparison we have to choose

the options having an explicit form solution that allows an easy pricing for all the model used.

Relying on this issue, we chose to calculate the prices of the caplet. A caplet is an European

call option having as underlying the interest rate L(S,T) prevailing at time S, which pay at the

maturity date T the payoff15:

max(0, ( , ) − ) ∗ ( − ) ∗ 3.19
where N is the notional amount on which the interest rate is calculated (in the following

paragraph this amount is assumed equal to 1 for simplicity).

Such kind of option is mainly used to cover a short position on L(S,T) against a possible

increase in the level of rates. For example, when I have a position that requires payment of the

13 The use of fminseach require to assign an initial value to the parameters to be found, follows [1] we set these
initial value equal to values estimated using OLS estimation.
14 Of forward rate given using estimated model
15 The difference (T-S) is called tenor
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floating rate L(S,T) at the date T and I want to fix (equal to K) the maximum amount I will have

to pay, in fact if  I buy a caplet:

TOT PAYOFF: CAPLET PAYOFF – SHORT POSITION = ( ( , ) − ) − ( , )
If ( , ) > the total payoff is – , if ( , ) < the total payoff is − ( , ) which is

less than K, then the maximum amount I will have to pay is K.

The payoff in 3.19 can be written in term of forward rate ( , , ) = ( , ) that is a P(0,T)-

martingale16, then:(0, ( , , ), ) = (0, ) ( , )(max(0, ( , , ) − ))( − )
And assuming L(t,S,T) lognormally distributed with deterministic volatility,i.e:

( , , ) = ( , , ) ( , ) 3.20
it is possible to apply the Black formula17:

(0, (0, , ), ) = ( − ) (0, )[ (0, , ) ∗ ( ) − ∗ ( ) 3.21
= ln (0, , ) + 12 ( − 0)√ −

= − √ − 0
Where is determined by the market, or in our case by the model used.

3.3.1 SABR Caplet price

We can now use the result of the second chapter to apply the SABR formula for European

option as in equation 2.2. Hence, to get the caplet price using SABR model is sufficient to put

into the Black formula 3.21 the following value of volatility:

16 See [10]
17 See [57]
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( , (0, , )) == ( (0, , ) ∗ )( )⁄ 1 + (1 − )24 ( (0, , )⁄ ) + (1 − )1920 ( (0, , )⁄ ) +⋯ .
. ( ) . 1 + (1 − )24 ( )( (0, , ) ∗ )( ) + 14 ( (0, , ) ∗ )( )/

+ 2 − 324
Where

= ( (0, , ) ∗ )( )/ ( (0, , )⁄ )
And

( ) = − + 1 − 2 +1 −
Note that P(0,T) in 3.21 appears only as “discounting term”, and since we are not in the context

of “real market” we cannot derive this from real data. We “solve” this problem by calculating

the value of P(0,T) using the ATSmodel. Then, for the SABR caplet price that has to be

compared with the Vasicek caplet price we calculate P(0,T) using this last model, and we do

the same with the CIR model. It is clear that this approach is far from what is done in the market,

but in the “artificial word” in which we are operating it is a necessary forcing that allows us to

compare these models.

3.3.2 Vasicek and CIR Caplet prices

To price a caplet with an ATS model we have to rearrange the payoff. Following the book of

Cesari [58] we can make the following consideration: the payoff at time T ( ( , ) − ) ∗( − ) is equivalent to the payoff at time S ( ( , ) − ) ∗ ( − ) ∗ ( , ). In fact, I can

invest the payoff at time S in the bond P(S,T), obtaining ( ( , ) − ) ∗ ( − ) ∗ 1 at time

T. Now we manipulate the form of the payoff in S in the following way assuming a simply

compound interest rate: ( ( , ) − ) ∗ ( − ) ∗ ( , ) =
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= ( − ) ∗ ( , ) ∗ 1− 1( , ) − 1 −= (1 − (1 + ( − ) ) ∗ ( , ))= (1 + ( − ) ) ∗ 11 + ( − ) − ( , )= (1 − (1 + ( − ) ) ∗ ( , ))
From which follows that a caplet can be interpreted as a European Put option with maturity S

on the (1 + ( − ) ) T-ZCB and strike equal to 1. As shown in [10] the price at time zero of

a Put option written on a zero coupon bond P(0,T), having strike X and maturing at time S in

given by:

In the Vasicek model:

( , , , ) = ( , ) −ℎ + − ∗ ( , ) (−ℎ)
with ℎ = 1 ln ∗ ( , )∗ (0, ) + 2

= (1 − ( )) 1 − ( )2
Where Nom is the Nominal value of the ZCB.

In the CIR model:

( , , , ) = ( , )χ ( ; , ) − ( , )χ ( ; , ) − ( , ) + ( , )
where = 2 ̅( + + ( , ))= 2 ̅( + )= 4

= 2 ( ) ( )√ + 2+ + ( , )
= 2 ( ) ( )√+

With , ̅ defined as
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= 2√ + 2( ( )√ − 1)= + √ + 2
̅ = ln( ( , ))( , )

And χ ( ; , ) represent the cumulative distribution function of the non-central chi-squared

distribution with degree of freedom and non-centrality parameter . Both Vasicek and CIR

caplet price are calculate also using Monte Carlo technique by simulating18 the zero coupon

bond price and calculating the discounted value (multiplying by P(0,S)) of the mean of the

payoffs.

3.3.3 Pricing result and conclusions

Table 3.6 contains the pricing result of a caplet with maturity S=1y, tenor =1y , strike = 0.06

and written on a notional equal to 1:

SABR Vasicek

(calibrated)

CIR

(calibrated)

Vasicek

(estimated)

CIR

(estimated)

0.0056

Monte

Carlo

0.0051 0.0053 0.050 0.053

Black

formula

0.0051 0.0052 0.050 0.051

Table 3.6 Comparison of Caplet prices among SABR,Vasicec and CIR model

The result shown big difference in the caplet price among the models. The relative error made

using the calibrated CIR model (equal to 5.3% using Monte Carlo and 7.1% using Black

formula) is smaller than that committed using the calibrated Vasicek model (equal to 8.9%

using both Monte Carlo and Black formula). The relative error is bigger if we look at the

estimated model. Considering the estimation errors, the differences in prices are in line with the

18 The caplet price is very sensitive to the number of simulations. Choosing n=10000, the resulting price of one
simulation can differ up to 50% from the price of another simulation. For this reason we have set n=1000000
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expectation. In fact, we can deduce that the main cause of the price differences is due to the

failure of the affine term structure model in replicating the forward rate behavior of the SABR

model, and this results in different values of ( , ) among the models, from which follows a

difference value of ( , ) and then of the caplet prices. Furthermore, looking at the market,

the caplets are not traded singularly; they are the building blocks of more complex derivative

contracts, the CAPs. This contract is essentially a sum of caplets having different maturity and

the same tenor.  We have not found precise data about the size of the CAPs market, also because

these contracts are negotiated in the OTC market. However, a report of the Bank International

Settlement19 show that for single-currency interest rate derivatives at end-December 2014, the

notional amount of outstanding contracts totaled $505 trillion, which represented 80% of the

global OTC derivatives market. Then, given the magnitude of the interest rate option market

and the exposure of financial institutions on interest rate derivatives, it is clear the importance

of using the most accurate models possible for pricing and hedging these options. As already

said, the SABR model is probably the best model for pricing and hedging interest rate option,

but when in a portfolio there are other positions, like for example on a certain quantity of bonds,

these cannot be priced using Vasicek or CIR model.

.

.

19 See  http://www.bis.org/publ/otc_hy1504.pdf
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Matlab Code

Vasicek calibration

clc
clear all
close all

load ('Sabr_path')
data=Sabr_path(1,:);

a=[0.001:0.001:0.001]; % alpha
b=[0.001:0.001:0.1]; % mu
c=[0.001:0.001:0.20];%sigma
o=length(data(:,1));

time_step=length(data(1,:));
nSim=100;

al=length(a);
bl=length(b);
cl=length(c);
T_ex=1; T_set=2;

tots=al*bl*cl;

path_R = zeros(nSim,time_step*T_set/T_ex);
r0=0.03;
mean_R=zeros(1,time_step);
path_R(:,1) = r0;

delta_t=1/time_step;
r=zeros(nSim,time_step);

zcb_set= zeros(nSim,time_step);
zcb_ex= zeros(nSim,time_step);
forward_rate=zeros(1,time_step);
B_Tex=zeros(1,time_step);
B_Tset=zeros(1,time_step);
A_Tex=zeros(1,time_step);
A_Tset=zeros(1,time_step);

error=zeros(nSim,time_step);
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mean_error=zeros(1,1);
mean_error_vector=zeros(tots,1);
count=0;
%calibration referred to a single SABR simulation
for i=1:al

for j=1:bl
for w=1:cl

for h=1:nSim
for q=1:(time_step*(T_set/T_ex)-1)
%per ogni tripletta ci calcoliamo delle

simulazioni di r
path_R(h,q+1)=path_R(h,q)*exp(-

a(i)*delta_t)+ b(j)*(1-exp(-a(i)*delta_t))+c(w)*sqrt((1-exp(-
2*a(i)*delta_t))/2*a(i))*randn();

end
end

%
for s=1:nSim

for m=1:time_step
x(i)=(T_set-(i-1)/time_step);
y(i)=(T_ex-(i-1)/time_step);
B_Tex(m)= (1-exp(-a(i)*y(m)))/a(i);
B_Tset(m)= (1-exp(-a(i)*x(m)))/a(i);

A_Tex(m)= (((c(w)^2)/(2*a(i)^2))-b(j))*((y(m))-
B_Tex(m))-((c(w)^2)/(4*a(i)))*B_Tex(m)^2;

A_Tset(m)=(((c(w)^2)/(2*a(i)^2))-b(j))*((x(m))-
B_Tset(m))-((c(w)^2)/(4*a(i)))*B_Tset(m)^2;

zcb_ex(s,m)=exp(A_Tex(m)-path_R(s,m)*B_Tex(m));
zcb_set(s,m)=exp(A_Tset(m)-

path_R(s,m)*B_Tset(m));
forward_rate(s,m)=((log(zcb_ex(s,m))-

log(zcb_set(s,m))))/(T_set-T_ex);

end
end

for ss=1:nSim %fisso la riga vasicek
for dd=1:time_step

error(ss,dd)=(data(dd)-
forward_rate(ss,dd))^2; %per ogni riga sabr calcolo la root
mean square deviation rispetto alle simulazioni vasicek

end
end
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mean_error=sqrt((1/(time_step*nSim))*sum(sum(error(:,:))));
count=count+1
mean_error_vector(count,1)=mean_error;
[val,idx]=min(mean_error_vector) ;

end
end

end

Ols vasicek

clc
clear all
close all

load Sabr_path
data=Sabr_path;
n=length(data(1,:));
nSim=length(data(:,1))
delta_t=1/(n-1)

for i=1:nSim

rx(i)=sum(data(i,1:n-1));
ry(i)=sum(data(i,2:n));
rxx(i)=sum(data(i,1:n-1).^2) %k
rxy(i)=sum(data(i,1:n-1).*data(i,2:n)); %k
ryy(i)=sum(data(i,2:n).^2);

b(i)=(n*rxy(i)-rx(i)*ry(i))/(n*rxx(i)-(rx(i)^2));
phi(i)=(ry(i)-b(i)*rx(i))/n;
s.devW(i)=sqrt((n*ryy(i)-(ry(i)^2)-b(i)*(n*rxy(i)-
rx(i)*ry(i)))/(n*(n-2)));

a(i)=-log(b(i))/delta_t
mu(i)=phi(i)/(1-b(i));
sigma(i)=s.devW(i)*sqrt((-2*log(b(i)))/(delta_t*(1-b(i)^2)));

end
aa=mean(a);
mm=mean(mu);
ss=mean(sigma);
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MLE Vasicek

clc
clear all
close all

load path_R
data=path_R
n=length(data(1,:));
nSim=length(data(:,1))
delta_t=1/(n-1)

for i=1:nSim

rx(i)=sum(data(i,1:n-1));
ry(i)=sum(data(i,2:n));
rxx(i)=sum(data(i,1:n-1).^2) %k
rxy(i)=sum(data(i,1:n-1).*data(i,2:n)); %k
ryy(i)=sum(data(i,2:n).^2);

mu(i)= ((ry(i)*rxx(i)-rx(i)*rxy(i))/(n*(rxx(i)-rxy(i))-
((rx(i)^2)-rx(i)*ry(i))));
a(i)= -(1/delta_t)*log((rxy(i)-mu(i)*rx(i)-
mu(i)*ry(i)+n*mu(i)^2)/(rxx(i)-2*mu(i)*rx(i)+n*mu(i)^2));

sigma2(i)=((2*a(i))/(1-exp(-a(i)*2*delta_t)))*(1/n)*(rxx(i)-
2*(exp(-a(i)*delta_t))*rxy(i)+(exp(-2*a(i)*delta_t))*rxx(i)-
2*mu(i)*(1-exp(-a(i)*delta_t))*(ry(i)-rx(i)*exp(-
a(i)*delta_t))+n*(mu(i)^2)*(1-exp(-a(i)*delta_t))^2);

end
aa=mean(a)
mm=mean(mu)
ss=mean(sigma2)

CIR OLS and ML estimation

clc
clear all
close all

load PathCalibratedCIR

CIR.Data = PathCalibratedCIR;
Results = CIRestimation(CIR)
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______________________________________________________________
_______

function lnL = loglike(Parameters, CIR)
Data = CIR.Data;
Data1 = Data(2:end);
Data2 = Data(1:end-1);
TimeStep = 1/250;
a = Parameters(1);
mu = Parameters(2);
sigma = Parameters(3);

df=(4*mu*a)/sigma^2
nc=Data1*(4*a*exp(-a*TimeStep))/((sigma^2)*(1-exp(-

a*TimeStep)))
tdf =(((sigma^2)*(1-exp(-a*TimeStep)))/4*a)*

ncx2pdf(Data2, df, nc); %
transition

density function
lnL = sum(-log(tdf));

end

function Results = CIRestimation(CIR)
% OLS estimation
Nobs = length(CIR.Data);
r = CIR.Data(1:end-1);
dr = diff(CIR.Data);
dr = dr./r.^0.5;
regressors = [CIR.TimeStep./r.^0.5, CIR.TimeStep*r.^0.5];
drift = regressors\dr;
res = regressors*drift - dr;
a = -drift(2);
mu = -drift(1)/drift(2);
sigma = sqrt(var(res, 1)/CIR.TimeStep); % standard

deviation of residual
InitialParameters = [a mu sigma];

% MLE with initial parameter given by OLS

[Parameters] =  fminsearch(@(Parameters)
loglike(Parameters, CIR),   InitialParameters);

Results.Parameters = Parameters;
end
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SABR Caplet price

clc
clear all
close all

K=0.060
CapData=[K 13]; %13 indica che la day count basis è calcolata
considerando 1y=252days
FwdRates=0.05252;
ZeroPrice=89;%P(0,T)
Settle=0;
StartDate=250;
EndDate=500;
sigma0=0.029;
rho=-0.25;
beta=0.5;
v=0.61;
z=(v/sigma0)*((0.5*K)^((1-beta)/2))*log(0.5/K);
x=log((z-rho+((1-2*rho*z+(z^2))^(1/2)))/(1-rho));
Sigma=(sigma0/(((0.05*K)^((1-beta)/2))*(1+((((1-
beta)^2)*(log(0.5/K))^2)/24)+((((1-
beta)^4)*(log(0.5/K))^4)/1920))))*(z/x)*(1+((((1-
beta)^2)/24)*((sigma0^2)/(0.5*K)^(1-
beta))+(1/4)*(rho*beta*v*sigma0)/(0.5*K)^((1-
beta)/2)+((v^2)*(2-3*rho^2)/24))*1)

CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)/100 %because the defoult notional
is 100

Vasicek Caplet price (Black-76)

clc
clear all
close all

a=0.4244;
mu=0.0465;
sigma=0.0311;
strike_cap=0.060
quantity=1+strike_cap
PT=0.8905;
PS=0.9458;
K=1
L=1%face value
sigmap=(sigma/a)*(1-exp(-a))*sqrt((1-exp(-2*a))/2*a);
h=(1/sigmap)*log((L*PT*1.06)/(K*PS))+(sigmap/2);
price=(K*PS*normcdf(-h+sigmap)-L*PT*normcdf(-h)*quantity)
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CIR caplet price (Black-76)

r0=0.0551;
k=0.2703;
mu=0.0434;
sigma=0.0272;
PS=0.954;
PT=0.896;
CST=0.9946;
BST=0.8852
quantity=1.06;
K=1
rho=(2*sqrt((k^2)+(2*sigma^2)))/((sigma^2)*(exp(sqrt((k^2)+(2*
sigma^2)))-1));
delta=(k+sqrt((k^2)+(2*sigma^2)))/(sigma^2);
r1=(log(CST/K)/BST);
x1=2*r1*(rho+delta+BST);
x2=2*r1*(rho+delta);
v=4*k*mu/(sigma^2);
w1=(2*(rho^2)*r0*exp(sqrt((k^2)+(2*sigma^2))))/(rho+delta+BST)
;
w2=(2*(rho^2)*r0*exp(sqrt((k^2)+(2*sigma^2))))/(rho+delta);

price=((quantity*PT*ncx2cdf(x1,v,w1)-K*PS*ncx2cdf(x2,v,w2))-
quantity*PT+K*PS)

CIR caplet price ( Monte Carlo)

function pathFcir =
CirForwardSimulation(r0,k,mu,sigma,strike,T_set,T_ex);
clc
close all
clear all
r0=0.0551;
k=0.2703;
mu=0.0434;
sigma=0.0272;
T_set=2;
T_ex=1;
time_step=250;
delta_t=T_set/time_step;
n_sim=1000000;
c=((sigma^2)*(1-exp(-k*delta_t)))/(4*k) ;
path_R = zeros(n_sim,time_step+1);
path_R(:,1) = r0;
gamma=sqrt((k^2)+2*(sigma^2));
strike=0.06;
Z=randn(n_sim,time_step);
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lambda=zeros(n_sim,time_step);
d=(4*mu*k)/(sigma^2);
x=chi2rnd(d-1,[n_sim,time_step]);

path_R = zeros(n_sim,time_step);
path_R(:,1) = r0;
zcb_set= zeros(n_sim,time_step*T_ex);
zcb_ex= zeros(n_sim,time_step*T_ex);
B_Tex=zeros(n_sim,time_step*T_ex);
B_Tset=zeros(n_sim,time_step*T_ex);
C_Tex=zeros(n_sim,time_step*T_ex);
C_Tset=zeros(n_sim,time_step*T_ex);

for j=1:n_sim
for i=1:time_step-1

lambda(j,i)=path_R(j,i)*(((4*k*exp(-
k*delta_t)))/((1-exp(-k*delta_t))*sigma^2));

path_R(j,i+1)=(((Z(j,i)+sqrt(lambda(j,i)))^2)+x(j,i))*c;
end

end

for j=1:n_sim
for i=1:time_step*T_ex

n(i)=(T_set-(i-1)/time_step);
m(i)=(T_ex-(i-1)/time_step);

B_Tex(j,i)= (2*(exp(gamma*m(i))-
1))/((k+gamma)*((exp(gamma*m(i))-1))+2*gamma);

C_Tex(j,i)=((2*gamma*exp((k+gamma)*m(i)/2))/((k+gamma)*((exp(g
amma*m(i))-1))+2*gamma))^((2*k*mu)/(sigma^2));

B_Tset(j,i)= (2*(exp(gamma*n(i))-
1))/((k+gamma)*((exp(gamma*n(i))-1))+2*gamma);

C_Tset(j,i)=((2*gamma*exp((k+gamma)*n(i)/2))/((k+gamma)*((exp(
gamma*n(i))-1))+2*gamma))^((2*k*mu)/(sigma^2));

zcb_ex(1,1)=C_Tex(1,1)*exp(-
path_R(1,1)*B_Tex(1,1));

zcb_set(1,1)=C_Tset(1,1)*exp(-
path_R(1,1)*B_Tset(1,1));

end
end

for g=1:n_sim
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payoff(g)=max(0,(1-1.05*zcb_set(g,time_step)));
end
mean_payoff=mean(payoff(:))
price_capletCIR=1.06*zcb_ex(1,1)*mean_payoff

end

Vasicek caplet Price

function pathFvas =
vasicekForwardSimulation(r0,k,mu,sigma,strike,T_set,T_ex);

close all
clear all
clc

r0=0.0579;
k=0.175;
mu=0.0465;
sigma=0.02911;
T_set=2;
T_ex=1;
time_step=250;
delta_t=T_set/time_step;
n_sim=100000;
strike=0.06
path_R = zeros(n_sim,time_step);
path_R(:,1) = r0;
zcb_set= zeros(n_sim,time_step*T_ex);
zcb_ex= zeros(n_sim,time_step*T_ex);
forward_rate=zeros(n_sim,time_step*T_ex);
B_Tex=zeros(n_sim,time_step*T_ex);
B_Tset=zeros(n_sim,time_step*T_ex);
A_Tex=zeros(n_sim,time_step*T_ex);
A_Tset=zeros(n_sim,time_step*T_ex);

for j=1:n_sim
for i=1:time_step*T_ex-1

path_R(j,i+1)=path_R(j,i)*exp(-k*delta_t)+ mu*(1-
exp(-k*delta_t))+sigma*sqrt((1-exp(-
2*k*delta_t))/2*k)*randn();

end
end

for j=1:n_sim
for i=1:time_step*T_ex
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x(i)=(T_set-(i-1)/time_step);
y(i)=(T_ex-(i-1)/time_step);
B_Tex(j,i)= (1-exp(-k*y(i)))/k;
B_Tset(j,i)= (1-exp(-k*x(i)))/k;
A_Tex(j,i)= (((sigma^2)/(2*k^2))-mu)*(y(i)-

B_Tex(j,i))-(((sigma^2)/(4*k))*B_Tex(j,i)^2);
A_Tset(j,i)= (((sigma^2)/(2*k^2))-mu)*(x(i)-

B_Tset(j,i))-(((sigma^2)/4*k)*B_Tset(j,i)^2);
zcb_ex(j,i)= 1/(exp(-

A_Tex(j,i)+path_R(j,i)*B_Tex(j,i)));
zcb_set(j,i)=1/(exp(-

A_Tset(j,i)+path_R(j,i)*B_Tset(j,i)));

end
end

for g=1:n_sim
payoff(g)=max(0,(1-(1+strike)*zcb_set(g,time_step)));

end
mean_payoff=mean(payoff(:))
price_capletVas=(1+strike)*zcb_ex(1,1)*mean_payoff

end
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