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Abstract

In questo lavoro vengono confrontati diversi modelli sui tassi di interesse. Tale confronto ha
come obiettivo principale quello di valutare sei tassi di interesse forward generati dal modello
SABR (Stochastic alfa, beta, rho) sono compatibili (in termini di valori e prezzi prodotti) con i
tass di interesse abreve generati daModelli Affini, quali il modello di Vasicek ed il modello di
Cox, Ingersoll e Ross. Per far cio, vengono innanzitutto generate delle simulazioni del tassi
forward utilizzando il modello SABR con dei parametri plausibili e tratteremo tali tassi come dati
reali. Poichéi dati generati sono dei tassi forward, ed i modelli affini descrivono la dinamica del
tasso a breve, si procede con lafase di calibrazione, laquale ci consente di identificare il modello
Vasicek e il modello CIR che generano i tassi forward piu “vicini” possibili a quelli generati col
SABR model. Utilizzando i modelli calibrati, si procede alle smulazioni del tasso abreve e, sulla
base di queste, si stimano i parametri dei modelli affini utilizzando la stima OLS e quella di
MassimaVerosimiglianza. Dopo lafasedi stima, si simulano i tassi di interesse forward
utilizzando i modelli affini (stimati) e si procede a confronto di tali tassi con quelli generati
inizialmente con il modello SABR. Si procede poi col calcolo del prezzi delle opzioni caplet e a
confronto degli stessi trai diversi modelli. | risultati ottenuti mostrano chei tassi forward generati
con i modelli affini seguono traiettorie che si discostano in manierarilevante rispetto ai tassi
generati con il modello SABR. Come conseguenza, anchei prezzi delle opzioni ottenuti usando
tali modelli risultano avere differenze significative.






First Chapter
Affine Term Structure Models

I ntroduction

In this chapter we expose the most used affine term structure models (ATSM) for the short term
interest rate. Before exposing these models, we have to point out the differences between the
interest rate market and the stock market. In the latter, in fact, we use to model the behavior of
the asset price to estimate its price at a future date or the price of an option which have that
asset as underlying. As argued in Bjork, the short rate of interest r is not the price of atraded
asset, i.e. there is no asset on the market whose price process is given by r. Then, the short
interest rate is not a stand-alone object, and in order to give a definition we need to refer to the
zero coupon bond (ZCB) price.

A ZCB is an instrument which pays a certain amount, called face value ( for simplicity, we
assume that the face value is equal to 1 unity of currency) at its maturity date T. We express the
value at time t of a ZCB with maturity T > t by the notation P(t,T). It should be clear the
similarity between the investment in a zero coupon bond and the investment in a banking
account X(t), where we put money today to achieve an instantaneous return given by
X(®r(t)de! .

The short term interest rate r(t) can be described as the rate applied on instantaneous borrowing
(or lending). If we assume the absence of any kind of risk, lending money ( asinvesting in a
bank account ) during the time interval [0,T], is equivalent to a strategy in which at each time
t, with 0< t< T, we buy a “just maturing” bonds, i.e bonds which will mature at “t + At” with
At — 0. Let X(t) the value of abank account at timet > 0, then at time t + At the value of the
bank account X(t + At) will be:

X(t+A) =X(1t) + X(Or()At 1.1

and applying the limit At — 0 we get:

1 we assume that both ZCB and Banking account returns are risk free
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X(t+A0) - X(t) d
= =—X() 12

X©r@) = lim

Then the value of the bank account X(t) is the solution of the following Cauchy problem:

d
{E?X(t) = X(t)r(t) 13
X(0) = Xo

Solving this problem, we get the bank account process:

L
X(t) = Xoeh™®% 14

By analogy, letting P(T,T) = X(T) =1 and X,= P(0,T) , we get the price of abond as function
of r(t):

P(t,T) =E [e-fr(s)ds] 15

If we assume that rates were constant, the price would be simply given by e=T=9"  However,
in the real world, the short term interest rate is stochastic and then we need a model which
describe its dynamic in order to compute the value of a bond.

Another important relation is between the short term interest rate r(t) and the (continuously
compounded ) spot interest rate R(t,T), defined as:

log P(t,T)

1.6
T—t

R(t,T) =

From which follows;
P{t,T) = e T-HRGT) 47

Unlike r(t), the spot interest rate R(t,T) can be directly calculated by the price of the ZCB
observed in the market without any use of models which describe its dynamic. Now, we need
to give adeterministic rel ation between the price of aZCB and r(t) in order to derivetherelation

between r(t) and R(t,T). To do this we will use the so-called Affine term structure models. For
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these models, the spot price at time t, with 0 < t < < T, of a zero coupon bond (ZCB) with

maturity T can be expressed as:
P(t,T) = exp (A(t,T) — B(t,T)r(t)) 1.8

Where A and B are deterministic function of t and T. The values of A and B depend on the
affine model used to describe the dynamic of r(t).

Then , given an affine model for the short interest rate, the relation between r(t) and R(t,T) is
given by equating 1.7 and 1.8, and result in:

A, T) i B(t,T)

R(t’T):_T—t T—t

r(t) 1.9

This relation will be useful when one want to calibrate an affine model from the data or would
simulate a path of R(t,T) using an affine model. In fact the only data we can observe in the
market is R(t,T), and it is crucia to understand the relation between the observed data and the
object to be estimated or simulated. However, the continuously compounded notation (1.6) is
used only in theoretical contexts. In the market practice, the bond price is expressed using the
simply compounded interest rate defined as:

L(t,T)= w 1.10
’ (T-t)P(t,T) '

From which follows that the zero coupon bond priceis given by:

1
PeD =1rr—oen !

Rearranging the equation 1.11 and substituting the value of P(t,T) asin 1.8 we get the explicit
relation between r(t) and L(t,T):

e —AT)+B(ETIN(t) _ 1

Lt T) = — 1.12
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Now, In order to link the theoretical quantity r(t) with the real world quantity R(t,T) (or L(t,T))
we need to find the value of A(t,T) and B(t,T) of 1.8 for the model considered. The values of
these functions must be such that the prices generated do not alow arbitrage opportunity. To
meet thisissue, we haveto derivethevaue of A(t,T) and B(t,T) starting from the term structure

equation for an arbitrage free bond market.
1.1 Theterm structure equation

Theterm structure equation isaPartial Differential Equation, which have as solution the family
of prices{P(t,T); 0 <t< T,T > 0}. Now, let us see how to derive this equation in an
arbitrage free bond market and how to combine this with an affine term structure model.
Assuming that the short interest rate follows the following stochastic differential equation under
the real measure P:

dr(t) = u(r,t)dt + o(r,t)dW(t) 1.13

where u(r,t) and o(r,t) are two predictable function and dW (t) is a standard P-Brownian
motion. For a fixed time T, the price of a zero coupon bond is oniy function of t and r, thus
P(t,T) = f(t,r). Assuming f(t,r) twice continuously differentiable, we can apply Ito’s

iemma on 1.13 obtaining:

df (t,7) = fedt + frdr + = fir (dr)?

= fedt + f,.(u(r, O)dt + o(r, )dW (1)) + %ﬁr(p(r, t)dt + o (r, t)dW(t))Z

= (ft + fru(r, t) +§f,.raz(r, t)) dt + fro(r,t)dw(t) 1.14

Where f; and f,- are respectively the partial derivatives with respect to t and r . Finally, letting:

Fo + FrbaCr,t) +5 froo?(r,©)
)
fro(r,6)

&

1.15

ﬁ:

g =

we can rewrite 1.14 as;

df(t,r) = f(t,r)adt + f(t,r)edW(t) 116
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Now, we proceed by constructing a risk-free self-financing portfolio of bonds [7] having
different times to maturity S and T (a similar procedure is used in the stock market to derive
the Black and Scholes equation), and imposing the no arbitrage condition which require that
this portfolio must have a rate of return equal to the short interest rate, we will get the term
structure equation for the arbitrage free bond market. Let Q; and Q1 therelative fraction amount
of two bond f;(t, r) and fr(t, ), and denoting by IT the value of the portfolio consisting in this
two bonds, i.e IT = Qf;(t,r) + Qrfr(t,r), then the return of this portfolio is given by

proportional return of the two bonds:

an _ _dfi(tr) | dfe(t7)
I “Qs fs(t,r) +QT f;r(t,r) 1.17

Substituting 1.16 into 1.17 we get:

(fst + fsru(r,t) + %fs 02 (1, t)) dt + fsro(r, t)dW (1)
St )

— =

(f'."’t + frou(r,t) + %fr 0 kT f)) dt + fra(r,t)dW(t)
fT(tJ T')

+Qr

Which can be rewritten as:

darl
‘F = (Qsﬁs + QTﬁT)df & (Qs&s + QTa'T)dW(f) 1.18

Where i and & are asin 1.15. Now we want to eliminate the dW (t) term in order to get the

risk-free portfoiio, to do this we can only choose the quantities Q and Q in such way to have:

Qs0s + Qrdr =0
with 0.+ 0Qr=1.

The solution of thislinear system of equationsis given by:
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Since the portfolio following this dynamic isrisk-free, it must offer the same return of the bank
account (risk-freeinvestment). Asargued in the previous section this return of the bank account

isequal to the short term interest rate £(t), and then must hold true:

6- 7 _&qw
r(t) = Tﬁfs sHT

o — &s

Or, written in adifferent way:

as — ?"(t) = Ar — T(t)
O or

1.20

The value of both-side hand value does not depend on the choice of the time to maturity. In
fact, if thetimeto maturity of theleft-hand side changes, the right-hand side remains unchanged

and then even the left-hand side must remain the same, so we can define the process:

i —r(t
A(0) A mr® g
Or

which holdsfor al t and T. The process A(t) is called market price of risk .
Now, inserting equation 1.15 into 1.21 and rearranging, specifying the boundary P* (r, T) = 1,
we obtain the so called “term structure equation™ in an arbitrage free bond market:
{Pg" +{u(r, t) — A@®)a(r,O}PF +=02(r,t) BT —rPT =0 Lo
PT(r,T) = 1 '

Which represent the family of bond prices ( P(t,T) ; 0<t< T, T > 0) which does not allow
arbitrage opportunity in the bond market.
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So, if we consider the following P-dynamic for the short term interest rate
dr(t) = u(r,t)dt + o(r, t)dW (t)
Assuming that this model possesses an ATS so that:

P(t,T) =exp(A(t,T) = B(t,T)r (1))

If we introduce:

g=u(r,t) — Ao(r,t) (drift term under Q measure)

6=o(r,t)

We can rewrité the term structure equation as

T L &~pT 1 12pT _ .pT _
{PE—E-,uPr +-G P —rPT=0 123

PPir,T) =1
Now we can compute the partial derivatives P;, P and P as.

P = (At,T) - Bi(t,T)r) PT
P’ = -B(tT) P’
PTrr = Bz(t,T) PT

And substituting into 1.23 we get:
N 1
Ac(t,T) - (1+ B.(t, T))r — BB(t,T) + 5 ZB2(t,T) = 0 1.21

With boundary values

AT,T) =0
B(TT)=0
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This equation give us the relation between A, B, @ and &6 2, and then allow us to compute the
price of a ZCB for an ATS model. In the next section, we use it in order to compute the zero-

coupon bond price for the model studied.

1.2 Short Interest Rate Models

Based on the stochastic differential equation 1.10, in the literature were built several parametric
models by giving to the functions u(r,t) and o(r,t) a definite form. Most of the models
developed imply dynamics for the short-term interest rate r(t) that can be included within the
following SDE:

dr(t) = a (p—r(t))dt + or¥dW(t) 1.25

Where q, J, 0, y are constant parameters and dW(t) is a standard P-Brownian motion. By
assigning different values to the parameters [a, Y, 0, y], we get different models. For y=0, y =
0 we get the Merton(1973) model; for y = 0 we get the mean reverting process used by Vasicek
model and for y = 1/2 we get the square root process which appearsin the Cox, Ingersoll and
Ross (CIR) mode. Thelast two are the most popular model in the interest rate markets and are

those we will consider in this work.

1.2.1 TheVasicek Modd

In this model the short term interest rate 1(t) is solution of the SDE:
dr(t) = a(p—r(t))dt + adW?(t) 1.26

where W(t) is a Q-standard Brownian motion? and o , [ e ¢ are strictly positive constants. The
constant | represents the risk-neutral long-term mean risk-free rate, a represents the rate at
which r(t) reverts back to this long-term mean and ¢ represents the volatility of short-term
interest rate. One of the main advantages of this model is to be a mean reverting process, but
against a negative characteristic is to have positive probability that the interest rate can assume

negative values.

2 We assume A=0
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However, the feature that made the model of Vasicek one of the most used by traders is
undoubtedly due to the simplicity of the model and on the fact of giving a closed form solution
for pricing. One of the goals of thiswork consist in comparing the forward rate paths generate
by this model with those generated by the SABR model. Then, we need a discrete version of
1.26 that allow us to simulate the short term interest rate. Phillipg[50] showed that the exact

discrete model corresponding to 1.26 1s given by :

r(t + At) =r(e %t + u(1 — e~ ) 4+ g/ (1 — e~ /2ae, 1.27

where ¢, ~i.i.d N(0,1). Looking at 1.27 it is easy to see that r(t) isnormally distributed with

conditiona mean and variance respectively given by :

E[T(t + ﬂ.f"r(t)] - e_a"-']r(t) e (1 — e—adt)u
VAR[r(t +Atlr(t)] = & (1— e~2e4t)

The availability of a closed form expression for the transition density will be crucial when we
will try to estimate parameters using MLE method. Now we want to connect the short-term
interest rate given by this model with the price of the zero-coupon bond. We know that the price
of aZCB in an arbitrage free market must be solution of the term structure equation 1.24. For

this model, we have:

A=a(p—r1)
o=0

And the equation 1.24 became:
1
A6, D)= (1+ Be(t, THT(O) =@ (0= T(0) )B(T) +50°B(T)? = 0
which, collecting the r(t) terms, result in:
1
A6, T)- (14 B.(t,T) — aB(t, T))r(t) —apB(t,T) + EaZB(t, ™?=0 1.28

This equation must holds for every t and r , so we have that the coefficient of r must be equal

to zero. Thus, we obtain the two ODE Cauchy problems:
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1 + B.(t,T)- aB(t,T) =0
With boundary condition B(T,T) = 0 1.29
and
1
A:(t,T) — auB(t,T) +EJZB(t, T¥=da

With boundary condition A(T,T) = 0 1.30
Where A; and B, are the partial derivatives with respect to t.
For equation 1.29 it is easy to show that:

_ p—a(T-1)

B(t,T) :T 1.31

To solve 1.27 we have to integrate, then we have:

T T

B%(u,T)du —a,uf B(u, T)du 1.32

t

A(t,T) = %JZJ

t

And Substituting 1.31 into 1.32 follows:

1 T (1 — g-a(T-u) 2 T /1 — e~ T-w)
A(t,T) = EJZ J (T) du — a:,uf (T) du
t t

1 ¥ T T
= __Z_O-Z‘f (1 o E—Q(T—HJ + B—Za(?"—u))du _ .uf 1du + ‘u-f e_a(T_quu
2a § s t
a? o’ gt [1 — e~2a(T-t)

0.2 r . . 0.2 5 r 0.2 1 — B—ZQ(T—E)

_ (7’ o° 2
_(ﬁ_#)((T—t)—B(t,T))—EB (t,7) 133

Hence, the price of abond in the Vasicek model is given by:

P(t,T) =exp(A(t,T)— B (t,T)r (t)) 1.34
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with
2

0'2 a
AT = (z_ai_‘“) ((T-0)—=B(T)) _ZEBZG’ T)

and

1— e-a(T’-t)

B(t,T) =

In order to get the P-dynamic for the continuously compounded interest rate R(t,T) we use 1.9,

obtaining:

B.(t,T)

BlhT)_gelhl)  ew T)) dt +
’ T

Tt T—it

dR(t,T) = a( odW; 1.35

Which can be rewritten in the same form of ().

dR(t,T) = a(fi —R(t,T))dt + 5dW, 1.36

With:
v o Bt(r,T) At(f, T)
= g T—t
. B(tT)
g = - o

Then, we can write the dynamic of R(t,T) in the same form of r(t) ssimply changing the
parameters. Thismeansthat both r(t) and R(t,T) have the same distribution, and in this particular
case are normal distributed. This aspect is very useful when we try to estimate the parameter
prom real data with a method like MLE, which use the margina distribution to obtain the
parameters. Thelink between L(t,T) and r(t) in the Vasicek model can be derived from equation
1.12, we get:

e —AWT)+B(ETIN(t) _ 1

L(t,T) = 7 1.37

where A(t,T) and B(t,T) areasin 1.34.
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1.2.2 The Cox, Ingersoll and Ross model (CIR model)

The stochastic differential equation of the model proposed by Cox, Ingersoll and Rosg[16] is:

dr(t) = a(p —r())dt +oyr(©)dWe(t) 1.38

with 2au > o

where a, (L and o are positive constant and W € (t) is a standard Brownian motion under the risk
neutral measure Q. The condition 2au > ¢ isimposed to avoid that the short term interest rate
reach the zero value. As for the Vasicek model, we need a discrete version of 1.38 to simulate
r(t). Phillips [50] show that the discrete version of 1.38 is given by:

t+AL

r(t+At) = e (t) + u(1 — e %) + crf e~ AtH+AL=5) () dW?(s) 1.39

t

It is possible show that the conditional distribution of this processis, up to a scale factor, a non-

central chi-squared distribution [19] :

2 1— —aht 4 —alt
p(r(t + AD)|r(®) ~ a?( 4ae )xé (az(la:_am)r(t)) 1.40

Where x3 (1) denotes the noncentral chi-squared distribution with d degrees of freedom equal

to
_ 4y
=—
and non-centrality parameter A given by
~aht

. 4qe
— 0.2(1 — e—am) r(t)

A

Straightforward calculation give the expected value and variance of r(t) as[16]:

E(T(t + ﬂ.t)l?’(t)) = T(t}e‘a’“ St — e—a&t)'

2 2

var(r(t + At)|r(t)) = r(t) (f‘a_) (e~ _ p-2anty 4 (ga) (1— e—a0ty2,
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Another way to represent the distribution of r(t + At)|r(t), which can be particularly
convenient for the ssmulation, is given by Feller[19]. He show that the transition density of the

sguare root model can also be expressed as:

q
2

p(r(t+AD|r() = ce ¥ (5) I,(2vuv) 141

Where:

2a 2
B 3 =L B -
T 02(1 — e—adt)’ u=cr(t)e™®, v=cr(t+Ar) , g=—z~1

C

And I, (2v/uv) is the modified Bessel function of the first kind and order g.

Now, as made for the Vasicek model, we are interested in computing the value of the function
A(t,T) and B(t,T) in order to determine the price of azero coupon bond and the relation between
r(t,T) and R(t,T).

Then, by solving the term structure equation 1.24 with:
B=a(u-r)
& = ovr
we get
A6, T)- (14 B.(t,))r —a(p—1)B(t,T) + 1/2ra?B(t, T)* = 0.

Which can be rewritten as

At(t, T)- auB(t,T)- 7 (1 + Bt(t,T)— aB(t,T) — ) = 0. 142

202B(t, T)?

Now we can made the same observation as for the Vasicek mode obtaining the follow two

ODE Cauchy problems:
A (t,T) - apuB(t,T) = 0
With boundary condition A(T,T)=0 1.43
and
1+ Bt(t,T) — aB(t,T) — 1/26?B(t,T)> =0

With boundary condition B(T,T)=0 1.44
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Here we skip the passages and give directly the solution for the term structure in the CIR model,
which is given by

P(t,T) =C(t,T)exp( =B (t,T)r (t)) 1.45
where

2au/o?

2}/8(&+Y)((T_t)/2) )

BT = ((a +y)(e?TH — 1) +2y

2(e?T9 —1)
@+ NETI 1)+ 2y

y =+a? + 2q%

Now, as for the Vasicek model, we can get the stochastic differential equation for R(t,T), that

B(t,T) = (

is

dR

_B:(t,T) (T=0OR+In(Ce(t, T) (T — )R + In(C¢(t, T))
= ) a(,u— BT )dt+ a\/ B.(LT) th)

Which cannot be written in the same form of 1.33, in fact in the CIR modé r(t) follows a chi-
squared distribution. Asfor the Vasicek model we need also to derive the relation between r(t)
and L(t,T), thisis given by combining equation 1.12 with equation 1.45. Theresult is:

eB(ETIT (D)
L(t,T) = -1
(&1 T—t( C(t,T) )

1.3 Forward rate

The main object of thiswork is the comparison between the SABR model with the ATS model.
In particular ,we want study the forward-rate path generated by these models, and figure out if
any of these paths are compatible with those generated by the other models. To do this we need
to implement a Monte Carlo simulation of forward interest rate with the ATS model, therefore
we have to find the relation between the short rate of interest and the forward rate. The simply
compounded forward interest rate f(t,S,T) is the rate decided at present time t and applied

over afuture period time[S,T], witht < § < T. Let us determine the no-arbitrage value of this



23

rate using the bonds prices P(¢t, T) for various maturity T > t. Suppose that at timet our wealth
is equal to zero and that we carry out the following trading strategy:

1- Weborrow at timet the amount P(¢t, T) by shortselling one unit of bond with maturity
T, then we must refund the quantity 1€ at time T.

2- We invest the amount P(t,T) over the period [t,S] by buying a (fractional) quantity
P(t,T)/P(t,S) of abond with maturity S priced P(t, S) at timet. This second operation
will yield the amount

P{5T)

ps) 1€

attimeS.
In order to avoid any arbitrage opportunity the simply compounded forward rate £ (t, S, T) must

be chosen so that :

P(t,T) _
PES) (1+(T-9f(ST) — 1€ = 0 146
‘—..Y..—l
=~ N - What | must refund at time T

What | will receive with certainty at time T (using exponential compounding)
If this equality were not satisfy, there would be arbitrage opportunity, in fact:

a If
P(t,T)
P(L,5)

(1+ (T =9f(ST)—1€>0

By starting from an initial wealth equal to zero, using the strategy described aboveit ispossible
to get aprofit at time T without any risk.
b) If

P(t,T)
P(t,S)

(1+ (T =9f(ST)—-1€<0

One can borrow the quantity P(t,S) shortselling the bond with maturity S and buy the quantity
P(t,S)/P(t, T) of the bond with maturity T. At timet the valuein S of the bond with maturity
Tisgivenby 1xexp—(T — S)f(t,S,T), thenin S| will receive the quantity:
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P(t,S) 1
P(t,TY1+(T—-95)f(ST)

Which is greater than 1 (because is the inverse of avaue less than 1), and | will refund 1 at
time S. Inthisway | have get a profit without any risk. Rearranging 1.46 we obtain the explicit
formulafor the no arbitrage continuously compounded forward interest rate, that is:

1 (P(t, S)

f(t,ST)= T—s PLT) - 1) 1.47

Now, we can determine the bond price P(t,S) and P(¢t,T) in the ATS models and using 1.42
we can find the relation between r(t) and f(¢t, S, T) for each model.

1.3.1 Vasicek forward rate ssimulation

In this model, the forward rate is given by:

F(£,S,T) = Tis(l t (P=BLIHT) 1) =

14 {5 — DL, )

1 e~ AT +BET)T(2)
= P & (e—A(E,S)+B(t,S)r(t) - 1)

1
T35

(exp(A(t,S) —B(t,S)r(t) — At T) + B(t, Dr(t)) — 1)

=7 15 (exp (A(t, S) — A, T) + (B(t, T) — B(t, S))r(t)) — 1) 1.48

And the substitution of the value A(t,S) and B(t,T) as given by 1.34 give asthe relation
between the short interest rate and the forward rate:



25

1 1 — e-—a(T-t) 1— e“a(smt)
t,S,T) = =
s =g igen (s (7T 1)

. 42 -6 1 — g—a(s—t) o2 (1 — e-a(s-t) 2
2a? K a 4aq a
42 _ 1 — g—a(T-t) o2 (1 — e—a(T-1) 2 2 140
2a? ) a 4a a '

This formula might seem very complicated, but contrary to appearances, it is very ssimple to

implement since al the object inside it are smply numbers.
Now we have al the tools needed for simulating the forward interest rate using the Vasicek

model. We implement the simulation follow the following steps:

1) Simulate the path of r(t) using the exact discrete model given by 1.27;
2) For eacht calculate the value of A(t, S),A(t, T),B(t,S),B(t,S);

3) For eacht calculate the value of the ZCBs with maturity Sand T;

4) For eacht calculate the forward rate using 1.49.

1.3.2 CIR forward rate simulation

Before talking about the simulation of the forward rate, we must deepen the topic of the
simulation of the interest rate using the CIR model. Fortunately, many path simulation methods
for the CIR process are been developed in the literature in the last years. The main reason of
thisisthat the Heston model [28] has become in the recent years one of the most used stochastic
volatility model in the stock market. In this model, the volatility of the asset follows a CIR
process, then to sample path we can use the same methods used to ssimulate the path of the
volatility in the Heston model. A classical approach to constructing simulation schemes for
SDE 1.38 involves the application of the Euler approximation, which give the following

Process:

r(t+At) =7() +a(p —r(0))At + oy/T()AtZ, Z~N(0,1). 1.50
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The main problem of this approximation is due to the fact that certain realization z of the

random variable Z ~N (0,1) can lead tc negative values of r when

. r(t) +a(u— r(t));’_\.t-

o r(t)At

To address this problem, many authors hawve proposed different simulation scheme. Van
Haastrecht et. al [51] propose a non-central x? inversion scheme, Glasserman et.al[21]use the
gamma expansion scheme, Broadie and Kaya[11] propose an exact scheme, Andersen [6] use
instead a quadratic exponential scheme. The last two are the most reliable simulation scheme
and we will implement the Broadie and Kaya one for our path simulation. In their work the
authors samplethe simulated value of r(t) directly from the non-central chi-squared distribution.
To do this they exploit the work of Johnson et a [37], which show that given a chi-squared

random variable x5 with d >1 degree of freedom, the following equation is valid:
Xe) =x3(D) +x3-, 151

Along the line of Patnaik[42] we use the following approximation:
—_ 2
XA =(z-va) 152

where Z is a standard normal random variable. Then, the algorithm we will follow to simulate
r(t) is composed by the following steps:

1) Calculated and A and verify that d > 1,

2) Draw avector of standard normal random variable z;

3) Draw avector of chi-squared random variable x3_, having d-1 degree of freedom;
4) Sampler(t) from x3 (1) using the relations:

X3 = (Z-VA) +x3_, 153
and,
0.2(1 _ e—a&t)

p(r(t+ﬂt)|r(t)) = ia

X5() 154

With
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4pa 4qe~ At

d:?; A:az(l—e‘a“)r(t)'

5) For eacht calculate the value of C(t,T), C(t,S), B(t,T), B(t,T);
6) For eacht calculate the values of ZCB with maturity Sand T;
7) For eacht calculate the value of the continuously compounded forward rate from:

FLS.T) = 1 1+(T—t)L(tT) )

T— s 1+ (S—-0L(t,S)
B(tT)?‘{t]
TET)

eBES)r(t)
€8

1 C(f, S) eB(t,T)T‘(t)
T S (C(t, T) eB(t,S)r(t) - 1)

1 (C(t ,S) r(g)(s(c,r)—a(r,sn_1) 1.55
“T-s\cen
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MATLAB code

Vasicek forward rate
functi on pathFvas =
vasi cekForwar dSi mul ation(rO0, k, mu, sigma, T_set, T_ex);

clc
cl ear al
cl ose al

% 0=0. 03;

%=-0. 18;

%ru=- 0. 080;

%i gma=0. 04,

%l _set =2;

%l _ex=1,

% i me_st ep=250;
%delta_t=T ex/tinme_step;
% _si m=500;

path_R = zeros(n_simtinme_step+l);

path R(:,1) = r0;

zcb_set= zeros(n_simtine_step*T_ex);
zcb_ex= zeros(n_simtinme_step*T_ex);
forward rate=zeros(n_simtinme_step*T_ex);
B Tex=zeros(n_simtine_step*T_ex);

B Tset=zeros(n_simtinme_step*T_ex);

A Tex=zeros(n_simtinme_step*T_ex);

A Tset=zeros(n_simtinme_step*T_ex);

for j=1l:n_sim
for i=l:tinme_step
path_R(j,i+1)=path_R(j,i)*exp(-k*delta t)+ nmu*(1-
exp(-k*delta_t))+sigma*sqgrt ((1-exp(-
2*k*delta_t))/2*k) *randn() ;
end
end

for j=1l:n_sim
for i=1:time_step*T_ex

B Tex(j,i)= (1l-exp(-k*(time_step*T_ex-

i+1)/time_step))/k;

B Tset(j,i)= (1-exp(-k*(tinme_step-

i+1)/tinme_step))/Kk;

A Tex(j,i)= (((sigmanr2)/(2*k"2)) -
mu)*((time_step*T_ex-i+1)/(tinme_step)-B Tex(j,i))-
((sigman2)/(4*k))*B Tex(j,i)"2;

A Tset(j,i)= (((sigma™2)/(2*k"2))-mu)*((time_step-
i+1)/(time_step)-B Tset(j,i))-
((sigman2)/4*k)*B Tset (j,i)"2;
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________ Si npl yconpoundedFor war dr at e
zcb_ex(j,i)=1/(exp(-

A Tex(j,i)+path_R(j,i)*B_Tex(j,i)));
zcb_set (j,i1)=1/(exp(-

A Tset(j,i)+path R(j,i)*B Tset(j,i)));
forward rate(j,i)=(1/(T_set-

T ex))*(zcb_ex(j,i)/zcb_set(j,i)-1);

cont i nuousl yconpoundedf ar war dr at e
zcb_ex(j,i)=exp(A Tex(j,i)-path R(j,i)*B Tex(j,i));
zchb_set(j,i)=exp(A Tset(j,i)-

path_R(j,i)*B _Tset(j,i));
forward rate(j,i)=(log(zcb_ex(j,i))-
| og(zcb _set(j,i)))/ (T _set-T ex);

end
end

figure(l);
plot (forward_rate')
end

CIR forward rate (Kaya scheme)

function pathFcir =

Ci r Forwar dSi mul ati on(r0, k, mu, sigma, T_set, T_ex);
clc

cl ose al

cl ear al

% 0=0. 03;

%=0. 25;

%mu=0. 0270;

%si gma=0. 03;

%l set =2;

%l _ex=1,

ti me_step=250;

delta t=T set/tine_step;

n_si m=1000;
c=((sigma"2)*(1l-exp(-k*delta_t)))/ (4*k)
path R = zeros(n_simtinme_step+l);
path_R(:,1) = r0;
gamma=sqrt ( (k"2) +2* (si gman2))

Z=randn(n_simtimnme_step);

| anbda=zeros(n_simtinme_step);
c=((sigma"2)*(1l-exp(-k*delta_t)))/(4*k)
d=(4*mu*k)/ (si gmar2);
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x=chi 2rnd(d-1,[n_simtinme_step])

path R = zeros(n_simtinme_step+l);
path_R(:,1) = r0;

zcb_set= zeros(n_simtine_step*T_ex);
zcb_ex= zeros(n_simtinme_step*T_ex);
forward_rate=zeros(n_simtinme_step*T_ex);
B Tex=zeros(n_simtine_step*T_ex);

B Tset=zeros(n_simtinme_step*T_ex);

C Tex=zeros(n_simtinme_step*T_ex);

C Tset=zeros(n_simtinme_step*T_ex);

for j=1:n_sim
for i=l:tinme_step
| ambda(j,i)=path_R(j,i)*(((4*k*exp(-
k*delta_t)))/ ((1-exp(-k*delta_t))*sigmar2));

pat h_R(j,i+1)=((Z(j,i)+sart(lanbda(j,i)))"2+x(j,i))*c
end
end

for j=1:n_sim
for i=1l:time_step*T_ex
n(i)=(T_set-(i-1)/tine_step);
mii)=(T_ex-(i-1)/time_step);

B Tex(j,i)= (2*(exp(gamma*n(i)) -
1))/ ((k+gamma) *((exp(gama*n(i))- 1)) +2*gamma) ;

C Tex(j,1)=((2*gamma*exp( (k+gamm) *m(i)/2))/ ((k+gamma

) *((exp(gamme*n(i)) -
1)) +2*gamma) ) ~((2*k*mu) / (si gmat2));

B Tset(j,i)= (2*(exp(gama*n(i)) -
1))/ ((k+gamma) * ((exp(gama*n(i))- 1)) +2*gamma) ;

C Tset(j,i)=((2*gamma*exp((k+ganma)*n(i)/2))/((k+ganm
a)*((exp(gamma*n(i)) -
1)) +2*gamma) ) *((2*k*mu) / (si gma”2) ) ;

forward rate(j,i)=(1/(T_set-
T ex))*((C Tex(j,i1)/C Tset(j,i))*ex
p(path _R(j,i)*(B Tset(j,i)-
B _Tex(j,i)))-1);

%
%ontinuously conpounded forward interest rate
% zcb_ex(j,i)=C Tex(j,i)*exp(-
path_R(j,i)*B Tex(j,i));
% zcb_set(j,i)=C Tset(j,i)*exp(-

path R(j,i)*B Tset(j,i));
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% forward rate(j,i)=(log(zcb_ex(j,i))-
| og(zcb _set(j,i1)))/ (T _set-T_ex);
end
end
figure(l);

plot (forward rate')

end

CIR interest rate using the Matlab function ncx2rnd to sampling directly from a non-
central chi-squared distribution x%(4)(as madein [36])

path R = zeros(n_simtinme_step+l);
path_R(:,1) = r0;
B=zeros(n_simtinme_step);

A=4*k+nu/ (si gmat2);
C=((sigma"2)*(1l-exp(-k*delta_t)))/(4*k)

for j=1l:n_sim
for i=l:tinme_step
B(j,i)=path_R(j,i)*((4*k*exp(-k*delta_t)))/(((1-
exp(-k*delta_t))*sigm"2));
path_R(j,i+1)=C*ncx2rnd(A B(j,i));
end
end



32



33

Second chapter

THE SABR MODEL

INTRODUCTION

One of the main problem that trader face is the managing of the volatility smile and skew in the
option market. It iswell known that there is a one-to-one relation between the option price and
the volatility of the underlying: the call and the put price are indeed increasing function of the
volatility. Dueto this, in many markets the price quotes are often expressed directly by the level

of thevolatility (asin cap/floor market or swaption market). It isalso well known that the value
of theimplied volatility given by the option price vary acrossthe different strikes producing the
volatility smile. The models which assume constant the volatility, as Black’s model[57], are

clearly unable to manage the volatility risk, and then do not allow to make a good vega-hedging.
It is sufficient to think at the case in which we hold two different option on the same asset with
different strikesK1 and K>, and then different implied volatilities g1 and o>. If we would make
vega-hedging on this portfolio using a constant volatility model we would not know which
volatility we should put into the model. Another problem of using a constant volatility model

is the pricing of the exotic option: if we would price a call option with strike K1 which has a
barrier at a certain level K2, what implied volatility we should put into the pricing formula? A

third problem evidenced in Hagan et. al.[23] concerns the evolution of the implied volatility
curve. Since the implied volatility depends on the strike K, it is likely to also depend on the
current value S of the asset price: In this case there would be systematic changes in volatility
as the asset price S of the underlying changes. Some of the vega risks of Black’s model would

actually be due to changes in the price of the underlying asset, and should be hedged more
properly as deltarisks.

To solve this problem are been developed the local volatility model [18] where the volatility is
not a constant parameter, but it depend on the level of the underlying and on the time. However,
this models are not consistent with the behavior of the market since, as argued by Wilmott[54]:

“the dynamic behavior of smiles and skews predicted by loca volatility models is exactly
opposite the behavior observed in the marketplace: when the price of the underlying asset
decreases, local volatility models predict that the smile shifts to higher prices;, when the price
increases, these models predict that the smile shiftsto lower prices. In reality, asset prices and

market smilesmovein the samedirection”. To solve this inconsistency, Hagan et. al. developed
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the SABR (stochastic a, 8, p ) model, which i< a two factor model where the dynamamic of the
underlying (in our case a forward interest rate f(t, S, S + ©), which we indicate wiwith F?) is

given by aCEV process with alognormal stochastic volatility :
dFf = of (FS)F aws,
dof = aSof dWs, 2.1

Where W5, and Wz‘?tare two correlated Brownian motion with E/dW;,d Wzsjt J=p’idt.

The parameter o7 is the volatility of the forward rate, a’ is a positive constant representing the
volatility of thevolatility, and 85 is a constant parameter representing the el asticity of variance.
All these parameters are specific to a particular forward rate, of expiry S and maturity S + . In

the following sections, we will omit the subscript S to make clearer the exposition.

Plain-vanilla European option

Consider a European call option on the asset A with exercise date te , Settlement date ts and
strike K. If the older exercise the option on te , then on the settlement date ts« he receive the
underlying asset A and pays the strike K. The exercise of this kind of option is equivalent to
receive in tex aforward contract F(t) on the asset A with maturity date ts« . Clearly, the option
will be exercised only if the value of the forward contract is positive, and the value of the option

a time zerois:

Vcau(o) = P(U, tset){Eﬂ [F(tex) = K]+}

Where P(0,ts.;) is the value in t=0 of zero coupon with maturity t... Using singular
perturbation techniques, Hagan et. a obtained the option price implied by the SABR model,
and from this, the associated implied volatility:

Vean(0) = P(0, tsee){fN(dy) — KN(dz)} 22
With f = F(0), and

1
_ IOg{? i'z'o'gtex
L2

OB/ Lex

This expression is the same of that given by the Black’s formula for European option, with the

difference that here the Black volatility op isnot constant, but given by:
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S

0o
ap(K,f) = (FK)a-B)/2 (1 2 -(1—5—418—)—2.!092(]“/1() + 91—;25—0)3094()‘/;{) i ) .
() (1+ (42 o ) )
Where
2= (FK) P log (/)
And

z—p++1—2pz+2z*
x(z) = log =

Implementing SABR model for vanilla option is very easy thanks to the fact that the price can

be expressed by the Black’s formula, which is the standard in the interest rate option market.

2.1 Sabr simulation introduction

When we want to simulate a path using this model, the real problem is not the simulation of the

volatility process, which can easily be solved writing:
JE - J(] eXp (aWZ’t _%azt) 23

Thereal drawback ishow to simulate the asset price given this behavior of the volatility. Many
authors have proposed methods to simulate the SABR model; Islah [32] proposes a scheme
based on relation of SABR to a squared Bessel process, Andersen et. a [5] propose alog-euler
approximation scheme, Chen et al. [14] propose a scheme which mix moment-matched
approximation and direct inversion(for small value of F). Following Chen et. a [14], we will
implement a simulation algorithm by exploiting the relation between the SABR model and the
squared Bessel process shown by Islha [32]. This relation will be shown in the subsequent

section and is obtained by applying an invertible transformetion to the asset price process, i.e
X(F) = F*B/(1-B) . This transformed process, conditional on o, andjoa ods, results in atime-

changed Bessal process of which we know the dimension and the starting point. Therefore, we
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can sample from the Bessel process and applying an inversion scheme we can find our
simulated values in the original coordinate.

In order to simplify the presentation, we first describe the relation between the CEV process
and the Bessel process and then we will extend this relation to the SABR model.

2.1.1 Cev process

Let (Q, F, Ft ,P) beafiltered probability space generated by one-dimensional Brownian motion
{W;}. For dl 0<t<S, the CEV process 1s the solution of the following SDE:

ds, = 6, SFaw, 2.4

With 0 < g < 1.Weimplement aseriesof transformation in order to connect the CEV process
with a squared Bessel (process of which we know the transition density). Then, starting from
the transition density of the squared Bessel process, using an inverse transformation, we can
obtain the transition density and the cumulative distribution function of the CEV process.
After letting Xi= S'P/(1-B) for B#1, we obtain by Ito lemma the following SDE for X, [49]:

1-p

S B 1 Sl
dX, = (1—ﬁ)m05} AW, ¢ —iﬁ(l—ﬁ)ma s Pdt
aw, pat ., 25
= 0’ = .
“@2-2p)X,

Now, applying a second transformation, Y= X¢{ , we get a time-changed squared Bessel
process, which satisfies the following SDE:

dY, = 2,/YodW, + Sc?dt 2.6

Where &:= (1-2[3)/(1-B) is the dimension of the process.
Let v(t) = o°t, then Y = Zyw), where {Z} is a squared Bessel process solution of the SDE[60]:

dZ, = 2,[Z;dW, + &dt 27
With degree of freedom 6.

It can be shown [4] that hold true the following results:
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1 - For 0<d<2 we get < % and the SDE 2.4 has a unique solution only if a boundary condition is
specified at S=0. When we specify an absorbing boundary condition, the density function does not
integrate to 1 and the shortcoming represent the absorption probability. The absorbing boundary
at S=0 is required to ensure the arbitrage free condition. As argued in [49], for > O the price
cannot became negative. Then, when price process reaches zero, if there were a reflecting
boundary, we could buy this asset for zero and sell it when the barrier reflects the price process
toward positive area, realizing arisk-free profit.

2—For-0<d<0weget?< B<1.A unique strong solution to SDE 2.4 exists, and boundary
value zero is absorbing. The density function does not integrate to 1 and the shortcoming represent
the absorption probability.
These two results cover the entire range of value that we will assign to parameter  in the path
simulation. Indeed, for most financial application, parameter (3 ranges between 0 and 1.
Moreover, another fundamental result is that for d <0 and for 0 < & < 2, but only when the boundary
at zero is absorbing, the transition density of (t, X, y) for the squared Bessel processin eg. 2.7 is
(proof in [9]):
§-2

@exn) =5 ()" oo (-5 1 (F) 28
Withy=0,t>0.
Where |4(x) denotes the Bessel function, defined by:

3 = (x/2)2j+a
la(x) _Zﬂr(a i+ 1)

j=0
with I'(x) = J,” u*~! e "*du (Gamma function).
Based on 2.8, we can obtain the transition density for the CEV process. Inverting the

transformation used above we get:

==
1-f

St = ((1 —B) |Zv(t)|)

We can define amap

1

h s (@-pns)~". s20
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with inverse

yz(l_ﬁ)
(1-p2 "’

h 1y y=>0

S0, S = h(Zyw) and Zt = ht (So) = SXEP) /(1-B)?. Then Zyy has density  oP(v(t), Zo,y), from
which follows that the conditional transition density for the CEV process is given by:

dh™(s)
ds

p(S¢lSo) = qa (U(t):zo,h_l (s))

By combining this density with the transition density of the squared Bessel processasin 2.8 we
get:

52.'(1_»8.}_'_52(1_18)

1
_ 1 (52 _ 9% D
P(SelSo) = 75 50) exP( 20-R)2v(0) )]

(SoSp)*~F ) Stl_zﬁ

o2 Coapr) 1 20

Where v(t) = 6?tand 8= (1-2B)/(1-p). By integrating 2.9 we find that the cumulative
distribution function of the CEV process as in eg. 2.4 is given by the following formula:

Pr(s; <x|Sy) =1 —x2(a; b,c). 2.10
With:

s20-P o o EEP

==’ 1-p = @-pm

where X*(a; b, c) is the non-central chi-square cumulative distribution function for the value

“a”, non-centrality parameter “b” and degree of freedom “c”.

2.2 Absor ption probability

As said in the previous section, the density does not integrate to unity when the boundary is
absorbing. The difference between unity and the integral of the density function represent the
absorption probability at 0. Then, using the equation 2.10, we can obtain the formula for the
absorption probability:

For 0 < B < 1, the probability of S; given theinitia condition So is[14]:
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Pr(S; = 01Sp) = 1—x*(a; b,0)

1-pv)'1-B)

In the next section we extent the results concerning the CEV model 2.4 in the context of the
SABR model 2.1

2.3 SABR conditional distribution

We start by the simplest case to treat, that is the one where = 1. We rewrite the eg.1

considering the following Cholesky decomposition for the two Brownian motion:

AWy, = pdW,, + 1 — p?dU, 2.12

Wher Ut is a standard Brownian motion independent of ' W» ;. Then 2.1 begin:

dFt - O-tFt (deZ,E + 4/ 1-— pszE)

da‘t - aa‘tdWZ’t 213

Solving the SDE of F and integrating the SDE ot o we gét:

Fy = Foexp{—= Jy o2ds + p [ 0,dWas + 1= p? [ o,dU} 214
i
J, 0sdWo 5 = é(dt — 0p) 215

Substituting 2.15 into 2.14, we obtain

F, = Fgexp {—ifot olds -i—g(at —ap) ++/1 —p? jot o’sts} 2.15

Since Ut and W, ; (and then Ut and o) areindependent , by Ito isometry. theintegral jot o,dUs
hasanormal distribution with mean zero and variance fot oZds, and followsthat the conditional

distribution of in S, , given gy, gy , [, o2ds and Sy is log-normal and satisfies
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1 t t
e 2 E — — 2 2
In F,~N (.!n Fy Zf 0¢ d5+a(0: o) ,(1—0p )f o¢ ds) 2.16
0 0

Then we can easily sample F from this distribution.

For the other case, i.e B # 1, we proceed by applying to F the same transformation used for
the CEV process, i.e X(F)= F*? /(1-B). However, here we have to consider that the volatility
process is stochastic, and the realization of F; depends on the realization of ot .

We consider the transformation X (F), after the 1to lemma application we qet:

t L 0.2
asdwl_s~f —L—ds 217
0

Xt =Xo +f 2~ 2B)X,

0

and substituting the Cholesky decomposition 2.12 and the integral 2.15 into 2.17 we obtain:

t t g
P BJS
Xe =Xo+ — (0 —0p) +/1— zf g.dl; — | ————=d5 2,18
t o 0) p , 34T @ -26)X.

If we would condition on o, we could introduce the shifted process X, , with initial condition:
2 p
Xo=Xo+ E(Jt — dp)

And by 2.18 we get.

- o?
dXt =\,‘1—p20'tht T B 2.19

5
—t
(2 = 2B)X;
Now, we define the variable transformation Y=X? , which, after applying Ito lemma, gives

ay, = 2X,dX, + dX?

B 1-2R—p*(1=8).
= 2,/Y/1 = p?0,dU; + YD (1—p¥ofdt 220

Applying Ito isometry can be easily shown that the integral of ¢,dU, is aNormal distribution

with mean zero and variance jot oZds. Then, when we apply the time change transformation
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(which means a condition on integrated variance) v(t) = (1 — p?) jot olds, the process

resulting is a Brownian motion distributed as /1 — p? f: o, dUs [56],1.€

t
Uv(t) = 4 1 —pzf Jg dUs
0

Substituting this time changed Brownian motion into 2.20 we get

1-28-p°(1-p)

dYU(E) = 2 YEdUU(E) + (1 -—ﬁ)(l sz)

dv(t) 221

From which follows that, starting from the process for F asin 2.1, given the transformation
Y (F)= F228/ (1-)?,2 and applying atime-change transformation v(t) = (1 — p?) _]'Gt olds, the
resulting process Yyw, conditiona on the terminal volatility ¢, and integrated variance

J'Gt olds , is a squared Bessel process solving the SDE:
Yoy = 2% dUpp) + Sdv(t) 222

FiP
1-p

1-26—p*(1-p)
(1-p)(1-p?)

2
With initial condition Y, = ( + E(art - do)) and dimension § =

and, proceeding aswe did in the previous section to get the the cumulative distribution function

of the CEV process, we obtain that for some Fo > 0 , the conditional cumulative distribution of

F with an absorbing boundary at Fi= 0 given o, and |, Gt olds is:

Pr(F, <K | Fo> 0,0, [yo2ds ) =1-x*(a,b,c) 223

Where

1_
R

_ 1-2p=p*{1=f) &8
“Tvo\1-5" i

A-pa-p5 ' ‘" a-p=e’

(ot —0g) | ,b=2

a

v(e) = (1 - p?) J, o2ds

3 the second transformation Y = X2 is not applied on X, but on X , and we have ¥ = X only when p = 0; neverthelessislah
2009 show how, if t issmall, the result is applicable with avery small approximation error even when p #0 )
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and x2(a, b, ¢) represent the chi — square cumulative distribution function.

To verify the last result is sufficient to substitute the parameters § and Yo given in equation

2.22 into the distribution function presented in equation 2.10.

2.4 Theintegrated variance approximation

Severa methods have been proposed in the literature to approximate the integrated variance. In

the following subsection we describe the most used approximation techniques.

2.4.1 Chen et. al approximation
Chen et a. propose a moments matching approximation method. This method is based on the
fitting of the first two conditional moments of |[ ﬂt o2dsin a lognormal distribution. The

conditional mean and variance of jot olds are approximated using a small disturbance

expansion. They reformulate the volatility process by introducing a small parameter € in the

diffusion coefficient so that:
i
0l = gy + ed f cFaw,, 224
]

Where a = €& .
After the smali disturbance expansion around € = 0, they 2et the following approximation for

the conditional mean “m” and variance “v”:

1 t 1
m= oft(l+aW,, += a? (2W22_t - E) + §a3(W23:t - Wut)

3
1 .02 3
+zat (5 Wi — S Wit + 2t2) 225
1 3 .24:3
v ==0ya°t 2.26

3

In order to avoid that the integrated variance takes negative value (which would be
meaningless), it is convenient to choose log-normal distribution to reproduce the conditional
distribution of the integrated variance. Then, the corresponding mean u and variance o*of the

lognormal distribution are obtained by setting:

1 v
u=In(m) ~3n (1 +W) 2.27
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v
2 = o
o= In(1+—). 2.28
And the integrated variance is given by the approximation:
t
f olds ~exp(cN~*(U)+pun) 229
0

Where U is auniform random variable.

2.4.2 Kennedy’s approximation

Another way based on the moment matching is to calculate analytically the moments of the
integrated variance. As shown by Kennedy[35],the mean i and the variance ¢%of the integrated

variance are given by the following analytical expressions:

(ln(—? In(5

@ S Favt]|—o St
7

(J'Oz\/f ar't Ct'\/f

ﬁ:

2a s
In( % .
0] + av't
ln(—%) _ ln(g—““("]) _
b —= t|—@ —avt
a\/f + av/ Ct‘\/f o




44

2.4.3 Andersen’s approximation

Andersen [6] proposes to approximate the integrated variance by applying a simple trapezoidal

rule
t
f aglds =~ t(y,04 +v.0%) 230
0

Where y; and y, are two constant parameter which can be chosen in several ways. The
simplest is given by choosingy; = 1, y; =0 (which gives an Euler-like approximation).
However, the method used by Andersen is based on the central discretization, given by setting

Yi= V2 =§ . An extension of this method could consist in the simulation of intermediate

volatilities in the interval (O,t). The idea is to split the interval (0,t) in n sub-steps, and
associating to any intermediate volatility the same weight w = 1/(1+n) we get the following
approximation

v mn
f olds ~ tZWJEZ 231
9 =0

2.5 Simulation of the forward rate path

It is possible to distinguish two different methodology for SABR model simulation. The most
used and studied is the moment matching approach, which consist in the fitting of the first two
moment of process distribution with a distribution function chosen by the operator. The first
example of the application of moment matching applied in the contest of a stochastic volatility
model is the QE (quadratic exponential) scheme introduced by Andersen[6] to ssimulate an
underlying in the Heston model. Haven[59] extend the QE scheme to the SABR model
implementing an algorithm very similar to Andersen one, solving the problem given by the fact
that the QE scheme is based on a squared Bessel process with reflecting boundary at zero. The
other methodology use a scheme developed by Marakow and Glew [47], which is used for the
exact ssimulation of the squared Bessel process. Other methods may be used as the log-Euler
discretization, but these do not take into account the absorbing or reflecting condition at zero.
Chen et. a propose an algorithm which mix the use of the moment matching technigues under
certain condition ( F >> 0 and then “absorption probability” = 0 ) and adirect inversion scheme

for small value of F. thislast schemeisthat we will use to simulate the forward rate.
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2.5.1 Chen simulation scheme

The simulation scheme proposed by Chen use the property of the SABR seen in the previous
section. In particular, we have seen that the asset price dynamic of the asset in the SABR model
iIsaCEV process, and this can belinked with a transformed squared Bessel process. It isargued
that, when the level of the asset price is high, the probability of hitting zero is very small and
could be approximate to zero, i.e Pr(inf{t|S; = 0} < A) = 0. Then, by using the conditional
cumulative distribution of Ftgiven in equation 2.23 and the properties of non-central chi-square

distribution, it is possibie to make the following approximation:
t 2 2
Pr(Ft <K | Fo > 0,0, fo 0¢ ds) =1-—x*(a,b,c) =

X?(c,2 — b,a) + Pr(inf{t|F; =0} < A) =X*(c,2—b,a)

Wherea, b, careasin 2.23.

It is possible to show (see [37]) that the non-central chi-square distribution approaches to a
power function applied to a Gaussian variable when the non-centrality parameter is high. The
preferable transformation of the Gaussian function is the cubic one (used in [6]), but such
scheme does not guarantee positive value of F. Then, when the level of F is sufficiently high,
we can match the first two moment of the distribution x?(c, 2 — b, a) to a quadratic Gaussian
function (as made in the QE scheme).

For small value of F, Chen et. a propose to implement & Newton-type root finding method to
invert directly the distribution given by equation 2.23. Specifically, first it is determined the
valueof ¢* which solvestheequation 1 — x?(a, b, c*) — U = 0 (where U isan extraction from
an uniform random distribution), and then an inversion scheme is applied to sample F from the
value of c*. In the next subsection we analyze more specifically the moment matching

approximation and the direct inversion scheme.
2.5.2 Moment matching approximation
The quadratic representation of the Gaussian process Y+t used in Andersen[6] (and also in [14])

takes the form:
Y, =d(e+2)? 232
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Where Z~N(0,1) and d and e are two constant to be determined by the moment matching so
that the mean and the variance of the quadratic Gaussian process Yt corresponds to those of the
non-central chi-square distribution given in 2.23. These constant parameters depend on t and
onthevaueof Y at zero.

The mean and the variance of a non-central chi-square distribution x%(x, k, 1) are defined

respectively by m:= k + A and s? = 2(k + 2).). We want that:

E[Y] =m
VarlY] = s*

And since:

E[Y] =d(1+e?)

Var[Y] = 2d?(1 + 2e?)
Follows that:
m=d(1+e?%); s%?=2d%(1+2e%*) 233

Substituting d = ——into the Second equation, we get:

(1+e2)

e2 =201 —1+4+./2¢0"1J2¢ 1 =120

s
where ¢ = oo 2.34

Which can be solved only if ¢ < 2. Then for High value of ¢(corresponding to low value of
F), the moment matching fail.
In our case, we have from equation 2.23:

2
_ LB

_ o 1-28=p*(1-p)
k=2 Semr

From A and k we can derive the value of d and e, hence we can sample F; by approximate the
process 2P /(1 — B)?u(t) to the quadratic normal process Y

FZU "‘B)

t — 2
a-prem 2t
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From which

1
F.=((1—-pB)*v(t)d(e + 2)*)20-h 236

2.5.3 Direct inversion scheme

When the moment matching scheme fail, i.e when Fislow or ¢ > 2 , we have to estimate F
using another method. Chen et. a propose to estimate F inverting the equation which gives the
non-centrality parameter c in equation 2.23. The main problem is that when F is small the
dersity function does not integrate to one, and then we have to compute ¢ considering this. In
particular, we can determine the value c¢* which solves the equation H(ab,c*):=1—

X?(a, b, c) — U = 0 and find F by inverting the equation for ¢ in equation 2.23, which result in:

F,=(c"(1- ﬁ)zv(t))ﬁ 2.37

We can use several method to determine c*, such as interpolation or a Newton’s method. In
Chen et. al isused the last one, in their algorithm they get co = a and control if this value solves
the equation H(a,b,c*) :=1 — x%(a, b,c¢*) — U = 0 with a certain degree of tolerance ¢. If the
tolerance is not achieved, i.e H (ab,c*) :=1 —X2(a,b,c*) — U > ¢, the Newton’s method is

applied until the prescribed tolerance is reached:

H(a]‘ b, Cﬂ)

— 2.38
q (QJ b, Cn)

Cn+1 = Cn

Where q(a, b, c;;) is the transition density for the squared Bessel process with an absorbing
boundary at zero given by equation 2.8. The implementation of this method require some
attention when isimplemented with a programming language because c¢* can became negative

and this would be meaningless.
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SABR PATH SI MULATI ON USI NG CHEN ET. AL SCHEME[ 36]

FO0=0. 05252;

T=1;

si gma_0=0. 03; YANNUAL
al f a=0. 60; %ANNUAL
bet a=0. 5;

r ho=-0. 25;

ti me_step=250;

n_si

tol |
maxi

m=500;

er ance=0. 001;
t er=200:;

Delta = 1/time_step

NSt eps = T/ Delta;

pat hF = zeros(n_si m NSt eps+1) ;
pat hF(:, 1) = FO;

F Delta = repmat (FO, n_sim1) ;

for

i = 1: NSt eps

Z = sqgrt(Delta)*randn(n_sim1l);
signma_Delta = sigma_0.*exp(al fa*(Z-0.5*alfa*Delta));

m= sigma_0."2*Delta.*(1 + alfa*(Z + alfa*((2*Z. "2-
0.5*Delta)/3 + alfa*((Z "3-z*Delta)/3 +
al fa*(2/3*Z."4-1.5*Z."2*Del ta+2*Del ta”2)/5))));
v = sigma_0."4*al far2*Del t a3/ 3;

% nmonent - mat hched | og- nornmal di stribution
sigma2 = log(1+v./ m~"2);
mu = log(m - 0.5*signa2;

% nverse transformtion
U=randn(n_sim1l);
A Delta = exp(sqrt(sigm2).*U + nu);

v_Delta = (1-rho”2)*A Delta,;

i f beta == % case: beta =1
dW= rho*Z + sqrt(1-
rhor2)*sqgrt(Delta)*randn(n_sim1l); % chol esky

F Delta = F Delta.*(1 + sigma_0.*dW;
el se
% Direct Inversion Schene for Conditional CEV
Process
if alfa >0
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a = (F Delta.”"(1-beta)/(1-beta) +
rho*(sigma_Delta-
sigma_0)/alfa).”2./v_Delta;

el se

a = (F Delta.”(1-beta)/(1-beta)).”2./v_Delta,

end

b =2- (1-2*beta-rho”2*(1-beta))/(1-beta)/(1-

rho”2);
Ul = rand(n_sim1l);
P_absorb = 1 - chi2cdf(a,b);
% di stingui sh between the foll ow ng cases

% (1)

1 = F Delta == 0;

F Delta(ll) = 0;

% (2)

|12 = FDelta ~= 0 & UL <= P_absorb;
F Delta(l2) = 0;

% (3)

I3 = F Delta ~= 0 & Ul > P_absorb;

if sum(13) >0

% paraneters for the nonent-matched quadratic
% gaussi an appr oxi mati on,

k = 2-b;
| ambda = a;
m = k+| anbda;

s2 = 2*(k+2*| anbda) ;
Psi = s2./m~"2;

Psi _thres = 2;

% nmonment mat ched quadrati c gaussi an
appr oxi mati on
14 = ((Psi >0 & Psi <= Psi_thres) & m>=0) &
|3 ==
if sum(14) >0
e2 = 2./Psi-1+sqgrt(2./Psi).*sqrt(2./Psi-
1);
d = m/(1+e2);

F Delta(l4) = ((1-
beta)"2*v_Delta(l4).*d(14).*(sqgrt(e2(14))+randn(sum(14),1))."2
). M1/ (2*(1-beta)));

end

% Step 7 otherw se
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I5 = ((Psi > Psi_thres |( m< 0 &Psi >0 &
Psi <= Psi_thres)) & 13 == 1);

i f sum(I5) >0

% Newt on nethod to determ ne the root c*
of the

% function : H(a,b,c) = 1-Chi"2(a, b,c)-U =

0

%c* is a random nunber from a squared

Bessel

% di stribution with absorbing boundary at
zero

H= @c,|Vec)(1-ncx2cdf (a(l Vec), b, c)-

Ul(Il Vec));

gbar = @c, | Vec)
(0.5*(c./a(lVec)).”(0.25*(b-2)) .*
exp(-0.5*(a(l Vec)+c)) .*
bessel i (abs(0. 5*(b-
2)),sqgrt(a(lVec).*c)));

nVec = (1:length(a))';
i ndexVec = nVec(I5);

I ndOF I nt erest =H( 0, i ndexVec) <0;
I Vec=i ndexVec(lI ndOf' I nterest);

c_star=a(i Vec);
c_old=c_star; %nitial counter
k=0;
I 6=abs(H(c_star,iVec))>tollerance;
while k < maxiter && sum(i6) > 0
k=k+1;
st ep=1,
c_star(i6)=c_ol d(i®6)-
step*H(c_ol d(i6),iVec(i6))./
gbar(c_ol d(i6),i Vec(ib6));

whil e sun{c_star<0)>0 && step>tollerance
17 = c_star < 0;
step=0. 5*step
c_star(i7)=c_old(i7)-
step*H(c_old(i7),iVec(i7))./gbar(c_o
[d(i7),iVec(i7));

end

c_old(i6)=c_star(ib);

i 6=abs(H(c_star,iVec))>toll erance;

end

F Delta(iVec)=(c_star.*(1-
beta)”2.*v_Delta(i Vec)).”"(1/(2-2*beta));
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F Delta(indexVec(~IndOInterest)) = 0;

end
end
end

% update initial volatility
signma_0 = sigma_Delta;

pat hF(:,i+1) = F_Delta;
figure(3);

pl ot (pathF" )

SABRsi rmul ati on= pat hF;

end
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Third Chapter

Estimation of the ATSM parameters and pricing of Caplet

option

INTRODUCTION

The main purpose of this work is to try to answer questions like: are the forward rate paths
generated by a SABR model compatible with the interest rate paths generated by an affine term
structure model? Or, how diverge the option prices given by these models? In general, when
traders want to make a comparison between different models in order to find the best one to
use, they choose to do this starting from real data. Therefore, they estimates the parameters of
the models from the historical time series observed in the market, hence they make the
simulations of the paths and the pricing of the option using the estimated models, and finally
they compare the resulting paths and option prices with ones observed in the market. This
procedureisthe market practice, and it isthe best of what the operators can do. However, when
we work with real data we do not know the true data generating process, the only information
we have is the (unique) realization of this process. Then, the goodness of a model is measured
with respect to a very limited set of information about the true model. In this work, we do not
rely on the correspondence of each model with real data, but we compare each model directly
with the others. In particular, we assume that our true data generating process is the SABR
model and, on the basis of the data generated by this, we estimate the parameter of the Vasicek
and CIR model. After the estimation, we make the simulation path and the pricing of some
options and we compare them with those given by the SABR model. If the difference of the
options price is low and the paths generated are similar, we can conclude that using the SABR
model or the Vasicek and CIR models does not involve large differences. Then, we could use
thesimplest ATS models. Otherwise, we can conclude that the SABR model own some features
that other models are not able to reproduce and then we should use this. However, we must
emphasize that we are making only an econometric analysis, which does not include any
consideration about the already established superiority of the SABR model in the management
of the hedging strategy and of the volatility smile in the options market.
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Thefirst step of theanaysisisto assign avaueto the SABR model parameters. Wewill assume
that these parameters refers to the dynamic of a specific forward rate f (¢, S, T), i.e the forward

rate of expiry S=1 year and maturity T=2 years.

fit,5,7)

t=0 G
|
|

In order to choose reasonable parameters, we have taken these from a SABR model estimated

on the swaption quotes®, getting the following values:

f(0,ST) | 0.05252
B |05
/0029
p -0.25
— 0.61

Tab 31 SABR parameters

Then, we put this set of parameter valuesinto the SABR model and, using the method described
in chapter 2, smulate n (=500) paths of the forward rate for 250 time steps (TS) and with
At equal to 1/250°. Now, we have several paths generated by model we consider as “true” model
and we want to see if the Vasicek and CIR model are able to replicate the behavior of these
paths. To do this, we first need to estimate the set of parameters 8 = (&, fi, &) for both affine
term structure models. In order to estimate the set of parameters 8 we need the discretization
version of stochastic differential equation of the model considered. From equations 1.24 and

1.44 of chapter 1 we have the following discrete equations:

Discrete version of the Vasicek model:

r(t+At) = (e + u(1— e %) + g/ (1 — e~t) /2ae, 3.1

4 These data are taken from R.Rebonato et. al , The SABR/ Libor Market model pag. 29
> This setup simulates a daily forward rate path
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where €, ~i.i.d N(0,1).

Discrete version of the CIR model:

r(t + At) =7(t) + a(u —r(0))At + o /T (O Z,, 3.2
where Z; ~i.i.d N(0,At).

If the data generated by the SABR model were interest rates, we could directly estimate such
models on these data. However, since it is not so, we first have to implement a calibration
procedure which “convert” , as well as possible, the SABR forward rate in short term interest
rater”(t).

3.1 Calibration procedure

The In order to find the set of parameters 8* = (a*, u*,0*) we use the one-to-one relation
between the forward rate f*(¢t, S, T) and r*(t) given in equation 1.55 for the CIR model and in

equation 1.49 for the the Vasicek model®,mathematically we have:
(S, T)=r*(t)g(6*,t,5,T) 33
Where g is adeterministic function of 8*,t,S and T.

The calibration procedure we will implement consist of the following steps:
1 - Assign arange of valuesto the parameters to be calibrated; i.e

O0<a*<03

O<u*<01

O<o'<0.1
And, within this range, we select each parameter by varying itS value using a step equal to
0.001, so that we get 0.1/0.001 values of and y*and ¢* and 0.3/0.001 valuesof «a*
2 — Put any possible combination of a*, u* and ¢* "into 3.1 and 3.2. For each combination,
generate m(=100) paths of r*(t) starting from r*(0), which is calculated by 3.2.1 putting
f(0,ST) in theleft side . Then, use 3.1 to generate the forward rates f*(¢t, S, T).

6 Since analogous considerations can be made for the CIR model, to describe the calibration procedure we refer
only to the Vasicek model.

7 In our simulation we have 100x100x300=3.000.000 of combinations
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3 — To decide what combination of parameters is the best, compare each f*(t, S, T) with each
f(t,S,T) and choose the combination of parameters that minimize the mean of root mean

squar e deviation:

TS

1

) (&8N - f@51)" 34
t=1

Where TS isthe number of observation for each path (in our case, TS=250).

The Matlab implementation of this procedure give us the following result:

Parameter | Value | Mean  of | CV(RMSE)®
RM Serrors®
T ]10.220
= 0041 0.0042 8.1%
= 0.038

Tab. 3.2 Vasicek calibrated parameters

Parameter | Value Mean of CV(RMSE)
RMSerrors
~10.262
0.035 0.0033 6.36 %
S| 0.029

Tab 3.3 CIR calibrated parameters

The value of CV(RMSE) show that the calibrated CIR model generate paths that, on average,
are closer (to SABR paths) then ones generated by the Vasicek model. A view of the figures
3.4 — 3.6 show that the “density” of 5000 forward rate at time t=1 generated by Vasicek and
CIR model is not so far from the SABR ones.

8 Of forward rate given using estimated model
9 Coefficient of variation of the RMSE calculated as the ratio RMSerror / [11/11[ii(1) , where the denominator represents the
mean of the forward value f(t,5,T)
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Fig.3.4 forward rates density generated by the SABR model with parametersasin tab 3.1
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Fig. 3.5 forward rate at time S=1 generated by calibrated CIR
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Fig. 3.6 histogram of forward rate at time S=1 generated by calibrated Vasicek

The value of the CV(RMSE) for the CIR moddl indicates that, on average, the forward rates
f*(t,S,T) generated by this model diverge by 6.36% (of the value f(¢,S,T) ) respect to the
same f(t,S,T) .Then, looking at the value of CV(RMSE), the CIR model seems to fit better
than the Vasicek model the paths generated by SABR model.

Now, we consider theinterest rates r* (t) generated by the calibrated model as the “true” interest

rates resulting from the SABR model and apply the estimation procedure.

3.2 Parameter Estimation

In the literature, we can find several estimation methods for both the Vasicek and CIR mode!.
In the following paragraph we will describe and implement two of the most used: the OLS
estimation and the Maximum likelihood estimation.

3.2.1 OL Sestimation

In order to apply the OLS to the studied model we have to consider the discrete version given
in equations 3.1 and 3.2. We assume that the relationship between two consecutive observations
r(t)and r(t + 1) ,with 0 <t < T, is given by the following regression with an i.i.d random

erm wy :
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r(t+1)=¢@ + br(t) + w, 35

The OLS estimation consist of minimizing the variance of residual, or equivaently the sum of
the squared residual (SSR), which resultsin:

-1 -1
SSR = Z Wl = Z(r(t +1) = (p +br(®))° 36
t=0 t=0

Where T represent the number of observations.

Hence, the OLS estimators @ and b can be found by solving the following optimization
problem:

min ) (r(t+1)— (¢ + b‘r(t)))2 3.7

By differentiating 3.7 with respect to a and with respect to b and setting these derivatives equal
to 0, we find the estimators ¢ and b , which are equal to[39]:

b= T?‘xy ety
Trxx Ty
. oM E;'rx
N
T1y, — 12 — b(T1yy — 13T
st. deviation(w) = \/73’3’ yT(T E 230’ *Ty)
Where
- G0t T-1
= Z T(t), Ty = Z rit 1), Tex = Z T(t)z,
i =g t=0
Lt T-1
T'xy = Zr(t)r(t + 1), ryy = Xr(t + 1)2’
=0 t=0

In Matlab it is possible to find ¢ and b by using the function fminsearch .



60

3.2.1.1 - Vasicek OLS parameter estimation

The discrete Vasicek equation 3.1 can be expressed by the linear relation 3.5 setting the

parameters as follow:

bh = e—a.‘lt

¢ = p(l—e™)

st. deviation(w) = o/ (1 — e~4t) /2a

Rewriting these equation gives:

. Inb 38
a= A7 .
_ 9
‘u_l—b 3.9

= st.deviation(w) |—2P2_ 310
g = St.deviation{w At(l—bz) .

Then, to estimate the parameter of the Vasicek model it is sufficient to find ¢ and b solving
the equation 3.7 and apply the equation 3.8-3.9. To get 6 we calculate the standard deviation of
residuals and substitute thisinto 3.10. The result are shown in tab.3.4

Cdlibrated | Vaue Estimated | Value Mean of CV(RMSE)
Parameter parameter RM Serrorst©
T 0220 wee| 01550
';fj_‘;“ 0.041 0.0665 0.0047 9.06 %
== 0,038 s ool 0.0233

Tab. 3.4 Vasicek calibrated and estimated pafameters using OLS

10 Of forward rate given using estimated model
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3.2.1.2 CIR OLS parameter estimation

For the CIR processit is not possible to give an explicit relation between the parameters of 3.5

and the parameters of 3.2 because the diffusion term is affected by /r(t). Then, we have to
perform OLS directly on the equation 3.2 by isolating 6Z; :

r(t+At) —r(t) auAt
T = — + ar(t)At
e NG NEG) ayTie)

And the objective function corresponding to 3.7 is:

~ [(r(t+1) —7r(t) auAt ?
] - i A 3.11
mm;( \/Tt) m+a r(t) t)

which is solved by:

-~
Qcir

T2+ 1 S+ DI r(lt) L OPXA r(t) - (T -1)3i% r(:(t)l)

(T2 —2T+1-Y3r® X155 % ) t

A
Heir

-1 z':f;&r(t +1) - X5 T(f»(t)l) Si=o r(®)

T2—2T +1+ Y1 3r(t+1) 3153 r(t) — 2isor(®) X5, r(t) - (T-1)3753 r(:;;)l)

And ., is found as a standard deviation of residuals. As for the Vasicek moddl, it is possible
to solve 3.11 using fminsearch function in Matlab. The result of the estimation obtained by

using this function are shown in tab 3.5.
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Cadlibrated | Vaue Estimated | Value Mean of CV(RMSE)

Parameter parameter RMSerrorstt
= _fom | =0 own
= | 0035 70,0469 00038 | 7.32%
= ™ 11 0,029 T 0.0260

She |00 | 04260

Tab. 3.5 CIR calibrated and estimated parameters;_usi ng OLS

3.2.2 Maximum likelihood estimation

Given an observation r on a random variable, we define likelihood the value of the density
function associated to the random variable considered at r. The likelikood of a sample r =

(11,12, -.., 1) 1s the product of the values of the density function at each r;. We can write:

L(or) = ﬂf(me). 3.12

The value of the density function at each point depend on the parameters 6, then, if the
parameters change, even the value of the likelihood will change. The Maximum likelihood

estimator of 8 isthe value 8 of @ that maximize the likelihood function:
6 = max L(0]r)

In general, it is more convenient to work with the logarithm of the likelihood (/ag-likelihood )
because we have to differentiate the likelihood function to find the value of 8 _and it is much

easier to differentiate the log-likelihood because is a sum of log-density:

InL(6|r) :zlnf(r,;,e). 313

i=1
The logarithmic function is a monotonic increasing function and then the value 8 which

maximize the likelihood also maximize the log-likelihood.

11 Of forward rate given using estimated model
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3.2.2.1 Vasicek MLE
Asshow in chapter 1, in the Vasicek model r(t) is normally distributed with :

E[T(t = Al’l?’(t)] = e—aﬂfr(t) +u(l— e—a/_\t)
VAR[r(t + At)|r(t)] = g (1— e-2adt)

and the conditional probability density of r(t + At)|r(t) is given by:

fa(t+AD)|r();a,pu 0)

1 _(r(t+Ay) - e tr(t) — pu(1 - e“‘ﬂt))Z)

2 1-— B—Zadt eXp 2 2 1-— B—Zadt
2o (< =5—) T

Hence, the log-likelihood function of a set of observationr = (14,13, ..., 1;,) results asfollows:

n—1
InL(a,m0lr) = Y Infr(t + 801 (0); 0,1,0)
t=0

n 1~ e—2aAt
= —EIH(Z}T) —n In(O’Z (T)

n—-1i

_ Z(r(t +AL) — e~ (f) — u(1— e~%4))2 3,14

t=0

The maximum of this function can be found differentiating with respect to a, 4 and o and

setting this partial derivative equal to zero [1]:

dlnL(a,n, Ate—abt n-1 |
n (gaﬂ olr) _ _ 1tf T Z[(r(t ZAD) = () — 1) — e~ (r(t) — 1)?] = 0
a? (_—Za )t=1

1 PG - A) - @ (r(0) — W]
a=-——1In

At ST (0 - 7 31
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dinL(a,pu,alr) 1 = _ -
= - E r(t+At) — e tr(t) —u(l —e~ ) =0
ou 02(1 —e Z“ﬂ‘t) H( )

za t=1

=1 (r(t + At) — e~ 1 (1))
n (1 — e—(xdt)

3.16

n—1
aInL(a,u,
: (go'# - - —2aary . 3 ) L0r(t +At) — p) = e (r () — p?
JO-Z (1__26;1—) ( 5 ( 1-— e—fodt))E t=0
2 2a
1 n—1
0% = ——osaat Z[(?‘(t +At) — p) — e (r(t) — ul? 3.17
()
And after straightforward cal culation we get:
TyTex — xTxy

ﬁ:

n(rxx - rxy) - (er - rxry)

1 1 = u(re + 1) + nu?
At Yix — 2UT — N>

)
Il

2a
62 = A =2y, T (ryy =28~ Mt e Ay — 201 — €Y 1y — g * Aty

+ n,uz(l _ e—(xﬂt)z

Where:
T—1 T T-1
x = Z r(0), By = z rit 1), Txx = Z T(t)zx
t=0 t=0 t=0

s 3

Ty = Zr(t)r(t + 1), Ty = Zr(t + 1)%

t=0 t=0
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The Matlab implmementation of the MLE estimation give us the following result:

Calibrated | Value Estimated | Value Mean of CV(RMSE)
Parameter parameter RM Serrors*t
(MLE)
o220 | 0.2044
0.041 = | 0.0565 0.0045 8.68 %
- 0.038 " 0.0411

Tab. 3.4 Vasicek calibrated and estimated parameters (MLE)

3.2.2.2 CIR Maximum Likelihood estimation

As shown in chapter 1, the distribution function of r(t) follows, up to a scale factor, a Non-

central chi-sguared distribution. Then we have:

21— —alt 4 —~alt
p(r(t + AD)|r(®) ~ a%( 4; )xé (gz(la:_am)r(t)) 3.18

Where x5 (1) denotes the non-central chi-squared distribution with d degrees of freedom equal

to:
4pa
d= _0‘—2
and non-centrality parameter A given by:
4qe bt

A

= 0-2(1 = e—aﬁt) T(t)

Given this distribution of the r(t) we cannot find (as made for Vasicek) an explicit formulas for
the values of the parameters to estimate. Then, in the algorithm developed in Matlab we need
to calculate first the log-likelihood function using 3.13 and in order to maximize this we will

12 Of forward rate given using estimated model
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minimize the value of the log-likelihood function (using fminsearch )*3. The result of the
estimation (see Matlab code in appendix C). The estimation is made for any simulation of r*(t),
and the resulting parameters are cal culated as mean of estimated parameter of each simulation.
The result is shown in the following table:

Calibrated | Value Estimated | Value Mean of CV(RMS
Parameter parameter RMSerror!t | E)

10262 102703
= = 10,035 “ 71700334 0.0034 7.32%
110,029 0.0292

= 0029

Tab. 3.5 CIR calibrated and estimated parameters (MLE)

3.3 Pricing

Another comparison that can be made between the different models anal yzed regards the prices
of the optionsthat they generate. Of course, to make this kind of comparison we have to choose
the options having an explicit form solution that allows an easy pricing for all the model used.
Relying on this issue, we chose to calculate the prices of the caplet. A caplet is an European
call option having as underlying the interest rate L(S,T) prevailing at time S, which pay at the
maturity date T the payoff®:

max(0,L(S,T) —K) (T —S)*N  3.19

where N is the notional amount on which the interest rate is calculated (in the following
paragraph this amount is assumed equal to 1 for simplicity).
Such kind of option is mainly used to cover a short position on L(S,T) against a possible

increase in the level of rates. For example, when | have a position that requires payment of the

13 The use of fminseach require to assign an initial value to the parameters to be found, follows [1] we set these
initial value equal to values estimated using OLS estimation.

14 Of forward rate given using estimated model

15 The difference (T-S) is called tenor
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floating rate L(S,T) at thedate T and | want to fix (equal to K) the maximum amount | will have
to pay, infact if | buy acaplet:

TOT PAYOFF: CAPLET PAYOFF — SHORT POSITION = (L(S,T) — K)* — L(S5,T)
If L(S,T) > K the total payoff is—K ,if L(S,T) < K the total payoff is —L(S, T) which is
less than K, then the maximum amount i wiil have to pay is K.

The payoff in 3.19 can be written in term of forward rate L(S, S, T) = L(S,T) that is aP(0,T)-
martingale'®, then:

C(0,R(t,S,T),K) = P(0, T)EF©™ (max(0, L(S,S,T) — K))(T - S)
And assuming L(t,S,T) lognormally distributed with deterministic volatility,i.e:
dL(t,S,T) = ogL(t,S, T)dWPED 320
it is possible to apply the Black formula'”:

€(0,L(0,S,T),K) = (T = S)P(0, T)[L(0,S,T) * N(d,) — K = N(d,) 3.21

(L2 1 Logs o)

CFBVS—I_

d1=

dy =d; —ogVS—0
Where o5 is determined by the market, or in our case by the model used.
3.3.1 SABR Caplet price
We can now use the result of the second chapter to apply the SABR formula for European

option asin equation 2.2. Hence, to get the caplet price using SABR model is sufficient to put

into the Black formula 3.21 the following value of volatility:

16 See [10]
7 See [57]
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og(K,L(0,5,T)) =

<

) (L(0,S,T) + K)A-R)/2 (1 +(—1;—f—)3mg2( L(0,S,T)/K ) + ung%llog‘*(L(O,S, YK £ |

24 (L(0,S,T) * K)A=B) ~ 4 (L(0,S,T) » K)A-P)/2

2—-3p*
Y, ”)S)

(L) .(1 . ((1 — B’ (0g)? g pBaag
x(z)

Where

o
z=—=(L(0,5,T) » K)1=P/210g(L(0,S,T)/K)
0y

And

z—p++1-—2pz+ 2
x(z)ziog( - £ )

1-p

Notethat P(0,T) in 3.21 appears only as “discounting term”, and since we are not in the context
of “real market” we cannot derive this from real data. We “solve” this problem by calculating
the value of P(0,T) using the ATSmodel. Then, for the SABR caplet price that has to be
compared with the Vasicek caplet price we calculate P(O,T) using this last model, and we do
the samewith the CIR model. It isclear that this approach isfar from what isdonein the market,
but in the “artificial word” in which we are operating it is a necessary forcing that allows us to

compare these models.
3.3.2Vasicek and CIR Caplet prices

To price a caplet with an ATS model we have to rearrange the payoff. Following the book of
Cesari [58] we can make the following consideration: the payoff at time T (L(S,T) — K)* *
(T —S) is equivalent to the payoff at time S(L(S,T) — K)* « (T — S) * P(S,T). In fact, T can
invest the payoff at time Sin the bond P(S,T), obtaining (L(S,T) — K)* * (T —S§) * 1 attime
T. Now we manipulate the form of the payoff in S in the following way assuming a Ssmply
compound interest rate:

(LS, T)—K)*«(T—=S)«P(S,T) =
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+

= (P PET) (T—is(P(sl,T) -1)-«)

=A-@A+(T-5K)*P(S,T)H*

=(1— 1+ (T - S)K) «P(5,T))*
From which follows that a caplet can be interpreted as a European Put option with maturity S
onthe (1 + (T — $)K) T-ZCB and strike equal to 1. As shown in[10] the price at time zero of
a Put option written on a zero coupon bond P(0,T), having strike X and maturing at time Sin
given by:
In the Vasicek model:

ZBPVAS(I',S; T’X) = XP(t, S)N(—h, + O'p) — Nom * P(t; T)N(_h)
with

b= —l—ln (Nom * P(t, T)) " Op

a, X « P(0,5) 2z

_ B suregy (1R800
Op - (1-e ) >a
Where Nom is the Nominal value of the ZCB.

In the CIR model:
ZBPC!R(I-JS’ T:X) = P(tl T)Xz(xl; v, Wl) T XP(I', S)Xz(xZ; v, WZ) - P(tl T) it XP(I', S)

where
x, =27F(p+ 8+ B(5,T))

4au
v—?

_ 20*r(0)e®a? + 202
P N T )
ZPZr(t)e(S—t)\-'a2+20'2

Wz 3 o

With p, § and T defined as
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_ 2Va? + 202
P o2 (e(s—t)xfa2+202 o 1)

a+va*:+20*

0‘2

ln(—C(i’, Dy

B(S,T)

&=

o=

And x2(x;; v, wy) represent the cumulative distribution function of the non-central chi-squared
distribution with v degree of freedom and non-centrality parameter w. Both Vasicek and CIR
caplet price are calcuiate also using Monte Carlo technique by simufating®® the zero coupon

bond price and calculating the discounted value (multiplying by P(0,S)) of the mean of the
payoffs.

3.3.3 Pricing result and conclusions

Table 3.6 contains the pricing result of a caplet with maturity S=1y, tenor =1y , strike = 0.06

and written on anotional equal to 1:

SABR Vasicek CIR Vasicek CIR
(calibrated) (calibrated) (estimated) (estimated)
Monte 0.0051 0.0053 0.050 0.053
Carlo
0.0056 | Black 0.0051 0.0052 0.050 0.051
formula

Table 3.6 Comparison of Caplet prices among SABR,V asicec and CIR model

The result shown big difference in the caplet price among the models. The relative error made
using the calibrated CIR model (equa to 5.3% using Monte Carlo and 7.1% using Black
formula) is smaller than that committed using the calibrated Vasicek model (equal to 8.9%
using both Monte Carlo and Black formula). The relative error is bigger if we look at the
estimated model. Considering the estimation errors, the differencesin pricesarein line with the

18 The caplet price is very sensitive to the number of simulations. Choosing n=10000, the resulting price of one
simulation can differ up to 50% from the price of another simulation. For this reason we have set n=1000000
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expectation. In fact, we can deduce that the main cause of the price differences is due to the
failure of the affine term structure model in replicating the forward rate behavior of the SABR
model, and this results in different values of L(S,T) among the models, from which follows a
difference value of P(S,T) and then of the capiet prices. Furthermore, looking at the market,
the caplets are not traded singularly; they are the building blocks of more complex derivative
contracts, the CAPs. This contract is essentially a sum of caplets having different maturity and
the sametenor. We have not found precise data about the size of the CAPs market, al so because
these contracts are negotiated in the OTC market. However, areport of the Bank International
Settlement® show that for single-currency interest rate derivatives at end-December 2014, the
notional amount of outstanding contracts totaled $505 trillion, which represented 80% of the
global OTC derivatives market. Then, given the magnitude of the interest rate option market
and the exposure of financial institutions on interest rate derivatives, it is clear the importance
of using the most accurate models possible for pricing and hedging these options. As already
said, the SABR model is probably the best model for pricing and hedging interest rate option,
but when in aportfolio there are other positions, like for example on acertain quantity of bonds,

these cannot be priced using Vasicek or CIR model.

19 See http://www.bis.org/publ/otc_hy1504.pdf
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Matlab Code

Vasicek calibration

clc
cl ear al
cl ose al

| oad (' Sabr _path')
dat a=Sabr path(1,:);

0.001: 0. 001: 0. 001]; % al pha
0.001:0.001:0.1]; % nu

0. 001: 0. 001: 0. 20] ; %si gma
ength(data(:,1));

O OO
I

—p— p— p—

ti me_step=length(data(l,:));
nSi m=100;

al =l engt h(a);
bl =l engt h( b) ;
cl =l engt h(c);
T ex=1; T _set=2;

t ot s=al *bl *cl

path R = zeros(nSimtine_step*T_set/ T _ex);
r 0=0. 03;

nmean_R=zeros(1,tinme_step);

path R(:,1) = r0;

delta t=1/time_step;
r=zeros(nSimtinme_step);

zcb_set= zeros(nSimtinme_step);
zcb_ex= zeros(nSimtinme_step);
forward rate=zeros(1,tinme_step);
B Tex=zeros(1,tinme_step);

B Tset=zeros(1,tinme_step);

A Tex=zeros(1l,time_step);

A Tset=zeros(1l,tine_step);

error=zeros(nSimtinme_step);
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mean_error=zeros(1,1);
mean_error_vector=zeros(tots,1);
count =0;
%alibration referred to a single SABR sinulation
for i=1:al
for j=1:Dbl
for w=l:cl

for h=1:nSim
for g=1:(tinme_step*(T_set/ T _ex)-1)
%per ogni tripletta ci calcolianp delle
simulazioni di r
pat h_R(h, g+1) =pat h_R(h, q) *exp(-
a(i)*delta_t)+ b(j)*(1-exp(-a(i)*delta_t))+c(w) *sqrt((21-exp(-
2*a(i)*delta_t))/2*a(i))*randn();

end
end

%
for s=1:nSim
for mel:time_step
X(1)=(T_set-(i-1)/time_step);
y(i)=(T_ex-(i-1)/tinme_step);
B_Tex(m= (1-exp(-a(i)*y(m))/a(i);
B_Tset(m= (1-exp(-a(i)*x(m))/a(i);

A Tex(m= (((c(w”"2)/(2%a(i)”2))-b(j))*((y(m)-
B_Tex(m)-((c(w)"2)/(4*a(i)))*B_Tex(m"2;

A_Tset (m=(((c(w"2)/(2%a(i)”2))-b(j))*((x(m)-
B Tset(m)-((c(w”"2)/(4*a(i)))*B Tset(m"2;

zchb_ex(s, m=exp(A Tex(m-path_R(s,m*B _Tex(m);
zchb_set (s, m)=exp(A _Tset(m -

path R(s,m*B Tset(m);
forward rate(s, m=((log(zcb _ex(s,m)-

| og(zcb_set(s,m)))/ (T _set-T_ex);

end
end

for ss=1:nSim?%isso la riga vasicek
for dd=1:tinme_step
error(ss, dd)=(data(dd) -
forward rate(ss,dd))”2; %er ogni riga sabr calcolo |a root
mean square deviation rispetto alle sinmulazioni vasicek
end
end
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mean_error=sqrt((1/(time_step*nSinm)*sum sunm(error(:,:))));
count =count +1
nmean_error_vector(count, 1) =nean_error;
[val ,idx] =m n(nean_error_vector) ;
end
end
end

Olsvasicek

clc
cl ear al
cl ose al

| oad Sabr path

dat a=Sabr _pat h;

n=l engt h(data(1,:));
nSi n=l engt h(data(:, 1))
delta_t=1/(n-1)

for i=1:nSim

rx(i)=sum(data(i,l:n-1));
ry(i)=sum(data(i,2:n));
rxx(i)=sum(data(i,l:n-1)."2) %
rxy(i)=sum(data(i,1l:n-1).*data(i,2:n)); %
ryy(i)=sun({data(i,2:n)."2);

b(i)=(n*rxy(i)-rx(i)*ry(i))/ (n*rxx(i)-(rx(i)"2));
phi (i) =(ry(i)-b(i)*rx(i))/n;
s.devWi)=sqgrt((n*ryy(i)-(ry(i)*2)-b(i)*(n*rxy(i)-
rx(i)*ry(i)))/(n*(n-2)));

a(i)=-log(b(i))/delta_t
mu(i) =phi (i)/(1-b(i));
sigma(i)=s.devWi)*sqgrt((-2*log(b(i)))/(delta_t*(1-b(i)"2)));

end

aa=nean(a) ;
nmrenmean( m) ;
ss=nean(si gna) ;



75

MLE Vasicek

clc
cl ear al
cl ose al

| oad path_R

dat a=pat h_R

n=l engt h(data(1,:));
nSi n=l engt h(data(:, 1))
delta t=1/(n-1)

for i=1:nSim

rx(i)=sum(data(i,l:n-1));
ry(i)=sum(data(i,2:n));
rxx(i)=sum(data(i,l:n-1)."2) %
rxy(i)=sun(data(i,l:n-1).*data(i,2:n)); %
ryy(i)=sun(data(i,2:n)."2);

mu(i)= ((ry(i)*rxx(i)-rx(i)*rxy(i))/ (n*(rxx(i)-rxy(i))-
((rx(i)?2)-rx(i)*ry(i))));

a(i)= -(1/delta_t)*log((rxy(i)-mu(i)*rx(i)-
mu(i)*ry(i)+n*mu(i)~2)/ (rxx(i)-2*mu(i)*rx(i)+n*mu(i)"2));

sigma2(i)=((2*a(i))/ (1l-exp(-a(i)*2*delta_t)))*(1/n)*(rxx(i)-
2*(exp(-a(i)*delta_t))*rxy(i)+(exp(-2*a(i)*delta_t))*rxx(i)-
2*mu(i ) *(1l-exp(-a(i)*delta t))*(ry(i)-rx(i)*exp(-

a(i)*delta_t))+n*(mu(i)"2)*(1-exp(-a(i)*delta_t))"2);

end

aa=nean( a)
nm=nean( mu)
ss=nean(si gma2)

CIR OLSand ML estimation

clc
cl ear al
cl ose al

| oad Pat hCal i brat edCl R

CIlR Data = PathCali bratedCl R,
Results = ClRestimation(ClR)
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function InL = loglike(Paraneters, CIR)
Data = CI R Dat a;
Dat al = Data(2: end);
Data2 = Data(l:end-1);

TimeStep = 1/ 250;

a = Paraneters(1);

mu = Paraneters(2);
sigma = Paraneters(3);

df =(4*nu*a)/ si gma™2

nc=Dat al*(4*a*exp(-a*Ti meStep))/ ((sigma"2)*(1l-exp(-
a*Ti neStep)))

tdf =(((sigma”™2)*(1-exp(-a*TineStep)))/4*a)*
ncx2pdf (Data2, df, nc); %

transition

density function

| nL = sum(-log(tdf));
end

function Results = ClRestinmation(Cl R

% OLS estimtion

Nobs = |l ength(Cl R Data);

r = CIR Data(1l:end-1);

dr = diff(Cl R Data);

dr = dr./r.”0.5;

regressors = [CIR TineStep./r.”~0.5, CIR TineStep*r.”"0.5];

drift = regressors\dr;

res = regressors*drift - dr;

a=-drift(2);

mu = -drift(1)/drift(2);

sigma = sqgrt(var(res, 1)/CIR TineStep); % standard
devi ati on of residual

Initial Paraneters = [a mu sigm];

% MLE with initial paraneter given by O.S

[ Paranmeters] = fm nsearch(@ Paraneters)

| ogli ke(Paraneters, CR), Initial Paraneters);
Resul t s. Paraneters = Paraneters;

end
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SABR Caplet price

clc
cl ear al
cl ose al

K=0. 060

CapDat a=[ K 13]; %3 indica che |a day count basis e cal colata
consi derando ly=252days

FwdRat es=0. 05252;

ZeroPrice=89; %°(0, T)

Settl e=0;

St ar t Dat e=250;

EndDat e=500;

si gna0=0. 029;

rho=-0. 25;

bet a=0. 5;

v=0. 61,
z=(v/sigma0)*((0.5*K)*((1-beta)/2))*I og(0.5/K);
x=log((z-rho+((1-2*rho*z+(z"2))~(1/2)))/(1-rho));
Si gma=(si gma0/ (((0.05*K)"((1-beta)/2))*(1+((((1-
beta)”2)*(10g(0.5/K))*2)/24)+((((1-
beta)”~4)*(10g(0.5/K))"4)/1920))))*(z/x)*(1+((((1-
beta)"2)/24)*((si gnma0”2)/ (0. 5*K)~(1-
beta))+(1/4)*(rho*beta*v*si gna0)/ (0. 5*K)"((1-
beta)/2)+((v"2)*(2-3*rho”2)/24))*1)

CapPrices = bkcapl et (CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)/100 %ecause the defoult notiona
is 100

Vasicek Caplet price (Black-76)

clc
cl ear al
cl ose al

a=0. 4244;
mu=0. 0465;
si gma=0. 0311,
stri ke_cap=0. 060
quantity=1+stri ke_cap
PT=0. 8905;
PS=0. 9458;
K=1
L=1% ace val ue
si gmap=(si gma/a)*(1l-exp(-a))*sqrt((1-exp(-2*a))/2*a);
h=(1/si gmap) *I og( (L*PT*1. 06)/ (K*PS) ) +(si gmap/ 2);
price=(K*PS*nor ncdf (- h+si gmap) - L* PT*nor ncdf (- h) *quantity)
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CIR caplet price (Black-76)

r 0=0. 0551;

k=0. 2703;

mu=0. 0434;

si gnma=0. 0272;

PS=0. 954,

PT=0. 896;

CST=0. 9946;

BST=0. 8852

quantity=1. 06;

K=1

rho=(2*sqgrt ((k"2)+(2*sigma”™2)))/ ((sigma™2) *(exp(sqrt ((k"2) +(2*
sigma”t2)))-1));

del ta=(k+sqrt ((k"2) +(2*si gma™2)))/ (si gma"2);

r1=(1 og( CST/ K)/ BST) ;

x1=2*r 1*(r ho+del t a+BST) ;

x2=2*r1*(rho+del ta);

v=4*Kk*nu/ (si gma"2);

wl=(2*(rho”2)*rO0*exp(sqrt ((k"2)+(2*sigma™2))))/ (rho+del t a+BST)

%Q:(Z*(rhoAZ)*rO*exp(sqrt((kA2)+(2*signaAZ))))/(rho+deIta);

price=((quantity*PT*ncx2cdf (x1, v, wl) - K*PS*ncx2cdf (x2, v, w2)) -
quant i t y* PT+K* PS)

CIR caplet price (Monte Carlo)

function pathFcir =
Ci r Forwar dSi nul ation(r0, k, mu, si gma, stri ke, T_set, T_ex);
clc
cl ose al
cl ear al
r 0=0. 0551;
k=0. 2703;
mu=0. 0434,
si gma=0. 0272;
T set=2;
T _ex=1,
ti me_step=250;
delta t=T set/tine_step;
n_si m=1000000;
c=((sigma"2)*(1l-exp(-k*delta_t)))/ (4*k)
path R = zeros(n_simtinme_step+l);
path_R(:,1) = r0;
gamma=sqrt ((k"2) +2* (si gman2));
stri ke=0. 06;
Z=randn(n_simtime_step);
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| ambda=zeros(n_simtine_step);
d=(4*mu*k)/ (si gma”2);
x=chi 2rnd(d-1,[n_simtine_step]);

path R = zeros(n_simtinme_step);
path_R(:,1) = r0;

zcb_set= zeros(n_simtine_step*T_ex);
zcb_ex= zeros(n_simtinme_step*T_ex);
B Tex=zeros(n_simtine_step*T_ex);

B Tset=zeros(n_simtinme_step*T_ex);
C Tex=zeros(n_simtinme_step*T_ex);

C Tset=zeros(n_simtinme_step*T_ex);

for j=1l:n_sim
for i=1l:time_step-1
| anbda(j,i)=path_R(j,i1)*(((4*k*exp(-
k*delta t)))/((1l-exp(-k*delta_t))*sigma™2));

pat h_R(j,i+1)=(((Z(j,i)+sqrt(lanbda(j,i)))"2)+x(j,i))*c;
end
end

for j=1l:n_sim
for i=l:time_step*T_ex
n(i)=(T_set-(i-1)/tinme_step);
mii)=(T_ ex-(i-1)/tinme_step);

B Tex(j,i)= (2*(exp(gamma*n(i)) -
1))/ ((k+gamma) *((exp(gama*n(i))- 1)) +2*gamma) ;

C Tex(j,1)=((2*gamma*exp( (k+gamma) *nm(i)/2))/ ((k+gamm) *( (exp(g
amma*n(i))-1))+2*gamm) ) *((2*k*nu) / (si gmat2));

B Tset(j,i)= (2*(exp(gama*n(i)) -
1))/ ((k+gamma) *((exp(gama*n(i))- 1)) +2*gamma) ;

C Tset(j,i)=((2*gamma*exp((k+ganma)*n(i)/2))/ ((k+gamma) * ( (exp(
gamma*n(i))-1))+2*gamma)) *((2*k*nmu)/ (si gmat2));

zcb_ex(1,1)=C Tex(1,1)*exp(-
path_R(1,1)*B Tex(1,1));
zcb_set(1,1)=C Tset (1, 1)*exp(-
path_R(1,1)*B Tset(1,1));
end
end

for g=1l:n_sim
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payof f (g) =max(0, (1-1. 05*zcb_set(g,tine_step)));
end
nmean_payof f =mean( payoff(:))
price_capletCl R=1. 06*zcb_ex(1, 1) *nmean_payof f

end

Vasicek caplet Price

functi on pathFvas =
vasi cekForwar dSi mul ation(rO0, k, mu, si gma, strike, T_set, T_ex);

cl ose al
cl ear al
clc

r 0=0. 0579;

k=0. 175;

mu=0. 0465;

si gma=0. 02911,

T set=2;

T ex=1;

ti me_step=250;

delta t=T set/tine_step;

n_si m=100000;

strike=0.06

path_ R = zeros(n_simtinme_step);
path_R(:,1) = r0;

zcb_set= zeros(n_simtine_step*T_ex);
zcb_ex= zeros(n_simtinme_step*T_ex);
forward_rate=zeros(n_simtinme_step*T_ex);
B Tex=zeros(n_simtine_step*T_ex);

B Tset=zeros(n_simtinme_step*T_ex);
A Tex=zeros(n_simtinme_step*T_ex);

A Tset=zeros(n_simtinme_step*T_ex);

for j=1l:n_sim
for i=1l:time_step*T_ex-1
path_R(j,i+1)=path_R(j,i)*exp(-k*delta_t)+ nmu*(1-
exp(-k*delta_ t))+sigma*sqgrt ((1-exp(-
2*k*delta_t))/2*k) *randn();
end
end

for j=1l:n_sim
for i=1l:time_step*T_ex
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X(i)=(T_set-(i-1)/tinme_step);
y(i)=(T ex-(i-1)/time_step);
B Tex(j,i)= (1l-exp(-k*y(i)))/Kk;
B Tset(j,i)= (1-exp(-k*x(i)))/Kk;
A_Tex(j,i)= (((sigman2)/(2*k"2))-mu)*(y(i)-
B Tex(j,i))-(((sigman2)/(4*k))*B Tex(j,i)"2);
A Tset(j,i)= (((sigma™2)/(2*k"2))-mu)*(x(i)-
B Tset(j,i))-(((sigma™2)/4*k)*B Tset(j,i)"2);
zcb_ex(j,i)= 1/ (exp(-
A Tex(j,i)+path R(j,i)*B Tex(j,i)));
zchb_set(j,i)=1/(exp(-
A Tset(j,i)+path _R(j,i)*B Tset(j,i)));

end
end

for g=1l:n_sim
payof f (g) =max(0, (1- (1+strike)*zcb _set(g,tine_step)));
end
mean_payof f =nmean( payoff(:))
price_capl et Vas=(1+stri ke)*zcb_ex(1, 1) *nmean_payof f

end
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