
Department of Information Engineering

MASTER DEGREE IN COMPUTER ENGINEERING

Desing, Development and Benchmarking of
Algorithms for Conversational Search

Master Candidate Supervisor

Mattia Romanello Prof. Nicola Ferro
Student ID 2020379 University of Padua

Co-supervisor

Guglielmo Faggioli
University of Padua

Academic Year: 2021/2022
Graduation date: 13𝑡ℎ October 2022

To those who believed in me from the beginning.

And until the end.

Abstract

Developing an intelligent dialog system that not only emulates human conver-

sation, but also answers to difficult topics is one of the most important fields

on several research area. In recent years, great strides have been made in this

area and several companies and research groups create competitions that aim

to find solutions to problems like Conversational Information Seeking and Natural

Language Generation. On this work we see one of them in particular: TREC CaST

(Conversational Assistance Track). We analyze several techniques that allow to cre-

ate a conversational system and how we can improve the results by using neural

techniques. On this work we examine how to retrieve relevant documents by

using Lucene and then to re-rank this documents by using a neural text-classifier

like BERT.

Sommario

Lo sviluppo di un sistema intelligente che non emula solamente una conver-

sazione umana, ma risponde anche a difficili argomenti è uno dei campi più

importanti in diverse aree di ricerca. Negli ultimi anni sono stati svolti nu-

merosi passi in avanti in questo settore e gruppi di ricerca tra cui Università e

famose aziende stanno investendo nella creazione di competizioni che mirano

a trovare soluzioni a questo problema. In questo documento guarderemo una

in particolare: TREC CaST (Conversational Assistance Track). Analizzeremo

diverse tecniche che mirano alla creazione di un sistema conversazionale, an-

dremo a vedere come migliorare il sistema in modo da dare sempre i migliori

risultati all’utente. In questo documento esamineremo come costruire un sis-

tema conversazionale con Lucene per poi svolgere un re-ranking mediante un

sistema di rete neurale, BERT. Per ogni metodologia di risoluzione sarà mostrato

anche il risultato ottenuto per poi analizzare il tutto al termine del documento.

Contents

1 Introduction 1

2 Background 5

2.1 Information Retrieval . 5

2.2 Conversational Information Retrieval 6

2.2.1 Conversational Search . 7

2.2.2 Conversational Recommendation 8

2.2.3 Conversational Question Answering 8

2.3 TREC CAsT . 9

2.4 Word Embeddings . 12

2.5 BM25 . 13

2.6 Performance measures . 14

2.6.1 NDCG . 14

2.6.2 Precision and Recall measures 16

2.6.3 MAP . 17

2.6.4 MRR . 17

2.7 Background to analysis . 18

2.8 Student’s T Test . 18

2.9 Anova . 19

3 Experimental setting and methodological tools 21

3.1 Datasets in TREC 2021/2022 . 22

3.1.1 MS MARCO . 22

ix

CONTENTS

3.1.2 KILT DATASET . 24

3.1.3 WaPo DATASET . 26

3.2 Lucene . 26

3.3 Neural Coref . 30

3.4 BERT . 32

3.5 Transformers for question answering 35

3.6 NLTK: Sentence Tokenizer . 36

3.7 Lucene OpenNLP . 37

3.8 Spacy . 38

3.8.1 Trec Eval . 40

4 Techniques 41

4.1 First query technique . 42

4.2 Context query technique . 43

4.3 Technique with bert and neuralcoref 44

4.3.1 NeuralCoref . 46

4.3.2 BERT . 50

4.4 Technique with automatic resolved utterance 52

4.4.1 Last run: Technique without ContextQuery 54

4.5 TREC 2022: submitted runs . 55

5 Analysis 57

5.1 Comparing runs with Anova . 61

6 Conclusions and Future Works 65

References 67

Sitology 69

Acknowledgments 71

x

1
Introduction

Developing an intelligent dialog system that not only emulates human con-

versation, but also answer to topics ranging from mathematical concepts to

current news is one of the most important fields on several research areas like

Natural Language Processing (NLP), Information Retrieval (IR) and Machine Learning

(ML) [5]. Over the years, information retrieval and search systems have become

more conversational and a lot of personal assistant such as Amazon Alexa, Ap-

ple Siri, Google Home and Microsoft Cortana are becoming more important in

our life. What these tools and technologies offer is certainly a searching method

very similar to how human thinks, which isn’t to write complex queries to ob-

tain certain information, but using natural language with the system that will

direct you to satisfy your information need. Systems with multi-turn capabili-

ties and natural language capabilities have been studied for decades, but only

in the last few years we have seen a growing evolution. There are many factors

which brought about this grow, for example one of the most important is the

progress on machine learning in fields like Natural Language Understanding

and Spoken Language Understanding. The latest generation systems have been

developed to support queries that refer indirectly to previous answers, previ-

ous questions or to specific arguments discussed during one of the previous

1

iterations. The growing interest on this field prompts many research group in

Universities, Industries and Governments to invest and create competitions that

aim to find solutions on this growing topic. TREC CAsT [4] 2022 is the fourth

edition of Conversational Assistance Track where the goal is to pursue creating

large-scale reusable test collections for open-domain conversational search [22].

The task aim to satisfy a user’s information need which is expressed or for-

malized through a conversation turns. On this document we adopt terminology

used in the speech and dialog context, for example the most basic unit is an utter-

ance (equal to a single query on an information retrieval system). All contiguous

utterances in the same context represent a single turn on a specif topic. During

these years, several techniques have been implemented in CAsT, from the most

advanced systems that involve neural query rewriting and neural re-ranker to

the traditionals NLP approaches [3] which still present good results in terms of

recall performance. One important change in CAsT 2022 is that for each turn in

the conversation, the system may return a response or ask a question to clarify

the user’s information need [4]. On this work we concentrate on the main task of

TREC CAsT: retrieve relevant documents and answer to each utterance. For the

competition three collections are used MSMARCO, WaPo and KILT Benchmark-

ing. On this work we will describe some approaches to solve the competition of

TREC CAsT 2021, the 2022 competition had no way to be tested and analyzed

yet (but the same techniques were used to produce 4 runs to be submitted to the

2022 competition). For example we tried the combination between BM25 and

BERT in order to obtain a final ranked list or simpler solutions in which cur-

rent utterance was expanded with previous utterances. On the first chapter we

will describe the background part, in which we will analyze what is a retrieval

system, the main difference with a conversational retrieval system and we will

describe TREC CAsT. On the second chapter we will describe some libraries

and methodologies (with code examples) that can be used to build a conver-

sational system. For example, we will talk about BERT (Bidirectional Encoder

Representations from Transformers) and NeuralCoref (a python library that resolves

2

CHAPTER 1. INTRODUCTION

coreferences using a neural network) that allowed us to obtain our best result in

the 2021 competition. On the third chapter we will describe the methodologies

used to produce the runs submitted to TREC CAsT 2022, we will talk about the

results obtained in the 2021 competition and, on the last chapter, we will analyze

the results obtained in the 2021 competition.

3

2
Background

Before starting to see the details of the project done, let’s start from the basics

in order to understand what a Retrieval is and the differences between a classic

Information Retrieval and a Conversational Retrieval System.

2.1 Information Retrieval

Information Retrieval can be defined as a set of techniques that deal with

organization, storage, retrieval and evaluation of information from document

repositories (particularly textual information as web documents). An informa-

tion retrieval process can begin when a user enters a query into the system.

Queries are formal statements of information need, for example what a user

writes in a normal search engine in order to obtain the weather information, the

age of an actor or the last match of a football team [9]. In information retrieval a

query doesn’t uniquely identify a single object (structured entities) in the collec-

tion (like in a database query), several objects may match the same query with

different degrees of relevance. Opposed to classical SQL queries, in information

retrieval the results may be correct or not to the query, so results are typically

ranked.

5

2.2. CONVERSATIONAL INFORMATION RETRIEVAL

Databases IR
Unit Structured data Mostly unstructured data
Queries Formally defined queries Vague and imprecise infor-

mation needs
Results Correct in formal sense Sometimes relevant, often

not
Match Exact Best match (ranked)
Interaction one shot query Interaction is fundamental

Table 2.1: Difference between databases and IR

This ranking of results, with different degrees of relevance, is one of the main

differences that characterizes an information retrieval system from a database

system.

2.2 Conversational Information Retrieval

A Conversational Information Retrieval (CIR) system is an information retrieval

(IR) system with a conversational interface which allows users to interact with

the system to seek information via a multi-turn conversation of natural-language,

spoken or written [6]. Conversational Information Seeking (CIS) [30] is con-

cerned with a sequence of interactions between a user (or more) and an infor-

mation system. Interactions are primarily based on natural language dialogue

and, for more sophisticated systems, they may include interactions like click,

touch or body gestures. A distinctive property of a CIS system is the ability

of the systems to understand multi-turn interactions expressed in natural lan-

guage. One important aspect in a conversational system is that a user’s query

can contains few information (which allow to match documents) and it can refer

to previous utterance (or arguments discussed in previous interactions). Con-

versational Information Seeking is adopted in new generation of conversational

assistant systems like: Amazon Alexa, Cortana, Google Assistant and many others.

6

CHAPTER 2. BACKGROUND

Conversational
Information Seeking

Conversational
Search

Conversational
Recommendation

Conversational
Question Answering

Figure 2.1: Conversational Information Seeking and example subdomains in-
cluding conversational search, conversational recommendation, and conversa-
tional question answering [30].

The growing of this area in recent years is driven by two factors. The first

is the ease of internet access in any part of the world: now people are doing

almost everything on the web. The second factor is the rapid adoption of new

conversational assistants installed on smartphone and devices of all kinds.

2.2.1 Conversational Search

Conversational Search refers to the use of complete sentences and other nat-

ural language phrases in search queries and how those queries are used in

search engines using artificially intelligent algorithms. Historically, most inter-

net searches were based on keyword phrases, such as "Italian food" or "Microsoft

Corporation"; conversational searches use grammatical and syntactical patterns

that closely resemble the way people talk. Conversational Search, or the process

of interacting with a conversational system to search for information, is a popu-

lar research area and an important new frontier in IR. With the rise in machine

learning (ML) and natural language processing many user’s statements written

in natural language are becoming more feasible, for example, the evolution of

natural language processing brings improvements in the query rewriting of an

7

2.2. CONVERSATIONAL INFORMATION RETRIEVAL

information retrieval . One of the main challenges to Conversational Search is

that the system must take into account the evolution of the whole conversation.

As we can see on Table 2.2, the system must "understand" a natural language

utterance and represent the current state based on its knowledge, this step is

required in order to build a more detailed query that can be used to retrieve

relevant documents/answers to the user’s information need.

USER How do genes work?

SYSTEM A gene is a short piece of DNA. Genes tell the body how to

build specific proteins...

USER What others are caused by a single change?

SYSTEM The four types of human Genetic diseases are: (1) Single-

gene/monogenic Genetic Diseases...

USER ...

Table 2.2: CaST 2021, topic 113

2.2.2 Conversational Recommendation

On Figure 2.1 we can notice that a conversational information seeking has a

subdomain called: Coversational Recommendetion. On this section we introduce

the general concept in order to explain the image. Recommender systems can be

seen as information seeking systems that provide users with potentially relevant

items based on historical interactions [30]. A recommender system uses the past

user-item interactions as a way to produce (and re-rank) relevant information

and aims to help users in order to select items for their information need, often

in a closed domain such as books, resturants or movies.

2.2.3 Conversational Question Answering

Conversational Question Answering aims to provide one or more answers

to a given question, it is an important research area in information retrieval (IR)

8

CHAPTER 2. BACKGROUND

and natural language processing (NLP) communities [30]. Conversational ques-

tion answering is a branch of conversational information seeking (CIS) and the

user’s need is expressed in a natural language (as in conversational search). In

contrast to classical information retrieval (IR) systems, in which full documents

are considered relevant to the user’s need, conversational question answering

aims to find short pieces of information to answer the queries. Therefore, this

system uses NLP and IR techniques to retrieve small pieces of text that exact

answer the queries (instead of the classic document list returned by IR systems).

On Chapter 4 we will use some QA models in order to answer to the utterances

during the conversation: these answers can be used during the query expansion

or query rewriting phase.

When was Avengers Endgame released in Italy?

System: 24 April 2019

Who is Sergio Mattarella?

System: Mattarella is an Italian politician

2.3 TREC CAsT

TREC 2022 is the thirty-first edition of the Text REtrieval Conference [7] in

which the main goal is to create the evaluation infrastructure required for large-

scale testing information retrieval (IR) technologies. Each TREC is organized

around a set of focus areas called tracks [22], in this work we focus on Conversa-

tional Assistance Track (CaST). This one is recent compared the other tracks, it

started in 2019 and it focuses on creating large-scale reusable test collections for

open-domain conversational search [3]. The document collection of this track is

the union between:

• MS MARCO [13];

9

2.3. TREC CAST

• KILT (benchmark version of Wikipedia) [8];

• WAPO (Washington Post collection) [28];

for a total of approximately 18 million of documents.

The goal of the task is to satisfy a user’s information need expressed as a multi-

turn conversational queries (u) for each turn:

𝑇 = 𝑢1, 𝑢2, 𝑢3, 𝑢4, ..., 𝑢𝑛 . (2.1)

On this work we talk more about CAsT 2021, the results of 2022 cannot yet be

analyzed. CAsT 2021 has 26 information needs (topics) with an average length

of 9.2, for a total of 239 turns; CAsT 2022 has 17 information needs, for a total of

205 turns. The main difference between the two competition is the structure of

the topics:

• in 2021 each topic is a simple list of utterances expressed in natural lan-

guage;

• in 2022 the topics are structured as a tree in which each level corresponds

to one subtopic;

On a conversation we adopt the terminology utterance to refer a user’s informa-

tion need and we use the terminology query to refer the rewritten, expanded and

reworked utterance used by the system in order to retrieve relevant information.

All contiguous utterance from a single speaker form a single turn. An example

of a 2021 topic is shown in Table 1.1.

Another big difference between CAsT 2021 and 2022 is the way to return relevant

information:

• in 2021: the result is a list of relevant documents. The entire document

is used without any division into passages, we split the document into

passages (if you want, it depends on how a developer wants to reprocess

10

CHAPTER 2. BACKGROUND

the documents) only to extract a response to the user (e.g. summarization

of the passage);

• in 2022: documents are split into passages of length 250 words (there was

a tool provided by CAsT) and the result is a ranked list of textual passages

that can be used as a response to the user. The response to the user can

come from a single document or from several, therefore, for each response

is defined the source (corresponding to the ID of the document and to the

ID of the passage);

In CAsT 2021 and 2022 there are three categories of run based on the data used

in the testing phase [3]:

• Manual: Runs that use the manually rewritten (resolved) context-free

queries, these use manual human rewritten queries;

• Automatic-Canonical: Automatic runs that use the provided automatic

canonical system responses;

• Automatic-Raw: Runs that only use the provided raw conversational queries,

these use raw utterances (with automatic rewrite/expansion) methods.

On this work we see the last category and we evaluate the system based

on the same measure used by CaST: Recall (Recall@500), Mean Average Preci-

sion (MAP@500), Mean Reciprocal Rank (MRR) and Normalized Discounted Gain

(NDCG@500 and NDCG@3), we will see better this measures on the next chap-

ters.

11

2.4. WORD EMBEDDINGS

Figure 2.2: Example of word embedding, image by [29].

2.4 Word Embeddings

On the next chapter (Chapter 3) we will talk about Word embeddings, let’s

describe in detail what they are. Word Embedding is one of the most popular

representation of document vocabulary. It is able to capture context of a word

in a document, semantic and syntactic similarity, relation with other words, etc.

This term indicates a set of modeling techniques in which words or phrases

in a vocabulary are mapped into vectors or real numbers. Samples of textual

data, also called corpora, are converted into numerical vectors though a two

step process: the first is tokenization where words (or n-grams) will constitute the

vocabulary of the dataset. The second is vectorization where the characteristics (of

the tokens) will be assigned to a numerical measure. Vector representations of

tokens, called Word Embeddings, are learned from NLP models, defined as vector

space models which are based on neural network architectures. Word2Vec is one

of the most popular technique to learn word embeddings using neural network,

it was developed by Tomas Mikolov at Google. Word2Vec is a set of models used

to produce word embeddings, in which the first release was in C but later also

created for Python and Java. Word2Vec is a simple neural network with two

levels and created to process natural language: the algorithm requires a corpus

as input and returns a set of vectors representing the semantic distribution of

words in the text.

12

CHAPTER 2. BACKGROUND

2.5 BM25

In information retrieval Okapi BM25 is a ranking function used by search

engines to estimate the relevance of a document to a given search query. BM25

is a bag-of-words retrieval function that ranks a set of documents based on

the query terms appearing in each document. Given a query 𝑄, containing

keywords 𝑞1, 𝑞2, ..., 𝑞𝑛 , the BM25 score of a document D is [11]:

𝑠𝑐𝑜𝑟𝑒(𝐷, 𝑄) =
𝑛∑
𝑖=1

𝐼𝐷𝐹(𝑞𝑖) 𝑓 (𝑞𝑖 , 𝐷)(𝑘1 + 1)
𝑓 (𝑞𝑖 , 𝐷) + 𝑘1(1 − 𝑏 + 𝑏 |𝐷 |

𝑎𝑣𝑔𝑑𝑙)
(2.2)

where:

• 𝑓 (𝑞𝑖 , 𝐷) is 𝑞𝑖’s term frequency in the document D;

• |𝐷 | is the length of the document D;

• 𝑎𝑣𝑔𝑑𝑙 is the average document length in the text collection from which

documents are drawn;

• 𝑘1 is a free parameter;

• 𝑏 is a free parameter;

• 𝐼𝐷𝐹(𝑞𝑖) is the IDF (inverse document frequency) weight of the query term 𝑞𝑖 .

There are other similarities that you can use but, on this work, we will focus on

BM25.

13

2.6. PERFORMANCE MEASURES

2.6 Performance measures

An important aspect in the development of a Conversational System (or

Information Retrieval System) is to check the performances of the runs. On this

section we will describe some measures used on this work, the same evaluations

are used in TREC CAsT (Conversational Assistance Track). On TREC 2021 [3]

the following measures were used to evaluate each run:

• NDCG@500

• RECALL@500

• PRECISION@500

• MRR

• NDCG@3 (the one we tried to maximize at each run)

2.6.1 NDCG

To understand NDCG (Normalized Discounted Cumulative Gain), we need to

understand its predecessors: Cumulative Gain (CG) and Discounted Cumula-

tive Gain (DCG). Cumulative Gain is the sum of all the relevance scores in a

recommendation set (the set of retrieved documents):

𝐶𝐺 =
𝑛∑
𝑖=1

𝑟𝑒𝑙𝑖 (2.3)

where 𝑟𝑒𝑙𝑖 defines the graded relevance of the result at position 𝑖.

Let’s see an example: suppose that an information retrieval system, for a specific

query, returns six relevant documents:

𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6

14

CHAPTER 2. BACKGROUND

and you know their relevance scores:

3,2,3,0,1,2

the Cumulative Gain will be:

𝐶𝐺6 =
𝑛∑
𝑖=1

𝑟𝑒𝑙𝑖 = 3 + 2 + 3 + 0 + 1 + 2 = 11 (2.4)

The value computed with CG is unaffected by changes in the ordering of search

results. In fact, moving a highly relevant document 𝑑𝑖 above a less relevant

document 𝑑 𝑗 the result is exactly the same. Based on this assumption DCG is

preferred since it takes into account the position of the document on the ranked

list, where the traditional formula of Discontinued Cumulative Gain is:

𝐷𝐶𝐺𝑛 =
𝑛∑
𝑖=1

𝑟𝑒𝑙𝑖
log2(𝑖 + 1) (2.5)

By using previous example, we find:

𝐶𝐺6 =
𝑛∑
𝑖=1

𝑟𝑒𝑙𝑖
log2(𝑖 + 1) = 3 + 1.262 + 1.5 + 0 + 0.387 + 0.712 = 6.861 (2.6)

To normalize DCG in [0,1], you need to compute the ideal run (e.g. the run sorted

in descending order of relevance) which rapresent the best retrieval possible and

the maximum value of DCG. The Normalized DCG or nDCG will be:

𝑛𝐷𝐶𝐺𝑝 =
𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
(2.7)

where 𝐼𝐷𝐶𝐺𝑝 defines the maximum (ideal) value of 𝐷𝐶𝐺𝑝 .

15

2.6. PERFORMANCE MEASURES

Figure 2.3: Precision and Recall measures

2.6.2 Precision and Recall measures

Let (observe Figure 2.3):

• A be the set of relevant documents;

• B be the set of retrieved documents;

• A ∩ B the set of retrieved relevant documents;

Precision is the fraction of the documents retrieved that are relevant to the users

information need. Recall is the fraction of the documents that are relevant to the

query that are successfully retrieved. Then:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐴 ∩ 𝐵|
|𝐵| (2.8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝐴 ∩ 𝐵|
|𝐴| (2.9)

16

CHAPTER 2. BACKGROUND

2.6.3 MAP

Precision (is the fraction of the documents retrieved that are relevant to the

user’s information need) and Recall (is the fraction of the documents that are

relevant to the query that are successfully retrieved) are single-value metrics

based on the whole list of documents returned by the system. Let:

• R be the set of the rank positions of relevant retrieved documents;

• rr = |R| be the total number of relevant retrieved documents;

• N be the total number of retrieved documents;

the Average Precision is defined as:

𝐴𝑃 =
𝑟𝑟
𝑅𝐵

· 1
𝑟𝑟

·
∑
𝑘∈R

𝑃(k) = 1
𝑅𝐵

·
∑
𝑘∈R

𝑃(k) (2.10)

where:

• 𝑟𝑟
𝑅𝐵 is the Recall;

• 1
𝑟𝑟 ·

∑
𝑘∈R 𝑃(k) is the arithmetic mean of 𝑃(𝑘)

The Mean Average Precision (MAP) is the mean of AP over a set of topics.

2.6.4 MRR

The Mean Reciprocal Rank is a statistic measure for evaluating any process

that produce a list of possible responses to a sample of queries. The reciprocal

rank of a query response is the multiplicative inverse of the rank of the first

correct answer: 1 for first place, 1
2 for the second place, 1

3 for the third place and

so on. The mean reciprocal rank is the average of the reciprocal ranks of results

for a sample of queries Q:

𝑀𝑅𝑅 =
1
|𝑄 | ·

|𝑄 |∑
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(2.11)

17

2.7. BACKGROUND TO ANALYSIS

2.7 Background to analysis

Now we will describe two techniques used in statistics to prove whether

the difference between two means is significant or due to chance alone. These

methodologies will be used at the end of this work to show the difference in

results between the various runs.

2.8 Student’s T Test

The Student’s t test is used to determine if there is a statistically significant

difference between the means of two independent groups .

In the student’s t test, two hypotheses are used:

• 𝐻0 (or null hypothesis): the means of the two groups in the population are

equal to each other (or the difference between the means is equal to zero);

• 𝐻1 (or alternative hypothesis): the means of the two groups in the population

aren’t equal to each other (or the difference between the means isn’t equal

to zero).

The null hypothesis can never be rejected with absolute certainty. This statis-

tical technique allows you to estimate the probability of obtaining a difference

between the values of the two means, this probability is called p-value.

Usually the following criterion is used:

• p-value >= 𝛼 : we cannot reject the null hypothesis, the difference observed

between the means of the two groups is not statistically significant;

• p-value << 𝛼 : we can reject the null hypothesis, the difference observed

between the means of the two groups is statistically significant;

Usually 𝛼 is set to 0.05, the same was done on this work.

18

CHAPTER 2. BACKGROUND

2.9 Anova

ANOVA (ANalysis Of VAriance) is a generalization of the Student’s T test. In

fact, both techniques are used for the comparison of mean values. One difference

is that: the Student’s T test allows you to compare only two groups, otherwise

ANOVA allows to compare any number of groups.

There are several ANOVA techniques (e.g. One-Way, Two-Way, MANOVA), on

this paper we will use the One-Way Anova test. As for the Student’s T test, ANOVA

is also based on a null hypothesis and an alternative hypothesis:

• 𝐻0 (or null hypothesis): the means of the groups in the population are equal

to each other

𝐻0 : 𝜇1 = 𝜇2 = ... = 𝜇𝑛 (2.12)

• 𝐻1 (or alternative hypothesis): the means of the two groups in the population

aren’t equal to each other (there is at least one different mean).

The results of the analysis of variance are typically presented using a table and

it includes:

• Origin: the origins of the variance, including the factor under consideration

(in our case the lot), errors and totals;

• DF: degrees of freedom for each origin of the variance;

• Deviance (SS): sum of squares for each origin of variance, together with the

total of all origins;

• Quadratic mean: the sum of the squares divided by the relative degrees of

freedom;

• Statistic F: the square mean of the factor (lot) divided by the square mean

of the error;

19

2.9. ANOVA

• Prob> F: the p-value.

The p-value is used to test the validity of the null hypothesis and it is used in

the same way as described for the Student’s t test.

20

3
Experimental setting and

methodological tools

To build a conversational system we have to decide what types of libraries we

want to use and analyze how we can retrieve relevant documents from a corpus.

Once the system works, documents are retrieved in sorted order according to a

score computing using the document representation, the query and a ranking

algorithm. The difficult part in a conversational system is that the queries can

be referred to previous topics (or previous responses) and the current utterance

is written in a conversational way. This implies that these systems must resolve

coreferences (pronouns for example) to construct a correct query. Before going

into the details of the methodologies, in this section we will see a presentation

of the datasets used on this work and some libraries that we used to find well

results in TREC CAsT 2021. For each tool, neural model (e.g. QA models) and

dataset, a detailed introduction and an explanatory example will be shown (in

order to discuss concepts that will be treated in the next chapter, Chapter 4).

21

3.1. DATASETS IN TREC 2021/2022

3.1 Datasets in TREC 2021/2022

On this section we will see a presentation of the datasets used on this work:

we will see the structure and an example. For TREC CAsT 2021 and 2022 three

collections was used:

• MS MARCO [13];

• KILT [8];

• WAPO [28];

Before introducing the collections we talk about the difference between document

ranking task and passage ranking task, this is a fundamental argument since the

datasets are different depending on the task to do. In document ranking task

we retrieve a list of relevant documents according to a query, otherwise in

passage ranking task we retrieve relevant passages (inside documents) which are

relevant to the query. Basically these datasets (MSMARCO, KILT and WAPO)

are already divided, there are datasets that contain the entire documents (for

document ranking task) and datasets that contain the passages of the documents

already divided and ready to use. On this work we use the first one since the

main task of TREC CAsT 2021 (and 2022) is to retrieve relevant documents.

3.1.1 MS MARCO

MS MARCO (Microsoft Machine Reading Comprehension) is a large scale dataset

focused on machine reading comprehension, question answering, passage rank-

ing, keyphrase extraction and conversational search studies. First released at

NIPS 2016 [18], the current dataset has 1,010,916 unique real queries that were

generated by sampling and anonymizing Bing usage logs. The dataset started

off focusing on QnA but has since evolved to focus on any problem related to

search [14]. Now the MS MARCO dataset consists of six major components [18]:

22

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

• Questions: these are a set of anonymized queries from Bing’s search logs,

where the user is looking for a specific answer;

• Passages: For each question, on average the dataset includes a set of 10

passages which may contain the answer to the question. These passages

are extracted from relevant web documents;

• Answer: For each question, the dataset contains zero, or more answers

composed manually by the human editors;

• Well-formed Answers: For some question-answer pairs, the data also

contains one or more answers that are generated by a post-hoc review-

and-rewrite process;

• Document: For each of the documents from which the passages were

originally extracted from, the dataset includes: URL, body text and title;

• Question type: Each question is further automatically annotated using a

machine learned classifier with one of the following segment labels:

– numeric;

– entity;

– location;

– person;

– description;

There are two versions of MS MARCO: V1 and V2, the second one is the most

up-to-date and it is the one that we used on this work. On this paper we used the

document dataset (for document ranking task) 1, there was a difference in structure

between the 2021 and 2022 collections (the 2022 collection also contained many

more documents), on this paper we will see the first one .

1https://msmarco.blob.core.windows.net/msmarcoranking/msmarco_v2_doc.tar

23

https://msmarco.blob.core.windows.net/msmarcoranking/msmarco_v2_doc.tar

3.1. DATASETS IN TREC 2021/2022

It contains 11.9 million of documents taken from Bing searches [13] and it is

structured as follows (on Code 3.1 an example):

• documentId
• documentLink
• documentTitle
• documentText

1 D59865 # documentId

2 http://www.medicalnewstoday.com/articles/37136.php # documentLink

3 What you need to know about breast cancer # documentTitle

4 Newsletter MNT - Hourly Medical News Since 2003Search Log in

Newsletter MNT - Hourly Medical News Since 2003Search Login What

you need to know about breast cancer Last updated Mon 27 November

2017By Christian Nordqvist Reviewed by Christina Chun, MPHSymptoms

Stages Causes Types Diagnosis Treatment Outlook Breast cancer is

the most common invasive cancer in women, and the second main

cause of cancer death in women, after lung cancer. # documentBody

Code 3.1: Example of MS MARCO document

3.1.2 KILT DATASET

KILT is a resource for training, evaluating and analyzing NLP models on Knowl-

edge Intensive Language Tasks. KILT has been built from 11 datasets represent-

ing 5 types of tasks [8] [19]:

• Fact-checking (FEVER): the task aims to verify a claim against a collection

of evidence. It requires deep knowledge about the claim and reasoning

over multiple documents.;

• Entity Linking (AIDA CoNLL-YAGO, WNED-WIKI, WNED-CWEB): the

task aims to assign a unique Wikipedia page to entities mentioned in text;

• Slot filling (T-Rex, Zero Shot RE): the goal of the task is to collect infor-

mation on certain relations (or slots) of entities (e.g., subject entity Albert

24

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

Einstein and relation educated_at) from large collections of natural lan-

guage texts;

• Open domain QA (Natural Questions, HotpotQA, TriviaQA, ELI5): the

task aims to produce the correct answer for a question, without a prede-

fined location for the answer;

• Dialog generation (Wizard of Wikipedia): the task aims to develop an

engaging chatbot that can discuss a wide array of topics with a user.

KILT includes the test set for all datasets considered. On this paper we used the

KILT knowledge source2, it is based on the 2019/08/01 Wikipedia snapshot and

contains 5.9M articles.

The dataset is structured as follows (on Code 3.2 an example):

• id =⇒ int

• wikipedia_id =⇒ int

• wikipedia_title =⇒ String

• text =⇒ List<String>

1 {

2 {

3 "id": "290",

4 "wikipedia_id": "290",

5 "wikipedia_title": "An example of title",

6 "text": ["A\n", "is the first letter..",".."]"

7 }

8 }

Code 3.2: Example of KILT document

2http://dl.fbaipublicfiles.com/KILT/kilt_knowledgesource.json

25

http://dl.fbaipublicfiles.com/KILT/kilt_knowledgesource.json

3.2. LUCENE

3.1.3 WaPo DATASET

WaPo is a dataset consisting of 728 thousand of news articles from the Washing-

ton Post 3 published between 2012-2020 [28].

The dataset is structured in this way (on Code 3.3 an example):

• id =⇒ String

• articleUrl =⇒ String

• title =⇒ String

• contents =⇒ List<WapoContent> where WapoContent is an object that

contains the real text content and other informations.

1 {

2 {

3 "id": "b2e89334-33f9-11e1-825f-dabc29fd7071",

4 "article_url": "https://www.washi...",

5 "title": "Danny Coale, Jarrett Boykin ...,

6 "contents": [{"content": "Colleges", "mime": "text ...

7 }

8 }

Code 3.3: Example of KILT document

3.2 Lucene

Lucene is an open source Java library providing powerful indexing and search

features implemented by Doug Cutting. It is supported by Apache Software

Foundation and is released under the Apache Software License. There are a lot

3The Washington Post is an American daily newspaper

26

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

of wrappers of the original library for C#, C++, Python and PHP and it has an

extensive documentation. Alternatives to Lucene can be:

• Java

– Terrier (http://terrier.org)

– Galago (https://sourgeforge.net/p/lemur/wiki/Galago)

• C++

– JassV2 (https://github.com/andrewtrotman/JASSv2)

– XAPIAN (https://xapian.org)

While developing an IR system in Lucene, we may have to index the documents:

indexes are data structures designed to support search by avoiding linear scans

and giving us results in small time. This step is fundamental in order to guaran-

tee an efficient and effective Information Retrieval system. Given its importance,

different setups were tested in order to decide which one was the best. To index

the documents we used a library (GSON) that allowed to parse the text and to

create a specific object in Java. These objects will then be used by the Lucene

IndexWriter to create the index data structure.

For each document in MS MARCO, we stored the document id, title and text

by converting the GSON MSMARCO object to a Lucene document with the

following function:

1 publ ic s t a t i c Document getLuceneDocumentFromMsMarco (MSMarcoDocument doc , S t r ing id)

2 {

3 Document d = new Document () ;

4 d . add (new S t r i n g F i e l d (Constants . ID , doc . documentId , F ie ld . S tore . YES)) ;

5 d . add (new S t r i n g F i e l d (Constants .DATASET, "MARCO" , F ie ld . S tore . YES)) ;

6 d . add (new S t r i n g F i e l d (Constants . LUCENE_ID, id , F ie ld . S tore . YES)) ;

7 d . add (new BodyField (document . documentTitle)) ;

8 d . add (new BodyField (document . documentText)) ;

9 re turn d ;

10 }

Code 3.4: From MS MARCO to Lucene document

27

http://terrier.org
https://sourgeforge.net/p/lemur/wiki/Galago
https://github.com/andrewtrotman/JASSv2
https://xapian.org

3.2. LUCENE

For each document in KILT, we stored the document id and text by converting

the GSON KILT object to a Lucene document with the following function:

1 publ ic s t a t i c Document getLuceneDocumentFromKilt (K i l tBase document , S t r ing luceneID)

2 {

3 Document d = new Document () ;

4 d . add (new S t r i n g F i e l d (Constants . ID , document . _id , F ie ld . S tore . YES)) ;

5 d . add (new S t r i n g F i e l d (Constants .DATASET, "KILT" , F ie ld . S tore . YES)) ;

6 d . add (new BodyField (S t r ing . j o i n (" " , document . t e x t))) ; //s to r e body

7 //Note tha t document . t e x t i s an array of s t r i n g s

8 re turn d ;

9 }

Code 3.5: From KILT to Lucene document

For each document in WAPO, we stored the document id and text by converting

the GSON WAPO object to a Lucene document with the following function:

1 publ ic s t a t i c Document getLuceneDocumentFromWapo (WapoDocument document , S t r ing ID)

2 {

3 Document d = new Document () ;

4 d . add (new S t r i n g F i e l d (Constants . ID , document . id , F i e ld . S tore . YES)) ;

5 d . add (new S t r i n g F i e l d (Constants .DATASET, "WAPO" , F ie ld . S tore . YES)) ;

6 d . add (new S t r i n g F i e l d (Constants . TITLE , document . t i t l e , F i e ld . S tore . YES)) ;

7 d . add (new S t r i n g F i e l d (Constants . LUCENE_ID, ID , F ie ld . S tore . YES)) ;

8 S t r ingBu i lde r body = new St r ingBui lde r () ;

9

10 fo r (var content : document . contents) {

11 i f (content != nul l) {

12 body . append (

13 S t r ing . format ("%s %s %s\n" ,

14 content . content ,

15 content . fu l l c ap t i on ,

16 content . blurb)

17) ;

18 }

19 }

20

21 d . add (new BodyField (body . t oS t r ing ())) ; // s to r e body

22

23 re turn d ;

24 }

Code 3.6: From WAPO to Lucene document

28

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

The structure was slightly modified for the 2022 competition, as the structure

of the datasets was slightly different. In 2022, each document was split into 250

token-length passages as required in the guidelines, as the goal was to return

document passages to the user. There was a tool provided by the organizers

that split the documents in passages.

We used a Custom Analyzer to index the documents with the StandardTokenizer-

Factory and the following TokenFilters [23]:

• LowerCaseFilterFactory: it replaces all uppercase characters in their cor-

responding lowercase, if the token is "Happy" the result is "happy" (in low-

ercase);

• ApostropheFilterFactory: it splits the word into two or more tokens when

there is an apostrophe, if the token is "O’Reilly’s" the result is two tokens

"O" and "Reilly";

• EnglishPossessiveFilterFactory: it removes singular possessives from words;

• WordDelimiterGraphFilterFactory: if a word contains special characters

like "Hot-Spot" the word is separated in two or more words without any

special character;

• StopFilterFactory: it removes the stopwords, we used the Snawball format.

To index all the datasets with the CustomAnalyzer a machine with 32 Gb of RAM

and an i5 11600K took 2 hour and 15 minutes for a total of 65.5 Gb of data to

store (the index size was 11.1 Gb). For TREC 2022 we used the Blade Cluster 4 of

the University of Padua for time and hardware reason . Once indexing is done,

we move on the search phase. Searching inherits the work done in the indexing

phase, in fact each topic enters the same pipeline followed by documents.

4https://clusterdeiguide.readthedocs.io/en/latest/Overview.html

29

https://clusterdeiguide.readthedocs.io/en/latest/Overview.html

3.3. NEURAL COREF

Figure 3.1: Neural coref resolution of the chat. Image from [17].

3.3 Neural Coref

Neural Coref [16] is a pipeline extension for spaCy and it is a free and open source

library for Natural Language Processing (NLP) in Python. It allows to annotate

and resolve coreference clusters using neural network. Let’s see an example of

possible coreference, let’s have a look at Bob (green messages) who is talking

with an AI system (grey message).

My sister has a friend called John

Really, tell me more about him

She thinks he is so funny

There are several implicit references in the last message from Bob

• "she" refers to the same entity as "My sister": Bob’s sister;

• "he" refers to the same entity as "a friend called John": Bob’s sister’s friend;

Humans naturally associate these references together, but for a intelligent dialog

system it is much more difficult.

30

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

Figure 3.2: Example of word embedding. Image by Shane Lynn [29]

A typical coreference resolution algorithm goes like this:

• the algorithm extracts a series of mentions - word that are potentially

referring to real world entities;

• for each mentions and each pair of mentions, we compute a set of features

(e.g. Word2Vec). On this step we talk about word embedding, we already

seen the concept on the previous chapter;

• then, we find the most likely antecedent for each mention based on this

set of features. This last step is called pairwise ranking.

We decided to use this library because in TREC CAsT’s topics there are many

coreferences that need to be resolved in order to build a correct query for the

system. Each utterance in TREC is expressed in a conversational way and, during

the conversation, there are a lot of pronouns that refer to previous entities. The

idea was to use NeuralCoref to reformulate the utturences based on the previous

responses and questions. Generally, the library automatically replaces pronouns

or automatically resolves references but, sometimes, it leaves the sentences as

they are because it is unable to establish which, of the available entities, is mostly

31

3.4. BERT

I just had a breast biopsy for can-
cer. What are the most common
types?

System response

Once it breaks out, how likely is it
to spread?

System response

How deadly is it?

Figure 3.3: Topic 106, TREC CaST 2021

correct. In this case we created an ad-hoc script that replaces each pronoun with

the entity that obtained the highest score from NeuralCoref (obviously checking

that the entity is not the pronoun itself). On Figure 3.3 you can find an example

in which NeuralCoref can be used to replace the various pronouns.

An alternative to Neural Coref can be AllenNLP 5, a complete platform for solving

natural language processing tasks in PyTorch.

3.4 BERT

BERT (Bidirectional Encoder Representation from Transformers) is a Machine Learn-

ing model based on transformers, it was developed by Jacob Devlin and col-

leagues from Google for NLP applications. The BERT architecture is composed

by several Transformer encoders stacked together where each encoder is com-

posed of two sub-layers: a feed-forward layer and a self-attention layer. BERT

uses of a Transformer that learns contextual relations between words in a sen-

tence/text. This model was used by many teams in last TREC CAsT competitions

giving extraordinary results on performance measure like Recall, NDCG@3 and

5https://allenai.org/allennlp/software/allennlp-library

32

https://allenai.org/allennlp/software/allennlp-library

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

Precision. The idea was: although Lucene returns very good results we can

improve the first results of the ranked list by re-ranking the top 𝑘 relevant doc-

uments by using the BERT Classification. Using this classifier it is therefore

possible to say with certainty if a document is relevant or not with respect to

utterance by using a neural network .

1 from transformers import AutoTokenizer , AutoModelForSequenceClassi f icat ion

2 import torch

3

4 model = AutoModelForSequenceClassi f icat ion . from_pretrained (’ cross−encoder/ms−marco−

TinyBERT−L−2−v2 ’)

5 token izer = AutoTokenizer . from_pretrained (’ cross−encoder/ms−marco−TinyBERT−L−2−v2 ’)

6

7 f e a tu r e s = token izer ([’How many people l i v e in Ber l in ? ’ , ’How many people l i v e in

Ber l in ? ’] , [’ Be r l in has a population of 3 ,520 ,031 r e g i s t e r e d inhab i t an t s in an

area of 891 .82 square ki lometers . ’ , ’New York City i s famous fo r the Metropoli tan

Museum of Art . ’] , padding=True , t runca t ion=True , re turn_ tensors=" pt ")

8

9 model . eval ()

10 with torch . no_grad () :

11 scores = model (∗∗ f e a tu r e s) . l o g i t s

12 pr in t (s cores)

Code 3.7: Example of BERT text classification

On the Code 3.7 [2] there is a question "How many people live in Berlin?" proposed

to two text:

• "Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82

square kilometers";

• "New York is famous for the Metropolitan Museum of Art".

The second text has nothing to do with that question, humans naturally associate

the first question as more relevant for it but, for an AI system, it is much more

difficult. What BERT does is classify texts in the same way as a human person

(by using a neural network).

33

3.4. BERT

By running the script 3.7 BERT will give you the following results:

• 7.2358 for the first text

• -11.5623 for the second text

BERT assigns a score that goes from -20 to +20, higher scores indicate that the

text is more relevant to the question.

On this work we used a pre-trained model: cross-encoder/ms-marco-TinyBERT-L-

2-v2 that is very fast. In Table 3.1 we reported others models that can be found in

HuggingFace with the various performances (models are trained on MSMARCO

passages dataset).

Model-Name NDCG@10

(TREC DL 19)

MRR@10 (MS

Marco dev)

docs/sec

cross-encoder/ms-marco-

TinyBERT-L-2-v2

69.84 32.56 9000

cross-encoder/ms-marco-

MiniLM-L-2-v2

71.01 34.85 4100

cross-encoder/ms-marco-

MiniLM-L-4-v2

73.04 37.70 2500

cross-encoder/ms-marco-

MiniLM-L-6-v2

74.30 39.01 1800

cross-encoder/ms-marco-

MiniLM-L-12-v2

74.31 39.02 960

Table 3.1: Pre-trained Cross-Encoders with performance on the TREC DL 2019
and the MS Marco Passage Reranking dataset [2].

On the project we tried different models but, at the end, we decided to use cross-

encoder/ms-marco-TinyBERT-L-2-v2 because it is faster and performance were

comparable to others.

34

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

One important aspect, which we will see on the next chapter (Chapter 4), is that

the results can be influenced by the length of the text passed to the classifier:

• short text contains not enough information and BERT can classify the text

as relevant even if it is not

• long text contains too much information and BERT can classify the text as

not relevant even if it is

3.5 Transformers for question answering

Question answering models can retrieve the answer to a question from a given

text by using a neural network. This type of operation can be useful for searching

on our documents and answers to our utterances. Since in TREC, in each topic,

the first utterance is a question, we decided to use the AutoModelForQuestionAn-

swering [21] module of transformers. This module is able to answer to questions

on a given text. Generally, the answer to the first question and the first utterance

itself (on each topic) define the main argument of the conversation, we can use

that answer in Lucene to increase the matches on the index or we can use that

response in NeuralCoref to solve the various coreferences. An example of QA

script based on transformers and hugging face is the following:

1 from transformers import p ipe l ine

2

3 qa_model = p ipe l ine (" deepset/roberta−base−squad2 ")

4 quest ion = "Where do I l i v e ? "

5 contex t = "My name i s Merve and I l i v e in stanbul . "

6 qa_model (quest ion = question , contex t = contex t)

7 ## r e s u l t i s { ’ answer ’ : ’ s tanbul ’ , ’ end ’ : 39 , ’ score ’ : 0 . 953 , ’ s t a r t ’ : 31 }

Code 3.8: Example of QA (HuggingFace)

On the project we used a pre-trained model: "deepset/roberta-base-squad2", it

was originally trained on another dataset which we never mentioned: SQuAD

35

3.6. NLTK: SENTENCE TOKENIZER

(Stanford Question Answering Dataset).

SQuAD [24] is a reading comprehension dataset consisting of questions posed

by crowdworkers on a set of Wikipedia articles, where the answer to every

question is a segment of text (or span) from the corresponding reading passage,

or the question might be unanswerable.

Although the model was not trained in TREC CAsT’s datasets (MSMARCO,

WAPO or KILT) the results were good in our work, this model was useful for

solving coreferences with NeuralCoref: the answer of each utterance can be

used to solve some pronouns.

3.6 NLTK: Sentence Tokenizer

Tokenization is the process in which a large quantity of text is diveded into

smaller parts called tokens. We already saw a tokenizer (Section 3.2) on the

previous section for Lucene. Natural Language Toolkit, also known as NTLK

[15], is a suite of libraries and programs (written in Python) for symbolic and

statistical analysis in the field of natural language processing. It provides easy-

to-use interfaces with over 50 corpora and lexical resources as WordNet, along

with a suite text processing libraries for classification, tokenization, stemming,

tagging and parsing.

To use BERT correctly (e.g for re-ranking or for QA models) we have to split

the document into passages. This part is very important and we will see on

the next chapter that the length of a passage can greatly effect the results in

BERT. Passing the whole document to the classifier is not a good idea because

it contains a lot of information that can be relevant or not to the utterance, this

solution may give wrong results specially because an utterance refer to small

pieces of a document. Therefore, to split the document into passages, we used

a module called sent_tokenize of the NTLK library. This module allows to you

to split long texts into small passages or sentences, text is usually split when

36

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

characters like: ".", "!" or "?" are found (we used a regex to remove special

characters like "{", "}", etc., BERT with special characters doesn’t work well).

Once we split the document into passages we can obtain a score of each passage

(for a given query) by using BERT and then returning the maximum score. This

score can be used to re-rank documents (since it defines if there exist a passage

in the document that is highly relevant for the query). What we do is re-rank

the documents based on the passages that have obtained a higher score on the

current query.

1 from nl tk . tokenize import sent_ tokenize

2 t e x t = "God i s Great ! I won a l o t t e r y . "

3 pr in t (sent_ tokenize (t e x t))

4

5 #Output : [’God i s Great ! ’ , ’ I won a l o t t e r y ’]

Code 3.9: Example of sentence tokenization

We remember that we didn’t store the whole document on the index. To obtain

a document, given the ID (stored in the Lucene’s index), we created a dictionary

that contains all the offsets (of each document) in each file; in this way we can

obtain a document in fast time without reading the whole file. This dictionary

was saved on a file so that it can be used when needed [20].

3.7 Lucene OpenNLP

Since topics are expressed in a conversational way, to improve the performance

on the searching phase of Lucene, we decided to use the OpenNLP analyzer.

The Apache OpenNLP library is a machine learning based toolkit for processing

of natural language text, it supports the most common NLP tasks, such as

tokenization, sentence segmentation, part-of-speech tagging and coreference

resolution [1]. These task are usually required to build more advanced text

processing services.

37

3.8. SPACY

1 I PRON PRP pronoun , personal

2 l i k e VERB VBP verb , non−3rd person s ingu lar present

3 to PART TO i n f i n i t i v a l to

4 play VERB VB verb , base form

5 f o o t b a l l NOUN NN noun , s ingu lar or mass

6 . PUNCT . punctuation mark , sentence c l o s e r

7 I PRON PRP pronoun , personal

8 hated VERB VBD verb , past tense

9 i t PRON PRP pronoun , personal

10 in ADP IN conjunct ion , subordinat ing or prepos i t ion

11 my ADJ PRP$ pronoun , possess ive

12 childhood NOUN NN noun , s ingu lar or mass

13 though ADP IN conjunct ion , subordinat ing or prepos i t ion

Code 3.10: Example of Part-of-Speech with Spacy (Python)

3.8 Spacy

Spacy is an open-source software library for advanced natural language

processing, written for Python. Unlike NLTK, which is widely used for teaching

and research, Spacy supports deep learning workflows that allow connecting

statistical models trained by popular machine learning libraries like TensorFlow

and PyTorch.

During the evolution of the project, we used the WordNetLemmatizer of Spacy

in order to help BERT to resolve difficult words on embedding. Let’s consider

an example. During the project we saw that the word "deadliness" (TREC CAsT,

topic 106, turn number 4) caused incorrect re-rankings, which didn’t happen

if the word "deadly" was used. In order to solve this problem we decided to

help BERT by passing a query where a lemmatization procedure was already

applied.

38

CHAPTER 3. EXPERIMENTAL SETTING AND METHODOLOGICAL TOOLS

Figure 3.4: Stemming procedure

Figure 3.5: Lemmatization procedure

WordNetLemmatizer already contains a list of of possible substitution for a word

but, in order to have better results, we extended this list with the "lemmatization-

en.txt" file 6. This procedure allowed us to improve the final scores.

Another Spacy’s module used on the project was the Part-of-speech tagging (POS)

model. We decided to use this module to obtains all the nouns of the first

utterance of a conversation. This nouns can be passed to BERT in order to give

the general context (usually contained on the first utterance) of the conversation.

6https://github.com/michmech/lemmatization-lists/blob/master/
lemmatization-en.txt

39

https://github.com/michmech/lemmatization-lists/blob/master/lemmatization-en.txt
https://github.com/michmech/lemmatization-lists/blob/master/lemmatization-en.txt

3.8. SPACY

Let’s see an example (first utterance of topic number 106, TREC CAsT 2021) [25]:

I just had a breast biopsy for cancer. What are the most common types? (3.1)

The general context of the topic 106 (TREC CAsT 2021) [25] refers to Breast Cancer.

With Spacy, we can obtain from the previous utterance (3.1) all the nouns (breast,

biopsy, cancer and types) and passing this information on each of the next queries

passed to BERT. This can be useful when the general information is missing on

the utterance. An example of POS tagging can be found on the table 3.10.

3.8.1 Trec Eval

On the previous chapter (Chapter 2) we talked about measures. All measures

can be computed by using trec_eval [26]: a standard tool used by the TREC

community for evaluating an ad hoc retrieval run, given the results file and a

standard set of judged results. The evaluation is based on two files:

• qrels: relevance judgements for each query;

• run: it contains the ranking of documents returned by an IR/Conversa-

tional system.

When evaluate measures with Trec Eval, you can obtain all the scores by passing

the 𝑎𝑙𝑙_𝑡𝑟𝑒𝑐 parameter. To obtain a specific score you can use the name of the

measure you want as parameter, below and example to obtain NDCG@3.

./trec_eval -q -m ndcg_cut.3 results/qrels.txt results/run.txt

40

4
Techniques

On this section we will analyze the various techniques adopted to solve the

Conversational Assistance Track of TREC 2021, the same techniques will be then

used to produce a run for TREC 2022. In this chapter we will start from the

most basic solution (using state of art) to a little more complex solutions. For

each proposed technique you will find details and comments, the analysis will

be done on the last chapter.

The study started from some papers of TREC competition of the last year in

which, one in particular [12], caught our attention. On this paper there were

some techniques that the authors tried to use in previous competitions of TREC

CAsT; the idea was to use this methods and, in the same time, try to improve

the performances. One in particular was very interesting because it could solve

many problems on NeuralCoref. Since in a conversational dialog an utterance

can refer to the previous answers or to previous interactions, the idea of the

authors was to classify each utterance with three labels:

• SE: classification label for utterances that are Self Explanatory;

• FT: classification label for utterances referring to the First Topic;

• PT: classification label for utterances referring to Previous Topic.

41

4.1. FIRST QUERY TECHNIQUE

They trained a neural network in order to classify each utterance with the cor-

responding label. This classification method allows to the system to decide the

way to rewrite an utterance during the conversation. Given an utterance classi-

fied as self-explanatory (SE): the rewriting is not necessary since all information

are already contained on the query but, when the utterance is classified as First

Topic (FT) or Previous Topic (PT), one can decide to rewrite the utterance:

by concatenating the strings or by using NeuralCoref (or AllenNLP as the au-

thors). Starting from this consideration the authors developed several method

including: First topic and ContextQuery.

4.1 First query technique

The First Topic method is very simple to implement, it doesn’t require to

build any sophisticated approach, given a conversation: the current query 𝑞𝑖 is

expanded with the first turn utterance.

Equation 4.1 defines the method used to obtain the new query:

𝑢𝑖 = 𝑞0 + 𝑞𝑖 (4.1)

where:

• 𝑢𝑖 is the new query that you can pass to any information retrieval system

(e.g. Lucene);

• 𝑞0 is the first utterance of the conversation;

• 𝑞𝑖 is the current utterance.

This method, although it may seem of simple implementation, demonstrates the

importance of using the first utterance on query rewriting, it contains important

information that can be useful to match documents. As we have already seen

on previous chapters, the first utterance (and answer) define the main topic of a

conversation. The performance measures of this run are reported on Table 4.1.

42

CHAPTER 4. TECHNIQUES

Technique NDCG@500 Recall@500 MAP@500 NDCG@3

First topic 0.2688 0.4366 0.0917 0.1608

Table 4.1: Results of First Query technique

4.2 Context query technique

In the second methodology, we included the antecedent utterance to the First

Topic technique. Given a conversation, the current query 𝑞𝑖 is expanded with

the first utterance of the conversation and the previous one:

𝑢𝑖 = 𝑞0 + 𝑞𝑖−1 + 𝑞𝑖 (4.2)

where:

• 𝑢𝑖 is the new query that you can pass to any information retrieval system

(e.g. Lucene);

• 𝑞0 is the first utterance of the conversation;

• 𝑞𝑖−1 is the previous utterance.

• 𝑞𝑖 is the current utterance.

This method considers the previous utterance in order to obtain documents

which are more relevant to the query (the previous utterance usually contains

information that is also relevant to the current utterance). On Table 4.2 we can

find the performance measures of this run.

Technique NDCG@500 Recall@500 MAP@500 NDCG@3
Context query 0.2954 0.4627 0.1051 0.1858

Table 4.2: Results of ContextQuery technique

43

4.3. TECHNIQUE WITH BERT AND NEURALCOREF

4.3 Technique with bert and neuralcoref

We have already seen on the previous chapters what is NeuralCoref, now we

will see the configuration, the various problems and results (the entire pipeline

is shown on the figure 4.3). Our project is based on two languages: Python and

Java, in which:

• Python is used for BERT re-ranking, QA and NeuralCoref resolutions;

• Java is the main program: it uses Lucene to obtain a ranked list by using

BM25 similarity, it parses the topics and it calls the python scripts when

necessary;

Our program starts by initializing Lucene: the Searcher and Indexer classes.

The Indexer class contains all the code that allow Lucene to parse each document

and to analyze them using the CustomAnalyzer described in Section 3.2.

The Searcher class contains all the code that allow to Lucene to search in the index

data structure and then to return a ranked list of relevant documents (for the

query) based on BM25 similarity. On this class we tried to use a CustomAnalyzer

and an OpenNLPAnalyzer but, at the end, we decided to use the OpenAnalyzer

because it returned better results. The entire process of adding NeuralCoref

and BERT is done on the Searcher class and, in order to give you more details,

you can find an example on Code 4.1 (below).

1 searcher = new Searcher () // i n i t i a l i z e search c l a s s of Lucene

2 indexer = new Indexer () // i n i t i a l i z e index c l a s s of Lucene

3

4 //custom analyzer used in the indexing phase

5 CustomAnalyzer . Bui lder indexAnalyzer = CustomAnalyzer . bui lder ()

6 . withTokenizer (StandardTokenizerFactory . c l a s s)

7 . addTokenFil ter (LowerCaseFi l terFactory . c l a s s)

8 . addTokenFil ter (ApostropheFi l terFac tory . c l a s s)

9 . addTokenFil ter (E ng l i sh P os se s s i veF i l t e rFac to ry . c l a s s)

10 . addTokenFil ter (WordDelimiterGraphFil terFactory . c l a s s)

11 . addTokenFil ter (S t o p F i l t e r F a c t o r y . c l a s s , " snawball ") ;

12

44

CHAPTER 4. TECHNIQUES

13 //analyzer used in the searching phase

14 OpenNLPAnalyzer openNLPAnalyzer = new OpenNLPAnalyzer () ;

15

16 //load top i c s with GSON l i b r a r y

17 Lis t <Topic > top i c s = parseTopic () ;

18

19 fo r (Topic top i c : t op i c s) {

20 boolean i s F i r s t = true ; //to save the f i r s t u t te rance (query expansion)

21 S t r ing f i r s t _ u t t = " " ; // f i r s t u t te rance

22 S t r ing f i r s t _ r e s p = " " ; // f i r s t response (using QA models)

23

24 S t r ing prev_utt = " " ; //previous ut te rance

25 S t r ing cur r_u t t = " " ; //current u t te rance (or current query)

26 S t r ing curr_resp = " " ; //current response (using QA models)

27

28 fo r (Turn turn : top i c . turn) {

29 cur r_u t t = turn . u t te rance ;

30

31 // c a l l NeuralCoref (python s c r i p t)

32 //t ry to obta in a new ut te rance with resolved core f e rences

33 currentTopic = getResolvedTopic (prev_utt , curr_resp , cur r_u t t) ;

34

35 // c a l l Lucene Searcher (BM25 s i m i l a r i t y , OpenNLPAnalyzer)

36 //use computed currentTopic on the searching phase

37 searcher . search (currentTopic , openNLPAnalyzer)

38

39 // t h i s method re turns a ranked l i s t on a f i l e (temporary_run . t x t)

40

41 //re−rank of the f i r s t 200 documents using BERT

42 curr_resp = bertReRanking (currentTopic)

43

44 //curr_resp = answer to currentTopic by using QA models

45

46 //update temporary va r i a b l e s

47 i f (i s F i r s t) {

48 f i r s t _ u t t = currentTopic ;

49 f i r s t _ r e s p = curr_resp ;

50 i s F i r s t = f a l s e ;

51 }

52 //now we update va r i a b l e s

53 prev_utt = currentTopic ;

54 }

55 }

Code 4.1: Procedure to rewrite an utterance

45

4.3. TECHNIQUE WITH BERT AND NEURALCOREF

On the Code 4.1 we can observe that we passed a computed currentQuery to

the Lucene Searcher, this variable can be used to produce different techniques

(depending on how we populate this variable):

• FirstQuery with Neural Coref and BERT solution;

• ContextQuery with Neural Coref and BERT solution.

When Lucene returns the result (a ranked list saved in a file), BERT is applied

in order to re-rank the top 𝑘 documents of the list (we re-rank only the first 75

documents). We tried different values of 𝑘 = 30, 50, 75, 100 and, at the end, we

decided the best one comparing the results.

4.3.1 NeuralCoref

On the method getResolvedTopic (Code 4.1), three temporary variables are passed

to the python script (that generates the current query passed to Lucene):

• previous utterance;

• previous response;

• current utterance.

Figure 4.1: NeuralCoref query rewriting

46

CHAPTER 4. TECHNIQUES

This three variables are used by NeuralCoref to produce a new query on this

way:

1. first of all, the strings are concatenated to produce one big query:

query = previous utterance + previous response +

current utterance

2. SpaCy and NeuralCoref are used to produce a POS tagging and a cluster of

terms/sentences;

3. now, the coreference resolution is done on the last part of the query (on

the current utterance substring);

4. now, on the query, the previous utterance and current response are removed;

5. if the query contains other pronouns: we automatically substitute each

pronoun with the most probable sentence/term (we used the scores re-

turned by NeuralCoref);

6. if the query doesn’t end with "?": append the previous utterance to the

query (the current utterance can be a clarification of the previous query)

7. return the computed query.

The complicated part on NeuralCoref was to choose the correct term/sentence

when the library doesn’t resolve the query automatically.

In this case we applied a greedy algorithm: always choose the best option with

the highest score (that isn’t a pronoun or the sentence/term itself) by using the

dictionary returned by NeuralCoref. On Code 4.2 we can find an example of this

algorithm.

47

4.3. TECHNIQUE WITH BERT AND NEURALCOREF

1

2 #Given the query :

3 input = " I j u s t had a breas t biopsy for cancer . What are the most common types ? "

4

5 #We want to f ind the bes t core fe rence fo r

6 coreferenceToFind = " the most common types "

7

8 r e s u l t = neuralCoref . f i n d S u b s t i t u t e (input , coreferenceToFind)

9 pr in t (r e s u l t)

10

11 out = { the most common types : 1 .8015064001083374 , a breas t biopsy for cancer :

−1.557297945022583 , cancer : −2.2499332427978516}

12

13 newQuery = neuralCoref . computeQuery (input , r e s u l t)

14 pr in t (newQuery)

15

16 out = What are the most common types a breas t biopsy for cancer ?

Code 4.2: Example of NeuralCoref

Figure 4.2: NeuralCoref graph of the Code 4.2

48

CHAPTER 4. TECHNIQUES

1 import spacy

2

3 # Load English tokenizer , tagger , parser and NER

4 nlp = spacy . load (" en_core_web_sm ")

5

6 # Process whole documents

7 t e x t = ("When Sebas t ian Thrun s t a r t e d working on s e l f −driving cars a t "

8 " Google in 2007 , few people outs ide of the company took him "

9 " s e r i ous ly . I can t e l l you very sen ior CEOs of major American "

10 " car companies would shake my hand and turn away because I wasnt "

11 " worth t a lk ing to , sa id Thrun , in an interview with Recode e a r l i e r "

12 " t h i s week . ")

13 doc = nlp (t e x t)

14

15 # Analyze syntax

16 pr in t ("Noun phrases : " , [chunk . t e x t fo r chunk in doc . noun_chunks])

17 pr in t (" Verbs : " , [token . lemma_ for token in doc i f token . pos_ == "VERB"])

18

19 # Find named e n t i t i e s , phrases and concepts

20 fo r e n t i t y in doc . ents :

21 pr in t (e n t i t y . t ex t , e n t i t y . l a b e l _)

22

23

24

25 OUT

26 # Noun phrases : [’ Sebas t ian Thrun ’ , ’ s e l f −driving cars ’ , ’ Google ’ , ’ few people ’ , ’ the

company ’ , ’him ’ , ’ I ’ , ’ you ’ , ’ very sen ior CEOs ’ , ’ major American car companies ’ , ’

my hand ’ , ’ I ’ , ’ Thrun ’ , ’ an interview ’ , ’ Recode ’]

27 # Verbs : [’ s t a r t ’ , ’work ’ , ’ dr ive ’ , ’ take ’ , ’ t e l l ’ , ’ shake ’ , ’ turn ’ , ’ t a l k ’ , ’ say ’]

28 # Sebas t ian Thrun PERSON

29 # 2007 DATE

30 # American NORP

31 # Thrun GPE

32 # Recode ORG

33 # e a r l i e r t h i s week DATE

Code 4.3: Example of POS tagging with SpaCy

49

4.3. TECHNIQUE WITH BERT AND NEURALCOREF

4.3.2 BERT

On Code 4.1, once the method getResolvedTopic is terminated, the computed

query is passed to the Lucene searcher.

Here we tried several ways:

• First query: 𝑞0 + 𝑞𝑖

• Context Query: 𝑞0 + 𝑞𝑖−1 + 𝑞𝑖

• Context Query (with first answer): 𝑞0 + 𝑟0 + 𝑞𝑖−1 + 𝑞𝑖

• Context Query (with previous answer): 𝑞0 + 𝑟𝑖−1 + 𝑞𝑖−1 + 𝑞𝑖

where:

• ∀𝑖 ∈ {1, 2, 3..., 𝑛} =⇒ 𝑞𝑖 is obtained by using NeuralCoref;

• 𝑟0 is the answer to the first utterance of the turn

• 𝑟𝑖 is the answer to the previous utterance of the turn

When the Lucene searcher returns a ranked list, we re-rank the documents by

using the BERT (text) classifier. The current query (as it is, without any other

expansion except some nouns of the first utterance as specified above) is used to

re-rank documents as follows:

1. we read the the ranked list (file) produced by Lucene and, for each doc-

ument in the list, we obtain the corpus (this will be used to classify the

text);

2. The corpus is split into sentences of length 56 tokens: we initialize chose

this size because the MS MARCO passage dataset, used to train the model

(see table 3.1), contained passages with this average length. Another

fundamental aspect that led to choose this length was because QA models

doesn’t work well with short and long texts. Zhiguo Wang and other

50

CHAPTER 4. TECHNIQUES

colleagues of Amazon [27] proved that by splitting long texts into passages

of medium length (50-100 words) improves the performance of QA models.

This length gave good results, but we will see that this length is not optimal.

We have already seen on the previous chapter that this length can greatly

affect the results. This operation (split document into passages) was not

carried out in TREC CAsT 2022: the documents were already divided into

passages.

3. Re-rank the first 75 documents of the run by using BERT classifier (we al-

ready seen that several parameters were tested and, at the end, we decided

to use 75).

4. For each topic: we answer to the first utterance (or all, depending on the

method used) of the conversation by using QA models (the response can

be used on NeuralCoref for coreference resolution).

Now, we show that this procedure allows to increase the position of relevant

documents, thus allowing to increase some import scores as NDCG@3.

Let’s consider the query (TREC 2021, topic 106) [25]:

How deadly is it? (it refers to "breast cancer")

Before the re-ranking phase with BERT, Lucene returns the following ranked

list:

(the relevant document is at position 67):

Topic_ID Document_ID Rank (pos) Relevant
106_3 MARCO_D2757478 65 False
106_3 MARCO_D1861932 66 False
106_3 MARCO_D3307814 67 True
106_3 MARCO_D238615 68 False

Table 4.3: Results before BERT

51

4.4. TECHNIQUE WITH AUTOMATIC RESOLVED UTTERANCE

When we apply BERT in order to re-rank the first 75 documents of the previous

list, we obtained the following results:

(the previous relevant document, MARCO_D3307814, has increased 13 positions).

Topic_ID Document_ID Rank (pos) Relevant
106_3 KILT_22096998 52 False
106_3 MARCO_D3065945 53 False
106_3 MARCO_D3307814 54 True
106_3 MARCO_D620300 55 False

Table 4.4: Results before BERT

Through this methodology, we were able to significantly increase the scores, es-

pecially for the NDCG@3. As described in Section 4.3.2, different methods were

tested using this algorithm and at the end we chose the best one: Context Query

(with previous answer) (Section 4.3.2), the performance measures are reported on

Table 4.5.

Technique NDCG@500 Recall@500 MAP@500 NDCG@3
NC, BERT, QA 0.3715 0.5290 0.1652 0.2926

Table 4.5: NeuralCoref + BERT + QA performance measures

4.4 Technique with automatic resolved utterance

The query passed to BERT must be written in a correct way: it must contain

all the necessary information and it must be written with a logical sense: it is not

obvious when you use libraries like NeuralCoref to solve pronouns coreferences.

As we will see in the next example, the same utterance written in two different

ways causes the results to change dramatically.

Let’s consider the topic 106 of TREC CAsT 2021 (turn number 3) [25]:

52

CHAPTER 4. TECHNIQUES

System response ...

How deadly is it?

System response..

the pronoun "it" can refer to the response of the previous utterance or to the

main argument of the previous utterance. Suppose that NeuralCoref replace

the pronoun "it" with "breast cancer" (the topic of the previous utterance), in this

case we obtain the Table 4.4 shown previously.

If the pronoun "it" is replaced with "Lobular Carcinoma" (response of the pre-

vious utterance) the result will be different, as it refers to two quite different

contexts. In order to avoid this problem (if the algorithm fails the substitu-

tion: the resulting query is wrong) and increase the performance, we used the

automatic_resolved_utterance provided by TREC CaST. This utterance is exactly

the same, but written in a better way: it contains much more information or

clarifications of the original. Starting from this concept, we decided to use a

combination between NeuralCoref and the automatic_resolved_utterance: we de-

cided to use this utterance as query when NeuralCoref gave us bad results (e.g.

the resolved query was equal to the original utterance). During coreferences

resolution with NeuralCoref we also try to use the automatic_resolved_utterance

to solve various pronouns.

The code (described in Section 4.3) was then modified integrating this new fea-

ture in order to produce a new run, the performance measures are reported on

Table 4.6.

Technique NDCG@500 Recall@500 MAP@500 NDCG@3
NC, BERT, QA (improved) 0.4013 0.5574 0.1878 0.3291

Table 4.6: Run with automatic resolved utterance: performance measures

53

4.4. TECHNIQUE WITH AUTOMATIC RESOLVED UTTERANCE

4.4.1 Last run: Technique without ContextQuery

During the developing of the project we noticed that there were a lot of

utterances with scores (NDCG@3) 0 affecting negatively the total mean (see

Table 4.7).

In a small set of this utterances the problem was simple: there were some

misspelled apostrophes (wrong character) and BERT didn’t recognize them. To

solve this problem we replaced the characters with the correct ones.

Topic_ID NDCG@3
113_1 0.1480
113_2 0.0000
113_3 0.3827
113_4 0.0000
113_5 0.0000
113_6 0.4693
113_7 0.2346
113_8 0.0000

Table 4.7: Topic 113, a lot of utterances have score 0

During the developing of the context query technique we noticed that many

results were relevant to the previous utterance but not to the current one. Since

this problem came from Lucene, we decided to change the weight of the previous

utterance in the BooleanQuery 1. By giving less weight, we were able to give more

importance to the current utterance and, in this way, at the top positions we only

had documents relevant to the current one.

Another change we did was to use the the nouns of the first utterance of the

conversation to give a general context to BERT when it was missing and, the

same, was done for Lucene. Before we talked about the length of the text passed

to BERT, we had previously used a length of 56 tokens but that length led to

a bad classification: the text contained too little information to be classified

1https://lucene.apache.org/core/8_1_1/core/org/apache/lucene/search/
BooleanQuery.html

54

https://lucene.apache.org/core/8_1_1/core/org/apache/lucene/search/BooleanQuery.html
https://lucene.apache.org/core/8_1_1/core/org/apache/lucene/search/BooleanQuery.html

CHAPTER 4. TECHNIQUES

correctly. We decided to increase this value to 250 tokens (as it was done in

the tool provided by TREC CAsT 2022) noticing a big difference in the results.

These changes to the code were also made to produce another run, on Table 4.8

the performance measures.

Technique NDCG@500 Recall@500 MAP@500 NDCG@3
NC, BERT, QA (no CQ) 0.4105 0.5658 0.1922 0.3558

Table 4.8: Last technique without Context-Query

4.5 TREC 2022: submitted runs

Having participated in the 2022 competition, the only way to understand

which runs to submit to TREC CAsT 2022 were based on the results obtained

in the 2021 competition. After an analysis made in the results obtained and

described in this work, we decided to submit to TREC CAsT 2022 the runs

obtained with the following techniques:

• NC, BERT, QA: described on Section 4.3;

• NC, BERT, QA (improved): described on Section 4.4;

• NC, BERT, QA (no CQ): described on Section 4.4.1;

• NC, BERT, QA (no CQ, LMDirichlet): is the same technique described in

Section 4.4.1 in which we used the LMDirichtlet [10] similarity instead of

BM25. This choice was made to change the initial ranking method before

BERT. On 2021 the performance measures were comparable to the solution

obtained with BM25 but we decided to submit anyway this run: it could

give important results that can be analyzed in the next competitions.

On Figure 4.3 you can find a scheme that aims to give a more general concept

of how the whole system worked, the same which then led to produce the runs

for the TREC CAsT 2022 competition.

55

4.5. TREC 2022: SUBMITTED RUNS

Figure 4.3: Pipeline

56

5
Analysis

As described on the previous chapters we used different approaches to solve

TREC CAsT 2021 and we compared them to get the best result.

Technique NDCG@500 Recall@500 MAP@500 NDCG@3
Original query 0.1695 0.2667 0.0608 0.1240

First topic 0.2688 0.4366 0.0917 0.1608
Context query 0.2954 0.4627 0.1051 0.1858
NC, BERT, QA 0.3715 0.5290 0.1652 0.2926

NC, BERT, QA (improved) 0.4013 0.5574 0.1878 0.3291
NC, BERT, QA (no CQ) 0.4105 0.5658 0.1922 0.3558

Table 5.1: Run results

Looking at the Table 5.1 we can see that every solution adopted has brought

improvements in every measure (this can also be seen in the figure 5.1). The

most important measure, the one we have tried to maximize in each solution,

was NDCG@3 as it was the one that determined the final classification in the

competition. With the last result obtained on this paper, we have reached

values very close to the average results obtained in the 2021 competition (Table

5.2). On Table 5.1 there is a run called Original query: this one was produced

using utterances as they are, without any automatic modification, expansion or

replacement. This run was introduced in this work only to be able to define a

57

starting point of comparison.

Looking at the table 5.1 we can make the following considerations:

• the introduction of the first utterance of the conversation into the current

query improves the result. We have already seen that the first utterance of

each conversation contains the main topic of the discussion: by inserting

this topic in next queries we can make more matches in the datasets. In

Table 5.1 it is in fact possible to see a clear improvement from Original

query to First topic technique;

• the introduction of the previous utterance in the first topic technique, as

described in the previous chapter (Chapter 4, Section 4.2), has slightly

improved the solution;

• our algorithm, which has Context Query as its starting point but with the

use of BERT, Neural Coref and QA models has greatly improved the solution

in terms of NDCG@3 (we jumped from 0.1858 to 0.2926);

• the introduction of the automatic_resolved_utterance has clearly improved

the solution: these utterances in fact contained more information than the

originals, so they helped to increase performance;

• the removal of the previous utterance from the query, as described on

the previous chapter (Chapter 4, Section 4.4.1), and the latest changes

improved the performances. This improvement will be statistically proved

on the following pages.

58

CHAPTER 5. ANALYSIS

Group Run_Id Recall@500 MAP@500 MRR NDCG@500 NDCG@3

h2oloo mono-duo-rerank 0.850 0.376 0.679 0.636 0.526

WaterlooClarke clarke-cc 0.869 0.362 0.684 0.640 0.514

h2oloo cqe-t5 0.846 0.342 0.644 0.618 0.488

HBKU HBKU_CQR_TC 0.696 0.310 0.632 0.540 0.477

HBKU HBKU_CQRHC_BM25 0.598 0.287 0.622 0.490 0.471

HBKU HBKU_CQR_POS 0.588 0.283 0.616 0.487 0.451

CFDA_CLIP CFDA_CLIP_ARUN1 0.697 0.308 0.613 0.539 0.444

CFDA_CLIP CFDA_CLIP_ARUN2 0.652 0.301 0.608 0.518 0.439

h2oloo cqe 0.791 0.289 0.603 0.557 0.438

MLIA-LIP6 t5_doc2query 0.761 0.290 0.585 0.548 0.436

org_auto_bm25_t5 0.636 0.291 0.607 0.504 0.436

UMD umd2021_run3rrf 0.723 0.298 0.611 0.539 0.425

org_convdr_bert 0.426 0.236 0.607 0.398 0.423

uogTr uogTrADT 0.661 0.278 0.581 0.501 0.417

UMD umd2021_run2doc 0.613 0.262 0.558 0.478 0.399

HBKU HBKU_CQR-HC 0.531 0.236 0.531 0.422 0.392

UMD umd2021_run1 0.613 0.250 0.544 0.464 0.389

MLIA-LIP6 t5_monot5 0.360 0.190 0.571 0.337 0.388

IITD-DBAI IITD-RAW_U_T5_2 0.327 0.175 0.515 0.316 0.380

h2oloo t5 0.364 0.176 0.534 0.336 0.377

UMD umd2021_run4den 0.735 0.265 0.521 0.512 0.377

WaterlooClarke clarke-auto 0.721 0.260 0.524 0.487 0.375

IITD-DBAI IITD-RAW_U_T5_1 0.312 0.166 0.509 0.303 0.371

MLIA-LIP6 Rewritt5_monot5 0.361 0.184 0.549 0.332 0.370

CMU-LTI LTI-rewriter-g 0.465 0.209 0.521 0.386 0.369

CMU-LTI LTI-rewriter-tc 0.465 0.211 0.528 0.387 0.367

org_convdr 0.426 0.197 0.505 0.372 0.361

CNR CNR-run3 0.190 0.123 0.472 0.222 0.349

CNR CNR-run4 0.187 0.116 0.477 0.220 0.333

uogTr uogTrTDT 0.557 0.216 0.491 0.408 0.332

uogTr uogTrTCT 0.562 0.214 0.473 0.414 0.323

TKB48 bm25_automatic 0.623 0.173 0.474 0.405 0.317

CNR CNR-run2 0.167 0.107 0.444 0.202 0.304

CNR CNR-run1 0.164 0.101 0.406 0.196 0.298

CMU-LTI LTI-rewriter-5q 0.392 0.158 0.428 0.319 0.296

UAmsterdam astypalaia256 0.453 0.120 0.364 0.304 0.236

V-Ryerson DPH-auto-rye 0.624 0.145 0.367 0.360 0.232

UAmsterdam historyonlyKILT 0.288 0.084 0.314 0.214 0.196

UAmsterdam historyonly 0.252 0.077 0.317 0.198 0.195

MLIA-LIP6 t5colbert 0.589 0.076 0.270 0.314 0.154

MEAN AND MEDIAN

Mean 0.5283 0.2185 0.5224 0.4105 0.3716

Median 0.7210 0.2600 0.5240 0.4870 0.3750

Table 5.2: Scores TREC CAsT 2021 [3]

59

Id Technique

1 NC, BERT, QA (no CQ)

2 NC, BERT, QA

3 Context query

4 NC, BERT, QA (improved)

5 Original query

(a) NDCG@3 (b) NDCG@500

(c) MAP@500 (d) RECALL@500

Figure 5.1: Box-plots

60

CHAPTER 5. ANALYSIS

Looking at the box-plot 5.1d we can notice that the recall is high, this value can

lead us to make the following considerations:

• in the first 500 retrieved documents there are many relevant documents;

• we can still improve the NDCG@3 (there are many relevant documents

which can be brought to the first positions with BERT).

Looking at the box-plot 5.1a we can notice an important improvement that we

discussed on the previous chapter: the removal of the context query technique

and the improvements on BERT statistically improved the performance; now we

will prove it.

Comparing the two runs (Id 1 and 2) by using NDCG@3 with a student’s t test,

we obtain the following p-value:

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.000292 (5.1)

Since this value is very low we can conclude that the two runs differ a lot and

the result is statistically significant.

5.1 Comparing runs with Anova

Anova test is a generalization of the Student’s T test:

• Student’s T test allows to compare only 2 groups;

• Anova allows to compare more than two groups.

On this paper we used the One-Way Anova Test. The one-way analysis of variance

(ANOVA) is used to determine whether there are any statistically significant

differences between the means of three or more independent (unrelated) groups.

Specifically, it tests the null hypothesis:

𝐻0 : 𝜇1 = 𝜇2 = ... = 𝜇𝑛 (5.2)

61

5.1. COMPARING RUNS WITH ANOVA

Figure 5.2: Comparing runs with Anova (on NDCG@3)

If one-way ANOVA reports a p-value of <0.05, you reject the null hypothesis. Let’s

consider now the Anova table which you can find below, since the p-value (=

1.7844e-15) is very low we can conclude that the result of the test is statistically

significant, that is, the means differ significantly.

Source SS df MS F Prob > F

Columns 5.5238 4 1.3810 19.7111 1.7844e-15

Error 54.9977 785 0.0701 - -

Total 60.5205 789 - - -

Table 5.3: Anova table

In particular, as shown on the figure 5.3, there are two runs that are signifi-

cantly different from the most performing run in terms of NDCG@3.

62

CHAPTER 5. ANALYSIS

Figure 5.3: Comparing last runs (IDs: 1,4 and 2) with Anova (on NDCG@3)

Clearly, as shown graphically, the runs differ from each other. The introduc-

tion of BERT and systems for Natural Language Processing allowed a significant

improvement in results.

63

6
Conclusions and Future Works

The work of this project was the development of a conversational system

that aimed in producing runs to be subscribed to TREC CaST 2022. During the

lecture, we saw a lot of libraries and methodologies that can be applied to solve

the TREC CAsT 2021 competition, the same were applied for TREC CaST 2022.

The same techniques can be applied to build any conversational assistance like

Amazon Alexa, Google Assistant, Apple Siri and many others. On this paper we

saw methodologies which allow to solve Neural Language Processing (Spacy

and NLTK), POS tagging and coreferences resolution (NeuralCoref) that allowed

to rewrite the utterances during the conversation. Another key aspect we saw

was BERT, a neural system which allowed to increase the final scores.

As future works we plan to improve the query rewriting system using Neural-

Coref : this is the most difficult part when you develop a conversational system.

The one described on this document can be improved, it replaces the pronouns

by using only the previous utterance or the previous response. A possible approach

could be merging the solution proposed in [12] (utterance labeling, discussed on

Chapter 4) with the current one in order to create a better rewrite system. BERT

could be improved considerably, for example by making a merge between the

score of Lucene and the one obtained by BERT. Information passed to BERT can

65

also be greatly improved, clearly the more the information is clear and expanded

in the correct way, the better the system works. The Lucene part of the project

could be improved, the library is well supported and there are a lot of factors

that can be tested, for example we could try other filters or searching methods.

66

References

[3] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. “TREC CAsT 2021: The

Conversational Assistance Track Overview”. In: (2021). url: https://

trec.nist.gov/pubs/trec30/papers/Overview-CAsT.pdf.

[4] Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. “TREC CAsT Track Year

4 2022 Guidelines”. In: (2022). url: https://www.treccast.ai/.

[5] Jianfeng Gao, Chenyan Xiong, Paul Bennett, and Nick Craswell. “Neural

Approaches to Conversational Information Retrieval”. In: CoRR abs/2201.05176

(2022). arXiv: 2201.05176. url: https://arxiv.org/abs/2201.05176.

[6] Jianfeng Gao, Chenyan Xiong, Paul Bennett, and Nick Craswell. “Neural

Approaches to Conversational Information Retrieval”. In: CoRR abs/2201.05176

(2022). arXiv: 2201.05176. url: https://arxiv.org/abs/2201.05176.

[7] Donna K. Harman. The First Text REtrieval Conference. 1993.

[9] Arash Habibi Lashkari, Fereshteh Mahdavi, and Vahid Ghomi. “A Boolean

Model in Information Retrieval for Search Engines”. In: 2009 International

Conference on Information Management and Engineering. 2009, pp. 385–389.

doi: 10.1109/ICIME.2009.101.

[11] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. An

Introduction to Information Retrieval. 2009. url: https://nlp.stanford.

edu/IR-book/information-retrieval-book.html.

67

https://trec.nist.gov/pubs/trec30/papers/Overview-CAsT.pdf
https://trec.nist.gov/pubs/trec30/papers/Overview-CAsT.pdf
https://www.treccast.ai/
https://arxiv.org/abs/2201.05176
https://arxiv.org/abs/2201.05176
https://arxiv.org/abs/2201.05176
https://arxiv.org/abs/2201.05176
https://doi.org/10.1109/ICIME.2009.101
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://nlp.stanford.edu/IR-book/information-retrieval-book.html

REFERENCES

[12] Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele Perego,

Nicola Tonellotto, and Ophir Frieder. “Adaptive utterance rewriting for

conversational search”. In: Information Processing, Management 58 (2021).

[18] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary,

Rangan Majumder, and Li Deng. “MS MARCO: A Human Generated

MAchine Reading COmprehension Dataset”. In: CoRR abs/1611.09268

(2016). arXiv: 1611.09268. url: http://arxiv.org/abs/1611.09268.

[19] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick S. H. Lewis, Majid

Yazdani, Nicola De Cao, James Thorne, Yacine Jernite, Vassilis Plachouras,

Tim Rocktäschel, and Sebastian Riedel. “KILT: a Benchmark for Knowledge

Intensive Language Tasks”. In: CoRR abs/2009.02252 (2020). arXiv: 2009.

02252. url: https://arxiv.org/abs/2009.02252.

[22] Ian Soboroff. “Overview of TREC 2021”. In: (2021). url: https://trec.

nist.gov/pubs/trec30/papers/Overview-2021.pdf.

[27] Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang.

“Multi-passage BERT: A Globally Normalized BERT Model for Open-

domain Question Answering”. In: CoRR abs/1908.08167 (2019). arXiv:

1908.08167. url: http://arxiv.org/abs/1908.08167.

[30] Hamed Zamani, Johanne R. Trippas, Jeff Dalton, and Filip Radlinski. “Con-

versational Information Seeking”. In: CoRR abs/2201.08808 (2022). arXiv:

2201.08808. url: https://arxiv.org/abs/2201.08808.

68

https://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://arxiv.org/abs/2009.02252
https://arxiv.org/abs/2009.02252
https://arxiv.org/abs/2009.02252
https://trec.nist.gov/pubs/trec30/papers/Overview-2021.pdf
https://trec.nist.gov/pubs/trec30/papers/Overview-2021.pdf
https://arxiv.org/abs/1908.08167
http://arxiv.org/abs/1908.08167
https://arxiv.org/abs/2201.08808
https://arxiv.org/abs/2201.08808

Sitology

[1] Apache OpenNLP. url: https://opennlp.apache.org/news/release-

200.html.

[2] Cross Encoder for MSMARCO. url: https://huggingface.co/cross-

encoder/ms-marco-MiniLM-L-12-v2.

[8] Kilt Benchmarking. url: https://ai.facebook.com/tools/kilt/.

[10] LMDirichlet. url: https://lucene.apache.org/core/8_0_0/core/org/

apache/lucene/search/similarities/LMDirichletSimilarity.html.

[13] MSMARCO. url: https://microsoft.github.io/msmarco/.

[14] MSMARCO. url:https://microsoft.github.io/MSMARCO-Conversational-

Search/.

[15] Natural Language Toolkit. url: https://www.nltk.org/.

[16] NeuralCoref. url: https://github.com/huggingface/neuralcoref.

[17] NeuralCoref HuggingFace. url: https://huggingface.co/coref/.

[20] Picke documentation. url: https://docs.python.org/3/library/pickle.

html.

[21] Question Answering. url: https://huggingface.co/tasks/question-

answering.

[23] Solar: filters for Lucene. url: https://solr.apache.org/guide/6_6/

filter-descriptions.html.

69

https://opennlp.apache.org/news/release-200.html
https://opennlp.apache.org/news/release-200.html
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://ai.facebook.com/tools/kilt/
https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/search/similarities/LMDirichletSimilarity.html
https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/search/similarities/LMDirichletSimilarity.html
https://microsoft.github.io/msmarco/
https://microsoft.github.io/MSMARCO-Conversational-Search/
https://microsoft.github.io/MSMARCO-Conversational-Search/
https://www.nltk.org/
https://github.com/huggingface/neuralcoref
https://huggingface.co/coref/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://huggingface.co/tasks/question-answering
https://huggingface.co/tasks/question-answering
https://solr.apache.org/guide/6_6/filter-descriptions.html
https://solr.apache.org/guide/6_6/filter-descriptions.html

SITOLOGY

[24] The Stanford Question Answering Dataset. url:https://rajpurkar.github.

io/SQuAD-explorer/.

[25] TREC CAsT 2021 TOPICS. url:https://github.com/daltonj/treccastweb/

blob/master/2021/2021_automatic_evaluation_topics_v1.0.json.

[26] TrecEval. url: https://github.com/usnistgov/trec_eval.

[28] Washington Post - ir dataset. url: https://trec.nist.gov/data/wapost/.

[29] Word embedding. url: https://www.shanelynn.ie/get%5C-busy%5C-

with%5C-word%5C-embeddings%5C-introduction/.

70

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/daltonj/treccastweb/blob/master/2021/2021_automatic_evaluation_topics_v1.0.json
https://github.com/daltonj/treccastweb/blob/master/2021/2021_automatic_evaluation_topics_v1.0.json
https://github.com/usnistgov/trec_eval
https://trec.nist.gov/data/wapost/
https://www.shanelynn.ie/get%5C-busy%5C-with%5C-word%5C-embeddings%5C-introduction/
https://www.shanelynn.ie/get%5C-busy%5C-with%5C-word%5C-embeddings%5C-introduction/

Acknowledgments

I would like to express my special thanks of gratitude to my Professor Nicola

Ferro who followed me during the project and to Guglielmo Faggioli which was

a fundamental pillar between suggestions and techniques that were applied on

this paper. A special thanks also goes to my girlfriend Elena Pattaro and my

family for the support and the essential help during my University career.

71

	Introduction
	Background
	Information Retrieval
	Conversational Information Retrieval
	Conversational Search
	Conversational Recommendation
	Conversational Question Answering

	TREC CAsT
	Word Embeddings
	BM25
	Performance measures
	NDCG
	Precision and Recall measures
	MAP
	MRR

	Background to analysis
	Student's T Test
	Anova

	Experimental setting and methodological tools
	Datasets in TREC 2021/2022
	MS MARCO
	KILT DATASET
	WaPo DATASET

	Lucene
	Neural Coref
	BERT
	Transformers for question answering
	NLTK: Sentence Tokenizer
	Lucene OpenNLP
	Spacy
	Trec Eval

	Techniques
	First query technique
	Context query technique
	Technique with bert and neuralcoref
	NeuralCoref
	BERT

	Technique with automatic resolved utterance
	Last run: Technique without ContextQuery

	TREC 2022: submitted runs

	Analysis
	Comparing runs with Anova

	Conclusions and Future Works
	References
	Sitology
	Acknowledgments

