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Abstract

The Benchmark Approach (BA) represents an alternative framework to quanti-

tative finance that relies on the existence of a Growth Optimal Portfolio (GOP) to

be used as Numeraire for financial modeling. When employed as a benchmark, the

GOP makes any other non-negative portfolio either trendless or mean-decreasing.

This property is known as supermartingale property, and it allows to exclude ex-

ante some basic forms of arbitrage in the financial markets. Moreover, the GOP is

constructed to maximize the long-term growth rate of the investment, and it deliv-

ers the best long-term performance when compared to any other strictly positive

portfolio. These results are particularly interesting to apply the BA framework in

the context of portfolio optimization and valuation of contingent claims. By intro-

ducing the Diversification Theorem, Platen and Heath (2006) show that Diversified

Portfolios (DPs) converge to the Numeraire when composed by a sufficiently large

number of constituents. In the present research, we build on this result and exploit

näıve-diversification as a tool to construct valid proxies of the GOP. More specif-

ically, we follow the methodology proposed by Platen and Rendek (2020) to con-

struct a Hierarchically Weighted Index (HWI), a particular class of equally-weighted

strategies that proved to be very robust to approximate the GOP. We evaluate the

performance of different specifications of the HWI against the traditional Equally

Weighted Index (EWI) and the MSCI-World Index. As a final result, we prove

that the HWI approximates well the GOP, by showing robust statistical evidence

that the supermartingale property of benchmarked returns cannot be easily rejected

when our preferred HWI specification is used as a benchmark.
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1 Introduction

Modern mathematical finance relies extensively on the existence of an Equivalent (Local)

Martingale Measure (ELMM) to exclude the possibility of arbitrage opportunities in the

market. In particular, the existence of an ELMM is a sufficient condition to rule out

all forms of arbitrage, as this is defined under the No Free Lunch with Vanishing Risk

(NFLVR) theory1. This result has been crucial in the context of portfolio optimization

and asset pricing theory.

However, several authors have shown that during periods of acute financial turbulence,

some financial market anomalies can be observed, which are totally consistent with the

classical no-arbitrage theory. This is for example the case of stock price bubbles. Indeed,

in the presence of a bubble, discounted stock prices are not true martingales under the

risk-neutral probability, with the consequence that classical results, like the put-call parity

relationship, may break down. Another interesting example is provided by the dynamics

observed in the interest rate market after the 2008 financial crisis, when markets started

to face negative interest rates for the first time. In most recent years, we observed an

increase in the frequency of unexpected and unusual macroeconomic and financial shocks.

These developments raised questions on whether non-traditional frameworks that do not

require the existence of an ELMM might be more appropriate for financial modeling.

Given the impossibility of relying on a risk-neutral probability measure when an ELMM

fails to exist, some alternatives have been developed which allow to model financial quan-

tities and exclude strong forms of arbitrage. A general class of diffusion-based models

that does not rely on an ELMM has been studied by Fontana and Runggaldier (2013). In

this work, the authors have proposed some weaker definitions of arbitrage, under which

financial markets are still viable and the existence of a risk-neutral probability measure

is not required for a fair valuation of contingent claims. This approach leaves room for

some limited forms of arbitrage, partially explaining the existence of market anomalies.

Financial markets are viable if strong forms of arbitrage can be excluded. This is the

1. See Delbaen and Schachermayer (1994), Delbaen and Schachermayer (2006).
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case, even if an ELMM fails to exist, when financial markets are complete, that is, if any

payoff can be replicated starting from some initial investment.

In this research we propose a modeling framework based on the Benchmark Approach

(BA), which has proven to work even when a risk-neutral probability measure does not

exist. The BA enlarges the possibilities for modeling financial quantities also when the

classical approaches seem to break down. The main pillar of this framework is the Growth

Optimal Portfolio (GOP), that takes the role of Numeraire and represents the portfolio

that, when used as benchmark, forces any other portfolio to evolve as local-martingale.

The GOP is closely linked to the concept of Martingale Deflator, the weaker counterpart

of traditional martingale measures (Fontana and Runggaldier 2013). This relationship

establishes a direct link between the concept of Numeraire and the no-arbitrage criteria.

The BA proved to be suitable and very flexible for a range of applications in the

quantitative finance field. For instance, this is the case of portfolio optimization problems,

which can be meaningfully solved if financial markets are viable. In addition, the GOP

provides a convenient way to identify systemic risk, becoming relevant for regulatory

purposes. Last but not least, another interesting area of application is the valuation of

contingent claims. Indeed, the BA allows to model prices under the real world probability,

opening the road to a range of applications that could not be explored otherwise.

The Benchmark Approach has been studied in a consistent stream of literature. The

monograph of Platen and Heath (2006) collects a wide range of notions on the BA and

provides some guidance on how the main concepts can be linked together. However, the

work lacks of some of the latest (and possibly interesting) developments in the field. In

order to close this gap, the first objective of this research is to complement the material of

the authors, and reorganize some concepts into a unified, concise and updated framework.

Platen and Heath (2006) have discussed some interesting theoretical results that allow

to link Diversified Portfolios (DPs) to the GOP. Platen and Rendek (2012a) and Platen

and Rendek (2020) represent two successful attempts of approximating empirically the

GOP via well diversified strategies. The second objective of this research is inspired by

their results. To prove that the Benchmark Approach can be robust even in the presence

of market anomalies, we challenge their methodology to verify if their findings hold when

using updated data. We confirm the results of the authors by showing that the GOP

can be efficiently approximated by mean of well diversified portfolios. In particular, a

Hierarchically Weighted Index (HWI) proves to be suitable for this purpose. Indeed, the

economic structure of the market provides sufficient information to disentangle systematic
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and idiosyncratic risk, and to efficiently get rid of the latter via diversification. This

result is particularly interesting because it is model independent. Avoiding the need of

estimating model parameters (or other complex factors) is not only beneficial in terms of

mathematical modeling but also allows to achieve a better portfolio performance. The

approximation methodology proposed by Platen and Rendek (2012a) and Platen and

Rendek (2020) to construct proxies of the GOP is robust and allows to preserve GOP

properties even when data reflects periods of unexpected and unusual financial turmoil

and macroeconomic turbulence, like the Covid-19 crisis of 2020. The local martingale

property is verified by mean of robust statistical tests, which show that is not possible

to easily reject the hypothesis of zero expected instantaneous returns, when these are

benchmarked by the GOP.

The present research is structured as follows. Chapter 2 provides a detailed overview

of the Benchmark Approach. We introduce here the concept of Growth Optimal Portfolio

and its role as Numeraire, following what has been proposed by Long (1990). We provide

the theoretical framework to approximate the GOP by mean of Diversified Portfolios

and we analyze some interesting applications highlighting some of the benefits achievable

with this approach, compared to classical finance theories. Chapter 3 illustrates some

portfolios that are suitable to approximate the GOP and provides some methodological

guidance to implement these strategies using real market data. We present the dataset

employed for the analyses and we discuss some preliminary results by looking at some

descriptive statistics. Finally, in Chapter 4 we assess comparatively the performance

of the portfolios constructed, by calculating some common metrics in the field of fund

management. Furthermore, we provide evidence that the local martingale property cannot

be easily rejected for benchmarked returns when our preferred GOP proxy is used as a

benchmark.
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2 Financial modeling under the Benchmark Approach

In this chapter the Benchmark Approach (BA) is presented, along with the set of math-

ematical structures and technical assumptions that constitute its building blocks. It

represents a unified modeling framework for continuous financial markets. The material

illustrated is mainly based on Platen and Heath (2006) and augmented with a consistent

stream of literature, in an attempt of collecting and re-organizing a range of relatively

unexplored concepts that do not fit under the currently prevailing approaches in the

quantitative finance field.

In Section 2.1 the general market settings to model financial markets under the BA is

presented. A broad range of notation, relationships and definitions of central importance

have been included to support the discussion of subsequent concepts. The Growth Opti-

mal Portfolio (GOP) is introduced and explicitly derived in a continuous time framework

in Section 2.2. The GOP is a portfolio constructed to maximize the long-term growth rate

of the investment, and delivers the best performance when compared to any other strictly

positive portfolio. Thanks to these and other properties that are presented later, the GOP

constitutes the main pillar of the BA, taking the role of Numeraire. Section 2.3 collects

some of the most interesting applications of the Benchmark Approach in quantitative

finance, highlighting the advantages offered by this framework in terms of mathematical

modeling in the context of portfolio selection, risk measurement and asset pricing. Finally,

in Section 2.4 the Diversification Theorem is derived. Under some regularity conditions, it

allows to bridge between abstract mathematical modeling and real world implementation

of the BA, and represents a simple and convenient tool to construct proxies the GOP.

2.1 Market setting and general framework

To illustrate the main elements of the market setting under the Benchmark Approach, we

follow Platen and Heath (2006). The financial market is modeled in continuous time, by

relying on a filtered probability space (Ω,A,A, P ), where A = (At)t∈[0.∞) represents the
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set of information available at market participants, and At the information available at a

specific point in time t ∈ [0,∞). Trading uncertainty is modeled as a set of independent

standard (A, P )-Wiener processes W k = {W k
t , t ∈ [0,∞)}, for k ∈ {1, 2, . . . , d} and

d ∈ N.

Primary Security Accounts

We consider a market composed by d + 1 primary security accounts. These include d

non-negative risky primary security account processes Sj = {Sj
t , t ∈ [0,∞)} – with j ∈

{1, 2, . . . , d} being a single type of security (i.e. stocks, bonds, foreign savings accounts,

derivatives, indexes, etc.) – where all proceeds are compounded, and a locally riskless

primary security account S0 = {S0
t , t ∈ [0,∞)}, the savings account.

At time t ∈ [0,∞), the value of the jth risky asset satisfies the SDE:

dSj
t = Sj

t

(
ajt dt+

d∑
k=1

bj,kt dW k
t

)
(2.1.1)

where bj,k = {bj,kt , t ∈ [0,∞)} is the volatility of the jth primary security account with

respect to the kth Wiener process W k, and aj = {ajt , t ∈ [0,∞)} is the appreciation rate.

At time t the value of the risk-free account is given by:

S0
t = exp

{∫ t

0

rs ds

}
<∞ (2.1.2)

where r = {rt, t ∈ [0,∞)} is the short-term risk-free rate.

Market Price of Risk

The number of Wiener processes considered for the modeling will be exactly the same as

the number of risky primary security accounts. In this way we are implicitly assuming that

markets are complete and avoiding the possibility of including redundant primary security

accounts. To simplify the exposition, we express the previous processes in vector notation.

S = {St = (S0
t , S

1
t , . . . , S

d
t )

⊤, t ∈ [0,∞)} is the vector of primary security account

processes, a = {at = (a1t , . . . , a
d
t )

⊤, t ∈ [0,∞)} the vector of appreciation rate processes,

b = {bt, t ∈ [0,∞)} the volatility matrix process, and r = {rt = (rt, r
1
t , . . . , r

d
t )

⊤, t ∈

[0,∞)} a vector that includes the short-term rate process rt and d dividend rates processes

rjt , corresponding to each primary risky account.
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Definition 2.1.1. The market SC
(d) = (S,a, b, r,A, P ) is defined as a continuous financial

market (CFM), if the volatility matrix bt = [bj,kt ]dj,k=1 is invertible for Lebesgue-almost

every t ∈ [0,∞), with inverse matrix b−1
t = [b−1j,k

t ]dj,k=1.

The assumption on the invertibility of the volatility matrix bt is necessary to guarantee

that markets are complete.

We denote the kth market price of risk with respect to the kth Wiener process as

θkt =
d∑

j=1

b−1 j,k
t

(
ajt − rt

)
(2.1.3)

and using Equation (2.1.3) to isolate the market price of risk, we can re-write SDE (2.1.1)

to obtain

dSj
t = Sj

t

(
rt dt+

d∑
k=1

bj,kt (θkt dt+ dW k
t )

)
(2.1.4)

Self-financing Portfolios

A strategy is defined as a predictable stochastic process δ = {δt = (δ0t , δ
1
t , . . . , δ

d
t )

⊤, t ∈

[0,∞)}, where δjt , j ∈ {0, 1, . . . , d} is the number of units of the jth primary security

account that are held a time t ∈ [0,∞) in the corresponding portfolio Sδ = {Sδ
t , t ∈

[0,∞)}. At each point in time, the value of the entire investment portfolio is represented

by

Sδ
t =

d∑
j=0

δjt S
j
t (2.1.5)

For the rest of the analysis we will assume that all strategies and portfolios are self-

financing. A portfolio is said to be self-financing if all the cash flows (capital gains and

dividends) generated by holding the portfolio from time t to time t+ h, where t ∈ [0,∞)

and h > 0, are reinvested (or absorbed if negative). More formally, we will consider the

strategy δ and the corresponding portfolio Sδ to be self-financing if

dSδ
t =

d∑
j=0

δjt dS
j
t (2.1.6)

for t ∈ [0,∞).

6



From (2.1.6) and SDE (2.1.4) we derive the following SDE of a self-financing portfolio

dSδ
t = Sδ

t rt dt+
d∑

k=1

d∑
j=0

δjt S
j
t b

j,k
t (θkt dt+ dW k

t ) (2.1.7)

for t ∈ [0,∞).

It is important to note that the value of the portfolio can become zero or negative, as no

restrictions are technically imposed. In what follows, we will consider only a subset of

strictly positive portfolios that we denote by V+.

Fractions

For convenience it is useful to express the proportion of wealth invested in each primary

security account in relative terms, instead of units. We define the fraction πj
δ,t invested

in the the jth risky account Sj
t , j ∈ {0, 1, . . . , d} as

πj
δ,t = δjt

Sj
t

Sδ
t

(2.1.8)

Fractions can be negative, but by definition will always sum up to 1.

By Equation (2.1.8) and the SDE specified in (2.1.7) we obtain

dSδ
t = Sδ

t

(
rt dt+

d∑
k=1

d∑
j=1

πj
δ,t b

j,k
t (θkt dt+ dW k

t )

)
(2.1.9)

for t ∈ [0,∞).

2.2 Growth Optimal Portfolio (GOP)

The Growth Optimal Portfolio (GOP) has been discovered by Kelly (1956) in a research

motivated by questions arising in the field of information theory, where the author derives

an optimal gambling strategy that allows to accumulate more wealth than any other

strategy. More precisely, a gambler can use the knowledge received from a communication

channel – where the states of the channel are binary and determine the probability of

winning – to cause its money to grow exponentially. Assuming that the gambler has the

possibility of reinvesting the profits generated, and that he can freely vary the amount of

money bet at every round, then his optimal strategy would be determining the value of

the next bet such that the expected value of the logarithm of his capital is maximized.
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This results is drawn from a real life situation, but has been applied widely to analyze

other economic phenomena. The information channel can be interpreted as the quantity

of inside information available to investors at time t, and the result of the gamble as the

unknown future performance of an investment in a risky financial asset.

Latane (1959) uses a similar set up to investigate which is the optimal criteria to

make a choice among multiple risky ventures. He concluded that the optimal investment

allocation is always the combination of assets that allows to maximize the expected growth

rate of the initial capital. This result is completely independent from any consideration

on investor’s utility function. Since the logarithm is additive in repeated choices (bets),

by the law of large numbers, investor’s (or gambler’s) capital will surpass the capital of

any other investor adopting a different strategy, with probability one.

Thorp (1969) in a study related to optimal gambling systems highlights some deficien-

cies of the portfolio selection theory introduced earlier by Markowitz (1952). The author

supports with empirical evidence the idea that the Kelly criterion based on the expected

logarithmic utility is superior to the one of Markowitz which is based on first and second

moments only. Only later, the author formalized his own findings in a detailed investi-

gation on the benefits of using the E(logX) as a criterion to guide investment decisions

(Thorp 1975).

The aforementioned contributions are just a smaller part of a consistent stream of lit-

erature2 that leveraged on the results of Kelly (1956), to advance in the fields of gambling,

portfolio optimization and derivative pricing, between the ’60s and the ’70s.

Of outstanding importance is the work of Long (1990), that represents the first attempt

to formalize some important properties of the Kelly criterion by looking at the GOP as

a Numeraire. In the discussion that follows, we provide a formal definition of the GOP

and we analyze its role as Numeraire. We also model the GOP in a continuous financial

market (CFM) setting, to show that it can be considered as the best performing portfolio

under multiple perspectives.

2.2.1 Definition and properties

Long (1990) identifies the following as the three main characteristics of a Numeraire:

(1) It is self-financing. At any time, the portfolio can be rebalanced at zero-cost, with

no need to invest extra capital, nor to withdraw money.

2. See as additional examples Breiman et al. (1961), Hakansson (1971), Markowitz (1976).
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(2) Its value is always positive. This assumption guarantees that there is always at least

one portfolio that can be used as denominator to derive benchmarked returns.

(3) Zero is always the best conditional forecast of numeraire-denominated rate of return

of every asset in the market. This feature is closely linked to the absence of profit

(arbitrage) opportunities in the market. As shown by Long (1990), the existence of

the Numeraire portfolio is inconsistent with the presence of such opportunities3,4.

Absence of arbitrage is a crucial condition for financial modeling in any context.

This property of the Numeraire represents the main pillar on which the Bench-

mark Approach is based, and represents the reason why this framework is suitable

for several applications (e.g., for pricing derivatives without relying on risk-neutral

probability measure, see Section 2.3.3).

For a given list of assets, the Numeraire portfolio coincides with the portfolio that

would be chosen by a log utility investor if his trading were restricted to that list (Long

1990). Following Kelly (1956), this portfolio guarantees the maximum capital growth,

outperforming any other self-financing strategy constructed from that list. When the list

includes all assets traded in the market, the Numeraire portfolio correspond to the Growth

Optimal Portfolio. For the rest of the discussion we will use the concept of Numeraire

and GOP interchangeably.

The notion of Numeraire portfolio can be related to several concepts commonly inves-

tigated in the quantitative finance field. For instance, in the derivative pricing context,

if a claim’s payoff can be replicated by a combination of securities and a risk-free asset,

then it exists an equilibrium relation between the price of the claim, the price of the the

securities and the interest rate, that holds if all investors are assumed to be risk neutral.

When pricing the claim, one has to substitute the actual probability with a so-called risk

neutral probability measure, to artificially recreate the aforementioned equilibrium and

ensure absence of arbitrage opportunities. The power of the GOP is that, when it replaces

the savings account as a discount factor, profits opportunities are already eliminated by

definition. Discounted returns behave as local-martingales, and derivatives can be priced

under a real world probability measure. More details are provided in Section 2.3.3.

3. Following Ingersoll (1987), a profit opportunity arises if an investor can get something for nothing,
either by buying a claim to a non-negative future payoff that will be positive with a positive probability,
for a zero or negative current price (first type opportunities), or by selling a claim to a certain zero payoff
for a positive current price (second type opportunities).

4. Fontana and Runggaldier (2013) study some definitions of arbitrage which are particularly interest-
ing in the context of the Benchmark Approach.
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Another implication of the properties discussed at the beginning of this Section, with

further details provided in Section 2.3.2, is that returns on the GOP coincide with re-

turns on the market portfolio. As a consequence, Numeraire denominated returns can be

intended as a measure of asset-specific returns (or abnormal returns), in the same sense

as market-model residuals. However, the GOP is a superior benchmark when compared

to market-models, since its construction (see Section 2.4) does not require the estimation

of parameters that can potentially introduce noise in the calculations. Some interesting

examples related to the role of the Numeraire portfolio under the Benchmark Approach

are collected in Section 2.3.

2.2.2 Continuous time setting

For the generalization of the GOP properties in a continuous time setting, Platen and

Heath (2006) consider a continuous financial market SC
(d) and a strictly positive portfolio

Sδ ∈ V+. By application of the Itô formula to (2.1.9) we obtain the SDE for ln(Sδ
t ) in the

form:

d ln(Sδ
t ) = gδt dt+

d∑
k=1

d∑
j=1

πj
δ,t b

j,k
t dW k

t (2.2.1)

with growth rate gδt defined as:

gδt = rt +
d∑

k=1

 d∑
j=1

πj
δ,t b

j,k
t θkt −

1

2

(
d∑

j=1

πj
δ,t b

j,k
t

)2
 (2.2.2)

Definition 2.2.1. In a CFM SC
(d) a strictly positive portfolio process Sδ∗ = {Sδ∗, t ∈

[0,∞)} ∈ V+ is called a GOP if for all t ∈ [0,∞) and all strictly positive portfolios

Sδ ∈ V+, its growth rate satisfies

gδ∗t ≥ gδt (2.2.3)

almost surely.

To derive the GOP analytically, one has to compute the optimal fraction of wealth πj
δ∗,t

to be invested in each risky primary security account in the investment universe. The

first order condition, derived from equation (2.2.2), with respect to πj
δ,t, is given by:

0 =
d∑

k=1

bj,kt

(
θkt −

d∑
ℓ=1

πℓ
δ,t b

ℓ,k
t

)
(2.2.4)

for all t ∈ [0,∞) and j ∈ {1, 2, . . . , d}.
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By solving equation (2.2.4), the jth optimal fraction satisfy the equation:

πj
δ∗,t

=
d∑

k=1

θkt b
−1 j,k
t (2.2.5)

for j ∈ {1, 2, . . . , d}.

Alternatively, by mean of Equation (2.1.3), and using vector notation:

πδ∗,t = (b−1
t )⊤θt = (b−1

t )⊤b−1
t (at − rt1) (2.2.6)

By substituting the optimal fractions into the SDE (2.1.9) it is possible to show that

the GOP Sδ∗
t satisfies the SDE:

dSδ∗
t = Sδ∗

t

(
rt dt+

d∑
k=1

θkt
(
θkt dt+ dW k

t

))
(2.2.7)

for t ∈ [0,∞).

Filipovic and Platen (2009) report some details on this optimization problem in a

generalized framework. They identify some necessary conditions such that a solution to

SDE (2.2.7) exists. When these conditions hold, the GOP exists and its value process is

uniquely determined for some fixed initial value Sδ∗
0 > 0, albeit the GOP strategy δ∗ may

not be unique.

However, the market setting proposed in the present research relies on the notion of

CFM (see Definition 2.1.1), that implies that financial markets are complete by imposing

a condition on the invertibility of the volatility matrix. Fontana and Runggaldier (2013)

show that when markets are complete and strong forms of arbitrage are excluded, the GOP

and its fractions are both uniquely determined. Furthermore, for the approximation of

the GOP (see Section 2.4), we rely on a specific and well defined set of risky assets. This

guarantees ex-ante the uniqueness of the optimal fractions.

2.2.3 Best performing portfolio

A detailed discussion on the GOP is key for a deep understanding of the Benchmark

Approach framework. One of the most relevant properties of the GOP, that makes it

versatile to pursue several objectives, is that, by construction, it is the best performing

portfolio. To prove this result, we will leverage on the notion of benchmarked non-negative

portfolios and on the so-called supermartingale property of benchmarked returns.
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We denote the value of a portfolio Sδ
t when benchmarked by the GOP as

Ŝδ
t =

Sδ
t

Sδ∗
t

(2.2.8)

for t ∈ [0,∞).

By application of the Itô formula to the SDE (2.1.9) and (2.2.7), one can obtain the SDE

of the benchmarked portfolio

dŜδ
t =

d∑
j=0

δjt Ŝ
j
t

d∑
k=1

(
bj,kt − θkt

)
dW k

t (2.2.9)

for t ∈ [0,∞).

By observing that the SDE (2.2.9) is driftless, and following some properties of the

Itô integral with respect to Wiener processes5, one can conclude that any benchmarked

portfolio evolve as an (A, P )-local martingale. In addition, any non-negative (A, P )-

local martingale is also an (A, P )-supermartingale (see Appendix A.2 for more technical

details). We can summarize these notions and derive the supermartingale property of

benchmarked portfolio.

Proposition 2.2.2. In a CFM SC
(d) the benchmarked value Ŝδ of any non-negative port-

folio Sδ ∈ V is an (A, P )-supermartingale.

Arbitrage in a CFM

For a financial market model to be valid, some basic form of arbitrage must be excluded.

Platen (2002) provides the following definition of arbitrage opportunities.

Definition 2.2.3. A non-negative portfolio Sδ ∈ V is considered an arbitrage if its starting

value Sδ
0 is zero, and its value at a later bounded stopping time τ ∈ (0,∞) is strictly

positive with a strictly positive probability. In details,

P (Sδ
τ > 0) > 0 (2.2.10)

One could argue that the definition above is weak with respect to other definitions,

and covers only non-negative portfolios. This leaves room for some arbitrage opportuni-

ties to arise if agents can construct negative portfolios. However, an important feature

of real markets is that, by law, investors are subject to a limited liability constraint. If

5. More details and technicalities are discussed in Protter (2004) and reported in Platen and Heath
(2006).
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their portfolio becomes negative, they are forced to declare bankruptcy and they are not

permitted to trade anymore. Negative portfolios can be constructed only if agents hold a

credit line. This condition restricts substantially the possibility to exploit negative strate-

gies, and limits arbitrage opportunities to an extent that is negligible in the context of

financial modeling. More details on arbitrage conditions under the Benchmark Approach

will be discussed in the context of valuation of contingent claims, see Section 2.3.3.

By combining Definition 2.2.3 and Proposition 2.2.2 one can derive the following state-

ment.

Proposition 2.2.4. A CFM SC
(d) does not allow arbitrage opportunities with any of its

non-negative portfolios.

Expected return of the GOP

In a first place, the GOP can be characterized as best performing portfolio in terms of

growth rate and expected return. From inequality (2.2.3) it follows that at any point

in time t, the growth rate gδ∗t of the GOP is always greater than the growth rate gδt of

any strictly positive portfolio Sδ ∈ V+. Furthermore, from Proposition 2.2.2 we know

that any benchmarked portfolio Ŝδ
t behave as an (A, P )-supermartingale when the GOP

is selected as the benchmark. This implies that over any time period [t, t + h] ⊆ [0,∞)

where h > 0 represent the length of the period, the value Ŝδ
t of the portfolio is

Ŝδ
t ≥ E

(
Ŝδ
t+h

∣∣At

)
(2.2.11)

or, equivalently, the expected returns associated to Ŝδ
t are

E

(
Ŝδ
t+h − Ŝδ

t

Ŝδ
t

∣∣∣∣∣At

)
≤ 0 (2.2.12)

Outperforming long term growth rate

We will show in Section 3.3 that if we consider a sufficiently long time horizon, the

trajectory of the GOP lays above the trajectory of any other strictly positive portfolio

constructed using the same universe of assets. We define the long term growth rate ḡδ as

the almost-sure upper limit

ḡδ
a.s.
= lim sup

T→∞

1

T
ln

(
Sδ
T

Sδ
0

)
(2.2.13)

assuming that this exists.
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Theorem 2.2.5. In a CFM SC
(d) the GOP Sδ∗ achieves almost surely the greatest long-

term growth rate when compared to the long-term growth rate of all other strictly positive

portfolios Sδ ∈ V+. In mathematical terms, the inequality

ḡδ∗ ≥ ḡδ (2.2.14)

holds almost surely.

A proof of Theorem 2.2.5 is provided in Appendix B.3.

Systematic outperformance

Equation (2.2.14) provides the second characterization of best performance, which rep-

resents a desirable pathwise feature of the GOP for long-term investors. Since the GOP

is unique in the entire investment universe, it will deliver almost-surely the best possible

outcome when the investment horizon is sufficiently long.

From a different perspective, it can be relevant to study what is the minimum amount

of time that is necessary to benefit of the best long-term performance property with a

reasonably high probability. More precisely, for an investor it is of interest to know if the

GOP can systematically outperform any other portfolio over a short time period. This

depends on the dynamics of the underlying market. Platen (2004a) provides the following

definition, that that represents the basis of our third characterization of best performance.

Definition 2.2.6. A strictly positive portfolio Sδ ∈ V+ will systematically outperform

another strictly positive portfolio, lets say S̄δ ∈ V+, if for some bounded stopping times

τ ∈ [0,∞) and σ ∈ [τ,∞) with Sδ
τ = S δ̄

τ and Sδ
σ ≥ S δ̄

σ it holds almost surely that

P
(
Sδ
σ > S δ̄

σ

∣∣Aτ

)
> 0 (2.2.15)

From a different point of view, Definition 2.2.6 implies the absence of relative arbitrage

opportunities. If a non-negative portfolio systematically outperforms the GOP, then this

portfolio can generate with a strictly positive probability better outcomes than those

achieved by the GOP. If this is the case, one of the necessary conditions for a portfolio to

be defined as the GOP is not verified. Proof of this result is provided in Appendix B.4.
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2.3 Applications of the Benchmark Approach

After presenting the framework of the Benchmark Approach, in the present Section we

discuss some of the most important applications of the Growth Optimal Portfolio in

quantitative finance. In details, Platen (2005b) and Platen (2006) show how the GOP

can be interpreted as the fundamental building block of a unified framework for financial

modeling, portfolio optimization, risk management and derivative pricing.

Markowitz (1959) introduced for the first time the concept of efficient frontier with

his mean-variance theory, setting up the ground for the development of modern portfolio

theories. Later, Merton (1973) modeled portfolio selection in a generalized continuous

time framework, with the Intertemporal Capital Asset Pricing Model (ICAPM). Most of

the traditional portfolio selection methodologies assume that investors are able to choose

their preferred portfolio according to their utility function. A utility functions is usually

suited for mathematical modeling, but do not necessarily provide an adequate description

of investor’s attitude toward risk. In addition, these models are sometimes difficult to

implement due to the uncertainty underlying the estimation of their parameters. The

Benchmark Approach and the properties of the GOP allow to obtain significant advan-

tages when modeling optimal investment strategies.

The Arbitrage Pricing Theory (APT), firstly proposed by Ross (1976) and further

developed in an extensive literature, has always played a central role in the context of

derivative pricing. For the modeling of asset price dynamics under the APT, several au-

thors have focused on different quantities (e.g., pricing kernel, stochastic discount factor,

state price density, to mention some) and proposed different frameworks. However, all

these approaches are based on the existence of a risk-neutral probability measure, to ex-

clude arbitrage opportunities. With the fair pricing methodology (Platen 2002), which

exploits the GOP as a Numeraire, asset pricing can be implemented under the real world

probability.

In this Section we show that the Benchmark Approach provides a flexible modeling

framework, and that the properties of the GOP can be exploited to relax some traditional

assumptions, thus extending the range of possible applications to new problems.

2.3.1 Portfolio optimization

The Benchmark Approach and the notion of CFM introduced in Section 2.1 allow us to

derive and extend a range of classical results in the field of portfolio optimization. In
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particular, some considerations can be made by leveraging on the properties of the GOP

to answer the question of how an investor should optimally allocate his wealth among

different assets, according to his preferences.

We already defined the GOP as the investment strategy that achieves the highest

possible long-term growth rate. However, Platen and Heath (2006) demonstrated that

when the investment horizon is short, the investment must be separated into two funds:

the GOP and the savings account. The resulting allocation is known under the name of

fractional Kelly strategy.

If the investor maximizes an expected utility from discounted terminal wealth, the

optimal portfolio obtained by investing money in the the GOP and the savings account

is an efficient portfolio in the sense of Markowitz (1959). Furthermore, a fractional Kelly

strategy is always positioned on the efficient investment frontier, that is, it always achieves

the maximum Sharpe ratio. This result can be used to generalize the Intertemporal

Capital Asset Pricing Model (ICAPM) proposed my Merton (1973) under very weak

assumptions (Platen and Heath 2006).

In line with the purposes of this research, we provide a general overview of these con-

cepts as they appear in the literature, where a more detailed technical discussion can be

found.

Locally Optimal Portfolio

To show the potential of the Benchmark Approach in terms of portfolio selection, we

consider a portfolio Sδ ∈ V+ discounted by a savings account which is locally riskless

(i.e., does not face short-term fluctuations):

S̄δ
t =

Sδ
t

S0
t

(2.3.1)

By application of the Itô formula to (2.1.9) and (2.1.2) we obtain the SDE

dS̄δ
t =

d∑
k=1

ψk
δ,t (θ

k
t dt+ dW k

t ) (2.3.2)

with kth diffusion coefficient

ψk
δ,t =

d∑
j=1

δjt S̄
j
t b

j,k
t (2.3.3)
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and discounted drift

αδ
t =

d∑
k=1

ψk
δ,t θ

k
t (2.3.4)

at time t ∈ [o,∞).

The aggregate diffusion coefficient, obtained as

γδt =

√√√√ d∑
k=1

(
ψk
δ,t

)2
(2.3.5)

measures the magnitude of trading uncertainty (i.e., variance per unit of time) of the

discounted portfolio S̄δ
t , at time t ∈ [0,∞).

Platen (2005b) generalizes the mean-variance optimality derived in Markowitz (1952)

and Markowitz (1959) in a continuous time setting, by introducing the following notion

of optimal portfolio.

Definition 2.3.1. In a CFM SC
(d) the strictly positive portfolio S δ̄ ∈ V+ is defined as

locally optimal, if for all t ∈ [0,∞) and all strictly positive portfolios Sδ ∈ V+ with

aggregate diffusion coefficient

γδt = γ δ̄t (2.3.6)

it has the largest discounted drift:

αδ
t ≤ αδ̄

t (2.3.7)

What is shown in (2.3.6) and (2.3.7) is that investors prefer “more rather than less”

(Platen 2006), that is, higher returns for the same variance. To be noted is that this

optimality criterion neither relies on the notion of utility function, nor on any specific

time horizon.

Portfolio selection and Two Funds Theorem

Denote the Sharpe ratio as

sδt =
αδ
t

γδt
(2.3.8)

and the total market price of risk as

|θt| =

√√√√ d∑
k=1

(θkt )
2 (2.3.9)

for t ∈ [0,∞).
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The following portfolio selection theorem is derived by Platen and Heath (2006) under

the assumptions that (i) the market price of risk is strictly greater than zero and finite,

and (ii) the fraction of wealth invested in the savings account is not equal to one.

Theorem 2.3.2. Consider a CFM SC
(d). For any strictly positive portfolio Sδ ∈ V+ with

non-zero aggregate diffusion coefficient and aggregate volatility bδt =
γδ
t

S̄δ
t
, the Sharpe ratio

sδt satisfies the inequality:

sδt ≤ |θt| (2.3.10)

for all t ∈ [0,∞), where the equality arises when Sδ is locally optimal. The value S̄δ
t of a

discounted locally optimal portfolio satisfies the SDE

dS̄δ
t = S̄δ

t

bδt
|θt|

d∑
k=1

θkt (θkt + dW k
t ), (2.3.11)

with fractions

πj
δ,t =

bδt
|θt|

πj
δ∗,t

(2.3.12)

for all j = {1, 2, , . . . , d} and t ∈ [0.∞).

Platen and Heath (2006) refer to Theorem 2.3.2 as Two Funds Separation Theorem,

emphasizing that any locally optimal portfolio can be formed using only these two funds

(i.e., by mean of a fractional Kelly strategy). As a consequence, any discounted portfolio

that satisfies SDE (2.3.12) is locally optimal. This result can be achieved in several ways,

including by minimizing the aggregate volatility for a given risk premium or by maximizing

expected utility, with further details discussed in Platen and Heath (2006)6 and Platen

(2002). We can exploit the fractions in Equation (2.3.12) to derive the fractions of wealth

held in the savings account and the GOP.

Corollary 2.3.3. Under the same assumptions valid for Theorem 2.3.2, any locally op-

timal portfolio Sδ ∈ V+ can be decomposed into a fraction of wealth invested in the GOP

bδt
|θt|

=
1− π0

δ,t

1− π0
δ∗,t

(2.3.13)

and the remaining fraction that is held in the savings account

π0
δ,t = 1− bδt

|θt|
(1− π0

δ∗,t) (2.3.14)

6. See Chapter 11 for reference.
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Risk aversion coefficient and utility maximization

One can interpret the quantity in Equation (2.3.13) as a risk aversion coefficient that

equals 1 when investor’s wealth is fully invested in the GOP, and explodes to infinity

when all the wealth is invested in the savings account.

Jδ
t =

bδt
|θt|

=
1− π0

δ,t

1− π0
δ∗,t

(2.3.15)

The risk-aversion coefficient is a useful flexible parameter process for modeling the

evolution of risk-aversion over time (Platen 2005b), and allows to relate what we have

discussed so far to the concept of expected utility maximization. An advantage of this

framework is that it allows to implicitly determine the risk aversion coefficient of an in-

vestor from the actual value of the discounted portfolio at a given point in time, without

any need of computing the corresponding value for a given specific utility function. As a

result, optimal portfolios can be modeled for a wide range of risk aversion coefficients, to

fit the preferences of all the investors in the context of investment planning.

Efficient Frontier

To conclude the discussion on portfolio selection, it is useful to reconcile the concepts

discussed with the notion of efficient investment frontier in the sense of Markowitz (1952).

From SDE (2.3.11) we can define the risk premium of the locally optimal portfolio process

Sδ as

pSδ(t) = bδt |θt| (2.3.16)

with aggregate volatility

bδt =
1− π0

δ,t

1− π0
δ∗,t

|θt| (2.3.17)

In a CFM we can identify a family of efficient portfolios, parameterized by the squared

aggregate volatility, which correspond to the continuous time generalization of the one

period mean-variance methodology of Markowitz (1959). We define the appreciation rate

of the portfolio process Sδ as

aδt = rt + pSδ(t) (2.3.18)
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Definition 2.3.4. In a CFM SC
(d), we define Sδ an efficient portfolio if the appreciation

rate aδt , as a function of its squared volatility (bδt )
2, lies on the efficient frontier defined as

aδt = rt +
√

(bδt )
2 |θt| (2.3.19)

for all t ∈ [0,∞).

According to Platen and Heath (2006) we can also formulate the following result.

Corollary 2.3.5. Any optimal portfolio Sδ ∈ V+ as defined by Theorem 2.3.2 is also an

efficient portfolio.

By combining the definition of Sharpe ratio provided in (2.3.8) and Equation (2.3.10)

it follows that it is not possible to construct a strictly positive portfolio that is located

above the efficient frontier in terms of rate of return and volatility. Due to the continuous

time nature of this framework, the efficient frontier randomly changes intercept and slope

over time. However, locally optimal portfolios constructed as a combination of the savings

account and the GOP are always located on top of it, and record the highest Sharpe ratio

that is achievable at any time t.

2.3.2 GOP as market portfolio and risk measurement

By linking the concepts of GOP and market portfolio (MP) Platen and Heath (2006) show

that the modeling framework proposed under the Benchmark Approach can be exploited

to isolate and measure different components of the market risk, which are relevant in

terms of regulatory requirements and risk management practices, see Platen and Stahl

(2003) and Basle (1995). Furthermore, interpreting the GOP as the MP provide the basis

for the selection of the Morgan Stanley Capital International Developed Markets Total

Return Index (MSCI-World) as a candidate proxy of the GOP that is analyzed in the

following chapters.

To explain the concept of market portfolio, Platen and Heath (2006) assume that the

market is composed by n ∈ N investors, who hold the sum of all the units of primary

security accounts that are traded in the market (total tradable wealth). More precisely,

each ℓth investor with ℓ ∈ {1, 2, . . . , n}, hold an optimal portfolio Sδℓ
t which is non-

negative, as per the limited liability constraint already discussed, and denominated in the

domestic currency.
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At time t ∈ [0,∞), the market portfolio corresponds to the sum of all the investors’

portfolios, and is defined as

SδMP
t =

n∑
ℓ=1

Sδℓ
t (2.3.20)

Platen and Heath (2006) demonstrate that he MP is itself a locally optimal portfolio,

since it is entirely composed by optimal portfolios7.

The market portfolio can be reasonably interpreted as a broadly diversified index,

even if its composition is not precisely defined and largely depends on the composition of

investors’ portfolios. In Section 2.4 we demonstrated through the Diversification Theorem

that diversified portfolios approximate well the GOP for an increasing number of primary

risky assets. As a result, the GOP can be considered a good proxy of the MP, and,

following Platen (2005b), it can be used as a reference unit that allows to disentangle

systematic risk (or general market risk) from specific market risk.

The total market price of risk is represented by the volatility of the GOP and describes

in a natural way the general market risk.

|θt| =

√√√√ d∑
k=1

(θkt )
2 (2.3.21)

By application of the Itô formula on (2.1.4) and (2.2.7), we obtain the (driftless) SDE

of the benchmarked primary security account

dŜj
t = −Ŝj

t

d∑
k=1

σj,k
t dW k

t (2.3.22)

for t ∈ [0,∞).

The parameter σj,k
t in Equation (2.3.22) represents the (j, k)th specific volatility and

measures the jth specific market risk with respect to the process W k, of the benchmarked

primary security account Ŝj
t (Platen 2005b). This quantity is calculated as

σj,k
t = θkt − bj,kt (2.3.23)

where θkt is the general market volatility of the GOP with respect to the kth Wiener

process, and bj,kt is the volatility of the jth primary security account with respect to the

same W k process.

7. For a proof see Section 11.2 of Platen and Heath (2006).
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2.3.3 Pricing of contingent claims

The main advantage of the Benchmark Approach in the field of contingent claims valuation

is that it allows to model price dynamics in a generalized framework and under weak

assumptions, compared to traditional risk-neutral and actuarial pricing methodologies.

Thanks to the properties of the GOP we can significantly extend the range of asset

pricing models that can be implemented, also to those situations where other approaches

are not available8.

In the literature, several pricing frameworks have been developed using a variety of

approaches. Some of them are designed to explain the relationship between the financial

and the intrinsic economic value of the underlying assets, answering the question of how

price reacts to changes in fundamental values. However, the price of certain asset classes

is sometimes difficult to link to underlying economic values. Derivatives are a typical

example in this context, since they securitize multiple uncertainties to which the market

is subject. Most of the pricing approaches are based on the existence of a Numeraire.

In general terms, a Numeraire is a financial quantity on which the valuation is anchored

to simplify the mathematical framework necessary to deal with expectations and the

uncertainty embedded in future outcomes of price dynamics.

Under the Benchmark Approach, the Numeraire that allows to achieve a particular

interesting set of mathematical results is the GOP. Using the GOP as Numeraire allows

to price contingent claims under the real world probability measure P . We show in what

follows the real world pricing framework, and compare it against actuarial and risk-neutral

pricing, to highlight specific advantages of the Benchmark Approach in this context.

Real World Pricing

We showed in the previous sections that the value process of a benchmarked portfolio

Ŝδ
t forms an (A, P )-local martingale when the GOP is used as benchmark. The local

martingale property is associated to the absence of arbitrage in CFMs9 and it represents

the building block of the following notion of fair value process10.

8. For instance, the Benchmark Approach provides several advantages when modeling the so-called
non-replicable payoffs (i.e., payoffs that cannot be replicated by a fair portfolio of primary security
accounts). See Section 11.4 of Platen and Heath (2006) for further details.

9. See Appendix B.2 for an analytical proof.
10. This notion of value process is intended to be general, and does not necessarily represent a portfolio

process, thus the use of a slightly different notation with respect to other sections.
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Definition 2.3.6. A security price process V = {Vt, t ∈ [0,∞)} is called fair if its

benchmarked value V̂t =
Vt

Sδ∗
t

forms an (A, P )-martingale.

Pricing models derived under the Benchmark Approach are more general than those

derived under traditional continuous market models. In particular, the BA does not rely

on the existence of an Equivalent Local Martingale Measure (ELMM) to exclude arbitrage

opportunities as defined under the No Free Lunch with Vanishing Risk (NFLVR) theory11.

When an ELMM fails to exist, and the NFLVR is not verified, financial market may still

be viable in the sense that strong forms of arbitrage are still banned.

Fontana and Runggaldier (2013) analyzed the notions of increasing profits, and ar-

bitrage of first type, and highlighted that what is crucial to meaningfully solve portfolio

optimization and asset pricing problems is the notion of completeness of the market. Mar-

kets are complete when any contingent claim payoff can be replicated starting from some

initial investment. This concept is linked to the so-called squared integrability of the

market price of risk, but does not depend on the existence of an ELMM. If markets are

complete, mild forms of arbitrage may still exist. This is not only more realistic, but also

not problematic in terms of mathematical modeling. Under the Benchmark Approach,

the local martingale property of benchmarked returns, is sufficient to exclude strong forms

of arbitrage, and to model price dynamics without relying on a risk-neutral probability

measure.

From Definition 2.3.6 and by application of the martingale property of V̂ , one can

derive the following pricing formula:

Corollary 2.3.7. For any security price process V̂t =
Vt

Sδ∗
t

and for any time t ∈ [0,∞)

and T ∈ [t,∞), one can define the following real world pricing formula:

Vt = Sδ∗
t E

(
VT

Sδ∗
T

∣∣∣∣At

)
(2.3.24)

The result achieved by using the GOP as Numeraire, is that the expectation in Equa-

tion (2.3.24) is taken from the real world probability measure P . This implies that the only

necessary condition to apply the fair pricing framework under the Benchmark Approach

is the existence of the GOP.

11. See Delbaen and Schachermayer (1994), Delbaen and Schachermayer (2006).
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Risk-Neutral and Actuarial Pricing

To emphasize even more the potential of the Benchmark Approach in derivative pricing

we report some of the results discussed by Platen (2005b), and show that risk-neutral

pricing methodologies appear as a particular case of fair pricing under the real world

probability. To prove this result, we assume the existence of a presumed risk-neutral

probability measure Pθ, associated with the Radon-Nikodym derivative

Λθ(t) =
dPθ

dP

∣∣∣∣
At

=
Ŝ0
t

Ŝ0
0

=
S0
t S

δ∗
0

Sδ∗
t S

0
0

(2.3.25)

with t ∈ [0,∞) and being S0
t the savings account.

By mean of Equation (2.3.25) one can re-write Equation (2.3.24) as

UH(t) = E

(
S0
T Sδ∗

t

Sδ∗
T S0

t

S0
t

S0
T

H

∣∣∣∣ At

)
= E

(
Λθ(T )

Λθ(t)

S0
t

S0
T

H

∣∣∣∣ At

)
(2.3.26)

By the Girsanov Theorem and the Bayes Rule12, if the Radon-Nikodym derivative process

Λ is an (A, P )-martingale, then relation (2.3.26) correspond to the risk neutral pricing

formula

UH(t) = Eθ

(
S0
t

S0
T

H

∣∣∣∣ At

)
(2.3.27)

where Eθ denotes the expectation under the risk neutral probability Pθ, and the savings

account S0
t is employed as numeraire.

It is common in traditional literature to specify a model under a risk-neutral probabil-

ity measure. A limitation of this approach is that, when dealing with realistic models, the

candidate Radon-Nikodym derivative process may not evolve as an (A, P )-martingale,

with the consequence that the probability Pθ may not exist. Under the Benchmark Ap-

proach, fair derivative prices can always be directly computed as conditional expectations

under the real world probability P , using the GOP Sδ∗
t as Numeraire. By relaxing the

assumption on the existence of the risk-neutral probability measure, one can significantly

extend the range of models available for contingent claim pricing.

The fair pricing concept does not only generalize the risk-neutral pricing framework,

12. See Section 9.5 of Platen and Heath (2006) for additional details
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but covers also the traditional approach of actuarial pricing, widely used in many areas

including accounting and insurance. We denote by P (t, T ) the payoff of a zero coupon

bond, which pays one unit of the domestic currency at maturity T ∈ [0,∞). By Equation

(2.3.24) we have that:

P (t, T ) = Sδ∗
t E

(
1

Sδ∗
T

∣∣∣ At

)
(2.3.28)

Platen (2002) and Platen (2006) show that, when a contingent claim HT , with maturity

T , is independent from the GOP Sδ∗
T , the fair pricing formula (2.3.24) yields the actuarial

pricing formula (alternatively known as present value pricing formula):

UH(t) = Sδ∗
t E

(
1

Sδ∗
T

∣∣∣ At

)
E(HT |At) = P (t, T ) E

(
HT

∣∣∣ At

)
(2.3.29)

for t ∈ [0, T ] and T ∈ [0,∞).

2.4 Methodology for the approximation of the GOP

In the previous sections we have presented the mathematical properties and the features

that characterize the GOP. For the application of the Benchmark Approach it is nec-

essary to identify a methodology to obtain suitable proxies for which all the properties

of the GOP are verified. We need a tradable portfolio strategy that can be efficiently

implemented in the real world, even when considering all the constraints and frictions

arising from trading activity in the financial markets (i.e., transaction costs, portfolio

rebalancing frequency, etc.). In this section we follow Platen (2004b) and Platen (2005a)

to demonstrate that Diversified Portfolios (DPs) approximate well the GOP under some

regularity condition, and without relying on any particular modeling assumption, which

could introduce additional levels of uncertainty in the implementation of an investment

strategy.

2.4.1 Diversified portfolios and sequences of approximate GOP

The convergence of DPs toward the GOP is probably the most important result for a

practical application of the Benchmark Approach, and the main pillar on which the ap-

proximation methodology proposed in this research is built upon. To prove this outcome,

we will introduce in the following order the notion of (i) sequence of CFMs, (ii) sequence

of diversified portfolios, (iii) sequence of regular CFMs and (iv) sequence of approximate
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GOPs. These notions constitute all the technical framework needed to show the role that

diversification plays as our tool to efficiently obtain proxies of the GOP.

Recall from Definition (2.1.1) that a market SC
(d) can be defined as a continuous financial

market (CFM) if the volatility matrix of the risky security accounts bt = [bj,kt ]dj,k=1 is

invertible, meaning that markets are complete and assets are not redundant.

In a sequence of CFMs (SC
(d))d∈N, indexed by the number d of primary security accounts in

SC
(d), the dth CFM includes the savings account S0

(d) = {S0
(d)(t), t ∈ [0,∞)} which is locally

riskless, and d non-negative risky primary security account processes Sj
(d) = {Sj

(d)(t), t ∈

[0,∞)}.

For exploring the concept of diversification, it is useful to define the volatility as

bj,k(d)(t) = σ0,k
(d) − σj,k

(d) (2.4.1)

and market price of risk as

θk(d)(t) = σ0,k
(d) (2.4.2)

for j, k ∈ {1, 2, . . . , d}.

Using these two definitions, SDE (2.1.4) can be written as

dSj
(d)(t) = Sj

(d)(t)

(
rt dt+

d∑
k=1

(
σ0,k
(d) − σj,k

(d)

)(
σ0,k
(d)(t) dt+ dW k

t

))
(2.4.3)

Representing volatilities and the market price of risk as per the definitions (2.4.1) and

(2.4.2) is convenient to disentangle diversifiable and non-diversifiable risk. On one hand,

the kth volatility of the GOP represented by θkt can be seen as the general market volatility

with respect to the kth Wiener process, that is, the fluctuation of the market as a whole

caused by W k. On the other hand, the predictable process σj,k = {σj,k
(d)(t), t ∈ [0,∞)}

represents the (j, k)th specific volatility, that is, according to SDE (2.2.9), the negative

volatility of the jth primary security account, caused by W k, but not captured by the

GOP. In other words, the kth specific market risk with respect to W k (Platen and Stahl

2003).

Before continuing the discussion, it is useful to adapt the notation presented in the

previous sections to deal with the settings of a sequence of continuous financial markets
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(CFMs). For d ∈ N we can rewrite Equation (2.1.5) as

Sδ
(d)(t) =

d∑
j=0

δjt S
j
(d)(t) (2.4.4)

to represent the portfolio associated to the strategy δ = {δt = (δ0t , δ
1
t , . . . , δ

d
t )

⊤, t ∈ [0,∞)}

under the dth CFM SC
(d).

Analogously, we can rewrite Equation (2.1.8) as

πj
δ,t = δjt

Sj
(d)(t)

Sδ
(d)(t)

(2.4.5)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, and with a small abuse of notation, given that both

the strategy δ and the fractions π depend on d.

SDE (2.2.7) can be rewritten using the alternative definition of market price of risk in

Equation (2.4.2), to represent the dth GOP as

dSδ∗
(d)(t) = Sδ∗

(d)(t)

(
rt dt+

d∑
k=1

σ0,k
(d)(t)

(
σ0,k
(d)(t) dt+ dW k

t

))
(2.4.6)

for t ∈ [0,∞).

From (2.2.8), the benchmarked portfolio value Ŝδ
(d)(t), corresponding to the dth GOP

Sδ∗
(d)(t), is given by

Ŝδ
(d)(t) =

Sδ
(d)(t)

Sδ∗
(d)(t)

(2.4.7)

Making use of (2.4.5) we can adapt the driftless SDE (2.2.9) as

dŜδ
(d)(t) = −Ŝδ

(d)(t)
d∑

j=0

πj
δ,t

d∑
k=1

σj,k
(d)(t) dt+ dW k

t (2.4.8)

for t ∈ [0,∞), and provided that Sδ∗
(d)(0) > 0.

Sequence of continuous financial markets (CFMs)

With all the aforementioned elements, and following Platen and Heath (2006), it is pos-

sible to provide a formal definition of a sequence of CFMs.
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Definition 2.4.1. A sequence (SC
(d))d∈N is defined as a sequence of CFMs if in SC

(d) (i)

all the primary security accounts satisfy the SDEs of the type (2.4.3), (ii) the volatility

matrix

b(d)(t) = [bj,k(d)(t)]
d
j,k=1 = [σ0,k

(d)(t)− σj,k
(d)(t)]

d
j,k=1 (2.4.9)

is invertible for Lebesgue-almost every t ∈ [0,∞), and (iii) for all j ∈ {0, 1, . . . }, k ∈ N

and t ∈ [0,∞) the (j, k)th specific volatility σj,k
(d)(t) converges almost surely to a finite limit

σj,k(t) as d→ ∞, that is

lim
d→∞

σj,k
(d)(t)

a.s.
= σj,k(t) <∞ (2.4.10)

Sequence of Diversified Portfolios (DPs)

Sequences of diversified portfolios (DPs) are a particular class of sequences of CFMs that

are suitable to approximate well the corresponding sequences of GOPs. The notion of

DPs is of central importance to prove that diversification allows to obtain a mathematical

object that approximates asymptotically the GOP. For these portfolios, the share of wealth

invested in each security is vanishing as the number d of securities increases.

Definition 2.4.2. For a sequence of CFMs (SC
(d))d∈N we call the corresponding sequence

(Sδd
(d))d∈N of strictly positive portfolio processes Sδd

(d) with Sδd
(d)(0) = 1 a sequence of diversi-

fied portfolios (DPs) if some constants K1, K2 ∈ [0,∞) and K3 ∈ N exist, independent of

d, and such that for d ∈ {K3, K3 + 1, . . . } the inequality

∣∣∣πj
δd,t

∣∣∣ ≤ K2

d
1
2
+K1

(2.4.11)

holds almost surely for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞).

From a practical point of view, condition (2.4.11) requires that the fraction πj
δd,t

van-

ishes sufficiently fast as d → ∞, and that the (absolute) fractions in the sequence are

not of large magnitude when compared to the value 1
d+1

. For example, the inequality

is satisfied by a sequence of equally weighted portfolios with πi
δd,t

= πj
δd,t

for all d ∈ N,

t ∈ [0,∞) and i, j ∈ {0, 1, . . . , d}.
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Regular sequence of CFMs

We defined the GOP as the investment strategy the maximizes the growth rate of in-

vestor’s wealth in the long term, outperforming any other allocation that can be con-

structed with the same universe of assets. In practical terms, to exploit diversification and

to maximize the returns achievable with that particular strategy, one should remove all

the sources of idiosyncratic risk, given that the market remunerates only non-diversifiable

risks. Formally, we need to specify a condition such that each of the independent source

of trading uncertainty influences only a restricted group of benchmarked primary security

accounts, in order to be able to capture and leverage on that uncertainty to maximize

returns.

The jth benchmarked primary security account process Ŝj
(d) = {Ŝj

(d)(t), t ∈ [0,∞)},

associated with

Ŝj
(d)(t) =

Sj
(d)(t)

Sδ∗
(d)(t)

, (2.4.12)

satisfies by (2.4.5) and (2.4.8) the SDE

dŜj
(d)(t) = −Ŝj

(d)(t)
d∑

k=1

σj,k
(d)(t) dW

k
t (2.4.13)

By leveraging on SDE (2.4.13) one can define the kth total specific volatility for the dth

CFM SC
(d) as

σ̂k
(d)(t) =

d∑
j=0

|σj,k
(d)(t)| (2.4.14)

This quantity sums the values of all the specific volatilities σj,k
(d)(t) with respect to the kth

Wiener process in SC
(d), and can be interpreted as the measure of the total kth specific

market risk. If the total specific volatility is small for some k, it means that only a

restricted number of primary security accounts have a larger specific volatility with respect

to the kth Wiener process, and one can be reasonably sure that there is a portfolio

strategy capable to capture non-diversifiable risk (Platen and Stahl 2003). The following

definition of regular sequence of CFMs summarizes these considerations under a simple

mathematical condition.
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Definition 2.4.3. A sequence of CFMs (SC
(d))d∈N is called regular if it exists a constant

K5 ∈ [0,∞), independent of d, such that

E

((
σ̂k
(d)(t)

)2)
≤ K5 (2.4.15)

for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d}.

Sequence of approximate GOPs

To identify in practical terms the GOP, one would need a complex and accurate model

to estimate volatilities and the market price of risk, and determine optimal investment

fractions. As mentioned before, given the limited amount of historical data available,

it is not possible to estimate model parameters in a sufficiently precise way. DeMiguel,

Garlappi, and Uppal (2009) employed parameters calibrated on US stock market data to

derive analytically the length of the estimation period that would be necessary to obtain

an optimizing model capable of outperforming a 1/N naive diversified strategy. To achieve

such result for an investment universe of 50 assets, one would need an estimation window

of about 6000 months, hundred times longer than the 60/120 months timeseries usually

employed for parameters estimation.

For the following discussion, it is useful to consider a portfolio process Sδd
(d), defined in

the dth CFM SC
(d) and associated with the strategy δd = {δd(t) =

(
δ0d(t), δ

1
d(t), . . . , δ

d
d(t)
)⊤
, t ∈

[0,∞)}. To understand if a portfolio Sδd
(d) is close enough to the GOP, Platen (2005a) in-

troduce the tracking rate Rδd
(d)(t), defined as

Rδd
(d)(t) =

d∑
k=1

(
d∑

j=0

πj
δd,t

σj,k
(d)(t)

)2

(2.4.16)

at time t ∈ [0,∞).

From Equations (2.4.1), (2.4.2) and (2.2.6) we have that

d∑
j=0

πj
δ∗,t

σj,k
(d)(t) = 0 (2.4.17)

for all k ∈ {1, 2, . . . , d}.
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As a consequence, for the GOP Sδ∗
(d), the tracking rate Rδ∗

(d)(t) is zero for all t ∈ [0,∞).

Moreover, it follows logically that a portfolio Sδd
(d) equals the dth GOP almost surely, if

and only if

Rδd
(d)(t) = 0 (2.4.18)

for all t ∈ [0,∞).

Combining all these results, Platen and Heath (2006) provide the following formal

definition of sequence of approximate GOP.

Definition 2.4.4. For a sequence of CFMs (SC
(d))d∈N we call a sequence (Sδd

(d))d∈N of strictly

positive portfolio processes which starts at the value of one, a sequence of approximate

GOPs, if for all t ∈ [0,∞) the corresponding sequence of tracking rates vanishes in prob-

ability. In particular, we have that

lim
d→∞

Rδd
(d)(t)

p
= 0 (2.4.19)

Equation (2.4.19) implies that, for a sequence of approximate GOPs, the tracking rate

becomes smaller as the number of securities considered to implement the portfolio strategy

(i.e., the level of diversification) increases.

2.4.2 Diversification Theorem

Definition 2.4.4 and some of the previous results are exploited in this Section to present

the Diversification Theorem, firstly proposed by Platen (2005a)13. This theorem reveals a

fundamental robustness property of DPs, and provides a theoretical basis for the empirical

analysis that is conducted in the following chapters. In particular, it allows to exploit

diversified portfolios to approximate the GOP, avoiding the need to determine the exact

GOP fractions with a model that implies accurate estimates of the volatilities and market

prices of risk.

Theorem 2.4.5. For a regular sequence of CFMs (SC
(d))d∈N any sequence of (Sδd

(d))d∈N of

DPs converges toward a sequence of GOPs.

It is important to note that this result is achieved without relying on any strict assumption

on the dynamics of the market, but only on a regularity condition such that each of the

independent sources of trading uncertainty influences only a restricted group of primary

13. A detailed proof of Diversification Theorem can be found in Section 10.6 of the monograph of Platen
and Heath (2006).
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security accounts14. In mathematical terms, this is true if inequality (2.4.15) holds for all

t ∈ [0,∞).

To prove Theorem 2.4.5 we can slightly modify equation (2.4.16) to hold with a weak

inequality

Rδd
(d)(t) ≤

d∑
k=1

(
d∑

j=0

|πj
δd,t

| |σj,k
(d)(t)|

)2

(2.4.20)

which lead by Equations (2.4.11) and (2.4.14) to

E
(
Rδd

(d)(t)
)
≤ (K2)

2

d1+2K1

d∑
k=1

E

((
σ̂k
(d)(t)

)2)
≤ (K2)

2

d2K1
K5 (2.4.21)

for all t ∈ [0,∞).

Given that by definition 2.4.2 the constant K1 > 0, it follows from (2.4.21) that the

expected tracking rate E
(
Rδd

(d)(t)
)
vanishes as the number d of risky assets included in the

investment strategy grows.

The fact that DPs converge towards the GOP is consistent with the idea that, in

general, broad market indices fluctuate in a very similar manner. Indeed, broad market

indices are well diversified by definition, as they are constructed with a large number

of securities to represent the entire stock market. In Section 2.3.2 this result provides

an additional argument why the concept of GOP is also close to the concept of market

portfolio.

By relying on a Black-Scholes settings Platen and Rendek (2012b) provides some in-

teresting examples of sequences of DPs which qualify as sequences of approximate GOPs.

By mean of simulations, the authors show that the Equally Weighted Index (EWI) and

the Total Return Index converge to the GOP for relatively small values of d. These results

are exploited later for some empirical analysis, in particular to select suitable GOP proxy

candidates to be evaluated.

14. Platen and Rendek (2012a) proves that this regularity condition holds for the existing global financial
markets, by showing that the information that is intrinsically embedded in the economic structure of
the market can be exploited to design an investment strategy that is capable of efficiently extracting
diversifiable risk, see also Section 3.1.1.
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3 Approximation of the GOP with real market data

In the previous chapter we have presented the theoretical framework underlying the

Benchmark Approach. The Growth Optimal Portfolio (GOP) is a ”hidden object”, an

optimal allocation strategy defined in terms of a set of mathematical features and finan-

cial concepts. Filipovic and Platen (2009) identify the necessary conditions for the GOP

to exists. If these conditions hold, the GOP is identified by its unique value process, for

some initial value Sδ∗
0 . The optimal fractions π∗

t such that the portfolio growth rate (i.e.,

the drift of its logarithm) is maximized, can be calculated according to Equation (2.2.5).

However, this would require the estimation of unknown parameters such as the market

price of risk and the volatility matrix. Achieving good results for this notably difficult

statistical task, with any estimation methodology, is conditional on disposing of a large

amount of historical data that does not exist.

In Section 2.4 we have discussed how well-diversified portfolios approximate asymp-

totically the GOP, for an increasing number of stocks. The Diversification Theorem (see

Section 2.4.2) provides a robust framework that allows us to exploit diversification as

a tool to construct valid proxies of the GOP, (i.e. investment strategies for which the

features discussed in Section 2.2 are verified).

DeMiguel, Garlappi, and Uppal (2009) provided empirical evidence that naive diver-

sified portfolios outperform the strategies constructed with sample-based mean-variance

models, including all the extensions to these models designed to reduce the estimation

error. Given that the GOP must be the global best performing strategy, we leverage

on their results (and further validate their claim that equally-weighted indexes generate

the highest growth in the investors’ wealth in the long term) by constructing different

naive-diversified portfolios and show empirically that they are suitable candidates to ap-

proximate the GOP.

This chapter is organized in three main sections. In the first section we discuss the

methodology to construct hierarchically weighted indexes – a more complex and structured

class of equally-weighted strategies that proved to be particularly suitable to approximate
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the GOP – with a focus on the main specification adopted by Platen and Rendek (2020).

Furthermore, we propose a set of alternative strategies, which are themselves potentially

valid proxies of the GOP, and that are used to validate empirical results. In the second

section we describe the data collected to construct the portfolios. Considering the com-

plexity and the size of the dataset, we provide details about the selection of the relevant

sample of stocks, and a summary of the cleaning procedures implemented. In the last

section some preliminary results and descriptive statistics are presented.

3.1 Methodology

According to finance theory, only systematic risk should attract a risk premium. More-

over, an investment strategy that best captures non-diversifiable risk is most likely to

outperform any other allocation. In the present work, finding an efficient diversification

strategy that is capable of maximizing the portfolio performance is crucial to bring the

portfolio closer to the true GOP.

In this section we present the methodology to construct a Hierarchically Weighted Index

(HWI), an investment strategy designed to exploit the economic structure of the market

to efficiently remove systematic risk components of the investment. We also introduce

in the analysis the Equally Weighted Index (EWI) and the MSCI-World as two natural

benchmarks to evaluate if the HWI, in three different specifications, can be a suitable

GOP proxy. We found preliminary evidence that, in the long-run, the HWI outperforms

the EWI and the MSCI-World, reporting a significantly higher long-term growth rate.

3.1.1 Hierarchically Weighted Index (HWI)

Most of the literature on the Benchmark Approach converges toward the choice of a

hierarchically-weighting methodology to approximate the GOP. Many well-known opti-

mal portfolio strategies aim at the minimum variance portfolio as in Clarke, De Silva, and

Thorley (2011); the risk parity portfolio, as in Maillard, Roncalli, and Teiletche (2010);

the maximum diversification portfolio, as in Choueifaty and Coignard (2008); or the hier-

archical risk parity portfolio, as in Lopez De Prado (2016), to mention some. Estimation

errors that arise in the process of building these strategies can easily offset the theoretical

benefits of such optimal portfolio structures.

Despite the construction of a Hierarchically Weighted Index (HWI) being more struc-

tured when compared to the plain equally-weighting approach, it still allows to avoid the
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explicit estimation of covariances of returns and expected returns which would require

much longer observation windows than those usually available. In addition, naive diver-

sification does not rely on the modelling of complex factors to improve the performance

of the allocation strategy (e.g., momentum, fundamental values, size, correlations with

market returns, etc.).

The economic structure of the market represents the source of information that is

exploited to systematically remove diversifiable risk and optimize the performance of the

portfolio. For example, stocks of companies operating in the same industry are likely to

be highly correlated, and in a similar fashion, industries in a given country are subject to

similar macroeconomic uncertainties. The underlying idea, as suggested by Platen and

Rendek (2012a), is that forming a hierarchical industrial and geographical grouping of

stocks is a natural solution to capture within groups similarities. Assuming that factors

that capture the exposure to similar uncertainties are intrinsically embedded in the groups

formed, one can avoid the need to model and estimate those factors by recursively forming

equally weighted indexes of the elements within the previous group (i.e., stocks in the

lowest group and intermediate indexes formed in the previous steps for the rest of the

hierarchies).

When building the HWI we use the ICB industry classification, and information on the

country where the headquarter of the company is located, to form our groups (technical

details of the ICB classification are reported in Section 3.2).

According to Platen and Rendek (2020), a four-level hierarchy is adequate to obtain sta-

tistically significant evidence of the local martingale property for numeraire-denominated

returns, and the best portfolio performance. We decided to model the HWI following the

same set up. At a certain time t ≥ 0 stocks are classified into geographical macro-region,

country, and industry. The industrial breakdown (i.e. supersector, sector or subsector)

selected for each country depends on the total number of domestic stocks that are listed

in the national stock exchange. This choice has been made to ensure that an appropriate

number of constituents is included in each industry bucket at any point in time (again,

further details will be provided in Section 3.2).

As previously mentioned, the dataset is hierarchical and self-contained, thus the total

number of stocks in the investment universe is given by:

Nt =
Mt∑
j1=1

M
j1
t∑

j2=1

M
j1,j2
t∑

j3=1

M j1,j2,j3
t (3.1.1)
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where Mt is the number of geographical regions, M j1
t is the number of countries in the

j1th region, M j1,j2
t is the number of industrial grouping in the j2th country of the j1th

region and M j1,j2,j3
t is the number of stocks in the j3th industrial grouping, of the j2th

country, of the j1th region.

A naive diversified strategy usually invests equal fractions of wealth in each risky

security. To obtain the HWI one has to follow a conceptually similar approach. Given the

hierarchical nature of this portfolio strategy, the constituents of each group are themselves

equally-weighted indexes of the indexes formed at the previous levels, except for the lowest,

where constituents are stocks. At time t, the weight of the jth stock with j = (j1, j2, j3, j4)

is of the form:

πHWI,j
t =

1

Mt

1

M j1
t

1

M j1,j2,
t

1

M j1,j2,j3
t

(3.1.2)

When constructing equally weighted indexes it is necessary to regularly rebalance capi-

tal among the securities in the investment universe. In this context, it is worth mentioning

that what is mathematically desirable is not always economically feasible: the real world

implementation of a strategy implies bearing some transaction costs incurred when per-

forming reallocations, which can ultimately wipe-out part of the returns. Platen and

Rendek (2012a) provide an analytical assessment of the sensitivity of the HWI perfor-

mance to the reallocation frequency and the transaction cost structure, and found that

more frequent reallocations diminish, in general, the Sharpe ratio. We constructed the

HWI portfolios using daily, monthly and quarterly rebalancing, concluding in favor of

the findings mentioned. We took into account these results when choosing the optimal

rebalancing frequency, designing all the portfolios to be rebalanced at the end of every

quarter. Furthermore, an additional rebalance of the portfolio is triggered every time that

a company is delisted.

Figure 1 provides a graphical representation of the HWI structure using a sunburst

chart. This visualization makes clear that each group comprises a family of equally-

weighted indexes. Outside the circle (not displayed) we have all the primary security

accounts included in the dataset, which are equally weighted to form the sector indexes

(within each country) in the most external layer. In the central layer of the circle, sector

indexes are equally weighted to form country indexes. Lastly, country indexes are equally

weighted to form region indexes (internal circle) and region indexes are combined to obtain

the HWI.
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Figure 1: Structure of HWI

Source: Refinitiv Datastream and author’s calculations.
Notes: Primary security accounts used to form sector indexes in the external layer are not
displayed.
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3.1.2 Equally Weighted Index (EWI)

To evaluate the performance of the HWI we construct other allocation strategies that are

themselves suitable to approximate the GOP. The first natural candidate is the Equally

Weighted Index (EWI). By definition, to obtain the EWI one has to invest the same

proportion of wealth in every security j ∈ {1, 2, . . . , Nt}. The weights πEWI,j
t at time

t ∈ [0,∞) are given by:

πEWI,j
t =

1

Nt

(3.1.3)

The main differences in the EWI and HWI allocations are reported in Table 1. By

construction, country-level exposures are stable for the HWI, since countries are equally

weighted within the same region and thus represent a fixed proportion of the portfolio.

The weight of each country depends on the number of countries classified in each region15.

Each region represents exactly one third of the portfolio, thus the 16 countries of the

EMEA represent about 2% of the total portfolio, Asia-pacific countries accounts for a

6.6% while Canada and United States have the most relevant exposure of 16.6%.

On the other hand, the EWI methodology does not imply any specific rule to con-

straint the allocation. Consequently, the share of each country depends on the stocks

that compose the asset universe at each specific point in time. United States and Japan

are predominant as they both account for more than 20% of the total portfolio. The

biggest differences when compared to the HWI are Canada, New Zealand, Singapore, and

the United Kingdom.

With a hierarchically weighted allocation we privilege some smaller economies if they

are classified into Americas or Asia-Pacific, and suppress substantially the share of other

relevant economies in the EMEA. This mechanism could be counterintuitive at first sight,

but allows to protect the portfolio from macroeconomic shocks that are historically very

different in each of the three macro-regions.

In terms of exposure to different sectors, the HWI and EWI are very similar. The main

differences are recorded for Financial Services, Real Estate, Industrial Goods and Basic

Resources (more than 2% absolute deviation) and are mainly due to the concentration of

certain sectors in specific countries.

15. Further details of regional classification are reported in Section 3.2
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Table 1: Supersector and country weights for HWI and EWI

Country EWI HWI ICB Supersector EWI HWI

Australia 3.513 6.667 Technology 8.971 6.934
Austria 0.973 2.083 Telecommunications 2.203 2.854
Belgium 1.667 2.083 Health Care 8.277 8.246
Canada 6.729 16.667 Banks 4.505 4.525
Denmark 0.973 2.083 Financial Services 10.202 8.016
Finland 0.953 2.083 Insurance 2.500 2.580
France 5.260 2.083 Real Estate 8.932 12.203
Germany 4.982 2.083 Automobiles & Parts 1.865 1.266
Hong Kong 2.422 6.667 Consumer Products 4.466 3.661
Ireland 0.635 2.083 Media 1.865 1.421
Israel 1.092 2.083 Retail 3.374 2.823
Italy 3.057 2.083 Travel and Leisure 3.811 4.259
Japan 20.445 6.667 Food & Beverage 4.069 5.028
Netherlands 2.025 2.083 Personal Care & Drugs 2.024 1.752
New Zealand 0.992 6.667 Construction & Materials 3.989 3.648
Norway 0.933 2.083 Industrial Goods 14.946 12.591
Portugal 0.913 2.083 Basic Resources 4.545 7.205
Singapore 1.945 6.667 Chemicals 2.540 1.745
Spain 2.342 2.083 Energy 3.374 4.434
Sweden 1.449 2.083 Utilities 3.533 4.798
Switzerland 2.759 2.083
United Kingdom 10.421 2.083
United States 23.521 16.667

Source: Refinitiv Datastream and author’s calculations.

Notes: Weights reported refer the end of the year 2020.

Figure 2 complements what is shown in Table 1 by visualizing how sectors’ weights

change over time for the HWI and EWI. Although the structure of the market is relatively

stable and the adjustments recorded are minor, it is possible to distinguish some changes

in the overall composition of the portfolio. Weights tend to fluctuate in a similar way for

both strategies.

3.1.3 Market Capitalization Weighted Index (MSCI-World)

Following what has been already proposed in the literature16, another candidate proxy of

the GOP (and natural benchmark to run a comparison with the HWI) is the Market Cap-

italization Weighted Index (MCI). To construct this investment strategy, the amount of

wealth to be invested in the jth primary security account at time t ∈ [0,∞) is proportional

to its market value MV j
t relative to the whole market capitalization.

16. See for instance Platen and Heath (2006), Platen and Rendek (2012a), Platen and Rendek (2020)
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Figure 2: Evolution of supersector weights over time

(a) HWI (b) EWI

Source: Refinitiv Datastream and author’s calculations.
Notes: The figure displays companies traded worldwide without country distinction.

In mathematical terms, the weights πMCI,j
t of the MCI are determined as

πMCI,j
t =

MV j
t∑Nt

k=1MV k
t

(3.1.4)

for j ∈ {1, 2, . . . , Nt} and i ∈ {0, 1, . . . }.

Although a MCI constructed using the same universe of assets of the HWI and EWI

would ensure a more appropriate comparison of all the GOP candidates, we found little

value added in computing this strategy in-house. In light of the fact that the construction

of each portfolio is a computationally-intense process, we decided to replace the MCI

with the Morgan Stanley Capital International Developed Countries Total-Return Index

(MSCI-World), downloaded from Refinitiv Datastream.

The MSCI-World represents a traditional benchmark for fund management. Further-

more, it is constructed following the same methodology of the MCI and comprises assets

from the same set of 23 developed economies that we consider for the other portfolios.

Even if it is composed by a significantly lower number of constituents, the coverage in

terms of free float market capitalization is more than 85% in each country17. As a con-

sequence, any additional constituent on top of those included in the MSCI-World would

have a weight that is close to zero and an almost negligible effect on the overall perfor-

mance of the MCI portfolio. Additional support to our choice is provided by Platen and

Rendek (2020), who found that the MSCI-World deviates only marginally from the MCI

17. See MSCI-World index fact sheet available at: https://www.msci.com/documents/10199/cad25553-
6265-4a1b-9942-cb5be891015d (accessed: October 2022)

40



in terms of long-term performance and evolution over time.

3.1.4 Other portfolio specifications

The first issue to tackle when constructing the HWI portfolio is the identification of the

optimal number of diversification layers allowing to achieve the zero-mean property for

instantaneous benchmarked returns with sufficient accuracy. The ultimate objective of the

hierarchical diversification strategy is grouping companies according to their exposure to

similar uncertainties to extract systematically that portion of non-diversifiable risk that is

remunerated by the market. Tweaking the groups at lower or higher level of the hierarchy

still provides well-diversified indexes, but their performance can significantly differ.

To further validate our results we designed the HWI under two additional alternative

settings, one considering only one level of diversification – the hierarchically weighted in-

dex diversified by region (HWI.r) – and one considering two levels of diversification – the

hierarchically weighted index diversified by country and by region (HWI.r.c). The struc-

tures of these two strategies are visualized in Figure 3. Additional combinations of region,

country and industry can be considered. However, different attempts to build the port-

folios with different hierarchies led to overlapping results. The three HWI specifications

selected are those for which some major differences can be appreciated.

Figure 3: Structure of HWI alternative specifications

(a) HWI.r.c (b) HWI.r

Source: Refinitiv Datastream and author’s calculations.
Notes: Primary security accounts used to form indexes in the external layer are not displayed.
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3.2 Data infrastructure

The Hierarchically Weighted Index (HWI) is constructed for stocks in developed markets,

following closely the analytical design proposed by Platen and Rendek (2020). Stock prices

have been retrieved from Refinitiv Datastream (RD) that provides a comprehensive set of

indexes calculated at country level, along with the price timeseries of their constituents,

distinguishing between companies which are currently active on the market and securities

that have been delisted.

In this study we have considered the stock market of 23 developed economies following

the MSCI annual market classification18 updated on June 2021. It is worth mentioning

that Israel is included in the dataset, following its incorporation among the developed

markets in May 2010, while Greece has not been considered due to its downgrading to

emerging market on November 2013. Countries have been classified into three macro-

regions, in line with the methodology adopted for the calculation of the MSCI-World:

Americas, Asia-pacific and EMEA (that comprises Europe, Africa and Middle East).

The base year for each country index included in our investment universe is reported in

Table 2, together with the corresponding RD identifier. Stock prices have been retrieved

up to the end of the first quarter of 2021.

For the industry classification of the companies we adopted the Industry Classification

Benchmark (ICB), which provides a comprehensive structure for classifying companies

into specific sectors (Reuters 2008). This transparent classification methodology ensures

the coverage of all the major industries in the world stock market, and guarantees that

companies are assigned to a specific group according to their business nature as determined

by their largest source of revenues. In details, the ICB allows to classify a company among

11 industries, 20 supersectors, 45 sectors and 173 subsectors19. ICB codes are available

in RD and have been downloaded for all the companies in our dataset. A small set of

companies for which the industry label was missing has been removed.

Given the large difference between countries in the number of constituents available,

and mirroring the methodology adopted by Platen and Rendek (2020), we selected a

more granular industrial breakdown based on the number of currently active companies,

to ensure that a sufficient number of constituents is assigned to each industry within each

country. The rule for the selection of the supersector breakdown imposes that a country

18. More information are available at: https://www.msci.com/our-solutions/indexes/market-
classification (accessed: December 2022)
19. More information are available at: https://www.ftserussell.com/data/industry-classification-

benchmark-icb (accessed: November 2022)
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Table 2: Refinitiv Datastream stock lists and corresponding base dates

Country Active Dead Base year

Australia LTOTMKAU DEADAU Jan-1973
Austria LTOTMKOE DEADOE Jan-1973
Belgium LTOTMKBG DEADBG Jan-1973
Canada LTOTMKCN DEADCN Jan-1973
Denmark LTOTMKDK DEADDK Jan-1973
Finland LTOTMKFN DEADFN Jan-1988
France LTOTMKFR DEADFR Jan-1973
Germany LTOTMKBD DEADBD Jan-1973
Hong Kong LTOTMKHK DEADHK Jan-1973
Ireland LTOTMKIR DEADIR Jan-1973
Israel LTOTMKIS DEADIS Jan-1992
Italy LTOTMKIT DEADIT Jan-1973
Japan LTOTMKJP DEADJP Jan-1973
Netherlands LTOTMKNL DEADNL Jan-1973
New Zealand LTOTMKNZ DEADNZ Mar-1988
Norway LTOTMKNW DEADNW Jan-1980
Portugal LTOTMKPT DEADPT Jan-1990
Singapore LTOTMKSG DEADSG Jan-1973
Spain LTOTMKES DEADES Jan-1986
Sweden LTOTMKSD DEADSD Jan-1982
Switzerland LTOTMKSW DEADSW Jan-1973
United Kingdom LTOTMKUK DEADUK Jan-1973
United States LTOTMKUS DEADUS Jan-1973

Source: Refinitiv Datastream.

Notes: Identifiers displayed were relevant when data has been originally downloaded.

has less than 80 active stocks. We assigned the sector to those countries with a number

of stocks between 80 and 900 and the subsector to the countries with more than 900

constituents. Table 3 reports the region and the level of sectoral granularity assigned to

each country, with the corresponding number of constituents downloaded, distinguishing

between active and delisted (dead) securities.

The investment universe considered for this research is composed by 45,646 companies

whose prices have been downloaded at daily frequency for a time horizon of more than

48 years. Given that the data infrastructure plays a crucial role for the implementation

of the methodologies to approximate the GOP (recall that the Diversification Theorem

presented in Section 2.4.2 works only if the investment is spread over a sufficiently large

number of primary security accounts), it is worth providing some details about data

cleaning procedures and relevant data pre-processing.
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Table 3: Number of constituents downloaded, region and industrial grouping assigned to
each country

Country Region Industrial grouping No. Active No. Dead Total

Australia Asia-Pacific Sector 155 1656 1811
Austria EMEA Supersector 49 185 234
Belgium EMEA Sector 84 250 334
Canada Americas Sector 244 4885 5129
Denmark EMEA Supersector 46 269 315
Finland EMEA Supersector 47 125 172
France EMEA Sector 246 1416 1662
Germany EMEA Sector 237 1814 2051
Hong Kong Asia-Pacific Sector 122 296 418
Ireland EMEA Supersector 30 89 119
Israel EMEA Supersector 49 515 564
Italy EMEA Sector 152 389 541
Japan Asia-Pacific Subsector 969 1849 2818
Netherlands EMEA Sector 99 324 423
New Zealand Asia-Pacific Supersector 50 241 291
Norway EMEA Supersector 45 434 479
Portugal EMEA Supersector 46 128 174
Singapore Asia-Pacific Sector 99 385 484
Spain EMEA Sector 116 229 345
Sweden EMEA Supersector 61 408 469
Switzerland EMEA Sector 138 278 416
United Kingdom EMEA Sector 511 4504 5015
United States Americas Subsector 943 20439 21382

Source: Refinitiv Datastream.

Notes: Countries are sorted in alphabetical order.

For each constituent of a country index RD provides several information. Following

the approach of Platen and Rendek (2020), for companies that hold more than one equity

security we kept only the one associated to the highest market capitalization, by filtering

only the rows whose variable “MAJOR” = “Y”. To avoid duplicate entries and ensure

consistency, we kept only the securities for which the country in which the company is

headquartered (“GEOGN”) is reported to be the same as the country in which the primary

security is listed (“GEOLN”). Each company is labeled into an industry according to the

ICB classification. Datastream provides this information under the labels “FTAG3” for

supersectors, “FTAG4” for sectors and “FTAG5” for subsectors.

For the downloaded stocks we have obtained the timeseries of (total return) prices and

the market capitalization, taking care of converting the values in USD when they were

expressed in other currencies (this was the case for most of the delisted stocks). Prices
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equal to zero have been removed from the timeseries to avoid problems when calculating

stock returns. When a company is delisted, the security is inserted into the index of dead

companies for the country. After delisting, RD repeats the last price recorded for all the

subsequent days. To avoid the generation of a sequence of zero returns (from the day of

delisting until the day of the download), we removed all the observations reported after

the delisting with an algorithm, given that this information was not directly available in

RD. Rows associated with more missing values than the 95th percentile (calculated for

each country separately) are removed from the dataset.

We denote with Sj
t the price (in USD) of the jth stock in the dataset at time t ∈ [0,∞).

Daily returns have been calculated according to:

Rj
t =

Sj
t − Sj

t−1

Sj
t

(3.2.1)

We found necessary to winsorize daily returns respectively smaller than the 1st percentile

or larger than the 99th percentile (calculated on the vector of returns recorded at each

time t). With this procedure we removed data points associated with an unreasonable

extreme behavior, most likely due to reporting mistakes.

3.3 Descriptive statistics and preliminary results

Focusing on a discrete time setting, we introduce by 0 = t0 < t1 < · · · < ti < ti+1 < · · ·

the rebalancing times for the portfolio Sδ. We also denote with Sj
ti the cum-dividend price

of the jth stock denominated in US dollars. At time ti the value of the portfolio Sδ
ti
can

be calculated recursively as

Sδ
ti
= Sδ

ti−1

1 +

Nti−1∑
j=1

πj
ti−1

Sj
ti − Sj

ti−1

Sj
ti−1

 (3.3.1)

for i ∈ {1, 2, . . . } and being Sδ
t0
= 1.

We use Equation (3.3.1) to calculate the value over time of the HWI and EWI by

plugging-in the respective weights as specified in Equations (3.1.2) and (3.1.3). From

now on we refer to the three different specifications of the HWI as HWI.r.c.s (region-

country-sector), HWI.r.c (region-country) and HWI.r (region) according to the hierarchies

considered.
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For the MSCI-World, we adjusted the timeseries downloaded by forcing its value at

inception SMSCI
t0

= 1. We also cut out all the daily observations for which we do not have

a corresponding value for the other portfolios, since those are in general rebalanced with

non-fixed frequency due to the rebalancing rule already presented.

In Figure 4 we display the evolution over time of the five investment strategies under

analysis. All the trajectories follow a similar pattern but the HWI.r.c.s appears to have

outperformed the others from the beginning, increasing its value up to 149 units over the

whole history of 48 years. It follows the HWI.r.c, with a total increase with respect to

the starting value of 109 units. HWI.r and EWI evolve in a very similar way, overlapping

frequently until the year 2009, when the HWI.r started to record a more consistent increase

that led to a stable, even if small, gap between the two strategies. The MSCI-World index

is clearly the strategy which records the worst performance, achieving a value of 22 units in

the same time horizon. These preliminary results already give an idea of the robustness

of the approach chosen, showing that naive-diversified investments tend to outperform

substantially the MSCI-World in the long-term.

Figure 4: Trajectories of GOP candidates

Source: Refinitiv Datastream and author’s calculations.

Using again Sδ
ti
for the value at time ti of a strictly positive portfolio corresponding

to the strategy δ, which is associated to the weights process πδ
ti
, we write the respective

growth rate (GR) at time ti > 0 in the form:

Gδ
ti
=

1

ti
log

(
Sδ
ti

Sδ
t0

)
(3.3.2)
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Figure 5: Long-term growth rates of GOP candidates

Source: Refinitiv Datastream and author’s calculations.
Notes: Results at the beginning of the period are partially hidden to improve chart’s
readability.

Figure 5 shows the long term annualized growth rate for the five GOP proxy candidates,

calculated as in Equation (3.3.2). Despite the first period, in which growth rates have

been very volatile, due to the observation window still being short, they start to stabilize

around 1985. From 1990 onward it is possible to appreciate how the strategies performed,

recording similar fluctuations in the GRs and constant deviations relative to each other.

We observe that the HWI.r.c.s outperforms the HWI.r.c, which in-turn outperforms the

HWI.r, with the EWI coming last. This ranking already indicate that the addition of extra

hierarchical levels delivers an improvement in the GR of the portfolio. Consequently, we

can confirm that the information intrinsically embedded in the geographical and industrial

classification of the companies is representative of the macroeconomic uncertainties that

companies face. By looking at the results, and recalling that the GOP is the portfolio

that maximizes the long term GR of investor’s wealth, we can already understand that

the HWI.r.c.s is the best GOP proxy among those that are analyzed.

In the next chapter all the GOP proxy candidates presented are evaluated by mean

of different performance measures. Moreover, the local martingale property is tested by

showing that expected instantaneous returns are never strictly greater than zero when

benchmarked by the GOP.
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4 Empirical results and GOP proxies validation

This chapter provides empirical evidence that the portfolio specifications previously pro-

posed and described are suitable candidates to approximate the Growth Optimal Portfolio.

In the first section of this chapter we compare and rank the GOP proxy candidates by

mean of the most common metrics of performance in the field of equity fund management,

with the objective of identifying the optimal one. The measures reported are similar to

those proposed by Platen and Rendek (2020), to make the results of the two researches

comparable.

In the second section the local martingale property is tested for all the given strategies,

using robust statistical tests to assess whether the stochastic processes associated to the

benchmarked primary security accounts behave as supermartingales. Results are consis-

tent with the assertion that a hierarchical weighting methodology based on the industrial

and geographical classification of the companies is an effective solution to implement di-

versified strategies and efficiently disentangle systemic and systematic risks. We obtain

evidence that the HWIs are in general outperforming both the EWI and MSCI-World.

Furthermore, when additional hierarchies (i.e., layers of diversification) are considered,

the long term performance of the portfolio improves significantly, and the defining math-

ematical features of the GOP can be demonstrated with stronger confidence.

4.1 Performance measures

To validate the theoretical framework derived in the previous chapters, and to evaluate

comparatively the performance of GOP proxy candidates, we report in this section the

most common metrics and benchmarks employed to back-test trading strategies.

As already discussed, the numeraire portfolio should theoretically represent the optimal

strategy among all the different allocations that one could potentially construct with a

specific universe of assets, say Φ. Important to note is that it exists an entire subset ϕ ∈ Φ

of strategies that are suitable to approximate the GOP. However, the preferred candidate
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must be capable of outperforming all the other portfolios ∈ Φ.

Due to the rebalancing rule chosen to construct the portfolios, the data points of the

resulting timeseries are not equally distant from each other, depending on how many

stocks have been delisted during a given quarter. To ensure readability of the results, and

comparability with the main findings of the literature, some of the statistics that will be

presented are calculated on annual basis, by taking into account only the value that each

index reaches on the last trading day of the year.

We found evidence that the Morgan Stanley Capital International Developed Mar-

kets Total Return Index (MSCI-World) – that stands as our benchmark for the market-

capitalization weighted indexes – substantially and systematically underperforms naive-

diversified strategies. This is the case when looking at long time horizons but also when

considering shorter time intervals. The MSCI-World draws stocks from the same sample

of 23 developed countries employed to construct the other portfolios, but allocates wealth

approximately among 1700 securities, being less effective in capturing different sources

of uncertainty. This result reveals that naive-diversified strategies, are at the same time

less complex to construct, less risky, and more profitable than other strategies which are

traditionally standard benchmarks in the industry.

First column of Table 4 reports the annualized percentage growth rate of portfolios’

returns, computed as in Equation (2.2.2), over the longest observation window that is

available (i.e., the growth rate achieved in 48 years, from 1973 to 2021). Evidence is that

naive diversified portfolios outperformed historically the MSCI-World, from a minimum

of 207 basis points for the EWI, to a maximum of 393 basis points for the HWI.r.c.s.

From the same table it is possible to appreciate how the introduction of additional

hierarchies has been effective in pushing the HWIs closer to the GOP, in support of the

idea that making use of the ICB industry classification has been effective to capture the

exposure of stocks to similar sources of uncertainty. This effect is visible when looking at

the growth rate, the average return and the Sharpe ratio, which are gradually deteriorating

toward the values of the EWI when eliminating the sector and the country grouping

sequentially.

It should also be noted that introducing additional hierarchies comes at the cost of

a slightly higher volatility. This effect is reasonably expected, since introducing more

granular groupings means weighting fewer securities in each family positioned in the first

layer of the portfolio. Furthermore, the increase in the standard deviation is more than

compensated by a higher average return, making our choices justified. HWI.r.c.s shows
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the highest Sharpe-ratio, 25% larger than the one achieved by the MSCI-World. This

means that we have been able to increase substantially the performance for each unit of

uncertainty just by refining the diversification strategy.

As an additional robustness check we compare our results with the findings of Platen

and Rendek (2020)20, who conducted a similar exercise but using 2014 as cutoff year for

the data. The two analysis are similar, but the investment strategies to proxy the GOP

are constructed with a slightly different methodology. In particular, the authors put a

cap on the maximum number of securities that can be included for a country at a specific

point in time. When more than 1000 companies were active, they only kept the ones

with the highest market value. In the case of our research, we decided to include all the

securities downloaded without any restriction.

As a logical result of including data recorded during the Covid-19 pandemic, that hit

around March 2020 with an almost immediate shock on the financial markets, the average

returns and growth rates of the portfolios we considered are about 220 basis point lower

than what has been calculated by Platen and Rendek (2020) for the same strategies.

In terms of volatility, the MSCI-World shows a substantially lower standard deviation

when compared to the EWI and HWI. The contrary was shown by Platen and Rendek

(2020), where the MSCI-World proved to be the most volatile strategy. To investigate

this difference we tried to calculate our performance measures cutting off our data to

the end of 2014. We observed that volatilities of HWI, EWI and MSCI-World converge

to similar values. Thus, we can reasonably attribute the differences observed to the

time horizon considered. Finally when looking at the Sharpe-ratios, the ranking of the

strategies under the two analysis is the same. Although performance measures slightly

diverge, the main result is consistent across our work and the one of Platen and Rendek

(2020), with HWI.r.c.s being the best performing strategy and the MSCI-World the worst.

To complement with additional considerations the results shown in Table 4, in Figure

6 average annualized daily returns are displayed against average annualized volatilities.

Theory suggests that the GOP is also an efficient portfolio in the sense of Markowitz

(1959), thus we expect our preferred candidate to exhibit the best mean-variance combi-

nation, and the highest Sharpe-ratio, when compared to the other candidates (see Section

2.3.1). In addition, the efficient investment frontier is characterized by portfolios that

share the same Sharpe-ratio. The strategy HWI.r.c.s is positioned on the highest bound-

ary, and is associated to the optimal returns-volatility structure.

20. “Approximating the Growth Optimal Portfolio and stock price bubbles”, see Table 3 on Page 13.
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Table 4: Growth rate, average return, volatility and Sharpe-ratio of GOP
candidates

Index Growth rate Average return Volatility Sharpe ratio

HWI.r.c.s 10.36 13.06 22.44 0.582
HWI.r.c 9.70 12.47 23.20 0.537
HWI.r 8.86 11.25 21.43 0.525
EWI 8.50 10.72 20.62 0.520
MSCI-World 6.43 8.01 17.05 0.469

Source: Refinitiv Datastream and author’s calculations.

Notes: Sharpe ratio has been calculated assuming a risk-free interest rate of 0.00%.

Figure 6: Average return vs. average volatility of GOP candidates

Source: Refinitiv Datastream and author’s calculations.
Notes: Observations are labelled with their corresponding Sharpe-ratio.

We emphasize that the long term growth rate is a key measure in the context of the

benchmark approach, as per the definition of the GOP already provided. Table 5 reports

the difference on average annualized percentage GR for all the GOP candidate strategies

compared to the HWI.r.c.s (i.e., the best performing strategy according to the metrics

already analyzed) and the relative 95% confidence intervals for the estimates. The differ-

ence in the growth rates is calculated and reported over five different (rolling) observation

windows, to highlight that when considering longer time periods the divergence in the

growth rates increases gradually (this is consistent with the GOP being defined as opti-

mal portfolio allocation that maximizes the GR of the investor’s wealth in the long-run).
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Confidence intervals are calculated as:

[
µw ± 1.96 · σw√

nw

]
(4.1.1)

where µw and σw are respectively the average and the standard deviation of the growth

rates recorded on all the rolling observation windows of length w ∈ {1, 2, 3, 5, 10}, and nw

is the corresponding number of observations.

The deviation in the annualized GRs of all the given strategies when compared to the

GR of the HWI.r.c.s are persistently positive and significantly different from 0, providing

further evidence that the latter performs better and is asymptotically closer to the GOP.

The largest divergence in the GR is achieved when adding the country grouping to the

portfolio, with a 123 basis points increase between the HWI.r and the HWI.r.c over the

10 years observation window.

Over the 10 years window, switching from a market capitalization-weighted index

(MSCI-World) to an equally-weighted index (EWI) allows to achieve an increase in the

GR of 197 basis points, at further support of naive-diversification better performing in

the long-run. Confidence intervals provided in Table 5 become wider for shorter time

windows. Indeed, if the GR is computed over a longer time period, estimates are less

affected by short-term price fluctuations. This implies that the standard deviation that

goes into Equation (4.1.1) is smaller, driving the corresponding CI to narrow down.

Differences in the growth rates are again in line with the findings of Platen and Rendek

(2020). For some of the strategies we calculated smaller differences, again as a result of

the fact that we capture an additional shock in the financial markets by including data

for the year 2020. Furthermore, we observe that confidence intervals are wider for our

analysis. This is probably due to different ways of annualizing growth rates. In our case,

growth rates are calculated based on the last value of each year, which ultimately lead to

a large reduction of the sample. Taking as reference Equation (4.1.1), and provided that

portfolios’ volatilities are comparable, the only explanation can be a different number of

observations. Even if the two studies diverge in some aspects, the main result is preserved.

The hierarchically weighting allocation strategy is not only the best performing one, but

seems also to be the most resilient to huge shocks in the financial markets.
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Table 5: Difference on average annualized percentage growth rate over different
observation windows (95% confidence intervals in parenthesis) for HWI.r.c.,
HWI.r, EWI and MSCI-World compared to HWI.r.c.s

Years HWI.r.c HWI.r EWI MSCI-World

1 0.65 (0.12,1.18) 1.47 (0.14,3.10) 1.84 (0.35,3.32) 3.88 (1.09,6.68)
2 0.65 (0.21,1.09) 1.45 (0.24,2.66) 1.82 (0.74,2.89) 3.91 (1.62,6.20)
3 0.67 (0.30,1.05) 1.51 (0.54,2.47) 1.85 (0.95,2.74) 4.04 (2.04,6.05)
5 0.71 (0.42,0.99) 1.60 (0.80,2.41) 1.97 (1.20,2.73) 4.21 (2.50,5.92)
10 0.72 (0.54,0.89) 1.95 (1.25,2.64) 2.31 (1.70,2.92) 4.28 (3.19,5.37)

Source: Refinitiv Datastream and author’s calculations.

Table 6 reports observed frequencies for the event of outperforming the MSCI-World

over daily, quarterly and yearly observation windows. The largest frequencies are observed

for the HWI.r.c.s that outperformed the benchmark 61% of the times when looking at

yearly returns. In addition, all the strategies tend to outperform the MSCI-World more

frequently when returns are referred to longer periods. This outcome validates the sys-

tematic outperformance property of the GOP, see Section 2.2.3.

Our findings are again aligned with Platen and Rendek (2020). The ranking of the

strategies is stable, and, as already mentioned, some minor differences can be attributed

to the data and to the methodological approach.

Table 6: Relative frequency of outperforming the MSCI-
World Index for different period lengths for HWI.r.c.s,
HWI.r.c, HWI.r and EWI

Period length HWI.r.c.s HWI.r.c HWI.r EWI

Daily 0.5195 0.5140 0.5107 0.5073
Quarterly 0.5927 0.5618 0.5000 0.5257
Yearly 0.6122 0.5918 0.5918 0.5306

Source: Refinitiv Datastream and author’s calculations.

Table 7 reports the average relative drawdown, the maximum drawdown, the Calmar

ratio and the average recovery time for all the GOP strategies under analysis. In the first

column it is again possible to appreciate how the performance of the portfolio improves

when increasing the layers of diversification. The average drawdown for the HWI.r.c.s,

assessed at 10.76% is almost 400 basis points lower than the average drawdown recorded

for the MSCI-World index.
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When looking at the maximum drawdown, results could appear counterintuitive at

first sight. It seems that HWI.r and EWI portfolios are the best performing ones, while

for the remaining the differences are negligible and all the maximum drawdowns recorded

are close to 58%. However, when observing the Calmar ratio, that corresponds to the

ratio between the average return recorded over the entire time horizon and the maximum

drawdown, the ranking of the strategies that have been achieved and discussed before is

re-established. This result confirms again how the GOP is effective in maximizing the

long-run growth of the wealth, even if other strategies can perform better when considering

shorter time intervals (e.g., those periods around a financial crisis). Moreover, a worse

performance in terms of maximum drawdown, which is recorded in a very specific point

in time, is more than compensated by the long-term returns achieved with that strategy.

This effect is clearly visible in Figure 7 that shows the drawdown sequences for all the

strategies from the base date to the end of 2021. The peak in the portfolio losses are

concentrated around the three major crisis in the last 20 years (i.e., the Internet bubble

of 2002, the Financial crisis of 2008 and the Covid-19 pandemic of 2020).

The last column of Table 7 shows that the average recovery time of each portfolio is

increasing when decreasing the layers of diversification, going from 74 days for the most

diversified portfolio (HWI.r.c.s), up to 112 days for the less diversified one (EWI). The

recovery time for the MSCI-World is much smaller because the volatility of this strategy is

about 1.4 times higher than the volatility of the others, which causes returns to fluctuate

more in both directions and ultimately to recover completely in less time.

Table 7: Average relative drawdown, Calmar ratio and average recovery time (in days)
for HWI.r.c.s, HWI.r.c, HWI.r, EWI and MSCI-World

Index Avg. Drawdown Max. Drawdown Calmar Ratio Avg. Recovery

HWI.r.c.s 10.76 58.80 0.0019 74
HWI.r.c. 11.67 58.11 0.0018 87
HWI.r 11.82 56.49 0.0017 96
EWI 12.18 56.70 0.0016 112
MSCI-World 14.47 58.54 0.0013 76

Source: Refinitiv Datastream and author’s calculations.
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Figure 7: Drawdown Sequence for the GOP candidates

Source: Refinitiv Datastream and author’s calculations.

From the perspective of an equity fund manager it is important to take into account

transaction costs associated to the construction and maintenance of the portfolio. These

fees could substantially reduce the returns that the investment delivers. Many articles and

publications, including Platen and Heath (2006), Platen and Rendek (2012a), Platen and

Rendek (2020), already provided evidence that transaction costs calibrated according to

common practices in the financial markets do not significantly impact the performances

of HWI strategies, nor causes the EWI and MSCI-World to overcome their performance.

Given the robustness of the results achieved in the literature, we do not account for

transaction costs in our analysis.

4.2 Local martingale property

In this section we provide empirical evidence that the local martingale property cannot

be easily rejected when the HWI is used as benchmark. This is a defining property of

the GOP, that, when used as a benchmark, causes instantaneous returns of benchmarked

portfolios to be zero (Platen and Rendek 2020). Moreover, as shown by Protter (2004),

any non-negative local martingale process is a also a supermartingale21. This result is

mentioned in the literature as the supermartingale property of non-negative benchmarked

securities, and justifies the fact that benchmarked returns can be negative over strictly

positive time periods. By showing that the mean of returns for stocks benchmarked by

that portfolio is lower or equal to zero, but never positive, one can assess if a portfolio is

a good proxy of the GOP.

21. The supermartingale property of non-negative local martingales is also discussed in the Appendix
A.2, while in Appendix B.1 an analytical proof is provided.
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To test these properties we use a one-tailed Z-test (Mode 1966) to reject the hypoth-

esis that the mean returns for stocks benchmarked by each candidate proxy of the GOP

are strictly positive. The test is performed over a sample of more than fifty million

benchmarked returns, obtained by combining all the data points associated to the 45,646

securities that took part to the analysis. We rely on a standard statistical test – which

requires observations to be independent and identically distributed – under the assump-

tion that benchmarked returns are reasonably independent when observed on different

days. Furthermore, discounting returns for the GOP allows to eliminate systemic risk

stemming from the broad macroeconomic environment and conditions (Platen and Ren-

dek 2020). Benchmarked returns of different stocks are driven only by their idiosyncratic

uncertainties, and can be treated as independent when observed in the same day22.

The system of hypothesis that will be tested is:

H0 : µ ≤ 0 vs. H1 : µ > 0

where µ denotes the ”true” expected average return of all benchmarked stocks when all

the periods are considered.

In a discrete time setting, we denote 0 = t0 < t1 < · · · < ti < ti+1 < · · · the rebalancing

times for the portfolio. We also define the jth benchmarked primary security account as:

Ŝj
ti =

Sj
ti

Sδ∗
ti

(4.2.1)

where Sδ∗
ti is the value of the benchmark portfolio at a specific rebalancing date ti.

We will refer to the returns R̂j
ti associated to Ŝj

ti as benchmarked returns, where the

benchmarks will be all the GOP proxy candidates under analysis:

R̂j
ti =

Ŝj
ti − Ŝj

ti−1

Ŝj
ti−1

(4.2.2)

As mentioned before, the intervals between rebalancing dates for our portfolios are not

necessarily constant. In Section 4.1 returns have been annualized by taking into account

22. Empirically testing the local martingale property is a complex task, due to the fact that the property
is expressed mathematically through an expected value, while we can only observe a single realization
of the stochastic processes involved. However, the test proposed are robust and the assumptions made
plausible. Platen and Rendek (2020) verify the local martingale property by mean of a bootstrap test,
in order to relax the assumption of independent and identically distributed returns. Their results are
consistent with those obtained with our methodology.
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only the values registered in the last trading day of the year. However, in the context

of testing the local martingale property, we found important to preserve a large number

of observations, in order not to break the minimum assumption of IID returns already

presented. As a solution, we decided to annualize benchmarked returns (assuming that

they are not compounded over time, to ensure more stable outputs of the transformation)

according to: (
R̂j

ti

) 365
ti−ti−1 (4.2.3)

where ti − ti−1 is the distance in days between rebalancing dates.

Table 8 summarizes some statistics calculated on benchmarked returns to assess the

validity of the local martingale property. It reports the sample mean, the standard error,

the 99% confidence interval for the “true” expected daily return of benchmarked stocks,

the score of the Z-Test and the corresponding P-Value.

The HWI, in the three specifications proposed, appears to be the best strategy to

proxy the GOP, leading the daily annualized returns of the benchmarked stocks to be

strictly negative. In support of what has been presented in the previous section, it is

possible to note that the level of diversification achieved through an EWI is not adequate

to verify with sufficient robustness the local martingale property. This output underlines

the importance of systematically extracting non-diversifiable risk and reinforces the choice

of the ICB classification as the tool to achieve this objective

When used as a benchmark the HWI.r.c.s is the diversification strategy that appears

to be the most suitable to approximate the Growth Optimal Portfolio, leading daily an-

nualized benchmarked stock returns to be -3.04% on average. Decreasing the granularity

and the hierarchies of diversification in the HWIs pushes the portfolios toward the results

obtained for the EWI. When discounted by the HWI.r.c, stock returns are on average

-2.76%. When the benchmarks are the HWI.r and EWI the 99% confidence intervals

include some positive values, meaning that statistical significance is decreasing, even if

P-values are high enough not to reject the null hypothesis.

Finally, discounting with the MSCI-World Index does not allow to achieve the local

martingale property, making this strategy not suitable to approximate the GOP and

reinforcing the idea that traditional market-capitalization portfolio allocation can under-

perform substantially naive diversification strategies, if the time horizon is sufficiently

long.
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Table 8: One-sided Z-test for the mean of daily annualized percentage returns of bench-
marked stocks

Benchmark Sample Mean Std Error Z-Score 99% L-CI 99% U-CI P-Value

HWI.r.c.s -3.04297 0.13186 -23.08 -3.38318 -2.70276 1.00
HWI.r.c -2.76498 0.13188 -20.97 -3.10523 -2.42473 1.00
HWI.r -0.05016 0.13176 -0.38 -0.39009 0.28978 0.65
EWI 0.00000 0.13164 0.00 -0.33962 0.33962 0.49
MSCI-World 2.92669 0.13344 21.93 2.58242 3.27096 0.00

Source: Refinitiv Datastream and author’s calculations.

We demonstrated that using the GOP as a discounting factor leads the returns of the

underlying primary securities to be negative. Furthermore, from the theoretical frame-

work presented, we know that the GOP is the only allocation that forces all the other

non-negative portfolios constructed with the same universe of assets to behave as super-

martingales, when benchmarked. As a robustness check, we want to assess if the local

martingale property holds when benchmarking other GOP proxies. Following the same

logic and framework applied previously for the primary security accounts, and the same

set of hypothesis already presented, we perform a one-sided Z-test on the average annu-

alized returns of all the GOP candidates when benchmarked by the HWI.r.c.s (i.e., the

best performing portfolio according to performance metrics evaluated).

Table 9 displays the results of the Z-test. In the last column, P-values close to 1

indicate that the average annualized returns of all the GOP proxies are negative with

a high probability when discounted by the HWI.r.c.s. This result is consistent with the

idea that capturing in a more precise and systematic way non-diversifiable risk allows to

obtain a GOP proxy with the correct characteristics. HWI.r.c.s is the specification which

makes all the other portfolios to behave as strict-supermartingales. This result implicitly

implies that HWI.r.c.s is the only strategy that can be considered as proxy of the GOP,

given that it overcomes all the others.

Table 9: One-sided Z-test for the mean of daily annualized percentage returns of all the
portfolio candidates benchmarked by the HWI.r.c.s

Benchmark Sample Mean Std Error Z-Score 99% L-CI 99% U-CI P-Value

HWI.r.c -0.31743 0.33806 -0.94 -1.18962 0.55476 0.83
HWI.r -2.45772 0.83353 -2.95 -4.60822 -0.30722 0.99
EWI -2.65707 0.81945 -3.24 -4.77124 -0.54290 0.99
MSCI-World -3.57860 2.39491 -1.49 -9.75746 2.60026 0.93

Source: Refinitiv Datastream and author’s calculations.
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From Table 9 we can also note how the Standard Error recorded for benchmarked

MSCI-World returns is almost 3 times larger than the one compute for the other portfo-

lios. This results in a wide confidence interval. The effect is driven by the significantly

larger volatility of the benchmarked MSCI-World. While the other indices are constructed

using the same universe of assets, the MSCI-World relies on a different set of securities

which is much smaller in size. By design, the evolution of the portfolio values is not

necessarily (or at least is less) synchronized with the evolution of the benchmark. This

results in a (annualized) standard deviation of 165% compared to the 56% of the rest of

the benchmarked returns.

In addition, compared to what has been shown in Table 8, the number of benchmarked

returns on which we performed the Z-test is significantly lower, as it corresponds only

to the returns calculated on the data points associated to a specific index (4670 when

considering all the rebalancing performed, vs 50 Mln.). The wider confidence interval

results in a slightly lower P-Value, which is anyways large enough to verify the local

martingale property.
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5 Conclusions

In the present research we illustrated the Benchmark Approach (BA) to quantitative

finance, a framework for financial modeling that proved to be suitable when classical

theories, based on strong notions of absence of arbitrage, turn out to impose unnecessary

restrictions. In particular, it has been showed that market anomalies may arise when

financial markets face periods of dramatic and unusual turbulence. As a consequence,

some assumptions that hold in normal times could not be verified anymore, highlighting

the need for more flexible mathematical frameworks to solve portfolio optimization and

asset pricing problems.

In the first chapter we introduced the concept of Growth Optimal Portfolio (GOP), an

investment strategy obtained by maximizing the growth rate of the wealth process, and

an interesting object of study thanks to its peculiar properties, see Section 2.2.3. It has

been shown that the GOP achieves the highest long-term growth rate when compared

to any other non-negative portfolio, and its existence implies the impossibility of rela-

tive arbitrages (or, systematic outperformance). Furthermore, it maximises the expected

logarithmic utility function, and can be connected to mean-variance investment theory

through the two-fund separation theorem (see Section 2.3).

In the context of the BA, the GOP plays the role of Numeraire. Long (1990) provided

a first definition of Numeraire as a non-negative self-financing portfolio, that, when used

as a benchmark (i.e., discounting factor), makes any other non-negative portfolio process

either trendless or mean-decreasing. This property is equivalent to the absence of arbitrage

of first kind as defined by Fontana and Runggaldier (2013), and makes the GOP and the

BA suitable for several applications which have been analyzed in Section 2.3.

In Section 2.4 we showed that Diversified Portfolios (DPs) converge to the GOP for

an increasing number of securities. This is a major result derived from the Diversification

Theorem first proposed by Platen and Heath (2006). The convergence property of DPs

allows to create good proxies of the Numeraire, without any need of modelling complex

and unknown quantities, which is usually the main limitation of other approaches, see
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DeMiguel, Garlappi, and Uppal (2009). This result provides the basis for the second part

of this research, in which we focused on the approximation of the GOP, using real market

data.

Our dataset includes stocks prices collected at daily frequency for more than 45 thou-

sands companies, listed in 23 developed countries. In total, our observations are collected

over a period of 48 years, from 1973 to 2021 (i.e., the longest timeseries that was available

in Refinitiv Datastream for the constituents of country indexes that we selected). For the

data collection we refined the methodology of Platen and Rendek (2020), by perform-

ing additional data quality checks. Working with an extremely large number of assets is

crucial to create diversified portfolios that converge asymptotically to the GOP.

Platen and Rendek (2012a) and Platen and Rendek (2020) already run similar exercises

to the one we are proposing, with promising results achieved. However, their datasets

do not include the recent past, and most importantly, do not include the outbreak of

the Covid-19, that triggered a huge (and unusual) market reaction that could potentially

affect the robustness of their results.

To this effect, we analyzed different proxies of the GOP, with the final objective of

evaluating their performance and suitability to take the role of Numeraire. In particular

we evaluated three different specifications of a Hierarchically Weighted Index (HWI),

a more structured methodology for constructing equally-weighted portfolios, that relies

on the information embedded in the economic structure of the market to optimize the

performance of the portfolio. We also constructed an Equally Weighted Index (EWI) and

downloaded data for the MSCI-World Index. It can be proved that these two investment

strategies present the characteristics of Diversified Portfolios, and thus, both could be

meaningful proxies of the GOP. Furthermore, they are commonly used as benchmarks in

the field of equity fund management.

We confirmed the findings of Platen and Rendek (2012a) and Platen and Rendek

(2020), who showed that a hierarchical diversification is the most efficient methodology

to systematically extract from the investment the portion of idiosyncratic risk that is

not remunerated by the markets. We evaluated the performance of each GOP proxy

candidate by mean of traditional performance metrics, and performed a statistical test of

the local martingale property over a large set of benchmarked risky assets. We concluded

that the HWI, in its specification that includes 4 layers of diversification (also mentioned

as HWI.r.c.s in the main text), is the best proxy of the GOP. It recorded an average

annualized return of 13.06%, compared to 10.72% and 8.01% achieved by the EWI and the
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MSCI-World. Furthermore, the HWI outperformed the EWI and MSCI-World, recording

a gap in the long-term annualized growth rate of 231 and 428 basis points respectively.

On a yearly basis, the returns of the HWI were higher than those of the MSCI-World 61%

of the times. Finally, the HWI proved an outstanding ability to recover from periods of

downturn, achieving the lowest average drawdown and recovery time.

Besides these specific results, two main general conclusions can be drawn from the

analysis presented, which in our view, represent a valuable contribution to the existing

literature on the Benchmark Approach.

(i) Diversified Portfolios, and in particular the HWI, proved to be suitable to approx-

imate the GOP. According to what we have presented in Section 2.2.3, the GOP,

in the quality of Numeraire, is considered the best performing portfolio under three

main dimensions. The HWI, as good proxy of the GOP, achieved the best perfor-

mance in terms of expected returns, long-term growth rate and proved to systemat-

ically outperform all other strategies. In addition, the HWI proved to be extremely

resilient to acute financial shocks, recording the smallest deterioration of the per-

formance. This result can be seen as a further validation of the results achieved

by Platen and Rendek (2020), which have never been validated with an updated

dataset.

(ii) When the HWI is used as benchmark, the local martingale property of bench-

marked returns cannot be easily rejected. The local martingale property implies

that benchmarked return processes are either mean decreasing or trendless. We

tested this property by obtaining statistical evidence that benchmarked returns of

primary risky assets and of other portfolios are on average negative. This is a rel-

evant empirical result in support of our theoretical framework, which stands as an

additional proof that the HWI approximates well the GOP. This is again in line

with what has been reported in Platen and Rendek (2020).

To conclude, we collected some potential ideas that could be considered for future

development of this project. Firstly, although several authors applied the benchmark

approach for the valuation of contingent claims, all their works remain focused on theo-

retical modeling. To our knowledge, there is no evidence of a study that involves both the

empirical approximation of the GOP and its application in the context of asset pricing.

An interesting exercise could be a comparison between the valuations produced under the
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BA and more traditional methodologies, using real data. Secondly, we studied that the

benchmark approach can be applied in the context of portfolio optimization. Similarly to

what we did using the EWI and MSCI-World, it could be interesting to compare classical

mean-variance, or more generally, model-based allocation strategies, against the HWI.

Finally, in the context of this research, we dedicated a significant effort in setting up a

data infrastructure to construct a good proxy of the GOP, and evaluate it. The procedure

we put in place could be automatized and transformed into a data processing pipeline to

ingest and clean daily market data. This would allow to compute frequently the value

of the GOP, and obtain a market index that could be published and easily employed for

several applications.
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A Notions of probability and stochastic processes

The stochastic nature of the financial phenomena require the use of flexible mathemati-

cal structures and tools that provide the potential for modeling abstract objects. More

precisely, asset prices and other financial quantities evolve randomly over time, thus, the

best representation of their dynamics is a probabilistic one. For the purposes of this re-

search, we found relevant to report some results of general probability theory and present

some useful notation to support the theoretical discussion and the empirical analysis.

Given their central role in the quantitative finance field, we collected some notions about

stochastic processes, with a focus on those that are more meaningful for the benchmark

approach framework. In addition, some effort has been put on re-organizing some tradi-

tional concepts that have already been discussed in the literature, to showcase some key

properties of stochastic processes that are frequently applied in the main text.

A.1 Probability space and filtrations

The triplet (Ω,A, P ) describes the essential probabilistic information that characterizes

a random experiment, and is called a probability space when its elements (i.e., the sam-

ple space Ω, the collection of events A and the probability measure P ) satisfy specific

relationships that allow to form a consistent set of rules for modeling probabilities. More

precisely, if A and B are exclusive events (i.e., A ∩ B = ∅) taken from A, the following

set of relationships holds:

0 ≤ P (A) ≤ 1 (A.1.1)

P (AC) = 1− P (A) (A.1.2)

P (∅) = 0, P (Ω) = 1 (A.1.3)

P (A ∪ B) = P (A) + P (B) (A.1.4)

where P (·) is the probability of occurrence of an event.
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If we consider infinite collections of events, A is defined as a sigma-algebra, which

means that

Ω ∈ A (A.1.5)

if A ∈ A then AC ∈ A (A.1.6)

if A ∈ A and B ∈ A then A ∪ B ∈ A (A.1.7)

if Ai ∈ A for any i ∈ N = {1, 2, . . . } then (∪∞
i=1Ai) ∈ A (A.1.8)

If for any i ̸= j it holds that Ai∩Aj = ∅, that is, the events are pairwise disjoint, Equation

A.1.4 can be replaced with:

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) (A.1.9)

Market participants are in general interested in producing their best estimate of the

future evolution of financial quantities. In this context, different kind of information are

relevant and crucial to determine the accuracy of those estimates. We denote by At the

information set available to the market participants at time t ∈ [0,∞). More precisely,

At is the sigma-algebra

At = σ{Xs : s ∈ [0, t]} (A.1.10)

generated from the observation of the evolution of the vector process X up to time t,

where the latter can describe quantities or represent information which is sensitive to

the financial markets (e.g., security prices, interest rates, balance sheet of companies,

macroeconomic variables, indicators of the occurrence of political events, etc.).

In this setting, it is reasonable to assume that market participants are able to collect

and retain information from the past. Thus, if all the information sets At are sub-sigma-

algebras of A∞, for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ ∞ it holds the relation At1 ⊆ At2 ⊆ · · · ⊆

A∞ = ∪t∈[0,∞)At. We define the increasing right-continuous family of all information sets

A = {At, t ∈ [0,∞)} (A.1.11)

a filtration.

Every right-continuous stochastic process X = {Xt, t ∈ [0,∞)} generates a filtration

AX = {AX
t , t ∈ [0,∞) that can be interpreted as the complete record of all movements of

the process X up to a specific point in time t. We define a process Z = {Zt, t ∈ [0,∞)}
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to be AX
t -measurable when the history of the process until time t is covered by the

information set AX
t , where X is the vector process that describes the total evolution of

the model and the AX
t the corresponding increasing families of information sets.

Given that the propagation of the information is the main driver of the market dynam-

ics, the concept of filtration and the technical assumptions presented above becomes of ex-

treme importance for modeling financial markets. A filtered probability space (Ω,A,A, P )

equipped with the filtration A satisfies the conditions (A.1.1) – (A.1.3) and (A.1.9) to

define a probability space.

A.2 Stochastic processes

Stochastic processes are the mathematical tool that allows to model the evolution of

random variables over time. This is particularly useful when modeling financial quantities,

given the uncertain nature of their dynamic. In line with the purposes of the present

research, three main classes of continuous time stochastic processes are presented, along

with some related technical concepts which provides the mathematical basis to support a

complete and clear illustration of the benchmark approach.

The evolution of asset prices can be described under a common underlying probability

space (Ω,A, P ) by a collection of random variables Xt0 , Xt1 , . . . , XT indexed over a set of

observation times t0 < t1 < · · · < T . The family X = {Xt, t ∈ T } of random variables

Xt ∈ ℜ is called a stochastic process, where ℜ is a the set on non-negative real numbers

(or a subset of it), and T is the time set. Since asset prices are observable at any instant,

the benchmark approach is developed on a continuous time setting. As a results, T is

defined on the interval [0, T ] where T ∈ [0,∞).

Wiener Process (Brownian Motion)

An important class of stochastic processes for financial modeling, with suitable math-

ematical properties are the so called processes with stationary independent increments,

where the random increments Xtj+1
−Xtj with j ∈ {0, 1, . . . , n− 1} are independent for

any combination of time instants t0 < t1 < · · · < tn. The fundamental class of stochastic

process used to model the motion of stock prices (or, more in general, to model processes

that are characterized by continuous and strongly fluctuating random dynamics) is known

under the name of Wiener process or Brownian motion.
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Definition A.2.1. We define a standard Wiener process W = {Wt, t ∈ [0,∞)} as a

process with Gaussian stationary independent increments and continuous sample paths

for which

W0 = 0, µ(t) = E(Wt) = 0, V ar(Wt −Ws) = t− s (A.2.1)

for all t ∈ [0,∞) and s ∈ [0, t).

Continuous Time Markov Process

Another type of process that is suitable for modeling financial markets is the Markov

process. Markov processes satisfy the so called Markov property that allows to character-

ize the future evolution of a random variable without need to rely on the past history.

More precisely, the predictions that one could make by looking at the full history of the

process are just as precise as the one made by looking solely at the present value. Finan-

cial quantities like stock prices or exchange rates are characterized by continuous random

movements. If the Markov property holds, modelling, statistical inference, or any other

numerical analysis is simplified considerably, since probability distribution of the stock

price at a particular point in time in the future depends only on the current stock price.

Martingale Process

The ultimate objective of investors is to produce the best estimate of the actual value of

future payoffs. To do so, they rely on three main elements: (i) their individual information

set, up to that specific point in time, which under the assumption of efficient markets, is

assumed to be the same for all the investors, (ii) a probability measure for forming some

expectations, and (iii) a benchmark (or numeraire) that provides the units in which the

estimates are formulated (e.g., the rate of return of a savings account or of the market

portfolio).

Of particular importance for the modelling of financial markets is the notion of Mar-

tingale, a specific class of stochastic processes that does not show systemic trends in its

dynamic and whose last recorded value provides the best forecast for its future evolution.

A martingale is defined with respect to a probability measure P that denotes the like-

lihood of an event, and a filtration A that represent the relevant family of information

sets. We follow Platen and Heath (2006) to provide the following definition of martingale

process.
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Definition A.2.2. We define a continuous time stochastic process X = {Xt, t ∈ [0,∞)}

a (A, P )-martingale if for all t ∈ [0,∞) and all s ∈ [0, t] it satisfies the property

Xs = E(Xt|As) <∞ (A.2.2)

and the integrability condition

E(|Xt|) <∞ (A.2.3)

If a price process is a Martingale, the best estimate produced at time s ∈ [0, t] for its

future value at time t ∈ [s,∞) is formed on the basis of all the information available

at the present moment and contained in As. Under the benchmark approach, derivative

prices when expressed in units of the benchmark, are modelled to form martingales to

exploit exactly this property.

Super- and Submartingales

To best represent the dynamic of asset prices, which in general are not completely trend-

less, it is useful to introduce the definition of Super- and Submartingales. These processes

share the same technical features of the Martingales, but on average they decreases (in-

creases) their value over time.

Definition A.2.3. The A-adapted process X = {Xt, t ∈ [0,∞)} is defined as an (A, P )-

supermartingale (-submartingale) if

Xs
(≥)

≤
E(Xt|As) (A.2.4)

and

E(|Xt|) <∞ (A.2.5)

for s ∈ [0,∞) and t ∈ [s,∞).

Supermartingales are of central interest for this research, and for the benchmark approach

to quantitative finance. In fact, when the price of a security is expressed in units of a par-

ticular benchmark (i.e. the Growth Optimal Portfolio) its time evolution can be modelled

as a strict supermartingale, where for a strict supermartingale Equation (A.2.4) holds with

strict inequality.
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Stopping Times

In the real world, it is common that stochastic processes do not appear with the character-

istics of martingales. More frequently, they become martingales when properly stopped.

Before introducing the concept of local martingales, which is particularly relevant in the

framework of the benchmark approach, it is worth presenting the notion of stopping time.

Definition A.2.4. We define a random variable τ : Ω → [0,∞) a stopping time with

respect to the filtration A if the relation

{τ ≤ t} ∈ At (A.2.6)

hold for all t ∈ [0,∞).

The sigma-algebra associated with the stopping time τ is defined as:

Aτ = σ{A ∈ A : A ∩ {τ ≤ t} ∈ At for t ∈ [0,∞)} (A.2.7)

and following the usual interpretation, it represents the information available before and

until the stopping time τ .

Local Martingales

As anticipated, stopping times are useful to define local martingales, stochastic processes

that show the features of martingales only if properly stopped.

Definition A.2.5. The stochastic process X = {Xt, t ∈ [0,∞)} is defined as an (A, P )-

local martingale if it is possible to identify an increasing sequence (τn)n∈N of stopping

times such that limn→∞ τn
a.s.
= ∞ and each stopped process

Xτn = {Xτn
t = Xmin (t,τn), t ∈ [0,∞)} (A.2.8)

is an (A, P )-martingale.

It useful to highlight that an (A, P )-local martingale is not necessarily an (A, P )-martingale,

while an (A, P )-martingale is also an (A, P )-local martingale. In the former case, the

(A, P )-local martingale is defined strict local martingale.
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Local martingale processes are extremely relevant in the context of this research. The

following statement is formulated in Protter (2004). For completeness, a proof based on

Platen and Heath (2006)23 is reported in Appendix B.1.

Lemma A.2.6. A non-negative (negative) (A, P )-local martingale X = {Xt, t ∈ [0,∞)}

with E(Xt|As) <∞ for all 0 ≤ s ≤ t ≤ ∞ is an (A, P )-supermartingale (submartingale).

Connecting the notion of local martingale to the notion of supermartingale is key to

explain the behaviour of stock returns when they are benchmarked by the GOP, and

allows to establish absence of arbitrage opportunities when modeling financial quantities

under the benchmark approach.

23. An alternative proof based on Fatou’s Lemma is provided by Rogers and Williams (2000).
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B Proofs

B.1 Supermartingale property

Lemma (A.2.6). A non-negative (A, P )-local martingale X = {Xt, t ∈ [0,∞)} with

E(Xt|As) <∞ for all 0 ≤ s ≤ t ≤ ∞ is an (A, P )-supermartingale.

Proof. If the process X = {Xt, t ∈ [0,∞)} is an (A, P )-local martingale, then one

can also identify an increasing sequence (τn)n∈N of stopping times, with respect to the

filtration A, such that each stopped process Xτn = {Xτn
t = Xmin t,τn , t ∈ [0,∞)} is an

(A, P )-martingale and we have τn → ∞ almost surely. Consequently, for each n ∈ N and

0 ≤ s ≤ t ≤ ∞ we have:

E(Xt

∣∣As) = E
(
1{τn≥t}Xt

∣∣As

)
+ E

(
1{τn<t}Xt

∣∣As

)
= E

(
1{τn≥t}X

τn
t

∣∣As

)
+ E

(
1{τn<t}Xt

∣∣As

)
≤ E

(
Xτn

t

∣∣As

)
+ E

(
1{τn<t}Xt

∣∣As

)
= Xτn

s + E
(
1{τn<t}Xt

∣∣As

)
(B.1.1)

By definition, 1{τn≥t}Xt approaches Xt from below almost surely as n → ∞, for each

t ∈ [0,∞).

The following monotone convergence theorem provides some relationships that allow

to conclude the proof.

Theorem B.1.1 (Monotone Convergence). Let Y,X,X1, X2, . . . be random variables.

(i) If Xn ≥ Y for all n ∈ N, E(Y ) > −∞ and the sequence (Xn)n∈N is monotone

increasing, where limn→∞Xn
a.s.
= X, then

lim
n→∞

E(Xn) = E(X) (B.1.2)
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(ii) If Xn ≤ Y for all n ∈ N, E(Y ) < ∞ and the sequence (Xn)n∈N is monotone

decreasing, where limn→∞Xn
a.s.
= X, then

lim
n→∞

E(Xn) = E(X) (B.1.3)

By (B.1.2) and (B.1.1) the difference

E
(
Xt

∣∣As

)
− E

(
1{τn<t}Xt

∣∣As

)
= E

(
1{τn≥t}Xt

∣∣As

)
(B.1.4)

approaches almost surely the conditional expectation E(Xt

∣∣As) from below as n → ∞.

As a result, the quantity E
(
1{τn<t}Xt

∣∣As

)
converges to zero as n → ∞. Furthermore,

Theorem B.1.1 implies that limn→∞Xτn
s

a.s.
= Xs. For n → ∞, it holds E(Xt

∣∣As) ≤ Xs.

Following the definition provided in Equation (A.2.4), the process X = {Xt, t ∈ [0,∞)}

is a supermartingale.

B.2 Absence of arbitrage in a CFM

Proposition (2.2.4). A CFM SC
(d) does not allow arbitrage opportunities with any of its

non-negative portfolios.

Proof. To prove the absence of arbitrage in a CFM, we need to introduce the optional

sampling theorem, firstly proposed by Doob (1953):

Theorem B.2.1 (Optional Sampling). If X = {Xt, t ∈ [0,∞)} is a right continuous

(A, P )-supermartingale on (Ω,A,A, P ), then for two bounded stopping times τ and τ
′
,

with τ ≤ τ
′
it holds almost surely that

E(Xτ ′ | Aτ ) ≤ Xτ (B.2.1)

If X is also a an (A, P )-martingale, then Equation (B.2.1) holds with equality.

Given the supermartingale property of benchmarked portfolio Ŝδ, for any non-negative

portfolio Sδ ∈ V with Sδ
0 = 0, and for any unbounded stopping time τ ∈ [0,∞), we have

that:

0 = Ŝδ
0 ≥ E

(
Ŝδ
τ | A0

)
= E

(
Ŝδ
τ

)
≥ 0 (B.2.2)
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Given that by definition Ŝδ is non-negative, and the GOP Sδ∗ used as benchmark in

Equation (2.2.8) is strictly positive, it must hold that

P (Sδ
τ > 0) = P (Ŝδ

τ > 0) = 0 (B.2.3)

that implies that all the trajectories of investor’s portfolio are absorbed at zero, and

ultimately it proves the absence of arbitrage opportunities in a CFM.

B.3 Long term growth rate

Theorem (2.2.5). In a CFM SC
(d) the GOP Sδ∗ record almost surely the greatest long-

term growth rate when compared to the long-term growth rate of all other strictly positive

portfolios Sδ ∈ V+. In mathematical terms, the inequality

ḡδ∗ ≥ ḡδ (B.3.1)

holds almost surely.

Proof. Follow Karatzas et al. (1998) and Platen and Heath (2006), we consider a strictly

positive portfolio Sδ ∈ V+ with

Sδ
0 = Sδ∗

0 (B.3.2)

Doob (1953) shows that if X = {Xt, t ∈ [0,∞)} is a right continuous supermartingale,

for any λ > 0, it holds that

λP

(
sup

t∈[0,∞)

Xt ≥ λ | A0

)
≤ E(X0 | A0) + E

(
max (0,−X0) | A0

)
(B.3.3)

By Definition 2.2.2 the strictly positive benchmarked portfolio Ŝδ is an (A, P )-supermartingale,

which combined to Equation (B.3.3), yields:

exp {εk}P

(
sup

k≤t<∞
Ŝδ
t > exp {εk} | A0

)
≤ E

(
Ŝδ
k | A0

)
≤ Ŝδ

0 = 1 (B.3.4)

for k ∈ N and ε ∈ (0, 1). For fixed ε ∈ (0, 1):

∞∑
k=1

P

(
sup

k≤t<∞
ln
(
Ŝδ
t

)
> εk | A0

)
≤

∞∑
k=1

exp {−εk} <∞ (B.3.5)
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The Borel-Cantelli Lemma24 states that, for a sequence of events A1, A2, . . . in A, if∑∞
k=1 P (Ak) = ∞, then the event that consists of the realization of infinitely many of the

events A1, A2, . . . has probability zero. This implies the existence of a random variable

Kε such that

ln
(
Ŝδ
t

)
≤ εk ≤ εt (B.3.6)

for k ≥ Kε and t ≥ k.

In addition, for k ≥ Kε, one has almost surely

sup
T≥k

1

T
ln
(
Ŝδ
T

)
≤ ε (B.3.7)

and therefore

lim sup
T→∞

1

T
ln

(
Sδ
t

Sδ
0

)
≤ lim sup

T→∞

1

T
ln

(
Sδ∗
T

Sδ∗
0

)
+ ε (B.3.8)

Since (B.3.8) holds for all ε ∈ (0, 1), then inequality (B.3.1) follows straight from the

definition of the long-term growth rate ḡδ∗.

B.4 Systematic outperformance

Following Platen and Heath (2006) one can derive the following statement from Definition

2.2.6:

Corollary B.4.1. In a CFM SC
(d) no strictly positive portfolio systematically outperforms

the GOP.

Proof. We consider a benchmarked non-negative portfolio Ŝδ
τ = {Ŝδ

τ , t ∈ [0,∞)}. We

assume that at a stopping time τ ∈ [0,∞) the benchmarked value is

Ŝδ
τ = 1, (B.4.1)

and for a bounded stopping time σ ∈ [τ,∞) the inequality

Ŝδ
σ ≥ 1 (B.4.2)

holds almost surely.

24. See Section 2.7 of Platen and Heath (2006).
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By combining Definition 2.2.6, Equation (B.4.1), the supermartingale property derived in

Lemma A.2.6, and the optional sampling theorem already introduced in Appendix B.2,

one can verify that

0 ≥ E
(
Ŝδ
σ − Ŝδ

τ | Aτ

)
=
(
Ŝδ
σ − 1 | Aτ

)
≥ 0. (B.4.3)

By (B.4.2) it follows that the benchmarked value Ŝδ
σ cannot be strictly grater than Ŝδ

τ = 1

with any strictly positive probability. In other words Ŝδ
σ = Ŝδ∗

σ , since Ŝδ
σ = 1 almost

surely.
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