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Introduction

The last two decades have been extremely successful for cosmology, especially from
the observational point of view. Different full-sky surveys have probed the physics
at the largest cosmological scales and data have measured or constrained many dif-
ferent cosmological parameters with increasing accuracy. Among many, we can cite
weak-lensing observations [1], WMAP [2] and Planck [3] for CMB measurements and
large-scale structure maps as SDSS [4].

It is well-known that Inflation [5], a phase of the early universe in which the universe
exponentially expanded, is the predominant model describing the early universe and
has been receiving robust evidences from all kind of observations. Besides, Inflation
provides an exceptional possibility to test physics at energies which cannot be reached
in any terrestrial experiment whatsoever. Thanks to Inflation, we can explain the ho-
mogeneity and isotropy of the universe but also understand the structure formation
of the universe, which was seeded during this stage, before standard model particles
thermalized: in fact, Inflation is responsible in transforming the quantum fluctuations
of the inflaton field into macroscopic and classical density perturbations.
Although Inflation is rather fascinating and attractive, we actually do not know much
about the underlying theory of such exponential expansion. There is no unique model
of Inflation and, moreover, there may be alternatives to Inflation which, so far, obser-
vations have not ruled out.
Besides Inflation there are other pressing open questions in cosmology. The majority
of the matter in the universe is "dark", and we actually know little about it. Also, the
nature of the ingredient which produces the accelerated expansion is very obscure: we
call it dark energy, and we are extremely far away from understanding it at a funda-
mental level. It is evident that, in order to make progress, we need to address these
questions. Clearly, clues must come from the observational side and, next generation
surveys like SKA [6], LSST [7] and the Euclid satellite [8] are planned exactly for this
reason: they are supposed to improve the precision in measuring cosmological observ-
ables thereby constraining different cosmological parameters.

This work will consider forecasts on the performance of Euclid in measuring some
cosmological parameters. Euclid will inspect the large-scale structure of the universe
by measuring position and velocity of galaxies. It will measure about 2 billion photo-
metric galaxy images and 30 million spectroscopic redshifts. It will range from z ∼ 0.7

iii



iv Chapter 0. Introduction

up to z ∼ 2 and it will cover 15000 deg2 of the sky. The investigation of the large-scale
structure of the universe is extremely important: indeed from the large scales we can
understand both the initial conditions (Inflation) and the development of the cosmic
structures (dark energy). Gravitational instability is the main actor during structure
formation and therefore we need a quantitative description of gravitational instability
dynamics in order to be able to test theory against observations. Large-scale structure
surveys can outdo CMB measurements in the number of Fourier modes present for ob-
servations and they can also probe the power spectrum to smaller scales. However, the
principal obstacles in a smooth connection between models and data are nonlinearities.
Such nonlinearities come from redshift space distorsions, nonlinear evolution of dark
matter, galaxy and halo bias and so forth. We thus need a framework in which we
can model nonlinear effects in order to extract the cosmological information present
in observational data. Such a framework is represented by perturbation theory (PT),
which has been strongly developed in the last decades. In this work we will approach
the dynamics of gravitational instability from the linear to non-linear regime mainly in
the Eulerian framework. Initially density perturbations at very large scales (k . 0.5)
and z ≈ 0 are small enough so that linear theory is valid. Considering higher redshifts
(z & 1) and smaller scales, in the so called weakly nonlinear regime, PT is successful in
describing the evolution of perturbations. However, as we lower the redshift or we con-
sider smaller scales, even PT fails to describe properly the dynamics; the standard tool
used in this range is N-body simulations, although they are very expensive in terms of
computational time. An alternative method, in this range, would be to broaden the
knowledge of analytic methods grounded on perturbation theory. Keeping in mind the
limitations of a fully PT approach, in this work we will limit ourselves to analytical
results, which have the virtue of making the relevant conceptual points evident.

In this work we will focus on the Consistency Relations of the large scale structure
(CR), which are relations between correlation functions at different order [9–11]. Since,
as we have said, the large-scale structure of the universe is dominated by nonlinear ef-
fects, it is extremely remarkable that we are able to write exact relations beyond any
approximation scheme.
By using a Fisher matrix approach, we will examine the possibility of measuring the
bias parameter using the CR from the power spectrum and the bispectrum. Moreover
we will investigate the possibility to use CR’s to constrain primordial features, of infla-
tionary origin, in these observables. The next generation of cosmological experiments,
such as Euclid, will help us in understanding if we effectively see departures from the
power-law power spectrum predicted by slow-roll Inflation. If so, it would be an excep-
tional result: not only it would enlarge the knowledge of primordial physics, but also
it would discriminate among different models of Inflation. Obviously, the detection of
these potential primordial features is extremely complex, as they are expected to be
suppressed at late times, exactly as the Baryon Acoustic Oscillations (BAO) are.
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This work is organized as follows.
In Chapter 1 we describe the standard cosmology. After a brief description of the

basic notions of cosmology we go through the Hot Big Bang model and its results.
Then, starting from the issues that arise from the Big Bang, we present Inflation in its
simplest paradigm: slow-roll Inflation.

In Chapter 2 we review the cosmological perturbation theory. In the first part of
the chapter we study the effects of perturbing, in the context of General Relativity, the
inflaton field and the metric. We also introduce a fundamental tool used in cosmology,
the power spectrum, and we study more in detail the cosmic microwave background. In
the second part we analyze a very important feature of the universe, which is extremely
important for this work: Baryon Acoustic Oscillations. In the third part the Newtonian
treatment of perturbations is presented. From the Vlasov equation we derive the
Continuity and the Euler equations, both in real and Fourier space. We then give
more details of PT results for the Einstein-de Sitter universe and in more general
cosmologies. Finally, in the last section, we introduce the Wick theorem, and derive
the power spectrum up to first order in PT and the tree-level bispectrum.

In Chapter 3 we approach cosmology from a statistical point of view. In particular,
after reviewing some basic statistical concepts, we analyze the Fisher matrix approach
and we derive the Cramer-Rao inequality.

In Chapter 4 the large-scale structure consistency relations are derived and a check
in perturbation theory is done. In the second section of the chapter we study the
behavior of the BAO and understand why they are suppressed at late times.

In Chapter 5 using the consistency relations and the Fisher matrix approach, we
forecast different cosmological parameters for a Euclid-like survey. In the first part we
make a forecast on the bias parameter defined in the CR derivation. After, we repeat
the calculation using suppressed baryon acoustic oscillations. In the second section we
introduce the primordial oscillations which may be present in the power spectrum and
study how the CR behave in the presence of this type of power spectrum. Finally,
in the last section we perform a two-dimensional forecast on the parameters that are
present in the power spectrum which exhibits primordial oscillations.
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Chapter 1

Standard Cosmology

Cosmology is the study of the universe considered in its entirety. The aim of cosmol-
ogy is to study the composition, the dynamics, the evolution and, more in general,
the properties of the universe. Standard cosmology makes use of some assumptions,
summarized in what is called Cosmological Principle, which have to be supported by
experimental observations; the result of these assumptions is basically to reduce the
number of degrees of freedom of a system in order to build a simpler model of the
universe itself. We can state the cosmological principle as follows [12]: "Any comov-
ing observer, at a fixed time in his reference system, at large scales sees the universe
homogeneous and isotropic".
Homogeneity is related to what is also called Copernican Principle, and it simply is
the fact the there is no privileged point of observation in the universe. Therefore we
can say that the quantities that describe the universe must have properties of transla-
tional invariance. Isotropy, instead, is the characteristic that, in whatever direction an
observer may observe, the universe always looks the same (on scales of order of ∼ 100
Mpc) [13].
Already from the Hubble’s discovery, see Fig. 1.1, in this past hundred years a lot of
evidences of the expansion of the universe have been gathered: the light from distant
galaxies is shifted towards the red end of the spectrum, the predictions of the Big
Bang Nucleosynthesis are matched with the observed abundances of the light elements
(such as H, He and Li) and a relic radiation of a very hot early universe is the only
explanation for the presence of the Cosmic Microwave Background.

1.1 FLRW Spacetime
The background metric describing an universe with these properties is the Friedmann-
Lemaître-Robertson-Walker metric, that is:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.1)

This metric describes a maximally simmetric universe, governed by the scale factor

1



2 Chapter 1. Standard Cosmology

Figure 1.1: The originale graph, taken from [14], that showed the first evidences of a linear relation
between the velocity and the distance of a given galaxy, giving a strong support to models that
describe an expanding universe.

a(t). It is written in polar coordinates and from a comoving observer point of view,
i.e. an observer that is moving along with the source of the geometry of the universe;
k is a constant that describes the Gaussian curvature of the space taken into account.
By a coordinate transformation the metric (1.1) can be written as:

ds2 = −dt2 + a(t)2
[
dχ2 + ΦK(χ2)(dθ2 + sin2 θdφ2)

]
(1.2)

where

r2 = Φk(χ
2) ≡





sinh2 χ k = −1

χ2 k = 0

sin2 χ k = 1

. (1.3)

A really important quantity we need to introduce is the Hubble parameter:

H ≡ ȧ(t)

a(t)
, (1.4)

with ˙≡ d
dt
. The Hubble parameter is the FLRW spacetime expansion rate and it sets

the fundamental scales for the spacetime, that is the characteristic time and lenght of
FLRW spacetime (c = 1):

t ∼ H−1

d ∼ H−1 (1.5)
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1.2 Kinematics and Dynamics

Experimental observations constrain the universe to be almost (if not exactly) flat, as
we will see in Sec. 1.3.1; for this reason we can assume k to be equal to 0, and consider
simply a spatially flat background:

ds2 = −dt2 + a(t)2
[
dχ2 + χ2(dθ2 + sin2 θdφ2)

]
. (1.6)

We can also rewrite this equation using conformal time τ defined as

τ =

∫
dt

a(t)
, (1.7)

obtaining the so called conformal metric:

ds2 = a2(τ)
[
−dτ 2 + dχ2 + χ2(dθ2 + sin2 θdφ2)

]
. (1.8)

In addition, we can take a brief look at the Einstein field equations. They have the
form:

Gµν = 8πGTµν , (1.9)

where Gµν is the Einstein tensor:

Gµν = Rµν −
1

2
Rgµν , (1.10)

and Rµν and R the Ricci tensor and scalar. The energy momentum tensor Tµν rep-
resents the source of the geometry of the universe. Assuming an homogeneus and
isotropic universe means to require the same for Tµν . In the case of a perfect fluid, for
example, we obtain [12]:

T µν = [ρ(t) + p(t)]uµuν − p(t)δµν (1.11)

where

uµ =
dxµ

dτ
(1.12)

is the four velocity of the fluid, ρ(t) the energy density of the background matter
whereas p(t) is the isotropic pressure of the fluid. Let us note that they depend only
on time because of the assumptions of homogeneity and isotropy.
Moreover, if we consider an observer comoving with the fluid, we may choose a null
spatial velocity, i.e. uµ = (1, 0, 0, 0), ending up with:

T00 = ρ(t)

T0i = Ti0 = 0

Tij = −p(t)δij
(1.13)
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and sobstituting equations (1.13) into (1.9) we obtain the first two (independent) Fried-
mann equations:

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.14)

ä

a
= −4πG

3
(ρ+ 3p) , (1.15)

From the continuity equation
DµT

µν = 0 (1.16)

we derive the third Friedmann equation:

ρ̇ = −3H (ρ+ p) . (1.17)

The three Friedmann equations are not independent. In fact, while (1.15) defines the
dynamic of the system, equations (1.14) and (1.17) are just constraining equations.
Thus, we find ourselves with three independent variables (a(t), p(t) and ρ(t)) but only
two equations. The equation of state (which connects pressure with density) comes to
the rescue and, as first good approximation, it may take the following form:

p(t) = wρ(t). (1.18)

We can therefore write eq. (1.17) as

d log ρ(t)

d log a(t)
= −3(1 + w) (1.19)

and integrating it we obtain

ρ(t) ∼ a(t)−3(1+w), (1.20)

which, together with the Friedmann equation (1.14), it gives the evolution of the scale
factor along with time:

a(t) ∼
{
t

2
3(1+w) w 6= −1

eHt w = −1
. (1.21)

The constant w takes different values depending on which kind of matter/energy we are
considering. In particular we have w = 0 for ordinary matter, w = 1/3 for radiation
and w = −1 when the universe is dominated by the cosmological constant. The
solutions for the main variables of a flat (k = 0) FLRW universe in different moment
of the evolution of the universe are summarized in Tab. 1.1.
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w ρ(a) a(t) a(τ )

MD 0 a−3 t2/3 τ 2

RD 1
3

a−4 t1/2 τ

Λ -1 a0 eHt −τ−1

Table 1.1: Solutions of a flat FRW universe dominated by matter (MD), radiation (RD) or a
cosmological constant (Λ). Table taken from [15].

1.3 Hot Big Bang
We now want to derive an explicit expression for a(t), ρ(t), p(t). In order to do so, we
take into account the equation of state, eq. (1.18), the Friedmann equations and the
fact that, for what we have said so far, we can consider the universe flat, i.e. k = 0.
We start from taking eq. (1.20) and write it in the following way:

ρ(t) = ρ?

(
a(t)

a?

)−3(1+w)

. (1.22)

Then, we take the first Friedmann equation, eq. (1.14) and write it in the following
way:

ȧ(t)2 =
8πG

3
ρ?a

3(1+w)
? a2−3(1+w) = A2a2−3(1+w) (1.23)

which becomes

a
1+3w

2 da = ±Adt. (1.24)

We choose the positive solution and, integrating, we arrive to:

a(t) = a?

[
1 +

3

2
(1 + w)H?(t− t?)

] 2
3(1+w)

(1.25)

with

H? =

√
8πG

3
ρ?. (1.26)

Now we substitute eq. (1.25) into eq. (1.22), and obtain:

ρ(t) = ρ?

[
1 +

3

2
(1 + w)H?(t− t?)

]−2

. (1.27)
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Finally, since H(t) = ȧ(t)/a(t) we also determine the Hubble parameter, that is:

H(t) = H?

[
1 +

3

2
(1 + w)H?(t− t?)

]−1

. (1.28)

Therefore, looking at the expression of the scale factor, it is clear that at some time t0
the expression in the square brackets goes to 0. This happens for:

t0 = t? −
2

3
H−1
? (1 + w)−1. (1.29)

We rescale the time

t→ t− t0 (1.30)

so that, for t→ 0, we have:

a(t→ 0)→ 0, ρ(t→ 0)→∞, H(t→ 0)→∞ (1.31)

This particular situation, which is effectively a singularity, it is usually called Big Bang
and, because of the high energies involved, we refer to this model as the Hot Big Bang
Model.
Let us suppose, then, we want to describe the different components of the universe at
different times within the Hot Big Bang model. To know the thermal history of the
universe means actually to understand its evolution along with time, that is how the
scale factor a(t) changes with time and temperature. In order to do so we need to
define the thermodynamic quantities which are most important for the Hot Big Bang
model. We start defining the particle numerical density

n(T, µ) =
g

(2π)3

∫
f(q, T, µ)d3q (1.32)

where q are the moments of the particles, g is the number of helicity state, µ is the
chemical potential and f(q, T, µ) is the distribution function. If we assume to be at the
thermodynamic equilibrium, f will just be the statistical distribution of the considered
particle species, either fermionic or bosonic:

f(q, T, µ) =
[
e
E−µ
T ∓ 1

]−1

(1.33)

where − stands for bosons and + for fermions. Note that E is the energy we are
considering and it is given by E =

√
q2 +m2.

For the energy density we have instead:

ρ(T, µ) =
g

(2π)3

∫
E(q)f(q, T, µ)d3q (1.34)



1.3. Hot Big Bang 7

whereas the pressure reads:

p(T, µ) =
g

(2π)3

∫
q2

3E(q)
f(q, T, µ)d3q. (1.35)

Solving these integrals in the relativistic case (T � m) we find:

n(T )

{
g ζ(3)
pi2
T 3, Bosons

3
4
g ζ(3)
π2 T

3, Fermions
(1.36)

ρ(T )

{
g π

2

30
T 4, Bosons

7
8
g π

2

30
T 4, Fermions

(1.37)

and p(T ) = 1
3
ρ(T ) as we would expect for a perfect fluid.

Instead, in the non relativistic case (T � m) we find that the particle number density
is actually suppressed:

n(T ) ∼ e−
m
T (1.38)

and, since in this limit ρ(T ) = mn(T ) and p(T ) = n(T )T we find the same behavior
for the energy density and the pressure.

In Tab. 1.1 we can look at the a-dependence of the energy densities in the different
epochs of the universe. In particular it is easy to understand that, during the early uni-
verse, the radiation was the dominant component; for this reason when we talk about
primordial times we can simply consider an ultra-relativistic fluid. At the beginning
the rate of interactions between particles was much greater than the rate of expansion
of the Universe H(t) meaning that the fluid was initially in a thermodynamic equilib-
rium. Considering the conservation of the entropy in an expanding universe one can
find the following relation between the temperature and the scale factor [13]:

T ∼ a−1. (1.39)

If we use the definition of cosmic redshift

1 + z =
λo
λe

=
a0

ae
=

1

ae
, (1.40)

where "e" stands for emitted and "o" for observed, i.e. present, we can easily see that

T ∼ 1 + z. (1.41)

These last equations tell us that the more we go backward, the more the universe
becomes hot. This is why we can, in some way, describe the evolution of the universe
through its thermal history, see Fig. 1.2.
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a period of exponential expansion in the very early universe, is believed to have taken place some

10�34 seconds after the Big Bang singularity. Remarkably, inflation is thought to be responsible

both for the large-scale homogeneity of the universe and for the small fluctuations that were the

seeds for the formation of structures like our own galaxy.

The central focus of this lecture series will be to explain in full detail the physical mechanism

by which inflation transformed microscopic quantum fluctuations into macroscopic fluctuations in

the energy density of the universe. In this sense inflation provides the most dramatic example

for the theme of TASI 2009: the connection between the ‘physics of the large and the small’.

We will calculate explicitly the statistical properties and the scale dependence of the spectrum of

fluctuations produced by inflation. This result provides the input for all studies of cosmological

structure formation and is one of the great triumphs of modern theoretical cosmology.

1.2 Structure and Evolution of the Universe

There is undeniable evidence for the expansion of the universe: the light from distant galaxies is

systematically shifted towards the red end of the spectrum [4], the observed abundances of the light

elements (H, He, and Li) matches the predictions of Big Bang Nucleosynthesis (BBN) [5], and the

only convincing explanation for the CMB is a relic radiation from a hot early universe [6].

3 min Time [years] 380,000 13.7 billion10 -34 s
Redshift 026251,10010 4

Energy 
1 meV1 eV1 MeV10 15 GeV

Scale a(t) 

10 -

?

Cosmic Microwave Background
Lensing

Ia

QSO
Lyα

gravity waves
B-mode Polarization

21 cm

neutrinos

recombination
BBNreheating

In
fla

tio
n

reionization
galaxy formation dark energy

LSS
BAO

dark ages

density fluctuations

Figure 2: History of the universe. In this schematic we present key events in the history of the

universe and their associated time and energy scales. We also illustrate several cos-

mological probes that provide us with information about the structure and evolution

of the universe. Acronyms: BBN (Big Bang Nucleosynthesis), LSS (Large-Scale Struc-

ture), BAO (Baryon Acoustic Oscillations), QSO (Quasi-Stellar Objects = Quasars),

Ly↵ (Lyman-alpha), CMB (Cosmic Microwave Background), Ia (Type Ia supernovae),

21cm (hydrogen 21cm-transition).

10

Figure 1.2: A schematic representation of the history of the universe. As we have said, we can relate
the time with the redshift and the energy (i.e. the temperature). After a first exponential expansion
due to inflation, we step into the Hot Big Bang model, starting from the Big Bang Nucleosynthesis and
arriving to the present dark energy era. We also illustrate several cosmological probes that provide us
with information about the structure and evolution of the universe, from the inflationary gravitational
waves, passing through the CMB and arriving to the Large Scale Structure of the universe. This Figure
was taken from [15].

At early epochs all the particle species were in thermal equilibrium. Therefore, for very
high energies, we expect a phase where the symmetry between matter and anti-matter
was broken. This era is called baryogenesis and, as the name suggests, it was the mo-
ment during which the matter we observe today was actually created. This happened
thanks to a process of annihilation of baryons and antibaryons, present in the universe
with a little initial asymmetry (around 109 + 1 baryons for 109 antibaryons).
At very high energies, the weak interaction and the electromagnetic interaction were
unified in the electroweak interaction. Then, as the universe expanded, around energies
of order ∼ 1 Mev, neutrinos ceased to interact with photons, meaning that neutrinos
and radiation were not in thermodynamic equilibrium anymore.
At temperature of the order ∼ 100 keV, i.e. around ∼ 100 s after the Big Bang, the
temperature of the radiation was so high that all the nuclear bonds were broken; all
the nuclei were decomposed into protons and neutrons. However, as the temperature
kept going dow, the universe reached a moment in which the binding nuclear energies
were higher than the temperature of the nucleons. This is the moment of the formation
of the first fundamental nuclei: this phase is called nucleosynthesis. This phase was
described by Gamow [16] and it is a fundamental prediction of the Big Bang theory.
It predicts an abundance of 4He which is not justified considering only the elements
produced in the stellar nuclear reactions. The observation of an abundance of chem-
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ical elements in accordance with the nucleosynthesis prediction is one of the striking
successes of the Big Bang theory.
As we have said before, the initial period was dominated by the presence of radiation,
from here the name radiation dominated era. As the universe expanded, and tempera-
ture decreased, the matter became predominant, leading to the matter dominated era.
During this epoch all the large scale structures that we observe in the universe, such
as galaxies and clusters, started to form due to gravitational instability.
After the radiation-matter equivalence, one of the most important event in the universe
history took place. When the universe was almost ∼ 106 years old the temperature was
higher than the binding energy of the Hydrogen, 13.6 eV, which translated to the fact
that the Universe was ionized and therefore opaque to radiation. The photons were
not free to stream as they interacted with the electron through Compton scattering.
Then, as the temperature lowered below the binding energy of H, the electron could
start interacting with the protons through the interaction

e− + p+ → H + γ, (1.42)

meaning that finally the first Hydrogen atoms were created. At this point the interac-
tion between photons ad electrons stopped to be to dominant one and photons started
to be free to travel. This point in time defines what is called last scattering surface and
this epoch is called Hydrogen recombination. The radiation that left the last scattering
surface was then cooled by the expansion of the Universe to the value of ∼ 3 K, and
now constitutes the Cosmic Microwave Background (CMB) we observe. The CMB is
a fundamental prediction of the Big Bang model and it represents a milestone of the
history of Cosmology: its discovery [17] opened the way to a more detailed study of
the first moments of the Universe.

1.3.1 Constraints From Observations and ΛCDM Model

In this section we will briefly show results of constraints on cosmological parameters.
All numerical results, which are given with 68% confidence level, come from the Planck
mission [18].
Observations of the cosmic microwave background and the large-scale structure (which
we will analyze in more detail in the following sections) show that the universe is flat
(Fig. 1.3), i.e.

Ωk = 0.001± 0.002, (1.43)

and it is composed of 5% matter (or baryons), 26% cold dark matter and 69% dark
energy (Fig. 1.3), i.e.

Ωm = 0.0490±0.0003, Ωdm = 0.2607±0.0020, ΩΛ = 0.6889±0.0056, (1.44)

with wΛ = −1.03± 0.03.
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limited and provides a relative weak constraint on the tensor-
to-scalar ratio r0.002 < 0.41 (95 % CL, Planck Collaboration V
2018). As with the 2013 and 2015 releases, the strongest con-
straint on tensor modes from the Planck data alone comes from
the TT spectrum at ` <⇠ 100.

The precision of the Planck temperature constraint remains
limited by cosmic variance from the scalar component and is
model dependent. The tightest and least model-dependent con-
straints on the tensor amplitude come from the Ade et al. (2018,
BK15) analysis of the BICEP2/Keck field, in combination with
Planck and WMAP maps to remove polarized Galactic dust

emission. The BK15 observations measure the B-mode polar-
ization power spectrum in nine bins at ` <⇠ 300, with the ten-
sor amplitude information coming mainly from scales ` ' 100,
where the B-mode spectrum from scattering at recombination is
expected to peak. The Planck CMB power spectrum measure-
ments use a much larger sky area, and are useful to convert this
measurement into a constraint on the tensor-to-scalar ratio r at a
given scale with little additional cosmic variance error. To relate
the tensor measurement to constraints on specific inflation mod-
els (which usually predict a region in the ns–r plane), combining
with the Planck data is also essential, although model dependent.

38

Figure 1.3: Constraints on ΛCDM parameters. Contours show 68% and 95% confidence re-
gions for Planck TT,TE,EE+lowE (grey), Planck TT,TE,EE+lowE+lensing (red), and Planck
TT,TE,EE+lowE+lensing+BAO (blue). Vertical lines show the mean posterior values in the base
model for Planck TT,TE,EE+lowE+lensing whereas horizontal lines correspond to the parameter
values assumed in the ΛCDM model. Figure taken from [18].

As we have explained above, at early times the Universe was dominated by its radiation
component, then it passed through a matter-dominated era and, now, the dominant
component is the dark energy. Also, we have just mentioned that the spatial curvature
of the Universe is compatible with zero: a direct consequence of this measurement is
that the actual density of the Universe is almost the critical one. The basic model which
describes the cosmic evolution is the so-called ΛCDM model, partially summarized by
eq. (1.44), that is dark energy (which is also responsable for the acceleration of the
expansion of the universe) composes the 69% of the universe, dark matter 26% and
baryons 5%. Note that we talk about Cold Dark Matter. Cold means that dark
matter was non-relativistic at the time of decoupling: if the dark matter was hot, i.e.
relativistic at the time of its decoupling, it would have had important consequences on
the formation of the large scale structure of the Universe [19]. Furthermore, it is called
dark because it does not emit light and we can measure its presence only by indirect
observations (e.g. galaxies rotation curves, large scale structure measurements, CMB).
The baryonic matter (galaxies, stars, planets and so on) is only a little percentage of
the total composition of the Universe, meaning that the Universe we live in is almost
dark. In Fig. 1.4 it is possible to see all the six fundamental parameters (the first
six of the list) of the ΛCDM model. A striking characteristic of this model is that it
describes the history of the universe just using 6 parameters. Although many of the
ingredients of the model remain mysterious from a fundamental physics point of view,
the ΛCDM model is one of the most successful phenomenological models in physics.
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Table 2. Parameter 68 % intervals for the base-⇤CDM model from Planck CMB power spectra, in combination with CMB lensing
reconstruction and BAO. The top group of six rows are the base parameters, which are sampled in the MCMC analysis with flat
priors. The middle group lists derived parameters. The bottom three rows show the temperature foreground amplitudes f TT

`=2000 for
the corresponding frequency spectra (expressed as the contribution to DTT

`=2000 in units of (µK)2). In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2454, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh2). The reionization redshift mid-point zre and optical depth ⌧ here assumes a simple tanh model (as discussed
in the text) for the reionization of hydrogen and simultaneous first reionization of helium. Our baseline results are based on Planck
TT,TE,EE+lowE+lensing (as also given in Table 1).

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

⌦bh2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

⌧ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
�0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010As) . . . . . . . 3.040 ± 0.016 3.018+0.020
�0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s�1 Mpc�1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0.54 67.66 ± 0.42

⌦⇤ . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033
�0.026 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056

⌦m . . . . . . . . . . . 0.321 ± 0.013 0.301 ± 0.012 0.289+0.026
�0.033 0.3166 ± 0.0084 0.3153 ± 0.0073 0.3111 ± 0.0056

⌦mh2 . . . . . . . . . 0.1434 ± 0.0020 0.1408 ± 0.0019 0.1404+0.0034
�0.0039 0.1432 ± 0.0013 0.1430 ± 0.0011 0.14240 ± 0.00087

⌦mh3 . . . . . . . . . 0.09589 ± 0.00046 0.09635 ± 0.00051 0.0981+0.0016
�0.0018 0.09633 ± 0.00029 0.09633 ± 0.00030 0.09635 ± 0.00030

�8 . . . . . . . . . . . 0.8118 ± 0.0089 0.793 ± 0.011 0.796 ± 0.018 0.8120 ± 0.0073 0.8111 ± 0.0060 0.8102 ± 0.0060

S 8 ⌘ �8(⌦m/0.3)0.5 . 0.840 ± 0.024 0.794 ± 0.024 0.781+0.052
�0.060 0.834 ± 0.016 0.832 ± 0.013 0.825 ± 0.011

�8⌦
0.25
m . . . . . . . . 0.611 ± 0.012 0.587 ± 0.012 0.583 ± 0.027 0.6090 ± 0.0081 0.6078 ± 0.0064 0.6051 ± 0.0058

zre . . . . . . . . . . . 7.50 ± 0.82 7.11+0.91
�0.75 7.10+0.87

�0.73 7.68 ± 0.79 7.67 ± 0.73 7.82 ± 0.71

109As . . . . . . . . . 2.092 ± 0.034 2.045 ± 0.041 2.116 ± 0.047 2.101+0.031
�0.034 2.100 ± 0.030 2.105 ± 0.030

109Ase�2⌧ . . . . . . . 1.884 ± 0.014 1.851 ± 0.018 1.904 ± 0.024 1.884 ± 0.012 1.883 ± 0.011 1.881 ± 0.010

Age [Gyr] . . . . . . . 13.830 ± 0.037 13.761 ± 0.038 13.64+0.16
�0.14 13.800 ± 0.024 13.797 ± 0.023 13.787 ± 0.020

z⇤ . . . . . . . . . . . 1090.30 ± 0.41 1089.57 ± 0.42 1087.8+1.6
�1.7 1089.95 ± 0.27 1089.92 ± 0.25 1089.80 ± 0.21

r⇤ [Mpc] . . . . . . . . 144.46 ± 0.48 144.95 ± 0.48 144.29 ± 0.64 144.39 ± 0.30 144.43 ± 0.26 144.57 ± 0.22

100✓⇤ . . . . . . . . . 1.04097 ± 0.00046 1.04156 ± 0.00049 1.04001 ± 0.00086 1.04109 ± 0.00030 1.04110 ± 0.00031 1.04119 ± 0.00029

zdrag . . . . . . . . . . 1059.39 ± 0.46 1060.03 ± 0.54 1063.2 ± 2.4 1059.93 ± 0.30 1059.94 ± 0.30 1060.01 ± 0.29

rdrag [Mpc] . . . . . . 147.21 ± 0.48 147.59 ± 0.49 146.46 ± 0.70 147.05 ± 0.30 147.09 ± 0.26 147.21 ± 0.23

kD [Mpc�1] . . . . . . 0.14054 ± 0.00052 0.14043 ± 0.00057 0.1426 ± 0.0012 0.14090 ± 0.00032 0.14087 ± 0.00030 0.14078 ± 0.00028

zeq . . . . . . . . . . . 3411 ± 48 3349 ± 46 3340+81
�92 3407 ± 31 3402 ± 26 3387 ± 21

keq [Mpc�1] . . . . . . 0.01041 ± 0.00014 0.01022 ± 0.00014 0.01019+0.00025
�0.00028 0.010398 ± 0.000094 0.010384 ± 0.000081 0.010339 ± 0.000063

100✓s,eq . . . . . . . . 0.4483 ± 0.0046 0.4547 ± 0.0045 0.4562 ± 0.0092 0.4490 ± 0.0030 0.4494 ± 0.0026 0.4509 ± 0.0020

f 143
2000 . . . . . . . . . . 31.2 ± 3.0 29.5 ± 2.7 29.6 ± 2.8 29.4 ± 2.7

f 143⇥217
2000 . . . . . . . . 33.6 ± 2.0 32.2 ± 1.9 32.3 ± 1.9 32.1 ± 1.9

f 217
2000 . . . . . . . . . . 108.2 ± 1.9 107.0 ± 1.8 107.1 ± 1.8 106.9 ± 1.8

corresponding to an anti-correlation between the matter density
⌦mh2 and the Hubble parameter. This correlation can also be
seen in Fig. 5 as an anti-correlation between the dark-matter
density ⌦ch2 and H0, and a corresponding positive correlation
between ⌦ch2 and ⌦m.

3.2. Hubble constant and dark-energy density

The degeneracy between ⌦m and H0 is not exact, but the con-
straint on these parameters individually is substantially less pre-
cise than Eq. (12), giving

H0 = (67.27 ± 0.60) km s�1Mpc�1,

⌦m = 0.3166 ± 0.0084,

)
68 %, TT,TE,EE
+lowE.

(13)

It is important to emphasize that the values given in Eq. (13) as-
sume the base-⇤CDM cosmology with minimal neutrino mass.
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Figure 1.4: All the fundamental parameters of the ΛCDM model as measured by the Planck mission.
Figure taken from [18].

1.3.2 Issues of the Hot Big Bang Model and Inflationary Solu-
tion

As we have discussed, there are some fundamental predictions of the Big Bang (such
as nucleosynthesis or the Cosmic Microwave Background) which are definitely great
outcomes of the therory, confirmed by experimental results, which give strong support
to the theory.
However, in the context of the model, some problematic issues arise: we will see that
they are linked to the problem of the initial conditions of the universe.

To approach these issues, we first need to understand two important concepts: the
Particle Horizon and the Hubble Horizon.
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Particle Horizon If we set ds2 = 0 in equation (1.1) we obtain the distance that
light travels between two points of spacetime, namely:

0 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ

]
:= −dt2 + dl2. (1.45)

where we have used dΩ = dθ2 + sin2 θdφ. We then define the comoving distance as:

d(t) =

∫ l(t)

0

dl′. (1.46)

Exploiting the property of isotropy we can set dΩ = 0, obtaining:

d(t) =

∫ r(t)

0

dr√
1− kr

=

∫ t

0

dt′

a(t′)
. (1.47)

The particle horizon, which is the physical distance traveled by light, is then:

dH = a(t)

∫ t

0

dt′

a(t′)
. (1.48)

Physically speaking, dH(t) defines the radius of a sphere, centered in the observer, that
contains all the points of the spacetime that entered in causal connection with the
observer within the time t. In particular this means that, if two points are further
apart than dH(t), they never entered in causal connection with each other. In order to
obtain the particle horizon we used the following relation that connects physical and
comoving distances:

λphys = a(t)λcom (1.49)

Let us also note that, from the explicit form of a(t), eq. (1.25), and exploiting the
second Friedmann equation, we obtain that dH(t) exists if ¨a(t) < 0 (a decelerating
universe) and its explicit form is:

dH(t) =
3(1 + w)

3w + 1
. (1.50)

Hubble horizon Since H is an expanding rate, we can define the Hubble time τH ≡
1
H

as the characteristic time of expansion of the universe. Hence the Hubble radius is:

RH(t) = cτH . (1.51)

The comoving Hubble radius is then:

rH(t) =
RH(t)

a(t)
=

1

ȧ(t)
(1.52)

Also in this case, thinking of the region standing inside the sphere of radius rH , we
can define a comoving Hubble horizon. Let us point out that there is a substantial
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difference between the Particle and the Hubble Horizon; in fact, the Particle Horizon
takes into account the entire past history up to time t, whereas the Hubble Horizon
considers only the interactions happened in a Hubble time H−1.

We can now go through the issues that arise in the context of the Hot Big Bang
model, and see how they are solved by what is called the inflationary model.
The first is the so called horizon problem. A portion of the universe, with character-
istic length λ, can be all causal connected only if λ < rH , that is the comoving Hubble
horizon has to be greater than the characteristic length λ. We can think of this saying
that, up to a certain time tH a certain region will not be causally connected. When
at time tH we have that λ = rH , then the region of length λ gets causally connected.
According to this reasoning, there are some portions of the universe which entered
in causal connection only recently (since the universe is expanding); however, from
the CMB observation, this is not what we see. We do see, indeed, homogeneity and
isotropy on the entire scale of the visible universe. How can this be possible if these
regions never talked to each other?
The inflationary solution, in some sense, is actually fairly easy: we can just think that,
in a moment previous to the radiation dominated epoch, it happened that ˙rH(t) < 0,
meaning that there is a period in which rH(t) decreased, as it is illustrated in Fig. 1.5.

Figure 1.5: The comoving length of the region considered remains constant during the cosmological
evolution. At a certain time it exits the horizon, while inflation occurs. Then it re-enters the horizon
at later times. Figure from [15].
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In this way regions entering for the first time in causal connection actually had a chance
to exchange information in the very early period of the universe. In more quantitative
terms we are saying:

d

dt
rH(t) < 0 ⇐⇒ − ä(t)

(a(t))2
< 0 ⇐⇒ ä(t) > 0. (1.53)

Hence, in full generality, we will talk about inflationary solution when we have an
accelerated expansion of the universe.
We have, though, also to impose a condition on the duration of the inflationary period,
since we need that at least what we observe today has entered in causal connection
during the inflationary period. Thus, we require:

rH(ti) ≥ rH(t0). (1.54)

Let us also note that, from eq. (1.15), in order to have ä(t) > 0 we obtain ρ+ 3p > 0,
implying:

w < −1

3
, (1.55)

that is, negative pressure. One particular condition that is compatible with this con-
dition is when w = −1. We are in this case saying (from eq. (1.17)):

ρ̇ = 0 =⇒ ρ = const. (1.56)

namely, the density of this "exotic fluid" remains constant throughout the evolution
of the universe (cosmological constant). Assuming ρ = const, from eq. (1.14), we also
get that:

a(t) ∝ eHt, (1.57)

that is an exponential growth of the scale factor. This solution is also called De Sitter
universe.

We want now to address the second issue of the Hot Big Bang model: the flatness
problem. From the Friedmann equations we define the critical density as the density
needed in order to have zero curvature:

ρc =
3H2

8πG
. (1.58)

Recalling the definition of the density parameter

Ω =
ρ

ρc
, (1.59)

from the first Friedmann equation we obtain:

Ω(t)− 1 =
k

a2H2
= kr2

H(t) (1.60)
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This equation gives us the evolution of the density parameter in FLRW models. In
particular in these models the value of rH(t) grows with time. So, if the Universe is
perfectly flat k = 0 and Ω = 1 but, if Ω 6= 1, then the difference between Ω and 1 will
grow as fast as rH does. This means that going backward in time we expect Ω to get
closer and closer to 1. From the Plank mission Ω takes the value [18]:

|Ω0 − 1| = 0.0007± 0.0019 (1.61)

and taking as a reference time the Planck time tPl = 10−44 we find that:

|Ω(tPl)− 1| ≤ 10−62. (1.62)

Basically we are saying that, in order to explain what we observe today, we must require
that the spatial curvature of the universe at the beginning was significantly close to 1
(1 part over 1062) but not exactly 1. To require such an exact initial condition seems
very unnatural; this problem goes under the name of fine tuning problem.

Again, also in this case the problem is solved allowing rH to decrease. In fact, from
eq. (1.60), if rH decreases, than also |Ω(t)− 1| decreases:

|Ω(t)− 1| ∝ r2
H(t) =

1

a2H2
(1.63)

but if H is constant we have seen that a(t) ∝ eHt, thus:

|Ω(t)− 1| ∝ e−Ht. (1.64)

It is an interesting approach, because no matter what deviation we have at the be-
ginning, the inflation suppresses exponentially the deviation of Ω from 1: we say that
inflation is an attractor solution.

The last issue of the Hot Big Bang model we briefly address is the so called un-
wanted relics problem. It is known that at very high temperature in the early
universe, some very massive particles X may have been created. If created, these par-
ticle could have survived up to today, contributing with an Ω0X � 1, which is not
what we observe today. Some examples of what are also called topological defects are
magentic monopoles, cosmic strings, domain walls, textures and so on. The number
density of these cosmic relics has the behavior nX ∼ a−3. If we have a primordial era in
which the expansion was exponential (or very close to be so) we have that nX ∼ e−3Ht;
therefore we have a mechanism that can explain the suppression of the cosmological
relics [20].
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1.4 Inflation
The strength of inflation is that it is a mechanism that solves the above-mentioned
problems, providing in a dynamical way initial conditions in agreement with observa-
tions; hence, we do not have to assume some very precise and peculiar conditions of
homogeneity and isotropy at the beginning of the universe.
In particular now we want to ask ourselves what allows the fact that p < −1

3
ρ, eq.

(1.55), and we will see that the answer is: a scalar field φ. How does a scalar field
evolve in an expanding universe? Let us remind the fact that a De-Sitter expansion
can be achieved in the presence of a cosmological constant Λ. The Einstein’s equations
with the cosmological constant are:

Rµν −
1

2
gµν = 8πGTµν − Λgµν . (1.65)

We can write the right hand side as:

8πGTµν − Λgµν = 8πG

(
Tµν −

Λ

8πG
gµν

)
(1.66)

and define TΛ
µν = − Λ

8πG
gµν . If now we recall eq. (1.11), we can define pΛ = − Λ

8πG
gµν

and ρΛ = Λ
8πG

gµν , which gives back exactly TΛ
µν . Usually Λ gets the interpretation of

the vacuum energy of the quantum state of the system, i.e.:

〈0|Tµν |0〉 = −〈0| ρ |0〉 gµν =⇒ Λ = 〈0| ρ |0〉 8πG. (1.67)

The vacuum describes the creation and annihilation of virtual particles with an associ-
ated energy. Why do we associate the behavior of a scalar field with the cosmological
constant? Let us make an example. We can take the stress-energy tensor of a scalar
field (which we derive in the next section):

T φµν = ∂µφ∂νφ− gµν
(
−1

2
gρσ∂ρφ∂σφ− V (φ)

)

and take the minimum of the potential of φ, which we may indicate as follows:

〈φ〉 ≡ 〈0|φ |0〉 . (1.68)

Now if we assume that 〈φ〉 = const it follows that ∂〈φ〉 = 0, and therefore we can
compute the stress-energy tensor around the minimum of the scalar field potential,
and obtain:

T φµν(〈φ〉) = −V (〈φ〉)gµν . (1.69)

Comparing eq. (1.67) to eq. (1.69) we clearly see that, in both cases, we have that

Tµν = const · gµν (1.70)

and we can thus say that the scalar field φ mimics the cosmological constant behavior.
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With that being said, we will now address the description of the dynamics of the
so called standard slow-roll model of inflation: we will see the primordial (quantum)
perturbations of the inflaton (the scalar field φ) and the perturbations of the metric
tensor.

1.4.1 Slow-Roll Inflation

In the slow-roll paradigm we consider a very simple field description: only General
Relativity and a scalar field (minimally coupled to gravity) are involved. The action
we take into account is [12]:

S =
M2

Pl

2

∫
dx4
√−gR +

∫
dx4
√−gLφ [φ, gµν ] + SM . (1.71)

While the first term is the classic Hilbert-Einstein action, the second term contains the
dependence on the scalar field φ through the presence of the Lagrangian Lφ; moreover
SM represents the action of other fields (gauge bosons, fermionic fields and so on) and
their possible interactions with the scalar field. The lagrangian takes the form:

Lφ = −1

2
gµν∂µφ∂νφ− V (φ). (1.72)

V (φ) is the potential term, and it includes the mass term and self interaction terms.
From General Relativity we know we can build a symmetric stress-energy tensor asso-
ciated to the scalar field:

Tµν ≡ −
2√−g

δ
√−gL
δgµν

(1.73)

In the case of a minimally coupled scalar field, after some calculations, we obtain [21]:

T φµν = ∂µφ∂νφ− gµν
(
−1

2
gρσ∂ρφ∂σφ− V (φ)

)
. (1.74)

Because of homogeneity and isotropy, regarding the metric tensor, we can assume
invariance under spatial traslations and rotations, that is gµν = gµν(t). In the same
manner, the background value φ0 depends only on time. We can then proceed in
writing the scalar field and the metric tensor as a sum of a background value and a
perturbation term:

φ(x, t) = φ0(t) + δφ(x, t) (1.75)

gµν(x, t) = g(0)
µν (t) + δgµν(x, t). (1.76)

Note that this is a good approximation if the perturbation is much smaller than
the background value, e.g. 〈δφ2〉 � φ2

0(t), and in general it seems to be the case
since experimentally we observe temperature anisotropies in the CMB of the order of
∆T/T ∼ 10−5.
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1.4.2 Background Dynamics and Slow-Roll Conditions

In order to understand the inflationary models we will need to study the quantum
perturbations. But as a first step we will go through the background dynamics, which
describes the accelerated expansion during the inflationary period. To describe the
background metric we will make use, in the following, of the FLRW metric with null
spatial curvature, namely equation (1.6). The scalar field has the same properties of
homogeneity and isotropy, so its stress-energy tensor is:

T φ00 = ρφ0 , (1.77)

T φij = ρφ0gij. (1.78)

Therefore, comparing these last two equation with (1.74) we obtain:

ρφ0 =
1

2
φ̇2

0 + V (φ0) (1.79)

pφ0 =
1

2
φ̇2

0 − V (φ0) (1.80)

The remarkable fact is that it is possible to realize the inflationary epoch, that is to
have negative pressure (see eq. (1.55)) thanks to the presence of the -V term in eq.
(1.80). The condition (1.55) translates into:

V > φ̇2
0 (1.81)

Then, if we consider the kinetic term negligible with respect to the potential one

1

2
φ̇2

0 � V (1.82)

from equations (1.77) and (1.78) we obtain:

pφ0 ' −ρφ0 . (1.83)

Equation (1.83) represents a quasi-De Sitter universe with accelerated and (nearly)
exponential expansion a(t) ' a0e

Ht. Let us look better into eq. (1.82). This condition
is telling us that the field is moving very slowly with respect to the potential: this
condition is called slow-roll of the scalar field. Substituting eq. (1.82) into (1.15) we
learn that, in this case, we have an alomst flat potential for the entire duration of
inflation:

H2 =
8

3
πGρφ '

8

3
πGV (φ) ' const (1.84)

where the last equality holds for a quasi-De Sitter universe.
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Figure 1.6: This in an example of an inflationary potential with a flat region. After the slow-roll of
the field ends, a new phase starts, the so called reheating phase. Figure taken from [21].

Let us take a look to the evolution of the background of the scalar field. In general
the equation of motion for a scalar field with a potential term is described by the
Klein-Gordon equation:

2φ =
∂V

∂φ
(1.85)

where the box operator is defined as [22]:

2φ =
1√−g∂µ

(√−ggµν∂νφ
)
. (1.86)

We thus obtain the equation of motion for φ0:

φ̈0 + 3
ȧ

a
φ̇0 = −∂V

∂φ
. (1.87)

Note that the second term in eq. (1.87) represents a sort of friction term and it is the
real difference between the Minkowski and FRW metric.

Let us now define some important model-independent parameters that are useful
to describe different models of inflation. We have already seen the condition expressed
in eq. (1.82) and, from eq. (1.84), we also note that it is extremely important to have
a potential that is almost constant; only in this way inflation will have an end. The
variation of a generic quantity g in an expanding universe with scale factor a(t) can be
estimated by the parameter

εg =
d log g

d log a
=

ġ

Hg
(1.88)

which gives a measure of the variation of g with respect to the expansion of the universe.
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Thus, it is possible to make the same exact definition for the Hubble parameter, ob-
taining:

ε = − Ḣ

H2
, (1.89)

being ε the first slow-roll parameter. Let us note that:

Ḣ =
ä

a
−
(
ȧ

a

)2

=
ä

a
−H2

therefore

ä = aH2

(
1 +

Ḣ

H2

)
.

Since, in the case of an accelerated expansion, we have ä > 0, then

− Ḣ

H2
< 1.

The physical meaning is that the Hubble parameter must vary slower than its squared
valued and, for a quasi-De Sitter universe we actually require that

− Ḣ

H2
� 1

i.e.

ε� 1. (1.90)

This condition has been found without any constraint on the theory of inflation, nor
on the potential. Actually the condition (1.90) can be translated into the potential of
the scalar field using the Friedmann equations. In fact deriving w.r.t. time equation
(1.14), using eq. (1.79) and (1.87) we see that the condition ε � 1 corresponds to
1
2
φ̇2

0 � V .
The other important topic we need to address is the duration of inflation. In order

to solve the horizon and the flatness problem, it can be shown that the number of
e-folds N must be around N ∼ 60−70 [13]. Furthermore, the Hubble parameter must,
during this period, remains almost constant. This is equivalent to ask that ε varies vary
slowly. Let us define dN = d ln a = Hdt, then we can define the second slow-roll
parameter we are looking for as:

η ≡ dlnε

dN
=

ε̇

Hε
(1.91)

asking again that it holds:

η � 1. (1.92)
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This condition corresponds to [22]

φ̈� 3Hφ̇. (1.93)

We can furthermore introduce two more parameters, εV and ηV , which take into
account also the form of the potential:

εV =
M2

Pl

2

(
V
′

V

)2

, (1.94)

ηV = M2
Pl

V
′′

V
, (1.95)

where MPl is the Planck mass. This last condition can be rewritten as

ηV =
1

3

V ′′

H2
(1.96)

where V ′ ≡ ∂V
∂φ

.
Let us note that, in the slow-roll approximation, it is easy to demonstrate that

ε ' εV ,

η ' ηV − εV .
(1.97)

So far we do not have measurements of the slow-roll parameters; however, through the
Planck measurements, we are able to set bounds on their value [18]:

εV < 0.0097, (1.98)

ηV = −0.010+0.0078
−0.0072. (1.99)

1.4.3 Reheating Phase

Surely inflation cannot proceed forever as it has to stop at some time. The great
successes of the Hot Big Bang model (such as primordial nucleosynthesis and the origin
of the CMB) require a mechanism that allows the transition from the inflationary period
to the standard FLRW universe dominated first by radiation and then by matter. This
process is called reheating. Since the condition we asked to have inflation is ε, |η| � 1,
when ε, |η| → 1 the potential that drives inflation is not flat as it was before, and
inflation can come to an end. Let us take a simple example. If the potential is of the
form given in Fig. (1.6), then, expanding the potential around its minimum at the
point σ, we see that the scalar field acquires a mass and starts oscillating

V ′(φ) ' V ′(σ) + V ′′(σ)φ = 0, (1.100)

with V ′(σ) = 0.
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The equation of motion for the scalar field becomes

φ̈+ 3Hφ̇+ V ′′(σ) = 0. (1.101)

This is the standard evolution equation for an oscillating field in an expanding universe.
In this example one possible mechanism of reheating is that, while oscillating, the
fields starts decaying into light and relativistic particles, giving rise to the radiation
dominated epoch. To take into account this effect we add a new term in the equation
of motion:

φ̈+ (3H + Γφ) φ̇+ V ′(φ) = 0 (1.102)

where Γφ stands for the decay rate of the inflaton. We can rearrange this expression
and obtain [20]

ρ̇φ + (3H + Γφ) ρφ = 0. (1.103)



Chapter 2

Cosmological Perturbation Theory

2.1 Cosmic Microwave Background and Cosmological
Perturbations

In the previous chapter we have illustrated a universe described by the FLRW metric,
eq. (1.1). This metric, however, holds only as a first approximation, as we do see
inhomogeneities both in the CMB and in the matter distribution of the present uni-
verse. One of the most powerful predictions of models of inflation is the production
of perturbations due to quantum oscillations of the scalar field around the background
value. Therefore we are now interested to see what happens, in the context of General
Relativity, in perturbing the scalar field and the metric.

2.1.1 Quantum Fluctuations During Inflation

From the Einstein equations we know that to perturb the metric tensor means also to
perturbe the stress-energy tensor and vice versa. This is why, besides the perturbation
of the scalar field, we are interested in the perturbation of the metric. Let us point
out the fact that we are assuming the universe isotropic and homogeneous in a FLRW
spacetime. This means that the scalar field and the metric tensor can be decomposed
into a homogeneous background and inhomogeneous perturbation. Hence, we can
write:

T (t,x) = T0(t) + δT (t,x). (2.1)

We may also want to expand the perturbation as a power series in the following way:

δT (t,x) =
∞∑

n=1

λn

n!
δTn(t,x), (2.2)

where we introduced the small parameter λ and the subscript n that indicates the
order of the perturbation.

23
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Since the perturbations are small, namely |δT | �|T0|, expanding the Einstein equations
at linear order in perturbations is already a good approximation of the full non-linear
solution:

δGµν = 8πGδTµν . (2.3)

Metric Perturbations We will start by perturbing the left hand side of equation
(2.3), and we are interested in what happens to the metric. We can perturbe the metric
(FRW) using the following decomposition (note that we are using conformal time τ)
[15]:

g00 = −a2(τ) [1 + 2Ψ(τ,x)] = −a2(τ)

[
1 + 2

∞∑

r=1

Ψ(r)(τ,x)

]
, (2.4)

g0i = gi0 = a2(τ)ωi(τ,x) = a2(τ)
∞∑

r=1

ω
(r)
i (τ,x)

r!
, (2.5)

gij = a2(τ) [(1− 2Ψ(τ,x))δij + hij(τ,x)]

= a2(τ)

{[
1− 2

∞∑

r=1

Φ
(r)
i (τ,x)

r!

]
δij +

∞∑

r=1

h
(r)
ij (τ,x)

r!

}
(2.6)

The functions Ψ(r), ω(r), Φ(r) and h
(r)
ij are the rth-order perturbations of the metric;

h
(r)
ij is a transverse and traceless tensor:

∂ihij = 0, (2.7)

hii = 0. (2.8)

We will consider, from now on, only the linear case, that is r = 1. We can decompose
the metric and the stress-energy perturbations into independent scalar, vector and
tensor degrees of freedom, i.e. into objects that have well-defined transformations
under spatial rotations [15]. This is useful because, at the linear order, the dynamics
of the different degrees of freedom is uncoupled.
We can exploit the Helmoltz theorem; each vector can be decomposed into a solenoidal
and a longitudinal part:

ωi = ∂iω
|| + ω⊥i . (2.9)

ω⊥i is called solenoidal because ∂iω⊥i = 0.
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The traceless perturbation of gij can be decomposed in a similar fashion:

hij = Dijh
|| + ∂ih

⊥
j + ∂jh

⊥
i + hTij (2.10)

where h|| is a scalar function, h⊥i is a solenoidal vector field and the tensor part hTij is
symmetric, solenoidal and traceless; D instead is Dij = ∂i∂j − δij∇2/3 .

Matter Perturbations Now we take a look at the right hand side of eq. (2.3), the
matter perturbations. It can be shown that, for a generic fluid, the stress-energy tensor
can be written in the following way [12]:

Tµν = (ρ+ p0)uµuν + p0gµν + Πµν (2.11)

which is a generalization of eq. (1.11). It is important to note that it has been added
a new term, Πµν , the anisotropic stress tensor, constrained as uνΠµν = Πµ

µ = 0. In the
cases of a minimally coupled field or a perfect fluid such a term vanishes. Perturbing
eq. (2.11) and decomposing each physical quantity according to its transformation
properties, the first-order components of the stress-energy tensor can be written as
[21]:

T 0
0 = −ρ0 + δρ, (2.12)

T ii = 3(p0 + δp) = 3p0(1 + ΠL), (2.13)

T 0
i = T i0 = 0, (2.14)

T ij = p0

[
(1 + ΠL)δij + Πi

T,j

]
, (2.15)

where we have neglected vector perturbations. We interpret ΠL as the amplitude of
an isotropic pressure perturbation and therefore ΠT is interpreted as the amplitude of
an anisotropic stress perturbation, practically imperfections of the fluid.

Scalar Field Perturbations We consider now the perturbation of the scalar field,
given in eq. (1.75), on a FRW background metric. Let us point out the fact that,
rigorously, we should perturb, besides the scalar field, the background metric as well.
We will see this later on.

Since the field has explicit dependence on space coordinates, the equation of motion
(1.85) now becomes:

φ̈(x, t) + 3Hφ̇(x, t)− a−2∇2φ(x, t) = −∂V
∂φ

(2.16)



26 Chapter 2. Cosmological Perturbation Theory

Now we perturb it to the first order and we assume eq. (1.87) still valid for the
background, thus obtaining the equation of motion for the perturbation δφ(x, t):

δφ̈+ 3Hδφ̇− ∇
2δφ

a2
= −∂

2V

∂φ2
δφ (2.17)

To find a general solution of eq. (2.17) we perform a Fourier transform of δφ(x, t):

δφ(x, t) =

∫
d3keikxδφk, (2.18)

where δφk = δ̃φ(k, t). In the Fourier space the equation becomes:

δφ̈k + 3Hφ̇k +
k2δφk

a2
= −V ′′δφk (2.19)

Equation (1.96) is equivalent to say that the mass of the field is negligible: m2
φ = V ′′ '

0. Therefore eq. (2.19) now is:

δφ̈k + 3Hφ̇k +
k2δφk

a2
= 0. (2.20)

It is interesting to see the behavior of this equation in two different regimes.
In the small-scale regime, λphys � H−1, the wavelenght is much smaller than the
hubble radius (k2 � a2H2), so that the second term is negligible:

δφ̈k +
k2δφk

a2
= 0. (2.21)

Equation (2.21) is the equation of an harmonic oscillator with frequency amplitude

ωa =
k2

a2

that decreases with time. This means that, on small scale, the field fluctuates around
its vacuum value φ0.
In the large-scale regime, λphys � H−1, we have:

δφ̈+ 3Hδφ̇ = 0 (2.22)

which has exact solution:

δφ = ae−3Ht + b

where a and b are constants. Thus, after a short time (t ' (3H)−1), the perturbation
stays constant; the perturbation is said to be frozen at the value it has while crossing
the Hubble horizon.
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2.1.2 Power Spectrum

Now we want to introduce an important tool used in cosmology, the Power Spectrum.
In order to do so, we consider a cosmic scalar field such as the cosmic density field (δ(x))
or the velocity divergence field (θ(x)) or the cosmic gravitational potential (Φ(x)) and
so on (see Sec. 2.3.1 for definitions of these fields).
We will assume that cosmic fields are statistically homogeneous and isotropic, as pre-
dicted by most cosmological theories. This means that all the probability distribution
functions of the field of interest stay the same under translation of coordinates and
under spatial rotations.
First thing to do, we define the Fourier transform. The convention we will adopt in
this work for the Fourier transform of a field A(x, τ) is the following:

Ã(k, τ) =

∫
d3x

(2π)3
e−ik·xA(x, τ). (2.23)

The two-point correlation function, instead, is defined as the joint ensemble average of
the density at two different locations, i.e.

ξ(r) = 〈δ(x)δ(x + r)〉 (2.24)

which depends only on the absolute value of r because of statistical homogeneity and
isotropy. Here we use 〈·〉 to indicate ensamble average (this concept will be better
explained in Chapter 3). The density contrast δ(x) is usually written in terms of its
Fourier components,

δ(x) =

∫
d3kδ(k)eik·x (2.25)

the quantities δ(k), then, are complex random variables. Since δ(x) is real, it follows
that

δ(k) = δ?(−k). (2.26)

Thus, the density field is determined entirely by the statistical properties of the random
variable δ(k) and we can compute the correlator in Fourier space,

〈δ(k)δ(k′)〉 = 〈
∫

d3x
(2π)3

δ(x + r)e−ik·(x+r)

∫
d3r

(2π)3
δ(x)e−ik

′·x〉

=

∫
d3x

(2π)3

∫
d3r

(2π)3
〈δ(x)δ(x + r)〉e−i(k+k′)·x−ik·r

=

∫
d3x

(2π)3

∫
d3r

(2π)3
ξ(r)e−i(k+k′)·x−ik·r

= δD(k + k′)
∫

d3r
(2π)3

ξ(r)e−ik·r

(2.27)
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leading to

〈δ(k)δ(k′)〉 = δD(k + k′)P (k) (2.28)

where we have defined the density Power Spectrum

P (k) =

∫
d3r

(2π)3
ξ(r)e−ik·r (2.29)

which is, indeed, an essential and efficient tool used in cosmology to characterize the
properties of field perturbations. The inverse relation between the two-point correlation
function and the power spectrum thus is

ξ(r) =

∫
d3kP (k)eik·r (2.30)

meaning that, basically, the Power Spectrum is the Fourier transform of the two-point
correlation function.
Additionally, we can define the dimensionless power spectrum ∆(k) in the following
way:

〈δ(k)δ(k′)〉 =
1

4πk3
δD(k + k′)∆(k). (2.31)

The ∆ power spectrum measures the amplitude of the fluctuations at a given mode k.
We see, indeed, that P (k) and ∆(k) are correlated:

∆(k) = 4πk3P (k). (2.32)

Furthermore we can easily see that:

〈δ2(x)〉 =

∫
dk

k
∆(k) =

∫
d(log k)∆(k). (2.33)

What eq. (2.33) is telling us is that ∆(k) is the contribution to the variance per unit
logarithmic interval in wave number k.
A new physical quantity we now introduce is the spectral index:

ns(k)− 1 =
d log ∆(k)

d log k
(2.34)

which is useful to describe the slope of the power spectrum. In general ns depends on
the considered scale (ns = ns(k)); if it is constant, then:

∆(k) = ∆(k0)

(
k

k0

)ns−1

. (2.35)

We call k0 pivot scale; moreover, when the spectral index is exactly equal to unity the
power spectrum of the field is scale invariant and gets the name of Harrison-Zel’dovich
power spectrum.
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Now we proceed in quantizing the scalar field with the standard second quantization
procedure. We do this because we are interested to specify the form the power spectrum
assumes in a general case, when the stochastic field is a canonically quantized scalar
field that lives in a curved space time, as the inflaton is. We introduce the physical
perturbation δ̂φ = aδφ and promote the field into an operator:

δ̂φ(τ,x) =
1

(2π)3

∫
d3k

[
uk(τ)ake

ikx + u∗k(τ)a†ke
−ikx

]
(2.36)

where uk and u∗k satisfy the canonical commutation relations u∗ku
′
k − uku

′∗
k = −i by

[ak, ak’] = 0,
[
ak, a

†
−k′

]
= δD(k + k′). (2.37)

From eq. (2.36) and (2.37) we get:

〈δφk1
δφk2
〉 =
|uk|2
a2

δD(k1 + k2) (2.38)

which leads to the following dimensionless power spectrum

∆δφ(k) = 4πk3|δφk|2. (2.39)

2.1.3 Scalar Perturbations in Curved Spacetime

Now we will deal with scalar perturbations in curved space time, namely we will perturb
not only the scalar field but also the background metric. We will just present some
brief results, following [21] and references therein. For a detailed study see [23]. We
need a gauge-invariant quantity which univocally describes scalar perturbations. We
work in a space time described by the metric (2.4) perturbed at first order. Hence,
let us consider the intrinsic spatial curvature on hyper-surfaces of constant conformal
time at linear order, namely:

(3)R =
4

a2
∇2Φ̂ where Φ̂ ≡ Φ +

1

6
∇2χ||. (2.40)

Φ̂ is usually referred to as the curvature perturbation, however it is not a gauge-
invariant quantity [21]. So we need a gauge-invariant combination that reduces to the
curvature perturbation choosing a particular gauge. Thus, let us consider the following
expression (H ≡ d log a/dτ):

− ζ ≡ Φ̂ +Hδρ
ρ′
. (2.41)

The quantity (2.41), considering the Φ̂ transformation and the gauge transformation
for scalars, is gauge-invariant and it is referred to as the gauge-invariant curvature
perturbation of the uniform energy-density hyper-surfaces.
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It is possible to keep track of the evolution of ζ exploiting the perturbed Kleing-Gordon
equation for the field φ from the action (1.71):

δφ′′ + 2Hδφ′ −∇2δφ+ a2δφ
∂2V

∂φ2
a2 + 2Ψ

∂V

∂φ
− φ′′0

(
Ψ′ + 3Φ′ +∇2ω||

)
= 0. (2.42)

To simplify the equation of motion it is useful to introduce a new variable, the so called
Sasaki-Mukhanov gauge-invariant variable:

Qφ ≡ δφ+
φ′

HΦ. (2.43)

It can be shown that ζ and Qφ are linked. Thus, solving equation of motion for Qφ
means to solve it for ζ and to find its power spectrum. In fact, let us introduce the
field Q̂φ = aQφ, then the Klein-Gordon equation reads:

Q̂′′φ +

(
k2 − a′′

a
+M2

φa
2

)
Q̂φ = 0 (2.44)

where

M2
φ =

∂2V

∂φ2
− 8πG

a3

(
a3

H
φ2

)
. (2.45)

In the slow-roll approximation the latter expression reduces to M2
φ/H

2 = 3η − 6ε.
Moving to Fourier space, the solution of (2.44) is a combination of the Hankel functions
of the first and the second order which, at the lowest order in the slow-roll parameters
and for super-horizon scales, are approximated by:

|Qφ(k)| = H√
2k3

(
k

aH

)3/2−νφ
, (2.46)

where νφ ' 3
2

+ 3ε − η. In order to obtain the ζ power-spectrum we consider the
gauge-invariant curvature perturbationon comoving hyper-surfaces which, in the case
of a stress-energy tensor of a single scalar field, is:

R ≡ Φ̂ +
H
φ′
δφ. (2.47)

From eq. (2.43) we derive R = HQφ/φ′. Also, R is related to the curvature perturba-
tion ζ by

− ζ = R+
2ρ

9(ρ+ P )

(
k

aH

)2

Ψ. (2.48)

On large scales (k � aH) we can approximate this relation to R ' −ζ.
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Therefore, putting eq. (2.46) and the expression of R into the expression (2.39), we
finally obtain the power spectrum for ζ on large scales:

∆ζ = 2π

(
H2

φ̇

)2(
k

aH

)3−2νφ

' 2π

(
H2

φ̇

)2

∗
(2.49)

where the star denotes quantities evaluated at k = aH, namely the epoch at which
a given mode leaves the horizon. Equation (2.49) tells us that curvature perturba-
tions remain time-independent on super horizon scales. This means that the solution
obtained for ζ is valid throughout different evolution eras of the universe until the
mode remains super horizon. As we shall see, the same behavior occurs for tensor
perturbations. At the lowest order in slow-roll approximation, the spectral index is:

nζ − 1 = 3− 2νφ = −6ε+ 2η. (2.50)

2.1.4 Inflationary Consistency Relations

Let us define the spectral index for the tensor perturbation as

nh =
d log ∆h(k)

d log k
(2.51)

which we know it holds that nh = −2ε < 0. In this case the power spectrum is called
red, whereas in the case of nh > 0 it is called blue.
There is an interesting relation that holds in this inflationary scenario. As we have
already seen we can write the scalar and tensor power spectra as follows:

∆ζ(k) = AS

(
k

k0

)nζ−1

∆h(k) = AT

(
k

k0

)nh . (2.52)

AS and AT are the amplitudes of the power spectra at the pivot scale k0. We define
the tensor-to-scalar ratio as:

r ≡ AT
AS

. (2.53)

During inflation it holds that Ḣ = −4πGφ̇2 and also that ε = −Ḣ/H2 (eq. (1.89)).
Moreover we know:

AS = 2π

(
H2

φ̇

)2

and AT = 32

(
2πH

MPl

)2

.

Hence, we obtain:

r = 16ε (2.54)
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which is a general prediction of the inflationary models. We can equivalently re-write
it in the following way:

r = −8nh. (2.55)

These relations are called (inflationary) consistency relations because they connect
three different parameters and hold for each single field slow-roll model of inflation.
In order to probe this equality it is necessary to perform a measurement of the tensor
power spectrum (both the amplitude and the spectral index). Moreover, if this relation
holds, it means that it would be hard to measure any scale dependance of the tensors,
since a large spectral index would invalidate the consistency relation. Right now we
only have an upper bound on the tensor-to-scalar ratio [18]: r0.002 < 0.07 at 95% CL,
assuming the consistency relations, where the subscript stands for the pivot scale, equal
to 0.002 Mpc−1.

2.1.5 CMB Power Spectrum

Let us introduce a formalism useful to link together the primordial matter perturbations
and the anisotropies of the CMB. As a general process, what we can do is to parametrize
the temperature field, which depends on conformal time, position and direction of the
photon momentum:

T (τ,x, p̂) = T0(τ) + ∆T (τ,x, p̂) = T0(τ)(1 + Θ(τ,x, p̂)), (2.56)

where T0 represents the black-body temperature of the background, whereas Θ ≡
∆T/T is the temperature perturbation field. The only fundamental dependence of
the perturbation field is the momentum direction p̂. Therefore, we need to study the
evolution of the photon distribution function in an expanding universe by means of the
Boltzmann equation

L[f ] = C[f ] (2.57)

where the Liouville operator, in a general metric, reads [20]:

L = pµ
∂

∂xµ
− Γρµνp

µpν
∂

∂pρ
. (2.58)

The right hand side of eq. (2.57) is the collision operator, which contains all possible
collision terms of the particle species we are considering. Since, as far as it concerns this
particular section, we are interested in photons, we need to understand all the possible
interactions among photons and all the other components of the universe. It is known
that CMB radiation is a black-body radiation, that leads to a one-to-one relation
between temperature and momentum of the photon. Thus, using the temperature
perturbation field, we can describe the variation in energy for the photons.
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We introduce the multipole expansion of the temperature perturbation

Θ(k, p̂) =
∞∑

l=1

(−i)l(2l + 1)Pl(p̂)Θl(k) (2.59)

where Pl are the solutions of the Legendre differential equation, i.e. Legendre polyno-
mials. If we invert the latter relation we obtain the definition of each multipole:

Θl ≡
1

(−i)l
∫ 1

−1

dµ

2
Pl(µ)Θ(µ). (2.60)

It is clear, then, what the various l-values mean: l = 0 stands for the monopole (a
constant pertubation), l = 1 the dipole perturbation, l = 2 the quadrupole, and so
forth.

We proceed now in briefly sketching the connection between theoretical multipoles
(Θl) and the observation of the CMB. First, we decompose the temperature perturba-
tion field throughout spherical harmonics:

Θ(τ,x, p̂) =
∞∑

l=1

+l∑

m=−l
alm(τ,x)Ylm(p̂). (2.61)

Eq. (2.61) is equivalent to a Fourier transform on the surface of a sphere: l,m are the
conjugate to the real space of p̂ and Ylm(p̂) are the complete set of eigenfunctions for
the expansion on the surface of a sphere. Moreover, the coefficients alm play a key role
in cosmology, since they contain information about the temperature perturbation field.
What is the connection between alm and Θl?
Using the orthogonality property of spherical harmonics

∫

Ω

dΩYlm(p̂)Y ∗l′m′(p̂) = δll′δmm′ , (2.62)

we can invert relation (2.61) multiplying it by Y ∗lm(p̂) and integrating over the solid
angle

alm(τ,x) =

∫
dΩY ∗lm(p̂)Θ(τ,x, p̂) =

∫
d3keikx

∫
dΩY ∗lm(p̂)Θ(τ,k, p̂) (2.63)

where in the second equality we have used the Fourier transform of the temperature
perturbation field, since all the solution are in momentum space. Considering that alm
is a stochastic field, it holds that 〈alm〉 = 0 and we define the variance:

〈alma∗l′m′〉 = δll′δmm′Cl. (2.64)

Let us note that, given a certain l, each alm has the same variance. This means
that, for large l, when we measure all the possible alm coefficients we are sampling
the distribution, i.e. this much information will give a good handle on the underlying
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Figure 2.1: Angular power spectrum of CMB temperature fluctuations, taken from [18]. In the
figure it is plotted DTT

l ≡ l(l+ 1)Cl/(2π), because at large scales (small l) the dominant effect is the
so called Sachs-Wolfe effect [13], which predicts l(l + 1)Cl ' const.

variance of the distribution. For low l, instead, we do not have much information
about the variance. This fundamental uncertainty in the low-l variances is called
cosmic variance.
Finally, following [13] we can find the expression of Cl in terms of Θl:

Cl =
2

π

∫ ∞

0

dkk2Pdm(k)

∣∣∣∣
Θl(k)

δdm(k)

∣∣∣∣
2

. (2.65)

where PDM is the dark matter power spectrum and δdm the Dark Matter overdensity.
Therefore, using the Boltzmann equation, it is possible to plot the anisotropy spectrum
today, as depicted in fig. (2.1).
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2.2 Baryon Acoustic Oscillations
In this section we will analyze a very important feature of the universe which comes
directly from the fluctuations mechanism: the Baryon Acoustic Oscillations (BAO).
The BAO’s are frozen relics left over from the pre-decoupling universe [24]. As we
have already mentioned in Sec. 1.3, before recombination and decoupling the universe
consisted of a hot plasma of photons and baryons which were tightly coupled via
Thomson scattering. The plasma was almost homogeneous, but there were slight over-
and under-densities spread throughout. These small density variations, because of
competing forces of radiation pressure and gravity, caused pressure variations in the
radiation field and this made sound waves propagate across the photon fluid.
Now we consider just a single, spherical density perturbation in the tightly coupled
baryon-photon plasma of a very early universe; this perturbation will propagate out-
wards as, indeed, an acoustic wave with a speed

cs =
c√

3(1 +R)
(2.66)

where [25]

R ≡ 3ρb
4ργ
∝ Ωb

1 + z
. (2.67)

Up until recombination (z ∼ 1200), the baryons and the photons rush away from the
center of the density perturbation together, precisely because they are tightly coupled
together. Meanwhile, the dark matter spreads out much more slowly. This is because
it is not electromagnetically coupled to the photons. It only interacts gravitationally,
and so it only follows slowly behind in response to the gravitational drag of the photon-
baryon component. Then, the cosmos becomes neutral and the pressure on the baryons
is removed. The baryon wave stalls while the photons freely propagate away forming
the Cosmic Microwave Background. The characteristic radius of the spherical shell
formed when the baryon wave stalled is imprinted on the distribution of the baryons
as a density excess. The baryons and dark matter interact through gravity, and so
the dark matter also gathers on this scale. Therefore, there is an increased probability
that a galaxy will form somewhere in the higher density remains of the stalled baryon
wave than either side of the shell. This entire process is well depicted in Fig. (2.2).
If a galaxy had formed at the center of the initial density perturbation there would be
a higher probability of finding two galaxies separated by the distance rs, with rs the
radius of our spherical cell. This translates into a bump in the two-point correlation
function at the radius rs. The scale rs is close to the sound horizon, the comoving
distance a sound wave could have traveled in the photon-baryon fluid by the time of
decoupling, and depends on the baryon and matter densities via [26]:

rs =

∫ ∞

zrec

cs
H(z)

dz =
1√

ΩmH2
0

2c

3zeqReq

log

[√
1 +Rrec +

√
Rrec +Req

1 +
√
Req

]
(2.68)



36 Chapter 2. Cosmological Perturbation Theory

where

zeq =
Ωm

Ωrad

(2.69)

is the redshift of matter-radiation equality and “rec” refers to recombination. The CMB
strongly constrains the matter and baryon densities at decoupling and hence the sound
horizon [27]:

rs = 146.8± 1.8 Mpc. (2.70)

Obviously, the universe did not begin with a single point-like over-density but
actually variations in the density existed everywhere. Thus, from each point of space, a
spherical shell of BAO started growing, each one with a different amplitude. Therefore,
the final density distribution is a linear superposition which, in real space approach to
cosmic perturbations based on Green’s functions, can be made rigorous, see [28]. We
show this in Fig. (2.3).
Hence, also looking at Fig. (2.3), it is clear that there is a preferred scale, that is
the sound horizon rs. This, incidentally, is the reason why the BAO matter clustering
provides a standard ruler for lenght scale.
As we have already said, one method of extracting a statistical scale from the cluster-
ing of galaxies is using the two-point correlation function, ξ(r), which quantifies the
excess clustering on a given scale relative to a uniform distribution with the same mean
density [24].
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Fig. 1.10. Snapshots of an evolving spherical density perturbation – the radial
mass profile as a function of comoving radius for an initially point-like overdensity located
at the origin. The perturbations in the dark matter (black curve), baryons (blue curve),
photons (red) and neutrinos (green) evolve from early times (z = 6824, top left) to long
after decoupling (z = 10, bottom right). Initially the density perturbation propagates
through the photons and baryons as a single pulse (top left-hand panel). The drag of the
photons and baryons on the dark matter is visible in the top right panel; the dark matter
only interacts gravitationally and therefore its perturbation lags behind that of the tightly
coupled plasma. During recombination, however, the photons start to “leak” away from the
baryons (middle left panel); and once recombination is complete (z = 470, middle right)
the photons freely steam away leaving only a density perturbation in the baryons around
150Mpc, and a dark matter perturbation near the origin. In the bottom two panels we see
the how the gravitational interaction between the dark matter and the baryons affects the
peak: dark matter pulls the baryons to the peak in the density near zero radius, while the
baryons continue to drag the dark matter overdensity towards the 150Mpc peak (bottom
left), finally yielding a peak in the radial mass profile of the dark matter at the scale set
by the distance the baryon-photon acoustic wave could have travelled in the time before
recoupling. Figure taken from Eisenstein et al. (50).

Figure 2.2: We show snapshots of an evolving spherical density perturbation. We have located at
the origin an initially point-like overdensity, and the radial mass profile as a function of comoving
radius is depicted. The perturbation grows from very early times (z = 6824, top left) to more recent
time (z = 10, bottom right). At the beginning (z = 6824), the density perturbation propagates
through the photons and baryons all together dragging along the dark matter distribution (z = 1440).
During recombination, however, the photons start to stream away from the baryons (z = 848).
As recombination is completed (z = 470) the photons freely stream away leaving only a density
perturbation in the baryons around 150 Mpc, and a dark matter perturbation near the origin. Finally,
we see how the gravitational interaction between dark matter and baryons affects the peak: dark
matter pulls the baryons to the peak in the density near zero radius, while the baryons continue to
drag the dark matter overdensity towards the 150 Mpc peak (z = 79). In the very last snapshot we
see that dark matter and baryons finally have come to equilibrium, with neutrinos and photons that
have almost "disappeared". Figure taken from [25].
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Figure 2.3: Expanding over- and under-densities shells, around time of recombination. Only photon
densities are shown, without the dark matter or baryons. In the first panel only one perturbation is
present whereas 150 shells are present in the second panel and 1000 in the third. As the number of
shells becomes appreciable (490000 shells in the last panel), no single shell can be distinguished, but
the resulting patterns do have a size that is roughly the size of the 150 Mpc shells. Figure taken from
[29].
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with r0 ∼ 5h−1Mpc−1.

A characteristic scale in the clustering of galaxies will appear as a peak or dip

in the correlation function, depending on whether there is an excess or deficiency

of clustering at that scale. Any characteristic features will also be present in the

power spectrum, since the correlation function and power spectrum (we consider

for simplicity the simple 1-dimensional spherically averaged power spectrum) form

a Fourier pair:

P (k) =

∫ ∞

−∞
ξ(r) exp(−ikr)r2dr . (1.15)

We will now see how features in the two functions are related. A δ function at

a characteristic scale, say r∗, in ξ(r) will result in power spectrum oscillations,

P (k) ∝ e−ikr∗ , as can be seen in Figure (1.8). These are the Baryon Acoustic

Oscillations.
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Fig. 1.8. Schematic illustration of the Fourier pairs ξ(r), P (k). A sharp peak in the corre-
lation function (left panel) corresponds to a series of oscillations in P (k) (right panel). The
Baryon Acoustic Peak in the correlation function will induce characteristic Baryon Acoustic
Oscillations in the power spectrum.

These characteristic oscillations are powerful probes of dark energy. If we used only

the radial Fourier modes we would obtain a measurement of H(z) while the purely

transverse modes yield a pure measurement of dA(z). If we limited ourselves to just

the purely radial and transverse modes we would be throwing away a large number

of modes (and hence information) since most Fourier modes are not purely radial

or transverse of course, but rather contain components of both. As a result, the

measurements of H(z) and dA(z) from actual BAO surveys are actually partially

anti-correlated and hence not independent. This anti-correlation actually leads to

stronger cosmological constraints than an uncorrelated analysis would suggest, as

described in (98).

A nice example of their sensitivity and the issues involved in using BAO for pa-

Figure 2.4: Schematic illustration of the Fourier pairs ξ(r), P (k). A sharp peak in the correlation
function (left panel) corresponds to a series of oscillations in P (k) (right panel). The Baryon Acoustic
Peak in the correlation function will induce characteristic Baryon Acoustic Oscillations in the power
spectrum. Figure taken from [24].

The correlation function of galaxies is approximately described by a power law [30],

ξ(r) ∝
(r0

r

)γ
(2.71)

with r0 ∼ 5h−1Mpc−1.
A characteristic scale in the clustering of galaxies will appear as a peak (or a dip) in
the correlation function, depending on whether there is an excess or a lack of clustering
at that given scale. What is also important is that any characteristic feature will also
be present in the power spectrum, since, as we can tell from eq. (2.29)

P (k) =

∫
d3r

(2π)3
ξ(r)e−ik·r

the correlation function and power spectrum are a Fourier pair. Thus, we are interested
in the power spectrum as well, because features in the two functions are related. A
δD function at a characteristic scale, say r?, in ξ(r) will result in power spectrum
oscillations, P (k) ∝ e−ikr? , as can be seen in Fig. (2.4). These kind of oscillations,
which come from the preferred scale at the sound horizon, are the Baryon Acoustic
Oscillations.
Figures (2.5) and (2.6) show the original evidence for the acoustic signature in the
correlation function and power spectrum respectively.
On general grounds, galaxies tend to form where the density of hydrogen and helium
is higher, because these locations gravitationally attract surrounding material, which
collapses until it starts forming stars, and this happened somewhere around z = 7− 8,
i.e., looking at the last plot of Fig. (2.2), when the density distribution of baryons and
dark matter are roughly coincident. This means that, around that redshift, the BAO
feature is still present.
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evidence for the acoustic signature in the correlation function and power spectrum.

Extracting the BAO scale from the matter power spectrum remains a thriving area

of research in contemporary cosmology, as we discuss later in Section 1.5 on current

and future BAO surveys.

Fig. 1.1. The Baryon Acoustic Peak (BAP) in the correlation function – the BAP is visible
in the clustering of the SDSS LRG galaxy sample, and is sensitive to the matter density
(shown are models with Ωmh2 = 0.12 (top), 0.13 (second) and 0.14 (third), all with
Ωbh

2 = 0.024). The bottom line without a BAP is the correlation function in the pure
CDM model, with Ωb = 0. From Eisenstein et al., 2005 (52).

1.1.2 Cosmological Observables

We now discuss the relevant cosmological observables that are derived from standard

rulers in general, and the BAO in particular. The Baryon Acoustic Oscillations in

the radial and tangential directions provide measurements of the Hubble parameter

and angular diameter distance respectively. The Hubble parameter, H ≡ ȧ/a –

where a is the scale factor of the universe – can be written in dimensionless form

using the Friedmann equation as

E(z) ≡ H(z)

H0
=
√

Ωm(1 + z)3 + ΩDEf(z) + Ωk(1 + z)2 + Ωrad(1 + z)4 , (1.1)

where f(z) is the dimensionless dark energy density and Ωk = − k
H2

0a2 = 1 − (Ωm +

ΩDE + Ωrad) is the density parameter of curvature with Ωk = 0 corresponding to

a flat cosmos. Ωm,Ωrad are the matter and radiation densities with corresponding

equations of state wi ≡ pi/ρi = 0, 1
3 for i = m, rad respectively.

Figure 2.5: The Baryon Acoustic Peak (BAP) in the correlation function, from Sloan Digital Sky
Survey (SDSS) LRG galaxy sample. Note that the BAP is sensitive to the matter density (shown are
models with Ωmh

2 = 0.12 (top), 0.13 (second) and 0.14 (third), all with Ωbh
2 = 0.024). In fact, the

bottom line without a BAP is the correlation function in the pure CDM model, with Ωb = 0: in the
absence of baryons we would not have any peak. Figure taken from [31].
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Fig. 1.2. Baryon Acoustic Oscillations (BAO) in the SDSS power spectra – the BAP of the
previous figure now becomes a series of oscillations in the matter power spectrum of the
SDSS sample. The power spectrum is computed for both the main SDSS sample (bottom
curve) and the LRG sample (top curve), illustrating how LRGs are significantly more
biased than average galaxies. The solid lines show the ΛCDM fits to the WMAP3 data
(104), while the dashed lines include nonlinear corrections. Figure from Tegmark et al.,
2006 (106).

If one treats the dark energy as a barotropic fluid with an equation of state with arbi-

trary redshift dependence, w(z), the continuity equation can be directly integrated to

give the evolution of the dimensionless dark energy density, f(z) = ρDE/ρDE(z = 0),

via

f(z) = exp

[
3

∫ z

0

1 + w(z′)
1 + z′ dz′

]
. (1.2)

When we quote constraints on dark energy it will typically be in terms of the CPL

parameterisation (28, 71)

w(z) = w0 + wa
z

1 + z
, (1.3)

which has

f(z) = (1 + z)3(1+w0+wa) exp

{
−3wa

z

1 + z

}
. (1.4)

Much of the quest of modern cosmology is to constrain the allowed range of w(z) (or

f(z)) and hence use this to learn about physics beyond the standard model of parti-

cle physics and General Relativity. Apart from direct measurements of the Hubble

rate, one of the ways to constrain w(z) using cosmology is through distance mea-

surements. Core to defining distances in the FLRW universe is the dimensionless,

Figure 2.6: Baryon Acoustic Oscillations in the SDSS power spectra – the BAP of figure (2.5) now
becomes a series of oscillations in the matter power spectrum of the SDSS sample. In this graph, the
power spectrum is computed for both the main SDSS sample (bottom curve) and the Luminous Red
Galaxy (LRG) sample (top curve), illustrating how LRGs are significantly more biased than average
galaxies. The solid lines show the ΛCDM fits to the WMAP3 data [32], while the dashed lines include
nonlinear corrections. Figure taken from [33].
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Figure 1. Distribution of galaxies in the SDSS main galaxy sample. Only galaxies within ±1.25 deg of the celestial equator are shown.

roughly speaking, this method double-weights the galaxy that
was observed, but it retains the additional information present in
the angular position of the “collided” galaxy. As shown in Z05,
this treatment works remarkably well for projected statistics
such as wp(rp), above the physical scale corresponding to 55′′

(rp ≈ 0.13h−1 Mpc at the outer edge of our sample). We thus
limit the measurements in this paper to scales larger than that.
The median deviation of wp(rp) for the range of separations
we utilize is 0.2%, much less than the statistical errors on the
measurements (Figure 3 in Z05). It is, in fact, possible to correct
for fiber collisions down to scales as small as 0.01h−1 Mpc
using the ratio of small-angle pairs in the spectroscopic and
photometric catalogs (Masjedi et al. 2006; Li et al. 2006; Li &
White 2009), but we have not implemented this technique here.
The clusteringmeasurements in this paper are based on SDSS

DR7 (Abazajian et al. 2009), which marks the completion of the
original goals of the SDSS and the end of the phase known as
SDSS-II. The associated NYU Value-Added Galaxy Catalog
(NYU-VAGC)15 includes approximately 700,000 main sample
galaxies over about 8000 deg2 on the sky. This data set can be
compared to the much smaller sky coverage of the samples in
previous correlation function analyses of the SDSS main galaxy
sample: Zehavi et al. (2002) used an early sample of∼700 deg2,
and Z05 analyzed a sample of about 2500 deg2. The contiguous
northern footprint of DR7 offers further advantage over earlier
data sets by reducing boundary effects. Figures 1–3 show the

distribution of the main sample galaxies in right ascension and
redshift for slices near the celestial equator. These plots nicely
illustrate the large-scale structure we aim to study using the two-
point correlation function as well as the potential dependencies
on galaxy properties. Diagrams that show contiguity of structure
over multiple SDSS slices appear in Choi et al. (2010), who
analyze the topology of large-scale structure in the DR7 main
galaxy sample.
Throughout this paper, we refer to distances in comov-

ing units, and for all distance calculations and absolute
magnitude definitions we adopt a flat ΛCDM model with
Ωm = 0.3. We quote distances in h−1 Mpc (where h ≡
H0/100 km s−1 Mpc−1) and absolute magnitudes for h = 1.
Our correlation function measurements are strictly independent
of H0, except that the absolute magnitudes we list as Mr are
really values ofMr + 5 log h. Changing the assumed Ωm or ΩΛ
would have a small impact on our measurements by changing
the distance–redshift relation and thus shifting galaxies among
luminosity bins and galaxy pairs among radial separation bins.
However, even at our outer redshift limit of z = 0.25, the effect
of lowering Ωm from 0.3 to 0.25 is only 1% in distance, so
our measurements are effectively independent of cosmological
parameters within their observational uncertainties.
In order to work with well-defined classes of galaxies, we

study volume-limited samples constructed for varying lumi-
nosity bins and luminosity thresholds. While volume-limited

4

Figure 2.7: A two-dimensional slice of the map of the Universe obtained by the Sloan Digital Sky
Survey, only galaxies within ±1.25 deg of the celestial equator are shown. Figure taken from [34].

Let us point out, however, that the typical length-scale of a galaxy is around 0.03 Mpc,
much smaller than the BAO scale (150 Mpc). Thus, the structure within individual
galaxies is not affected at all by BAO but, on very large scales, the clustering of galaxies
is influenced by the BAO scale.
In Fig. (2.7) is shown the large-scale distribution of galaxies today. We can, therefore,
combine this image with Fig. (2.5) and see how the BAO feature is present when
looking at the correlation of the position of galaxies, therefore connecting the early
stages of the universe with the large-scale structure of the present-day universe.
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2.3 Newtonian Treatment of Perturbations
Understanding the large-scale structure of the universe has become a central issue of
cosmology. Gravitational instability surely plays a central role in forming the structures
we see in galaxy survey. Therefore, we need to learn a quantitative understanding of
the dynamics of gravitational instability in order to extract all the information stored
in galaxy clustering.
In this section, following [35], we will study the non-linear cosmological perturbation
theory, useful in interpreting results from galaxy surveys; this happens to be so because
density fluctuations become small enough at large scales (weakly non-linear regime)
that a perturbative approach can be adopted to understand their evolution.
As we have said numerous times, we are assuming a universe that is isotropic and homo-
geneous. The framework of Perturbation Theory, and therefore gravitation instability,
is based on the fact that gravity, at large scales, is the only agent responsible for the
structure formation in universe with density fluctuations dominated by dark matter.
This assumption is in very good agreement with observations of galaxy clustering. In
particular, the non-gravitational effects associated with galaxy formation may alter the
distribution of luminous matter compared to the dark matter one, especially at small
scales. This is called "galaxy biasing", and can be probed with statistical techniques
we will use in this work.

The most natural explanation for the large-scale structures (superclusters, walls,
filaments and so on) seen in galaxy surveys, is that they are the result of gravitational
amplification of small primordial fluctuations due to the gravitational interaction of
collisionless cold dark matter (CDM) particles in an expanding universe [36].
Even if the nature of dark matter is not entirely clear, all candidates for CDM particles
are extremely light compared to the mass scale of typical galaxies. The expected
number densities are around 1050 particles/Mpc3 [20]. In this limit the number of
particles is N � 1, therefore discreteness effects are negligible, and collisionless dark
matter obeys the Vlasov equation for the distribution function in phase space. Since
CDM particles are non-relativistic, at small scales, smaller than the Hubble radius, the
equations of motion reduce essentially to those of Newtonian gravity.

2.3.1 The Vlasov Equation

Now we consider a collection of particles of massm interacting in an expanding universe
via gravitational interaction. The equation of motion for a particle of velocity v at
position r reads:

dv
dt

= Gm
∑

i

ri − r
|ri − r|3 . (2.72)
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If we consider the limit of a large number of particles, we can recast the latter equation
in terms of a smooth gravitational potential caused by the particle distribution,

dv
dt

= −∂φ
∂r
, (2.73)

where we are indicating with φ the Newtonian potential generated by the mass density,
i.e.

φ(r) = G

∫
d3r′

ρ(r′)
|r′ − r| . (2.74)

We can write the Friedmann equation in terms of conformal time τ , and recast them
in the following way:

(Ωtot − 1)H2(τ) = k (2.75)

∂H(τ)

∂τ
= −Ωm(τ)

2
H2(τ) +

Λ

3
a2(τ) ≡

(
ΩΛ −

Ωm(τ)

2

)
H2 (2.76)

where let us remember that:

H(τ) ≡ 1

a(τ)

da(τ)

dτ
. (2.77)

We proceed with the definition of the density contrast δ(x), which is

ρ(x, τ) ≡ ρ̄(τ) [1 + δ(x, τ)] (2.78)

and where ρ̄(τ) indicates the background density. We also define the peculiar velocity
analogously

v(x, τ) ≡ Hx + u(x, τ) (2.79)

and the cosmological gravitational potential Φ as well:

φ(x, τ) ≡ −1

2

∂H
∂τ

x2 − Φ(x, τ) (2.80)

In particular, with this last definition, we can see that the only source of the gravita-
tional potential are the density fluctuations, meaning, in fact, that the Poisson equation
is:

∇2Φ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ). (2.81)

If now we choose

p = amu (2.82)
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we can rewrite eq. (2.73) in the following way:

dp
dτ

= −am∇Φ(x) (2.83)

Next, we define the particle number density in phase space by f(x,p, τ); phase-space
conservation implies:

df

dτ
=
∂f

∂τ
+
∂x
∂τ

∂f

∂x
+
∂p
∂τ

∂f

∂p
= 0 (2.84)

that is, the Vlasov Equation:

df

dτ
=
∂f

∂τ
+

p
ma
∇f − am∂f

∂p
= 0. (2.85)

This is the master equation from which all subsequent calculations of gravitational
instability are derived.

2.3.2 The Continuity and Euler Equations

Now, we want to solve the evolution of the spatial distribution. To this end we can
take the momentum moments of the distribution function. The zeroth-order moment
of the distribution function relates the phase space density to the local mass density
field,

∫
d3pf(x,p, τ) ≡ ρ(x, τ). (2.86)

The first and the second-order moment of f are:
∫
d3p

p
am

f(x,p, τ) ≡ ρ(x, τ)u(x, τ), (2.87)

∫
d3p

pipj
a2m2

f(x,p, τ) ≡ ρ(x, τ)ui(x, τ)uj(x, τ) + σij(x, τ). (2.88)

They define the peculiar velocity flow u(x, τ) and the stess tensor σij.
We can derive the continuity equation from the zeroth moment of the Vlasov equation.
In fact:

0 =

∫
d3p

df(x,p, τ)

dt
=

∫
d3p

(
∂f

∂τ
+

p
am
· ∇f − am∇Φ · ∂f

∂p

)

=
∂

∂τ

(∫
d3pf

)
+

∫
d3p

(
p
am
· ∇f − am∇Φ · ∂f

∂p

) (2.89)
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which leads to:

∂

∂τ
[(1 + δ(x, τ)] +∇ ·

∫
d3p

p
am
· f − am∇Φ ·

∫
d3p

∂f

∂p
= 0. (2.90)

The last term vanishes due to boundary conditions and, using eq. (2.87), we recover
the continuity equation:

∂δ(x, τ)

∂τ
+∇ · [(1 + δ(x, τ))u(x, τ)] = 0, (2.91)

which describes conservation of mass. We can also derive the Euler equation, which is
a little bit more complicated. Let us start again from the first moment of the Vlasov
equation,

∫
d3p

p
am

(
∂f

∂τ
+

p
am
· ∇f − am∇Φ · ∂f

∂p

)
= 0 (2.92)

which in turn gives three terms:

∫
d3p

p
am

∂f

∂τ︸ ︷︷ ︸
A

+

∫
d3p

p
am

( p
am
· ∇f

)

︸ ︷︷ ︸
B

−
∫
d3p

p
am

(
am∇Φ · ∂f

∂p

)

︸ ︷︷ ︸
C

= 0. (2.93)

We start with the A term.

A =
∂

∂τ

(∫
d3p

p
am

f

)
−
∫
d3p

∂

∂τ

( p
am

)

=
∂

∂τ
[ρ0(1 + δ)u]−

∫
d3p

[
∂p
∂τ

1

am
+

∂

∂τ

(
1

a

)
p
m

]

=
∂

∂τ
[ρ0u + ρ0δu] +

∫
d3p

a′

a

( p
am

)
f

= ρ0
∂u
∂τ

+ ρ0δ
∂u
∂τ

+ ρ0
∂δ

∂τ
u +H [ρ0(1 + δ)u]

= ρ0
∂u
∂τ

+ ρ0δ
∂u
∂τ
− (∇ · u)u(1 + δ)ρ0 − (u · ∇) [u(1 + δ)ρ0] +H [ρ0(1 + δ)u]

= ρ0(1 + δ)

[
∂u
∂τ
− u (∇ · u) +Hu

]
− (u · ∇) [ρ0(1 + δ)u]

(2.94)
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Let us proceed with the B term:

Bi =

∫
d3p

pi
am

pj
am

∂f

∂xj
=

∂

∂xj

∫
d3p

pi
am

pj
am

f

=
∂

∂xj
[ρ0(1 + δ)uiuj + ρ0(1 + δ)σij]

=
∂

∂xj
[ρ0(1 + δ)]uiuj + ρ0(1 + δ)

[
∂ui
∂xj

uj + ui
∂uj
∂xj

]
+

∂

∂xj
[ρ0(1 + δ)σij]

= (u · ∇) [ρ0(1 + δ)ui] + ρ0(1 + δ) [(u · ∇)ui + ui (∇ · u)] +∇j [ρ0(1 + δ)σij] ,
(2.95)

leading to:

B = (u · ∇) [ρ0(1 + δ)u] + ρ0(1 + δ) [(u · ∇)u + u (∇ · u)] +∇j [ρ0(1 + δ)σij] . (2.96)

The Ci term reads:

Ci =

∫
d3p

∂Φ

∂xj
∂f

∂pj
pi =

∂Φ

∂xj

∫
d3p

∂f

∂pj
pi

= − ∂Φ

∂xj

∫
d3pf

∂pi
∂xj

= − ∂Φ

∂xi
ρ0(1 + δ)

(2.97)

Thus we can write C as:

C = −∇Φρ0(1 + δ). (2.98)

Then, summing up equations (2.94), (2.96) and (2.98) we finally arrive to the Euler
equation,

∂u(x, τ)

∂τ
+H(τ)u(x, τ) + u(x, τ) · ∇u(x, τ) = −∇Φ(x, τ)− 1

ρ
∇j (ρσij) (2.99)

which describes conservation of momentum. Let us point out that the continuity equa-
tion (eq. (2.91)) couples the zeroth moment of the distribution function (ρ) to the first
(u). Intstead, the Euler equation couples the first moment (u) to the second (σij).
Nevertheless, since we have integrated out the phase-space information, we can rely on
phenomenological models to close the hierarchy by postulating an assumption for the
stress tensor σij [35], i.e. the equation of state of the cosmological fluid. For example,
standard fluid dynamics [37] gives σij = −pδij + η(∇iuj +∇jui− 2

3
δij∇·u) + ζδij∇·u,

where p indicates the pressure and ζ and η are viscosity coefficients.
In fact, the equation of state relies on the hypothesis that cosmological structure forma-
tion is driven by Cold Dark matter, which is, indeed, matter with negligible pressure.
Let us point out that the stress tensor σij characterizes the deviation of particle mo-
tions from a single coherent flow (single stream). Thus, it is a good approximation to
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put σij ≈ 0, at least in the first moments of gravitational instability when structures
did not have time to collapse. As time goes on, this approximation will break down at
progressively larger scales [35].
We can now investigate the solutions of the Poisson Equation, the continuity and the
Euler equation in the case of a vanishing stress tensor, i.e. σij = 0.

2.3.3 Linear and Non-Linear Perturbation Theory

At large scales, the fluctuation fields δ(x, τ), u(x, τ) and Φ(x, τ) in eqs. (2.78)-(2.80)
can be assumed to be small compared to the homogeneous contribution described by the
first terms. Thus we can linearize the Poisson equation (2.81), the continuity equation
(2.91) and the Euler equation (2.99) in order to obtain the equations of motion in the
linear regime:

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0 (2.100)

∂u(x, τ)

∂τ
+H(τ)u(x, τ) = −∇Φ(x, τ) (2.101)

where we have used:

θ(x, τ) ≡ ∇ · u(x, τ). (2.102)

Note that in eq. (2.100) we have neglected the term with δ(x, τ), as well as for the
term u(x, τ) · ∇u(x, τ) in eq. (2.101). Moreover, as we have said, we have assumed
σij ≈ 0, that is the single stream approximation. We are basically saying that, during
the collapse, we can treat dark matter as a fluid. In other words, we are assuming
that the velocities of the fluid particles entering the considered shell have all the same
value. These equations are now easy to solve.
Let us first say that the velocity field, as any vector field, can be described by its
divergence θ(x, τ) and its vorticity w(x, τ) ≡ ∇ × u(x, τ), whose equation of motion
can be derived from eq. (2.101). In fact, taking the divergence of the linearized Euler
equation we obtain:

∂θ(x, τ)

∂τ
+H(τ)θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0 (2.103)

and, similarly, through its curl we arrive to:

∂w(x, τ)

∂τ
+H(τ)w(x, τ) = 0. (2.104)

From the last equation we see that in the linear regime any initial vorticity decays
away due to the expansion of the universe, i.e.

w(τ) ∼ a(τ)−1. (2.105)
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Instead, the density contrast evolution follows by taking the time derivative of eq.
(2.103) and replacing in eq. (2.100):

d2D1(τ)

dτ 2
+H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ) (2.106)

where we have defined the linear growth factor D1(τ) as:

δ(x, τ) = D1(τ)δ(x, 0). (2.107)

This equation, together with the Friedmann equations (2.75, 2.76), determines the
growth of density perturbations in the linear regime. Since it is a second-order differ-
ential equation, it has two independent solutions. Let us denote the fastest growing
mode D(+)

1 (τ) and the slowest one D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D
(+)
1 (τ)A(x) +D

(−)
1 (τ)B(x) (2.108)

where A(x) and B(x) are two arbitrary functions of position describing the initial
density field configuration.
For the velocity divergence we can use eq. (2.100) and obtain:

θ(x, τ) = −H(τ) [f(Ωm,ΩΛ)A(x) + g(Ωm,ΩΛ)B(x)] (2.109)

where

f(Ωm,ΩΛ) ≡ d logD
(+)
1

d log a
=

1

H
d logD

(+)
1

dτ
, (2.110)

g(Ωm,ΩΛ) ≡ d logD
(−)
1

d log a
=

1

H
d logD

(−)
1

dτ
. (2.111)

We can take, as an example, the case of an Einstein-de Sitter universe, in which Ωm = 1
and ΩΛ = 0. In this situation we have

D
(+)
1 = a D

(−)
1 = a−3/2 f(1, 0) = 1, (2.112)

hence, the density fluctuations grow as the scale factor.
We will now consider the evolution of density and velocity fields beyond the linear

approximation. In order to do so, we will first make an approximation: we will charac-
terize the velocity field by its divergence, and neglect the vorticity degrees of freedom.
We can justify this choice in the following way: eq. (2.99) can be written as

∂w(x, τ)

∂τ
+H(τ)w(x, τ)−∇× [u(x, τ)×w(x, τ)] = ∇×

(
1

ρ
∇ · ~σ

)
(2.113)

We see that if σij ≈ 0, as in the case of a pressureless perfect fluid, if the primordial
vorticity vanishes, it remains zero at all times. On the other hand, if the initial vorticity
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is non-zero, eq. (2.105) tells us that in the linear regime vorticity decays due to the
expansion of the universe; however, looking at the third term of eq. (2.113) we see
that the voriticity can be amplified non-linearly.
We will assume that the initial vorticity vanishes, thus eq. (2.113) together with
the equation of state σij ≈ 0 guarantees that vorticity remains zero throughout the
evolution. Note, however, that only as long as the condition σij ≈ 0 stays valid
this assumption is self-consistent; actually multi-streaming and shocks can generate
vorticity [38] and we expect this to occur at small scales when, in fact, perturbation
theory breaks down.
The main assumption of PT is to expand the density and velocity fields around the
linear solutions, treating the variance of the linear fluctuations as a small parameter
(and assuming no vorticity in the velocity field):

δ(x, τ) =
∞∑

n=1

δ(n)(x, τ), (2.114)

θ(x, τ) =
∞∑

n=1

θ(n)(x, τ). (2.115)

2.3.4 Fourier Representation

When we are at large scales, fluctuations are small, therefore linear PT provides an
adequate description of cosmological fields. In this regime, different Fourier modes
evolve independently conserving the primordial statistics. Thus, we want to Fourier
transform eqs. (2.81), (2.91) and (2.99) and work in Fourier space.

To begin with, we first perform the Fourier transform of θ(x, τ), the divergence of the
peculiar velocity (eq. (2.102)):

θ̃(k, τ) =

∫
d3x

(2π)3
e−ik·x (∇ · u(x, τ))

=

∫
d3x

(2π)3
e−ik·x∇ ·

∫
d3peip·xũ(p, τ)

=

∫
d3x

(2π)3
e−ik·x

∫
d3peip·x (ip · ũ(p, τ))

= i

∫
d3pδD(k− p)p · ũ(p, τ)

= ik · ũ(k, τ)

(2.116)

where we have used the definition of the Dirac delta:

δD =

∫
d3x

(2π)3
e−ik·x (2.117)



50 Chapter 2. Cosmological Perturbation Theory

and, from equation (2.116), we have

ũ(k, τ) = −i k
k2
θ̃(k, τ). (2.118)

Hence, we take eq. (2.91) and we apply a Fourier transformation. The only non-trivial
term is the non linear one, that is, ∇ · δ(x, τ)u(x, τ). If we Fourier transform it we
obtain:

∫
d3x

(2π)3
e−ik·x∇ · (δ(x, τ)u(x, τ)) =

∫
d3x

(2π)3
e−ik·x×

×∇ ·
∫
d3k1e

ix·k1 δ̃(k1, τ)

∫
d3k2e

ix·k2 δ̃(k2, τ)

=

∫ ∫ ∫
d3x

(2π)3
d3k1d

3k2e
−ik·x×

×
[
ik1e

ik1·xeik2·x + ik2e
ik1·xeik2·x] δ̃(k1, τ)ũ(k2, τ)

=

∫ ∫ ∫
d3x

(2π)3
d3k1d

3k2e
−ix(k−k1−k2)

[
k1 · k2

k2
2

+
k2 · k2

k2
2

]
δ̃(k1, τ)θ̃(k2, τ)

=

∫ ∫
d3k1d

3k2δD (k− k1 − k2)

[
(k1 + k2) · k2

k2
2

]
δ̃(k1, τ)θ̃(k2, τ)

(2.119)

where we have used eq. (2.118).
Now putting all the pieces together we obtain the Fourier transform of the continuity
equation, that is:

∂δ̃(k, τ)

∂τ
+ θ̃(k, τ) = −

∫
d3k1

∫
d3k2δD (k− k1 − k2)α(k1,k2)δ̃(k1, τ)θ̃(k2, τ)

(2.120)
where the function

α(k1,k2) ≡ (k1 + k2) · k2

k2
2

(2.121)

encodes the non-linearity of the evolution (mode coupling) and comes from the non-
linear term in eq. (2.91). From eq. (2.120) we see that the evolution of δ̃(k, τ) is
determined by the mode coupling of the fields at all pair vectors k1 and k2 with sum
equal to k. This constraint comes from the property of translation invariance in a
spatially homogeneous universe.

Now we can continue applying a Fourier transform to the Euler equation, that is eq.
(2.99). First thing to do, we apply the divergence to the Euler equation and obtain:

∂θ(x, τ)

∂τ
+Hθ(x, τ) +∇2Φ = −∇ · [(u · ∇)u] (2.122)
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where, again, we are assuming to deal with a pressurless perfect fluid, that is σij ≈ 0.
We recognize right away the Poisson equation:

∇2Φ =
3

2
Ωm(τ)H2(τ)δ(x, τ) (2.123)

and therefore the only non trivial term we have to work out is the right hand side one.
We apply the Fourier transform, the inverse Fourier transform and use eq. (2.118). We
then come to:

−
∫

d3x
(2π)3

e−ik·x∇
[
−
(∫

d3k1e
ik1·xk1

k2
1

θ̃(k1) · ∇
)(∫

d3k2e
ik2·xk2

k2
2

θ̃(k2)

)]

=

∫
d3x

(2π)3
e−ik·x∇

[∫
d3k1

∫
d3k2e

ik1·x 1

k2
1

θ̃(k1)ik1 · k2e
ik2·xk2

k2
2

θ̃(k2)

]

=

∫
d3x

(2π)3
e−ik·x∇

[
i

∫
d3k1

∫
d3k2e

i(k1+k2)·x (k1 · k2)k2

k2
1k

2
2

θ̃(k1)θ̃(k2)

]

= −
∫

d3x
(2π)3

e−ik·x×

×
[∫

d3k1

∫
d3k2

(k1 + k2) · (k1 · k2)k2

k2
1k

2
2

θ̃(k1)θ̃(k2)ei(k1+k2)·x
] (2.124)

Now we can take a closer look to the first line of eq. (2.124); we see that it is not
symmetric under the change of the wave vectors k1 and k2 but, since this comes from
the Fourier transform of the right hand side of eq. (2.122), which, under change of
wave vectors, stays the same, we must find a way to make the first line of eq. (2.124)
symmetric under change of wave vectors pairs. This is easily achieved simply summing
to the first line the same exact term but with k1 and k2 changed, all divided by 2. By
doing this we arrive exactly at the last term of eq. (2.124); the only thing we have left
to do is to sum the following terms:

1

2

(
(k1 + k2) · (k1 · k2)k2

k2
1k

2
2

+
(k2 + k1) · (k2 · k1)k1

k2
1k

2
2

)
(2.125)

which actually lead to a symmetric term:

(k1 + k2)2 (k1 · k2)

2k2
1k

2
2

≡ β(k1,k2). (2.126)

We thus obtain:

−
∫

d3x
(2π)3

ei(k1+k2−k)·x
∫
d3k1

∫
d3k2β(k1,k2)θ̃(k1)θ̃(k2)

= −
∫
d3k1

∫
d3k2δD(k− k1 − k2)β(k1,k2)θ̃(k1)θ̃(k2).

(2.127)
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Therefore the final form of the Fourier transform of the Euler equation is:

∂θ̃(k, τ)

∂τ
+H(τ)θ̃(k, τ)+

3

2
Ωm(τ)H2(τ)δ̃(x, τ) =

−
∫
d3k1

∫
d3k2δD(k− k1 − k2)β(k1,k2)θ̃(k1)θ̃(k2).

(2.128)

2.3.5 Einstein-de Sitter Cosmology

Let us now consider an Einstein-de Sitter universe, for which Ωm = 1 and ΩΛ = 0.
From the Friedmann equation (2.76) we have that a(τ) ∼ τ 2 and H(τ) = 2/τ and
scaling out an overall factor of H from the velocity field brings eqs. (2.120) and (2.128)
into homogeneous form in τ or, equivalently, in a(τ) [35]. Therefore, the continuity
and the Euler equation in Fourier space can formally be solved with the following
perturbative expansion [39]:

δ̃(k, τ) =
∞∑

n=1

an(τ)δn(k) (2.129)

θ̃(k, τ) = −H(τ)
∞∑

n=1

an(τ)δn(k) (2.130)

where only the fastest growing mode is taken into account. At small a, the series are
dominated by their first term, and since θ1(k) = δ1(k) from the continuity equation,
δ1(k) completely characterizes the linear fluctuations.
Equations (2.129) and (2.130) must satisfy eqs. (2.120) and (2.128). This lead to the
following form for δn(k) and θn(k) in terms of the linear fluctuations:

δn(k) =

∫
d3q1 · · ·

∫
d3qnδD(k− q1···n)Fn(q1, · · · ,qn)δ1(q1) · · · δ1(qn) (2.131)

θn(k) =

∫
d3q1 · · ·

∫
d3qnδD(k− q1···n)Gn(q1, · · · ,qn)δ1(q1) · · · δ1(qn) (2.132)

where the PT kernels Fn and Gn are homogeneous functions of the wave vectors and
are constructed according to the recursion relations (n ≥ 2) [40]:

Fn(q1, · · · ,qn) =
n−1∑

m=1

Gm(q1, · · · ,qm)

(2n+ 3)(n− 1)

[
(2n+ 1)α(k1,k2)Fn−m(qm+1, · · · ,qn)

+ 2β(k1,k2)Gn−m(qm+1, · · · ,qn)
]
,

(2.133)
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Gn(q1, · · · ,qn) =
n−1∑

m=1

Gm(q1, · · · ,qm)

(2n+ 3)(n− 1)

[
3α(k1,k2)Fn−m(qm+1, · · · ,qn)

+ 2nβ(k1,k2)Gn−m(qm+1, · · · ,qn)
] (2.134)

where k1 ≡ q1 + · · ·+ qm, k2 ≡ qm+1 + · · ·+ qn, k ≡ k1 + k2 and F1 = G1 ≡ 1.
For n = 2, if we symmetrize the expressions with respect to q1 and q2, we get:

F
(s)
2 (q1,q2) =

5

7
+

1

2

q1 · q2

q1q2

(
q1

q2

+
q2

q1

)
+

2

7

(q1 · q2)2

q2
1q

2
2

, (2.135)

G
(s)
2 (q1,q2) =

3

7
+

1

2

q1 · q2

q1q2

(
q1

q2

+
q2

q1

)
+

4

7

(q1 · q2)2

q2
1q

2
2

. (2.136)

Since it will be useful for future calculations of this work, we will list here also the (not
symmetrized) explicit expression for F3(q1,q2,q3) [40]:

F3(q1,q2,q3) =
1

3q2
1q

2
2q

2
3|q1 + q2|2

[
1

21
q1 · q2|q1 + q2|2 +

1

14
q2

2q1 · (q1 + q2)

]

×
[
7q2

3(q1 + q2) · (q1 + q2 + q3) + q3 · (q1 + q2)|q1 + q2 + q3|2
]

+
q1 · (q2 + q3)|q1 + q2 + q3|2

3q2
1q

2
2q

2
3|q2 + q3|2

[
1

21
q2 · q3|q2 + q3|2 +

1

14
q2

3q2 · (q2 + q3)

]

+
q1 · (q1 + q2 + q3)

18q2
1q

2
2q

2
3

[
q2 · q3|q2 + q3|2 + 5q2

3q2 · (q2 + q3)
]
.

(2.137)
In order to symmetrize eq. (2.137) we just do the following:

F
(s)
3 (q1,q2,q3) =

1

6

[
F3(q1,q2,q3) + F3(q1,q3,q2) + F3(q2,q1,q3)

+ F3(q2,q3,q1) + F3(q3,q2,q1) + F3(q3,q1,q2)
] (2.138)

We can now derive the corresponding recursion relations for vertices νn and µn
which are defined as follows:

νn ≡ n!

∫
dΩ1

4π
· · · dΩn

4π
Fn(k1, . . . ,kn), (2.139)

µn ≡ n!

∫
dΩ1

4π
· · · dΩn

4π
Gn(k1, . . . ,kn). (2.140)

The vertices νn and µn therefore are the spherical average of the PT kernels.
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The angle integrations can be done recursively and we come to [35]:

νn =
n−1∑

m=1

(
n

m

)
µm

(2n+ 3)(n− 1)

[
(2n+ 1)νn−m +

2

3
µn−m

]
, (2.141)

µn =
n−1∑

m=1

(
n

m

)
µm

(2n+ 3)(n− 1)

[
3νn−m +

2

3
nµn−m

]
. (2.142)

Thus, for each step in perturbation theory, the vertices are pure numbers. For example
we have:

ν1 = 1, µ1 = 1, ν2 =
34

21
, µ2 = −26

21
. (2.143)

The vertices recursion relations, i.e. eq. (2.141) and (2.142) are directly related to the
spherical collapse dynamics [41]. In this context, the Fourier transform of the linear
density field δ1(k) depends only on the norm of k, and this property is valid throughout
the entire collapse. Therefore, the central density for such initial conditions can be
written as:

δsc = (a)
∑

n

an
∫
d3q1 · · ·

∫
d3qnFn(q1, · · · ,qn)δ1(|q1|) · · · δ1(|qn|) (2.144)

where we have used eq. (2.129) and eq. (2.131); moreover, we have assumed Ωm = 1
and "sc" stands for spherical collapse. Integrating over the angles one obtains:

δsc(a) =
∑

n

νn
n!
anξn (2.145)

where

ξ =

∫
d3qδ1(|q|). (2.146)

Analogously, the velocity divergence for the spherical collapse can be expanded in
terms of the µn parameters. Therefore, we reach an important result, valid for any
cosmology: the angular average of the PT kernels is strictly related to the dynamics
of the spherical collapse.

2.3.6 Beyond Einstein-de Sitter Cosmology

We have found, in the last section, the symmetrized PT kernels, which come from the
recursion relations, eq. (2.133) and eq. (2.134). It is important to note that we will
use these results in the rest of this work, in particular in Sec. (2.4) when obtaining the
analytic form of the perturbed power spectrum and bispectrum.
However, we have obtained eq. (2.131) and eq. (2.132), which are the solutions of the
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equation of motions of the density and the divergence field, and the PT kernels in the
frame of an Einstein-de Sitter universe. Why are we allowed to use these solutions also
in an arbitrary cosmology?
In a more general cosmology, the PT expansion is more complicated because the solu-
tions at each order become non-separable functions of τ and k [42].
However, what happens is that we can write, in the spherical collapse approximation,
the PT kernels order by order using the solutions found with the recursion relations of
the vertices, i.e.:

δ(τ) =
∞∑

n

νn(τ)

n!
[D1(τ)ξ]n, (2.147)

θ(τ) = −H(τ)f(Ωm,ΩΛ)
∞∑

n

µn(τ)

n!
[D1(τ)ξ]n. (2.148)

Following [35], from eqs. (2.120) and (2.128), we obtain

dνn
d logD1

+ nνn − µn =
n−1∑

m=1

(
n

m

)
νn−mµm (2.149)

dµn
d logD1

+ nµn +

(
3Ωm

2f 2
− 1

)
µn −

3Ωm

2f 2
νn =

1

3

n−1∑

m=1

(
n

m

)
µn−mµm (2.150)

These differential equations can be solved numerically at each order and [43] the results
for n = 2 and n = 3 show that indeed the dependence of the vertices (which are, as we
have said, simply the spherical average of the PT kernels) on cosmological parameters
is a few percent effect at most.
This, as [44] shows, means that performing a simple approximation to the equations
of motion for general Ωm and ΩΛ leads to separable solutions to arbitrary order in PT
and the same recursion relations as in the Einstein–de Sitter case; moreover, all the
information on the dependence of the PT solutions on Ωm and ΩΛ is retained in D1(τ),
the linear growth factor.
In perturbation theory, in the linear case, the growing-mode solution to the equations
of motion (2.120) and (2.128) is:

δ(k, τ) = D1(τ)δ1(k), (2.151)

θ(k, τ) = −H(τ)f(Ωm,ΩΛ)D1(τ)δ1(k). (2.152)

We proceed as in the Einstein-de Sitter case, and we look for separable solutions as
eqs. (2.129) and (2.130); we can write:

δ(k, τ) =
∞∑

n=1

Dn(τ)δn(k), (2.153)
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θ(k, τ) = −H(τ)f(Ωm,ΩΛ)
∞∑

n=1

En(τ)θn(k). (2.154)

Inserting them into the equations of motion leads to:

dDn

d logD1

δn − Enθn =

∫
d3k1d

3k2δD(k− k12)α(k,k1)
n−1∑

m=1

Dn−mEmθm(k1)δn−m(k2)

(2.155)

dEn
d logD1

θn +

(
3Ωm

2f 2

)
Enθn −

3Ωm

2f 2
Dnδn

=

∫
d3k1d

3k2δD(k− k12)β(k,k1,k2)
n−1∑

m=1

En−mEmθm(k1)θn−m(k2).

(2.156)
It is interesting to note that if we put f(Ωm,ΩΛ) = Ω

1/2
m then the system of equations

becomes separable, with Dn = En = Dn
1 . This means that these relations reduce to the

recursion relation of the Einstein-de Sitter case (Ωm = 1 and ΩΛ = 0), leading to same
PT kernels. Obviously, we need to understand if f(Ωm,ΩΛ) = Ω

1/2
m is a good choice to

describe an arbitrary cosmology. The answer is yes. In fact, we have already seen in eq.
(2.112) that, when Ωm = 1 and ΩΛ = 0, f(Ωm,ΩΛ) = 1. However, for generic values of
Ωm and ΩΛ the linear growth factor admits the following integral representation [45]:

D
(+)
1 = a3H(a)

5Ωm

2

∫ a

0

da

a3H3(a)
(2.157)

where

H(a) =
√

Ω0
ma
−3 + (1− Ω0

m − Ω0
Λ)a−2 + Ω0

Λ. (2.158)

Furthermore, we can make the following approximation [46]:

D
(+)
1 ≈

(
5

2

)
aΩm

Ω
4/7
m − ΩΛ + (1 + Ωm/2)(1 + ΩΛ/70)

(2.159)

D
(−)
1 =

H
a

(2.160)

f(Ωm,ΩΛ) ≈ 1

[1− (Ω0 − Ω0
Λ − 1)a+ Ω0

Λa
3]0.6

. (2.161)

Finally, When Ωm + ΩΛ = 1 we have

f(Ωm,ΩΛ) = f(Ωm, 1− Ωm) ≈ Ω5/9
m . (2.162)

Therefore, setting f(Ωm,ΩΛ) = Ω
1/2
m is indeed a good approximation.
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2.4 Wick Theorem and Perturbed Power Spectra
We have already introduced the concept of the power spectrum in Sec. 2.1.2. In
particular, equation (2.28) holds, namely:

〈δ(k)δ(k′)〉 = δD(k + k′)P (k). (2.163)

Moreover, being the field Gaussian, i.e. when any joint distribution of local densities is
Gaussian distributed, we also have that any property of the field can be fully described
by its mean value and it covariance (the two-point correlation function ξ). We can
generalize this by saying that any ensemble average of product of variables can then
be obtained by product of ensemble averages of pairs [35]. We write explicitly this
property for the Fourier modes as follows:

〈δ(k1) · · · δ(k2p+1)〉 = 0

〈δ(k1) · · · δ(k2p)〉 =
∑

p

∏

pairs (i,j)

〈δ(ki)δ(kj)〉 (2.164)

where the sum is made over p, which stands for all possible pair associations. This
fundamental result is called Wick theorem. Eq. (2.164) is telling us that the sta-
tistical properties of the random variables δ(k) are entirely determined by the shape
and normalization of P (k). As we have mentioned before, in the inflationary scenario
the initial energy fluctuations are supposed to be Gaussian [47]. This means that the
relations in eq. (2.164) are verified for all modes that exit the Hubble radius and long
afterwards come back into the horizon as classical stochastic perturbations.
In general, it is possible to define higher-order correlation functions. They are defined
as the connected part (denoted with subscript c) of the joint ensemble average of the
density in an arbitrarily number of locations. We can formally write these correlation
functions as [35]:

ξN(x1, . . . ,xN) = 〈δ(x1), . . . , δ(xN)c〉
= 〈δ(x1), . . . , δ(xN)〉 −

∑

C∈P

∏

si∈C
ξ#si(xsi(1), . . . ,xsi(#si)) (2.165)

where the sum is made over the proper partitions (any partition except the set itself)
of P({x1, · · · ,xN}) and si is thus a subset of {x1, · · · ,xN} contained in partition C.
When the average of δ(x) is defined as zero, only partitions that contain no singlets
contribute.
We can visualize the decomposition of connected and not-connected part in Fig. 2.8.
As we have already said, when treating Gaussian fields, as a consequence of Wick
theorem, all connected correlation functions are zero except ξ2. As a result, the only
non-zero connected part is the two-point correlation function. Therefore the statistical
properties of any Gaussian field can be written in terms of combinations of two-point
functions of δ.
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Fig. 1. Representation of the connected part of the moments.

Fig. 2. Writing of the three-point moment in terms of connected parts.

Fig. 3. Same as Fig. 2 for the four-point moment.

Fig. 4. Disconnected and connected part of the two-point function of the !eld ! assuming it is given by ! = "2 with "
Gaussian.

connected part of the two-point function of this !eld is obtained by all the diagrams that explicitly
join the two points. The other ones contribute to the moments, but not to its connected part.
The connected part has the important property that it vanishes when one or more points are

separated by in!nite separation. In addition, it provides a useful way of characterizing the statis-
tical properties since unlike unconnected correlation functions, each connected correlation provides
independent information.
These de!nitions can be extended to Fourier space. Because of homogeneity of space

⟨!(k1) · · · !(kN )⟩c is always proportional to !D(k1 + · · · + kN ). Then we can de!ne PN (k1; : : : ; kN )
with

⟨!(k1) · · · !(kN )⟩c = !D(k1 + · · ·+ kN )PN (k1; : : : ; kN ) : (126)

One particular case that will be discussed in the following is for n= 3, the bispectrum, which is
usually denoted by B(k1; k2; k3).
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Figure 2.8: The figure shows the decomoposition in connected and not conneceted part of ensemble
avarages. In particular, the first two lines represent connected part of moments. In the last line,
instead, the three-point moment is "written" in terms of connected parts. Figure taken from [35].F. Bernardeau et al. / Physics Reports 367 (2002) 1–248 41

<δ (1)δ(2)δ(3)> = c +<δ(1)δ(2)δ(3)δ(4)> = c

Fig. 5. Tree diagrams for the three-point function or bispectrum.

Fig. 6. Tree diagrams for the four-point function or trispectrum.

(or, equivalently, their two-point correlation function) completely describes the statistical properties.
However, as we saw in Section 2, the dynamics of gravitational instability is non-linear, and therefore
non-linear evolution inevitably leads to the development of non-Gaussian features.

The statistical characterization of non-Gaussian !elds is, in general, a non-trivial subject. As we
discussed in the previous section, the problem is that in principle all N -point correlation functions
are needed to specify the statistical properties of cosmic !elds. In fact, for general non-Gaussian
!elds, it is not clear that correlation functions (either in real or Fourier space) are the best set of
quantities that describes the statistics in the most useful way.

The situation is somewhat di"erent for gravitational clustering from Gaussian initial conditions.
Here it is possible to calculate in a model-independent way precisely how the non-Gaussian features
arise, and what is the most natural statistical description. In particular, since the non-linearities
in the equations of motion are quadratic, gravitational instability generates connected higher-order
correlation functions that scale as !N ˙ !N−1

2 at large scales, where !2!1 and PT applies [232].
This scaling can be naturally represented by connected tree diagrams, where each link represents
the two-point function (or power spectrum in Fourier space), since for N points (N − 1) links are
necessary to connect them in a tree-like fashion.

As a consequence of this scaling, the so-called hierarchical amplitudes QN de!ned by

QN ≡ !N∑
labelings

∏N−1
edges ij !2(rij)

; (150)

where the denominator is given by all the topological distinct tree diagrams (the di"erent NN−2

ways of drawing N − 1 links that connect N points), are a very useful set of statistical quantities
to describe the properties of cosmic !elds. In particular, they are independent of the amplitude of
the two-point function, and for scale-free initial conditions they are independent of overall scale.
As we shall see, the usefulness of these statistics is not just restricted to the weakly non-linear
regime (large scales); in fact, there are reasons to expect that in the opposite regime, at small scales
where !2"1, the scaling !N ˙ !N−1

2 is recovered. In this sense, the hierarchical amplitudes QN
(and their one-point cousins, the Sp parameters) are the most natural set of statistics to describe the
non-Gaussianity that results from gravitational clustering.

Figs. 5 and 6 show the tree diagrams that describe the three- and four-point function induced
by gravity. As we already said, N − 1 links (representing !2) are needed to describe the connected
N -point function, and furthermore, the number of lines coming out of a given vertex is the order
in PT that gives rise to such a diagram. For example, the diagram in Fig. 5 requires linear and
second-order PT, representing ⟨"2(1)"1(2)"1(3)⟩c (as in Section 2, subscripts describe the order in
PT). On the other hand, the diagrams in Fig. 6 require up to third order in PT. The !rst term
represents ⟨"1(1)"2(2)"2(3)"1(4)⟩c whereas the second describes ⟨"1(1)"3(2)"1(3)"1(4)⟩c.

Figure 2.9: Tree-level diagram for the three-point function or Bispectrum. Figure taken from [35].

In Fourier space these definitions are extremely useful. Because of homogeneity of
space, we have that 〈δ(k1) · · · δ(kN)〉c is always proportional to the Dirac delta. Thus
we can write

〈δ(k1) · · · δ(kN)〉c = δD(k1 + · · ·+ kN)PN(k1, . . . ,kN). (2.166)

However, as we have previously said, the dynamics of gravitational instability is non-
linear, hence non-linear evolution unavoidably leads to the development of non-Gaussian
features. The statistical characterization of non-Gaussian fields is definitely a non-
trivial subject and, as already mentioned, the problem is that in principle all N-point
correlation functions are needed to specify the statistical properties of cosmic fields.
In order to help us in this characterization, we continue in implementing a figurative
way to approach this problem. We thus show in Fig. 2.9 the tree-diagram describing
the three-point function induced by gravity. Let us remind that the lines coming out
of a specific vertex describe the order in perturbation theory needed to construct that
given diagram. In this way, the tree-diagram of the bispectrum (Fig. 2.9) is:

〈δ2(1)δ1(2)δ1(3)〉+ 〈δ1(1)δ2(2)δ1(3)〉+ 〈δ1(1)δ1(2)δ2(3)〉 (2.167)

where the subscripts indeed represent the order in perturbation theory which gives rise
to that diagram. Let us note, also, that eq. (2.167) is composed of three terms because
we have to take into account all the possible permutations of Fig. 2.9.
In general, a consistent calculation of the connected p-point function induced by gravity
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<δ(1)δ(2)> =c + +[ ]
Fig. 7. Diagrams for the two-point function or power spectrum up to one loop. See Eqs. (165) and (166) for one-loop
diagram amplitudes.

+ + +< δ(1)δ(2)δ(3)> =c

Fig. 8. Diagrams for the three-point function or bispectrum up to one loop.

In general, a consistent calculation of the connected p-point function induced by gravity to leading
order (“tree-level”) requires from !rst to (p− 1)th order in PT [232]. At large scales, where !2!1,
tree-level PT leads to hierarchical amplitudes QN which are independent of !2. As !2 → 1, there
are corrections to tree-level PT which describe the !2 dependence of the QN amplitudes. These are
naturally described in terms of diagrams as well, in particular, the next to leading order contributions
(“one-loop” corrections) require from !rst to (p + 1)th order in PT [557]. These are represented by
one-loop diagrams, i.e. connected diagrams where there is one closed loop. The additional link over
a tree diagram required to form a closed loop leads to QN ˙ !2.

Figs. 7 and 8 show the one-loop diagrams for the power spectrum and bispectrum. The one-loop
corrections to the power spectrum (the two terms in square brackets in Fig. 7) describe the non-linear
corrections to the linear evolution, that is, the e"ects of mode coupling and the onset of non-linear
structure growth. Recall that each line in a diagram represents the power spectrum P(0)(k) (or
two-point function) of the linear density !eld. As a result, the one-loop power spectrum scales
P(1)(k) ˙ P(0)(k)2.

Are all these diagrams really necessary? In essence, what the diagrammatic representation does is
to order the contributions of the same order irrespective of the statistical quantity being considered.
For example, it is not consistent to consider the evolution of the power spectrum in second-order
PT (second term in Fig. 7) since there is a contribution of the same order coming from third-order
PT (third term in Fig. 7). Instead, one should consider the evolution of the power spectrum to
“one-loop” PT (which includes the two contributions of the same order, the terms in square brackets
in Fig. 7). A similar situation happens with the connected four-point function induced by gravity; it
is inconsistent to calculate it in second-order PT (!rst term in Fig. 6), rather a consistent calculation
of the four-point function to leading order requires “tree-level” PT (which also involves third-order
PT, i.e. the second term in Fig. 6).

We will now review results on the evolution of di"erent statistical quantities in tree-level PT.

4.1.2. Power spectrum evolution in linear PT
The simplest (trivial) application of PT is the leading order contribution to the evolution of the

power spectrum. Since we are dealing with the two-point function in Fourier space (N = 2), only
linear theory is required, that is, the connected part is just given by a single line joining the two
points.

Figure 2.10: One-loop diagram for the two point function or Power Spectrum. Figure taken from
[35].

to leading order, what we have called "tree-level", requires from first to (p − 1)th
order in PT [48]. At small scales corrections to tree-level PT are needed. These are
naturally described in terms of diagrams as well, in particular, the next to leading
order contributions, the so called “one-loop” corrections, which require from first to
(p + 1)th order in PT. These are represented by one-loop diagrams, i.e. connected
diagrams where there is one closed loop (Fig. 2.10). In this case the one-loop diagram
for the power spectrum is:

〈δ1(1)δ1(2)〉+ 〈δ2(1)δ2(2)〉+ 〈δ3(1)δ1(2)〉+ 〈δ1(1)δ3(2)〉 (2.168)

where, as well as for the bispectrum, we have to take into account all possible permu-
tations of Fig. 2.10, thus explaining why eq. (2.168) is made out of four terms. The
one-loop corrections to the power spectrum describe the non-linear corrections to the
linear evolution, that is, the effects of mode coupling and the beginning of non-linear
structure growth. Recall that each line in a diagram represents the power spectrum
P (0)(k) (or two-point function) of the linear density field.
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2.4.1 Tree-Level Bispectrum

We can now proceed in calculating the bispectrum (induced by gravity) at tree level.
The bispectrum B(k1, k2, k3, τ) is defined by

〈δ̃(k1, τ)δ̃(k2, τ)δ̃(k3, τ)〉 = δD(k1 + k2 + k3)B(k1, k2, k3, τ). (2.169)

As shown in eq. (2.167) the Bispectrum at tree level is made up of three terms:

〈δ̃(k1, τ)δ̃(k2, τ)δ̃(k3, τ)〉 = 〈δ2(k1, τ)δ1(k2, τ)δ1(k3, τ)〉
+ 〈δ1(k1, τ)δ2(k2, τ)δ1(k3, τ)〉+ 〈δ1(k1, τ)δ1(k2, τ)δ2(k3, τ)〉.

(2.170)
Let us calculate the first term explicitly. Using eq. (2.131) and (2.132) we have that:

〈δ2(k1, τ)δ1(k2, τ)δ1(k3, τ)〉 =

〈
∫
d3q

∫
d3pδD(k1 − q− p)F2(q,p)δ(q)δ(p)δ(k2)δ(k3)〉

=

∫
d3q

∫
d3pδD(k1 − q− p)F2(q,p)〈δ(q)δ(p)δ(k2)δ(k3)〉.

(2.171)
Now, due to the Wick theorem, eq. (2.164), we can arrange the term in brackets as
follows:

〈δ(q)δ(p)δ(k2)δ(k3)〉 =〈δ(q)δ(p)〉〈δ(k2)δ(k3)〉+ 〈δ(q)δ(k2)〉〈δ(p)δ(k3)〉
+ 〈δ(q)δ(k3)〉〈δ(p)δ(k2)〉. (2.172)

Therefore, eq. (2.171) becomes:

=

∫
d3q

∫
d3pδD(k1−q− p)F2(q,p)

[
〈δ(q)δ(p)〉〈δ(k2)δ(k3)〉

+ 〈δ(q)δ(k2)〉〈δ(p)δ(k3)〉+ 〈δ(q)δ(k3)〉〈δ(p)δ(k2)〉
]

=

∫
d3qF2(q,k1 − q)

[
δD(k1)δD(k2 + k3)P (0)(q)P (0)(k2)

+ δD(q + k2)δD(k1 + k3 − q)P (0)(k2)P (0)(k3)

+ δD(q + k3)δD(k1 + k2 − q)P (0)(k3)P (0)(k2)
]
,

where in the last passage we have used the definition of the power spectrum, eq. (2.28).
Moreover, since the first term in square brackets vanishes, we obtain:

〈δ2(k1, τ)δ1(k2, τ)δ1(k3, τ)〉 = 2δD(k1 + k2 + k3)F2(k2,k3)P (0)(k2)P (0)(k3). (2.173)
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Finally, considering all terms of eq. (2.170) we arrive to:

〈δ̃(k1, τ)δ̃(k2, τ)δ̃(k3, τ)〉 = δD(k1 + k2 + k3)×[
2F2(k2,k3)P (0)(k2)P (0)(k3)

+ 2F2(k1,k3)P (0)(k1)P (0)(k3)

+ 2F2(k1,k2)P (0)(k1)P (0)(k2)
]
,

(2.174)

obtaining a final form for the bispectrum computed at tree level:

B(k1, k2, k3) = 2F2(k1,k2)P (0)(k1)P (0)(k2) + cycl. (2.175)

where, since we have calculated equal time correlators, we have omitted the time
dependence.

2.4.2 One-Loop Power Spectrum

Now we proceed in calculating the power spectrum at one-loop in perturbation theory.
As we can see from eq. (2.168) the one-loop power spectrum is made up of four terms:

〈δ̃(k1, τ)δ̃(k2, τ)〉 = 〈δ1(k1, τ)δ1(k2, τ)〉+ 〈δ2(k1, τ)δ2(k2, τ)〉
+ 〈δ3(k1, τ)δ1(k2, τ)〉+ 〈δ1(k1, τ)δ3(k2, τ)〉. (2.176)

The first term is just:

〈δ1(k1)δ1(k2)〉 = δD(k1 + k2)P (0)(k1). (2.177)

The second term is, instead, a little bit more complicated.

〈δ2(k1)δ2(k2)〉 = 〈
∫
d3q1

∫
d3q2δD(k1 − q1 − q2)F2(q1,q2)δ(q1)δ(q2)

×
∫
d3p1

∫
d3p2δD(k1 − p1 − p2)F2(p1,p2)δ(p1)δ(p2)〉

= 〈
∫
d3q1F2(q1,k1 − q1)δ(q1)δ(k1 − q1)

×
∫
d3p1F2(p1,k2 − p1)δ(p1)δ(k2 − p1)〉

=

∫
d3q1

∫
d3p1F2(q1,k1 − q1)F2(p1,k2 − p1)

× 〈δ(q1)δ(k1 − q1)δ(p1)δ(k2 − p1)〉.

(2.178)
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Then, thanks to the Wick theorem, eq. (2.164), we can arrange the last line of eq.
(2.178) as follows:

=

∫
d3q1

∫
d3p1F2(q1,k1 − q1)F2(p1,k2 − p1)×

[
〈δ(q1)δ(k1 − q1)〉〈δ(p1)δ(k2 − p1)〉
+ 〈δ(q1)δ(p1)〉〈δ(k1 − q1)δ(k2 − p1)〉
+ 〈δ(q1)δ(k2 − p1)〉〈δ(k1 − q1)δ(p1)〉

]

=

∫
d3q1

∫
d3p1F2(q1,k1 − q1)F2(p1,k2 − p1)×

[
δD(k1)δD(k2)P (0)(|k1 − q1|)P (0)(|k2 − p1|)
+ δD(q1 + p1)δD(k1 + k2 − q1 − p1)P (0)(q1)P (0)(|k1 − q1|)
+ δD(q1 + k2 − p1)δD(k1 + p1 − q1)P (0)(q1)P (0)(|k1 − q1|)

]

=

∫
d3q1F2(q1,k1 − q1)F2(q1 − k1,−q1)

[
δD(k1 + k2)P (0)(q1)P (0)(|k1 − q1|)

+ δD(k1 + k2)P (0)(q1)P (0)(|k1 − q1|)
]
.

(2.179)
Now, we exploit the fact that F2(q1,k1 − q1) = F2(q1 − k1,−q1), thus obtaining the
final form for the second term:

〈δ2(k1)δ2(k2)〉 = 2δD(k1 + k2)

∫
d3q
[
F2(q,k1 − q)

]2

P (0)(q)P (0)(|k1 − q|). (2.180)
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We move forward calculating the third term, which reads:

〈δ3(k1)δ1(k2)〉 = 〈
∫
d3q1

∫
d3q2

∫
d3q3δD(k1 − q1 − q2 − q3)

× F3(q1,q2,q3)δ(q1)δ(q2)δ(q3)δ(k2)〉

=

∫
d3q1

∫
d3q2F3(q1,q2,k1 − q1 − q2)

× 〈δ(q1)δ(q2)δ(k1 − q1 − q2)δ(k2)〉

=

∫
d3q1

∫
d3q2F3(q1,q2,k1 − q1 − q2)

×
[
δD(q1 + q2)P (0)(q1)δD(k1 + k2 − q1 − q2)P (0)(|k1 − q1 − q2|)

+ δD(k1 − q2)P (0)(q1)δD(k2 + q2)P (0)(k2)

+ δD(q1 + k2)P (0)(q1)δD(k1 − q1)P (0)(|k1 − q1 − q2|)
]

= δD(k1 + k2)

∫
d3q1F3(q1,−q1,k1)

[
P (0)(q1)P (0)(k1)

+ P (0)(q1)P (0)(k2) + P (0)(q1)P (0)(k1)
]
.

The final form of the third term is then:

〈δ3(k1)δ1(k2)〉 = 3δD(k1 + k2)

∫
d3qF3(q,−q,k1)P (0)(q)P (0)(k1) (2.181)

whereas the fourth term can be derived in the same way as the third one.
Thus, gathering all the four terms, we obtain the shape of the one-loop power spectrum:

P1−loop(k1) = δD(k1 + k2)
[
P (0)(k1) + 2

∫
d3q
[
F2(q,k1 − q)

]2
P (0)(q)P (0)(|k1 − q|)

+ 6

∫
d3qF3(q,−q,k1)P (0)(q)P (0)(k1)

]
.

(2.182)
where we have indicated P1−loop(k1) ≡ 〈δ̃(k1)δ̃(k2)〉.
In particular, we can write the power spectrum up to one-loop corrections as:

P1−loop(k) = P (0)(k) + P (1)(k) (2.183)

where the first order contributions can be written as

P (1)(k) = P22(k) + P13(k), (2.184)
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Figure 2.11: We have calculated explicitly from eq. (2.185) and eq. (2.186) P22(k) and P13(k),
depicted in the left and right panel respectively. Note that we have plotted −P13(k). Both P22(k)
and P13(k) assume small values at low k and they grow considerably going towards smaller scales.
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Figure 2.12: In the left panel is represented the linear power spectrum at z = 0, P (0)(k) (purple),
and the power spectrum calculated up to one loop corrections, P1−loop(k) (dashed). In the right panel
the ratio between P1−loop(k) and P (0)(k) is shown. We see that k ∼ 0.1 represents the end of the
validity of the linear regime.

so that

P22(k) = 2

∫
d3q
[
F2(q,k− q)

]2
P (0)(q)P (0)(|k− q|), (2.185)

P13(k) = 6

∫
d3qF3(q,−q,k)P (0)(q)P (0)(k), (2.186)

which are depicted in Fig. 2.11. We see that the one loop corrections to the integral
grow considerably with incresing wavenumber. However, the P22(k) is positive, whereas
P13(k) is negative. In this way the two corrections almost equal each other, leading to
an overall small correction.
In addition, we show in Fig. 2.12 the one-loop power spectrum P1−loop compared to the
linear matter power spectrum at z = 0, i.e. P (0)(k). Also, we show the ratio between
P1−loop and P (0)(k).
It is clear, looking at Fig. 2.12, that starting from k ∼ 0.1 h/Mpc the corrections to the
linear power spectrum are not small anymore and, in particular, P (0)(k) undertimates
the power spectrum calculated with the perturbative corrections up to one-loop. This
means that, starting indeed around k ∼ 0.1 h/Mpc the linear regime is not valid
anymore.



Chapter 3

Statistical Approach to Cosmology

In this chapter we shall go through some statistical concepts and review some useful
tools which are widely employed in cosmology.
One question should arise: why do we need a statistical approach when, not only we
are dealing with data analysis, but on general ground we are studying cosmology and
its fundamental observables?
As we know, the present explanation of the large-scale structure of the universe is that
the distribution of matter on cosmological scales we see today comes from the growth
of primordial, small, seed fluctuations on an homogeneous universe amplified by gravi-
tational instability [35]. The fact is, tests of cosmological theories, which actually help
in characterizing these primordial seeds, are not deterministic, but statistical, for the
following reasons. First, we do not have direct observational access to primordial fluc-
tuations. This means that we do not have definite initial conditions. Second, the time
scale for cosmological evolution is so much greater with respect to the time scale over
which we can make observations, that it is absolutely impossible to follow the evolution
of single systems. Thus, if we are willing to test the evolution of structures, we must do
it statistically. Our present universe is therefore modeled as a stochastic realization of a
statistical ensemble of different possibilities. The aim, therefore is to predict statistical
realizations, which actually depend on the statistical characteristics of the primordial
perturbations that led to the present-day large-scale structure configuration.

3.1 Parameter Estimation

Following [49] we will start reviewing some topics that are very common in cosmo-
logical data analysis. Most data analysis problems are, in some sense, called "inverse
problems". We have a set of data x and we wish to interpret the data in some way.
One typical example could be: are large-scale structure observations consistent with
the hypothesis that the universe is spatially flat?
When dealing with cosmology, we collect some data and wish to interpret them in
terms of a model, i.e. a theoretical framework which we assume to be true. The model
will usually have some parameters θ in it, which we want to determine: this is called

65
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the parameter estimation process. Therefore, the main goal is to provide estimates of
the parameters, and their errors, or preferably the whole probability distribution of θ,
given the data x, which is called posterior probability distribution. Basically, it is the
probability that the parameters take certain values after doing the experiment, and we
can indicate it in the following way:

p(θ|x). (3.1)

From p(θ|x) one can calculate the expectation values of the parameters and their
errors.

3.1.1 Forward Modeling

Often, instead of the posterior probability, it may be easier to calculate rather the
opposite, namely

p(x|θ) (3.2)

referred to as forward modeling i.e., knowing the parameters beforehand, we can com-
pute the expected distribution of the data. Examples of forward modeling distributions
include the common ones, such as Binomial, Poisson, Gaussian and so on.
We can consider, as a concrete example, a model in which we have a Gaussian with
mean µ and variance σ2. The model has two parameters θ = (µ, σ), and, given the
parameters, the probability of a single variable x reads

p(x|θ) =
1√
2πσ

e−
(x−µ)2

2σ2 . (3.3)

The interesting thing is that we can relate eq. (3.3) to the posterior probability p(θ|x)
thanks to the Bayes theorem, which states:

p(θ|x) =
p(x|θ)p(θ)

p(x)
(3.4)

where we can call p(x|θ) Likelihood and we indicate it with L(x,θ). Moreover, p(θ)
is called prior, and expresses our knowledge of the parameters before doing the exper-
iment, which may come from previous experiments, or from a given theory. Finally,
p(x) is called evidence, which is defined is in the following way:

p(x) =

∫
dθp(x|θ)p(θ). (3.5)

Let us note that, in the absence of any data, it is common to adopt the principle of
indifference and assume a flat prior, i.e. all values of the parameters are equally likely,
thus taking p(θ) = const. Hence, for flat priors, we have simply

p(θ|x) ∝ L(x;θ) (3.6)
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3.1.2 Errors

Now, let us assume we have a posterior probability distribution p(θ|x). One common
estimator of the parameters, which we indicate with the hat symbol, is the mean:

θ̂ =

∫
dθp(θ|x)θ. (3.7)

We define an estimator unbiased if its expectation value coincides with the true value
of the parameter, θ0:

〈θ̂〉 = θ0. (3.8)

Now, for simplicity, we assume that the probability distribution is single-peaked. More-
over, we assume a flat prior, so that the posterior probability is proportional to the
likelihood. We can therefore study the behavior of L(x;θ) close to the peak, performing
a Taylor expansion of the logarithm of the likelihood function:

logL(x;θ) = logL(x;θ0) +
1

2
(θα − θ0α)

∂2 logL

∂θα∂θβ
(θβ − θ0β) + · · · (3.9)

which implies that, locally, L(x;θ) is a multivariate Gaussian in the parameter space:

L(x;θ) = L(x;θ0)e−
1
2

(θα−θ0α)Hαβ(θβ−θ0β), (3.10)

where we have used

Hαβ = −∂
2 logL

∂θα∂θβ
(3.11)

which is called Hessian matrix. The Hessian indicates whether the estimates of θα and
θβ are correlated or not. In fact, if Hαβ is not diagonal, it means that the estimates are
correlated. Let us note that, even if the quantities are uncorrelated, their estimates
could have a similar effect on the data; in this case the estimates would be actually
correlated, therefore leading to a non-diagonal Hessian.

3.2 Fisher Matrix Approach
Now we will deal with an important issue in cosmology, that is: how well can we
measure model parameters from a given data set, without simulating the data set?
In other words: are we able to make a forecast, given a data set, of some specific
parameters? The accuracy, i.e. the error bar, with which cosmological parameters
can be measured from a given data set is conveniently computed with the Fisher
information matrix formalism [50].
Therefore, proceeding as we have done in Sec. 3.1, we can think of the data as an
N-dimensional vector x; the components (xi) could be, for example, the fluctuations
in the galaxy density with respect to the mean, in N disjoint bins that cover the three
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dimensional survey volume; x is considered as a random variable whose probability
distribution L(x,θ) (the likelihood) depends on a vector of cosmological parameters θ.
These parameters θ are exactly what we want to estimate. In order to do so, we need
the explicit expression of the Fisher matrix, which is defined as the expectation value
of the Hessian (eq. (3.11)) and reads:

Fij ≡ −
〈
∂2 logL

∂θi∂θj

〉
. (3.12)

3.2.1 The Cramer-Rao Inequality

What is extremely useful in this approach, is that the inverse of the Fisher matrix,
F−1, can be thought as the best covariance matrix for the measurements errors on the
parameters, namely:

∆θi∆θj ≥ (F−1)ij. (3.13)

It follows that, if all the parameters are estimated from the data, as well as the pa-
rameter we are interested in, we have:

∆θi ≥ (F−1)
1/2
ii (3.14)

whereas if all other parameters are fixed we simply obtain

∆θi ≥
1√
Fii
. (3.15)

Equation (3.15) takes the name of Cramer-Rao inequality and we can derive it following
[51].
Since L(x, θ) is the joint frequency function of the observations, it holds that

∫
dx1 · · ·

∫
dxnL(x1, . . . , xn, θ) = 1. (3.16)

Now we suppose that the first two derivatives of L w.r.t. θ exist for all θ. If we
differentiate both sides of eq. (3.16) w.r.t. θ we obtain:

∫
dx1 · · ·

∫
dxn

∂L

∂θ
= 0, (3.17)

where we have simply written L for the sake of notation. We may rewrite the last
equation as:

〈∂ logL

∂θ
〉 =

∫
dx1 · · ·

∫
dxn

(
1

L

∂L

∂θ

)
L = 0. (3.18)
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If we differentiate eq. (3.18) we obtain:
∫
dx1 · · ·

∫
dxn

[(
1

L

∂L

∂θ

)
∂L

∂θ
+ L

∂

∂θ

(
1

L

∂L

∂θ

)]
= 0, (3.19)

which becomes

∫
dx1 · · ·

∫
dxn

[(
1

L

∂L

∂θ

)2

+
∂2 logL

∂θ2

]
= 0, (3.20)

or

〈
(∂ logL

∂θ

)2〉 = −〈∂
2 logL

∂θ2
〉. (3.21)

Now let us consider an estimator t of some function of θ, say τ(θ) in complete generality.
The estimator is unbiased if 〈t〉 = τ(θ). Now, if we suppose that t is unbiassed, we
have:

〈t〉 =

∫
dx1 · · ·

∫
dxntL = τ(θ). (3.22)

We differentiate eq. (3.22), obtaining:
∫
dx1 · · ·

∫
dxnt

∂ logL

∂θ
L = τ ′(θ), (3.23)

which we may rewrite, using eq. (3.18), as

τ ′(θ) =

∫
dx1 · · ·

∫
dxn [t− τ(θ)]

∂ logL

∂θ
L. (3.24)

Now, by the Cauchy-Schwarz inequality, we have from eq. (3.24)

[τ ′(θ)]
2 ≤

∫
dx1 · · ·

∫
dxn [t− τ(θ)]2 L ·

∫
dx1 · · ·

∫
dxn

(
∂ logL

∂θ

)2

L, (3.25)

which, on rearrangement, becomes

(∆θ)2 = 〈[t− τ(θ)]2〉 ≥ (τ ′(θ))2

〈
(
∂ logL
∂θ

)2〉
, (3.26)

and, using eq. (3.21), the last equation may be rewritten

(∆θ)2 ≥ (τ ′(θ))2

−〈∂2 logL
∂θ2
〉
. (3.27)
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Now, in the case where t is estimating θ itself, we have that τ ′(θ) = 1; therefore we
come to:

(∆θ)2 ≥ 1

−〈∂2 logL
∂θ2
〉
, (3.28)

which is, using the definition of the Fisher matrix:

(∆θ)2 ≥ 1

Fθθ
, (3.29)

i.e., the Cramer-Rao inequality. Note that, in the case of just a single parameter, the
Fisher matrix has rank 1.

3.2.2 Gaussian Likelihood

Now we can assume the probability distribution L to be a Gaussian with mean µ ≡ 〈x〉
and covariance matrix C ≡ 〈xxt〉 − µµt, thus we can write:

− 2 logL = log detC + (x− µ)C−1(x− µ)t (3.30)

where we have dropped the coefficients in front of the distribution function. If we now
define D ≡ (x−µ)(x−µ)t and consider that log(detC) = tr(logC), we can write eq.
(3.30) as follows:

− 2 logL = tr
[
logC + C−1D

]
. (3.31)

Indicating C,i≡ ∂
∂θi
C, it holds that C−1,i = −C−1C,iC−1 and (logC),i = C−1C,i.

Therefore we can write eq. (3.31) in the following fashion:

− (2 logL),i = tr
[
C−1C,i−C−1C,iC−1D + C−1D,i

]
, (3.32)

thus

−(2 logL),ij = tr
[
−C−1C,iC−1C,j +C−1C,ij +C−1C,iC−1C,j C−1D

−C−1C,ij C−1D + C−qC,j C−1C,iC−1D−C−1C,j C−1D,i

−C−1C,iC−1D,j +C−1D,i
]

= tr
[
C−1C,ij +C−1C,j C−1C,iC−1D−C−1C,iC−1Dj

+ C−1C,j C−1D,i−C−1C,ij C−1D + C−1D,ij
]
.

(3.33)

Then, since we have that 〈x〉 = µ and 〈xxt〉 = C + µµt, we obtain:




〈D〉 = C,
〈D,i 〉 = 0,

〈D,ij 〉 = µ,iµ,
t
j +µ,j µ,

t
i

(3.34)
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Therefore, inserting this into eq. (3.33), and using the trace property tr[AB] = tr[BA]
we obtain:

− (2 logL),ij = tr
[
C−1C,iC−1C,j +C−1(µ,iµ,

t
j +µ,j µ,

t
i )
]
, (3.35)

and, taking into account the definition of the Fisher matrix, eq.(3.12), we can write:

Fij =
1

2
tr
[
C−1∂C

∂θi
C−1∂C

∂θj

]
+ tr

[
C−1 ∂µ

∂θi

∂µ

∂θj

t]
. (3.36)

We have thus found an explicit form for the Fisher matrix when the probability dis-
tribution is a Gaussian. It is an interesting result because, as we have said before, if
we know how µ and C depends on the parameters we can calculate the Fisher matrix
before doing the experiment so that we can have an estimate of the expected error on
a given parameter.

Now, still following [50], we will derive a simple approximation for F which helps in
an intuitive understanding of numerical results and shows the different contributions
for each scale k. If we do not take into account non-linear clustering and redshift-space
distortions all the cosmological information is carried by the galaxy power spectrum.
If the volume of the survey we are considering is much larger than the scale of any
feature in the power spectrum, it has been shown that all the cosmological information
in the variable x is recovered when P (k) is estimated with the FKP method [52, 53].
In particular we can think of xn as the average power measured with the FKP method
in a thin shell of radius kn in Fourier space. Therefore, we can write the FKP results
as:

µ ≈ P (kn)

Cmn ≈ 2
P (kn)P (kn)

VnVeff (kn)
δmn

(3.37)

where

Vn ≡
4π

(2π)3
k2
ndkn (3.38)

Veff (k) ≡
∫ [

n̄(r)P (k)

1 + n̄(r)P (k)

]
d3r. (3.39)

We indicate with n̄(r) the selection function of the survey, that is the a priori expecta-
tion value for the number density of the galaxies; Veff can therefore be interpreted as
the effective volume used for measuring the power at wave number k. If we choose the
shells thick enough, so that they contain a lot of uncorrelated modes, VnVeff (kn)� 1,
the central limit theorem states that x can be well approximated by a Gaussian.
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Also, in this limit, we can neglect the first term in eq. (3.36) [50] and, using eq. (3.37)
we have:

Fij ≈
1

4π2

∑

n

∂P (kn)

∂θi

∂P (km)

∂θj

Veff (kn)k2
ndkn

P (kn)2
. (3.40)

Let us define

ω(k) =
Veff
λ3

(3.41)

where λ = 2π/k is the wavelength. Hence we come to:

Fij = 2π
∑

n

∂P (kn)

∂θi

∂P (km)

∂θj

ω(k)

P (kn)2

dkn
kn

(3.42)

and, finally replacing the sum with an integral, we arrive to:

Fij ≈ 2π

∫ kmax

kmin

∂ logP (k)

∂θi

∂ logP (k)

∂θj
ω(k)d log k. (3.43)

Eq. (3.43) could be useful because it divides the effects of cosmology, which enter
through the derivatives of the power spectrum, from those of the survey-specific details,
which are considered via the weight function ω(k). Let us note, however, that eq. (3.43)
is a rather crude approximation, since it ignores edge effects, redshift space distortions
and, most importantly, non-linear clustering.



Chapter 4

Large Scale Structure Consistency
Relations

4.1 Consistency Relations
In this chapter we want to derive and to study more in detail the large-scale structure
consistency relations (CR). As stated in [11], the consistency relations, which come
from the equivalence principle, are exact equalities among correlation functions of
different order and hold for primordial perturbations generated by single-field models
of inflation.
For the derivation of the consistency relations we will mainly follow [11]. We start
with isolating the effects on the bispectrum of nearly uniform and time-dependent
displacements fields:

x + dα(x) (4.1)

and, recalling eq. (2.169), the bispectrum is defined as

Bαβγ(q, k+, k−) ≡ 〈δα(q)δβ(−k+)δγ(k−)〉′ (4.2)

where the prime indicates that the expectation value has to be divided by the Dirac
delta δD(q− k− q/2 + k− q/2) = δD(0). The subscripts α, β, γ indicate the different
tracers we can use to measure the density contrast, such as baryons, dark matter,
galaxies and so on.
It is helpful to shift back to the initial positions, defining new density fields,

δα(x) ≡ δ̃α(x− dα(x)) ' δ̃α(x)− dα(x) · ∇δ̃α(x). (4.3)

We now take the Fourier transform of this last equation (note that we indicate with
the same symbol fields in real and Fourier space):

δα(p) ' δ̃α(p)−F
{
− dα(x) · ∇δ̃α(x)

}
(p). (4.4)

73
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The second term then becomes:

=

∫
d3x

(2π)3
e−ip·x(−dα(x) · ∇δ̃α(x))

=

∫
d3x

(2π)3
e−ip·x

[
−
∫
d3q′eiq

′·xdα(q′) · ∇
∫
d3q′′eiq

′′·xδ̃α(q′′)
]

= −
∫

d3x
(2π)3

e−ip·x
∫
d3q′eiq

′·xdα(q′) ·
∫
d3q′′(iq′′)eiq

′′·xδ̃α(q′′)

= −i
∫ ∫ ∫

d3x
(2π)3

d3q′d3q′′e−ix·(p−q′−q′′)(q′′ · dα(q′))δ̃α(q′′)

= −i
∫ ∫

d3q′d3q′′δD(p− q′ − q′′)(q′′ · dα(q′))δ̃α(q′′),

thus obtaining

δα(p) ' δ̃α(p)− i
∫
d3q′(p− q′) · dα(q′)δ̃α(p− q′). (4.5)

We proceed by inserting this into eq. (4.2) and obtain:

Bαβγ(q, k+, k−) = 〈δ̃α(q)δ̃β(−k+)δ̃γ(k−)〉′

− i
∫
d3q′(k− − q′)

〈
δ̃α(q)δ̃β(−k+)dγ(q′)δ̃γ(k− − q′)

〉′

− i
∫
d3q′(−k+ − q′)

〈
δ̃α(q)dβ(q′)δ̃β(−k+ − q′)δ̃γ(k−)

〉′

− i
∫
d3q′(q− q′)

〈
dα(q′)δ̃α(q− q′)δ̃β(−k+)δ̃γ(k−)

〉′

+ · · ·

(4.6)

Since we are in the q � k limit, we assume that dα(q) correlates only with δ̃α(q),
therefore we can write:

〈
δ̃α(q)dβ(q′)δ̃β(−k+−q′)δ̃γ(k−)

〉′ '
〈
δ̃α(q)dβ(q′)

〉〈
δ̃β(−k+ − q′)δ̃γ(k−)

〉′

= δD(q + q′)
〈
δ̃α(q)dβ(−q)

〉′〈
δ̃β(−k−)δ̃γ(k−)

〉′ (4.7)

Thus, the Bispectrum takes the form:

lim
q/k→0

Bαβγ(q, k+, k−) = 〈δ̃α(q)δ̃β(−k+)δ̃γ(k−)〉′

ik ·
[〈
δ̃α(q)dβ(−q)

〉′
Pβγ(k−)−

〈
δ̃α(q)dγ(−q)

〉′
Pβγ(k+)

]

+ · · ·

(4.8)
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where we have used the definition of the power spectrum. Now we take a closer look
to dα(q). Actually, since the Equivalence Principle and the adiabatic initial conditions
ensure that, at large scales, all species fall with the same acceleration under the effect
of the potential generated by the total matter field, so that dα,β,γ(q)→ dm(q), we will
consider a common displacement, dm(q).
By definition, suppressing the m subscript, we have:

d(q, τ) =

∫ τ

dτ ′v(q, τ ′), (4.9)

then:

dτ ′ =
dτ

d logD
d logD =

1

Hf d logD =
1

Hf dη, (4.10)

where we have used f = d logD
d log a

. Therefore:

d(q, τ) =

∫ η

dη′
v(q, η′)
Hf . (4.11)

We assume to be in linear theory, so that we have v(q,η′)
Hf ∼ eη = D. Hence:

∫ ηf

ηi

dη′
v(q, η′)
Hf

∣∣∣
ηf
e(η′−ηf ) =

v(q, η)

Hf
∣∣∣
ηf
e(η−ηf )

∣∣∣
ηf

ηi
=

ηf→∞
v(q, η)

Hf . (4.12)

We then take the continuity equation in the linear regime, which reads:

∂δ(x, τ)

∂τ
+∇ · v(x, τ) = 0 (4.13)

and, substituting d
dτ

= Hf d
d logD

we arrive to:

δ′(x, η) +
∇′ · v(x, η)

Hf = 0 (4.14)

where ′ ≡ d
d logD

. Since δ ∼ D = eη we have that δ′(x, η) = δ(x, η), thus obaining:

δ(x, η) +
∇′ · v(x, η)

Hf = 0. (4.15)

If we now Fourier transform eq. (4.15) we arrive to:

v(q, η)

Hf = i
q
q2
δ(q, η) (4.16)

which leads to

dm(q) = i
q
q2
δm(q). (4.17)
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Finally, using eq. (4.8), neglecting its first term and using eq. (4.17), we obtain the
large-scale structure consistency relations:

lim
q/k→0

Bαβγ(q, k+, k−)

Pαα(q)Pβγ(k)
=

µ

bα(q)

k

q

(Pβγ(k−)− Pβγ(k+))

Pβγ(k)
+O

(( q
k

)0
)

= − µ2

bα(q)

d logPβγ(k)

d log k
+O

(( q
k

)0
)
,

(4.18)

where µ ≡ (q ·k)/(qk). We have also defined the bias parameter as a physical quantity
in the following manner:

bα(q) ≡ lim
q→0

Pαα(q)

Pαm(q)
. (4.19)

We note that the equal-time Consistency Relations (eq. (4.18)) contain no 1/q pole.
As a first check, we can compute the matter bispectrum in the squeezed limit at the
lowest order in standard perturbation theory. In fact we have:

B(q,k− q/2,−k− q/2) = 2F2(q,k− q/2)P (0)
m (q)P (0)

m (|k− q/2|)
+ 2F2(q,−k− q/2)P (0)

m (q)P (0)
m (|−k− q/2|)

+ 2F2(k− q/2,−k− q/2)P (0)
m (|k− q/2|)P (0)

m (|−k− q/2|)
(4.20)

where we have denoted with P (0)
m the linear matter power spectrum. Around q/k � 1

we can write:

|k− q/2| = k

√
1− µq

k
+

1

4

( q
k

)2

' k − 1

2
µq (4.21)

so that we can expand the power spectrum as

P (0)
m (|k− q/2|) ' P (0)

m (k)− 1

2
qµ

dP
(0)
m (k)

dk
. (4.22)

The next step is to expand the three terms on the r.h.s. of eq. (4.20) around q/k → 0.
The first term is:

= 2

[
1

2
µ
k

q
+

(
13

28
+

2

7
µ2 +O

( q
k

))]
P (0)
m (q)

(
P (0)
m (k)− 1

2
qµ

dP
(0)
m (k)

dk

)
(4.23)

whereas the second term is:

= 2

[
−1

2
µ
k

q
+

(
13

28
+

2

7
µ2 +O

( q
k

))]
P (0)
m (q)

(
P (0)
m (k) +

1

2
qµ

dP
(0)
m (k)

dk

)
(4.24)
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and the third is:

= O
( q
k

)
. (4.25)

Putting all the pieces together we arrive to:

lim
q/k→0

BSPT
mmm(q, k+, k−)

P
(0)
m (q)P

(0)
m (k)

= −µ2 d logP
(0)
m (k)

d log k
+

13 + 8µ2

7
+O

( q
k

)
(4.26)

The first term on the r.h.s. of this equation can be isolated from the rest because of
its dependence on the scale. In order to see this effect we can do as follows.
We know, from Sec. 2.2, that, around some specific values of k, the power spectrum
displays some oscillating features that we can, at first approximation, identify with the
baryon acoustic oscillations. Thus, we can write the power spectrum as an oscillating
part (wiggle) plus a smooth part (no-wiggle):

P (0)
m (k) = Pw

m(k) + P nw
m (k). (4.27)

We can explicit the last expression in the following way:

P (0)
m (k) = P nw

m (k) (1 + Abao(k) sin(krs)) (4.28)

rs standing for comoving sound horizon and Abao is the amplitude of the BAO oscilla-
tions.
Thus, performing the derivative of the power spectrum that appears in the consistency
relations we have:

d logP
(0)
m (k)

d log k
=

d log [P nw
m (k) + P nw

m (k)Abao(k) sin(krs)]

d log k

=
k

P
(0)
m (k)

dP nw
m (k)

dk
+

k

P
(0)
m (k)

[
dP nw

m (k)

dk
Abao(k) sin(krs)

]

+ krsAbao(k)

[
1

1 + Abao(k) sin(krs)
cos(krs)

+
1

rs

1

1 + Abao(k) sin(krs)

1

Abao(k)

dAbao(k)

dk
sin(krs)

]

=
d logP nw

m (k)

d log k
+

krsAbao(k)

1 + Abao(k) sin(krs)
[cos(krs) + α(k) sin(krs)]

(4.29)

where we have defined

α(k) ≡ 1

krs

d logAbao(k)

d log k
. (4.30)

We see that the bispectrum in the squeezed limit contains an oscillating component
whose amplitude is enhanced by krs ∼ 2πk/(0.05hMpc−1) and it also has a smooth
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Figure 4.1: Comparison between the l.h.s. and the r.h.s. of eq. (4.26). The red solid line is the tree-
level bispectrum (divided by P (0)

m (q) and P (0)
m (k)), whereas the black dashed line is the r.h.s. of the

equation. Note that the plot is made choosing q = 0.02 h/Mpc for the left panel and q = 0.03 h/Mpc
for the right one. In addition, three different values of µ were chosen.

component given by the first term on the r.h.s of the last line of eq. (4.29).
In Fig. 4.1 we show the result of eq. (4.26), comparing the l.h.s and the r.h.s. of the
equation, for q = 0.02 h/Mpc, q = 0.03 h/Mpc and for three different values of µ.
We see, as we expect, that the consistency relations hold if the squeezed limit is true,
i.e. as long as k is big enough. Also, if we choose a greater value for q, we clearly see
less correspondence between the two sides of the consistency relations, especially for
higher values of µ. We also note that, as we will see in the last chapter of this work,
the amplitude of the oscillations of the two sides of the consistency relations are deeply
related by the CR.
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4.2 Damping of Baryon Acoustic Oscillations
A key advantage of the BAO as a cosmological probe is that nonlinearities such as
those induced from nonlinear gravitational clustering induce predictable shifts in the
oscillation scale and hence can be modelled both analytically and through numerical
simulations [24]. There are, however, two important effects we want to investigate
more in detail.
The first effect caused by nonlinearity is the shift in the peak of the correlation function
due to mode-mode coupling [54]. This happens basically for two reasons. First, if the
smooth part of the correlation function changes along with time, the acoustic peak will
shift as well [24]. Secondly, let us go back at the model in which we considered the
expanding wave from the initial point-like overdensity. When we are writing the two
point correlation function we are asking ourselves: what is the probability of finding a
galaxy at a given distance, assuming that there is a galaxy at the origin. But, taking
into account the nonlinear evolution of the density shell, we would expect it to undergo
some collapse during the expansion of the universe, due to its own self-gravity and due
to the gravity provided by the galaxy at the center. This all lead to a shrinking of the
radius of the shell hence shifting the peak of the two point correlation function.
The second effect caused by nonlinearity is the smoothing and broadening of the peak.
Still qualitatively we can think of this effect as follows. Let us imagine that a galaxy
forms on the BAP shell. Since we are considering nonlinearities, this galaxy will interact
with all other over and under-densities, therefore generating a net force which may
pull the galaxy outwards or inwards [24]. Since the correlation function is computed
by averaging over all available galaxies, the average effect is to broaden and to smooth
the BAP. These two effects are shown in Fig. (4.2).
In the fourier space, this broadening of the BAP can be translated into a damping
of the oscillations in the power spectrum on small scales. We can understand this
process analytically as follows. Let us think to the correlation function ξ(r) as a
shifted Gaussian:

ξ(r) = e−
(r−r?)2

2σ2 . (4.31)
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Fig. 1.15. Movement of the Baryon Acoustic Peak. The correlation function at z=0 illus-
trates how the transfer of power to smaller scales due to nonlinearities, leads to a shift of
the BAP in the correlation function, ξ(r). The linear peak, indicated by the dashed line is
both broadened and shifted towards smaller scales. The solid line shows the prediction for
the shift from renormalised perturbation theory (RPT) (38, 39). The vertical lines denote
the corresponding maxima of the linear and nonlinear correlation functions. From Crocce
et al., 2008 (40).

less accurate, hence degrading dark energy constraints. Broadening the peak in the

correlation function washes out the oscillations in P (k) at large wavenumbers or

small scales.

We can illustrate this analytically as follows. Let us model the correlation function

as a Gaussian bump shifted so it is centered at a scale r∗, or

ξ(r) = exp

(
−(r − r∗)

2

2σ2

)
. (1.26)

Hence the power spectrum is given by

P (k) =

∫ ∞

−∞
exp (−(r − r∗)

2

2σ2
) exp (−ikr)dr

=

√
π

2
exp (−ikr∗) exp

(
−k2σ2

)
(1.27)

Figure (1.16) illustrates this toy-model correlation function consisting of a Gaussian

shifted to some preferred scale r∗, and the corresponding power spectrum P (k).

The oscillations are given for a range of widths of the Gaussian bump, 10 < σ < 35.

Clearly as the Gaussian broadens, the oscillations in the power spectrum are washed

Figure 4.2: Movement of the Baryon Acoustic Peak at z=0. The linear peak (dashed line) is both
broadened and shifted towards smaller scales. The solid line shows the prediction for the shift from
renormalised perturbation theory (RPT) [55]. The vertical lines denote the corresponding maxima of
the linear and nonlinear correlation functions. Figure taken from [56].

Therefore, using eq. (2.29) we have:

P (k) =

∫ ∞

−∞
e−

(r−r?)2
2σ2 e−ikrdr

=

√
π

2
e−ikr?e−k

2σ2

.

(4.32)

In Fig. (4.3) is illustrated this model. We see that, as the Gaussian broadens, the
oscillations in the power spectrum are washed out, making their detection harder.

We now want to investigate more quantitatively the behavior of BAO oscillations
and understand more deeply the reason why they are damped. We can see this start-
ing from the evolution equation of the power spectrum. We will follow [57] for this
derivation.
Neglecting vorticity, the first two moments of the coarse-grained Vlasov equation give
the continuity and Euler equations, which can be rewritten in a compact form in Fourier
space as follows:

(δab∂η + Ωab)ϕb(k, η) =

∫
d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δD(k− q1 − q2)×

[eηγabc(q1,q2)ϕb(q1, η)ϕc(q2, η)− ha(k, η)]

(4.33)

where:

ϕ1(k, η) ≡ e−η δ̃(k, η) ϕ2(k, η) ≡ e−η
−θ̃(k, η)

Hf . (4.34)
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Baryon Acoustic Oscillations 27

out, making their detection harder. Recalling the illustration of rings of power in

Figure (1.5), we can examine the effect of successively broadening the rings from

which the points are drawn. This this shown in Figure (1.17) which shows the

smearing of the characteristic radius implying an increased error in the standard

ruler measurement.
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Fig. 1.16. Smoothing out the baryon acoustic signal in the Fourier pair ξ(r), P (k). Increasing
the width of the correlation function bump corresponds to the damping of the acoustic
oscillations in the power spectrum, particularly severely at large k. Both effects make
reconstruction of the standard ruler length more noisy.

1.3.3 Reconstruction

While non-linear gravitational collapse broadens and shifts the peak of the corre-

lation function, Eisenstein et al. (49) point out that the map of galaxies used to

extract the power spectrum in redshift space can also be used to map the veloc-

ity field. Since the galaxies are essentially test particles in the standard ΛCDM

paradigm, this velocity field can then be used to undo the effects of the nonlinear

clustering or equivalently to reconstruct the position and sharpness of the linear

acoustic oscillation peak by moving densities to where they would have been had

linear theory held at all times. By considering a pair of galaxies separated by the

characteristic BAO scale, Eisenstein, Seo and White (2007) (50) show that the ma-

jority of the corrupting signal comes from wavenumbers k ∼ 0.02 − 0.2hMpc−1.

Larger wavelengths coherently move both galaxies while smaller scales are weak be-

cause the power spectrum has little power there. The typical distances induced by

nonlinear corrections are around 10h−1Mpc.

Various methods can be followed to reconstruct the velocity and density field which

are summarised in (49). Eisenstein et al. move the measured densities back to their

Figure 4.3: Smoothing out the baryon acoustic signal in the Fourier pair ξ(r), P (k). Increasing the
width of the correlation function peak corresponds to the damping of the acoustic oscillations in the
power spectrum. Figure taken from [24].

We have used η = logD(τ) and the linear growth function f(η) ≡ 1
H

dη
dτ
. The left hand

side of of eq. (4.33) is the linearized part of the equation for the two dynamical modes,
and in particular the matrix Ω reads:

Ω =




1 −1

−3
2

Ωm
f2

3
2

Ωm
f2


 . (4.35)

Moreover, on the r.h.s, the first term on the square brackets encodes the mode-coupling
between the fields. In particular the only non vanishing components of the vertex
functions are:

γ121(p,q) =
(p + q) · p

2p2
γ112(q,p) = γ121(p,q) γ222 =

(p + q)2p · q
2p2q2

. (4.36)

It is useful to recast the mode-coupling term in this manner:

eηγabc(q1,q2)ϕb(q1, η)ϕc(q2, η) =eηδa2γ̃(q1,q2)ϕ2(q1, η)ϕ2(q2, η)+

− ikj ṽ
j(q1)

Hf ϕa(q2, η)
(4.37)

with

γ̃(q1,q2) =
(q1 · q2)2

q2
1q

2
2

− 1. (4.38)

When q1 � k ' q2 the second term on the r.h.s. of eq. (4.37) discriminates the leading
contributions to the mode-coupling induced by long velocity modes.
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In particular, expressing the velocity through eq. (2.118), the second term gives

eη
k · q1

q2
1

ϕ2(q1, η)ϕa(q2, η). (4.39)

which is an IR divergent term. In addition, let us note that the vertex function, eq.
(4.38), is never divergent; in fact it can be written as cos2 θ12−1, where θ12 is the angle
between q1 and q2, and also it vanishes for k = q1 + q2 → 0. Therefore, the only IR
divergent term we need to account for is that of eq. (4.39).
We will now discuss the effects of the resummation at all orders. First of all we apply
the equation of motion, eq. (4.33), to the correlator 〈ϕa(k, η)ϕb(−k, η)〉′ in order to
attain the evolution equation for the power spectrum. As we have done before, the
prime indicates that we have divided bu the overall momentum delta function. We get:

〈ϕa(k, η) (δdb∂η + Ωdb)ϕb(−k, η)〉′︸ ︷︷ ︸
A

+ 〈(δac∂η + Ωac)ϕa(k, η)ϕb(−k, η)〉′︸ ︷︷ ︸
B

, (4.40)

we have:

A = 〈ϕa(k)

∫
d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δD(−k− q1 − q2)×

eηγdbc(q1,q2)ϕb(q1)ϕc(q2)〉′

= 〈ϕa(k)

∫
d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δD(−k− q1 − q2)×

[
eηδd2γ̃(q1,q2)ϕ2(q1)ϕ2(q2) + ikj

ṽj

Hf ϕd(q2)

]
〉′.

(4.41)

Thus, taking care only of the second term in square brackets:

A = 〈ϕa(k)

∫
d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δD(−k− q1 − q2)×

eη
(
−k · q1

q2
1

ϕ2(q1)ϕd(q2)

)
〉′

= 〈ϕa(k)

∫
d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δD(−k + q1 − q2)×

eη
(
k · q1

q2
1

ϕ2(−q1)ϕd(q2)

)
〉′

= eη
∫

d3q1

(2π)3

k · q1

q2
1

〈ϕa(k)ϕ2(−q1)ϕd(−k + q1)〉′.

(4.42)
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Then, similarly, for the other term we have:

B = eη〈
∫

d3q1

(2π)3

∫
d3q2

(2π)3
(2π)3δD(k− q1 − q2)

k · q1

q2
1

ϕ2(q1)ϕc(q2)ϕb(−k)〉′

= eη〈
∫

d3q1

(2π)3
(2π)3k · q1

q2
1

ϕ2(q1)ϕc(k− q1)ϕb(−k)〉′

= eη
∫

d3q1

(2π)3

k · q1

q2
1

〈ϕ2(q1)ϕc(k− q1)ϕb(−k)〉′.

(4.43)

So, in the evolution equation for the power spectrum, the last term of eq. (4.37) gives:

eη
∫

d3q
(2π)3

k · q
q2

[〈ϕ2(q)ϕa(k− q)ϕb(−k)〉′ + 〈ϕa(k)ϕb(−k + q)ϕ2(−q)〉′] . (4.44)

The already derived consistency relations, eq. (4.18), can be written now as follows:

〈ϕ2(q)ϕa(k− q)ϕb(−k)〉′ ' −eηk · q
q2

P (0)(q) (Pab(k)− Pab(|k− q|)) +O

(( q
k

)0
)

(4.45)
for q � k. Inserting eq. (4.45) into eq. (4.44) we arrive to:

− 2e2η

∫
d3q

(2π)3

(
k · q
q2

)2

P (0)(q) (Pab(k)− Pab(|k− q|))

' −2e2η k2

(2π)2

∫
dqP (0)(q)

∫ 1

−1

dxx2 (Pab(k)− Pab(k − qx))

= −2e2η k2

(2π)2

∫
dqP (0)(q)P̄ 1

ab(k, q)F
1(qrs)

. (4.46)

In the last passage we have defined:

P̄ n
ab(k, q) ≡

∫ 1

−1
dxx2n

(
1− Pab(k−qx)

Pab(k)

)

F n(qrs)
Pab(k), (4.47)

with:

F n(qrs) ≡
∫ 1

−1

dxx2n(1− cos(qrsx)) (4.48)

so that F 1(qrs) = 2(1 − j0(qrs) + 2j2(qrs))/3, where jn(x) are the spherical Bessel
functions.1
As we have done in Sec. 4.1 we can write the power spectrum in the following way:

1Please note that j0(x) = sin x
x and j2(x) = − sin x

x − 3 cos x
x2 + 3 sin x

x3 .
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Pab(k) = P nw
ab (k) (1 + Abao(k) sin(krs)) ≡ P nw

ab (k) + Pw
ab(k) (4.49)

where Abao(k), as before, is the smooth modulating function which damps the oscilla-
tions. If we insert eq. (4.49) into eq. (4.47) we obtain:

P̄ n
ab(k, q) = Pw

ab(k) +O
(
P nw′′
ab (k)/r2

s

)
. (4.50)

Hence, eq. (4.46) becomes:

− 2e2ηk2ε2(rs)P
w
ab(k) +O

(
P nw′′
ab

)
(4.51)

using

ε2(rs) ≡
1

6π2

∫
dqP (0)(q)(1− j0(qrs) + 2j2(qrs)). (4.52)

Now we follow the approach of [58], in which the class of loop diagrams that are most
IR-enhanced are first identified and then resummed into the nonperturbative effect,
that is the exponential BAO damping. Their L-loop diagram reads:

Pw
L−loop,LO(k) =

1

L!

L∏

i=1

[
1

2

∫ Λ

d3qiP
nw(qi)DqiD−qi

]
Pw(k), (4.53)

where ’LO’ stands for leading-order IR-enhanced loops; moreover we have defined

DqiP
w(k) =

qi · k
q2
i

(Pw (|k + q|)− Pw(k)) =
qi · k
q2
i

(
eqi·∇k′ − 1

)
Pw(k′)

∣∣∣
k′=k

. (4.54)

In order to calculate the wiggle power spectrum at Lth order we can exploit eq. (4.51),
that is (setting η = 0 and suppressing the ab subscript):

Pw
1−loop(k) = −k2ε2Pw(k). (4.55)

In fact, we see that, at first order, eq. (4.53) must coincide to eq. (4.55). Therefore, it
is straightforward to see that, for the Lth order we simply have:

Pw
L−loop,LO(k) =

(−k2ε2)
L

L!
Pw(k). (4.56)

Finally, resumming all these terms at all orders we obtain the exponential damping
above mentioned:

Pw
IR,LO(k) =

∞∑

L=0

Pw
L−loop,LO(k) = e−k

2ε2Pw(k). (4.57)

Therefore, referring to eq. (4.49) we can write the power spectrum as:

P (k) = P nw(k) + e−k
2ε2Pw(k). (4.58)



Chapter 5

Forecast of Cosmological Parameters

5.1 Bias Parameter Forecast
In this section we will perform a forecast on the bias parameter derived in the previous
chapter. We will achieve this goal using the Fisher matrix formalism.
To this aim, we will start from the consistency relations we derived in the last chapter,
which we report here:

lim
q/k→0

Bαβγ(q, k+, k−)

Pαα(q)Pβγ(k)
= − µ2

bα(q)

d logPβγ(k)

d log k
+O

(( q
k

)0
)
. (5.1)

Let us recall that we have defined the bias parameter as the ratio between the power
spectrum of a specific tracer (galaxies, CMB photons, dark matter and so on) and the
cross correlator between dark matter and the given tracer, i.e.

bα(q) = lim
q→0

Pαα(q)

Pαm(q)
. (5.2)

Therefore, for dark matter (α = m) we have that bm(q) = 1.
In the last chapter we checked eq. (5.1) in perturbation theory computing also the
leading smooth term, namely

lim
q/k→0

BSPT
mmm(q, k+, k−)

P 0
m(q)P 0

m(k)
= −µ2 d logP 0

m(k)

d log k
+

13 + 8µ2

7
+O

( q
k

)
(5.3)

which, at first order, is exactly scale independent.
We will base our forecast of the error on the bias parameter on the Fisher matrix
approach, introduced in Sec. 3.2. In particular, from eq. (3.15) we can have an estimate
of the best error we get on the bias parameter, given the dark matter bispectrum and
power spectrum. As we have already pointed out, in order to evaluate the error on the
bias, in this approach we do not need to simulate any set of data. All we need is the
probability distribution of the data given the parameters of the theory we assume to
be true.
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Hence, we start writing the Likelihood associated to our calculation, which reads

L ∝ exp


−1

2

∑

i

( B(q,|ki+q/2|,|ki−q/2|)
P (ki)P (q)

+ 1
bm(q)

µ2 d logP (ki)
d log ki

− f(ki, q, µ)

σi

)2

 (5.4)

that is, a Gaussian distribution obtained using the consistency relations. Note that we
have added f(ki, q, µ), which is simply a polynomial fit of the difference of the two sides
of the CR having set bm(q) = 1. Thus, f(ki, q, µ) is a smooth function and subtracting
it in eq. (5.4) actually allows us to compare only the oscillatory parts of the two sides
of the consistency relations.
Note that the sum in eq. (5.4) is made over the i-th k-bin. As we shall see more in
details, since we are comparing the oscillatory parts of the two side of the consistency
relations, the k-range we will take into account will be the range in which the power
spectrum shows oscillating features. Lastly, the error σi associated to our distribution
is the error we anticipate from the future measurements of the bispectrum and the
power spectrum. We will give more details on this in what follows.
We will assume that the only parameter of the theory is bm. This means that the
Fisher matrix has rank equal to 1. Moreover, the Fisher matrix is obtained recalling
that

Fbb = −
〈
∂2 logL

∂b2
m

〉
(5.5)

evaluated in bm = 1 and, using eq. (3.15), the best error we can obtain on bm is simply

σb =
1√
Fbb

. (5.6)

The power spectrum we will use for our calculations is the linear matter power spectrum
obtained using CAMB [59].
The next step, in order to perform the calculation of eq. (5.5), is to understand what
should we put as σi, i.e. what is the error associated to our probability distribution.
As we have said before, the numerator of eq. (5.4) is made up of three terms; we can
actually consider only the first two terms, which are respectively the l.h.s and minus
the r.h.s of eq. (5.1). Therefore, assuming that the two are uncorrelated, we have:

σi =
√

(σ2
LHS)i + (σ2

RHS)i (5.7)

where LHS and RHS indicate the left and the right hand sides of the consistency
relations. We therefore need to understand how to compute these errors for given
survey specifications. We will follow [60].
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5.1.1 Power Spectrum and Bispectrum Error

An estimator for the power spectrum may be written as

Pobs(k) =
1

Nk

Nk∑

i=1

|δ(ki)|2
∣∣∣
|ki−k|≤∆k

(5.8)

where ∆k is the bin width, which is greater or equal than kf , the fundamental wavenum-
ber of the survey, given by

kf =
2π

V 1/3
(5.9)

where V is the survey volume. Moreover, Nk is the number of independent k-modes
available per bin. This estimator is unbiased, namely

〈Pobs(k)〉 =
1

Nk

Nk∑

i=1

〈|δ(ki)|2〉
∣∣∣
|ki−k|≤ kf

= 〈|δ(k)|2〉 = P (k). (5.10)

The variance of this estimator is given by

〈
(
Pobs(k)− P (k)

P (k)

)2

〉 = 1−2
〈Pobs〉
P (k)

+
1

N2
kP (k)2

Nk∑

i=1

Nk∑

j=1

〈δ?(ki)δ(ki)δ?(kj)δ(kj)〉. (5.11)

We use Wick theorem and evaluate the summation neglecting the connected contribu-
tion to the four point function:

Nk∑

i=1

Nk∑

j=1

〈δ?(ki)δ(ki)δ?(kj)δ(kj)〉 =

Nk∑

i=1

Nk∑

j=1

[
〈δ?(ki)δ(ki)〉〈δ?(kj)δ(kj)〉

+ 〈δ?(ki)δ(kj)〉〈δ?(kj)δ(ki)〉
+ 〈δ?(ki)δ?(kj)〉〈δ(ki)δ(kj)〉

]

= N2
kP (k)2 + 2NkP (k)2,

(5.12)

where the first contribution comes from the first line and the second one from the last
two lines. Thus, the variance is:

〈(Pobs(k)− P (k))2〉 = 2
P (k)2

Nk

(5.13)

therefore leading to the standard deviation

σP (k) =

√
2

Nk

P (k). (5.14)
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We need now to calculate Nk, which reads:

Nk =
4πk2∆k

k3
f

= 4π

(
k

kf

)2
∆k

kf
(5.15)

which, expressing kf through eq. (5.9), leads to the following form for the error on the
power spectrum:

σP (k) = 2π
P (k)

k
√
V∆k

. (5.16)

Instead, for the bispectrum, we have that an estimator is given by [61]:

Bobs(k1, k2, k3) =
k3
f

VB

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3δD(q123)δ(q1)δ(q2)δ(q3) (5.17)

where the integration is over the bin defined by qi ∈ (ki −∆k/2, ki + ∆k/2) and

VB ≡
∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3δD(q123) ' 8π2k1k2k3∆k3. (5.18)

Let us now derive the variance associated to this estimator:

∆B2 = 〈Bobs(k1, k2, k3)2〉 − 〈B(k1, k2, k3)〉2. (5.19)

The first term is:

〈Bobs(k1, k2, k3)2〉 =
k3
f

V 2
B

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3

∫

k1

d3p1

∫

k2

d3p2

∫

k3

d3p3×

δD(q123)δD(p123)〈δ(q1)δ(q2)δ(q3)δ(p1)δ(p2)δ(p3)〉.
(5.20)

The expectation value of the 6 delta’s is equal to:

= s123〈δ(q1)δ(p1)〉〈δ(q2)δ(p2)〉〈δ(q3)δ(p3)〉+ 〈δ(q1)δ(q2)δ(q3)〉〈δ(p1)δ(p2)δ(p3)〉
+O (P (q1)T (q1, q2, p1, p2)) +O (H(q1, q2, q3, p1, p2, p3))

(5.21)
where s123 = 6, 2, 1 for equilateral, isosceles, and general triangles, respectively. More-
over, T denotes the trispectrum and H the hexaspectrum, and we can neglect them.
The last term of the first line in eq. (5.21) cancels out with the second term of eq.
(5.19), so that we have:

∆B2 ' s123

k3
f

V 2
B

∫

k1

d3q1 · · ·
∫

k3

d3p3δD(q123)δD(p123)×

δD(q1 + p1)δD(q2 + p2)δD(q3 + p3)P (q1)P (q2)P (q3)

(5.22)
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leading to:

∆B2 ' s123

k3
f

V 2
B

∫

k1

d3q1

∫

k1

d2q2

∫

k3

d3q3 [δD(q123)]2 P (q1)P (q2)P (q3). (5.23)

Since we can write that

1

VB

∫

k1

d3q1

∫

k1

d2q2

∫

k3

d3q3 [δD(q123)]2 P (q1)P (q2)P (q3) ' P (q1)P (q2)P (q3)

k3
f

(5.24)

we can finally write the variance as

∆B2 ' k3
f

s123

VB
P (k1)P (k2)P (k3). (5.25)

We can recast eq. (5.25) and write the error on the bispectrum in the following way:

σB(k1,k2,k3) '
√

πs123

V k1k2k3∆k3
[P (k1)P (k2)P (k3)]1/2 . (5.26)

Recalling that, given a function of n-independent variables f(x1, . . . , xn), it holds that

σf =

(
n∑

i=1

(
∂f

∂xi
σxi

)2
)1/2

(5.27)

we are interested in the derivation of σRHS, the error of the r.h.s. of the consistency
relations. Looking at eq. (4.18), we may rewrite the r.h.s. of the CR as

µ
k

q

(Pm(k−)− Pm(k+))

Pm(k)
(5.28)

where we have set bm(q) = 1. Then, assuming no error on k, q and µ, we have that

σ

(
(Pm(k−)− Pm(k+))

Pm(k)

)2

=
σ (P (k−)− P (k+))2

P (k)2
+

(P (k−)− P (k+))2

P (k)4
σ2
P (k) (5.29)

leading to

σRHS = µ
k

q

√
σ2
P (k−) + σ2

P (k+)

P (k)2
+

(P (k−)− P (k+))2

P (k)4
σ2
P (k) (5.30)

which, in the squeezed limit, gives

σRHS =
√

2µ
k

q

σP (k)

P (k)
. (5.31)
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Figure 5.1: The error on the bias parameter defined in eq. (5.6). Since the value of the bias, in
this case, is exactly 1, the error shown coincides with the relative error. For this plot we have chosen
bm = 1, s123 = 2, µ = 1, q = 0.03 h/Mpc and ∆k = 0.016 h/Mpc.

Similarly, we derive the standard deviation for the l.h.s. of the consistency relations.
We obtain:

σLHS =

√
σ2
B(q,k+,k−)

(P (k)P (q))2 +
B(q, k+, k−)2

(P (k)P (q))4

(
P (q)2σ2

P (k) + P (k)2σ2
P (q)

)
(5.32)

We have thus found the two contribution to the standard deviation in eq. (5.4), that
we will add in quadrature according to eq. (5.7).

5.1.2 Error on the Bias Parameter

Now we have all the ingredients to proceed in the calculation of σb. Let us note
that, from eqs. (5.4, 5.5, 5.16, 5.26, 5.31, 5.32) we have that the Fisher matrix is
Fbb = Fbb(k, q, µ, s123, V ) with µ = k·q

kq
, s123 is a geometrical factor and V is the survey

volume. However, as already mentioned, we are doing this calculation at fixed q, µ, s123

and V and we are summing over the k-bins. The Fisher matrix therefore has only one
parameter (bm) and it is actually a matrix of rank 1, i.e. a number.

The first result obtained is the error on the bias parameter as a function of the
survey volume. The computation was done using 25 linearly-spaced bins, from kmin =
0.05 h/Mpc up to kmax = 0.45 h/Mpc, using therefore a bin width of ∆k = 0.016
h/Mpc. The result is shown in Fig. 5.1. We find, for µ = 1, σb ' 0.0161− 0.0205. We
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have obtained what we have expected, namely we find lower values of the bias error as
we increase the survey volume.
We also show, in Fig. 5.2 the value of the bias error as a function of kmax. For the
computation we have used linearly-spaced bins from kmin = 0.05 h/Mpc up to different
kmax. What is left unchanged, for any given kmax is the width of the bin, which was
fixed at ∆k = 0.016 h/Mpc. Note that, as we expect, if we go towards greater kmax, the
error on the bias becomes smaller. This trend, however, seems to be more important at
low kmax whereas, around kmax ∼ 0.35 h/Mpc this effect starts to be less visible: this is
because the oscillations amplitude of the power spectrum, around that value, becomes
very small, see Fig. 5.6. Furthermore, still looking at Fig. 5.2, we note that, as the
value of q increases, we get a better (smaller) error. This surely happens because if
the value of q is bigger, the phase space volume is greater, and we have more triangles
which we can make statistic with, therefore we expect this behavior. However, as we
have said in Sec. 4.1 and in Fig. 4.1, since we have derived the consistency relations
in the squeezed limit we expect them to be less reliable as q increases. But, how
much exactly? What we can do, simply, is to calculate the reduced chi-squared of
our probability distribution function, namely the numerator of the exponentiated part
of eq. (5.4). In this way we can have a statistical description of how accurately the
oscillating part of the l.h.s. resembles the r.h.s. one. In Fig. 5.3 we show the result for
three different values of q. In particular we have obtained that for q = 0.01 (h/Mpc)
χ2
ν = 0.002 and bm = 1.002, for q = 0.02 (h/Mpc) χ2

ν = 0.11 and bm = 1.008 and for
q = 0.03 (h/Mpc) χ2

ν = 0.97 and bm = 1.02. We thus have that, indeed, as q increases,
the CR are less precise; however, for example, still for q = 0.03 (h/Mpc) we obtain a
value of χ2

ν which is still satisfactory.
Now, since the galaxy clustering statistic is affected by shot noise, from now on we will
take into account this effect. To this aim, we can rewrite the power spectrum as:

P (k)shot = P (k) + n−1
g (5.33)

where ng is the galaxy number density, with values of ng taken from [62]. We repeat
the same calculations of Fig. 5.2, but taking into account this correction. The result
is showed in Fig. 5.4. We see that the results are very similar to the previous one;
moreover we see, as expected, the values of σb are a little bit higher and tend to
saturate, as kmax increases, a little bit before with respect to 5.2. As a result, the effect
of shot noise is to roughly double the error at the plateau, for any of the considered q
values.
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Figure 5.2: We show the value of the bias estimated error σb calculated at different kmax and at
different q: q = 0.01 h/Mpc (green), q = 0.02 h/Mpc (red) and q = 0.03 h/Mpc (purple). The
behaviour is what we were expecting: the more kmax reduces, the worse becomes the error on the
bias. In this calculation we have set bm = 1, µ = 1 and V = 2.82 h−3Gpc3.
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Figure 5.3: We show the χ2
ν distribution for three different values of q: q = 0.01 h/Mpc (green),

q = 0.02 h/Mpc (red) and q = 0.03 h/Mpc (purple). We see that, as q increases, the value of the
minimum gets bigger and also the minimum point tends to be less precise (with respect to the fiducial
value bm = 1).
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Figure 5.4: We show the value of the bias estimated error σb calculated at different kmax and at
different q: q = 0.01 h/Mpc (green), q = 0.02 h/Mpc (red) and q = 0.03 h/Mpc (purple) including
shot noise corrections. We note that, with respect to Fig. 5.2, σb is greater and that its values tends
to saturate earlier. In this calculation we have set bm = 1, µ = 1 and V = 2.82 h−3Gpc3.

5.1.3 Bias Parameter Error with Damped Oscillations

As we have said, in our calculations we have used the linear matter power spectrum
obtained with CAMB. However, we have seen in Sec. 4.2 that the BAO oscillations
are actually suppressed. In this section we want to consider this effect which we have
neglected so far.
As we have already derived, we can write the matter power spectrum in the following
way:

P (k) = P nw(k) + e−k
2ε2Pw(k) (5.34)

where we can, at least for now, think to the wiggle part as the oscillating features
caused by the BAO’s phenomenon. Note that, integrating eq. (4.52) we obtain the
following values of ε2: ε2 = 35 at z = 0, ε2 = 12 at z = 1 and ε2 = 6 at z = 2.
Therefore, what we want to do, is to perform the same calculations we did in the last
section, but taking a power spectrum which shows an exponentially suppressed wiggle
term.
In order to do so, we perform a polynomial fit of the power spectrum with the following
function:

p(k, V ) =
i=3∑

i=−3

ai(V )ki (5.35)

where we have decided to go from k−3 to k3 because it was the best trade off option
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Figure 5.5: We show, between k ∼ 0.05 and k ∼ 0.5 the linear power spectrum P (k) at zero redshift
(purple), which exhibits the characteristic oscillatory features. We also display the polynomial fit
p(k, V ) (orange) which represents the smooth part of the power spectrum.

between fitting only the smooth part of P (k) and still obtaining a good χ2 of the fitting
distribution, see Fig. 5.5.
Afterward, subtracting from the power spectrum the fitting polynomial p(k, V ) we have
obtained the wiggle part, i.e.

Pw(k) = P (k)− p(k, V ), (5.36)

which is shown in Fig. 5.6.



5.1. Bias Parameter Forecast 95

0.1 0.2 0.3 0.4 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

k (h/Mpc)

P
w

(M
pc

/h
)3

Figure 5.6: In this plot the wiggle part of the linear power spectrum Pw(k) is shown. We can
see that, even if they become really small in amplitude, the oscillations continue up to k ∼ 0.45
h/Mpc.. This means that, referring to Fig. (5.2), in the calculation of the bias error we can extend
the computation up to kmax ∼ 0.45 h/Mpc.

The wiggle part was then multiplied by the exponential factor e−k2ε2 , thus obtaining
an explicit function that represents the wiggle suppressed part we were searching for,
which we show in Fig. (5.7). Finally, summing the wiggle suppressed part to the
smooth part allowed us to obtain the same exact power spectrum we started from, but
with suppressed oscillating features, i.e.

Pdamped(k, ε, V ) = p(k, V ) + e−k
2ε2 [P (k)− p(k, V )] . (5.37)

Let us note that the damped power spectrum depends on ε, therefore we expect σb
to assume different values for each ε we choose. The process that allows us to obtain
σb is the same we have done in the previous section and we show, in Fig. 5.8 the
results of our calculations. Again, we have used linearly-spaced k-bins, keeping fixed
∆k = 0.016 h/Mpc. We see what we have just said, namely that for any given value of
ε the error on the bias assumes different values. In particular, as ε increases, the error
gets worse. This is due to the fact that, if the oscillations are more suppressed, we
have less information we can gain from the power spectrum, i.e. kmax will be smaller.
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Figure 5.7: We show the damped wiggle part of the power spectrum, i.e. e−k
2ε2Pw(k). In the

left panel we have chosen ε2 = 5 (Mpc/h)2, whereas in right panel ε2 = 15 (Mpc/h)2. We see that,
obviously, the oscillations are suppressed both in amplitude and in extension: in fact, we note that
the oscillations stop at k ∼ 0.3 h/Mpc in the left panel and at k ∼ 0.14 h/Mpc in the right one. Thus,
when calculating σb, we have to take into account at what kmax the oscillations extend to.
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Figure 5.8: In this plot we show the estimated value of the bias error against the damping constant
ε2, see eq. (5.34). We see that, as we expect, the more the oscillations of the linear power spectrum
are suppressed, the more the bias error increases. For this calculation we have chosen bm = 1, µ =
1, s123 = 2, V = 2.82 h−3Gpc3 and q = 0.03 h/Mpc.
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5.2 Primordial Oscillations

Standard slow-roll inflation predicts a primordial power spectrum of curvature pertur-
bations which goes as a power law as we have seen in Sec. 2.1.2. However, the study of
departures from a simple power-law in the primordial power spectrum (PPS) has been
studied extensively, since a lot of inflationary models consider these type of solutions
[63].
From the theoretical point of view, departures from a simple power-law PPS could be
a signature of the failure of any of the assumptions of the standard single field slow-roll
inflation with Bunch-Davies initial conditions for quantum fluctuations, which we have
introduced in Chapter 1 and 2. The detection of these features could be extremely
useful in differentiating between inflation and alternative scenarios, or could provide
hints for inflaton dynamics beyond slow-roll, and new heavy particles [63].
The upcoming cosmological observations, such as the large-scale structure surveys, will
help in describing if the hints for departures from a power-law power spectrum have a
physical origin or are simply some statistical fluctuation.
The type of inflationary oscillatory features on the primordial power spectrum we will
deal with are predicted in various theoretical frameworks. For example, these features
are present in the context of axion inflation [64], or could be created by a periodic
signal present in the inflationary field potential [65]. They are also present in axion
monodromy inflation [66] or in small-field models such as brane inflation [67] or also
in models which display oscillations of massive fields [68].
As from [69] or also [70] we will study models in which these primordial oscillations
appear as superimposed oscillations in the primordial power spectrum. In particular
we can write:

Pζ(k) = Pζ,0(k) (1 + Alin sin(krlin + φ)) (5.38)

where Pζ,0(k) = As(k/k0)ns−1 is the already introduced standard power-law primordial
power spectrum.
However, in this work we are more in interested in the linear matter power spectrum.
From [71] we know that the matter overdensity in Fourier space δ(k) is related to the
curvature perturbations Φ(k) by Poisson equation as

δ(k, z) = M(k, z)Φ(k) (5.39)

where

M(k, z) =
2

3

k2T (k)D(z)

ΩmH2
0

(5.40)

and where T (k) is the matter transfer function and D(z) the growth factor. Hence we
can write:

〈δ(k1)δ(k2)〉 = M(k1, z)M(k2, z)〈Φ(k1)Φ(k2)〉 (5.41)
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namely:

P (0)
m (k) = M2(k, z)Pζ(k). (5.42)

5.2.1 Superimposed Linear Oscillations and Consistency Rela-
tions

We have seen in eq. (4.28) that, at first approximation, we can write the linear mat-
ter power spectrum as a smooth part plus an oscillating part which comes from the
BAO’s phenomenon. Now we want to consider a scenario in which the PS has further
oscillatory feature, besides BAO’s, of inflationary origin.
In this context, we assume a PS of the form

P (0)
m (k) = P nw

m [1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)] (5.43)

where Alin(k) and rlin are the amplitude and the scale-length of the new oscillations
we want to investigate. We also included a phase φ, with respect to BAO oscillations.
Using this power spectrum we can see what is the new form of the logarithmic derivative
in the CR, i.e. eq. (4.26); we will suppress, for the sake of notation, the m subscript.

d logP (0)(k)

d log k
=

k

P (0)(k)

d

dk
[P nw(k) + P nw(k)Abao(k) sin(krs)]

+
k

P (0)(k)

d

dk
[P nw(k)Alin(k) sin(krlin + φ)] .

(5.44)

Thus, for the first term of eq. (5.44), we have:

=
k

P (0)(k)

[dP nw(k)

dk
+

dP nw(k)

dk
Abao(k) sin(krs) + P nw(k)

dAbao(k)

dk
sin(krs)+

+ rsP
nw(k)Abao(k) cos(krs)

]

=
1

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

d logP nw(k)

d log k
+

d logP nw(k)

d log k
×

×
[

Abao(k) sin(krs)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

]
+ krsAbao(k)

[
P nw(k) cos(krs)

P (0)(k)
+

+
1

rs

P nw(k)

P (0)(k)

1

Abao(k)

dAbao(k)

dk
sin(krs)

]
.

Therefore, the first term of eq. (5.44) reads:

=
d logP nw(k)

d log k

[
1 + Abao(k) sin(krs)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

]

+
krsAbao(k)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

[
cos(krs) + α(k) sin(krs)

] (5.45)
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where we have already defined α(k) in eq. (4.30). Similarly, for the second term of eq.
(5.44) we obtain:

=
d logP nw(k)

d log k

[
Alin(k) sin(krlin + φ)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

]

+
krlinAlin(k)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

[
cos(krlin + φ) + α′(k) sin(krlin + φ)

]

(5.46)
where

α′(k) ≡ 1

krlin

d logAlin(k)

d log k
. (5.47)

Thus, taking into account two different oscillations, eq. (4.29) changes into:

d logP
(0)
m (k)

d log k
=

d logP nw
m (k)

d log k
+

krsAbao(k)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)
×

[
cos(krs) + α(k) sin(krs)

]
+

krlinAlin(k)

1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)

×
[

cos(krlin + φ) + α(k) sin(krlin + φ)
]
.

(5.48)
In Fig. (5.9) we show the results of the calculation of eq. (5.3), taking into account
the presence of two different oscillations. We clearly see that, if we let the parameters
of the linear oscillations to change, both sides of the CR change very similarly. This
happens because, obviously, both sides of the equation contain the power spectrum
with the two superimposed oscillations. However, we stress the fact that, since both
sides of the consistency relations change in a similar way, the CR are still valid. We
note, though, that especially when rlin is different from the BAO scale-length (rs) the
CR seem to be less accurate.
Finally, let us point out that the we have chosen Alin(k) to be exponentially suppressed
in a way similar to Abao(k), that is:

Alin(k) = A0,line
−k2ε2 . (5.49)
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Figure 5.9: Comparison between the l.h.s. and r.h.s. of eq. (5.3), considering the power spectrum
described by eq. (5.43). The red solid line is the l.h.s. whereas the blue dashed line is the r.h.s. of
the equation. Top left : the plot was made choosing q = 0.02 h/Mpc, A0,lin = 0.02, rlin = 100 Mpc/h,
φ = 0 and ε = 5. Top right : the plot was made choosing q = 0.02 h/Mpc, A0,lin = 0.05, rlin = 100
Mpc/h, φ = 0 and ε = 5. Bottom left : the plot was made choosing q = 0.02 h/Mpc, A0,lin = 0.02,
rlin = 100 Mpc/h, φ = 0 and ε = 0. Bottom right : the plot was made choosing q = 0.02 h/Mpc,
A0,lin = 0.02, rlin = 250 Mpc/h, φ = 0 and ε = 5. We clearly see that the oscillations of the two sides
of the CR are deeply related. In the first three panels, since we have chosen rlin = 100 Mpc/h, there
is no much difference with respect to the case in which we have only BAO’s, Fig. 4.1. However, when
the linear oscillations scale-length happens to be different from the BAO’s one, especially for high µ,
the consistency relations seem to be less accurate.
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5.3 2-D Fisher Matrix Forecast: Linear Oscillations
In this section, considering the power spectrum defined by eq. (5.43) and the con-
sistency relations, we will perform a two-dimensional forecast still using the Fisher
information matrix.
In order to do so, we assume the same probability distribution function defined by eq.
(5.4) and the same definition of the Fisher matrix:

Fij = −
〈
∂2 logL

∂θi∂θj

〉
(5.50)

and

σθi ≥ (F−1)
1/2
ii . (5.51)

Now we must be careful because the Fisher matrix is, in general, a matrix with
rank different from one, since the vector of parameters we are considering is θ =
(bm, A0,lin, rlin, ε, φ), where recall that ε is the damping constant of the linear oscilla-
tions. Thus, the Fisher matrix reads

F = F(bm, A0,lin, rlin, ε, φ). (5.52)

Now we take eq. (3.9), i.e.

logL(θ) = logL(θ0) +
1

2
(θα − θ0α)

∂2 logL

∂θα∂θβ
(θβ − θ0β) + · · · (5.53)

and, since we have that

logL(θ) = −1

2
χ2(θ) (5.54)

we can write

− 1

2
χ2(θ) = −1

2
χ2(θ0)− 1

2

∑

i,j

(θ − θ0)iFij(θ − θ0)j + · · · (5.55)

which leads to

∆χ2 '
∑

i,j

(θ − θ0)iFij(θ − θ0)j. (5.56)

Eq. (5.56) defines an ellipsoid in the parameter space. In particular, we compute the
elements of the Fisher matrix at a given fiducial parameter θ0,i and then we keep fixed
3 out of 5 parameters at their fiducial value and let the remaining parameters pair to
assume values around their fiducial value.
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Therefore, if the indices i, j can assume only one value and i 6= j, we can expand eq.
(5.56) as follows:

Fθiθi(θi−θ0,i)
2+Fθjθj(θj−θ0,j)

2+Fθiθj(θi−θ0,i)(θj−θ0,j)+Fθjθi(θj−θ0,j)(θi−θ0,i) < ∆χ2.
(5.57)

Note that eq. (5.57) has only four terms: this is, indeed, because we have evaluated eq.
(5.56) at the fiducial value for three of the parameters we are considering. Moreover, we
have used the symbol < because we are interested to find those values of the parameters
which give us a certain confidence level we are searching for. In particular, from [49],
we know that the ∆χ2 for joint parameter estimation for 2 parameters assumes the
following values:

1σ (68.3 %) =⇒ ∆χ2 = 2.30

2σ (95.4 %) =⇒ ∆χ2 = 6.17

3σ (99.7 %) =⇒ ∆χ2 = 11.8

(5.58)

We show, in Fig. 5.10, 5.11, 5.12 and 5.13 the 2 dimensional joint probability calcu-
lated, at 1 and 2 σ for the parameters A0,lin (which will be indicated simply with A0),
bm and rlin.
In particular, in Fig. 5.10 we show the confidence plot for the parameters A0 and
bm, having chosen the fiducial value bm = 1, A0 = 0.02 and 4 different values of
rlin. Moreover, we have chosen ε = 0, where recall that ε is the damping constant that
suppresses both the BAO oscillations and the linear ones, see eq. (4.58) and eq. (5.49).
Thus we are supposing in this case that the oscillations are not damped. We see that,
while rlin (the frequency) increases, we gain more information on the amplitude of the
oscillations, as the error on A0 becomes smaller. We also see, however, that A0 and bm
are more correlated at higher value of the frequency.
In fig. 5.11, instead, we have chosen to damp both the two oscillations, having set
A0 = 0.02 and rlin = 100 Mpc/h. We clearly see that, as the damping constant
increases, the error on A0 becomes bigger and A0 becomes compatible with 0.
We see a similar behavior for rlin in Fig. 5.12, where the error on rlin becomes bigger
as we increase the damping constant.
Finally, we have plotted in Fig. 5.13 the joint probability for A0 and rlin. Choosing
ε2 = 16 h−2Mpc2 we do see that A0 is compatible with 0. Moreover, we see that the
two parameters A0 and rlin are strongly correlated.
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Figure 5.10: Two dimensional joint probability calculated at 1 σ (dark region) and 2 σ (light region)
for A0,lin, simply indicated with A0, and bm. All plots were computed having set V = 2.82 h−3Gpc3

and bm = 1. The damping constant of both the BAO oscillations and the linear oscillations, ε, was
set equal to 0. We see that, as the value of rlin increases (clockwise, from top-left), the error on A0

gets smaller.
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Figure 5.11: Two dimensional joint probability calculated at 1 σ (dark region) and 2 σ (light
region) for A0 and bm. All plots were computed having set V = 2.82 h−3Gpc3, bm = 1 and rlin = 100
Mpc/h. We see that, as the damping constant ε increases the error on A0 gets bigger and A0 becomes
compatible with 0.
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Figure 5.12: Two dimensional joint probability calculated at 1 σ (dark region) and 2 σ (light region)
for rlin and bm. Again, we see that as ε increases, the error on rlin becomes greater. These two plots
were done choosing V = 2.82 h−3Gpc3 and bm = 1.
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Figure 5.13: Two dimensional joint probability calculated at 1 σ (dark region) and 2 σ (light region)
for A0 and rlin. We see that the two parameters are correlated and that A0 is compatible with 0. For
this plot we have set V = 2.82 h−3Gpc3, bm = 1 and ε2 = 16 h−2Mpc2.
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Chapter 6

Conclusions

We have started our work introducing standard cosmology and slow-roll inflation. Then
we have studied cosmological perturbation theory (PT) in the Eulerian framework. In
particular, we have derived the tree-level bispcetrum, eq. (2.175), and the power spec-
trum for the dark matter density field at first order in PT, eq. (2.185) and eq. (2.186).

Afterward, we have introduced the Fisher matrix formalism which was used in our
forecasts. We have derived the Cramer-Rao inequality, eq. (3.14), which tells us the
best error we can make on a given parameter of the theory, i.e.

∆θi ≥ (F−1)
1/2
ii

where Fij is the Fisher matrix.

In Chapter 4, then, we have derived the large-scale structure consistency relations
(CR):

lim
q/k→0

Bαβγ(q, k+, k−)

Pαα(q)Pβγ(k)
= − µ2

bα(q)

d logPβγ(k)

d log k
+O

(( q
k

)0
)

and defined the bias parameter as

bα(q) ≡ lim
q→0

Pαα(q)

Pαm(q)
.

Later, we have checked the CR computing the matter bispectrum at lowest order in
perturbation theory, and we have obtained that

lim
q/k→0

BSPT
mmm(q, k+, k−)

P 0
m(q)P 0

m(k)
= −µ2 d logP 0

m(k)

d log k
+

13 + 8µ2

7
+O

( q
k

)

finding that we can write the r.h.s as a subdominant scale dependent term plus a
smooth term which at first order is scale independent.
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Next, in the last Chapter, the original work of this Thesis is presented. Using the
Fisher matrix formalism we have performed different forecasts. We have assumed a
Gaussian Likelihood obtained using the consistency relations, i.e. eq. (5.4). Then,
as a first step we have derived the errors associated to the power spectrum and the
bispectrum, obtaining:

σP (k) = 2π
P (k)

k
√
V∆k

,

σB(k1,k2,k3) =

√
πs123

V k1k2k3∆k3
[P (k1)P (k2)P (k3)]1/2 .

We have thus obtained Fig. (5.1), where we have computed the error of the bias as a
function of the survey volume using 25 linearly-spaced bins, from kmin = 0.05 h/Mpc
up to kmax = 0.45 h/Mpc, with a bin width of ∆k = 0.016 h/Mpc. We note that, as the
survey volume is increased, we get a lower value for the error. For µ = 1, we find that
σb ' 0.0161−0.0205. This is an interesting result, telling us that Euclid will potentially
be able to measure the bias parameter up to 1-2 % of precision. Moreover, we know
that in general the parameter f , which we have defined in eq. (2.110), is measured in
the combination fσ8. However, we can also write the coefficient of the r.h.s of the CR
as a function of bm and f [11]. Therefore, being able to measure precisely bm would
give a unique opportunity to break the degeneracy between f and σ8.
Then we have computed the error on the bias using different kmax, i.e. Fig. 5.2. The
more we lower kmax, using therefore a smaller range, the more the error on the bias
gets worse. In addition we see that increasing kmax after ∼ 0.25 − 0.30 h/Mpc, does
not lower the error on the bias with the same trend we see for smaller values of kmax.
This is because we calculated σb using the CR, which give information as long as there
is a given scale which breaks the scale-invariance of the correlation function, such as
the baryon acoustic oscillations [72]. Therefore, since BAO become really small around
k ∼ 0.3 h/Mpc, we do not gain much information thereafter.
Next, we have introduced shot noise corrections. In particular we have repeated the
calculation of σb at varying kmax. The results, Fig. 5.4, show that the value of the
error is slightly higher and that σb saturates earlier with increasing kmax.
In all previous results we have not considered the fact that the BAO are damped at
late times. Therefore, we have used eq. ( 4.58), i.e.

P (k) = P nw(k) + e−k
2ε2Pw(k)

and implemented the same calculations using damped baryon acoustic oscillations.
We presented the results in Fig. (5.8), where we performed the calculations using
∆k = 0.016 Mph/h and V = 2.82 h−3Gpc3. We clearly see that, as the damping
constant increases, the error on the bias gets bigger: this is indeed what we expect, as
damping degrades the information content of the BAO’s.
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We have later introduced the following power spectrum:

P (0)
m (k) = P nw

m [1 + Abao(k) sin(krs) + Alin(k) sin(krlin + φ)]

which displays further oscillations besides BAO’s, of inflationary origin. First we
checked the CR with this power spectrum and we found, in Fig. (5.9), that if rlin
is different from rs the two oscillations interfere. Thus, measuring precisely the BAO
could help in discriminating between the two oscillations and detect the inflationary
features through the consistency relations.
Finally, in the last section, we performed a two-dimensional Fisher forecast on the pa-
rameters which are displayed in the above mentioned power spectrum. The results are
reported in Figures 5.10-5.13. First, in Fig. 5.10, we have plotted the two dimensional
joint probability for A0 and bm, having set V = 2.82 h−3Gpc3. We note that, as we
would expect, the more rlin is different from rs the more the error on A0 gets smaller.
At the same time, though, we see that A0 and bm becomes more correlated. In Fig.
(5.11) instead, we have studied the behavior of A0 and bm for different values of ε2.
Again, as we expect, the more we suppress the oscillations the more the errors increase:
in particular we see that A0 becomes compatible with 0. In Fig. 5.12 we display the
confidence plot of rlin and bm which exhibits the same features of the previous plots.
Finally, Fig. 5.13 shows the confidence plot for A0 and rlin. The interesting result is
that the two parameters are strongly correlated and, again, A0 is compatible with 0.

The possible extensions of this work are numerous. First, redshift space distorsions
can be taken into account, leading for example to modifications of the coefficient in
front of the r.h.s of the CR, as we were discussing before. In addition, the same
calculations can be made considering, besides dark matter, biased tracers. Finally, the
results obtained in the two dimensional forecast could be used to constrain different
inflationary parameters.





References

[1] Laura C Parker et al. “The masses and shapes of dark matter halos from galaxy-
galaxy lensing in the CFHT legacy survey”. In: The Astrophysical Journal 669.1
(2007), p. 21.

[2] Gary Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: cosmological parameter results”. In: The Astrophysical Journal Sup-
plement Series 208.2 (2013), p. 19.

[3] Planck Collaboration et al. “Planck 2013 results. XVI. Cosmological parameters”.
In: Astron. Astrophys 571 (2014), A16.

[4] Christopher P Ahn et al. “The tenth data release of the sloan digital sky sur-
vey: First spectroscopic data from the sdss-iii apache point observatory galactic
evolution experiment”. In: The Astrophysical Journal Supplement Series 211.2
(2014), p. 17.

[5] Alan H Guth. “Inflationary universe: A possible solution to the horizon and
flatness problems”. In: Physical Review D 23.2 (1981), p. 347.

[6] Chris A Blake et al. “Cosmology with the SKA”. In: New Astronomy Reviews
48.11-12 (2004), pp. 1063–1077.

[7] Željko Ivezić et al. “LSST: from science drivers to reference design and anticipated
data products”. In: The Astrophysical Journal 873.2 (2019), p. 111.

[8] Rene Laureijs et al. “Euclid definition study report”. In: arXiv preprint arXiv:1110.3193
(2011).

[9] A Kehagias and A Riotto. “Symmetries and consistency relations in the large
scale structure of the universe”. In: Nuclear Physics B 873.3 (2013), pp. 514–529.

[10] Marco Peloso and Massimo Pietroni. “Galilean invariance and the consistency re-
lation for the nonlinear squeezed bispectrum of large scale structure”. In: Journal
of Cosmology and Astroparticle Physics 2013.05 (2013), p. 031.

[11] Marco Marinucci, Takahiro Nishimichi, and Massimo Pietroni. “Measuring bias
via the consistency relations of the large scale structure”. In: Physical Review D
100.12 (2019), p. 123537.

[12] S Weinberg. Gravitation and Cosmology. Canada: John Wiley and Sons, 1972.

[13] S Dodelson. Modern Cosmology. Amsterdam: Academic Press, 2003.

111



112 References

[14] Edwin Hubble. “A relation between distance and radial velocity among extra-
galactic nebulae”. In: Proceedings of the national academy of sciences 15.3 (1929),
pp. 168–173.

[15] Daniel Baumann. “TASI lectures on inflation”. In: arXiv preprint arXiv:0907.5424
(2009).

[16] Ralph A Alpher, Hans Bethe, and George Gamow. “The origin of chemical ele-
ments”. In: Physical Review 73.7 (1948), p. 803.

[17] Arno A Penzias and Robert Woodrow Wilson. “A measurement of excess antenna
temperature at 4080 Mc/s.” In: The Astrophysical Journal 142 (1965), pp. 419–
421.

[18] N Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”. In: arXiv
preprint arXiv:1807.06209 (2018).

[19] Joel R Primack. “The nature of dark matter”. In: arXiv preprint astro-ph/0112255
(2001).

[20] E Kolb and M Turner. The Early Universe. 1988.

[21] Maria Chiara Guzzetti et al. “Gravitational waves from inflation”. In: arXiv
preprint arXiv:1605.01615 (2016).

[22] David H Lyth and Andrew R Liddle. The primordial density perturbation: Cos-
mology, inflation and the origin of structure. Cambridge University Press, 2009.

[23] Andrew R Liddle and David H Lyth. Cosmological inflation and large-scale struc-
ture. Cambridge University Press, 2000.

[24] Bruce Bassett and Renée Hlozek. “Baryon acoustic oscillations”. In: Dark energy:
observational and theoretical approaches (2010), p. 246.

[25] Daniel J Eisenstein, Hee-Jong Seo, and Martin White. “On the robustness of
the acoustic scale in the low-redshift clustering of matter”. In: The Astrophysical
Journal 664.2 (2007), p. 660.

[26] Daniel Eisenstein and Martin White. “Theoretical uncertainty in baryon oscilla-
tions”. In: Physical Review D 70.10 (2004), p. 103523.

[27] Eiichiro Komatsu et al. “Five-year wilkinson microwave anisotropy probe* obser-
vations: cosmological interpretation”. In: The Astrophysical Journal Supplement
Series 180.2 (2009), p. 330.

[28] Sergei Bashinsky and Edmund Bertschinger. “Dynamics of cosmological pertur-
bations in position space”. In: Physical Review D 65.12 (2002), p. 123008.

[29] Adam Hincks. Baryon Acoustic Oscillations Tutorial. https://adh-sj.info/
bao_cmb.php. 2020.

[30] Hiroo Totsuji and T Kihara. “The correlation function for the distribution of
galaxies”. In: Publications of the Astronomical Society of Japan 21 (1969), p. 221.

https://adh-sj.info/bao_cmb.php
https://adh-sj.info/bao_cmb.php


References 113

[31] Daniel J Eisenstein et al. “Detection of the baryon acoustic peak in the large-
scale correlation function of SDSS luminous red galaxies”. In: The Astrophysical
Journal 633.2 (2005), p. 560.

[32] David N Spergel et al. “Three-year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: implications for cosmology”. In: The Astrophysical Journal Supple-
ment Series 170.2 (2007), p. 377.

[33] Max Tegmark et al. “Cosmological constraints from the SDSS luminous red galax-
ies”. In: Physical Review D 74.12 (2006), p. 123507.

[34] Idit Zehavi et al. “Galaxy clustering in the completed SDSS redshift survey: The
dependence on color and luminosity”. In: The Astrophysical Journal 736.1 (2011),
p. 59.

[35] Francis Bernardeau et al. “Large-scale structure of the Universe and cosmological
perturbation theory”. In: Physics reports 367.1-3 (2002), pp. 1–248.

[36] PJE Peebles. “Large-scale background temperature and mass fluctuations due to
scale-invariant primeval perturbations”. In: (1982).

[37] EM Lifshitz and LD Landau. Fluid Mechanics. Pergamon Press, 1987.

[38] C Pichon and F Bernardeau. “Vorticity generation in large-scale structure caus-
tics”. In: arXiv preprint astro-ph/9902142 (1999).

[39] Bhuvnesh Jain and Edmund Bertschinger. “Second order power spectrum and
nonlinear evolution at high redshift”. In: arXiv preprint astro-ph/9311070 (1993).

[40] MH Goroff et al. “Coupling of modes of cosmological mass density fluctuations”.
In: The Astrophysical Journal 311 (1986), pp. 6–14.

[41] Francis Bernardeau. “The gravity-induced quasi-Gaussian correlation hierarchy”.
In: The Astrophysical Journal 392 (1992), pp. 1–14.

[42] FR Bouchet et al. “Weakly nonlinear gravitational instability for arbitrary Omega”.
In: The Astrophysical Journal 394 (1992), pp. L5–L8.

[43] Francis Bernardeau. “Skewness and kurtosis in large-scale cosmic fields”. In: arXiv
preprint astro-ph/9312026 (1993).

[44] Roman Scoccimarro et al. “Nonlinear evolution of the bispectrum of cosmological
perturbations”. In: The Astrophysical Journal 496.2 (1998), p. 586.

[45] DJ Heath. “The growth of density perturbations in zero pressure Friedmann–
Lemaitre universes”. In: Monthly Notices of the Royal Astronomical Society 179.3
(1977), pp. 351–358.

[46] Ofer Lahav et al. “Dynamical effects of the cosmological constant”. In: Monthly
Notices of the Royal Astronomical Society 251.1 (1991), pp. 128–136.

[47] Stephen W Hawking. “The development of irregularities in a single bubble infla-
tionary universe”. In: Physics Letters B 115.4 (1982), pp. 295–297.



114 References

[48] James N Fry. “The Galaxy correlation hierarchy in perturbation theory”. In: The
Astrophysical Journal 279 (1984), pp. 499–510.

[49] Alan Heavens. “Statistical techniques in cosmology”. In: arXiv preprint arXiv:0906.
0664 (2009).

[50] Max Tegmark. “Measuring cosmological parameters with galaxy surveys”. In:
Physical Review Letters 79.20 (1997), p. 3806.

[51] Maurice George Kendall and Alan Stuart. The advanced theory of statistics: in
3 volumes. C. Griffin, 1963.

[52] AJS Hamilton. “Towards optimal measurement of power spectra-I. Minimum
variance pair weighting and the Fisher matrix”. In: Monthly Notices of the Royal
Astronomical Society 289.2 (1997), pp. 285–294.

[53] Hume A Feldman, Nick Kaiser, and John A Peacock. “Power spectrum analysis of
three-dimensional redshift surveys”. In: arXiv preprint astro-ph/9304022 (1993).

[54] Robert E Smith, Román Scoccimarro, and Ravi K Sheth. “Scale dependence of
halo and galaxy bias: Effects in real space”. In: Physical Review D 75.6 (2007),
p. 063512.

[55] Martin Crocce and Roman Scoccimarro. “Renormalized cosmological perturba-
tion theory”. In: Physical Review D 73.6 (2006), p. 063519.

[56] Martin Crocce and Roman Scoccimarro. “Nonlinear evolution of baryon acoustic
oscillations”. In: Physical Review D 77.2 (2008), p. 023533.

[57] Eugenio Noda, Marco Peloso, and Massimo Pietroni. “A robust BAO extractor”.
In: Journal of Cosmology and Astroparticle Physics 2017.08 (2017), p. 007.

[58] Diego Blas et al. “Time-sliced perturbation theory II: baryon acoustic oscillations
and infrared resummation”. In: Journal of Cosmology and Astroparticle Physics
2016.07 (2016), p. 028.

[59] Antony Lewis, Anthony Challinor, and Anthony Lasenby. “Efficient computation
of cosmic microwave background anisotropies in closed Friedmann-Robertson-
Walker models”. In: The Astrophysical Journal 538.2 (2000), p. 473.

[60] Donghui Jeong. “Cosmology with High (z>1) Redshift Galaxy Surveys”. PhD
thesis.

[61] Emiliano Sefusatti and Eiichiro Komatsu. “Bispectrum of galaxies from high-
redshift galaxy surveys: Primordial non-Gaussianity and nonlinear galaxy bias”.
In: Physical Review D 76.8 (2007), p. 083004.

[62] Victoria Yankelevich and Cristiano Porciani. “Cosmological information in the
redshift-space bispectrum”. In:Monthly Notices of the Royal Astronomical Society
483.2 (2019), pp. 2078–2099.

[63] Mario Ballardini et al. “Non-linear damping of superimposed primordial oscil-
lations on the matter power spectrum in galaxy surveys”. In: arXiv preprint
arXiv:1912.12499 (2019).



References 115

[64] Xiulian Wang et al. “Natural inflation, Planck scale physics and oscillating pri-
mordial spectrum”. In: International Journal of Modern Physics D 14.08 (2005),
pp. 1347–1364.

[65] Xingang Chen, Richard Easther, and Eugene A Lim. “Generation and charac-
terization of large non-Gaussianities in single field inflation”. In: Journal of Cos-
mology and Astroparticle Physics 2008.04 (2008), p. 010.

[66] Raphael Flauger et al. “Oscillations in the CMB from axion monodromy infla-
tion”. In: Journal of Cosmology and Astroparticle Physics 2010.06 (2010), p. 009.

[67] Rachel Bean et al. “Duality cascade in brane inflation”. In: Journal of Cosmology
and Astroparticle Physics 2008.03 (2008), p. 026.

[68] Xingang Chen. “Primordial features as evidence for inflation”. In: Journal of
Cosmology and Astroparticle Physics 2012.01 (2012), p. 038.

[69] Anže Slosar et al. “Scratches from the past: Inflationary archaeology through
features in the power spectrum of primordial fluctuations”. In: arXiv preprint
arXiv:1903.09883 (2019).

[70] Florian Beutler et al. “Primordial Features from Linear to Nonlinear Scales”. In:
arXiv preprint arXiv:1906.08758 (2019).

[71] Emiliano Sefusatti. “One-loop perturbative corrections to the matter and galaxy
bispectrum with non-Gaussian initial conditions”. In: Physical Review D 80.12
(2009), p. 123002.

[72] Tobias Baldauf et al. “Equivalence principle and the baryon acoustic peak”. In:
Physical Review D 92.4 (2015), p. 043514.





Ringraziamenti

Desidero ringraziare il professor Pietroni per avermi permesso di lavorare con lui in
questi mesi. Il suo spiccato senso fisico e la sua intelligenza nella ricerca sono stati
fonte d’ispirazione per me. Lo ringrazio anche per la sua disponibilità a rispondere alle
mie numerose domande e dubbi, ho davvero apprezzato il tempo che mi ha dedicato.
Inoltre vorrei ringraziare anche il professor Peloso per la sua disponibilità e gentilezza:
i consigli che mi ha dato sono stati sempre molto utili.
Un grato pensiero anche a tutta la mia numerosa famiglia. Mio papà e mia mamma
che, oltre ad aver finanziato tutti questi anni di studi, mi hanno sempre appoggiato e
voluto bene, anche non capendo praticamente niente di quello che stavo studiando. A
mio fratello e le mie sorelle, impegnati nel bellissimo compito di crescere dei bambini,
non mi hanno mai fatto mancare il loro bene. Un pensiero anche per tutti i miei zii.
Un ricordo speciale anche ai nonni Nicola e Adriano, alle nonne Rosa e Nice e allo zio
Wilder.
Ringrazio tutti i miei amici di Milano. Ringrazio particolarmente Trimo per la sua
amicizia, il lavoro di questa tesi è stato possibile anche grazie al confronto con lui. Ri-
cordo anche Simo Molinelli: è sempre stato per me una fonte di ispirazione come fisico
e come uomo. Ringrazio il Don Andrea per la sua paternità e per il bene che mi vuole:
occuperà sempre un posto nel mio cuore. Ricordo Palche, Becca, Edi, Piter, Marta,
Giulia P. e Giulia C., Bianca, Bona, Muso, Visco, Gino e Richi Panza: la lontananza
da loro non è facile, ma li porto con me.
Ringrazio tutti i miei amici di Padova, dal primo all’ultimo. Ringrazio Jack, perchè
la sua disponibilità verso gli altri e verso di me mi commuove ogni volta. Ringrazio
Samuele, che mi insegna sempre un modo semplice e profondo di stare davanti alla vita.
Lo ringrazio anche per questi giorni in quarantena, la sua compagnia per me è fonda-
mentale. Ricordo anche tutti i miei compagni di appartamento: con loro quest’anno
mi sono sentito davvero a casa. Ringrazio la Vale Zap: la sua compagnia e la sua
guida sono sempre illuminanti per me. Ringrazio la Chiara Ruzza, che non si stanca
mai di cercare il meglio dalla vita: è per me sempre fonte di grande incoraggiamento.
Ringrazio anche la Cristiana, vedere come mi vuole bene e come vuole bene a Dan è
bellissimo.
Ringrazio tutti i miei amici fisici, in particolar modo tutti quelli che mi hanno dato
una mano a correggere la tesi: Camilla, Cate, Cops, Piga, Matte Guida, Matte Scialpi
e Nicolas. Grazie a Cops, Piga e Cate: condividere con loro questi anni di magistrale
è stato speciale e affascinante, spero che l’amicizia con loro possa durare a lungo.

117



Non posso non ricordare anche tutti i miei amici di Reggio: Lollo, Chicchi, Ele, Losi,
Brock, Meri, Matte Platani e Gianlu, quando riesco a vederli è sempre molto bello. Un
particolare pensiero a Sabba e Jack, perchè l’amicizia con loro ha fondamenta profonde
e sono per me una solida roccia a cui appoggiarmi.
Un pensiero anche ai miei amici americani: Brian, Emmalisa, Susan, Reinhard, Erik e
Olivia. C’è un oceano che ci divide, ma li porto sempre con me.
Ringrazio Padre Enzo: in questi ultimi anni è stato per me guida e padre. Lo ringrazio
per la profonda compagnia che mi fa e per come mi indica, sempre molto liberamente,
la strada da percorrere.
Un grazie smisurato a Marco. Non ho parole per descrivere la gratitudine nei suoi
confronti. Primo perchè questa tesi non sarebbe stata assolutamente possibile senza il
suo aiuto. Ma ancora di più per la sua profonda amicizia. Ogni volta confrontarmi con
lui non solo mi insegna tanto ma, soprattutto, mi porta gioa e serenità. Sei un grande.
Inoltre desidero ringraziare l’Anna, che è per me al contempo rifugio e apertura alla
vita. La ringrazio per la sua disarmante semplicità, ogni volta guardarla come sta
davanti alle circostanze mi commuove e mi insegna tanto. La ringrazio per come si
impegna nella vita perchè osservare la dedizione e la passione che mette nei suoi studi
è splendido, sono sicuro che un giorno sarà una bravissima infermiera. La ringrazio
anche per come mi vuole bene gratuitamente: sentirsi amati e accolti non è mai scon-
tato, e posso dire di avere incontrato una persona con la quale mi sento libero fino in
fondo.
Un pensiero speciale a Marco Gallo e Chiara Corbella Petrillo. Sono l’esempio che
la morte non ha l’ultima parola sulla vita: la loro storia è fonte di speranza e mi ha
profondamente segnato e cambiato, dall’alto mi guardano e spero di poterli incontrare
un giorno. Ringrazio infine Dio, per avermi donato questi amici e questi anni di uni-
versità: sono stati per me fondamentali nel formarmi come fisico e soprattutto come
uomo.


	Introduction
	Standard Cosmology
	FLRW Spacetime
	Kinematics and Dynamics
	Hot Big Bang
	Constraints From Observations and CCDM Model
	Issues of the Hot Big Bang Model and Inflationary Solution

	Inflation
	Slow-Roll Inflation
	Background Dynamics and Slow-Roll Conditions
	Reheating Phase


	Cosmological Perturbation Theory
	Cosmic Microwave Background and Cosmological Perturbations
	Quantum Fluctuations During Inflation
	Power Spectrum
	Scalar Perturbations in Curved Spacetime
	Inflationary Consistency Relations
	CMB Power Spectrum

	Baryon Acoustic Oscillations
	Newtonian Treatment of Perturbations
	The Vlasov Equation
	The Continuity and Euler Equations
	Linear and Non-Linear Perturbation Theory
	Fourier Representation
	Einstein-de Sitter Cosmology
	Beyond Einstein-de Sitter Cosmology

	Wick Theorem and Perturbed Power Spectra
	Tree-Level Bispectrum
	One-Loop Power Spectrum


	Statistical Approach to Cosmology
	Parameter Estimation
	Forward Modeling
	Errors

	Fisher Matrix Approach
	The Cramer-Rao Inequality
	Gaussian Likelihood


	Large Scale Structure Consistency Relations
	Consistency Relations
	Damping of Baryon Acoustic Oscillations

	Forecast of Cosmological Parameters
	Bias Parameter Forecast
	Power Spectrum and Bispectrum Error
	Error on the Bias Parameter
	Bias Parameter Error with Damped Oscillations

	Primordial Oscillations
	Superimposed Linear Oscillations and Consistency Relations

	2-D Fisher Matrix Forecast: Linear Oscillations

	Conclusions
	References

