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Riassunto 

La crescente spinta a ricercare alternative rinnovabili ai prodotti chimici derivati dal 

petrolio ha indotto a considerare le biotecnologie più che una frontiera un obiettivo 

indispensabile della moderna ingegneria chimica. Le applicazioni industriali dei sistemi 

biologici sono ancora esigue, ma spaziano dall’industria alimentare agli impianti di 

trattamento delle acque inquinate. In quest’ottica, l’ingegneria chimica deve dotarsi di 

nuovi strumenti per un’analisi efficace ma rapida della qualità delle proposte che le 

biotecnologie offre a fronte della domanda di nuove vie chimiche per sviluppare 

determinati prodotti.  

Al fine di condurre quest’analisi, la biologia dei sistemi è una branca emergente della 

biologia che abbraccia la filosofia di considerare i sistemi biologici nel loro insieme,  

enumerando le interazioni che si sviluppano tra le parti e quantificando la dinamica 

delle variazioni nel sistema, siano esse locali o globali, a fronte di certe perturbazioni 

nell’ambiente di crescita, nel genoma, ecc. Lo studio dei sistemi biologici è successivo 

alla ricostruzione in silico dei network metabolici di diversi microorganismi a partire dal 

loro stesso genoma. Queste ricostruzioni, note anche con l’acronimo di GENRE 

(genome-based metabolic network reconstructions), comprendono per ciascun 

microorganismo una quantità rappresentativa di metaboliti e di reazioni che li correlano, 

come in un grafo. Successivamente, con l’ausilio della bioinformatica, la biologia dei 

sistemi ha adottato delle tecniche per l’analisi di questi network metabolici, tra le quali 

la flux balance analysis (FBA). Questo metodo permette di predire la mappa dei flussi 

metabolici, intesi come le velocità delle reazioni enzimatiche che hanno luogo 

all’interno di una cellula, in un regime stazionario definito dall’ottimizzazione di una 

certa funzione cellulare. La qualità delle predizioni è risultata tanto migliore tanto più 

rappresentativa la funzione cellulare massimizzata: generalmente il principio evolutivo 

per cui il metabolismo di una cellula viene ottimizzato affinché sia massimizzata la sua 

duplicazione ha prodotto i risultati più rimarchevoli.  

In questo lavoro, i metodi della biologia dei sistemi basati sulla FBA sono stati 

esaminati e modificati per rispondere alle esigenze di problemi tipici dell’ingegneria 

chimica. Un nuovo approccio per la progettazione di bioreattori tubulari, che sfrutta le 

predizioni della FBA per ricavare il valore di variabili chiave quali le velocità di 

reazioni, è stato proposto per bypassare la cronica mancanza di dati cinetici relativi ai 

sistemi biologici, spesso rappresentati da equazioni cinetiche multiparametriche. In 

seguito, sono state studiate varie applicazioni nell’ambito dell’ingegneria delle reazioni 
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chimiche, o ingegneria metabolica nel caso sia applicata ai sistemi biologici, intesa 

come il processo di ottimizzazione di una reazione di interesse al fine di aumentarne la 

produttività. In particolare si è posta enfasi sull’effetto di singoli knock-out genici nella 

massimizzazione di un dato flusso e si è sviluppato un nuovo metodo per verificare 

come addizionando certi metaboliti al medio di crescita si possa accrescere 

ulteriormente la velocità di una data reazione. 

Questi metodi della biologia dei sistemi per l’ingegneria chimica sono stati applicati con 

successo a un caso di studio, la produzione di precursori del biodiesel, cioè i 

triacilgliceroli (TAG), da parte della microalga Chlamydomonas reinhardtii, il cui 

network metabolico è stato efficacemente ricostruito di recente. Sfruttando il nuovo 

approccio, dopo aver simulato le condizioni per cui la microalga prima cresce e poi 

accumula triacilgliceroli, si è realizzata la progettazione di un fotobioreattore, 

producendo i profili delle concentrazioni dei vari componenti, riportando l’andamento 

della produttività con il tempo di residenza e valutando il consumo di nutrienti. In 

seguito, si è tentato mediante singoli knock-out genici dapprima di ottimizzare la 

produzione di TAG, e successivamente, dati gli scarsi risultati, la sintesi di idrogeno 

gassoso. Per quest’ultimo caso è risultato che la deprivazione da zolfo comporterebbe 

l’attivazione della deidrogenasi responsabile della formazione di H2, un esito che 

riproduce pur per ragioni diverse una scoperta che risale agli inizi del 2000. Infine, con 

l’applicazione della nuova tecnica di miglioramento del mezzo di crescita, si sono 

delineate due strategie che potrebbero consentire un’accelerazione della velocità di 

crescita della biomassa. Risulta infatti che l’incorporazione diretta nel metabolismo di 

urocanato, intermedio nel catabolismo dell’L-istidina, e di N-acetil-L-glutammato, 

intermedio nella biosintesi dell’arginina, potrebbe incrementare la formazione di 

biomassa dal momento che la loro disponibilità nel medio di crescita consentirebbe alla 

cellula di sintetizzare precursori essenziali alla cellula (come l’acido α-chetoglutarico) 

durante la loro digestione. 

In conclusione, in questo lavoro si sono evidenziati i vantaggi che la biologia dei sistemi 

ha apportato nella descrizione e analisi dei sistemi biologici, con particolare enfasi sulle 

proprietà dei network metabolici cellulari. Una migliore descrizione del metabolismo 

consente all’ingegnere chimico di apprendere quale sia la migliore tra le innumerevoli 

opzioni che la natura offre per supplire alla domanda di certi composti chimici, e la sua 

analisi gli fornisce gli strumenti adatti per ottimizzarla. 
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Premessa 

Il presente lavoro è stato realizzato nell’ambito del programma di scambio 

internazionale stipulato tra l’Università degli Studi di Padova e la Boston University, 

MA, USA. Esso è il risultato dell’incontro tra le ricerche del gruppo GreEn 

Development del prof. Bertucco, che studia la sintesi di olio microalgale come possibile 

biocarburante, e del gruppo del Dr. Segrè, che si occupa di dinamica e evoluzione dei 

network biochimici. La tesi altro non è che un tentativo di coniugare le due linee 

ricerca, nell’intenzione che ciascuna disciplina possa giovare delle conoscenze e 

competenze offerte dall’altra. 

L’idea che l’ingegneria chimica possa servirsi della biologia dei sistemi è invero datata, 

considerato che tra i pionieri di questa branca della biologia figura il prof. Bernhard Ø. 

Palsson, che è ingegnere chimico. Tuttavia spesso l’applicabilità dei risultati ottenuti 

con le simulazioni dei network metabolici è stata trascurata, e questo è stato lo stimolo a 

riesaminare i metodi e le potenzialità che questa materia può offrire all’ingegneria 

chimica, ricercando al contempo nuovi approcci per risolvere delle comuni 

problematiche. 

Nel primo capitolo sono riassunti gli strumenti che la biologia dei sistemi ha sviluppato 

per l’analisi dei network metabolici ricostruiti, scendendo nel dettaglio della flux 

balance analysis, discutendone tecniche avanzate, tra cui alcune di ingegneria 

metabolica. 

Nel secondo capitolo vengono esaminate le possibili applicazioni dei predetti strumenti 

a due campi dell’ingegneria chimica, la progettazione di bioreattori e l’ingegneria di 

reazioni biochimiche, introducendo nuovi approcci dove possibile e richiamandone di 

consolidati negli altri casi. 

Nel terzo capitolo si espone il caso di studio a cui quest’incontro tra biologia dei sistemi 

e ingegneria chimica viene applicato, cioè la produzione di precursori del biodiesel, i 

triacilgliceroli (TAG), da parte della microalga Chlamydomonas reinhardtii, di cui si 

illustra l’ottima ricostruzione metabolica recentemente disponibile. 

Nel quarto capitolo si approfondisce, per il caso di studio, la progettazione di un 

fotobioreattore. 

Nel quinto capitolo, infine, si analizzano i tentativi realizzati in silico di ingegnerizzare 

la produzione di TAG da parte della microalga. Seguono quindi le conclusioni. 
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Introduction 

Problems of organization, phenomena not resolvable into local events, dynamic 

interactions manifested when parts of a system are isolated, are some of the issues 

which induced contemporary science to recognize the importance of “wholeness” 

(Chong and Ray, 2002). A cell is an example of a system which synthesizes all the 

previous problems. Systems biology is thus the branch of biology whose aim is the 

system-level understanding of any biological system, starting from the cell to the 

ecosystems (Kitano, 2002). Modern progresses in molecular biology boosted the 

collection of comprehensive data over increasingly complex biological systems. The 

recent emergence of systems biology compared to the early pronouncement of its theory 

is due to the necessity to accumulate sufficient descriptions of the parts to enable a 

reasonable reassembly of the whole. However, although systems biology is in its 

infancy, its potential benefits such as the ability to explain robustness or to predict 

metabolic behaviours are enormous in both scientific and practical terms. 

Biological systems are becoming of central interest also in fields which go beyond 

science and medicine scopes, such as chemical engineering. Industrial production of 

some compounds requires steps that can be catalyzed by highly specific enzymes (for 

example, in syrup production, enzymes are employed to convert starch into glucose). In 

the last decades, more complex biological systems have been considered for large scale 

chemicals production. Among these, photosynthetic algae, with particular emphasis on 

microalgae, have been regarded to as a possible biofuel resource for several benefits 

they owe over other current technologies. 

Systems biology approaches can be productively coupled to investigate some chemical 

engineering applications, such as bioreactor design and metabolic engineering, defined 

as the direct improvement of product formation or cellular properties by modifications 

of the metabolic network of reactions, or introduction of new ones by means of genetic 

engineering (Stephanopoulos et al., 1998). It is the objective of this work to understand 

the potentialities of combining systems biology approaches to chemical engineering 

problems. A case study regarding the production of biodiesel precursors, namely 

triacylglycerols (TAGs), by Chlamydomonas reinhardtii, a single celled microalgae, 

was investigated as an example. Two main applications were considered: the design of a 

tubular photobioreactor and the strategies for TAGs production optimization by means 

of single gene knock-outs and growth medium refinement.  
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Chapter 1 

Systems biology approaches to 
metabolism analysis 

Systems biology is the branch of biology which focuses on the study of complex 

biological systems using a top-bottom approach, as opposed to traditional biology 

which rather describes single molecular components involved in a specific biological 

activity. Among the first challenges of systems biology was the description and analysis 

of biological network as a whole, in particular the cell. The availability of complete 

genome sequences for a variety of species has allowed an increasing number of 

metabolic network reconstructions, progressively more precise as the annotation process 

developed. The applications for these so-called genome-based metabolic reconstruction 

(GENREs) are broad, and include contextualization of high-throughput data, strategies 

of metabolic engineering, directing hypothesis-driven discovery, interrogation of multi-

species relationships, and network property discovery (Oberhardt et al., 2009). Due to 

the intrinsic complexity of these networks, most of the analysis must be carried out 

computationally, thus leading to a tight relationship between systems biology and 

bioinformatics tools.  

1.1  Introduction to Flux Balance Analysis 

While the availability of complete genomes for several species has revealed the entire 

set of molecular components involved in cellular activities, their functional integration 

in a highly developed and evolved system, such as a cell, calls for better instruments 

and models to be fully understood and analyzed. Molecular components in a cell indeed 

relate to each other in a very complex manner, which departs from a simple network of 

reactions. Cells comprise regulatory networks as well as signaling networks, not to 

mention the inherent physical chemistry of the cell, which is far to be totally 

understood. Thus approaches that focus on the systemic properties of the network are 

required.  

It is the aim of systems biology to head off from the reductionist approach, which 

characterized biology in the last centuries, and explore an integrated approach, able to 

describe the interrelatedness of gene function and the role of each gene in the context of 

multi-genetic cellular functions. To deal with such systems, engineering is thus called to 
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design and provide mathematical or computer models which should, at least in 

principle, reproduce the cellular metabolism in a dynamic fashion. However, the 

reconstruction of dynamic models of a cell has been hampered by the current lack of 

kinetic information, in particular the enzymatic kinetic constants. To cope with this 

deficiency, new approaches have been derived to shed light on the relative importance 

of various metabolic events. Above all, flux balance analysis (FBA) has proved to give 

excellent insights of a metabolic network without using such kinetic data.  

Flux balance analysis takes advantage of three fundamental assumptions. First, cellular 

activity can be described in terms of a metabolic network. In other words, the 

conversion of substrates to products and essential components for cellular growth is 

processed by a web of interrelated reactions which take place in the cell and are 

constrained by their stoichiometry. Most of these reactions are carried out by enzymes 

which had been previously identified to be present in the cell by a systematic annotation 

of cell genome. Other reactions can be artificially introduced in order to describe uptake 

and secretion of metabolites, as well as not yet identified reactions which are in turn 

essential for a complete description of cell metabolism. A second assumption is that all 

reactions occur at steady-state: it derives from the need of cell homeostasis, which 

ultimately reflects the fact that a particular metabolite should not accumulate within the 

cell along with time. Lastly, as a third hypothesis, all reactions occur at a rate such that 

one (or more) cellular activity is kept at its optimum. The rate at which each reaction is 

carried out is commonly referred to as flux. Frequently, it is assumed that growth is 

optimized, a hypothesis which originates from an evolutionary principle of optimality, 

the ultimate goal of a microorganism being a faster replication. 

1.2 Mathematical modeling of FBA 

FBA is a mathematical approach for analyzing the flow of metabolites through a 

metabolic network (Orth et al., 2010). The main objective of this technique is to 

compute a feasible distribution of fluxes (i.e. reaction rates) within the cell. As stated 

above, FBA does not require any knowledge regarding the actual kinetics of the 

reactions occurring in the cell metabolism. Indeed, FBA assumes that all internal 

metabolite concentrations do not vary in time, that reactions are constrained by 

stoichiometry (and either thermodynamic reversibility or irreversibility), and that all 

reaction rates are optimized with respect to some cellular activities. FBA needs these 

concepts to be incorporated in a mathematical model. The analysis is carried out in 

multiple steps (Kauffman et al., 2003). 



5 

1.2.1 System definition  

First, all metabolic reactions and metabolites are identified. Even if in a certain 

environmental condition only a subset of reactions will be active, the mathematical 

modeling is supposed to predict the pathway flux, neglecting an explicit consideration 

of the regulatory mechanisms. Ideally, the complete network can be inferred by the 

annotated genome sequence. The product of each gene is annotated by homology 

searches resulting in a list of enzymes leading each to a specific reaction. However, 

generally few enzymes will be identified in a known pathway, implying that the process 

is iterated until the network is complete. Sometimes manual addition of other reactions, 

based on physiological or biochemical data, is required to close the mass balance. It is 

important to note that genome-based metabolic reconstructions are time-consuming 

researches. It can take up to two years, depending on the size of the network. An 

extensive catalog of reconstructions currently available is listed in the BiGG database 

(Schellenberger, J. et al., 2010), freely accessible from the academic site of the 

University of California, San Diego at http://bigg.ucsd.edu/. Other reconstructions can 

be retrieved in specific literature. 

An example of a simple network, which will serve as an example for the next steps, is 

represented in Figure 1.1. Note that intracellular reactions are shown in black while 

exchange reactions, which are usually manually curated, are in red. 

Figure 1.1. A simple network of reactions occurring in a cell, the metabolites being A, B 

and C. Intracellular fluxes are shown in black, while exchange fluxes are shown in red. 

1.2.2 Mass balance 

Each identified metabolite must satisfy a dynamic mass balance. For instance, for the 

network represented in Figure 1.1, three dynamic mass balances must be solved: 

b1 

3 

A B

C
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                                           (1.1) 

where CA, CB and CC are the concentration of metabolites A, B and C respectively and v 

or b are the rates of the respective reaction in the network, i.e. the fluxes.  

This gives rise to a set of coupled ordinary differential equations. The differential 

equations can be represented using a matrix notation, where S is the stoichiometric 

matrix and v is the vector of fluxes. Thus, the matricial product S·v should be equal to t, 

which is the vector of metabolite concentration variation in time, i.e. the left hand side 

of each equation in (1.1). Since FBA assumes steady-state, t is equal to zero. Thus for 

the network in Figure 1, the matricial product S·v can be written as: 

1 1 11 0 00 1 1
0 1 01 0 11 0 0

001

0000000
                             (1.2a) 

or shortly, 0                                                      (1.2b) 

It should be noted that S is not a square matrix, i.e. there are more reactions than 

metabolites in the network. This case is by far the most common in metabolic 

reconstructions. Indeed, evolution has provided organisms the capability to reproduce 

and survive in several environmental conditions. The adaptability of a species to an 

environment is reflected in its metabolic network in terms of silent phenotypes, that is 

the availability of different pathways which are not active in standard conditions. For 

example it is well known that under aerobic conditions the more efficient glycolitic 

pathway is active in E. coli for ATP production (this stands for many other organisms as 

well). However, as soon as the availability of oxygen is poor, fermentation will be 

preferred over glycolysis. This means that metabolic networks comprise more reactions 

than metabolites, and therefore the corresponding stoichiometric matrix is never square 

(Palsson, 2006). As there are more reactions (hence fluxes) than metabolites, the steady-

state solution for the flux distribution is underdetermined. Thus, additional constraints 

are needed to reduce the solution space dimension and ultimately search for a unique 

steady-state flux distribution.  
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1.2.3 Defining constraints 

Additional constraints, including those related to the availability of nutrients (i.e. fluxes 

that transport a certain metabolite from the extracellular environment into the 

intracellular network, like reaction b1 in Figure 1.1) or to the maximal fluxes that can be 

supported by enzymatic pathways, can be introduced as inequalities: 

                                                          (1.3) 

For example, fluxes such as b1 in the network of Figure 1.1, which are usually referred 

as exchange fluxes, can be constrained to a maximal value. Usually these values are 

determined experimentally (Varma and Palsson, 1994). Inequalities as in (1.3) can also 

be used to force irreversibility of a given flux, namely imposing 0. In this fashion, 

also thermodynamic constraints can be implemented in FBA. Constraints can also 

define a set of fluxes that have been suppressed by, say, knocking out a specific gene 

which is known to encode the enzyme(s) catalyzing that reaction. In this case, 

0. Sometimes measured values of fluxes are available experimentally, for example 

via 13C-isotope labeling or other techniques (Park et al., 2010), so that feasible values 

for  and  can be selected. However, if no information is known for a given reaction, 

it is usually assumed to be unbounded (i.e. reversible) such that ∞ or, for 

numerical purposes, 1000. 

1.2.4 Optimization 

Since biological metabolic networks always comprise more fluxes than metabolites, 

even an extensive use of constraints rarely leads to an exactly determined solution for 

problem (1.2). Thus, to identify a flux distribution for the network, it is assumed that the 

network itself is optimized with respect to a certain objective. According to this 

approach, it is imposed that the network must achieve a specific goal by redistributing 

the fluxes toward that objective, without violating mass balance constraints. The nature 

of this goal must be carefully selected, as it must represent as closely as possible the 

actual behavior of the system under the examined conditions (Sendìn, 2008). 

An evolutionary principle of optimality is usually adopted, which means that the flux 

distribution within a cell is tailored to pursue the maximum growth rate. The objective 

function (Z) is thus defined as the growth flux, or biomass objective function (BOF), 

that is a fictitious reaction which resembles all the metabolites that, in the correct 

proportions, are needed by the cell to form a unit mass of biomass. Other objective 

functions have been explored as well, such as maximization of ATP or overproduction 

of a certain metabolite (Palsson, 2006). More details regarding the definition and the 
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construction of the biomass reaction are given in literature (Thiele and Palsson, 2010; 

Feist and Palsson, 2010). 

If the objective function Z is linear, then an optimal set of fluxes subject to the mass 

balance S·v = 0 and linear inequalities  can be obtained. Under these 

conditions, the optimization problem is a linear programming problem which can be 

solved using commercial as well as open-source solvers. 

1.3 Advanced techniques in Flux Balance Analysis 

In general, the solution obtained by FBA is only as good as the constraints and the 

defined objective function used to identify it. Nevertheless several simulations carried 

out in the past, having Z = max(BOF) as objective, have been shown to be consistent 

with experimental data (Varma and Palsson, 1994; Edwards et al., 2001). However, 

different approaches should be explored to characterize the effects of shifts in the 

steady-state in general. 

1.3.1 Incorporation of explicit regulatory constraints 

Under some conditions, such as a hostile environment or genetic mutations, the 

behavior of a microorganism will depart from the maximization of biomass. FBA alone 

cannot account for this explicitly because it does not implement any rules for network 

regulation. A first attempt to overcome this deficiency was the implementation of 

regulatory constraints with a Boolean logic approach (Covert et al., 2001). These 

constraints arise due to changes in the environment, so that a flux will be temporarily 

constrained to a certain value based on the initial conditions of the cellular system. A 

standard FBA is then carried out, maximizing the growth rate. The result is the 

elimination of many unfeasible pathways from being taken in consideration while 

performing standard FBA. Namely Boolean rules interdict the use of some cellular 

pathways which require two or more inconsistent regulatory event to occur 

simultaneously.  

1.3.2 Exploration of alternative classes of objective function 

Cellular regulation can be accounted also by choosing a more appropriate objective 

function. The main difference with the previous approach is that the selection of an 

optimal objective function follows from the knowledge of the system response to a 

given event rather than by modeling the response with rules that must be incorporated in 

the mathematical model.  
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In this fashion, bacteria subjected to a genetic perturbation (typically a gene knock-out) 

have been assumed to pursue a metabolic flux distribution similar to the wild-type, 

rather than to regulate all fluxes toward an optimal growth configuration, as FBA 

suggests. Thus, the objective function switches from growth maximization to 

minimization of metabolic adjustment (MOMA), i.e. the mutant remains initially as 

close as possible to the wild-type optimum in terms of fluxes (Segrè et al., 2002). 

MOMA can be used to improve the prediction efficiency of FBA for studying E. coli 

mutants. 

Alternative classes of objective function can also be investigated to better describe flux 

distributions even in wild-type species, thus questioning the actual truthfulness of 

maximization of growth as the best objective function. Schütz et al. (2007) for instance 

systematically compared the prediction efficiency of different BOFs for wild-type E. 

coli, and they concluded that ATP-yield maximization rather than growth maximization 

better describes the functional state of the cell under several environmental conditions.  

1.3.3 Pareto analysis: multi-objective FBA 

By assuming a single objective function, FBA reports an optimal flux distribution 

according to one principle of optimality. For instance, if growth maximization is 

assumed, the distribution of the fluxes within the cell metabolism is driven by the 

production of the single metabolites which, in the correct ratio, will form a unit mass of 

biomass. Even if successful applications of this rationale have produced excellent 

predictions for some microorganisms (such as E. coli in a study by Edwards et al., 

2001), it is likely that nature has not a single goal (Sendìn et al., 2009). Thus, a more 

realistic approach would be to consider the simultaneous optimization of two or more 

objectives. These criteria are often conflicting, leading to a so called Pareto analysis of 

the network.   

The choice of the functions to optimize must reflect the knowledge of the system and 

should interpret the environmental conditions of the simulation. Sendìn et al. for 

example investigated three common cellular functions for a more realistic prediction of 

E. coli central carbon metabolism. These three functions were maximization of biomass 

growth, maximization of ATP production and minimization of the overall intracellular 

fluxes. As Pareto analysis generally leads to a surface (Pareto frontier) over which the 

weighted sum of the objectives is at optimum, experimental data are necessary to assess 

which Pareto-optimal points best represent the cell metabolism in the conditions under 

investigation. It should be noted that experiments must be conducted to perform a 

complete Pareto analysis, but these experiments could just assess the value of a number 
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of fluxes equal to number of objectives (if commensurable) minus one (the latter being 

given automatically by intersecting the Pareto frontier).  

1.4 Tools for metabolic engineering 

Metabolic engineering in microorganisms has received increasing attention due to its 

potential for production of renewable fuels and chemicals (Tepper and Shlomi, 2009). 

Computational modeling of metabolism proved to be useful to guide experimental 

attempts by anticipating the effect of genetic engineering and metabolism modification. 

In the context of FBA, where the kinetic techniques have been bypassed by a 

computational prediction of metabolic fluxes given some constraints such as mass 

balance, several algorithms have been developed to understand how to detour a flux 

distribution toward the production of a certain metabolite. Prior to that, it is important to 

note that FBA itself can give some information over this goal. A simple approach 

consists in changing the objective function so to maximize the flux that leads to the 

desired compound. This simulation can help to verify whether such option is feasible, if 

biomass can still grow, which nutrients are needed in the process and finally what 

pathway are involved or not. 

A more sophisticated attempt for direct metabolic engineering was first performed by 

Burgard et al. (2003), who realized a method, called OptKnock, which searches for sets 

of gene knockouts that lead to the overproduction of preferred metabolites. More 

recently, Tepper and Shlomi (2009) improved the method to account for competing 

pathways, with a novel algorithm called RobustKnock. Other examples of methods for 

metabolic engineering in the context of FBA are OptStrain (Pharkya et al., 2004), which 

allows the incorporation of novel enzyme-coding genes not originally present in the 

species under analysis, and OptReg (Pharkya and Maranas, 2006), that can simulate up- 

and down-regulation of metabolic enzymes as well.  

All these tools can help to identify strategies for metabolic engineering, whether these 

strategies include the design of an optimal medium or techniques of genetic engineering 

for gene deletion or regulation. However a deep analysis of the consequences of a 

certain strategy on the cell metabolism should be carried out to make sure that the result 

of the simulation does not violate fundamental laws of regulation. Such analysis should 

be sustained by means of comparison with specific literature and, eventually, by 

experimental validation. 
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Chapter 2 

Application of systems biology 
approaches to chemical engineering 

problems

Systems biology approaches have proved to successfully describe in quantitative terms 

the metabolism of several microorganisms, which can in turn be exploited to produce 

valuable chemicals. For instance, lactic acid, ethanol and citric acid are industrially 

important biotech products which derive directly from bacteria central carbon 

metabolism (Bro et al., 2005). Engineering of such reactions for a profitable production 

of both consolidated and new biotech chemicals is a primary aim of a chemical 

engineer. Interestingly, flux balance analysis and other advanced techniques can provide 

essential information to this end. Among all, FBA can predict the rate of biomass 

growth, the input requirements, and the rate of production of certain secondary by-

products. Advanced techniques of FBA can either improve such predictions or 

individuate novel strategies for optimizing the production rate of a certain metabolite 

over others. In this chapter, it is explored a new and original way to integrate the results 

obtained by using systems biology approaches such as FBA for solving common 

chemical engineering problems. 

2.1 Bioreactor design 

The key requirement for the design of any industrial chemical reactor is the kinetics of 

the processed reactions (Sinnott, 2005). By understanding the rate at which the reaction 

proceeds and how it depends on operative or environmental factors, it is possible to 

provide sufficient residence time for the desired reaction to accomplish the required 

degree of conversion. Such information is difficult to retrieve in literature, especially 

those regarding particularly attractive processes. Moreover, experimental campaigns for 

the acquisition of kinetics data are usually expensive, and not suitable in the stage of 

conceptual design of the process. In biotechnology, an accurate description of the rate of 

reaction per se can be a hard task, considered that even the simplest model of enzymatic 

reaction rate, namely the Michaelis-Menten equation, relies on at least two parameters. 

In addition, even when these values are available, they must be known for each 

enzymatic reaction taking place in the biological network, but the quantity of these data 
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is still scarce and the methods to ascertain them are difficult to apply yet (Oberhardt et 

al., 2009). Thus, a quick and economical way to obtain these parameters is highly 

desirable. 

Here it is proposed a new technique to design a bioreactor by integrating kinetic data 

retrieved from simulations of the biological system using FBA. This study investigated 

primarily and ideal tubular reactor (plug flow reactor or PFR), but it can be easily 

extended to ideal completely stirred tank reactor (or Chemostat or CSTR) or other more 

advanced reactor models. 

2.1.1 A classic approach: the biological tubular reactor 

In biochemical engineering, a biological reactor differs from an enzymatic reactor 

because substrates are converted by the biomass into products and biomass itself. So, 

apart from producing valuable compounds, in a bioreactor a biological system normally 

grows. The classic approach to deal with such systems is to imagine reactors as black 

boxes, as depicted in Figure 2.1.  

Figure 2.1. A biological reactive system. The simplest approach to model biological 

reactors is to assume the black box model. Thus biomass is seen as a vehicle through which 

substrates are converted to products and other biomass (growth).

The biomass is modeled as a reactor which converts substrates into products and 

biomass. In principle, there is a reaction rate for each substrate converted and product 

formed (including biomass). However, usually only the biomass producing reaction is 

modeled in detail. According to this approach, the growth is described taking advantage 

of some well known equations, like the Malthus equation (2.1) or the Monod equation 

(2.2): 

                                                              (2.1) 

                                                            (2.2) 

These two models describe quantitatively the change of biomass provided some 

parameters are known ( , the maximum rate of growth, and kM, the Monod constant) 

and some external conditions (such as CS and CX, the concentration of limiting substrate 

Substrate Products 

Biomass 

BIOMASS 
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and of biomass respectively): in this fashion,  is the rate of biomass formation or, in 

other terms, the reaction rate of the growth reaction. Once the rate of biomass formation 

is characterized, all other reactions, whether they represent the conversion of a substrate 

or the formation of a product, are related to it in terms of yield. In biological reactive 

systems, yield is commonly defined both for substrates and products as: 

                                                              (2.3) 

                                                              (2.4) 

The yield describes the variation in biomass or product concentration given some 

variation in substrate concentration. They are defined as stated by equation (2.3) and 

(2.4) because their value is simple to determine experimentally. If a trend for the yield 

can be traced, then the reaction rate for substrate conversion or product formation is 

given, respectively, by: 

                                                              (2.5) 

                                                               (2.6) 

Once all reaction rates have been established, mass balances can be written around the 

reactor. By solving the mass balances, the residence time can then be assessed and all 

values necessary for a preliminary design of the reactor are available.  

The form of the mass balances depends on the reactor configuration. For tubular 

reactors, mass balances are differential. An equation must be written for each 

component of the reaction. In a general biological system with one substrate, one 

product and biomass, under steady state operation, the system of mass balances is given 

by (2.7): 

                                                             (2.7)

where τ is called residence time. It is defined as the ratio of reactor volume V over the 

average incoming volumetric flow rate . The residence time represents the time 

interval needed to fill the reaction volume at the given influent volumetric flow rate. In 

reactor design, given a certain productivity, which is proportionally related to the 

volumetric flow rate, once the residence time is found then the volume for the reactor is 
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straightforward. To obtain the residence time, all equations in (2.7) must be 

simultaneously satisfied. To solve the system of equations, the boundary conditions for 

each variable must be given and an arbitrary value for product conversion or biomass 

growth must be chosen. Only three variables are left unknown, namely the residence 

time and the outlet concentration of substrate and biomass (or product, depending on the 

previous choice). In conceptual design, usually biomass/product conversion is left 

parametric with the residence time.  

In conclusion, the key parameter for bioreactor design is the residence time. The 

residence time is obtained by solving simultaneously a mass balance equation for each 

component in the reactive system. The solution of this system of equations exists only if 

a representative form for each reaction rate is available, if all parameters values are 

known and if an initial set of conditions on the components’ concentration is given.  

2.1.2 A new approach: solving mass balance equations using FBA 

The classic approach suffers of several time (and money) consuming hurdles. Most of 

these hurdles involve the reaction kinetics description. The approach here proposed 

consists in substituting the black box with a genome-based metabolic reconstruction 

(GENRE) of the biological reactive system, as depicted in Figure 2.2. A GENRE 

recollects all the metabolic reactions occurring within the cell and it includes exchange 

reactions for nutrients uptake and secondary products secretion too.  

Figure 2.2. A biological reactive system. A new approach to model biological reactors is to 

integrate its metabolic network. All fluxes, whether external or internal, are estimated using 

FBA, choosing an appropriate objective function, like biomass growth. 

To estimate numerically the reaction rates of all the reactions included in a GENRE, 

FBA is applied. In the context of bioreactor design, internal reaction rates are irrelevant 

but the exchange reaction rates are essential. They actually represent the rates at which a 

nutrient is absorbed by the cell or a metabolite is secreted. Moreover, all GENREs 

provide a fictitious reaction for biomass growth, namely the biomass producing reaction 

rate or biomass objective function (BOF). Actually, FBA usually estimates all reaction 

rates (or fluxes, as more commonly found in literature) based on optimizing the biomass 

producing reaction (see §1.2.4 for further details). Once all the fluxes, with particular 

emphasis on the external fluxes, have been computed, the system of equation (2.7) can 

v

Substrate

Products 

Biomass 
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be solved by inserting the value of the flux in place of the proper reaction rate 

expression. However this step requires some care. As it will be seen in Chapter 3 

(§3.1.1.3), fluxes are expressed in terms of mmol gDW
-1 h-1. In standard chemical 

reaction engineering, reaction rates are given in mol L-1 s-1. Thus the conversion factor 

from fluxes to reaction rates is the biomass concentration CX: 

                                                              (2.8) 

where vi is the i-th flux (internal or external) calculated via FBA and ri is the 

corresponding reaction rate for the material balance. All quantities are expressed at the 

residence time . The equations in the system (2.7) can be solved either numerically or 

analytically. If FBA was applied consistently, that is that the objective function has been 

carefully selected, constraints have been set correctly and the metabolic reconstruction 

is fairly complete, then in principle the flux distribution should not depend from the 

residence time. Moreover, it should not depend on the concentrations themselves. 

However, the biomass concentration does depend on the residence time, and it appears 

in each differential equation since it is the conversion factor according to eq. (2.8).  The 

system of equations (2.7) can be rewritten as: 

                                                             (2.9) 

To find a solution to this problem, a method called dynamic FBA (dFBA) can be 

applied. This technique, which was first introduced by Varma and Palsson in 1994, 

solves all the equations simultaneously at every instant d . In this infinitesimal interval, 

fluxes calculated in FBA are assumed to be constant and equations are solved 

analytically. In the subsequent instant d ,  is updated to the last calculated value. In 

addition, initial conditions for the rest of the equations are updated to the last calculated 

value. The procedure is iterated until a certain conversion of either the product or the 

biomass is achieved or, alternatively, after an arbitrary number of iterations. The sum of 

all infinitesimal intervals dτ produces the overall residence time τ. As said before, at 

every infinitesimal interval, each differential equation of (2.9) are solved analytically, 

since fluxes are constant. Thus, at every d :  

                                                 (2.10) 
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where , ,  are the last calculated concentration values. By stating that, it is 

implied that at the first iteration the initial conditions for every concentration must be 

given. Note that the value of d is arbitrary, but in order to achieve a realistic 

simulation, it should be significantly smaller than the relaxation time of the system. The 

iterative procedure that performs FBA at each step by progressively updating the initial 

values of a set of concentration, generally inputs and outputs, is the core of dFBA.

This method has been applied with some modifications for a case study, the production 

of triacylglycerols by Chlamydomonas reinhardtii. The fully detailed example is 

developed in Chapter 4.   

2.1.2.1 dFBA and numerical methods comparison 

dFBA is not a numerical scheme, since even though the system is discretized in 

infinitesimal instants d ,  all equations of system (2.9) are solved analytically. In 

principle, since fluxes are given as numerical values by FBA, a method for numerical 

integration of ordinary differential equations, such as explicit Euler method, is more 

suitable. In this fashion, the time derivative in all equations of (2.9) is approximated by 

a finite difference d , which leads to: 

                                       (2.11) 

where n is the iteration index. Clearly, at n = 0, boundary conditions must be given as 

dFBA. At the nth iteration, FBA must be run to retrieve the values of the fluxes ( ) 

needed to solve equations in (2.11). In Appendix D, it is shown qualitatively that results are not 

sensibly affected by the choice of the method (whether dFBA or numerical integration).

2.1.3 Advantages 

Besides the obvious pros of this new approach, which bypasses the need of collecting 

experimental data for the growth reaction kinetics and the product/substrate yield value, 

several other benefits should be accounted for. 

First, several environmental conditions can be simulated. The advantages are enormous. 

In the assumption that only environments where the biological reactive system under 

study can grow may be simulated with realistic predictions, then this new approach can 

provide a quick quantitative estimation of the growth rate variation, as well as of all the 

other external fluxes necessary to compute the system of equations (2.9). If the black 
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box approach was used, both parameters in the Monod equation (2.2) and the yields 

(2.3) and (2.4) should be experimentally estimated for each substantially different 

environmental condition. On the other hand, FBA can switch medium conditions by 

simply adjusting the constraints on the external fluxes. For example, to switch from 

aerobic to anaerobic, it is sufficient to set to zero the constraint for the availability of 

oxygen in the environment, as described in §1.2.3. Same can be said for the availability 

of organic carbon (heterotrophy) or inorganic carbon (autotrophy). In general, both 

growth rate and substrate absorption are significantly influenced by the environment, so 

this approach can help to distinguish more favorable conditions for the bioreactor goal, 

by taking in account at the same time which nutrients are needed and in which quantity.  

In the second place, genetic engineering strategies, such as gene knock-out or up-down 

regulation, can be tested. These techniques represent a huge possibility for reactor 

optimization that only biotech applications can take advantage of. FBA, or other 

advanced algorithms such as MOMA or ROOM (Shlomi et al., 2005), can be employed 

to calculate the flux distribution after a gene perturbation has been applied. These 

results may be used to update the solution of the system of equations (2.9) at every step 

of iteration. However, it should be noted that predictability of the above methods is still 

poor, even though they can provide useful information for conceptual design without 

carrying out any experiment (Zhao and Kurata, 2005). 

2.1.4 Limitations 

Even though the inherent flexibility of this new approach is appealing, result predictions 

should be used with care. In particular, it should be noted that GENREs lack a 

reconstruction of the regulatory network. Thus, even unfeasible growing conditions for 

the biological reactive system can produce results in the simulation. Moreover, as 

regards genetic manipulation, it is not guaranteed that a certain gene knock-out or 

regulation is practicable, as cell adaptation is not accounted for and some manipulations 

can lead to cell death. Because of this, experiments are essential to confirm model 

predictions. Therefore, it is recommended to extend simulations within the framework 

of conditions that are known to be viable either from literature or experimental 

evidence. In particular, it is suggested to validate experimentally those simulations 

which turned to be considerably attractive. It should be noted that even by applying this 

protocol the advantages of this new approach are still evident, as it can help to select a 

few smart alternatives among all other reasonable options.  
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2.2. Biochemical reaction engineering 

Traditional chemical engineering employs catalysts to enhance a reaction rate. In 

biological reactive systems, the catalysts are the enzymes, which can increase a kinetic 

constant as up as 1015 times. Thus, areas of further optimization must go beyond the 

catalysts themselves and investigate a strategy to optimally take advantage of those 

enzymes that carry out a desired reaction. Two methods have been studied, 

computational metabolic engineering and design of ad hoc medium. 

2.2.1 Computational metabolic engineering  

Systematic methods to identify gene manipulations that lead to a metabolite 

overproduction within a biological reactive system are possible thanks to specific 

algorithms that work in the GENREs environment (see §1.4). Due to the inherent 

difficulty to predict gene essentiality without a valuable regulatory network, results 

should be validated experimentally. 

A possible strategy to achieve some useful indications for metabolic engineering, is to 

systematically test a single gene knock-out (KO) in the GENRE by optimizing biomass 

growth and a by-product synthesis simultaneously. To perform this, a freely available 

algorithm which works in the MATLAB™ framework is OptKnock (Burgard et al., 

2003). If a gene-protein-reaction association map is available within the GENRE, 

OptKnock deletes a single gene at the time, by constraining its upper and lower bound 

to zero. Then, it solves a mixed-integer linear problem which calls for a flux distribution 

which maximizes a target flux, provided that the biomass objective function is at 

optimum. The target flux usually represents a fictitious exchange reaction which 

secretes the desired metabolite. OptKnock verifies the range in which the target flux can 

span, that is the minimum and maximum rate at which the metabolite can be secreted. 

In results analysis, the KO-gene set which proved to be unable to sustain growth is 

usually defined as gene essentiality test. Obviously, by knocking-out any of these genes, 

the cell will die, at least according to the simulation. To develop a genetic engineering 

strategy, it should be kept in mind that two situations may occur. First, a simulated gene 

KO which induces the target flux to span from zero to any upper bound does not 

guarantee any secretion or overproduction of the target metabolite. In other terms, the 

target flux may turn to be null in experiments. To improve the prediction accuracy, 

RobustKnock (Tepper and Shlomi, 2010) accounts for the presence of competing 

pathways in the network and predicts a minimal, guaranteed production rate of the 

target chemical. Secondly, many KOs are redundant, as they affect reactions belonging 

to the same pathway, thus leading to equal consequences on the flux distribution. 
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Therefore, it is recommended to analyze the GENRE in order to evaluate the pathways 

affected by the KOs, rather than the reactions, so to reduce notably the size of KOs 

strategies that may prove successful. 

2.2.2 Design of ad hoc media 

The metabolic flux distribution within a cell is sensitive to the environment. For the 

purposes of chemical reaction engineering, this can significantly change the rates of 

many internal fluxes. For instance, some microorganisms’ ability to grow is greatly 

enhanced in heterotrophic conditions rather than in autotrophic, or viceversa. The 

presence or absence of a certain nutrient from the membrane surroundings can 

determine alteration of some cellular functions and consequently modify 

microorganisms’ behavior and viability. In computational synthetic biology, this fact 

has been used to design artificial media capable of sustaining growth for a microbial 

community but unable to do the same for one or all individual species (Klitgord and 

Segrè, 2010).  

Given this premise, it might be possible to design in silico a medium which can boost a 

certain cellular function over others. A simple and novel method has been developed to 

check whether a single biological system, such as a cell, can enhance a target flux 

provided that a certain compound is present in the environment. The rationale beyond 

this technique consists in assuming that if the cell is given the possibility to soak up a 

metabolite rather than synthesizing it, then the corresponding anabolic pathway may be 

bypassed. By doing so, the flux distribution could be detoured to boost the previously 

chosen target flux. For example, if the biomass producing reaction is selected as target 

flux, pyrimidines (uracil, UTP, and cytosine, CTP), which are essential precursors for 

biomass, may be supplemented by the environment. If so, the pyrimidine biosynthesis 

pathway can be inactivated, implying a better exploitation of nutrients and a minor 

cofactor usage. As a consequence, biomass may result to grow faster (Figure 2.3). 

The algorithm searches for all metabolites naturally present in the metabolic network. 

At each iteration step, it assumes that one of these chemicals is individually added in the 

growth minimal medium. It further assumes that the cell is capable of absorbing it, by 

including a fictitious exchange reaction in the GENRE. When the simulation concludes, 

it is possible to evaluate which artificially added compounds increased the target flux, 

and the needed quantity. Since the algorithm does not check whether the cell itself can 

effectively absorb the artificially added compound, evidences in literature or by means 

of experiments are essential to further prove applicability of the simulation results 

according to this idea. 
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Figure 2.3.  Pyrimidine biosynthesis pathway. Pyrimidines, UTP and CTP (in red boxes), 

are essential to grow biomass. On the left, a cell standard behavior to produce biomass is 

depicted. Nutrients are converted via some pathways (red arrows) to biomass but part of 

them enters the pyrimidine synthesis cycle with extensive cofactor usage. On the right, UTP 

and CTP are provided by the environment. In this fashion, nutrients will bypass the 

pyrimidine cycle, possibly enhancing biomass growth. 

2.3 Conclusions 

This chapter highlighted the advantages that follow from integrating systems biology 

approaches with chemical engineering. Common problems of biochemical engineering, 

such as bioreactor design and chemical reaction engineering can greatly benefit from the 

whole-istic perspective of systems biology. The reconstruction of genome-based 

metabolic networks (GENRE) and the emergence of flux balance analysis both 

contributed at quantitatively define the reactions taking place in a modelled cell. These 

data can be successfully applied to bypass the need to collect kinetics data in the stage 

of bioreactor conceptual design and to develop new strategies to engineer reactions of 

interest without turn to traditional catalysis. 
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Chapter 3 

A case study: 
Flux Balance Analysis of 

Chlamydomonas reinhardtii 

Among the greatest challenges of modern technology, the research for profitable and 

renewable fuels has become a major interest, urged by the instability of petroleum fuel 

costs, the vicinity of peak oil, and the increasing danger due to actual atmospheric CO2

concentration levels (Radakovits et al., 2010a). Since the 1980s, microalgae have 

appeared to be an attractive solution for their ability to grow rapidly and accumulate 

high levels of triacylglycerols (TAGs), which can be processed as feedstock for biofuel 

production (Hu et al., 2008). The advantages are numerous, such as the substantial 

amount of TAGs which may be produced (up to 50-60% of dry biomass), elevated 

growth rates, easy adaptation to harsh environments, such as waste or salt water. As a 

consequence, they do not affect fresh-water resources, thus they do not compete with 

other food aimed cultivations. Moreover, if grown autotrophically, they consume carbon 

dioxide to sustain photosynthesis, so they contribute to greenhouse effect mitigation. 

From this chapter on, systems biology approaches introduced in Chapter 1 will be 

investigated to solve some chemical engineering problems regarding the bioproduction 

of TAGs from a microalgal species. In this chapter, an overview of the GENRE used in 

the subsequent simulations will be given in detail. For the purposes of this case study, a 

reconstructed metabolic network of an oil producing microalgae was necessary. So far, 

Chlamydomonas reinhardtii is the only one whose genome has been mapped (Merchant 

et al., 2007) and thus whose metabolic network has been reconstructed and refined 

(Boyle and Morgan, 2009, Chang et al., 2011). It is proved that some strains of C. 

reinhardtii do accumulate TAGs so that they may serve as possible feedstock for 

biofuel production (Siaut et al., 2011, Work et al., 2010, Wang et al., 2009, Li et al., 

2010, James et al., 2010). 

3.1.  The Chlamydomonas reinhardtii model 

A genome-based metabolic reconstruction of Chlamydomonas reinhardtii, called 

iRC1080, has been recently published (Chang et al., 2011). It comprises 1080 genes, 
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associated with 2190 reactions and 1068 unique metabolites distributed across 10 

compartments. The model is among the largest metabolic models available to date and 

include the most extensive description of lipid metabolism. It represents a major 

advance with respect to the previously available model for C. reinhardtii, which 

included 523 reactions and 470 metabolites (Boyle and Morgan, 2009). Metabolic 

pathways included in the model are presented in Table 3.1a. Other reaction classes, 

which do not actually account for a metabolic activity but are necessary for the 

complete description of the network (such as exchange reactions or the biomass 

objective function) are also listed in Table 3.1b. A pictorial representation of the 

network has been generated with iPath 2.0 (Yamada et al., 2011), which is based on a 

KeGG metabolic map (http://www.genome.jp/kegg/). KeGG is a bioinformatics 

resource which contains, among others, a collection of manually drawn pathway maps. 

The generated map provides a fair description of the reconstructed metabolism of C. 

reinhardtii (Figure 3.1). 

Table 3.1a. Metabolic pathways accounted in iRC1080 model. 

Metabolic pathways 

Amino acids biosynthesis, metabolism, degradation Methane metabolism 

Amino sugar and nucleotide sugar metabolism N-Glycan and O-Glycan biosynthesis 

Ascorbate and aldarate metabolism Nicotinate and nicotinamide metabolism 

Biosynthesis of steroids Nitrogen metabolism 

Biosynthesis of unsaturated fatty acids Oxidative phosphorylation 

Butanoate metabolism Pantothenate and CoA biosynthesis 

Carbon fixation Pentose phosphate pathway 

Carotenoid biosynthesis Photosynthesis 

Cofactor recycling Polyamine metabolism 

Fatty acid biosynthesis Porphyrin and chlorophyll metabolism 

Fatty acid elongation in mitochondria Propanoate metabolism 

Fatty acid metabolism Protein synthesis 

Folate biosynthesis and one carbon pool by folate Purine and pyrimidine metabolism 

Fructose and mannose metabolism Pyruvate metabolism 

Galactose metabolism Retinol metabolism 

Glutamate metabolism Riboflavin metabolism 

Glutathione metabolism Selenoamino acid metabolism 

Lipid metabolism Sucrose metabolism 

Glycolysis / Gluconeogenesis Starch metabolism 

Glyoxylate metabolism Sulfur metabolism 

High-mannose type N-glycan biosynthesis TCA cycle 

Inositol phosphate metabolism Terpenoid backbone biosynthesis 

Linoleic acid metabolism Urea degradation 
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Table 3.1b.  Subsystems accounted in iRC1080 model. 

Other subsystems 

ATP maintenance 

Biomass formation 

Exchange/Demand 

Spectral decomposition

Transport 

3.1.1 Understanding the iRC1080 model 

The iRC1080 model is a mathematical model which includes some basic features of all 

GENREs, such as the stoichiometric matrix of the metabolic network, and some 

advanced features, such as the matrix for gene-protein-reaction (GPR) associations and 

a comprehensive description of non-metabolic reactions, as those in the subsystems of 

Table 3.1b. In order to explore all the characteristics of this model, a general overview 

is provided in the following sections. 

3.1.1.1. Network architecture 

As described with more detail in §1.2.2, the core of a GENRE is the stoichiometric 

matrix S, in which each column represents a reaction and each row represents a 

compound. The stoichiometric matrix is a connectivity matrix, and it corresponds to a 

network (Palsson, 2006). To understand this, each row in the matrix should be thought 

as a node of the network. Namely, a certain compound can be produced or consumed by 

one or more reactions, and the type and number of reactions are given by the non-null 

entries in the corresponding row. On the other hand, each column should be thought as a 

link of the network. That is, a certain reaction relates two or more compounds, and the 

type and number of compounds are given by the non-null entries in the corresponding 

column.  

Each column identifies univocally a reaction, and a comprehensive list of all reactions 

and their corresponding entry in the matrix is always provided in any GENREs, 

included iRC1080. It should be noted that all the possible reactions are incorporated in 

the matrix S. So, even non-metabolic reactions, such as exchange reactions, as well as 

fictitious reactions, such as the biomass objective function, are part of the matrix. 

Usually these reactions employ an unconventional stoichiometry to better describe their 

functions. A more detailed description of these reactions is given in §3.1.1.3. 
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Since C. reinhardtii is an eukaryote, the cell is highly compartmentalized. As a result, 

many metabolites can be present in more than one compartment at the same time. They 

can move in or out of a compartment by intracellular transport, or be secreted or 

adsorbed from the extracellular matrix by extracellular transport. Thus, in the model, to 

distinguish the same metabolite from a compartment to another an appropriate suffix is 

added to the metabolite formula (e.g. h2o[h] stands for water in chloroplast). A 

comprehensive list of suffixes used in the model is provided in Appendix B. The main 

consequence in the network modeling is that a same metabolite can be actually be 

associated to more than one row in the matrix S, depending on the compartment at 

which belongs. So, even if only 1068 unique metabolites are present in the 

reconstructed network, the actual number of rows of the stoichiometric matrix is 1707. 

In conclusion, C. reinhardtii metabolic network can be synthesized in terms of the 

stoichiometric matrix of the reactions which participate in its reconstructed metabolism. 

Given that the reconstruction comprises 1707 metabolites distributed in ten 

compartments and linked by 2190 reactions, the dimensions of the matrix S is therefore 

1707x2190. 

3.1.1.2      Geneproteinreaction associations matrix 

While many current GENREs must simulate gene deletions by constraining the flux of a 

given reaction to zero, a more correct way to proceed is to first identify the existing 

correlation between genes and reactions. This is preferable because the correlation 

between a reaction and a gene may not be linear, i.e. it is not obvious that there is a 

single gene encoding a single enzyme which carries out a single exclusive reaction. The 

maps which relate encoding genes to one or multiple reactions are called gene-protein-

reaction (GPR) associations. Examples of different types of GPR associations are shown 

in Figure 3.2. At the top level is the gene locus, at the second level is the translated 

peptide, at the third level the functional protein, and at the bottom level is the reaction. 

For instance, succinate dehydrogenase (Sdh) is an example of promiscuous enzyme, 

which means that it carries out more than one reaction, namely two. Four gene locus 

encode four different peptides, and all these gene products are needed for the functional 

enzyme Sdh. Sdh, in turns, carries out two different reactions: thus a simulation of gene 

deletion in which only one of the two reaction fluxes is constrained to zero omits to take 

in account that also the second reaction flux is unfeasible. D-Xylose ABC Transporter is 

an example of reaction which is carried out by a protein complex. This complex is 

formed by subunits each individually encoded by a different gene. Finally, 

glyceraldehyde 3-phosphate dehydrogenase is an example of a reaction which can be  
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carried out by two independent proteins (GapA and GapC). GapA and GapC are thus 

isoenzymes and they are encoded starting from different gene loci.    

Figure 3.2. Examples of GPR associations. On top succinate dehydrogenase, which 

displays a so called promiscuous enzyme. On the middle, D-Xylose ABC Transporter, 

which is carried out by a protein complex. On the  bottom, glyceraldehyde 3-phosphate 

dehydrogenase, which is carried out by two different isoenzymes. Retrieved from Reed 

et al., 2003.

GPR associations are provided in the iRC1080 model in terms of a GPR matrix, in 

which each row corresponds to a gene locus, while each column represents a reaction. 

Thus in order to perform a gene deletion simulation, the procedure will rather take into 

account all the consequences in the network by using the GPR matrix as guidance.  

3.1.1.3 Non metabolic reactions 

Non-metabolic reactions can be divided in four categories: transport reactions, exchange 

reactions, prism reactions and the objective function. The latter will be discussed with 

more detail in §3.1.1.4. 
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Transport reactions are available for those metabolites which are known to move from a 

certain compartment to another. The stoichiometry of these reactions is always 1:1, 

reflecting the fact that no actual reaction is occurring. To successfully describe the 

transport of metabolite X from compartment [a] to compartment [b], the transport 

reaction is modeled as: 

This type of transport reflects the physics of passive transport. To simulate active 

transport other metabolites can be part of the reaction (3.1), depending on whether the 

active transport is primary (i.e., it employs chemical energy in form of ATP) or 

secondary (i.e., it exploits electrochemical gradients induced by other metabolites).  

Exchange reactions simulate metabolite uptake and secretion from/to the extracellular 

matrix. The former metabolites are usually the substrates (i.e. nutrients) while the latter 

are known cellular secondary products (for example, acetate). These reactions are 

inherently unbalanced. The uptake/secretion of metabolite X from the extracellular 

environment is modeled as: 

If the flux of reaction (3.2) is positive then the metabolite is secreted by the cell. Vice 

versa, the metabolite is absorbed. Exchange reactions are essential to give physical 

dimensions to the fluxes, as these values are usually easy to obtain experimentally. 

Generally, fluxes are expressed in terms of mmol gDW
-1 h-1.  Given an objective function 

to optimize, say growth, which is known to reproduce the actual behavior of the cell, 

usually just one or few metabolites are limiting to achieve that optimum state. For 

example glucose uptake is the limiting step for E. coli growth on aerobic rich medium. 

Thus, by constraining the uptake flux of the limiting nutrient to assume an 

experimentally determined value, quantitative results for growth flux can be produced 

by the model (Varma and Palsson, 1994). 

Prism reactions are a novel way of describing photons acquisition by the cell, 

introduced in the iRC1080 model for the first time. They can be thus seen as a 

subcategory of exchange reactions. Spectral decomposition has been studied for several 

light sources, taking in account both effective light spectral ranges and biomass yield on 

light. In this fashion, it is possible to set the photon flux of a specific light source, in 

terms of µmol m-2 s-1. Successively, the actual absorption of a particular range of 

photons wavelength is implemented in the model in terms of stoichiometric coefficients, 

which vary according to assumed conversion efficiency. Finally, only photons having 

X[a] -> X[b] (3.1)

X[e] ->  (3.2)
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an active interval of wavelengths can carry out light-driven reactions, whereas all the 

other ranges are reflected. More details on the derivation of prism reactions are given in 

Supplemental Text 1, taken from Chang et al., 2011. An example of prism reaction is 

equation (3.3) which represents the spectral decomposition of solar light (lithosphere). 

Equation (3.3) states that each unit flux of photons entering the system is decomposed 

along the wavelength bandwidth spanning from 298 nm to 680 nm. The actual 

absorption for each class of photons in terms of flux is equal to its stoichiometric 

coefficient. Note that whether each class of photons will display in reality a non-zero 

flux depends on the simulation constraints. It is expected that photons in the violet/blue 

and red wavelength will always be used in growth on light, as they drive reactions of 

photosystems complex I & II. 

3.1.1.4 The objective function 

The objective function is a key requirement in FBA as it states what the microorganism 

is trying to do in a given environment. An appropriate objective function is thus 

fundamental to predict a functional state of metabolism which is physiologically 

realistic (Feist and Palsson, 2010). The cumulative data over time have suggested that in 

nutritionally rich and nutritionally scarce environments optimal biomass yield or growth 

rates are meaningful objective functions. It is assumed that a maximal growth rate 

phenotype is likely to occur after adaptive evolution or prolonged laboratory 

experimentation. Thus, as indicated by Chang et al. in their paper on iRC1080, a 

biomass objective function is suitable even for the case of C. reinhardtii. However, this 

rationale might not be realistic in elementally limited environments (Feist and Palsson, 

2010).  

Three objective functions are available in the iRC1080 model to account for 

autotrophic, heterotrophic and mixotrophic growth conditions. The biomass formation 

equations were derived according to previously reported methods (Chavali et al, 2008; 

Foster et al, 2003). These equations encompass all precursors necessary for C. 

reinhardtii to grow in a given condition. The classes of precursors included in the BOF 

are proteins, DNA, RNA, carbohydrates, fatty acids, glycerol, lipids, chlorophylls, and 

photonVis[e] -> + 0.000043 photon298[c]   + 0.088253 photon437[u]  

                           + 0.187391 photon438[u]  + 0.114958 photon450[h]  

                           + 0.195815 photon490[s]   + 0.185664 photon646[h]  

                           + 0.083616 photon673[u]   + 0.094405 photon680[u] 

(3.3)
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xanthophylls. Stoichiometric coefficients for each of these metabolites are estimated 

based on their proportion in a unit of dry weight biomass. The coefficients are then 

normalized to result in a mass unit of biomass. The complete list of precursors and 

coefficients for the three biomass equations is provided in Supplementary Table S9, 

Chang et al., 2011. 

The biomass formation equation also incorporates a model-based value of growth 

associated ATP maintenance (Boyle and Morgan, 2009). This value, abbreviated as 

GAM, accounts for the energy necessary to replicate a cell, in the form of an ATP 

hydrolysis reaction: 1 ATP + 1 H2O  1 ADP + 1 Pi + 1H+ (Thiele and Palsson, 2010). 

Growth associated ATP maintenance was estimated to be of 29.89 mmolATP gDW
-1. In 

contrast with GAM, non-growth associated ATP maintenance, or NGAM, is the 

supposed energy (in the form of ATP hydrolysis reaction) necessary to maintain a cell. 

3.1.1.5       Constraints 

The constraints inherently incorporated in iRC1080 can be distinguished in 

experimentally derived constraints and in thermodynamic constraints. Experimentally 

derived constraints include the above mentioned (§3.1.1.4) values for GAM and 

NGAM, effective incident photon flux values for all reported light sources, maximum 

starch degradation rate in both dark/light environment, and maximum nutrient uptake. A 

complete list of these values is available in Supplementary Table S6, Chang et al., 2011. 

Notably, the model includes an experimental validation for maximum CO2 uptake rate 

(-11.16 mmol gDW
-1 h-1) and maximum O2 photo-evolution rate (8.28 mmol gDW

-1 h-1), 

that is oxygen produced via photosynthesis but not used for any metabolic functions 

within the cell, which diffuses out of the cell. On the other hand, thermodynamic 

constraints state whether a reaction is irreversible or not. This is based on biochemical 

knowledge rather than by a systematic evaluation of the thermodynamic state of the cell. 

In the model, if a reaction is irreversible, either the upper or the lower bound is set to 

zero (depending on the reaction direction).  

A proper implementation of the constraints is essential to provide high quality 

predictions. In the following section, it is addressed the question on how the constraints 

can affect and modify the model for successive simulations.  

3.1.2 Setting up the iRC1080 model 

In order to perform FBA, the model must be set up properly, according to the simulation 

objectives. As regards iRC1080 model, three standard conditions can be simulated, 

autotrophic, heterotrophic and mixotrophic. Unless stated, all simulations carried out in 
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this work concern autotrophic conditions. If a simulation required some modifications in 

the autotrophic standard conditions, it will be specified in the input list. Medium 

conditions, specific cell constraints and the objective function are three important issues 

to address while setting up any genome-based metabolic network model. 

3.1.2.1 Medium conditions 

In FBA, specific availability of a certain nutrient in the growth medium is imposed 

through constraints. As these compounds are external with respect to the cell, in order to 

be incorporated in the metabolic network, an exchange reaction (see §3.1.1.2) must be 

added. A lower or upper bound on that reaction must then be decided upon the 

knowledge possessed about the medium and the organism capabilities. According to the 

fact that nutrients are usually absorbed by the cell, in order to obtain a positive flux in 

the exchange reaction the nutrient is commonly implemented as a product. However in 

the iRC1080 model all exchange reactions have the nutrients as a substrate, thus a 

negative flux actually means uptake of the compound from the medium. By setting the 

lower bound to be minus infinite, the model allows unlimited availability of the nutrient 

in terms of flux, i.e. it can be incorporated in the metabolic network in any amount. On 

the other hand, if the lower bound is set to zero, the nutrient is absent from the medium, 

i.e. it cannot be incorporated in the metabolic network at all.  

Essential compounds for growth comprise a carbon source, a nitrogen source, a 

phosphate source, a sulfur source, oxygen, water and metals. As regards C. reinhardtii, 

the carbon source can be carbon dioxide (CO2) in autotrophic conditions, acetate (Ac, 

CH3CO2
−) in heterotrophic or both of them in mixotrophic ones. Ammonia (NH3) and 

nitrates (NO−3) are popular nitrogen sources, inorganic phosphate (Pi, PO3
−4) provides 

the phosphate source, while sulfur is supplemented via sulfate (SO2
−4). Among the 

metals accounted in the model for cell growth are magnesium (Mg2+), iron (Fe2+, Fe3+) 

and sodium (Na+). If all nutrients are present in the medium, it is referred to as rich 

medium. Experimental data are usually preferable to predict the maximum amount of a 

nutrient that can be absorbed in a certain time by the cell, i.e. the exchange flux. Chang 

et al. suggested the values in Table 3.2 as lower bounds for the model, and these values 

are default in iRC1080 (as in §3.1.1.5). Again, it is important to stress that depending on 

the magnitude of these values, physical dimensions can be assigned to fluxes. 

A fine in silico description of available nutrients in the medium is crucial to reproduce 

or compare experimental data correctly. As regards C. reinhardtii, most experiments are 

carried in so called TAP medium (Gorman and Levine, 1965) or HS medium (Bonnel 

and Raby, 1958), for heterotrophic and autotrophic conditions respectively. The main 
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difference is the presence of acetate in the former, and its absence in the latter. By fixing 

constraints as in Table 3.2, either a TAP medium or a HS medium can be fairly 

reproduced. 

Table 3.2. Maximum uptake rate of nutrients in iRC1080. 

Exchange reaction Reaction 
in iRC1080 

Lower bound 
[mmol gDW-1 h-1]

Notes 

Maximum proton uptake rate EX_h(e) -10  

Maximum water uptake rate EX_h2o(e) -10  

Maximum phosphate uptake rate EX_pi(e) -10  

Maximum ammonia uptake rate EX_nh4(e) -10 Either ammonia or 
nitrate are set non-zero at 
each time Maximum nitrate uptake rate EX_no3(e) -10 

Maximum sulfate uptake rate EX_so4(e) -10  

Maximum ferrous ion uptake rate EX_fe2(e) -10  

Maximum ferric ion uptake rate EX_fe3(e) -10  

Maximum magnesium ion uptake rate EX_mg2(e) -10  

Maximum sodium ion uptake rate EX_na1(e) -10  

Maximum oxygen uptake rate EX_o2(e) -10  

Maximum carbon dioxide uptake rate EX_co2(e) -11.16 Only in autotrophic 
conditions 

Maximum acetate uptake rate EX_ac(e) -10 Only in heterotrophic 
conditions 

3.1.2.2 Specific cell constraints 

Specific cell constraints are experimental constraints (§3.1.1.5) that better characterize 

cell metabolism by setting a bound to otherwise unbounded fluxes. This approach 

compensates for the lack of a regulatory network and typically involves processes 

occurring within the cell that saturate for reasons which go beyond the mass balance 

constraint. As regards specific cell constraints implemented in iRC1080, Chang et al.

suggested the bounds in Table 3.3.

3.1.2.3 Tailored objective functions 

In iRC1080, the three objective functions are included. Unless stated diversely, the 

autotrophic BOF is set as default. In Appendix C.1 and C.2, a table which reports the 

necessary precursors to form 1 g of dry weight biomass of C. reinhardtii in that 

condition is given. The stoichiometric coefficients in the BOF are calculated so to 

reproduce the correct proportion of each precursor in a mass unit of C. reinhardtii 

biomass, and thus they can be thought as the amount in mmol of that precursor which 

make up in 1 g of dry weight; in other terms, they have physical dimensions  [mmol 

gDW
-1]. With respect to the above cited paper values, stoichiometric coefficients for 
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RNA precursors had to be reassigned (according to data provided by Boyle and Morgan, 

2009), in order to normalize all coefficients to 1 g. 

Table 3.3 – Specific cell constraints for some cellular processes implemented in iRC1080. 

Key: Pi – inorganic phosphate; Starch – 300 repeat units of amylase (80) and amylopectin (220); 

g1p – Glucose 1 phosphate; glc-A – α-glucose; glc-B – β-glucose; Photon-438- a photon in the 

violet/blue region, between 378 nm and 482 nm; Photon-673- a photon in the red region, between 

659 nm and 684 nm; pq – Oxidized plastiquinone; pqh2 – Reduced plastiquinone.

Cellular process Reaction 
in iRC1080 

Lower Upper Description 
(mmol gDW

-1 h-1) 
Non-growth 
associated ATP 
maintenance 

ATP + H2O -> 
ADP + Pi + H+ 

0.183 0.183 Energy (in the form of ATP 
hydrolysis reaction) necessary 
to maintain a cell. 

Starch degradation 
of glc-A (Dark) 

49 H2O + 250 Pi + 
Starch     
-> 250 g1p + 50 
glc-A 

0 1.15 * 10-4 | 
1.72 * 10-4

Degradation of starch by 
phosphorylase, amylase, 
dextrinase, maltase 
(chloroplast), 1:5 glc-A:g1p in 
dark aerobic | anaerobic 
conditions. 

Starch degradation 
of glc-B (Dark) 

49 H2O + 250 Pi + 
Starch     
-> 250 g1p + 50 
glc-B 

0 1.15 * 10-4 | 
1.72 * 10-4

Degradation of starch by 
phosphorylase, amylase, 
dextrinase, maltase 
(chloroplast), 1:5 glc-B:g1p in 
dark aerobic | anaerobic 
conditions. 

Starch degradation 
of glc-A (Light) 

74 H2O + 225 Pi + 
Starch     
-> 225 g1p + 75 
glc-B 

0 4.35 * 10-5 | 
6.53* 10-5 

Degradation of starch by 
phosphorylase, amylase, 
dextrinase, maltase 
(chloroplast), 1:3 glc-A:g1p in 
light aerobic | anaerobic 
conditions. 

Starch degradation 
of glc-B (Light) 

74 H2O + 225 Pi + 
Starch     
-> 225 g1p + 75 
glc-B 

0 4.35 * 10-5 | 
6.53* 10-5

Degradation of starch by 
phosphorylase, amylase, 
dextrinase, maltase 
(chloroplast), 1:3 glc-B:g1p in 
light aerobic | anaerobic 
conditions. 

Maximum oxygen 
photoevolution 

2 H2O + 4 Photon-
438 + 2 pq -> O2,pe

+ 2 pqh2 

2 H2O + 4 Photon-
673 + 2 pq -> O2,pe

+ 2 pqh2 

0 8.28 Maximum production of 
oxygen via photosynthesis as 
a result of the two reactions. 

3.1.2.4 Default settings: the standard configuration

If iRC1080 is set up taking in account all the previous considerations with respect to 

medium conditions (with ammonia taken as the default nitrogen source), specific cell 

constraints and the normalized autotrophic biomass objective function, it is said to be in 

standard configuration. While reproducing simulation results, it must be made sure that 
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only uptake reactions which refer to a rich yet autotrophic medium are left unbounded 

(unless diversely specified in the simulation data). This means that all nutrients reported 

to be part of a rich medium are available for the cell, except for organic carbon sources. 

For instance, default settings of iRC1080 provide starch in excess from the 

environment, but this compound is not naturally present in a standard medium and thus 

it should be regarded as a supplementary nutrient. Note that if set in standard 

configuration, only the selected light source and its photon flux must be specified. This 

choice follows from the fact that light, as it will be explained in detail in the following 

section, is the limiting uptake flux for growth in autotrophic conditions. 

3.2 Robustness analysis 

Robustness analysis is the study of how an optimal state of a mathematical model 

output is sensitive, qualitatively or quantitatively, to different sources of variation in the 

input of the model. It can used to assess the limiting nutrient in GENREs. In this case, 

the mathematical model is the genome-based metabolic reconstruction of C. reinhardtii, 

namely iRC1080. The inputs are the nutrient fluxes, while the outputs are the growth 

rate and eventual by-product formation rate. For this particular microorganism, no by-

products are expected to be secreted besides oxygen produced via photosynthesis. 

Therefore the growth rate is the only output for which robustness analysis has been 

carried out. The protocol followed to perform robustness analysis is described in 

Palsson, 2006 (§16.3, pg 213), with some modifications. Briefly, FBA is performed at 

each step by constraining the input flux to assume values up to an arbitrary constant, 

which is an upper bound for the input flux. The upper bound is incremented at each step 

until the whole span of values allowed for the input flux is covered. As a result, optimal 

growth rate is calculated by assuming that a single nutrient at each step is limited to a 

certain amount, so that the model can absorb at most that quantity (but it is not forced to 

take up that quantity, as in standard robustness analysis). By performing robustness 

analysis, it is possible to infer in which interval a nutrient is limiting for growth, when 

all other compounds are present in excess. Results were obtained by running the code 

robustnessAnalysis.m, available within the COBRA Toolbox (Becker et al., 

2007), which operates in MATLAB™, using the iRC1080 model in the standard 

configuration. Results are displayed in Figure 3.3. 

While performing robustness analysis, only major sources were considered as input 

flux, namely water, ammonium, oxygen, carbon dioxide and solar light (lithosphere). 

Phosphate and sulfate were neglected to facilitate readability, as they both proved to be 

poorly limiting (data not shown). Two main results may be inferred from robustness 

analysis. First, in autotrophic conditions, light is by far the most limiting nutrient. 



35 

Secondly, even in light saturation conditions (above Фsat = 183.5 µmol m-2 s-1) and rich 

medium, growth rate is limited to a maximum value of sat = 0.1563 h-1. The former 

result is a renowned behavior of microalgae, and nutrients often play a minor role in 

limiting growth (Zonneveld, 1998). The latter can be explained in terms of oxygen 

photo-evolution saturation. It should be recalled that the amount of oxygen produced via 

photosynthesis (and in particular by the PSII reaction) is constrained to an upper bound. 

This constraint has been introduced by Chang et al. since photosynthetically evolved O2

cannot effectively drive other cellular processes and mostly diffuses out of the cell. 

Indeed, too much accumulation of O2 formed via photosynthesis leads to photo-

oxidative damage in vivo. Thus in silico, if light is provided in excess, 

photosynthetically evolved O2 accomplishes a maximum production after which photons 

in excess are discarded by the simulation as they were useless and consequently 

reflected by the cell.

Figure 3.3. Robustness analysis for iRC1080 model of C. reinhardtii set in standard 

conditions. Each line represents a different input flux (i.e. nutrient), spanning within its 

range of applicability. Only major nutrients were assessed.  

Key:      Water      Ammonium      Oxygen        Carbon dioxide     Solar light (lithosphere).

3.3 Flux balance analysis 

Flux balance analysis has been carried out for iRC1080 model set in standard 

configuration. Solar light (lithosphere) was chosen as light source and its photon flux 

has been varied from 0 to 300 µmol m-2 s-1. Flux balance analysis was performed using 

the code optimizeCbmodel.m, available within the COBRA Toolbox, which 

operates in MATLAB™. In Figure 3.4, calculated specific growth rates (solid line) are 
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compared with experimental values, retrieved from the papers of Li et al. (2010), 

Geoffroy et al. (2007), Boyle and Morgan (2009) and Janssen et al. (1999). These 

values are collected in Table 3.4. 

Table 3.4 – Experimental specific growth rates of C. reinhardtii grown in HS medium. 

Photon flux [µmol m-2 s-1] Specific growth rate [h-1] Reference 

240 0.16  0.02 Janssen et al.,  1999 

100 0.092  0.008 Geoffroy et al., 2007 

65 0.059  0.001 Boyle and Morgan, 2009 

40 0.024 Li et al., 2010 

FBA of iRC1080 proved a striking ability to reproduce experimental results. It should 

be noted that Janssen et al. (1999) stated their intention to calculate specific growth rate 

of C. reinhardtii in light saturation conditions. The model not only reproduces growth 

saturation due to the constraint imposed on the maximum amount of photosynthetically 

evolved oxygen, but it also predicts a value for specific growth rate which is very close 

to the experiments and, in any case, within experimental error. 

Figure 3.4. Flux balance analysis of iRC1080 in standard conditions. Solid line represents the 

calculated specific growth rates. Dots represent experimental values as specified in Table 3.3.

3.4 Conclusions 

Both robustness analysis and flux balance analysis served mainly to test the capability 

of iRC1080 to correctly represent the flux distribution of the metabolic network of C. 
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reinhardtii within the conditions given in §3.1.2. Robustness analysis detected light 

photon flux as the most limiting nutrient and it identified two regions for growth, light-

limited and photosynthetically evolved O2-limited. Both results are experimentally 

confirmed. On the other hand, flux balance analysis reproduced, within experimental 

error, C. reinhardtii experimental specific growth rate at different photon fluxes. In 

conclusion, it can be stated that the model is predictive in standard configuration. 

However, it should be noted that the predictability of the model relies heavily on the 

constraints imposed in §3.1.2. These constraints turn out to be essential to cope for the 

deficiency of a regulatory network. The only FBA fundamental assumptions, namely 

mass balance, steady state and optimization of a cellular function, are not sufficient to 

provide a realistic flux distribution of the metabolic network. Indeed, some 

experimental measures, with major emphasis on the values of Table 3.3 (and in 

particular the maximum rate of photo-evolved oxygen) and the biomass objective 

function as in Appendix C, were decisive to run reasonable simulations. 
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Chapter 4 

Photobioreactor design for biofuel 
precursors production via C. reinhardtii

In conceptual design, a kinetic model normally is not available (Douglas, 1988). 

Generally, the cost associated with the reactor is not as important as the product cost 

distribution, so that a mere approximation is usually sufficient for preliminary cost 

estimation. This is particularly true for bulk chemicals production. However, biotech 

industry often requires residence time longer than standard in bulk chemical plants. 

Moreover, as regards biofuel precursors’ production by microalgae, Radakovits et al. 

(2010a) noted that even modest improvements in conversion efficiency would 

drastically reduce the costs associated.  

In this chapter, the concepts introduced in §2.1 will be applied for a preliminary design 

of a photobioreactor to produce triacylglicerols (TAGs) via C. reinhardtii. Since the 

goal of the photobioreactor is to grow biomass and at the same time to convert as much 

TAGs as possible, essential information about microalgae ability to accumulate TAGs 

must be collected and investigated in detail. Thus, in the following sections, an 

exhaustive description of the biochemistry underlying TAGs over-accumulation in C. 

reinhardtii will be given. Next, key parameters for photobioreactor design will be 

searched. Finally, some recommendations to improve prediction accuracy will be 

identified.  

4.1 Introduction to reactor design for TAG bio-production  

In biodiesel precursors’ industrial production, the fundamental objectives for the reactor 

are both biomass growth and TAGs accumulation by C. reinhardtii. To simulate a 

reactor according to the principles in §2.1, a clear definition of cell functional state to 

achieve a precise goal must be given, in order to select both medium conditions and the 

objective function properly. As regards biomass growth, given the results of robustness 

analysis (§3.2) and flux balance analysis (§3.3), rich medium and light saturation 

determine a maximum specific growth rate. The prediction, obtained by setting the 

autotrophic BOF as objective function, was verified experimentally. However, TAG 

over-production in microalgae is still poorly understood (Work et al, 2010). In the 

following section, TAG accumulation will be better characterized for C. reinhardtii and 

this second goal will turn out to be conflicting with the previous one. 
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4.2 Triacylglycerols production by C. reinhardtii

Triacylglycerols (TAGs), also referred as neutral lipids or simply oil, occur naturally in 

microalgae biomass as fundamental constituents of the cell. They may be precursors of 

biodiesel, as they can be transesterificated in the presence of alcohols to methyl/ethyl-

esthers. The way and the conditions under which microalgae over-accumulate neutral 

lipids are explored in the following sections.  

4.2.1 Factors affecting TAGs content in microalgae 

Even if TAGs are naturally present in microalgae, stored in cytosolic lipid bodies as a 

supplemental source of energy for the cell, in physiological conditions their content is 

very low, about 2-3%w of total dry weight (Li et al., 2010). Neutral lipids start to be 

accumulated in stressed conditions. Though the occurrence and the extent to which 

TAGs are produced seem to be species/strain-specific, some common factors affect 

TAGs accumulation in several different microalgae. Among all, nitrogen deprivation 

displayed a critical general trend towards TAGs overproduction in numerous species. 

Green microalgae cultivated under nitrogen-depleted conditions showed an average 

increase of total lipid content from 25.5% to 45.7% of biomass dry weight (Hu et al., 

2008). Other causes were found to induce TAGs accumulation in some species, like 

high light intensity, stationary phase of growth and deficiency of other nutrients, for 

example phosphorus and sulfur. It is important to notice that if nitrogen is absent from 

the medium, biomass cannot grow at all, since fundamental components of the cell can 

no more be synthesized.   

The reasons beyond microalgae behavior under stressed conditions are still debated. 

Apart from the evident physiological role of TAGs in serving as a carbon and energy 

resource for the cell, the TAG synthesis pathway may offer other significant advantages 

against stress. For instance, excess electrons derived from the over-reduced electron 

transport chain under high light or other stress conditions can damage cell 

macromolecules by inducing over-production of reactive oxygen species. Thus, the de 

novo TAG synthesis pathway would serve as an electron sink, since it consumes 

approximately 24 NADPH of the electron transport chain, more than any other 

macromolecule synthesis pathway within the cell metabolism. Other roles of TAG 

synthesis pathway in the excess light prevention, such as carotenoids over-production 

along a pathway which is coupled with TAG synthesis, have been reviewed in the past. 

4.2.2 Experimental profile of TAG accumulation in C. reinhardtii 

Several studies have confirmed that under stress conditions some strains of C. 

reinhardtii accumulate TAGs (Siaut et al., 2011, Work et al., 2010, Wang et al., 2009, 
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Li et al., 2010, James et al., 2010). Most of them pointed out that over-production of 

TAGs occur in response to nitrogen deficiency. It is argued that starch synthesis is 

competitive with TAGs synthesis under these conditions, though it has been recently 

proved that no significant correlation can be assessed between oil and starch content in 

wild-type mutants, deprived of the starch synthesis pathway, and complemented strains 

(Siaut et al., 2011). In addition, the same study found a general trend in oil 

accumulation, with maximum production between 2 and 3 days of nitrogen deficiency 

and achievement of a plateau after 5 days. This trend is more or less found in the above 

cited papers as well. In Figure 4.1, TAG content in time at quasi-saturated light intensity 

is reported, according to the works of Siaut et al. (2011). It should be noted that C. 

reinhardtii were grown in mixotrophic conditions, with acetate present in the medium. 

Maximum lipid accumulation rate has been interpolated and resulted  µ ,  0.088 

g gDW
-1 h-1. 

Figure 4.1. TAG content time profile in C. reinhardtii grown at 150 µmol m
-2 

s
-1

 in TAP medium 

deprived of nitrogen sources. Data retrieved from Siaut et al., 2011.

4.3 Photobioreactor design principles 

Since TAGs accumulation and biomass growth both depend on nitrogen availability on 

conflicting basis, the photobioreactor (PBR) should provide enough nitrogen to enhance 

C. reinhardtii duplication but it should deplete it on time to allow TAGs to be over-

produced. In other terms, the PBR should be thought as divided in two parts. Initially a 

given amount nitrogen must be available to consent biomass growth. This section will 

be referred as biomass stage. When nitrogen is depleted, biomass will stop growing and 

conversely TAGs will start to accumulate. This section will be referred as TAGs stage. 
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It is clear that the higher the initial amount of nitrogen, the higher the biomass yield but, 

on the other hand, the residence time will increase. Thus a trade-off between 

productivity and reactor size arises. It is convenient to fix the nitrogen initial 

concentration, CN,0, as a key parameter upon which productivity and residence time 

depend. A pictorial view of the proposed PBR is depicted in Figure 4.2. 

Figure 4.2. A pictorial proposed scheme for the PBR, with concentration profiles for biomass 

(green solid line) and TAGs (black solid line). Nutrients (other than nitrogen) and light are 

provided in excess and are displayed by the arrows above the tube. Nitrogen and biomass 

enter as input in a given amount, CN,0 and CX,0 respectively. As output, biomass (CX,f) exits 

from the PBR with a certain amount of TAGs accumulated. 

4.3.1 Biomass stage simulation 

In the biomass stage, according to the robustness analysis results, growth is limited by 

the maximum amount of photo-synthetically evolved oxygen (§3.3). Thus, in order to 

accomplish maximum growth rate, rich medium and light saturation are imposed 

throughout the simulation. The objective function is the autotrophic biomass objective 

function, as it fairly represents C. reinhardtii functional state in physiological 

conditions, which is the case. According to the new approach introduced in §2.1.2, in 

the infinitesimal interval d  each equation of the system (2.10) is solved by updating the 

initial conditions to the last available result for that concentration. Since nitrogen 

concentration is a key parameter, at the first iteration step the equation for this substrate 

is assigned an initial value equal to CN,0. All other substrates are neglected given the 

assumption of rich medium. As soon as nitrogen is depleted, i.e. by solving the 

corresponding mass balance equation its concentration becomes negative, the biomass 

stage simulation is stopped and the PBR enters the TAGs stage. 

CN,0 

CX,0 

CX,f 

     Light     Nutrients
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4.3.2 TAGs stage simulation 

In the TAGs stage, nitrogen is depleted and according to microalgae response to this 

kind of stress, triacylglycerols begin to accumulate. In contrast with the previous stage, 

no functional state for the cell is well defined. The question is how to find an objective 

function which can represent it correctly. Apparently, TAGs accumulation may be the 

default pathways in algae under these environmental conditions (Hu et al., 2008). 

Moreover, some studies suggest that neutral lipids rather than total lipid start to 

accumulate in response to nitrogen deprivation (Li et al., 2010, Siaut et al., 2011). If so, 

a tentative objective function could be the maximization of TAGs accumulation rate. A 

similar approach has already been investigated, to determine the biochemical production 

capabilities of particular cell (Palsson, 2006). In absence of a more comprehensive 

knowledge of the regulatory mechanisms which underlie C. reinhardtii response to 

nitrogen deficiency, the assumption of maximization of TAGs accumulation is adopted 

to simulate the TAGs stage. 

To build such objective function, a fictitious reaction must be added, dubbed TAGs 

objective function. This has been derived from the autotrophic BOF by eliminating all 

non-TAGs metabolites. The ratios of each TAG in the BOF have been preserved, but 

coefficients have been normalized in order to give 1 g of TAGs per unit of dry weight 

biomass. In this fashion, the resulting flux can be compared with experimental results 

straightforwardly, since the latter data are usually given in percentage of dry weight on 

mass basis. A table with a complete list of the precursors which make up the TAGs 

objective function and the corresponding stoichiometric coefficient is presented in 

Appendix C.3. 

The TAGs stage simulation relies heavily on the objective function chosen to best 

represent the metabolic flux distribution of C. reinhardtii after nitrogen depletion. To 

test whether simulation results are compatible with reality, in silico TAGs accumulation 

rate has been calculated both in heterotrophic and autotrophic conditions. Flux balance 

analysis has been carried out for iRC1080 model in standard configuration using the 

code optimizeCbmodel.m, available within the COBRA Toolbox, which operates 

in MATLAB™. The objective function was switched from the autotrophic BOF to the 

TAGs objective function before running the program. In silico heterotrophic conditions 

were achieved by setting the maximum acetate uptake rate to 10 mmol gDW
-1 h-1 and, 

conversely, the maximum carbon dioxide uptake rate to zero, as suggested by Table 3.2. 

In both autotrophic and heterotrophic simulations, TAGs accumulation rate has been left 

parametric with solar light (lithosphere), whose flux ranged from Фmin = 0 µmol m-2 s-1 
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to Фmax = 200 µmol m-2 s-1. Results are displayed in Figure 4.3 and compared with the 

experimental value retrieved from Siaut et al. (see §4.2.2). 

Figure 4.3. TAGs accumulation rate as calculated in silico with iRC1080 model in both 

heterotrophic (dashed line) and autotrophic (solid line) conditions, using TAGs objective 
function as the optimized cellular function under nitrogen deprivation. The experimental 

data retrieved by Siaut et al. has been reported for comparison (red dot).

It should be noted that the value obtained from the work of Siaut et al. refers to 

heterotrophic conditions, i.e. C. reinhardtii was grown in TAP medium. Therefore 

TAGs accumulation rate as predicted by in silico simulation using TAGs objective 

function is clearly overestimated. Several reasons may explain this result. First, neutral 

lipids accumulation may not be the only cellular function optimized under stress 

conditions. As cited before, starch accumulation or other pathways may be active as 

well, leading to a carbon source distribution within cell metabolism which actually 

detours from TAGs synthesis pathway. This leads to an accumulation rate which is 

smaller. Secondly, by analyzing simulation results it can be seen that acetate uptake rate 

is always at maximum. Thus, in nitrogen deficiency conditions, either the constraint is 

poorly representative or perhaps some metabolic mechanisms regulate acetate uptake to 

preserve its immediate consumption. In both cases TAGs accumulation rate would be 

affected negatively.  

Since metabolism regulation under these conditions is still inadequately covered in 

literature, this solution for TAGs stage simulation has been chosen among other 

possible alternatives as it proved to attain a qualitative description of cell metabolism 

during nitrogen deprivation and semi-quantitative results. 
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4.4 Application of the new approach to PBR design  

The new approach has been used to solve the system of equations (2.7) for the case of a 

PBR producing TAGs via C. reinhardtii. The system has been solved separately for the 

biomass stage and the TAGs stage. Computationally, the procedure is the same but the 

objective function switches from the autotrophic BOF to the TAGs objective function as 

soon as the nitrogen concentration goes below zero. The objective of the simulation is to 

predict the residence time needed to achieve a certain productivity given an initial 

amount of nitrogen. The total consumption of other nutrients, such as carbon dioxide or 

oxygen, has been estimated as well.  

4.4.1 Simulating a PBR 

The simulation was performed in MATLAB™, using iRC1080 model set in standard 

configuration (thus in autotrophic conditions), with some modifications. Taking the 

system of equations (2.10) as a reference, at each iteration step this set of equations 

must be solved. For the purposes of our analysis, the substrate S is the nitrogen source 

(i.e. ammonia) and the product P are TAGs. As regards nutrients, the initial conditions 

for all input fluxes other than ammonia are left unchanged throughout the simulation. In 

this fashion, at each step FBA is not constrained by their amounts but eventually by the 

maximum uptake rate as for Table 3.2. Similarly, solar light (lithosphere) is used at 

saturation conditions for the microalgae, i.e. Ф = 200 µmol m-2 s-1. On the other hand, 

the maximum ammonia uptake rate is initially imposed to be equal to CN,0 and 

successively updated at each step by solving the corresponding equation in (2.10). By 

doing so, FBA can be constrained by the increasingly lack of nitrogen from the medium.  

As regards the choice of the solving method, dynamic FBA was preferred to numerical 

schemes in the following simulations. A comparison with results from the latter 

methods is provided in Appendix D. It is interesting to point out that results via dFBA 

are slightly more accurate than 1st order Euler method, but, on the other hand, Crank-

Nicolson method seems to outperform dFBA.   

Dynamic FBA prescribes to solve system (2.10) rather than (2.9). As described in §2.1, 

flux balance analysis must be run at each time step. FBA was performed using the code 

optimizeCbmodel.m, available within the COBRA Toolbox. At the first iteration, 

CX,0 was set equal to 0.10 gDW L-1 and CP,0 = 0.12568 gTAGs gDW
-1. A time step was 

selected to be d  = 1 h, to limit the computation time required. Once the flux 

distribution was obtained with FBA, the value of both BOF flux (vX), TAGs objective 

function (vP) and nitrate exchange flux (vS) were extracted and used to solve the 

corresponding equations in (2.10). The output values for the concentration of substrate 

(CS), product (CP) and biomass (CX) were successively recycled in the next time step as 
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initial values (CS,0, CP,0, CX,0, respectively). When the algorithm found that the substrate 

concentration (CS) was no more positive, the objective function for FBA switched from 

BOF to TAGs objective function and the procedure was repeated until TAGs 

concentration reached a reasonable amount equal to CP,f = 0.60 gTAGs gDW
-1. In Figure 

4.4, concentration profile for substrate (red), product (green) and biomass (black) are 

shown in function of residence time, as a result of the above described procedure by 

setting CN,0 = 4.0 mmol L-1. 

Figure 4.4. Concentration profile for ammonia (red line), biomass (green line) and TAGs (black 

line). Physical dimensions for ammonia concentration is mmol L
-1

, for biomass is gDW L
-1

and for 

TAGs is gTAGs gDW. Initial nitrogen concentration is CN,0 = 4.0 mmol L
-1

and d  = 1h (as indicated 

by the vertical black dotted lines) 

4.4.2 TAGs outlet concentration and residence time 

As introduced in §4.3, both outlet concentration Y [gTAGs L
-1] and residence time  [h] 

(from which reactor size can be deduced) depend on nitrogen initial concentration CN,0 

on opposite basis. Outlet concentration is defined as the mass amount of TAGs per unit 

of volume at the reactor exit: 

, ,                                                     (4.1) 

where CX,f  and CP,f are the biomass concentration [gDW L
-1] and TAGs concentration 

[gTAGs gDW
-1], respectively, that exit from the reactor. Thus, in order to generate a trend 

for outlet concentration vs. residence time, the above described procedure has been 

repeated for different values of CN,0. These details, along with the period required to 

deplete all available nitrogen ( Nf ) and final biomass concentration (CXf ), are reported 

in Table 4.1. In addition, Figure 4.5 displays outlet concentration (blue) and residence 
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time (green) distribution upon nitrogen initial concentration. It should be noted that 

outlet concentration varies linearly with nitrogen initial concentration, but residence 

time does not. Productivity is defined as outlet concentration per volume of reactor: 

                                                    (4.1) 

Productivity represents the amount of TAGs that can be achieved per hour in a unit 

volume of reactor. According to the simulation, its trend along with nitrogen initial 

concentration is shown in Figure 4.6. It can be inferred that productivity increases with 

a larger availability of nitrogen at the reactor inlet, since biomass will grow to a higher 

concentration, but it tends to saturate, as residence time raises as well.

Table 4.1 – Outlet concentration, residence time, time of nitrogen depletion and final biomass 

concentration are reported as a function of initial nitrogen concentration in a simulated PBR. 

Initial nitrogen 
concentration 
N0  [mmol L

-1
]

Outlet 
concentration 

Y [gTAGs L
-1

] 

Residence 
time 
  [h]

Time of nitrogen 
depletion 

Nf [h]

Final biomass 
concentration 
CXf [gDW L

-1
]

0 0.06 5.5 0.0 0.10 

4 0.52 22.4 17.0 0.87 

8 1.58 27.6 22.2 2.61 

12 1.89 28.6 23.2 3.14 

16 2.18 29.4 24.0 3.61 

20 2.63 30.4 25.0 4.36 

24 3.34 31.7 26.3 5.53 

28 3.59 32.2 26.8 5.95 

32 4.09 32.9 27.5 6.78 

36 4.33 33.2 27.8 7.17 

40 4.45 33.4 28.0 7.38 
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Figure 4.5. Outlet concentration (blue) and residence time (green) as a function of nitrogen 

initial concentration for the above simulated photobioreactor varying CN,0 from 0 mmol L-1to 

40 mmol L
-1

. 

Figure 4.6. Productivity as a function of nitrogen initial concentration for the above simulated 

photobioreactor varying CN,0 from 0 mmol L
-1

to 40 mmol L
-1

. 

Figure 4.7 is based on Figure 4.5, but it represents the relationship between outlet 

concentration and residence time, which is generally more practical in reactor design.  
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Figure 4.7. Outlet concentration as a function of residence time for the above simulated 

photobioreactor. 

4.4.3 Nutrients consumption 

Total nutrients consumption was also plotted against residence time and outlet 

concentration, in Figure 4.8 and 4.9, respectively. To evaluate the consumption of 

oxygen and carbon dioxide, the corresponding flux calculated with FBA was used to 

solve iteratively the first equation of system (2.10) at each time step. The initial 

condition for both concentrations was zero, so that at the end of the simulation the 

overall need of a certain nutrient was equal to the cumulated concentration. Oxygen 

concentration was split to assess metabolically consumed O2, by taking in account the 

uptake flux of oxygen at each time step, against photoevolved O2 (O2,pe), evaluated at 

each iteration from the secretion flux of O2,pe. As photoevolved O2 is produced, it 

assumes negative values in Figure 4.8 and 4.9. As it can be inferred by the results, 

photoevolved oxygen always exceeds the need of metabolically consumed O2, therefore 

suggesting that excess oxygen is not a key requirement for running the PBR. Such result 

has been confirmed experimentally by Heifetz et al. (2000). On the other hand, carbon 

dioxide is critical for cell viability. Figure 4.9 suggests that CO2 consumption varies 

linearly with outlet concentration of TAGs. By interpolating data, it results that: 

, 86.52                                               (4.2) 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

0 5 10 15 20 25 30 35 40

Residence time [h]



50 

where ,  is the initial concentration of carbon dioxide [mmol L-1] needed to achieve 

that outlet concentration (defined as above). The ratio is almost constant and stands for 

the amount of CO2 (in mmol) required to produce 1 g of TAGs.  

Figure 4.8. Nutrients consumption in a PBR as function of residence time. Oxygen was split into 

metabolically consumed O2 (blue squares) and photoevolved O2, which is produced and thus 

assumes negative values (orange circles). Carbon dioxide is represented by violet triangles. 

Figure 4.9. Nutrients consumption in a PBR as function of TAGs outlet concentration. Key as 

for the figure above. 

4.4.4 Predictability accuracy improvement 

In the case of TAGs production by C. reinhardtii, a critical step in PBR design was a 

realistic simulation of the TAGs stage. Though little experimental evidences are 
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available to validate a more precise value for the TAGs accumulation rate, still the in 

silico predicted rate appears to be somehow overestimated. Since nitrogen deprivation is 

the main reason for TAGs accumulation, a only partial adaptation of the cell to these 

stressed conditions could explain why during experiments microalgae have not 

optimized yet the TAGs synthesis pathway. If so, any optimization methods like FBA 

would fail in predicting a realistic flux distribution and more advanced techniques such 

as MOMA (§1.3.2) would be more appropriate. If not, a possible solution could be a 

different objective function. In this fashion, it would be allowed that microalgae under 

stress not only produce TAGs but also activate some other cellular functions. In other 

words, microalgae try to accomplish multiple goals to achieve survival. Among these, 

an often debated question in literature has been the role of starch synthesis during 

nitrogen deficiency. Siaut et al. (2011) for instance verified that C. reinhardtii strain 

cw15 after culture in nitrogen deprived media for 2 days over-accumulated both TAGs 

and starch. On the other hand, Li et al. proved that starchless BAFJ5 mutant of wild-

type reference strain cc-1690 accumulated neutral lipids 3.5 to 8 fold higher than the 

wild-type.  

To explore competition between TAGs synthesis and starch in C. reinhardtii, multi-

objective FBA has been applied. If such competition exists, it could explain a lower 

TAGs accumulation rate than previously predicted. Indeed, in the above simulated 

TAGs stage of the PBR, no starch was being synthesized while TAGs were 

accumulating (data not shown). To perform multi-objective FBA, a Pareto analysis 

approach has been used. Thus, iRC1080 model was set in standard configuration and 

FBA was applied to maximize the TAGs objective function. Solar light (lithosphere) 

was selected and its flux varied from Ф = 0 to 300 µmol m-2 s-1. For each light flux 

value, FBA has been repeated by imposing an increasing minimum value of starch 

production from vStarch = 0 to 0.3 g gDW
-1 h-1. To do so, a lower bound for the following 

reaction has been updated at each simulation step: 

300 ADPGlc H O 300 ADP 300 H  Starch1                  (4.3) 

It results a Pareto frontier which represents the maximum TAGs accumulation rate at a 

certain solar light flux given a minimum amount of starch produced (Figure 4.9). As it 

can be inferred by Figure 4.10, starch synthesis competes with TAGs accumulation at 

any level of production for the whole range of light intensity. 

1 Key: ADPGlc – ADP Glucose 
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Figure 4.10. Pareto frontier of C. reinhardtii under nitrogen deficiency conditions. At a 

certain photon flux, maximum lipid accumulation rate was estimated using FBA given a 

minimum amount of starch production. 

In saturating light conditions (Ф > 183.5 µmol m-2 s-1), TAGs accumulation rate is 

limited linearly by the increasing production rate of starch. In conclusion, Pareto 

analysis proved that the two pathways are competitive, at least metabolically speaking. 

Thus an experimental value to constrain a minimum synthesis of starch could 

significantly improve the prediction of TAGs accumulation rate in PBR design. 

4.5 Conclusions 

A new approach for bioreactor design has been successfully applied. Through the 

application of systems biology techniques, among all FBA, a conceptual design of a 

photobioreactor for the production of biofuel precursors, namely triacylglycerols, by C. 

reinhardtii has been accomplished. The concentration profile for some key components 

such as biomass, TAGs and nitrogen has been shown in Figure 4.4. TAGs outlet 

concentration has been correlated to the reactor residence time in Figure 4.5. Total 

nutrients consumption, with particular emphasis on carbon dioxide, has been calculated 

and reported in Figure 4.8 and 4.9. In conclusions, most of data needed in process 

conceptual design of reactors could be inferred by properly setting the genome-based 

metabolic reconstruction of C. reinhardtii iRC1080 and by carefully performing the 

method described previously in §2.1.2.  

The above-mentioned case study should be further studied to represent other different 

conditions, which were not a major goal of the present work. For instance, diverse 
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environmental conditions could be explored such as heterotrophy or mixotrophy and 

KO mutants as well. This is possible thanks to the intrinsic flexibility of the method, 

which finds in its main strength its diverse range of applicability. 

Although previous results were found satisfactory under many points of view, some 

limitations hinder a more detailed design of the PBR. First of all, constant light 

conversion efficiency has been assumed. Not only light absorption is limited by 

growing biomass density, but also constant illumination is an abstraction which is not 

actually feasible for industrial application. Secondly, as already pointed out in §4.3.2., 

TAGs accumulation rate is always taken at its maximum during the TAGs stage. As 

examined by Siaut et al., lipid accumulation reaches a maximum only after a few days 

of nitrogen deprivation. Moreover, TAGs accumulation rate predicted in silico is clearly 

overestimated with regards of the little available experimental data.  

In conclusion, systems biology proved to provide precious instruments for bioreactor 

design, especially in the stage of process conceptual design, where discerning the most 

valuable process among multiple alternatives is usually a major challenge. However, 

this tool must be improved before quantitative information can be obtained out of it. 
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Chapter 5 

Biochemical reaction engineering 
applied to biofuel precursors synthesis 

in C. reinhardtii

Genome sequencing and sequence manipulation techniques have paved the way to the 

engineering of microorganisms tailored to either enhance the yield of a valuable 

biological component or allow the use of living cells for synthetic applications in 

medicine, alternative energy, and materials science (Weeks and Chang, 2011).  Several 

efforts have been made to genetically engineer microalgae to improve biofuel 

precursors production as well (Radakovits et al., 2010a). Along with some successful 

strategies (Radakovits et al., 2010b), such as expression of two thioesterases in P. 

tricornutum towards the production of lauric and mystiric acid, some pathway-targeted 

manipulation, like the ACCase enzyme overexpression which catalyzes the conversion 

of acetyl-CoA to malonyl-CoA in the early stage of fatty acid synthesis pathway, proved 

to fail (Dunahay et al., 1995).  A systems approach to metabolic engineering is thus 

desirable to better understand those strategies which can actually turn into a secure 

overproduction of desired metabolites. 

In this chapter, the concepts introduced in §2.2 will be applied to investigate about the  

strategy of metabolic engineering in C. reinhardtii towards the production of biofuel 

precursors, that are TAGs. First, a computational method called OptKnock, which finds 

its basis in FBA, will be performed to generate a range of diverse gene knock-outs 

which may lead to TAGs overproduction. Secondly, a simple but novel technique will 

be proposed to explore whether certain modified media can enhance biomass growth 

and therefore specific productivity of desired metabolites. 

5.1 Computational metabolic engineering of C. reinhardtii 

According to §2.2.1, to analyze systematically the effects of single gene KOs on the 

production of a certain metabolite, a genome-based metabolic reconstruction which 

includes a GPR association matrix must be available, which is the case of iRC1080. 

Next, the freely available algorithm OptKnock checks for every gene present in the 

matrix and it constraints all associated reactions bounds to zero. By performing a bilevel 
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linear programming optimization, the program asks the model to maximize a selected 

flux while optimizing biomass growth, in both cases solving iteratively FBA. A 

structured matrix is given as an output, in which each gene KO is matched to the range 

in which the selected flux can span. 

5.1.1. Simulating gene KOs to induce a TAG overproduction 

The above described procedure was applied to iRC1080 set in standard configuration. 

Solar light (lithosphere) was chosen and its flux imposed to be Ф = 300 µmol m-2 s-1. 

The program simpleOptKnock.m, included within the COBRA Toolbox, was run 

by selecting a fictitious reaction which secretes a representative TAG (namely 

16:0/18:1(9Z)/16:0) as target flux. To preserve readibility, results were displayed only 

for those KOs which produced at least a maximum secretion flux vTAG* = 1.2·10-4 mmol 

gDW
-1 h-1, that is vTAG* = 0.1 mg gDW

-1 h-1. Moreover, only KOs that did not cause cell 

death were reported. Thus, in Figure 5.1, the set of knocked-out gene which induced a 

meaningful target flux is represented. In this specific case, it must be noted that none of 

the KOs produced a unique value for the target flux, but it rather resulted in a range, 

indicated by the light red area comprised between the upper and lower red solid line. 

Figure 5.1. Knocked-out genes that induced TAG overproduction in C. reinhardtii according 

to OptKnock simulation results. On the x-axis, genes abbreviations are reported. For each 

gene, the range of values that the target flux can take is displayed by the area comprised by 

the upper and lower red line. Wild type has been included as control (no KOs).

5.1.2. Analysis of results for TAG overproduction 

Because of the easy approach that OptKnock employs to describe a complex 

phenomenon like a genetic perturbation, a careful analysis of results has been carried 

out. First, it should be noted that all KOs are redundant, as they refer to the same 
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pathway. Thus, there are no appreciable differences in the deletion of any of the above 

genes, given that they all encode enzymes involved in that same pathway and therefore 

the consequences on cell metabolism are identical. Specifically, these enzymes 

participate at the N-glycan biosynthesis (also called amino sugar and nucleotide sugar 

metabolism). By knocking out any gene in the set, the pathway turns inactive. This 

result suggests that TAG overproduction could be induced by a more efficient 

exploitation of acetyl-CoA, a compound essential in the early stage of fatty acid 

synthesis, which is explicitly employed in the N-glycan biosynthesis pathway in the 

following reaction: 

AcCoA GAM6P CoA AcGAM6P H
2                        (5.1) 

This reaction is catalyzed by acetyl-CoA:D-glucosamine-6-phosphate N-

acetyltransferase, encoded by ACGAMPSi in Figure 5.1. However, a further analysis of 

results revealed that this pathway is physiologically inactive if a specific glycoprotein3

is absent from the medium. Considered that Figure 5.1 does not indicate a secure 

secretion of TAGs under these genetic perturbations, the analysis of results indicates 

that such metabolic engineering strategy is poor and, after all, negligible.  

5.1.3. Simulating gene KOs to induce H2 overproduction 

The ability of C. reinhardtii to produce molecular hydrogen has been first elucidated by 

Melis and coworkers (2000). Under specific conditions, the green alga is able to carry 

out the following hydrogenase reaction: 

2 FDXRd 2 FDXOx H 2H 4                               (5.2) 

As photobiological production of H2 by microorganisms is of prime interest in the 

current renewable fuel market (Melis et al., 2000), the same approach adopted for 

engineering TAGs production by C. reinhardtii has been applied to hydrogen synthesis. 

The procedure followed exactly the same instructions given in the previous section, 

besides that reaction (5.2) was selected to be the target flux of the simulation. Results 

are shown in Figure 5.2, in the same fashion as in Figure 5.1. 

2 Key: AcCoA – acetyl-coenzyme A, GAM6P – D-Glucosamine 6-phosphate, CoA – coenzyme A, AcGAM6P – N-
Acetyl-D-glucosamine 6-phosphate, H+ – proton. 
3 KEGG code: G00011, named Asn(-b1)GlcNAc(4-b1)GlcNAc(4-b1)Man[(6-a1)Man[(6-a1)Man(2-a1)Man](3-
a1)Man(2-a1)Man](3-a1)Man(2-a1)Man(2-a1)Man. 
4 Key: FDXRd – reduced ferredoxin, FDXOx – oxidized ferredoxin. 
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Figure 5.2. Knocked-out genes that induced H2 overproduction in C. reinhardtii according to 

OptKnock simulation results. On the x-axis, genes abbreviations are reported. For each 

gene, the range of values that the target flux can take is displayed by the area comprised by 

the upper and lower red line. Wild type has been included as control (no KOs).

5.1.4. Analysis of results for H2 overproduction 

OptKnock simulation results of H2 overproduction differ significantly from the case of 

TAGs. Again, N-glycan biosynthesis inactivation is a proposed strategy, though for the 

above considerations these KOs have been neglected. However, other interesting KOs 

resulted from the simulation, whose data are reported in Table 5.1. 

Table 5.1 – Data about KOs resulted in H2 overproduction according to OptKnock simulation. 

For each KO gene, deleted reaction(s) and related pathway(s) are indicated. Key: ru5p-D - D-

Ribulose 5-phosphate, rb15bp - D-Ribulose 1,5-bisphosphate,  3pg - 3-Phospho-D-glycerate, 

dhap - Dihydroxyacetone phosphate, g3p - D-glyceraldehyde 3-phosphate, xu5p-D - D-

Xylulose 5-phosphate, r5p - α-D-Ribose 5-phosphate, s7p - Sedoheptulose 7-phosphate. 

Gene Reaction Formula Pathway 
CO2t CO2 transport, extracellular CO2[e] <==> CO2[c] Transport 

SO4NA1t Sulfate:Na+ symporter, 
extracellular 

SO4
2- [e] + Na+[e] <==> SO4

2-

[c] + Na+ [c] 
Transport 

SO4t Sulfate transport, extracellular SO4
2- [e] + H+[e] <==> SO4

2- [c] 
+ H+ [c] 

Transport 

PRUK Phosphoribulokinase ATP + ru5p-D -> ADP + H+ + 
rb15bp 

Carbon fixation 

RBPCh Ribulose-bisphosphate 
carboxylase 

CO2 + H2O + rb15bp --> 2 3pg 
+ 2 H+

Carbon fixation 

TPIh Triosephosphate isomerase dhap <==> g3p Glycolysis 

RPEh D-Ribulose-5-Phosphate 3-
Epimerase 

ru5p-D <==> xu5p-D Pentose phosphate 
pathway 

TKT1h Transketolase 1 r5p + xu5p-D <==> g3p + s7p Pentose phosphate 
pathway 
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5.1.4.1 Sulfate transport inhibition strategy 

KOs of genes which regulate the uptake of sulfate in cell metabolism indicate a net 

production of hydrogen roughly equal to vH2 = 0.0874 mmol gDW
-1 h-1. There is no 

apparent link between elimination of sulfur from C. reinhardtii metabolism and 

activation of reaction (5.2). Sulfate (SO4
2-) is a fundamental nutrient for the green alga, 

as it accounts for sulfation of lipids, polysaccharides and proteins and it is essential in 

the formation of cysteine and methionine (Stern and Harris, 2008, pg. 160-161). To be 

incorporated in these amino-acids as sulfur anion (S2-), it must be reduced by means of 

ferredoxin: 

HSO 6 FDXRd 6 FDXOx H S 3H O 6H                 (5.3) 

Thus, the activation of reaction (5.2) could be explained in terms of regeneration of 

oxidized ferredoxin which would otherwise accumulate in its reduced form when 

reaction (5.3) is inactivated.  

Surprisingly, sulfur deprivation is nowadays the only ascertained condition which leads 

to hydrogen gas production by C. reinhardtii (Melis et al., 2000). However, Melis and 

coworkers explained sustained hydrogen gas production upon sulfur deficiency in terms 

of regulatory mechanisms, rather than metabolic necessity, such as cofactors 

regeneration. Indeed, sulfur deprivation reversibly inactivates O2 evolution, 

circumventing the severe O2 sensitivity of the reversible hydrogenase, i.e. (5.2). On the 

other hand, given the complexity of cell metabolism, further analysis of the 

phenomenon could reveal new insights about hydrogen gas production upon sulfur 

deficiency.  

5.1.4.2 Rubisco shunt inactivation strategy 

PRUK, TPIh, RPEh, RBPCh, TKT1h all belong to the same pathway, namely the 

Rubisco shunt (Figure 5.3). By knocking out any of these enzymes, the Rubisco shunt 

would be inactivated. Rubisco shunt is an alternative pathway to glycolysis, compared 

to which it has a higher carbon conversion efficiency, yielding 20% more acetyl-CoA

with 40% less carbon loss (Caspi et al., 2007). In principle, Rubisco shunt is not 

essential for cell survival and thus, by erasing it, cell viability would not be affected. On 

the other hand, it is unclear the way its inactivation might induce reversible hydrogenase 

reaction to form H2, as much as vH2 = 0.0015 mmol gDW
-1 h-1. Since no evident 

correlation can be found, in the absence of more sophisticated analysis tools for such 
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wide networks, the inactivation of Rubisco shunt as a metabolic engineering strategy for 

hydrogen gas production should be carefully integrated with literature data and next 

validated experimentally.  

Figure 5.3. Rubisco shunt pathway. Of all reactions within the pathway, only those KOs 

resulted from the previous simulation are represented. Retrieved from Metacyc.org (Caspi et 
al., 2007). 

5.2 Design of ad hoc media 

In principle, a properly designed medium could boost some cellular metabolic functions 

over others bypassing the activation of certain pathways required to form essential 

compounds for cell viability, since they would be now provided by the environment. 
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This means that a vital metabolite for biomass duplication could be directly 

incorporated in the metabolic network from the environment, and thus the cell would no 

more require to biosynthesize it. In the case of C. reinhardtii TAGs production, biomass 

growth has been selected as the target cellular function to maximize. An enhanced 

growth would increase outlet concentration of TAGs, minimizing the residence time 

required in the photobioreactior. On the other hand, by refining the initial medium 

composition, the costs associated with nutrients would increase as well. 

To verify which compounds, if present in the environment, might enhance growth, the 

procedure described in §2.2.2 has been followed. FBA has been performed singularly 

for each metabolite comprised in iRC1080 model by adding a fictitious exchange 

reaction that simulates the possible uptake of that metabolite from the environment. 

iRC1080 was set in standard configuration (i.e. rich medium and photoautotrophic 

conditions) and solar light (lithosphere) at intensity Ф = 40 µmol m-2  s-1 was selected. 

FBA has been run by using MATLAB™ script optimizeCbmodel.m, available 

within the COBRA Toolbox. The objective function to maximize was the autotrophic 

BOF. If no metabolites are supplemented to the rich medium, the physiological growth 

rate is = 0.0334 h-1 (Figure 3.4). Only those metabolites that if available in the 

medium could achieve over 150% the physiological growth rate per mmol of absorbed 

metabolite were considered. Table 5.2 reports these metabolites along with the in silico 

predicted uptake flux and subsequent over-growth, both in absolute and relative values.  

The simulation produced various results. Over 200 metabolites proved to boost biomass 

growth if only they could be incorporated in cell metabolism directly from the 

environment. Among these, 35 metabolites produced a relative over-growth 150% 

higher than physiological. Most of these belong to the class of lipids or saccharides. If 

incorporated in cell metabolism without need of being biosynthesized, they would 

slightly increase biomass growth (at most = 0.0450 h-1). However, they usually entail 

a drastic increase per unit of mmol absorbed, which goes from 216% to 2229%, higher 

than physiological growth. This may indicate that these metabolites are rate determining 

steps for biomass duplication. On the other hand, they are arguably difficult to introduce 

directly into the cell, since lipids and saccharides are normally big molecules which can 

be barely transported across cell membranes. The same can be said for fatty acids and 

nucleosides, although their potential increase in absolute growth rate is significantly 

higher. However, it is known that some membrane transporters of nucleosides are 

present in some organisms, like adenosine transporters in mammals (Thorn and Jarvis, 

1996). Among the remaining metabolites, L-histidine catabolism intermediates as well 

as N-acetyl-L-glutamate have been analyzed in more detail in the following sections. 
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Table 5.2 –Metabolites which if singularly present in the medium produced an in silico over 

growth per unit (mmol) of absorbed metabolite at least twice the physiological growth rate. 

Metabolite Class Over-
growth 
[h-1]

Uptake 
flux 
[mmol 
gDW

-1

h-1] 

% over-growth 
per unit of 
metabolite 
absorbed 
[mmol-1 h-1] 

Triacylglycerol (16:0/18:1(11Z)/16:0) Lipid 0,0385 0,0068 2228,82% 

1-hexadecanoyl,2-(9Z)-octadecenoyl-
sn-glycerol 3-phosphate 

Lipid 0,0369 0,0065 1620,75% 

1-(9Z)-octadecenoyl,2-hexadecanoyl-
sn-glycerol 3-phosphate 

Lipid 0,0369 0,0065 1620,47% 

1,2-Diacyl-sn-glycerol (1-
hexadecanoyl,2-(9Z)-octadecenoyl, 
16:0/18:1(9Z)) 

Lipid 0,0369 0,0065 1619,49% 

Stachyose Saccharide 0,0406 0,0141 1517,73% 

Manninotriose Saccharide 0,0387 0,0135 1171,92% 

Raffinose Saccharide 0,0450 0,0313 1104,67% 

Melibiitol Saccharide 0,0409 0,0285 787,68% 

ADPglucose Saccharide 0,0368 0,0135 765,89% 

Melibiose Saccharide 0,0406 0,0283 758,86% 

Epimelibiose Saccharide 0,0406 0,0283 758,86% 

Lactose Saccharide 0,0406 0,0283 758,86% 

1-hexadecanoyl-sn-glycerol 3-
phosphate 

Lipid 0,0408 0,0299 743,64% 

Sucrose-6-phosphate Saccharide 0,0398 0,0291 654,07% 

α,α'-Trehalose 6-phosphate Saccharide 0,0394 0,0288 625,53% 

β-D-fructose 2-phosphate Saccharide 0,0377 0,0276 466,15% 

Galactosylglycerol Lipid 0,0371 0,0258 425,64% 

Tetradecanoate (n-C14:0) Fatty acid 0,1550 0,8559 425,32% 

Xanthosine Nucleoside 0,4104 3,9800 283,60% 

Inosine Nucleoside 0,3755 3,8980 262,76% 

Adenosine Nucleoside 0,2436 2,4575 256,15% 

N-Acetyl-L-glutamate Arginine biosynthesis 
intermediate 

0,4760 5,2610 251,88% 

Guanosine Nucleoside 0,2394 2,7063 227,87% 

1-monoacylglycerol (16:0) Lipid 0,2121 2,4750 216,17% 

Urocanate L-histidine catabolism 
intermediate 

0,2121 2,7234 196,43% 

4-Imidazolone-5-propanoate L-histidine catabolism 
intermediate 

0,2072 2,7076 192,18% 

L-Histidinol L-histidine catabolism 
intermediate 

0,1484 1,8080 190,46% 

L-Glutamate Amino-acid 0,3847 5,6096 187,50% 

Hexadecanoate (n-C16:0) Fatty acid 0,1807 2,4283 181,64% 

L-Glutamine Amino-acid 0,2223 3,2850 172,18% 
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5.2.1. L-histidine catabolism intermediates 

Metabolites that belong to this family are urocanate, 4-imidazolone-5-propanoate and L-

histidinol. According to the above simulation results, they would enhance absolute 

growth as much as = 0.2121 h-1, that is an over 6-fold increase with respect to the 

physiological growth rate in the same conditions. Table 5.3 summarizes some data 

regarding these compounds and their potential on biomass growth both in mass and 

molar basis. 

Table 5.3 –Intermediates in the L-histidine catabolism pathway which can potentially enhance 

C. reinhardtii growth in autotrophic conditions. 

Metabolite Over-
growth 
[h-1]

MW 
[g mol-1] Uptake flux 

% Over-growth per 
unit of metabolite 
absorbed [mmol gDW

-1 h-1] [mg gDW
-1 h-1] 

[mmol-1 h-1] [mg-1 h-1] 

Urocanate 0,2121 138.12 2,7234 376 196,43% 1.42% 
L-Histidinol 0,1484 141.17 1,8080 255 190,46% 1.35% 
4-Imidazolone-
5-propanoate 

0,2072 156.14 2,7076 423 192,18% 1.23% 

From Table 5.3, it is clear that the highest potential pertains to urocanate. The role that 

urocanate may play in boosting growth is correlated to its pathway. L-histidine 

catabolism is a linear pathway which can follow four different ways according to the 

organism. However, in all organisms in which this pathway is present, the early stage to 

degrade L-histidine is common and comprises the enzymatic conversion of the 

aminoacid into urocanate and, successively, 4-imidazolone-5-propionate (Figure 5.4). 

As regards C. reinhardtii, 4-imidazolone-5-propionate is then non-enzymatically 

transformed into 4-oxoglutaramate, which is in turn spontaneously converted into 2-

oxoglutarate, also known as α-ketoglutaric acid (Stern and Harris, 2008). The latter 

metabolite is a key intermediate in the Krebs cycle. Hellio et al. proved and 

characterized the activity of both histidase (4.3.1.3) and urocanase (4.2.1.19), which are 

normally expressed when a more valuable and rapidly nitrogen source, such as 

ammonium, is being depleted (< 0.5 mM). When a primary nitrogen source is available, 

the L-histidine degradation pathway was shown to be deactivated. This experimental 

result was in silico confirmed with iRC1080 model under optimal growth in rich 

medium (data not shown). Thus, if urocanate was directly incorporated in C. reinhardtii

metabolism, it could provide a valuable source to form α-ketoglutaric acid, 

incrementing Krebs cycle efficiency and thus boosting growth. Moreover, in the process 

of degrading L-histidine, important compounds for metabolism are formed, such as 

formate and ammonia, which can be recycled as a nitrogen source. Another question to 

address is why in optimal conditions C. reinhardtii should not take advantage of L-
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histidine catabolism pathway. It can be hypothesized that histidine biosynthesis is per se 

energy or source intensive. In this fashion, an augmented production of the aminoacid 

for its successive degradation would be just a waste of energy or valuable sources. Even 

though the simulation suggested that a drastic increase in biomass growth rate would 

follow from the artificial introduction of urocanate in the cell metabolism, there are 

currently no proofs that the uptake of such metabolite is feasible in C. reinhardtii. Thus 

a series of experiments in urocanate replete medium should be conducted. The 

absorption of the compound by the cell should be sufficient per se to prove the 

hypothesis, since the two final reactions in the histidine degradation pathway are 

spontaneous (they are not enzymatic) and therefore should occur immediately.  

Figure 5.4. L-histidine catabolism pathway. In C. reinhardtii, the path evidenced by red 

boxes is present, while the other paths are available for different organisms. Picture 

retrieved from Metacyc.org (Caspi et al, 2007). 
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5.2.2. N-acetyl-L-glutamate 

N-acetyl-L-glutamate (AcG) is an important intermediate in glutamate-derived 

aminoacids arginine and proline biosynthesis (Stern and Harris, 2008, pg. 134). As 

described by Figure 5.5, it is essential to form N-α-acetylornithine (AcO) which is a 

necessary step to produce ornithine, a precursor for arginine formation. 

Figure 5.5. Arginine and proline biosynthesis from glutamate in C. reinhardtii (Stern and Harris, 

2006, pg. 134). Key: GluP – L-glutamyl-γ-phosphate, Pi – orthophosphate, GSA – glutamic-γ-
semialdehyde, P5C – Δ1

-pyrroline-5-carboxylate, AcCoA – acetyl-coenzyme A; CoA – coenzyme A, 

AcG – N-acetyl-L-glutamate, AGP – N-acetylglutamyl-phosphate, AGS – N-acetylglutamate 

semialdehyde, AcO – N-α-acetylornithine, Orn – L-ornithine, CaP – carbamoyl-phosphate, Ctr – 

citrulline, PPi – pyrophosphate, ASu – L-arginino-succinate, Fum – fumarate. Blue boxes indicate 

enzyme abbreviation.  

According to the simulation results, direct incorporation of AcG in C. reinhardtii 

metabolism from the environment would accomplish the highest absolute growth rate, 

that is = 0.4760 h-1. Considered that AcG molecular weight is MWAcG = 189.2 g mol-1, 

its uptake flux is predicted to be vAcG,in = 5.26 mmol gDW
-1 h-1 or 995.2 mg gDW

-1 h-1. In 

mass units, the percent change in growth per unit of AcG absorbed with respect to the 

physiological growth rate is equal to %over-growth = 1.33%, which is slightly less than the 

previous case with urocanate. This result can be explained in terms of a better 

exploitation of L-glutamate, which is no more needed to form AcG and, at the same 

time, reducing the necessity of expensive cofactors, such as acetyl-coenzyme A. 

Nevertheless, it can be argued why direct incorporation of arginine or other precursors 
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were not considered by the simulation to accomplish a similar result on growth rate. 

This can be explained in terms of the by-products formed by some enzymatic reactions 

occurring in AcG degradation to AcO, with particular emphasis on αKg, i.e. α-

ketoglutaric acid. This justification does not hold for two other precursors, AGP and 

AGS, which in turn could prevent the waste of ATP and NADPH if they were 

incorporated in place of AcG. Indeed, the simulation actually contemplates this 

possibility, but given the elevated corresponding uptake flux, these compounds were 

neglected in results analysis. 

An interesting point is the role of L-glutamate, which is reported to stimulate biomass 

growth as well, though to a slightly lesser extent than N-acetyl-L-glutamate (Table 5.2). 

In contrast, L-glutamate is a far easier compound to retrieve for a possible industrial 

application. Moreover, L-glutamate is known to be secreted by other microorganism 

under some conditions, such as Corynebacterium glutamicum (Hoischen and Krämer, 

1990). Therefore, it might be possible to design synthetic communities of 

microorganisms which actually enhance C. reinhardtii growth without need of 

supplementing additional compounds to the initial medium.  

5.3 Conclusions 

Metabolic engineering is the field of chemical reaction engineering which deals with 

biological systems. As such, it can benefit of systems biology tools, such as FBA, to 

define a map of the metabolic flux distribution and analyze the effects of redirecting 

fluxes towards a desired reaction. Here, it has been reviewed some practical programs 

that are based on FBA and that can help to find new strategies to optimize biosynthesis 

of a target metabolite. These programs have been applied for the case study of TAGs 

production by C. reinhardtii. The optimization of TAGs formation has been explored 

through two methods, single gene knock-outs which lead to overproduction of desired 

compounds, and medium refinement by means of metabolites that the cell is no more 

required to synthesize in order to grow. The former method has been applied via a freely 

available algorithm called OptKnock. It produced no valuable results with regard to 

TAGs overproduction but gave interesting indications to stimulate H2 synthesis, such as 

sulfur deprivation and inactivation of Rubisco shunt pathway. The latter method 

suggested that if an intermediate in L-histidine catabolism or arginine biosynthesis, like 

urocanate and N-acetyl-L-glutamate respectively, were present in the medium, then 

biomass growth would be greatly enhanced. Moreover, the results shed light on the role 

of L-glutamate in the microalgae metabolism and, as this amino acid is known to be 

secreted by other microorganisms, they suggested a way for the design of synthetic 
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communities aimed at providing C. reinhardtii the necessary nutrients for growth 

optimization. 

In conclusion, this chapter collects the results that follow the application of those 

methods described in detail in §2.2 to an actual biological system of interest. Along with 

some poor if not disappointing conclusions (see §5.1.2), most of these applications 

revealed some indications that are not readily inferable at a first glance. Experimental 

validation is essential to prove these ambitious hypotheses. However the contribution of 

systems biology approaches in the formulation of the above mentioned metabolic 

engineering strategies is a precious indication. 
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Conclusions 

Systems biology embraces the study of a biological system as a whole, by quantifying 

the interactions within the parts and enabling the analysis of variations within the 

network given some perturbations. As such, technical applications for biological 

systems which require the knowledge of the dynamics and potentiality of the network 

can greatly benefit from systems biology approaches. Chemical engineering appears to 

be one of the major disciplines which can take advantage of systems biology, as an 

increasing number of applications now deal with biotechnology, from fine chemicals 

production to renewable fuels.  

In this work, diverse methods proper of the emergent systems biology were investigated 

and coupled to solve typical problems of chemical engineering. The application of flux 

balance analysis has been reviewed to cope for the lack of kinetic data in biological 

systems such as the cell, and a new approach that solves bioreactor design equations by 

using dynamic FBA has been proposed as an alternative to the black box approach 

(§2.1). Together with reactor design, chemical reaction engineering is another field 

which can profit by a careful application of FBA-based algorithms. In this fashion, the 

biological network can be perturbed in order to optimize the reaction flux of interest. 

Two main perturbations have been reviewed, that are single gene knock-out (§2.2.1) 

and refinement of growth medium, developed with a novel method. The results may 

constitute valuable indications of metabolic engineering strategies and can be used as a 

starting point for an experimental campaign aimed at engineering the biological system 

under study to maximize the desired reaction. 

In order to validate the above mentioned systems biology approaches to chemical 

engineering problems, a case study has been considered, i.e. the production of biofuel 

precursors, namely triacylglycerols, by green microalga C. reinhardtii, whose metabolic 

network has been recently reconstructed in silico. The design of a photobioreactor has 

been efficiently conducted and it produced interesting results for conceptual design, 

such as the components concentration profile along the tube, the trend of outlet 

concentration with residence time, and the nutrients consumption (§4.4). Direct 

improvement of valuable products by modifications of C. reinhardtii metabolic network 

has been performed as well. Some already known experimental results have been 

predicted, such as sulfur deficiency to maximize H2 biosynthesis, an experimental result 

which has been a major accomplishment of modern metabolic engineering (Mellis et al., 

2000).  In terms of enriched growth medium, biomass growth was seen to be greatly 
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enhanced by direct incorporation in C. reinhardtii metabolic network of some minor 

intermediates, like urocanate and N-acetyl-L-glutamate. Also L-glutamate proved to 

have a key role in boosting growth rate, and given that this amino acid is known to be 

secreted by other microorganisms, this result may pave the way to the design of 

synthetic communities too.  

As it is widely recognized that biotechnology owns the potential to sustain the transition 

from oil-derived chemicals to renewable alternatives, it is expected that chemical 

engineering will follow a similar trend. If so, this work has investigated how major 

applications like reactor design and metabolic engineering can be successfully coupled 

with systems biology approaches to find the most rational engineering of a biological 

system among the uncountable options that nature has provided.  
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Appendix A 
Abbreviations 

1. List of acronyms 

Most of biochemical compounds in this work are indicated with an acronym. Here, only 

those acronyms that are found in the main text are considered. Acronyms that appear in 

captions are explained inside key of the caption. 

AcG  – N-acetyl-L-glutamate; 

AcO  – N-α-acetylornithine; 

ATP  – Adenosine triphosphate; 

BOF  – Biomass objective function; 

CSTR  – Continuously stirred tank reactor; 

CTP   – Cytosine triphosphate; 

dFBA   – Dynamic flux balance analysis; 

FBA   – Flux balance analysis; 

GAM   – Growth-associated ATP maintenance; 

GENRE   – Genome-based metabolic reconstruction; 

GPR   – Gene-protein-reaction (association); 

iRC1080   – Latest C. reinhardtii genome scale metabolic model available; 

KO   – Knock out; 

MOMA   – Minimization of metabolic adjustment; 

NGAM   – Non-growth-associated ATP maintenance; 

PBR   – Photobioreactor; 

PFR   – Plug flow reactor; 

TAGs   – Triacylglycerols; 

UTP   – Uracil triphosphate; 

2. List of variables 

All variables in the main text are written in italics (except for vectors and matrices 

which are in bold). Subscript 0 stands for “initial”, while subscript f stands for “final”. 

Subscript * stands for “maximum”. 

2.1 Latin symbols 

bi,j – Exchange flux of metabolite i in reaction j (generally [mmol gDW
-1 h-1]);

Ci – Concentration of metabolite i  [mol L-1] or [mmol L-1];
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              CP – Product concentration [mmol L-1];

              CS – Substrate concentration [mmol L-1];

              CX – Biomass concentration [gDW L
-1];

kM  – Monod constant [mol L-1] or [mmol L-1];

P  – Productivity [g Lreactor
-1];

ri – Reaction rate of formation/consumption of metabolite i [mol L-1 s-1];

S  – Stoichiometric matrix of the reconstructed metabolic network;

t  – Vector of metabolite concentrations variation in time;

v  – Vector of all fluxes within the reconstructed metabolic network;

vi,j  – (General) flux of metabolite i in reaction j (generally [mmol gDW
-1 h-1]); 

         – Volumetric flow rate (generally [L h-1]); 

Y  – TAGs outlet concentration [gTAGs L
-1];

Yi/j – Yield of metabolite i over variation of metabolite j [-] or [gDW mmol-1];

Z  – Objective function; 

2.2 Greek symbols 

αi  – Lower bound of flux i (generally [mmol gDW
-1 h-1]);

βi – Upper bound of flux i (generally [mmol gDW
-1 h-1]);  

– Specific growth rate or biomass duplication rate [h-1]; 

τ  – Residence time [h-1];

Ф – Photon flux intensity [µmol m-2 s-1];
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Appendix B 
Nomenclature conventions in iRC1080 

List of suffixes used in iRC1080 

In iRC1080 model, suffixes are used to refer a metabolite to the cellular compartment in 

which it can be found. A unique metabolite can participate to reactions taking place in 

multiple compartments. 

[c]  – Cytoplasm; 

[e]  – Extracellular; 

[f]  – Flagellum; 

[g]  – Golgi apparatus; 

[h]  – Chloroplast; 

[m]  – Mitochondria; 

[n]  – Nucleus; 

[s]  – Eyespot; 

[u]  – Thylakoid lumen; 

[x]  – Glyoxysome; 
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Appendix C 
Objective functions 

The objective function is a key requirement to run FBA. In the present work, either a 

real reaction of the reconstructed metabolic network or a fictitious reaction has been 

used in the simulations, according to the simulation goal. In this appendix, the 

autotrophic BOF and the TAGs objective function are explicitly decomposed in their 

components.  

1. Autotrophic biomass objective function 

In Table C.1., all precursors reported to make up 1 gram of dry biomass of C. 

reinhardtii in autotrophic conditions are listed along with their stoichiometric 

coefficient in the biomass objective function. These coefficients represent each 

precursor proportion in the dry cell (in mmol per gram of dry weight). 

Table C.1. Precursors in autotrophic BOF and their stoichiometric coefficients.  

Biomass precursor Stoichiometric  
coefficient 
[mmol gDW

-1]mmol/gDW)
Alanine 0.27375 
Arginine 0.15020 
Asparagine 0.06783 
Aspartate 0.06783 
Cysteine 0.00242 
Glutamine 0.08116 
Glutamate 0.08116 
Glycine 0.10296 
Histidine 0.00121 
Isoleucine 0.03270 
Leucine 0.08237 
Lysine 0.01817 
Methionine 0.00242 
Phenylalanine 0.03392 
Proline 0.04724 
Serine 0.02059 
Threonine 0.08237 
Tryptophan 0.00121 
Tyrosine 0.00121 
Valine 0.05935 
dATP 0.00218 
dCTP 0.00388 
dGTP 0.00388 
dTTP 0.00218 
ATP 0.03965* 
CTP 0.07048* 
GTP 0.07048* 
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UTP 0.03965* 
Starch 0.00641 
Mannose 0.32836 
Arabinose 0.52414 
Galactose 0.69700 
Monogalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(4Z,7Z,10Z,13Z)-hexadecatetraenoyl, 
18:3(9Z,12Z,15Z)/16:4(4Z,7Z,10Z,13Z)) 

0.02845 

Monogalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(7Z,10Z,13Z)-hexadecatrienoyl, 18:3(9Z,12Z,15Z)/16:3(7Z,10Z,13Z)) 

0.00324 

Monogalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(4Z,7Z,10Z)-hexadecatrienoyl, 18:3(9Z,12Z,15Z)/16:3(4Z,7Z,10Z)) 

0.00324 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-
(4Z,7Z,10Z,13Z)-hexadecatetraenoyl, 18:2(9Z,12Z)/16:4(4Z,7Z,10Z,13Z)) 

0.00324 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-
(7Z,10Z,13Z)-hexadecatrienoyl, 18:2(9Z,12Z)/16:3(7Z,10Z,13Z)) 

0.00040 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-
(4Z,7Z,10Z)-hexadecatrienoyl, 18:2(9Z,12Z)/16:3(4Z,7Z,10Z)) 

0.00040 

Monogalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(7Z,10Z)-hexadecadienoyl, 18:3(9Z,12Z,15Z)/16:2(7Z,10Z)) 

0.00040 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(7Z,10Z)-
hexadecadienoyl, 18:2(9Z,12Z)/16:2(7Z,10Z)) 

0.00040 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(7Z)-
hexadecenoyl, 18:2(9Z,12Z)/16:1(7Z)) 

0.00020 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(9Z)-
hexadecenoyl, 18:2(9Z,12Z)/16:1(9Z)) 

0.00020 

Monogalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
hexadecanoyl, 18:3(9Z,12Z,15Z)/16:0) 

0.00020 

Monogalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-
hexadecanoyl, 18:2(9Z,12Z)/16:0) 

0.00020 

Digalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(4Z,7Z,10Z,13Z)-hexadecatetraenoyl, 
18:3(9Z,12Z,15Z)/16:4(4Z,7Z,10Z,13Z)) 

0.00027 

Digalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(7Z,10Z,13Z)-hexadecatrienoyl, 18:3(9Z,12Z,15Z)/16:3(7Z,10Z,13Z)) 

0.00074 

Digalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
(4Z,7Z,10Z)-hexadecatrienoyl, 18:3(9Z,12Z,15Z)/16:3(4Z,7Z,10Z)) 

0.00074 

Digalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-(7Z,10Z)-
hexadecadienoyl, 18:3(9Z,12Z,15Z)/16:2(7Z,10Z)) 

0.00054 

Digalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(7Z,10Z,13Z)-
hexadecatrienoyl, 18:2(9Z,12Z)/16:3(7Z,10Z,13Z)) 

0.00027 

Digalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(4Z,7Z,10Z)-
hexadecatrienoyl, 18:2(9Z,12Z)/16:3(4Z,7Z,10Z)) 

0.00027 

Digalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(7Z,10Z)-
hexadecadienoyl, 18:2(9Z,12Z)/16:2(7Z,10Z)) 

0.00054 

Digalactosyldiacylglycerol (1-(9Z)-octadecenoyl,2-(7Z,10Z,13Z)-
hexadecatrienoyl, 18:1(9Z)/16:3(7Z,10Z,13Z)) 

0.00020 

Digalactosyldiacylglycerol (1-(9Z)-octadecenoyl,2-(4Z,7Z,10Z)-
hexadecatrienoyl, 18:1(9Z)/16:3(4Z,7Z,10Z)) 

0.00020 

Digalactosyldiacylglycerol (1-(9Z)-octadecenoyl,2-(7Z,10Z)-
hexadecadienoyl, 18:1(9Z)/16:2(7Z,10Z)) 

0.00040 

Digalactosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
hexadecanoyl, 18:3(9Z,12Z,15Z)/16:0) 

0.00240 

Digalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(7Z)-
hexadecenoyl, 18:2(9Z,12Z)/16:1(7Z)) 

0.00030 

Digalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(9Z)- 0.00030 
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hexadecenoyl, 18:2(9Z,12Z)/16:1(9Z)) 
Digalactosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-hexadecanoyl, 
18:2(9Z,12Z)/16:0) 

0.00333 

Digalactosyldiacylglycerol (1-(9Z)-octadecenoyl,2-(7Z)-hexadecenoyl, 
18:1(9Z)/16:1(7Z)) 

0.00030 

Digalactosyldiacylglycerol (1-(9Z)-octadecenoyl,2-(9Z)-hexadecenoyl, 
18:1(9Z)/16:1(9Z)) 

0.00030 

Digalactosyldiacylglycerol (1-(9Z)-octadecenoyl,2-hexadecanoyl, 
18:1(9Z)/16:0) 

0.00173 

Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:3(9Z,12Z,15Z)/18:4(5Z,9Z,12Z,15Z)) 

0.00041 

Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:3(9Z,12Z,15Z)/18:3(5Z,9Z,12Z)) 

0.00108 

Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:2(9Z,12Z)/18:4(5Z,9Z,12Z,15Z)) 

0.00008 

Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:2(9Z,12Z)/18:3(5Z,9Z,12Z)) 

0.00162 

Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 

0.00027 

Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 

0.00027 

Diacylglyceryl-N,N,N-trimethylhomoserine (16:0/18:4(5Z,9Z,12Z,15Z)) 0.00209 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:2(9Z,12Z)/18:2(9Z,12Z)) 0.00040 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:3(9Z,12Z,15Z)/18:1(9Z)) 0.00034 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:2(9Z,12Z)/18:1(9Z)) 0.00007 
Diacylglyceryl-N,N,N-trimethylhomoserine 
(18:3(9Z,12Z,15Z)/18:1(11Z)) 

0.00034 

Diacylglyceryl-N,N,N-trimethylhomoserine (18:2(9Z,12Z)/18:1(11Z)) 0.00007 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(9Z)/18:3(5Z,9Z,12Z)) 0.00040 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(11Z)/18:3(5Z,9Z,12Z)) 0.00040 
Diacylglyceryl-N,N,N-trimethylhomoserine (16:0/18:3(5Z,9Z,12Z)) 0.00390 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(9Z)/18:2(9Z,12Z)) 0.00020 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(11Z)/18:2(9Z,12Z)) 0.00020 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(9Z)/18:1(9Z)) 0.00007 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(9Z)/18:1(11Z)) 0.00007 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(11Z)/18:1(9Z)) 0.00007 
Diacylglyceryl-N,N,N-trimethylhomoserine (18:1(11Z)/18:1(11Z)) 0.00007 
Diacylglyceryl-N,N,N-trimethylhomoserine (16:0/18:2(9Z,12Z)) 0.00111 
Diacylglyceryl-N,N,N-trimethylhomoserine (16:0/18:1(9Z)) 0.00008 
Diacylglyceryl-N,N,N-trimethylhomoserine (16:0/18:1(11Z)) 0.00008 
Sulfoquinovosyldiacylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-
hexadecanoyl, 18:3(9Z,12Z,15Z)/16:0) 

0.00078 

Sulfoquinovosyldiacylglycerol (1-(9Z,12Z)-octadecadienoyl,2-
hexadecanoyl, 18:2(9Z,12Z)/16:0) 

0.00073 

Sulfoquinovosyldiacylglycerol (1-(9Z)-octadecenoyl,2-hexadecanoyl, 
18:1(9Z)/16:0) 

0.00048 

Sulfoquinovosyldiacylglycerol (1-(11Z)-octadecenoyl,2-hexadecanoyl, 
18:1(11Z)/16:0) 

0.00048 

Sulfoquinovosyldiacylglycerol (dihexadecanoyl, n-C16:0) 0.00245 
2'-O-all-cis-5,9,12-octadecatrienoyl-sulfoquinovosyldiacylglycerol (2'-
18:3(5,9,12)/18:1(9Z)/16:0) 

0.00118 

2'-O-all-cis-5,9,12-octadecatrienoyl-sulfoquinovosyldiacylglycerol (2'-
18:3(5,9,12)/18:1(11Z)/16:0) 

0.00118 

2'-O-all-cis-5,9,12-octadecatrienoyl-sulfoquinovosyldiacylglycerol (2'-
18:3(5,9,12)/18:2(9Z,12Z)/16:0) 

0.00118 

2'-O-all-cis-5,9,12-octadecatrienoyl-sulfoquinovosyldiacylglycerol (2'- 0.00119 
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18:3(5,9,12)/18:3(9Z,12Z,15Z)/16:0) 
2'-O-all-cis-5,9,12,15-octadecatetraenoyl-sulfoquinovosyldiacylglycerol 
(2'-18:4(5,9,12,15)/18:1(9Z)/16:0) 

0.00118 

2'-O-all-cis-5,9,12,15-octadecatetraenoyl-sulfoquinovosyldiacylglycerol 
(2'-18:4(5,9,12,15)/18:1(11Z)/16:0) 

0.00118 

2'-O-all-cis-5,9,12,15-octadecatetraenoyl-sulfoquinovosyldiacylglycerol 
(2'-18:4(5,9,12,15)/18:2(9Z,12Z)/16:0) 

0.00119 

2'-O-all-cis-5,9,12,15-octadecatetraenoyl-sulfoquinovosyldiacylglycerol 
(2'-18:4(5,9,12,15)/18:3(9Z,12Z,15Z)/16:0) 

0.00119 

Phosphatidylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-(3E)-
hexadecenoyl, 18:3(9Z,12Z,15Z)/16:1(3E)) 

0.00123 

Phosphatidylglycerol (1-(9Z,12Z,15Z)-octadecatrienoyl,2-hexadecanoyl, 
18:3(9Z,12Z,15Z)/16:0) 

0.00074 

Phosphatidylglycerol (1-(9Z,12Z)-octadecadienoyl,2-(3E)-hexadecenoyl, 
18:2(9Z,12Z)/16:1(3E)) 

0.00336 

Phosphatidylglycerol (1-(9Z,12Z)-octadecadienoyl,2-hexadecanoyl, 
18:2(9Z,12Z)/16:0) 

0.00074 

Phosphatidylglycerol (1-(9Z)-octadecenoyl,2-(3E)-hexadecenoyl, 
18:1(9Z)/16:1(3E)) 

0.00045 

Phosphatidylglycerol (1-(11Z)-octadecenoyl,2-(3E)-hexadecenoyl, 
18:1(11Z)/16:1(3E)) 

0.00045 

Phosphatidylglycerol (1-(9Z)-octadecenoyl,2-hexadecanoyl, 
18:1(9Z)/16:0) 

0.00061 

Phosphatidylglycerol (1-(11Z)-octadecenoyl,2-hexadecanoyl, 
18:1(11Z)/16:0) 

0.00061 

Phosphatidylethanolamine (18:2(9Z,12Z)/18:3(5Z,9Z,12Z)) 0.00020 
Phosphatidylethanolamine (18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 0.00000 
Phosphatidylethanolamine (18:1(9Z)/18:3(5Z,9Z,12Z)) 0.00009 
Phosphatidylethanolamine (18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 0.00013 
Phosphatidylethanolamine (18:1(11Z)/18:3(5Z,9Z,12Z)) 0.00311 
Phosphatidylethanolamine (18:0/18:4(5Z,9Z,12Z,15Z)) 0.00065 
Phosphatidylethanolamine (18:0/18:3(5Z,9Z,12Z)) 0.00235 
1-Phosphatidyl-D-myo-inositol (1-(11Z)-octadecenoyl,2-hexadecanoyl, 
18:1(11Z)/16:0) 

0.00192 

1-Phosphatidyl-D-myo-inositol (1-(9Z)-octadecenoyl,2-hexadecanoyl, 
18:1(9Z)/16:0) 

0.00026 

Triacylglycerol (16:0/18:1(11Z)/16:0) 0.00133 
Triacylglycerol (16:0/18:1(9Z)/16:0) 0.00133 
Triacylglycerol (18:0/18:1(9Z)/16:0) 0.00129 
Triacylglycerol (18:1(11Z)/18:1(11Z)/16:0) 0.00129 
Triacylglycerol (18:1(11Z)/18:1(9Z)/16:0) 0.00129 
Triacylglycerol (18:1(9Z)/18:1(11Z)/16:0) 0.00129 
Triacylglycerol (18:1(9Z)/18:1(9Z)/16:0) 0.00129 
Triacylglycerol (16:0/18:1(11Z)/18:0) 0.00129 
Triacylglycerol (16:0/18:1(9Z)/18:0) 0.00129 
Triacylglycerol (18:0/18:1(9Z)/18:0) 0.00124 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:0) 0.00125 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:0) 0.00125 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:0) 0.00125 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:0) 0.00125 
Triacylglycerol (16:0/18:1(11Z)/18:1(11Z)) 0.00129 
Triacylglycerol (16:0/18:1(9Z)/18:1(11Z)) 0.00129 
Triacylglycerol (18:0/18:1(9Z)/18:1(11Z)) 0.00125 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:1(11Z)) 0.00125 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:1(11Z)) 0.00125 
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Triacylglycerol (18:1(9Z)/18:1(11Z)/18:1(11Z)) 0.00125 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:1(11Z)) 0.00125 
Triacylglycerol (16:0/18:1(11Z)/18:1(9Z)) 0.00129 
Triacylglycerol (16:0/18:1(9Z)/18:1(9Z)) 0.00129 
Triacylglycerol (18:0/18:1(9Z)/18:1(9Z)) 0.00125 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:1(9Z)) 0.00125 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:1(9Z)) 0.00125 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:1(9Z)) 0.00125 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:1(9Z)) 0.00125 
Triacylglycerol (16:0/18:1(11Z)/18:3(5Z,9Z,12Z)) 0.00129 
Triacylglycerol (16:0/18:1(9Z)/18:3(5Z,9Z,12Z)) 0.00129 
Triacylglycerol (18:0/18:1(9Z)/18:3(5Z,9Z,12Z)) 0.00125 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:3(5Z,9Z,12Z)) 0.00126 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:3(5Z,9Z,12Z)) 0.00126 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:3(5Z,9Z,12Z)) 0.00126 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:3(5Z,9Z,12Z)) 0.00126 
Triacylglycerol (16:0/18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 0.00130 
Triacylglycerol (16:0/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 0.00130 
Triacylglycerol (18:0/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 0.00126 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 0.00126 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 0.00126 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 0.00126 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 0.00126 
Acetic acid 0.03706 
Propionic acid 0.03005 
Butyric acid 0.02526 
Glycerol 0.01208 
Chlorophyll a 0.01008 
Chlorophyll b 0.01655 
Retinal (rhodopsin-bound) 0.00000 
alpha-Carotene 0.00050 
Antheraxanthin 0.00010 
beta-Carotene 0.00141 
Loroxanthin 0.00066 
Lutein 0.00126 
Neoxanthin 0.00055 
Violaxanthin 0.00035 
Zeaxanthin 0.00030 
ATP maintenance (growth-associated) 29.89000 

Note: the precursors coefficients denoted with an asterisk * were fixed according to data previously 

reported by Boyle and Morgan (2009) in order  to normalize all coefficients in the BOF to 1 g. 
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2. Summary of the autotrophic BOF 

In Table C.2, all precursors in Table C.1 are lumped into biochemical classes and their 

relative proportion in 1 g of dry biomass (both on molar and weight basis) is reported. 

Table C.2. Precursors in autotrophic BOF lumped 

into biochemical classes, and their proportion in 1 

gDW (on molar and weight basis).  

Class mg/gDW mmol/gDW

Protein 149.1110 1.2101
RNA 109.5036 0.2203
DNA 5.8481 0.0121
Carbohydrates 575.2248 1.5559
Fatty acids 6.5842 0.0924
Glycerol 1.1128 0.0121
Chlorophyll 24.0248 0.0266
Retinal 0.0003 0.0001
Xanthophyll 2.9053 0.0051
Lipids 125.6851 0.1517
of which ASQDCA 10.2246 0.0095

DGDG 11.7306 0.0128
DGTS 10.2246 0.0137
MGDG 30.2777 0.0406
PAIL 1.8230 0.0022
PE 4.8349 0.0065
PG 6.1030 0.0082
SQDG 3.9630 0.0049
TAG 46.5037 0.0533

Total biomass 1000 3.28

Note that by fixing precursors coefficients indicated by an asterisk in Table C.1, total 

biomass was normalized, as results from the second column of Table C.2. 
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3. TAGs objective function 

In Table C.3., all precursors assumed to make up 1 gram of neutral lipids under nitrogen 

deficiency conditions are listed along with their stoichiometric coefficient in the 

objective function.  

Table C.3. Precursors in TAGs objective function and their stoichiometric coefficients. 

Biomass precursor Stoichiometric coefficent 
[mmol gDW

-1]hic (mmol/gDW) 
Triacylglycerol (16:0/18:1(11Z)/16:0) 23,8092913186678 
Triacylglycerol (16:0/18:1(11Z)/18:0) 23,8093809868631 
Triacylglycerol (16:0/18:1(11Z)/18:1(11Z)) 23,8094951741635 
Triacylglycerol (16:0/18:1(11Z)/18:1(9Z)) 23,8094951741635 
Triacylglycerol (16:0/18:1(11Z)/18:3(5Z,9Z,12Z)) 23,8094468076432 
Triacylglycerol (16:0/18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 23,8092829474617 
Triacylglycerol (16:0/18:1(9Z)/16:0) 23,8092913186678 
Triacylglycerol (16:0/18:1(9Z)/18:0) 23,8093809868631 
Triacylglycerol (16:0/18:1(9Z)/18:1(11Z)) 23,8094951741635 
Triacylglycerol (16:0/18:1(9Z)/18:1(9Z)) 23,8094951741635 
Triacylglycerol (16:0/18:1(9Z)/18:3(5Z,9Z,12Z)) 23,8094468076432 
Triacylglycerol (16:0/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 23,8092829474617 
Triacylglycerol (18:0/18:1(9Z)/16:0) 23,8093809868631 
Triacylglycerol (18:0/18:1(9Z)/18:0) 23,8094649995080 
Triacylglycerol (18:0/18:1(9Z)/18:1(11Z)) 23,8095757688329 
Triacylglycerol (18:0/18:1(9Z)/18:1(9Z)) 23,8095757688329 
Triacylglycerol (18:0/18:1(9Z)/18:3(5Z,9Z,12Z)) 23,8095293057068 
Triacylglycerol (18:0/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 23,8093708484060 
Triacylglycerol (18:1(11Z)/18:1(11Z)/16:0) 23,8094951741635 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:0) 23,8095757688329 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:1(11Z)) 23,8096870435767 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:1(9Z)) 23,8096870435767 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:3(5Z,9Z,12Z)) 23,8096409827489 
Triacylglycerol (18:1(11Z)/18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 23,8094824167205 
Triacylglycerol (18:1(11Z)/18:1(9Z)/16:0) 23,8094951741635 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:0) 23,8095757688329 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:1(11Z)) 23,8096870435767 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:1(9Z)) 23,8096870435767 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:3(5Z,9Z,12Z)) 23,8096409827489 
Triacylglycerol (18:1(11Z)/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 23,8094824167205 
Triacylglycerol (18:1(9Z)/18:1(11Z)/16:0) 23,8094951741635 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:0) 23,8095757688329 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:1(11Z)) 23,8096870435767 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:1(9Z)) 23,8096870435767 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:3(5Z,9Z,12Z)) 23,8096409827489 
Triacylglycerol (18:1(9Z)/18:1(11Z)/18:4(5Z,9Z,12Z,15Z)) 23,8094824167205 
Triacylglycerol (18:1(9Z)/18:1(9Z)/16:0) 23,8094951741635 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:0) 23,8095757688329 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:1(11Z)) 23,8096870435767 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:1(9Z)) 23,8096870435767 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:3(5Z,9Z,12Z)) 23,8096409827489 
Triacylglycerol (18:1(9Z)/18:1(9Z)/18:4(5Z,9Z,12Z,15Z)) 23,8094824167205 
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Appendix D 
Comparison of dFBA with numerical 

schemes 

Dynamic FBA has been the first method used to compare experimental results with 

fluxes predicted by FBA (Varma and Palsson, 1994). It is a numerical scheme, as it 

employs an iterative procedure in which FBA is run at each step to calculate flux values. 

However, it is not a numerical integration scheme, since at each iteration it does not 

solve the ordinary differential equations numerically, but analytically. In this appendix 

it is proved qualitatively that 1st order and 2nd order numerical schemes belonging to the 

family of Runge-Kutta methods produce very similar results to dFBA. In particular, it 

can be argued that dFBA is slightly more accurate than 1st order Euler method, but it 

appears to be outperformed by 2nd order Crank-Nicolson method. 

The comparison has been carried out for the case of photobioreactor design as described 

in §4.4. iRC1080 model was tested in the same settings as indicated in §4.4. Three 

schemes were compared: dFBA, 1st Euler method and 2nd order Crank-Nicolson 

method. In all cases d = 0.1 h-1. The concentration profiles have been reported in 

Figure D1, D2 and D3, which refer to the results obtained through dFBA, Euler method 

and Crank-Nicolson method respectively. 

Figure D1. Concentration profile by dFBA. Key as Fig. 4.4.CN,0 = 2.0 mmol L
-1

and d  =0.1 h
-1

.
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Figure D2. Concentration profile by forawrd Euler method. Key as Fig. 4.4.CN,0 = 2.0 mmol L
-1

and 

d  =0.1 h
-1

.

Figure D3. Concentration profile by Crank-Nicolson method. Key as Fig. 4.4.CN,0 = 2.0 mmol L
-1 

and 

d  =0.1 h
-1

.
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