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1 Introduction

The very first insight which led to the path integral formulation of quantum me-
chanics is due to Dirac in the work [1] where he was looking for the meaning of
the action functional in quantum mechanics, later Feynman gave it the well known
physical interpretation of “sum over all paths”.

More recently the path integral formalism has proven itself to be a key tool in
quantum field theories. One of the reasons of its success is that since for most
theories it makes direct use of the Lagrangian, all the symmetries of the theory
are preserved.

Another strong point of the formalism is the ease with which correlation functions
can be computed, in perturbation theory, using Schwinger’s identity. Computing
the correlation function can be considered the goal for every quantum field the-
ory: they can be related to transition amplitudes which ultimately determine the
predictions of the theory itself.

In this work we illustrate the method exposed in the paper [2] and we make use
of it to compute the 4-point connected Green’s function to all perturbation orders
for a normal ordered potential V(¢) = % : @™ . without using Feynman’s rules.
The central point of the method is to consider the exponential interaction as a mas-
ter potential: in this way functional derivatives are replaced by ordinary deriva-
tives when computing the correlation functions, thus making possible to control
the combinatorics in the explicit calculations. Furthermore the exponential allows
to absorb at once all the singularities due to the normal ordering.

The work is organized as follows: we first introduce the path integral formalism
in quantum mechanics and scalar quantum field theories, then we extend the path
integral formalism to these theories in section 4. In section 5 we introduce expo-
nential interactions which will be the starting point for the method. The method
is fully illustrated in section 6 where is also given an expression for the 4-point
Green’s function, explicit calculations used in computing it are attached in the
appendix.

Everywere in this work we use the convention h = ¢ = 1.

2 Path integral in quantum mechanics

In this section we will calculate the transition amplitude (@, T'|q, t) using the path
integral formalism as in [3].

We start by splitting up the interval [¢, T] into N infinitesimal time intervals ¢t =
t + ke with Ne = T — t. Using the completeness relation 1 = [ dg|q,t) (g, ¢| for



each t; we obtain

(@, Tq,t) = /dQ1 coodgn-1 (@, Tlgn—1,tn-1) (gn-1,tN-1]qN—2,tN—2)

(g1, t1]g, t)

(2.1)

Thus we only need to know how to calculate the transition amplitude for infinites-
imal time intervals. Inserting a complete set of momentum eigenstate at time t’
between t;, and t;, + € we can write

(G, tr + €lqr, tr) = /dp (Qrs1s ti + €lp, t'y (p, ¥ qr, tr) (2.2)

Using the canonical commutation relations between ¢ and p we can write H (q,p)
so that all the ¢ operators appear on the left of the p operators. Let H, be the
operator written in such a way. Recalling that

<Qk’+17 tk + dp,t > <qk+17 0| (@0)(tret) ‘p’ >

to the first order in t;, + € — ¢’ we have

<Qk+17tk‘ + E’pa t/> ~ <QI€+17 O’ (1 - iﬁ+(qu+17ﬁ)<tk +e— tl)) ‘pa O>
= (@41, 0lp, 0) (1 — iH 4 (g1, p) (te + € — 1)) (2.3)
o i —Hy s ) (i et)

V2r

where the function H (g1, p) is obtained from the operator H, (Gui1,p) substi-
tuting p, ¢ with their eigenvalues.
With similar calculations:

1. ,
(Dt qr, tr) =~ or: ot (=par—H—(q1.p)(t' 1)) (2.4)
V LT

With H_ obtained putting all the position operators to the right of the momentum

operators by using the canonical commutation relations. Choosing ¢’ = % and
using equations (2.3) and (2.4), equation (2.2) becomes
dp ie Plapq1—a%)
<Qk+1, tk + E|Qk}7 tk’) ~ / %6 | ) Hel ) (25)
We have set Ho(qes1, @rs p) = (%HJ’) —(ar:p)
Defining ¢, = ¥ and H(qy,p) = Hc(qk+1, Gr, p) We obtain
~ dp ieL(qy,p) 2
(@1, te + €lqe, tr) = 5 ¢ (2.6)
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With L(gx,p) = pdx — H(qx,p). Inserting (2.6) in (2.1) and taking the limit
N — oo, with Ne fixed, we find

pl 5 dps Ni L(gir)

N1 N (2.7)
BTN (na
In the following we will write (2.7) using the notation
(@ Tlg,t) = /DqueiS(t’T’[q]’[QD (2.8)

where the square brackets indicate that S is a function over all trajectories such
that ¢(t) = ¢ and ¢(T") = Q. When the Hamiltonian has the form H(q,p) =
é% + V(q) we can explicitly integrate over the momenta obtaining

(Q.Tlg.t) = lim / (\/;)N (ﬁko) ¢ e (2.9)

We will naively write (2.9) as

(@ Tla.t) = N [ Dgesterinie) (2.10)

It is useful to consider the following representation of the propagator:

(Q,T)q.t) = e T D5(Q — q) (2.11)

In fact §(Q — q) is the probability amplitude of finding the particle in the position
() knowing it is in position ¢. If we know that at time ¢ the particle was in position
¢, the wave function is ¢,(¢,t) = d(¢' — ¢) which satisfies §'¢, (¢, T) = ¢'1,(¢', T).
At time T we have ¥(¢',T) = e " (T=8§(¢' — q): this is the probability amplitude
of finding the particle in ¢’ at time 7" knowing that it was in ¢ at time ¢. Thus
(Q,T)q,t) corresponds to ¥(Q,T) = e *HIT=D5(Q — q).

3 Scalar quantum field theories

A quantum field assigns an operator ¢(x) to every point in the space. In Heisenberg
picture operators are time dependent é(x) = eiHlthA)(x)e*iH ¢ thus both position and
time are now just labels on operators. We will focus on real scalar quantum
fields discussing at first the free theory and then the interacting one following the
approach of [4].



3.1 The free theory

We start from a classical field ¢ with Lagrangian £ = %8,@8*% — %m2¢2. Such
a field is subjected to the equation of motion (9,0" + m?)¢(x,t) = 0, called the
Klein-Gordon equation. In order to quantize the classical theory we promote the

classical field ¢ and his conjugate momentum 7 = % to operators ! satisfying
the following commutation rules (at t = 0)
X), =6 (x —

[6(x), o(y)] = [7(x), 7(y)] = 0

The Hamiltonian H = ¢m — L, being a function of ¢ and 7, will also become an
operator. In order to find the spectrum of the Hamiltonian we start again from
the classical field expanding it in his Fourier series

ot = | gT’;geiw(t,p) (3.2

with ¢(p) = ¢*(—p) being ¢ real. The Klein-Gordon equation becomes:

[5—; + (Ip* + mz)l ¢(t,p) =0

which is the same equation of motion of a simple harmonic oscillator with fre-
quency wp = +/|p|? + m?.

We can find the spectrum of the Hamiltonian for the Klein-Gordon field treating
each Fourier mode as an independent oscillator. In analogy with the simple har-
monic oscillator we introduce the creation and destruction operators ap and aL
such that

(27m)% /2w, (2m)3 /2w,
d3p w F— —ip-x d3p W 1 ip-x
m(x) = / (27T)3Q/7p(apep — aLe Py = / (27T)3,/7p(ap —al,)e?®
(3.3)
Creation and destruction operators satisfy
[ap, al,] = (2m)*6®) (p — p”) (3.4)

it can be verified that such a definition gives the correct commutation relation
between ¢ and 7: [¢(x), 7(y)] = i6®) (x —y).

'For brevity, in this section we will omit the hat over operators.
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We can express the Hamiltonian in terms of a, and aiﬁ,:

d3p 1
1 = [ Gsuplaban + lap.ab) (3.5)

From (3.4) we find that the second term is infinite, it is the sum over all (infinite)
modes of the zero point energy. Experimentally we can measure only energy
differences so we can set this term to zero.

We can find the spectrum of the Hamiltonian using the same techniques used for
the harmonic oscillator.

The state |0) such that ap |0) = 0 for every p, called the vacuum state, is an
eigenstate of the Hamiltonian with energy F = 0. All other energy eigenstates are
obtained acting on |0) with creation operators, for example the state afal, +...]0)
is an eigenstate of the Hamiltonian with energy E = wp +wq + . . ..

3.2 The interacting theory

We will now consider a potential V' (¢) which is a smooth function of the field ¢.
There are no known ways to obtain an explicit expression of the eigenvalues and
eigenstates for a general V' (¢) thus we will consider the potential as a small pertur-
bation and we will use perturbation theory to obtain an approximated expression
for the spectrum. We will write H = Hy + AH;,,; where X is a coupling constant,
Hy is the Hamiltonian of the free theory and H;,; is the perturbing potential.
The perturbation A\H;,; acts in two ways: it changes the fields in the definition of
the Heisenberg field ¢(x) = ef'¢(x)e~"* and it changes the vacuum state (and all
others eigenstates) which we will indicate with the symbol |§2) for the interacting
theory.

For every fixed ty we can expand ¢ in terms of the creation and destruction oper-
ators

a3 1 . 4
o) = [ B (age™ - ahe ) (3.6)

(2m)3 \/2E,
For an arbitrary ¢ we have ¢(t,x) = e(t=10)g(ty, x)e H(t—t0),
When A =0 H becomes Hy and we have

(t,x)],_, = (2o, x)e T = (¢, x) (3.7)

We will call ¢; the interaction picture field.
Since we can diagonalize Hj, we can have an explicit expression for ¢;:

dp 1 A A
t,x) = ape?® 4 qf g7 3.8
onlt:x) = [ Gl e 3:5)



We will now express the full Heisenberg field in terms of ¢;:

o(t,x) = eiH(tfto)efiHo(tfto)¢I(t’ X>eiH0(t—t0)efiH(t,tO)

(3.9)
= UT (tu t0)¢1<t7 X)U(ta tO)
where we have defined the (unitary) operator U(t,ty) = e*Holt=to)g=tH{t=t0),
We note that U(t,ty) is the unique solution of the differential equation
.0
ZEU(t, to) = Hi(t)U(t — to) (3.10)

with initial condition U(tg, o) = 1, where H;(t) = etfolt=to)(\H,, e iHo(t=t0)  The
solution of this equation is

Ult,to) =T {e_iftto d”ff(“} (3.11)
where T is the time ordering symbol defined by

T{AL(t1)As(ta) - - - An(tn)} = T{AL(ti)) Aa(ti,) - Anlti,)} (3.12)

where A;(t1)Az2(ts) - - - An(t,) is an arbitrary product of operators and t;,, ti,, .. b,
are the times ¢4,...,t, relabelled such that ¢;, > t;, , . > t1. It is simple to
generalize (3.11) to arbitrary values of the second argument, obtaining

U(t, 75/) — T {e—if:/ dt/HI(t/)} (313)

We will now give an expression of |2). We start with |0), the ground state of Hy,
and we let it evolve through time with H. Using a complete set of H eigenstates
we can write

e T |0) = Ze BT 1n) (n|0) (3.14)

We assume that |2) has some overlap with |0), i.e (€2]0) # 0. Then the above
series contains |Q2) leading to:

e |0) = e T 1Q) (Q)0) + > e |n) (n)0) (3.15)
n#0

with Ey = (Q] H |Q2).
We can get rid of all the n # 0 terms in the series by sending T' — oo(1 — i€) Since
E, > Ej the first term dies slowest, so we have

im e AT10) =  lLim e BT Q) (Q0) (3.16)

T—oo(1—ie) T—00(1—ie)
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Since T' is very large we can shift it by a small constant, obtaining

|Q> — lim (efiEo(Ttho) <Q\O))_1 o tH (T+to) ’0>

T—o00(1—1€)

—  lim (efiEo(Ttho) (Q\O))fl o~ tH (to—(=T) ,~iHo(~T—to) 10) (3.17)

T—o00(1—1€)

= lim (e BT (Q)0)) T Ulty, —T) |0)

T—o0(1—1€)

4 Path integral in scalar quantum field theories

We will now apply the path integral formalism to scalar quantum field theories.
Our goal is to calculate the n-point correlation functions, denoted with the symbol
(Qp(x1) ... ¢(x,) |2), which can be related to measurable quantities through the
Lehmann-Symanzik-Zimmermann reduction formula.

In analogy with formula (2.8) we define the transition amplitude

(@n(2l6a(00)) = (Gl e [9,(0)) = N [ DoDme = )

Where D¢ (D) stands for [ do(xy) (H dﬁ(xk)) and ¢(x) is constrained to the
k k

configurations ¢, (x) at 2° = t; and ¢,(x) at 2° = t,.

In order to calculate correlation functions it is useful to consider the theory in the
presence of an arbitrary source term J(x), i.e. adding to the Lagrangian the term
J(z)p(x). We then define the generating functional

W) = (QQ), = N / DDt | demi=H1o (4.2)

For a scalar field we consider the Hamiltonian H = [ d&*z[37? + 3(V¢)? + V(¢)].
Integrating over 7 as in (1.10) equation (2.2) becomes

Wl[J] =N / Dee' | ToL+7o (4.3)

with £ = 19,00"¢ — 3m?¢* — V(9).

Integral (2.3) is oscillatory, there are two ways to fix this problem:

a) we can put in a convergence factor e~ 2" with € > 0;

b) we can define the generating functional in the euclidean space setting zo = —iZy,
xr; = x; and obtaining

Wg[J] = Ng / Dee~ | 47Lp=10 (4.4)
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With Lp = 10,00"¢ + im?¢? + V(o).
The free theory
We will calculate W[J] for a free field using the —ie procedure.

The Lagrangian for a free field is £ = $8,¢0"¢ — 3m?¢?. Equation (4.3) with the
—i€ procedure becomes

WolJ] = / Depe' [ 30u00"6=3m*¢*+J6 (4.5)

Expressing the exponent in the integral in terms of the Fourier transforms of ¢
and J we obtain

WolJ] = N/D¢6§fd4p[<?>’(p)[p2—m2+i€]d3’(—p)—j(p)[pz—m2+i€]1j(—p)] (4.6)

where ¢/(p) = ¢(p) + [p* —m?* + ie] " (p)].
The new variable ¢’ differs from ¢ by a constant in function space so D¢’ = D¢,
thus

WolJ] = Ne_%fd‘*ppz‘f(,z)zliie /D¢€;fd%;amaw—;m%um
Y (4.7)
ot
N can be chosen such that W,[0] = 1, with such a choice we have
WolJ] = e~ zt/1812020 (4.8)

where J; = J(21), J2 = J(22) and Ay = Az —22) = | %%—IZZ. We have
also used the notation

o)), o :/d4xj.../d4xkf(x1,...,xn)

4.1 Correlation functions

We now show, as can be found in [4], that correlation functions can be calculated
taking the functional derivatives of W[J] with respect to J at J =0, i.e.
QT{p(x1)---P(wn) 1 |) 1 1 0" WiJ]

Q) N WI0] 6 (x1) .. 0 ()

(4.1.9)



The right-hand side of equation (4.1.9) is simply

5J(xf;.v.v.[i]f(mn) e NN / Do) ... dla)e' - (4.1.10)

. T
For simplicity we consider [ Dog(x1)d(zs)e’ Jog dtaL , the generalization to the n-
point correlation functions is straightforward. First we break up the functional

measure /Dgzﬁ (2) = / Dér (x) / Depy(x) [ D¢(z)

Where the * means that the integral is constrained by the conditions

(a1, x) = d1(x)

O(a3,%) = ¢a(x) (4.1.11)

Thus, assuming 29 > x¥, we have
[ Potrstaota)e
:/D¢1(X)/D¢2(X>¢1(X1)¢2(X2)/D¢(x)eifTTd4M

0 0
z( [ dtec+ [73 e ) d4x£)
1

— [ D61 [ Dostion(x)en(x) [ Do(o)e

— [ Dorx) [ Doatx)

01(x1)da(%2) (9] T |65) (o] e =D 1) (] e HEHHT) |5,
(4.1.12)

In the last line we have used (4.1).
Using the relation® ¢g(x1) |¢1) = ¢1(x1) |¢1) and the completeness relation

/D¢!¢> (6] =1

we obtain

/ D¢(£)¢(I1)¢(I2)el fTT dzl _

/ Doy (x) / Depo(x) (] € T 3 (xg)e @458 o (31 ) 7@+ | o, )
(4.1.13)

2In the following we will use the subscript S to denote Schrodinger operators and the subscript
H to denote Heisenberg operators.



We can turn a Schrédinger operator into an Heisenberg one using ¢y (7,x) =
e HT pg(x)e T 50 (4.1.13) becomes

/ Déo(w1)d(x2)e "1 U7 — (4| e HT G (20) b (wn)e HT |de)  (4.1.14)

If 20 > 29 the order in which they appear in (4.1.14) would be inverted, so we can

write (4.1.14) for arbitrary 2%, 2 using the time ordering operator:

/ Déo(w1)d(w2)e’ 117 — (@4 e HTT{ G (w3)dur (1) Ye T |6 (4.1.15)

Let’s consider the term e="#7 |¢,) in the limit T — oo(1 — ic). Using a complete
set of H eigenstates we can write e 7 |¢,) = > e BT |n) (n|¢,). Assuming
n

(Q¢a) # 0 we have

e T |6,y = e BT Q) (Qla) + Y e BT [nY (n]6)
n#0

with Ey = (Q H|Q).
Since E, > Ej the first term dies slowest, so we have

li € if w) = lim e T 10 (Q Da 4.1.16
1 —>001I(111—ie) ’¢ > 1 —>001(1—i6) ’ > < ’ > ( )
Analogously
li ifT _ lim e 1o op|2) (02 4.1.17
1 %oolr(rll—is) <¢b| ‘ 1 —>001(1—’i6) < b| > < ‘ ( )

Inserting (4.1) and (4.1.17) in(4.1.15) we obtain

lim / Do (a1)d(wy)e ra'e

Tso0(1—ic (4.1.18)
— (64192) () € E2 071 (Q| T 31 (21) 11 (22)) [ )
Repeating the procedure with [ Dge’/-r 7L we find
[ Dot 0 — (ou] T g, — B () (1]9) (4.1.19)
Finally we have:
T} ) — i AP0 T

T—o00(1—ic) f D¢6i [T dizc
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So, if we pick N’ in (4.2) such that

f D¢ o [EpdteL+Je
o ngzSe’LTT d4zl

W[J] (4.1.21)

taking care that the temporal limits of integration are +00(1—i€) and remembering
(4.1.10) we obtain what desired:

1 82w

QT D= = 4.1.22
< ‘ {¢($1)¢($2)}‘ > i2 (5J($1)5J(£C2) o ( )
4.2 Connected Green’s Function
We define the n-point Green’s function by
GO (2, ) = (QT{o(z1) - - P(n) } [€) (12.1)

(2[2)
With the choice of the generating functional as in (4.1.21) we have (Q|Q2) = 1. We
now define the connected Green’s functions recursively
GO(21) = GV (ay)
GO (21, 25) = GP (w1, 25) + GV (1) G ()
G (21, 19, 13) =GP (21, 29, 23) + GV (21)GP (29, z3)
+ GO (29)GP (1, x3) + GV (23)GP (21, 22)
+ G (1) GO (22) G (5)

And for an arbitrary n

G (2y,...,20) = ZGE”l)(xpl, . ,xpnl)GE”Q)(:cql, e Tg,)

-~~G((:”k)(xrl,...,xrnk)

(4.2.2)

where we sum over all indices n; such that ny + ... +n; = n and over all the
permutations from 1 to n of the indices in the set py,...,p,,, etc.
We can write (4.1.9) in the form

Wi =" () J(w) G (. yw)), (4.2.3)
n=0
where (---)_ stands for [dz;...dw,.
Defining Z[J] such that '
W[J] = "4l (4.2.4)
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we now show,following [5], that Z[J] generates the connected Green’s functions,

1.e.
N

iz =%" % (J() - T (@) GO (. m)), (4.2.5)

We start by rewriting T(LZ.Q.Q) as
G(”)(xl, S
Z Zp GO(. L GO( ..)l][gg)(. C)) - GO )]+ (4.2.6)

.

-~

{or} P o1 factors o9 factors
where {01, ...,0,} is a partition of n such that n = o1 +. ..+ no, with o} denoting
the number of copies of ng)(- -+ ), the dots denote the coordinates x1,...,z, in

some fixed order and P denotes the permutations of these coordinates leading
to inequivalent products of connected Green’s functions. The number of such

permutations is
n!

ol o (1) (2072 - - (nl)on

In fact there are n! permutations of the n coordinates to which we have to sub-
tract 0! permutations, for every k, corresponding to the exchange of the factors
G®)(zy,..., 1) and another k! permutations for every G®)(x,... 2;) because
Green’s functions are invariant under permutation of their arguments.

Inserting (4.2.6) in (4.2.3) all the terms in the second summation give the same
contribution being integrated over all the coordinates, so we have

= (JdaGO@I@)" ([ dedyGE (,y) (@) )
J]zZZz( L ) ( ool(21)72 )

N=0{o}

(4.2.7)
N
with the second summation subjected to the condition ) ko = N.
k=1

We note that Y > = > where the right-hand side summation has no restric-
N=0{ox}  {ox}
tion. Thus each oy is independently summed from 0 to oo yielding

Wi = > S GO@I) " Y (GO I (428)

Noting that each factor in (4.2.8) is the expansion of an exponential we have

<G(1)(x )>+2| <G x,y)J (z,y) > - eN . Nt <G(N) @1,...,%n)J (21) J(wn)>

W[J] = (4.2.9)

12



Finally using definition (4.2.4) we obtain

n

=2 it S (20) G (@1, - @) (4.2.10)

~.

(4.2.5) implies

G (1, 20) = in_laj(xf)n.z.%]t](xn) (4.2.11)
In the euclidean space we define
WplJ] = e~V (4.2.12)
Thus obtaining )
G (w1, w0) = Fl)w@ffﬂﬁga (4.2.13)

5 Exponential interaction

In the following we will consider a D dimensional space. We will also make use of
the relation due to Schwinger

W[J] = Ne {V(57)) =%l (5.1)

Where Zy[J] is the connected Green’s functions generating functional of the free
theory.
Let us prove (5.1):

_ / DipelLo—V(@r+I6) _ o~V (8) o~ Zal] (5.2)

Formally for a quite regular function F

F (%) M =3, <%) e =3 "c gmel’? = F(g)et? (5:3)
n=0

n=0
In particular
W[J] = Ne= V@2l — Ne™ {V(37)) g~ 2ol] (5.4)
We will now consider the interaction dictated by an exponential potential: V' (¢) =
D ap
e’
Using (5.1), the generating functional for this potential is

o0

W) = e ) i




Setting a,(y) = ad(x — y), we have
ea%(z)e—ZO[J] — e—Zo[J-i-a;c] (56)

which is the functional analogous of the translation operator, where

Z()[J + Oél«] =

_ % /dDydDz(J(y) +ad(z —y)A(y — 2)(J(2) + ad(z — 2)) (5.7)

= 2] - 580 - o [ uIaw - 7)

Using (5.6) the generating functional (5.5) becomes

_ - (_ND)k —Zo[J+apy +etam, |\, ZolJ] - <_MD)k @A(O)G

W =) (e ) =y e W[J](5.8)

k=0 ' k=0 )
Where the Gy[J] are defined as follows:
GolJ] =1
k k
a[dPzJ(z) Y A(z—zj)+a? > Azj—z) (59)

Gl /] :/dDzl.../dDzke i=1 T

Noting that functional derivatives commute to the right of the first exponential in
(5.5), Green’s functions in the euclidean space are given by

5Ne—ZO[J+aZ1 +...+o¢zk]

Ggw(m,...,x]v):kz%<(_1) N ENRIET > ) (5.10)

0

.....

6 Exponential interaction as master potential

In this section we will calculate the generating functional for polynomial interac-
tions considering the exponential interaction as a master potential.
The starting point is to note that

¢n = 8260@}01:0 (61)

Thus if we consider the potential V' (¢) = %(b” we can write the generating func-
tional, using (5.1), as

a=0
- -\ n n a2 apS\ — (62)
:Z (k"n)l aoq "'8ak <€ 1§J>"'<e k‘”>e ZO[J]|a(k):0



Whit a® = (aq,...,a).

We will now consider normal-ordered potentials : ¢™(z) : i.e. where all creation
operators are to the left of the destruction operators.

For an arbitrary regular function of ¢ Wick’s theorem states

T{Flg)} = @@ 5w, . plg) . (6.3)

Obviously if there is only one operator T{F[¢]} = F|¢], thus isolating : F[¢] : in
(6.3) we have

L5 A(ry) S
L Flg) = e 2 w@ Vw6, plg) (6.4)
We will now compute : e**®) : using (6.4):
: 604¢(z) - 6*%<%A(931*12)#952)>6a¢(z)
- 1/ 6 5 " 6.5
=2 (" <—A(w1 ) >> ot 09
2\ 2 \Gota 55(e2)

We note that

_ 0 ()
< 53 x2>6¢<x2>>me

<5¢( Az — z9)ad(z — x2)6a¢(x)>xw2
= (A(x; — x)ad(z — z1)e O‘“i’(x))zl = a’A(0)e*®
Thus (6.5) becomes:

ap\x G 1 1 " aplx 71 2 aplx
God(a) _ Z(ﬁ (—504%(0)) $z) _ o-3a?A0) yad(a) (6.6)
Remembering that 07 f(z)g(z) = Y (})0% f(x)02 " g(x), from (6.6) and (6.1) we
k=0
find: .
n o2
(o)t =0 e =D (k) Oke= 2B ok (6.7)

k=0
Thus using (5.1) we can write the generating functional as in (6.2), with the

2
k A (0)

difference that each <eak%) is multiplied by e~ 320 je.

W) =

X (=NE L o et Vs _ed (6.8)
D O (e e FAO (i) A0S

k=0
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So when we apply the translation operator (€157} we can replace Zo[J + a,] in

(5.7) with
ol + o) = Zo[J] — a / 4Py (1) Al — ) (6.9)

We then obtain

W(n —Zo[J] Z kk' 041 . a;tk < _ZO[J+azl+--~+azn]>

(=)
:Z< )k)klagl. O (6.10)

k k
d® ajA(y—z; a;oqA\(zi—z
/dDZl /dDZkef yJ(y)ng Ay J)+l§j A (zj—2)

ak)=0

6.1 An explicit expression for W({[J]

We will now derive a more explicit expression for (6.10).

We start by considering the case J = 0

k
" e (=N)F ., I D s )
WO = 3 n O, (e M a0 (6.1.1)
k=0,k1

Expanding the exponential the only terms in the summation giving contributions
are, for each k, the ones containing of ...a}. Thus when kn is odd there are no
contributions to the kth term of the summation. Instead when kn is even the
derivatives select, after setting a*) = 0, n!* times the coefficient of a7 ... ay.

In what follows it will be useful to consider the multinomial identity

kn

_711 (ZO‘JO" )) = Z - L H(ajalA(zj—zl))mﬂ (6.1.2)

>3 ma! >3
Z m]l_m H l
1>j5 l>]

where 0 < mj < ’“2—”
For each | = 1,..., k the total exponent of oy in (6.1.1) is

Z mi + Z mi; (6.1.3)

j=l+1

There are contributions to the kth term of the summation (6.1.1) only when
P=...=pp=n (6.1.4)

16



which gives Zpl = kn. Noting that equation (6.1.3) implies Zpl =2 E mji, we

=1 =1 >7
k
have that condition (6.1.4) includes the condition Y mj; = % in the summation
1>j
in the right hand side of (6.1.2).
Thus
wo = >0 S o (34 (S emats -
nlkk! ' s! 7 : (K =0
k=0,k#1 I>j =
SISl SENTIT) § (NCRE
k=0,k#1 P1=...=pr=n 1>y
(6.1.5)
with
! for kn even
[k|lm] = { LLma! (6.1.6)
0 otherwise

We will now extend the analysis for an arbitrary J.
For each k in the (6.10) the terms in the expansion of the exponential containing
af ...ag, unless in the case J = 0 with kn odd, satisty

[Tn] kn—2p E p
1
a0 -)  (Somata)

p=0 y >3

1
- Z Z *® k (6.1.7)

p=0 & k N .|
> qi=kn—2p > mj=p H i H myji:
: 1

I

i=1 >4 =1 >3
k k
[T W aaly —z))E ] [(aoni(z; — )™
=1 >3

where [a] denotes the integer part of a, 0 < ¢; < kn —2p, 0 < mj < p.
Let us first show that (6.1.7) reproduces (6.1.2) for J = 0. When kn is even, for
J = 0, all the terms (J(y)a;A(y — z:))¥, i = 0,...,k in the right-hand side of

Yy Y
(6.1.7) are zero unless ¢; = 0.
kn—2p

k
Similarly, when J = 0, the term <J (y) > oAy — zz)> contributes only for
i=1

)
kn — 2p = 0. Therefore, for J = 0, the summation over p in (6.1.7) reduces to

17



k
the term with p = . Since ¢1,...,qx = 0, then [] ¢;! = 1 and (6.1.7) reduces to

i=1

(6.1.2).

When kn is odd and J = 0 the kth term in (6.10) is zero. Let us show that (6.1.7)

reproduces this result. If kn is odd and J = 0 then again the right-hand side of
k

(6.1.7) is zero unless ¢; = ... = g = 0, but this would imply ) ¢; = 0 that cannot

=1
be equal to the odd number kn — 2p. So the only configuration that would give
contribution is not included in the summation, thus (6.1.7) is zero for J = 0 and
kn odd.

For each [ = 1,...,k and for each choice of the m ;’s the total exponent of a; in
(6.1.7) is
Zmll + Z my; + q (6.1.8)
J=l+1

The conditions in the summations indices in the right-hand side of (6.1.7) imply

sz—22mﬂ+qu_2p+kn—2p kn (6.1.9)

>7

The only terms that give contribution in (6.10) are the one containing

af ...a} ie. with py = ... = p, = n, but this condition implies (6.1.9), thus we
have
kn
(n) 2N~ (2N -
WO = *H ) 2. X
k=0 p=0 & p1=...=pr=n
1-2‘11':’“”‘2” (6.1.10)
k
k|qu y— z) q’HA F— )"
=1 I>j
whit [k|m,q] = —F—.
H q;! H mgl

6.2 Four-point connected Green’s function

We will now calculate the four-point connected Green’s function for the potential
1 @™ : in the euclidean space using the method exposed in this section.

We will give an expression in function of the one, two and three point functions.
An expression for the one and two point functions can be found in [2], the three
point function can be calculated easily repeating the procedure we will now follow

18



for the four point function.
It is easier to start again from expression (6.10). In the following we will use the

notation (@1 -+ ¢n) = Gpe(T1,...,T5).
We have
§* log(WM™[J
(91920504) = 6J1§§25J3(5[J1> o
— (P10304) (D2) — (D103) (P2da) — (P1a) (P20b3) — (1) (P230a)
— (@104) (D2) (D3) — (D1) (D204) (P3) — (P1) (P2) (P300a) — (10260 (D3)
— (9102) (P304) — (D103) (P2) (Pa) — (P1) (D263) (Da) — (D1) (P2) (P3) (Pa)

1 W]
= (9102) (95) (0) = (010200) 1) + {55 7o dud |

(6.2.1)
Setting
= kk" al n
=4 . . (6.2.2)
/dDzl N /dDZkefd yJ(y)]ElajA(y—Zj)+l§ajalA(z]‘—zz)|a(k):0
we have, from expression (6.10),
W] = extA0 F[J) (6.2.3)
Thus
1 SW ]
(M[0] §J10J20J30 T4 | ;_,
= Am(( 3) (P4) — (P3d4) — Ass) + A13({P2) (P4) — (P204) — Aoy)
+ Ara({P2) (P3) — (D203) — Ass) + Do3((@1) (@4) — (D1604)) (6.2.4)
+ Aoy ((¢1) (d3) — (9103)) + Asa((d1) (P2) — (192))
1 SYP[J]
T WO0] 51162005001 |,
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where we have used the notation A;; = A(z; — ;).
Let us calculate the last addend in the summation:

SF[J = (=
L > A" Lo O
5J15J25J3(5J4 J=0 P (n')’“k" ! k
/ /d 2k Z s, AT — 20) A2y — 25)
b (6.2.5)
Z ajog(zj—2)
Axg — z) A(zg — 2,,)€>7 l Z
ak)=0
0o (_)\)k . . k 12,34 lzi:-ajalA(Zj_ZZ)
- Z (nl)kk|aa1 'aOék dz Z Qr Qs Ay <]T,s,t,u e’ o
k=0 7,8,t,u «
Where we have set [dZ = [dPz ... [dPz, and <i§f’;‘ = Az — 2)A(z9 —

2s)A(z3 — z:)A(x4 — 2,). Again, as in (6.1.1), there are contributions only when
kn is even and expanding the exponential the terms containing of ...} are
kEn—4

2
kn 4 Z O (L OOty < ,{ffj (Z%Oél —zl)> (6.2.6)

! r,8,t,u >j

For simplicity we will restrict the analysis to n > 4.

Let us consider separately the cases k =1 and k = 2.

When k = 1, because the second summation in (6.2.6) starts from k& = 2, there
will be contributions only when the exponent is zero i.e. when n = 4. Thus the
contribution to the series for k =1 is

o ——84 /dDZ a4<]1,2,3,4 — _\ <]172734 n
4 ( 411 111111 - < 1,1,1,1>Z1 4 (627)
= -\ <A(I’1 — Zl)A(lL‘Q — Zl)A(ZE:J, — Zl)A(l‘4 — zl)>z1 Z
When k£ =2 we have
(’I’L') ( '821822 /dDz1 /dD22
(6.2.8)

n—2
1234
E Qg0 <7, <§ ajouA(z —zl)>

r,s,t,u 1>

ay,a2=0

n—2
2
Noting that (Z ajouA(z; — zl)> = (a1anA(2z; — 22))" 2, the only term that

I>j
gives contributions is the one containing a?a3 in the first summation. Thus (6.2.8)
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becomes

)\2 n qn D D
gy |

0103(Q1Ts T <ans + st + Wt + <
+<1§f?3)(041042ﬁ(21—22 " 2}%&2:0 (6.2.9)
= 5 [ [t g <z <
U+ A -

[Rat]

We will now extend the analysis to £ > 3. The term containing of ... a7 is (6.2.6),
so the only contributions are given by

e’} _)\ k
> <<n!)k)k!8?...8,?/dDzl.../dDzk
k=3

knos (6.2.10)

1,2,3,4 3
L2384 NG
]m 4 Qs <1, 50 a0y - 2)

! r,8,t,u >3

a(k) =0

kn

, the total exponent of «; in the second

Zmﬂ + Z mi; (6.2.11)

J=l+1

Using (6.1.2), replacing % with
summation is

with the mj;’s constrained by the condition

k

kn —4
> my = 5 (6.2.12)

j>1

The terms in the second summation that give contributions are the one of the kind

af a?l_l a:;_l ot o

of ol Al aj, Lo}

of ol Poal o (6.2.13)
af ..ol ap

of ol

where clearly the i;s are not necessarily in order and can be equal to 1 or £ as
well. It is also understood that when k = 3 at least two of the indices i1, o, i3, 14
are equal thus reducing the first case to one of the cases below. It is crucial that
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n > 4 to have the last case.

k
We have " p, = kn — 4 that implies Y mj; = ¥4 which is exactly condition

2
=1 1>j
(6.2.12). Thus, using (6.1.2) and taking the derivatives, (6.2.10) becomes

00 _/\k k
Y Y Y

11,02,13,54=1 {P}n iy i, ig,ig

(A(2y — 23 )A(w2 — 23)) A(w3 — 235) A4 — 25, H A(z; — z)™") (6.2.14)
1> e
- 1,2,34 ;
- Z k! Z Z (<) 62 i i H Az —2)™")
k=3 T 102,834 {P}n,iqig,i3.,04 I>j 21502k
Where > means that the summation is constrained to the mjs which give

{p}n,il,iZ,i3,i4

Diy :n—1—6?2—5?3—5§'f
Py == 1= 5 = 51— 5
Piz =N — 1— 613 - 5z§ 51;: (6215)

(pj =nif j # d1,102,13, 14

Putting the various contributions together we obtain, for n > 4

SR | e
RV ARE AN L., %

_)\2 D D 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
-+ (n — 2)' /d 21 /d 22(41:1:2:2 + <]1:2:1:2 + <]1:2:2z1 + <]2Z1:2:1

(6.2.16)
1,2,34 1,2,3,4 e
+ <ot + <TT2)A(z1 — 29) 2

S (_)‘)k - 1234 )t
+ k! Z Z 11,22,13,14 H A - Zl J >

k=3 $1,82,13,04 {p}n»i1xi2yi3;l4 >j

Rlse-5”k
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Inserting (6.2.16) and (6.2.4) in (6.2.1) we finally obtain

<¢1¢2¢3¢4>

—(P19304) (P2) — (P103) (P201) — (P104) (P203) — (1) (P20304)
— (B104) (92) (P3) — (P1) (D204) (B3) — (D1) (P2) (D304) — (P10204) (P3)
— (P102) (P3a) — (P103) (D2) (Pa) — (D1) (P203) (Ba) — (P1) (@2) (P3) (¢a)
— (9192) (@3) (Pa) — (P10203) (Da) + A12({¢3) (Pa) — (P34) — As4)
+ Az((d2) (P14) — (D204) — Daa) + A1a({@2) (¢3) — (D2003) + Aa3)
+ A3 ((P1) (Pa) — (D104)) + Aos((P1) (P3) — (D103))

1
- Bua() (0n) = (0n0)) + s |-A D, 0
>\2
oy [ @ [ dPalalii+ <l aliil+ <

1,2,3,4 1,2,3,4
+<]2211+<]2112)A(21_Z2)

+ Z k' Z Z (4111213;43 in HA — )™
k=3

n—2

11,12,13,24 {p}n i1,i9,63,14 >3 21y 2k
(6.2.17)
7 Appendix: Explicit calculations
In the following we will sometimes use the compact notation Wy x[J] = 51‘_4?51

7.1 (p1920304)

We will calculate in chain the functional derivatives of log W[J].

dlogWlJ] 1 oW[J]

55 WL 6.4
FlogWJ] 1 SW[J]W[J] 1 *WI[J]
5§16,  W2LJ] 641 6Jy  WI[J] 810,
dlogWJ] dlog W[J] N 1 &W[J]
B §J 65y W([J] §.J16Js
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P logW[J] — 6*logW[J]dlog W[J] N dlog W [J] 62 log W J]

§J16J2005 0J10J3 0Jy 0.J; 0J20J3
1 PW[J W] L1 SW[J]
W2[J] §J16Jy 6J3 W1[J] 6160563
(_ 5log W[J] 6 log W[J]t 52 log W[J]) 5log W[J]
8J1 5Jo 57187y 573

_ 8*logW([J]dlogW[J]  dlog W[J] §*log W[J]

5J16J3 (5<]2 5J1 6J25J3

dlogW([J] dlog W [J] dlogW([J]  §log W([J] 6% log W[J]

Y 8.Jo §Js 0y 8.J10.J

L SW[J]

W[J] 6116265

(7.1.1)

StlogWl[J]  6°logW[J]dlogW[J]  6*log W[J] 62 log W[J]
§J10J50 036y 0J10J50dy  8Jy  0Li8J;  0JadJy

0 logW([J]8*logW[J]  6°log W[J] §log W[J]
0J10J4 0J30J3 0J50J30J4 91
_ logW[J]dlogW[J] dlog W[J]  6*log W[J] dlog W[J] dlog W[J]

0J10J4 0Jy 0J3 0J20J4 0Jy 0J3
% logW([J]dlog W[J] dlogW([J]  &°log W[J] élog W[J]
5J35J4 5J1 (5J2 5J15J2(5J4 6J3

_ logW[J]&*logW[J] 1 *W[J] 1 dW[J]
5100y 0J0ds  WIJ]616b0ds WJ] 6

* Slog W[J]
6Jy

1 W J]
WIJ] 8J16J20 364
Where * stands for

_ 0 logW[J]dlogW[J]  dlogW[J] §*log W[J]

0.J10J3 0.Jy 0J1 0.J20J3
dlogW[J]dlogW[J]dlogW([J]  dlogW([J]é*log W([J]
0 5.1z 0Js  0J5  0Ji0y
63 log W J]
0160505
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Remembering that (¢1--- ¢n) = % we finally have

<¢1¢2¢3¢4>
= — (P10304) (D2) — (P103) (P20b4) — (D10a) (P20b3) — (1) (P2304)

— (0104) (d2) (93) — (D1) (D204) (D3) — (¢1) (D2) (D304) — (D10204) (3)

— (9102) (P3001) — (D103) (D2) (Pa) — (D1) (D203) (D) — (1) (D2) (¥3) (P4)

1 WO
WI[0] 6.J16J26J30J4 | ;_,

— (B102) (93) (Pa) — (P10203) (Pa) +

7.2 Wi k0]

(7.1.2)

Calculating in chain the derivatives using the form (6.2.3) for the generating func-

tional we have
dF[J]

) 1 1
- A _ §<JAJ>F §(JAJ>_
S = WA —21)), AP 4 b

— (VA - o, £+ S s

;Z?; - <A12F[J] A, T+ gf (52]) U8
)8, 37
where Ay = A(y — z7).
e Gl T
5;1;1?%) e3(IA) 4 (J(?J)Ay3>y 5({5]21?;2 + Ao g?j
WA,
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(7.2.2)

(7.2.3)



5 S2F[J] S2F[J] S2F[J]
0 (A A A
5710720 750 7 ( A Ay S 3 A N A

P BFUL Y s
V5T T500s 060850,

+(J(y)An)

W »BwW W
- 4 Aga— 7.2.4
T Augrsr T WA, g5+ dmgrr (T24)
2w W
A Ay 2
T AugrsT WA, s
W
+ <J(y)Ay4>y 6J15J35J4
Setting J =0
S A PEY L L
01002005000 | g C0Js0du| g 0Ja0 sy 005,
SE[J] 5w
B e B 7.2.5
MR AR P VA A B (7.2.5)
LA 5w N W
SV P VT I
From (7.2.2) we have
62 F[J] 2W1J|
= — WI0|A, 7.2.6
0Ja0dy| g a0y | g 10]2a (7.2.6)
Furthermore from (7.1.1)
1 ?WI[J]
S — (s — (b, 72.7
W[O] 5J15J2 o <¢ > <¢b> <¢ (bb) ( )
Thus
1 W]
]0] 87161200500y | ,_,
= A12(( 3) (P1) — (D304) — Asa) + A13((@P2) (Pa) — (P2da) — Asa)
+ Ava((p2) (B3) — (P23) — Daz) + Doz ({¢1) (P4) — (P104)) (7.2.8)
+ Dos((P1) (@3) — (D103)) + Asa((P1) (P2) — (D162))
L1 4[]
W0] 81600 504 |,y
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