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Abstract

An optical system for the generation of a beam with a variable and controllable polarization

status has been designed, realized and tested. The system is based on a interferometric

set up, consisting of a split system, a phase delay system and a recombination system.

The input beam is split in two beams, which are linearly polarized respectively on two

perpendicular directions. The beams propagate along the two lines of the interferometer.

The optical path of the lines is linearly and finely controlled by a piezoelectric translator

stage. The beams can then be recombined changing the phase delay between the two.

By controlling the optical path, it is possible to obtain every polarization status: linear,

elliptical and circular. The system can be all reflective, therefore working in a wide spec-

tral band of the electromagnetic spectrum, from the near-infrared down to the extreme

ultraviolet, where the use of transmission optical elements is forbidden. The system can

be integrated in different optical set ups in order to enhance their versatility, such as in

laser devices, optical instrumentations, synchrotron lines or of free electron lasers beam

transport system, and in the visible spectral range can represent an alternative solution to

the Liquid Crystal Variable Retarder. Different optical scheme has been mathematically

modeled and analyzed. Two setups based on the Michelson and Mach-Zehnder interfer-

ometric systems respectively have been realized and experimentally tested on the optical

bench, proving the feasibility and proper working of the proposed systems.
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Introduction

Light sources with controlled polarization states are of great interest for many applica-

tions, as in biology, chemistry, physics, and material science [1]. For example, satellite

communications use two polarization states to double the transmission capacity [2–6];

laser sources in different polarization states are required in quantum cryptography [2–6];

circularly polarized light is used in chemistry and biology for the study of molecules with

circular dichroism [7]; linearly and circularly polarized light finds applications in various

types of ophthalmic metrology [8, 9]. However, in most of these applications, the used

lasers are linearly polarized TE and TM. Other polarization states can be only obtained

by the use of optical components like the conventional waveplates or the liquid crystals,

usually included in the standard interferometric schemes [10]. The current commercial

Polarization State Generators (PSG) are optical systems based on liquid crystals and they

allow to generate any polarization state as long as the input polarization is linear. The

technology is well established in the VIS and in the IR, and although innovative proposals

and alternatives have recently been reported [11, 12], the issue is still open and of great

interest. In the spectral range of EUV and soft x-rays, the polarization control provides

an accurate tool for investigation of the properties of the matter at the nanoscale range

[13]. Moreover, the rapid development of sources for generating X ray Free Electron Laser

(FELs) can generate femtosecond pulses and short wavelengths and allow a temporal and

spatial localization of the magnetic properties of the material [13].

This thesis work presents an innovative polarization control system, conceived to ac-

tively control the polarization. The system is based on a interferometric setup, in which

each single subsystem can be adapted to work at a specific selected wavelength or spectral

range. Such optical system can change the polarization to linear, elliptical or circular,

independently by the initial polarization status. The system works in a large band of the

electromagnetic spectrum potentially without using any optical elements in transmission;

therefore, it can be applied also at short wavelengths in the UV where material is opaque.

As it is based on an interferometric principle, the system allows to realize a continuous

spatial distribution of polarization along a precise direction of the observation plane. This

system can be integrated in different optical setup in order to enhance the versatility,

such as on laser lines of synchrotron or of free electron lasers, or it can be sold as PSG
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INTRODUCTION

or as an alternative solution to the Liquid Crystal Variable Retarder, whenever it is not

necessary to change the polarization status in high frequency. The same system can be

adopted in the optical schemes already foreseen at FERMI@ELETTRA for implementing

the pump-probe experiments [14].

In the following pages, the system is analyzed trough a detailed mathematical model,

which takes into account also second order effects. The system has been constructed and

tested at the CNR-IFN Laboratory in Padova (see Figure 1), realizing two configurations:

one based on the Michelson interferometer setup and one based on the Mach-Zehnder one.

As a first approach, a visible laser light has been used as a source due to the simplest

operative conditions. The feasibility and the functioning of both systems was tested. The

measurements obtained during the test faithfully reproduce the theoretical simulations

demonstrating the capability of the system on controlling the polarization status of the

output beam. The next step will be testing the system at shorter UV wavelengths (200-400

nm) and then trying to apply it to the VUV spectral range (<200 nm).
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Figure 1: A general view of the real system in CNR-INF Laboratory of Padova.
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Chapter 1

The Polarized Light

In general there are different notations to describe the propagation of a electromagnetic

wave and its polarization. The most used are the Mueller matrix formalism [15, 16] and

the Jones matrix formalism [15, 17]. The Mueller calculus is based on the Stokes vectors

and it is ideal to describe the unpolarized or partially polarized light. Each optical element

is represented with a 4x4 matrix. On the contrary, the Jones matrix formalism describes

a fully polarized light, and it should be particularly preferred in presence of coherent light

because it works with electric field amplitude rather than intensity.

As the polarization control system deals with only coherent and polarized beams, the

entire analysis is based on the Jones matrix formalism. However some of the basic concepts

are reported with the Stokes parameter notation for the sake of simplicity.
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CHAPTER 1. The Polarized Light

1.1 Ellipse of Polarized Light

A beam is said to be polarized when the vibration plane of the electric field follows a

well-defined law. Fixing a tridimensional cartesian system xyz, the electric field vector

of a generic plane wave propagating along the z direction can be decomposed in the two

perpendicular components represented by

Ex(z, t) = E0x cos (ωt− kz + δx) [V m
−1] (1.1)

Ey(z, t) = E0y cos (ωt− kz + δy) [V m
−1]. (1.2)

The notations x and y refer to the components in the x and y directions, E0x and E0y are

the maximum amplitudes, ω is the angular velocity, δx and δy are the phase constants,

while k is defined as k = ω/c. The original electric field is the vectorial sum of the two x

and y component

�E(z, t) = �Ex(z, t) + �Ey(z, t). (1.3)

This vector describes a locus of points in space, and its components (1.1) and (1.2) can be

decomposed through the fundamental relations of trigonometry

Ex

E0x
= cos τ cos δx − sin τ sin δx

Ey

E0y
= cos τ cos δy − sin τ sin δy.

where the propagator term τ is defined as ωt− kz. Consequently,

Ex

E0x
sin δy −

Ey

E0y
sin δx = cos τ sin (δy − δx)

Ex

E0x
sin δy −

Ey

E0y
sin δx = sin τ sin (δy − δx).

Squaring and adding the equation of an ellipse is obtained

E2
x

E2
0x

+
E2

y

E2
0y

− 2
Ex

E0x

Ey

E0y
cos δ = sin δ2, (1.4)

where

δ = δy − δx.

Equation (1.4) shows that at any instant of time the locus of points described by the

optical field propagates as an ellipse (Figure 1.1). This phenomenon is called polarization

of the light.
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1.1. Ellipse of Polarized Light

Figure 1.1: The generic polarization ellipse.

From (1.4) it is easy to verify that the polarization ellipse degenerates in special forms

for certain values of E0x, E0y, and δ. This main special forms are now analyzed.

1. LINEAR (horizontally or vertically):

If E0y = 0 from (1.1) and (1.2) we obtain





Ex(z, t) = E0x cos (ωt− kz + δx)

Ey(z, t) = 0

With this assumption the electric field lies in the xz plane and the ellipse collapse to

a straight line coincident to the x axis. For this reason the light is said to be linear

horizontally polarized.

Similarly, the linear vertically polarized light is obtain for Ex(z, t) = 0 and Ey(z, t) �=
0 (see Figure 1.2).

2. LINEAR (sloped of ψ angle): δ = 0 or δ = π.

Replacing the conditions in the ellipse equation (1.4)

E2
x

E2
0x

+
E2

y

E2
0y

± 2
Ex

E0x

Ey

E0y
cos δ = 0
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Figure 1.2: Two linear polarized waves are propagating trough the z axis. The blue one is
vertically polarized with E0y = 2 and δ = 0, while the green one is horizontally polarized with
E0x = 2 and δ = 0. Their superposition creates a new linear polarized wave, in this case with slope
ψ = 45◦ as the E0x = E0y.

that is equivalent to �
Ex

E0x
± Ey

E0y

�2

= 0

Ey = ±
�
E0y

E0x

�
Ex. (1.5)

Defining the constant parameter K as

K =
E0y

E0x
,

the (1.5) can be written as a the equation of a straight line passing through the

origin

Ey = ±KEx

where the K is the tangent of the inclination angle ψ of the oscillating plane

ψ = arctan

�
±E0y

E0x

�
.

In this case the light is said to be linearly polarized with slope ψ.
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1.1. Ellipse of Polarized Light

In particular if the E0x = E0y, then from (1.5)

Ex = ±Ey.

This means that light is linearly polarized of +45◦ if the δ = 0, otherwise linearly

polarized of -45◦ if δ = π (see Figure 1.2).

In general in linear polarized waves the oscillating plane always lies parallel to itself.

3. CIRCULAR: E0x = E0y = E0 and δ = π/2 or δ = 3π/2.

From (1.4) the equation ellipse reduces to

E2
x

E2
0

+
E2

y

E2
0

= 1

which is the equation of a circle. Unlike the linear polarization, now the electric filed

rotates with a constant angular velocity and the direction of its rotation is fixed by

the phase displacement of its component. For clockwise direction δ is π/2, on the

contrary for counterclockwise rotation δ is 3π/2 (see Figure 1.3).

In a general polarized wave the expression of inclination ψ of the ellipse can be derived

from algebraic manipulation of the parameters, which ends to the following expression [15]
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Figure 1.3: A circular polarized wave (red) is propagating trough the z axis with a clockwise
rotation and it is decomposed in the two perpendicular components Ex and Ey (E0x = 2, E0y = 2
and δ = π/2).
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CHAPTER 1. The Polarized Light

tan 2ψ =
2E0xE0y

E2
0xE

2
0y

cos δ. (1.6)

In order to characterize the polarization ellipse it is useful to introduce an auxiliary angle

α, which is defined as

tanα =
E0y

E0x
, (1.7)

0 ≤ α ≤ π

2
.

In this way the relation between the inclination ψ and the parameter α is now evident by

(1.6) and (1.7)

tan 2ψ =
2 tanα

1− tan2 α
cos δ

tan 2ψ = (tan 2α) cos δ. (1.8)

Another useful parameter is the angle of ellipticity χ, which is defined as

tanχ =

����
b

a

���� , (1.9)

0 ≤ χ ≤ π

4
.

The following relationship with the α angle can be derived

sin 2χ = (sin 2α)| sin δ| . (1.10)

By the trigonometrical properties (1.10) can be rewritten as

sin 2χ =
2 tanα

1 + tan2 α
| sin δ|. (1.11)

The angle of ellipticity χ shows how much the wave is elliptical. Analyzing the extremes

of the polarization, χ = 0 indicates a linearly polarized light, as b = 0. On the contrary,

circular polarized light is characterized by χ = π/4, as a = b.

The intensity of a generic polarized wave is now analyzed. The instantaneous intensity

of an electromagnetic wave is defined as

Iist(z, t) =
1

2
cnε0|E(z, t)|2. [Watt] (1.12)

Usually it is more interesting the average intensity, which is defined as the average in time
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1.1. Ellipse of Polarized Light

of the instantaneous intensity

Ī =< Iist(z, t) >

=
1

2
cnε0 < | �E(z, t)|2 >

=
1

2
cnε0 < | �Ex + �Ey|2 >

=
1

2
cnε0 <

��
E2

0x cos
2 (ωt− kz + δx) + E2

0y sin
2 (ωt− kz + δy)

�2
>

=
1

2
cnε0 < E

2
0x cos

2 (ωt− kz + δx) + E
2
0y sin

2 (ωt− kz + δy) >

=
1

4
cnε0E

2
0x +

1

4
cnε0E

2
0y

=
1

2
Īx +

1

2
Īy. [Watt]

In conclusion

Ī =
1

2
Īx +

1

2
Īy,

where

Īx =
1

2
cnε0E

2
0x

Īy =
1

2
cnε0E

2
0y.

This means that the intensity of a generic polarized wave is the sum of the half average

intensity of each perpendicular component. So it is preferable to base the analysis on a

normalized intensity I

I =
Ī

1
4cnε0

= E
2
0x + E

2
0y . [

√
V m−1] (1.13)
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CHAPTER 1. The Polarized Light

1.2 Jones Matrix Formalism

In order to characterize a polarized beam it is necessary to deal with amplitude and phase

relations. The two perpendicular components �Ex and �Ey are analyzed as different beams

and finally superposed to combine the result beam �E. But new problems arise when the

beams propagates through several polarizing components. To facilitate the analysis the

Jones Matrix calculus is used.

The Jones formalism involves complex quantities contained in 2-dimension vector,

called Jones vector, and 2x2 matrices, called Jones matrices. The Jones vector describes

the status of polarization of a beam. Preserving the previous notation, a electromagnetic

wave �E propagating along the z direction is represented as

�E(z, t) =

�
Ex(z, t)

Ey(z, t)

�
=

�
E0xe

i(ωt−kz+δx)

E0ye
i(ωt−kz+δy)

�
. (1.14)

In the frequency domain the term ωt− kz can be suppressed, so (1.14) can be written as

E =

�
E0xe

iδx

E0ye
iδy

�
(1.15)

which is the formal Jones vector. The maximum amplitudes E0x and E0y are real quanti-

ties, but the presence of the exponent with imaginary arguments causes Ex and Ey to be

complex quantities. Now the average intensity can be calculated by

I = (E∗
)
TE =

�
E∗

x E∗
y

��
Ex

Ey

�
= ExE

∗
x + EyE

∗
y = E

2
0x + E

2
0y.

It is customary to normalize the Jones vector to

E0 =
√
I =

�
E2

0x + E2
0y.

So the normalized Jones vector Enorm becomes

Enorm =

�
E0x
E0

eiδx

E0y

E0
eiδy

�
.

We now analyze the main type of polarized light trying to find the respective normalized

Jones vector.

1. Linear horizontally polarized light: Ex = 0, so E2
0 = E2

0x

E =

�
E0x
E0

ei0

0

�
=

�
1

0

�
.
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1.2. Jones Matrix Formalism

2. Linear vertically polarized light: Ey = 0, so E2
0 = E2

0y

E =

�
0

1

�
.

3. Linear +45◦ polarized light: Ex = Ey, so E2
0 = 2E0x

E =
1√
2

�
1

1

�
.

4. Linear -45◦ polarized light: Ex = −Ey, so E2
0 = 2E0x

E =
1√
2

�
1

−1

�
.

5. Clockwise circular polarized light: E0y = E0x and δy − δx = π/2, so E2
0 = 2E0x,

δx = 0 and δy = π/2

E =
1√
2

�
1

+i

�
.

6. Counterclockwise circular polarized light: E0y = E0x and δy − δx = −π/2, so E2
0 =

2E0x, δx = π/2 and δy = 0

E =
1√
2

�
1

−i

�
.

The components of a beam emerging from a polarizing element are linearly 1 related to

the components of the input beam. The relations between output and input components

can be written as

E
out
x = jxxEx + jxyEy (1.16)

E
out
y = jyxEx + jyyEy (1.17)

where the Eout
x and Eout

y are the output components of the emerging beam, Ex and Ey

are the components of the incident beam, while the coefficients jxx, jxy, jyx, jyy are the

transforming factors. The relations (1.16) and (1.17) can be written in matrix form as

�
Eout

x

Eout
y

�
=

�
jxx jxy

jyx jyy

��
Ex

Ey

�

1
The linear condition is verified only for isotropic and linear polarizing elements.
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CHAPTER 1. The Polarized Light

Eout = JE

where

J =

�
jxx jxy

jyx jyy

�
.

The 2x2 matrix J is called the Jones matrix. Jones matrix becomes a powerful tool to

analyze a beam which impinges N optical elements in series. In this case the output beam

can be calculated as the left multiplication of the equivalent matrix Jones to the input

Jones vector, so that as

Eout = JeqE = JNJN−1.....J2J1 E.

1.2.1 Jones Matrix Associated To A Polarizer

Usually a polarizer works in transmission and it linearly polarizes the input wave along

its main axis. The behavior of a polarizer follow the Malus law, which can be written in

the Jones matrix formalism as

�
Eout

x

Eout
y

�
=

�
tx 0

0 ty

��
Ex

Ey

�
, (1.18)

where tx and ty are the transmission coefficient along the x and y direction. However, for

a better analysis it is common to consider the main axis of the polarizer parallel to the the

x direction and rotate the polarizer system through a rotation transformation. In case of

an ideal horizontal polarizer, the Jones matrix is

Jp =

�
1 0

0 0

�
.

However, real polarizers are not able to fully polarize the input beam. To characterize the

quality of an horizontal polarizer, a rejection coefficient PML is introduced

PML =
ty

tx
.

with the corresponding Jones matrix

J =

�
tx 0

0 ty

�
.
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1.2. Jones Matrix Formalism

A good horizontal polarizer has a rejection coefficient close to 0, as tx is close to 1 and

ty to 0. The rotation of the polarizer can be controlled by the J(θ) matrix through the

rotation transformation

Jrotated = J(−θ)

�
tx 0

0 ty

�
J(θ), (1.19)

where J(θ) is defined as

J(θ) =

�
cos θ sin θ

− sin θ cos θ

�

and θ is the angle between the x direction and the axis of the polarized.

1.2.2 Jones Matrix Associated To A Mirror

A parallel analysis is made for mirror elements. The s direction is fixed coincident to the

y axis, while the p direction is fixed coincident to the x axis. When a polarized wave

propagating on the z direction impinges on a vertically positioned mirror, the reflected

wave changes its polarization status with the respect to the incident one. In fact each

incident angles involve different Fresnel reflection coefficients rp along the x axis and rs

along the y axis, and so different rejection parameter PM . Also the phase delay between

the p and s components usually changes. Only in the case of normal and grazing incidence

the reflection doesn’t affect the polarization status because rp � rs. So the Jones matrix

A for a mirror is

A =

�
rse

jϕs 0

0 rpe
jϕp

�

where the ϕs and ϕp are the phase delay introduced by the reflection. Now collecting the

term rse
jϕs

A = rse
jϕs

�
1 0

0 PMej∆ϕ

�

where PM = rp/rs is the rejection parameter for a mirror, while ∆ϕ = ϕp − ϕs is the

phase delay. As for the polarizer in (1.19), a rotation of the plane of incidence of a θ angle

(Figure 1.4), is represented by the following rotation transformation

Jones matrix of a polarizer and of a mirror are similar: both of them have a rejection

parameter and a phase delay. For a polarizer the rejection parameter depends on its

building quality, and usually it is very close to 0. On the contrary the rejection parameter

of a mirror changes on its incident angle θi. Moreover, the polarizer works in transmission,

so the output phase is unchanged with the respect to the input one. Conversely the mirror

works in reflection, so the output have a phase delay depending on the working angle. But
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CHAPTER 1. The Polarized Light

in general both optical element could be described by the following general Jones matrix

J =

�
pxe

jϕx 0

0 pye
jϕy

�
. (1.20)

Arotated = J(−θ)AJ(θ). (1.21)

Figure 1.4: A wave is propagating along the z axis and it is reflected on a mirror. The cartesian
axis are drawn with black arrows. The dotted lines indicates the S and P oscillating plane. The
incident angle θi is the angle between the surface of the mirror and the direction of the wave, while
the rotating angle θ is the angle between the surface of the mirror and the y direction.
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1.3. Brewster Angle

1.3 Brewster Angle

The polarization reflection is a optical phenomenon, which occurs at the interface between

two dielectric surfaces. It is useful to polarize light without the use of polarizing plates; it

is a fundamental method to obtain a polarized wave in the EUV range, where the materials

do not transmit radiation. Suppose to have an unpolarized light, which is incident on a

dielectric surface with the incident angle θi equal to the Brewster angle. The reflected

wave comes linearly polarized on the S plane, while the refracted one is slightly polarized.

This phenomenon is described by the Fresnel equations

rs =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

(1.22)

rp =
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

(1.23)

where θi is the incidence angle, θt is the refracted angle, while n1 and n2 are the refractive

index. For n2 > n1 the Snell low imposes that θt < θi. The cosine function is in inverse

proportion to the amplitude of the angle and so the numerator of (1.22) can’t be zero.

The same explanation can be applied to the case for n2 < n1.

On the contrary the rp expression (1.22) can be zero, when

n1 cos θt − n2 cos θi = 0.

Appling the Snell low, the Brewster’s conditions are obtained.

n2

n1
= tan θi.,

and so the Brewster angle θB

θB = θi = arctan
n2

n1
.

In this way the p reflection index is killed (Figure 1.5), and the reflected wave is composed

only by the s component, which makes the output wave linearly polarized.
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Figure 1.5: This plot is made on the Fresnel equations and it can simulate the real behavior of a
dielectric mirror. The refractive index of the dielectric mirror is set to 1.51, which is characteristic
of a BK7 mirror working with wavelength of 632.8 nm. It is evident the dependance of the reflective
coefficients with the incident angle θi. At normal incidence the wave is completely reflected in both
s and p direction, while at 56.6◦ the p component is killed. In this last condition we say that the
mirror is working at its Brewster angle. It is curious to see that at normal incidence both reflective
coefficients are one and so the entire wave is reflected.

28



Chapter 2

The Polarization Control System

Before beginning the analysis of the polarization control system, it is important to fix

the position of the cartesian axes. As we will work with beams propagating on a optical

bench, it is convenient to set the horizontal plane zx parallel to the plane table, while the

perpendicular one is denoted as the vertical plane xy. Moreover, when a wave propagates

horizontally lying on the zx plane, the z direction is set along its propagation direction.

In this way the y axis became normal to the plane table and vertically directed (see Figure

2.1). Finally, hereafter the x axis is denoted as the p direction, while the y axis as the s

direction.

As introduced before, the purpose of the system is to change the polarization state of a

incoming beam. To understand the basic principle of the system we suppose to work with

two different waves E1 and E2 derived from the same source, and so with equal wavelength.

The two waves are linearly polarized on the two perpendicular directions s and p

Figure 2.1: The position of the cartesian axes is shown for two different beams. For waves
parallel to the plane table zx, the z axis is set along the propagation direction. In this way the y

axis, called s direction, is perpendicular to the plane table.
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CHAPTER 2. The Polarization Control System

and they are propagating along the same z axis. Both waves have the same maximum

amplitude E0 and their initial phase are respectively ϕ1 and ϕ2. In Jones notation






E1 =



E0e
iϕ1

0





E2 =



 0

E0e
iϕ2





Now the phase constant of E2 vector could be express as






E1 =



E0e
iϕ1

0





E2 =



 0

E0e
i(ϕ1+∆ϕ)





where ∆ϕ = ϕ2 − ϕ1. If the two waves are now superposed and the phase constant ϕ1 is

suppressed for convenience, the total wave expression is obtained

Eout = E1 +E2 =

�
E0

E0e
i∆ϕ

�
= E0

�
1

ei∆ϕ

�
. (2.1)

Controlling the phase delay ∆ϕ, it is possible to control the polarization ellipse of the

total wave. For example, a linear polarized wave can be obtained by introducing ∆ϕ = 0.

A clockwise circular one is formed by ∆ϕ = π/2. In general it is possible to create different

forms of elliptical waves controlling the phase delay ∆ϕ.

A conceptual sketch of our polarization control system is illustrated by a blocks di-

agram in Figure 2.2. The system is composed of a source system, which generates a

monochromatic, coherent and well-collimated beam. The in-beam Ein is then divided by

a split system in two different lines, s and p; the p line and s line have a double function.

The first is changing the polarization of each line in a linearly polarize wave, the second

is introducing a phase delay. So at the exit of the phase shift system the two beams are

linearly polarized on two perpendicular directions with a certain phase delay ∆ϕ between

them. At this point the electric field can be expressed according to equation (2.1). When

the two lines are superposed through a recombination system in a unique interferometric

beam, a total wave Eout is obtained. Depending on the difference of phase delay that is

introduced, elliptical, circular or linear polarize beam are created (see Figure 2.3).

As the system is based on the interference of two different lines, coherence and monochro-

maticity are essential for the success of the experiment. The exiting beams from the phase
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Figure 2.2: The block diagram describes our polarization control system. A source system
creates the beam, which is then divided in two different lines by the spilt system. The s line and
the p line polarize the beams in two perpendicular directions, introducing a phase shift of ∆ϕ. The
two beams are now recombined in unique beam Eout and the ∆ϕ introduced by the phase shift
system determines the polarization of the output beam. Finally an analysis system is introduced
to characterize the ellipticity of Eout.

shifter system should be equalized, which means that the maximum amplitude E0x and

E0y of each line should be equal to a unique value E0. The balance of the two lines is essen-

tial to obtain a circular polarized wave, which is reached with ∆ϕ = π/2. With balanced

lines it is possible to create different state of ellipticity, but all of them have the minor or

the mayor axis tilted of ψ = ±45◦ with the respect to the x axis (see Figure 2.3). On the

contrary, an unbalanced system leeds to a different ψ angle of inclination, and a circular

polarized wave cannot be generated. A simulation of the effects of an unequalized system

is shown in Figure 2.4. In this last condition a phase delay of π/2 leeds to an elliptical

polarization, which has the mayor and minor axes coincident to the x and y directions.

As the aim is to obtain all degrees of ellipticity, it is important to work with well-balanced

systems.

The sub-systems of the system under investigation can be implemented and configured

on the base of the wavelength at which it works. This makes it flexible for different

applications in a wide band of the electromagnetic spectrum. But it is important to

understand that each block of Figure 2.2 consists of a series of optical elements, which can

described by an equivalent Jones matrix. In this way any configuration is defined by a

matrix Aeq. The output electric field Eout is then written

Eout = AeqEin = ARAPASEin (2.2)

where AS is the Jones matrix for the split system, AP is the one for the phase delay

system and AR is the matrix for the recombination system.

In the next pages i will present the main characteristics of an optimal source system

to test the control polarization system are presented.
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Figure 2.3: The graphic shows some of the possible ellipses created by the superposition of the
two perpendicular polarized waves Ex and Ey. The ∆ϕ indicates the phase displacement between
the x and y components. The maximum amplitude of the two components are equalized, so it
results that E0x = E0y = E0 which is fixed to 50 V m−1. In this way it is possible to create a
perfectly circular polarized wave for ∆ϕ = π/2. Moreover it is evident that for an equalized system
all ellipses are rotated of ψ = ±45◦.
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Figure 2.4: The graphic shows some of the possible ellipses created by the superposition of the
two perpendicular polarized waves Ex and Ey. The ∆ϕ indicates the phase displacement between
the x and y components. The maximum amplitude of the two components are disequalized, as
Ex = 50 V m−1 and Ey = 30 V m−1. In this way for ∆ϕ = π/2 the ellipse has inclination of ψ = 0,
while the minor and the maximum axes are respectively equal to Ey and Ex. For ∆ϕ = π/2 the

unbalanced system creates a linear wave with inclination ψ = arctan E0y

E0x
� 59◦.
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CHAPTER 2. The Polarization Control System

2.1 Source System

As explained above, the control polarization system is based on the interference of two

beams. The best way to test the variable polarization system is through a monochromatic,

well-collimated and coherent light beam. For this reason a He-Ne laser at the wavelength

of 632,8 nm is used as a source. In order to obtain a uniform and parallel beam, the

Figure 2.5: A He-Ne device creates the laser beam. A pinhole (P ) creates the diffraction image,
but only the central peak is selected by the iris (D). Finally the beam is collimated by a diverging
lens (DL) followed by a converging one (CL).

high order modes of the laser is spatially filtered using a pinhole. A diffraction image

of Frounhofer is created by the pinhole, and the central spot is isolated by an iris. The

opening angle θ of the central diffraction spot is defined by the following [18]

πD sin θ

λ
= 3, 8317 (2.3)

where D is the diameter of the pinhole and 0 < θ <
π
2 for construction. This means that

for a fixed wavelength the exiting beam diverges in relation to the diameter of the pinhole.

In order to collimate the beam a diverging lens followed by a converging one is used (see

Figure 2.5). The diverging lens is not essential for the collimation. The lens system is

dimensioned in order to magnify the beam at a proper size. The diverging lens determines

the magnification of the spot, while the converging one makes the beam collimated.

In order to obtain a beam of radius r2, the pinhole of diameter D, the diverging lens

focal f1 and the converging lens focal f2 must be obtained. In reference to Figure 2.6 the

Gauss equation to the fisrt lens is [18]

1

si1
− 1

so1
=

1

f1
(2.4)

where si1 is the distance between the image point and the lens, so1 is the distance between

the source point and the lens, while f1 is the focal length 1. Since the pinhole has dimension

at the micron order, we can approximate the distance di to 0.

For construction

so1 = −d1.

1
All analysis are made by the cartesian convention. The light is propagating from left to right. Heights

over the optical axis are positive. Distances positioned at right of a reference point are positive.

34



2.1. Source System

Figure 2.6: A schematic view of the beam in the collimator system.

By the relation (2.4)
1

si1
− 1

so1
=

1

f1

and consequently

si1 =
f1d1

−f1 + d1
. (2.5)

For construction of the system the image point and the object point are

so2 = −(d2 − si1) = si1 − d2 (2.6)

and

si2 = ∞.

Applying the Gauss equation to the convergent lens

1

si2
− 1

so2
=

1

f2

it results that

so2 = −f2. (2.7)

Combining the relations (2.5), (2.6) and (2.7), the collimation condition of the beam is
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CHAPTER 2. The Polarization Control System

obtained

d2 = si1 − so2 =
f1d1

−f1 + d1
+ f2

d2 = f2 +
f1d1

−f1 + d1
. (2.8)

Figure 2.6 shows that the radius r1 and r2 are defined by the trigonometrical relations

as

r1 = d1 tan θ1 (2.9)

and

r2 = −so2 tan θ2. (2.10)

By the inverse function of (2.10)

tan θ2 =
r2

−so2
=

r2

f2
, (2.11)

and the (2.11) can also be calculated as

tan θ2 =
r1

−si1
=

r1(f2 − d1)

f1d1
. (2.12)

The magnification condition is derived by the relations (2.9), (2.11) and (2.12)

r1(f2 − d1)

f1d1
=

r2

f2

and consequently

d1 = f1 −
r2f1

f2 tan θ1
. (2.13)

The following steps summarize the procedure used to design the lens system:

1. Define the diameter D of the pinhole. The diameter has to be suitable with the laser

wavelength to obtain a Fraunhofer diffraction image.

2. Select a divergent and a convergent lenses with the focal lengths f1(< 0) and f2(> 0)

respectively.

3. Calculate the open angle of the Fraunhofer image through (2.3).

4. Define the desired magnification by fixing the radius spot r2.

5. Calculate the distance d1 by (2.13).

6. Calculate the seconddistance d2 by (2.8).
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2.1. Source System

In order to quantify the distances d1 and d2, two simulations are reported in Table

2.1 which consider the optical components available in our laboratory. In choosing the

lenses, some mechanical constraints need to be taken into account, as the fact that the

size should not be larger than avaiable mirrors and that there are some space limitations

on the optical trench. A good compromise is adopting a beam diameter of 11 mm.
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Table 2.1: The tables describes different possible distances of the lenses in order to obtain a
well collimated and magnified beam. D is the diameter of pinhole, f1 is the focal length of the
divergent lens, while f2 is the focal length of the convergent lens. Different values of the diameter
of the magnified beam spot are fixed and through the equation (2.3), (2.8) and (2.13) the distances
d1 and d2 of the lenses are calculated. The total voice refers to the sum of d1 and d2.
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CHAPTER 2. The Polarization Control System

2.2 Michelson Configuration

The easiest way to implement the variable polarization system is to add two polarizing

elements in a Michelson interferometer (see Figure 2.7). Two polarizers are inserted in

each line between the beam splitter and the mirror in such a way that they have the

mean axis one perpendicular to each other (see Figure 2.7). One of the two mirrors is

fixed on a nanometer translator, which controls the phase delay ∆ϕ of the system. This

configuration is a base scheme of the system shown in Figure 2.2. The split system coincide

with the recombination system in the unique beam splitter, while the two lines s and p are

implemented by one polarizer and one retroreflection mirror. For convenience the s line

has the main axes of the polarizer (P1) set in a vertically position along the y direction,

while the p line has the main axes of the polarizer (P2) horizontally positioned along the

x direction. In the following analysis it is supposed to work with linearly polarized input

beams propagating along the z direction and having the electric vector lying on the xy

plane with an orientation defined by a θ angle (see Fig 2.8).

(a) (b)

Figure 2.7: The Michelson configuration is shown in a perspective view (a) and in a view from
above (b). The (M) indicate the mirrors, (P ) are the polarizers and (BS) is the beam splitter.

In this confiuration the optical path difference is given by

∆ϕ =
2π∆l

λ
� 4πd

λ
(2.14)

where ∆l is the variation of the optical path, while d is the path difference introduced by

the nanometric translator. As in real practice the mirrors work near to normal incidence, it

is possible to make the approximation ∆l � 2d. The precision of the phase delay depends

on the minimum variation step achievable in the optical path. Considering the relation
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2.2. Michelson Configuration

Figure 2.8: The input wave is linearly polarized and its electric vector lays on the xy plane and
it is tilted of a θ angle with the respect to the x direction.

(2.14), a phase regulation with precision of π
N requires an optical path variation step of

∆d =
λ

2N
.

A close loop piezoelectric translators is used to control the optical path with some nanome-

ters of tolerance.

As discussed above (2.2), the entire system can be described by the Jones matrix of

each singular component. Since (M1) and (M2) mirrors work in the geometry, hereafter

the Jones matrices associated to both is indicated with (M). The same considerations are

advanced for the polarizers. So a unique AM and AP matrix is defined for mirrors and

polarizers

AM = |rMs|ejϕMs

�
1 0

0 PMej∆ϕM

�

AP = |tPs|ejϕPs

�
1 0

0 PP e
j∆ϕP

�
.

As the beam splitter divides beam in two lines with different rejection coefficients, the

ABSr and ABSt matrices are defined as the equivalent Jones matrix respectively for the

reflected line and for the transmitted one

ABSr = |rBSs|ejϕBSrs

�
1 0

0 PBSre
j∆ϕBSr

�

ABSt = |tBSs|ejϕBSts

�
1 0

0 PBSte
j∆ϕBSt

�
.
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In both lines the beam is transmitted by the polarizer (P ), then reflected on the mirror

(M) and finally again transmitted by the polarizer (P ). So the equivalent matrix for the

s line is

ASL = APAMAP = |rPs|2|rMs|ej(2ϕPs+ϕMs)

�
1 0

0 P 2
PPMej(2∆ϕP+∆ϕM )

�
(2.15)

and the matrix for the p line is calculated through the rotation transformation of the

polarizer

APL = R(90◦)APR(−90◦) ·AM ·R(90◦)APR(−90◦)

= |rPs|2|rMs|ej(2ϕPs+ϕMs)

�
P 2
P e

j2∆ϕ 0

0 PMej(∆ϕM )

�

where R(90◦) is the rotation matrix described in (1.19). Assuming that the nanometer

translator is placed in the s line2, its mechanical movement allows to introduce a d optical

path difference between the two lines. The associated phase shift ∆ϕ can be mathemati-

cally taken into account by introducing the following matrix

Ashift = e
j∆ϕI =

�
e
j 2πd

λ 0

0 e
j 2πd

λ

�
.

When the outgoing beams from the two lines are recombined, the Jones vector of the

emerging beam is

�Eout = (ABSrAPLABSt +ABStAshiftASLABSr) · �Ein = Mtot · �Ein.

As all the matrices are diagonal ones, the commutation property is valid and the previous

relation can be simplified in

�Eout = ABSrABSt(APL +AshiftASL) · �Ein. (2.16)

The term ABSrABSt is now calculated

ABSrABSt = |rBSs|tBSs||ej(ϕBSrs+ϕBSts)

�
1 0

0 PBSrPBSte
j(∆ϕBSr+∆ϕBSt)

�

2
For our purpose it is indifferent in which line the translator is positioned. However the analysis with

the translator in the p line can be similarly conducted.
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2.2. Michelson Configuration

and for convenience it is summarized by the equivalent matrix ABS

ABS = ABSrABSt = |aBSs|ejϕBS

�
1 0

0 PBSe
j∆ϕBS

�
. (2.17)

The third term of (2.16) is indeed

APL +AshiftASL = |rPs|2|rMs|ej(2ϕPs+ϕMs) ·

·
�
e
j 2πd

λ + P 2
P e

j∆ϕP 0

0 P 2
PPMe

j(2∆ϕP+∆ϕM+ 2πd
λ ) + PMej∆ϕM

�
.

Now the total equivalent matrix Mtot is calculated as

Mtot = ABSrABSt(APL +AshiftASL) = |aBSs||rPs|2|rMs|ej(ϕBSs+2ϕPs+ϕMs) ·

·
�
e
j 2πd

λ + P 2
P e

j2∆ϕP 0

0 PBSP
2
PPMe

j(∆ϕBS+2∆ϕP+∆ϕM+ 2πd
λ ) + PBSPMej(∆ϕBS+∆ϕM )

�
.

The scalar terms which multiply the matrix depend on the mirrors efficiency and phase

and they are fixed once the optical components are determined. In the following it will be

consider the M I
tot matrix, which is the total system matrix normalized with the respect to

this scalar term. The terms on the diagonal consist of two components, one dependent on

the P rejection of the polarizers. As discussed in Chapter 1.2, the rejection coefficient for

a real polarizer can be approximated to zero and its phase delay is assumed to be zero,

since it works in transmission. On the base of these approximations, the equivalent Jones

matrix of the system becames

M I
tot =

�
e
j 2πd

λ 0

0 PBSPMej(∆ϕBS+∆ϕM )

�

which is equivalent to the matrix of a 2πd
λ −∆ϕBS −∆ϕM retarder. So in the case PP = 0

the polarization state of the outgoing beam is elliptical with parameters dependent on

θ and d. In order to investigate the emerging beam polarization state a modified sign

function is defined asf equal to the standard sign function except in zero, where it assumes

the value 1.

The Jones vector which describes the ingoing beam is

Ein = |E0|
�
cos θ

sin θ

�
= |E0|



| cos θ|e
j

�
sgn (θ+π

2 )+sgn (π2 −θ)−2

2 π

�

| sin θ|ej
�

sgn (θ)−1
2 π

�
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By applying (2.18) and (2.2), the Jones vector of the exiting beam is

EI
out = M I

tot ·Ein = |E0|



 | cos θ|e
j

�
2πd
λ +

sgn (θ+π
2 )+sgn (π2 −θ)−2

2 π

�

| sin θ|PBSPMe
j
�
∆ϕBS+∆ϕM+ sgn (θ)−1

2 π
�



 , (2.18)

where −π < θ ≤ π. With the notations of Chapter 1.1 and Figure 1.1, the �EI
out is an

elliptically polarized wave that is described by the equation of the ellipse (1.4)

E2
x

E2
0x

+
E2

y

E2
0y

− 2
Ex

E0x

Ey

E0y
cos δ = sin δ2

where

δ = δy − δx =

�
∆ϕBS +∆ϕM +

sgn (θ)− 1

2
π − 2πd

λ
−

sgn (θ + π
2 ) + sgn (π2 − θ)− 2

2
π

�

is the total phase delay between the x and y axes induced by the system. The sign of

δ defines the electric field rotation direction: for a positive phase delay the rotation is

clockwise, for a negative phase delay is counterclockwise.

In order to determine the general conditions for obtaining a circular polarized light,

the fallowing parameters need to be taken in account





tanα = E0y

E0x
= PMPBS | tan θ|, 0 ≤ α ≤ π

2

tanχ = |b|
|a| , 0 ≤ χ ≤ π

4

(2.19)

since they describe the circularity of a polarization ellipse. As shown in (1.10) and (1.11),

it is proven the relationship

sin 2χ = sin 2α| sin δ| = 2 tanα

1 + tan2 α
| sin δ| = 2PMPBS | tan θ|

1 + P 2
MP 2

BS tan2 θ
| sin δ|.

The circular polarization is obtained for tanχ = tanα = 1. Accordingly it results that

sinχ = 1 and, using the relations in (2.19) we retrieve the circular polarization conditions





| tan θ| = 1

PMPBS

δ = (2m+ 1)π2

. (2.20)

When the circular polarized light can be generated, the system is said to be equalized.

For the purpose it is not important to know the absolute phase delay of each optical

component. Since the relative phase can be controlled and corrected by the translation

stage. Suppose to fix a reference position of the transition stage, denoted with d = 0,

where a linearly polarized light is obtained in output. In this case the χ coefficient of the
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2.2. Michelson Configuration

Element Type Working Angle P ∆ϕ = ϕp −ϕs

Mx Aluminum 0◦ in Reflection 1 0◦

Px Polarizer 0◦ in Transmission 0 0◦

BS BK7 45◦ in Refl. and 0◦ in Tran. 0,85 0◦

Table 2.2: Parameters adopted in the system simulation for the Michelson configuration.

output beam is 0, and consequently from the relation (1.10) the total phase delay results

a multiple of 2π. All translations involve a total phase delay which depend only by the d

parameter calculated from this reference

δ =
2πd

λ
+ 2πm m = 0, 1, 2...

2.2.1 Simulations

A numerical simulation has been performed, in order to determine the input θ angle on

the basis of real values characterizing the rejection coefficients for an equalized system. As

said a phase delays of each component can be neglected. We suppose to use a BK7 beam

splitter the reflection and transmission coefficients of which have been directly obtained

by the tests we have made in laboratory. The values of the coefficients are reported in

Table 2.2.

By the circular polarization condition (2.19)

θ = arctan
1

PBS
= arctan

1

0, 85
� 50◦
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CHAPTER 2. The Polarization Control System

2.3 Mach-Zehnder Configuration

The use of polarizers can be avoided in the Mach-Zehnder configuration (see Figure 2.10),

where each line is polarized through a mirror (B) working at its Brewster angle. The

beam is divided by the (BS1) beam splitter in the two lines s and p. The mirror (B1)

and (B2) polarize the beams on two different perpendicular planes. The s line is vertically

polarized along the yz plane, while the p line is polarized on the horizontal xz plane.

Finally the beams are superposed by the (BS2) beam splitter in a unique interferometric

beam. The (Bx) and (Mx) mirrors work at the same Brewster angle, while all the other

mirrors (ML) are set to a incident angle of 45◦. As for the Michelson configuration, we

suppose to work with linearly polarized input beams as shown in Figure 2.8. The phase

delay ∆ϕ is controlled by a piezo-electric translator, on which the (M2) and (ML5) mirror

are mounted3.

Figure 2.9: The path difference l is controlled by the s line. The (M2) and (ML5) mirrors are
fixed on the nanometrical translator.

In order to analyze the optical path difference l, a schematic figure of the s line is

shown in Figure 2.9. The total path difference is given by

l = ∆a+∆b.

By the trigonometrical proprieties

∆a =
∆d

sin (180◦ − α)
=

∆d

sinα

where ∆d is the movement of the piezo-electric translator, while α is the Brewster angle

of (B2). For construction the term ∆b is equal to ∆d, so the total path difference becomes

l =
∆d

sinα
+∆d =

∆d(1 + sinα)

sinα
. (2.21)

3
The dual configuration can be obtained by fixing the nanometric translator on the p line.
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2.3. Mach-Zehnder Configuration

(a)

(b)

Figure 2.10: The Mach-Zehnder configuration is shown in a perspective view (a) and in a view
from above (b). The ML indicate the mirrors at 45◦, B are the mirrors working at their Brewster
angle, M work at the same angle of (B) and BS are the beam splitters. Each line consists in one
mirror (B) at Brewster angle and three sequential mirrors. The p line works with a perpendicular
plane of incidence to the respect of the s line.
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In order to characterize the Mach-Zehnder configuration, a similar analysis to the

Michelson configuration by the Jones matrices is carried out. So the matrices of each

optical component is defined as

AM = |rMs|ejϕMs

�
1 0

0 PMej∆ϕM

�

AML = |rMLs|ejϕMLs

�
1 0

0 PMLe
j∆ϕML

�

AB = |rBs|ejϕMs

�
1 0

0 PBe
j∆ϕB

�

ABS = ABSrABSt = |aBS |ejϕBSs

�
1 0

0 PBSe
j∆ϕBS

�

where ABS is the equivalent matrix for the beam splitter already defined in (2.17). So the

s line is described by the matrix

ASL = A3
MLABAM

= |rMLs|3|rBs||rMs|ej(3ϕMLs+ϕBs+ϕMs)

�
1 0

0 P 3
MLPBPMej(3∆ϕML+∆ϕB+∆ϕM )

�

= rLe
jϕLs

�
1 0

0 P 3
MLPBPMe

j∆ϕSLp

�
.

The presence of the translator in the s line is taken in account with the shift matrix

AshiftASL = rLe
jϕLs

�
e
j 2πl

λ 0

0 P 3
MLPBPMe

j(∆ϕSLp+
2πl
λ )

�
,

where the term l is the total path difference described in (2.21) introduced by the trans-

lator. Indeed the p line is characterized by the presence of rotational matrices, as some

mirrors work perpendicularly on the yz plane

APL = AMLR(90◦)AMA2
MLABR(−90◦)

= |rMLs|3|rBs||rMs|ej(3ϕMLs+ϕBs+ϕMs)

�
PMP 2

MLPBe
j(2∆ϕML+∆ϕB+∆ϕM ) 0

0 PMLe
j∆ϕML

�

= rLe
jϕLs

�
PMP 2

MLPBe
j∆ϕPLs 0

0 PMLe
j∆ϕPLp

�
.
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2.3. Mach-Zehnder Configuration

The output electric Eout field can be found as

Eout = (ABStAshiftASLABSr +ABSrAPLABSt) ·Ein

= ABStABSr(AshiftASL +APL) ·Ein

= ABS(AshiftASL +APL) ·Ein

= Mtot ·Ein

.

There the equivalent Jones matrix Mtot for the Mach-Zehnder configuration is now ob-

tained

Mtot = rLe
jϕLs ·

�
PMP 2

MLPBe
j∆ϕPLs + e

j 2πl
λ 0

0 P 3
MLPBPMPBSe

j(∆ϕSLp+
2πl
λ ) + PMLPBSe

j∆ϕPLp

�
.

For convenience the total matrix Mtot is normalized to the constant term rLe
jϕLs . In

order to carry out a first approximation analysis, the rejection term of the mirrors (Bx) is

neglected. On the basis of this approximation the normalized equivalent matrix M I
tot

M I
tot =

�
e
j( 2πl

λ ) 0

0 PMLPBSe
j(∆ϕML+∆ϕBS

�
.

Maintaining the notation for the input beam described in (2.2) and Figure 2.8, the Jones

vector of the exiting beam is

EI
out = M I

totEin = |E0|



 | cos θ|e
j

�
sgn (θ+π

2 )+sgn (π2 −θ)−2

2 π+ 2πl
λ

�

| sin θ|PMLPBSe
j(∆ϕM+∆ϕBS+

sgn θ−1
2 π)



 .

The degree of ellipticity χ is derived by the relations (1.10) and (1.11),

sin 2χ = sin 2α| sin δ| = 2 tanα

1 + tan2 α
| sin δ| = 2PMLPBS | tan θ|

1 + P 2
MLP

2
BS tan2 θ

| sin δ|, (2.22)

where δ is the phase delay between the vertical and horizontal components of the outgoing

beam

δ = δy − δx = ∆ϕML +∆ϕBS +
sgn θ − 1

2
π −

sgn (θ + π
2 ) + sgn (π2 − θ)− 2

2
π − 2πl

λ
.

As in the previous section, the state of polarization of the output electric field is described

by the parameters





tanα = E0y

E0x
= PMLPBS | tan θ|, 0 ≤ α ≤ π

2

tanχ = |b|
|a| , 0 ≤ χ ≤ π

4

.
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Element Type Working Angle P ∆ϕ = ϕp −ϕs

MLx Aluminum 45◦ in Reflection 0,94 12◦

Mx Aluminum 56,6◦ in Reflection 0,89 20◦

Bx BK7 56,6◦ in Reflection varied -180◦

BS BK7 45◦ in Refl. and 0◦ in Tran. 0,85 0◦

Table 2.3: Parameters adopted in the system simulation for the Mach-Zehnder configuration.

The circular polarization is obtained for tanχ = tanα = 1. Consequently by relation

(2.22), the sinχ = 1, which leads to the equalizing condition for the Mach-Zehnder con-

figuration 



| tan θ| = 1

PMLPBS

δ = (2m+ 1)π2

. (2.23)

2.3.1 Simulations

In real practice it is impossible to perfectly align the mirror at its Brewster angle and,

consequently, the rejection coefficient of (Bx) mirrors should be taken in account and such

analysis become more complex. In order to understand the degradation of the outgoing

beam polarization due to the noise component, a numerical simulation of the system has

been performed for different values of the PB. The mirrors parameters have been computed

by IMD program [19], while the parameters for the beam splitter have been obtained by

measuraments in our laboratory. The values used for the rejection coefficients and phase

delays are reported in Table 2.3.

The ingoing polarization plane inclination θ and the phase delay have been adjusted

to obtain an output circular polarization when PB → 0. By the circular polarization

condition (2.23) it follows

θ = arctan
1

PBSPML
= arctan

1

0.89 · 0.85 � 52◦.

A noise component has been added using the equivalent matrix Mtot to this theoretical

signal and the principal parameters of the polarization ellipse have been computed. Figure

2.11a reports the parameters that describe the ellipticity of the outgoing beam, while

Figure 2.11b shows the degradation of the circular polarization for different values of PB.

From the simulations it is evident that the PB parameter should not be neglected, as the

ellipticity of the outgoing beam has a high sensitivity to the spurious component.

However a lower sensitivity can be achieved by substituting the (Mx) aluminum mirrors

with a BK7 ones working at the Brewster angle as (Bx). In this way each line is polarized

by two sequential mirrors at the Brewster angle. The quality of polarization of the lines

improves proportionally to the second power of PB and consequently the effects of the
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2.3. Mach-Zehnder Configuration

spurious components decrease (see Figure 2.12). In this last configuration the ellipticity of

the outgoing beam has a lower sensitivity to the noise so that the polarization properties

can be considered ideal up to a rejection parameter PB of 0.1.
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Figure 2.11: (a) A simulation of the tanα and tanχ parameters of the outgoing beam versus
PML. (b) A simulation of the degradation of the ellipses for different values of PML.
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Figure 2.12: (a) A simulation of the tanα and tanχ parameters of the outgoing beam versus
PML. The system is set to have two mirrors working at the Brewster angle. (b) A simulation of
the degradation of the ellipses for different values of PML. The system is set to have two mirrors
working at the Brewster angle.
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2.4 Analysis System

The analysis system should be able to identify the polarization status of the outgoing

beam. It consists of an optical system based on the series of two lenses, a polarizer and

two possible detectors: a CCD camera or a photometer. In Figure 2.13 it is shown a

scheme of the disposition of the optical components. In order to magnify the beam,

Figure 2.13: The analysis system is composed by a magnification system of one divergent lens
(DL) and one convergent lens (CL). A iris (D) select a part of the beam to be tested. Finally
the polarization status of the beam is analyzed by a polarizer (POL), followed by a photometer or
CCD (CCD).

r 
R 

Convergent 
Lens 

Divergent 
Lens 

fd d 
Figure 2.14: The magnification system is realized by one divergent lens (DL) followed by one
convergent lens (CL). The lenses are placed at the distance d.

a convergent (CL) and a divergent (DL) lenses are placed in front of the detector (see

Figure 2.14). By the lens equation (2.4) we obtain the collimation condition

d = |fc|− |fd| (2.24)

where d is the distance between the two lenses, while fc and fd are the focal length respec-

tively for the convergent lens and the divergent lens. For construction, the magnification

expression is given by

M =

����
fc

fd

���� . (2.25)
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2.4. Analysis System

The magnification system is composed by a divergent lens of fd = −50 mm and a conver-

gent lens of fc = +100 mm. Consequently, by (2.24) and (2.25) the distance between the

lenses is d = 50 mm, while the magnification results M = 2x.

A iris (D) allows to select a part of the magnified beam, which pass through the

polarizer (POL). Then the beam image is acquired by a CCD or its intensity is measured

by a photometer. A picture of the real analysis system is shown in Figure 2.15.

The intensity of a wave which results from a polarizer follows the Malus law. Supposing

to have a wave E propagating along the z direction through a polarizer from (1.3) and

(1.13) it results that the total intensity can be written as

I = E
2
0x cos

2
α+ E

2
0y sin

2
α

where α is the angle between the polarizer axis and the x direction. In first approximation

it is easy to identify a circular polarized wave as its intensity doesn’t change for any rotation

of the polarizer. On the contrary a linear polarized wave has a maximum and a minimum

intensity on two different angles α of the polarizer. The intensity is maximum, when the

axis of the polarizer is parallel to the oscillating plane and it has a minimum, when they

are perpendicular to each other. Some simulations are made in order to understand how

the intensity varies according to the rotation of the analysis polarizer and to the phase

delay δ. For convenience the simulations have been conducted using cartesian coordinates

instead of polar ones. Fixing the maximum amplitude E0x and E0y of the electric field

respectively of the p and s lines, and by rotating the polarizer of 360◦ the trend of the

intensities are found for different values of the phase delay δ. As underlined in Figure

2.16a each point of the graphic is identified by the angle α and by an intensity I. Figure

2.16 shows the intensities for balanced systems, while Figure 2.17 refers to unequalized

systems.

Figure 2.15: Our analysis system in laboratory. The iris is not present because the interested
part of the spot is selected through the software of the CCD. However when the photometer is
used, the iris was essential in order to select only a limited part of the interferometric figure.
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CHAPTER 2. The Polarization Control System

The quadratic terms of cosine and sine determine the trend of the intensity values. For

example for a balanced system all graphics intersect each other in four different points,

which are at the same distance from the origin (see Figure 2.16). Even modifying the

polarization status, their distance should be always equal and whenever it changes, it

reveals that the system is not longer balanced, as, for example, it is in Figure 2.17.

The final goal is to find the polarization ellipse. A set of measurements to different α

angles are obtained and they are reported in a Ix and Iy graph. At this point, simulations

similar to those shown in Figure 2.16 and 2.17 are carried out changing the δ, in order to

fit the experimental data. In this way the polarization ellipse for each different position

of the piezoelectric translator is obtained.

In real experiment the superposition of the two beams is not ideal and they recom-

bine having a hit angles, which causes the appearance of interferometric fringes. For this

reason, during the test the alignment is optimized to enlarge the central fringe, which is

selected by the iris. However as in the system the s line and p lines are linearly polarized

on two perpendicular direction, the interferometric image is not directly seen. The fringes

appears only if the analysis polarizer is inserted with the angle α at ±45◦. To understand

this phenomenon suppose to deal with a Michelson interferometer, which creates an in-

terferometric image shown in Figure 2.18. The wedge effect of the retro reflection mirrors

causes the formation of a interferometric image that shows the sequence of clear and dark

fringes. The maximum peaks denote that the lines are in phase δ = 0, while the dark sides

of the image indicate that the lines s and p are in opposite phase δ = π. Suppose now

to insert the two polarizers in each line to obtain the variable polarization control system

in the Michelson configuration explained in Section 2.2. Obviously the interferometric

image disappears as the lines are polarized in two perpendicular directions, but no spatial

changes are involved in the distribution of phase delay in different areas of the spot (see

Figure 2.18). The phase dalays are so related with the polarization status of beam:

• δ = 0: the s and p components are superposed in phase, and consequently +45◦

linearly polarized waves are obtained.

• δ = π/2: counterclockwise circular polarized waves are obtained.

• δ = π: the lines are in opposite phase and -45◦ linearly polarized waves are obtained.

• δ = 3π/2: clockwise circular polarized waves are obtained.

In order to characterize the distribution we insert an analysis polarizer (POL). The new

interferometric image is shown in Figure 2.19 for different angle α of the polarizer. When

the axis of polarizer is positioned with a α angle of +45◦, we can see a new interferometric

image. The clear areas indicates the presence of a +45 linear polarization, while the dark

areas is characteristic of a -45◦ linear polarization. By rotating slowly the polarizer, the
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Figure 2.16: Simulations of the intensities obtained by the analysis of a polarizer for different
value of phase delay δ. The system is balanced and circular polarization is obtained. The inclination
α coincides to the rotation of the axis of polarizer with the respect of the x direction, while I is
the intensity detected by the photometer.
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Figure 2.17: Simulations of the intensities obtained by the analysis of a polarizer for different
value of phase delay δ. The system is unequalized and only elliptical and linear polarization is
obtained.
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fringes start disappearing until a uniform spot is viewed. In this condition the polarizer is

set with the main axis parallel to the x direction. As the s line is completely killed, there

is no interference between the beams. Keeping rotating the polarizer until α = −45◦, the

fringes reappear, but with an opposite disposition: the minimum peaks are replaced by

maximum ones (see Figure 2.19). However there are some fringes, which remain clear for

each rotation of the polarizer. These areas are positioned between dark and clear fringes

and they are coincident with a circular polarization status. Their intensity is approximately

half of the clear fringes for α = ±45◦ and they are expected to remain constant for any

rotation of the polarizer.

The entire analysis can be similarly performed for an angular range 45◦ < α < +135◦,

or generally for each angle α of the analysis polarizer.
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Figure 2.18: Simulation of a interferometric image created by the wedge effect in a Michelson
interferometer. We indicate the phase delay δ for some areas. When the polarizers are inserted in
the lines, the fringes disappear, but spatially the phase delay δ doesn’t change.

Figure 2.19: A simulation of the interferometric image for different rotation α of the polarizer. We
aspect to find a sequence of fringes differently polarized. We observe that for δ = π

2 ,
3π
2 the borders

of the fringe are composed of circular polarized waves, which don’t disappear for any rotation of
the polarizer. On the contrary, for δ = 0,π the fringes alternate each other for α = ±45◦, as they
result linearly polarized in two perpendicular directions (+45◦ and -45◦).
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Chapter 3

The Alignment Procedure and

Tests

In Chapter 2 the system has been analyzed from a theoretical point of view. At CNR-IFN

of Padova two working prototypes of the system have been realized adopting a Michelson

and Mach-Zehnder configuration scheme respectively. This chapter describes the alignment

procedures and the tests carried out on both configuration.

For convenience the Michelson and Mach-Zehnder configurations are tested on a unique

optical bench, since the piezoelectric translator stage was shared between the two. Each

interferometer is provided with a He-Ne 632,8 nm laser source. In Figure 3.1 the laser

traces on the optic table are shown: the Michelson one is in blue trace, while the Mach-

Zehnder one is in red trace. With (IN) is indicated the polarizer placed just in front of

the beam-splitting system. Th function of the polarized was explained in section 2.2 and

shown in Figure 2.8. Experimentally it is needed to generate a input beam with different

polarization characteristic necessary to test the system; it is fundamental in the case that

the s and p component are needed equalized.

Mirrors not labelled are those used in the set up to change the direction of the beam

for convenience. In the Mach-Zehnder configuration the beam-splitters are replaced by

two grazing mirrors (SM), which are able to spatially divide and recombine the beam

in the respective s and p lines. This configuration is the last improvement of the Mach-

Zehnder configuration and it is called the all-reflective Mach-Zehnder configuration, which

is introduced in the next chapter.
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Figure 3.1: A general view of the optical bench. The blue line tests the Michelson configuration, while the red one tests the Mach-Zehnder configuration.
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3.0.1 The Isolation Of The Ambience Noise

As both systems requires precision of nanometers, it is essential to isolate the system

from noise vibrations of the ambiance and to use stable supports for the optical elements.

After the alignment procedure, all support were strongly fixed on table through threaded

screws. The system is very sensible to the mechanical vibration. The most unstable optical

elements were the highest, such as the high supports on the p line in the Mach-Zenhnder

configuration. For this reason the beam is set to propagate more closer as possible to the

plane table. During the measurements the optical table should not be minimally touched.

So the analysis system was dislocated on a different optical table, as the manual rotation

of the analysis polarizer would have compromised the measures. Moreover any vibrating

or movable object should not be placed on the optical table. The ground vibration can be

absorbed by pumping the air bearing of the optical table. However this solution should

be adopted only if the analysis system is mounted on the same table of the main system.

Otherwise it can be counterproductive due to the continuos misalignment between the

main system and the analysis one.

Other noise factors were the vibrations of the ambiance air, which can nanometrically

misaligned the optical elements. It was convenient to switch off the air ventilation to

remove eventual air turbulence in the room. Speaking close to a mirror changed the

interferometric figure, too. In conclusion it is essential to isolate the entire system by the

ambience, which can produce unwanted mechanical vibrations of the optical elements.

3.0.2 The Coherence Test Of The Source Device

Before proceeding on the alignment of the final configuration the coherence degree of

the laser devices have been tested through the Michelson interferometer. The used laser

devices have a coherent length greater then 2 meters and present clear interferometric

fringes. The stability of fringes over the time is essential during the test of Michelson

and Mach-Zehnder configurations. The analysis of the state of polarization of the beam

requires the manual rotation of the analysis polarizer, which took about 4-5 minutes. In

this period of time the selected interferometric image should not shift or change, otherwise

measures result to be affected by an error due to the change of the state of polarization.
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3.1 First Step: Collimator

Figure 3.2: A central view of the disposition of the beam lines on the optical table. For practice
two source systems are used (one on the left and one on the right) to test the two configurations
of the final system.

As described above, on the optical bench there are two different lasers (see Figure 3.2

and Figure 3.3). Both lasers devices emit a red beam at the wavelength of 632,8 nm, which

is then magnified to a beam diameter of 11 mm. The magnification system is realized by

selecting two different solutions presented in Section 2.1 in Table 2.1. For the Michelson

configuration

conf. 1) D = 200 µm f1 = −50 mm f2 = 150 mm d1 � 425 mm d2 � 105 mm,

while for the Mach-Zehnder configuration

conf. 2) D = 150 µm f1 = −50 mm f2 = 150 mm d1 � 306 mm d2 � 107 mm.

A picture of the configuration 2) is shown in Figure 3.4.

The effects of the source system are shown in Figure 3.5, which reports two intensity

snapshots of the spot of 1◦ line. The Figure 3.5a shows the initial distribution of the

intensity of the spot just at the exit of the laser device; the intensity distribution is clearly

not uniform. In Figure 3.5b the beam is filtered by the source system; the spot presents

a uniform and circular intensity distribution.

Both collimation system has been aligned in the following steps:

1. The laser device is fixed on the optical bench and it is vertically and horizontally

aligned.

2. The pinhole (P ) is fixed on a horizontal micrometrical translation stage and it po-

sitioned in such a way that the laser beam impinges in the center of the hole. The

micrometer translator is useful to the fine alignment of the pinhole. The diffraction
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Figure 3.3: The two different source lines, created by independent source systems, aligned in
order to test the Michelson and the Mach-zehnder configurations. The presence of the micrometrical
translator under the convergent lenses (CL) permits a fine adjustment of the collimation.

Figure 3.4: A He-Ne device creates the laser beam. A pinhole (P ) creates the diffraction image,
but only the central peak is selected by the iris (D). Finally the beam is collimated by a diverging
lens (DL) followed by a converging one (CL).
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(a) (b)

Figure 3.5: The effects of the source system in the first line. Both snapshots are made using
the same laser device. In (a) is shown the laser beam directly created by the laser device. The
spot presents one spurious mode on the right side. In (b) the laser beam is purified by the source
system. The spot is uniform and it presents a unique central mode.

(a) (b)

Figure 3.6: (a) The diffraction image created by the pinhole D = 200 µm in the 1◦ line. The
snapshot is saturated in order to show higher peaks around the main one. (b) The central peak of
the diffraction image is selected by the iris (D) and a new filtered beam is created.
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image is shown in Figure 3.6a.

3. The iris (D) is centered and sufficiently closed in order to select the central part of

the diffraction image. If circular diffraction fringes appear close to the border of the

spot, it means that the alignment of the iris is not precise, as that part of the central

spot is cutted. The alignment needs to be redone.

4. The divergent lens (DL) is placed at the distance d1 from the pinhole (P ). As the

distance d1 control the magnification, it can be coarsely measured with a millimeter

ruler.

5. The convergent lens (CL) is positioned at the distance d2 on a micrometrical transla-

tion stage, which allows to adjust finely the collimation of the beam (see Figure 3.3).

In order to verify the collimation condition, the diameter of the spot is measured for

different distances from the (CL). If all measures are equal, then the beam is well

collimated. On the contrary a better collimation should be achieved by controlling

the micrometer translation stage.

6. A magnified and collimated beam is obtained (see Figure 3.6b). Some mirrors are

placed in order to freely control and transfer the beam lines in different positions of

the optical bench.
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3.2 Second Step: The Polarization System with Michelson

Configuration

Figure 3.7: The real Michelson configuration characterized by the central positioned beam
splitter and the two polarized lines.

After aligning the source system as described in the previous section, the Michelson

configuration has been realized. A general view of the Michelson system is shown in

Figure 3.7, which faithfully reproduces the design illustrated in Figure 2.7. The main used

components are:

• 1x BEAM SPLITTER: the beam splitter is a BK7 one with intensity division of

50/50.

• 2x MIRRORs: plane aluminum mirrors. Each mirror is fixed on its proper tip-tilt

support.

• 2x POLARIZERs: common linear polarizers with parallel surface. Each polarizer is

mounted on its proper support, which allows the rotation of the main axis with a

precision of 2◦.

• 1x PIEZOELECTRIC STAGE: the piezoelectric stage is configured in close loop

mode with a declared fine control of 10 nm.

The realization is very simple: after the alignment of a Michelson interferometer, two

polarizers are added in the two lines (see Figure 3.8). The alignment procedure consists

in the following steps:

1. Firstly the retro reflection mirror (M1) is mounted on the piezo-electric stage. As

it works at normal incidence, the alignment of (M1) is led looking at direction of

the reflected beam on the (D) iris surface of the source system. A perfect alignment

is reached when the beam passes through the center of (D). The beam splitter is

slightly tilted in order to avoid multiple reflection and propagation of spurious beam.

The s line is now aligned.
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(a)

(b)

Figure 3.8: (a) The view of Michelson configuration at the source system side. The (IN) element
is the input polarizer, which is essential in order to equalize the system. The series of (P1) and
(M1) identify the s line, while (P2) and (M2) are characteristic of the p line. (b) The view of
Michelson configuration at the analysis system side.
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2. The beam splitter (BM) is mounted and aligned in such a way that the direction of

the second line results perpendicular to the first one. The vertically alignment can

be led by the help of two irises regulated at the same height.

3. The mirror (M2) is then aligned. This mirror is fixed on a micrometer rotation stage,

in order to correct precisely the angle of incidence. By controlling the micrometer

rotation stage is possible to change the fringe frequency. The p line is now aligned.

4. The width of fringes is finely controlled by the micrometer rotator of (M2) which

can eliminate the wedge effect until obtaining a unique interference fringe (see Figure

3.9a). If the interference image appears as a uniform spot, probably the fringes are

too much closer to each other to be seen by human eye. This situation is derived

by a bad alignment procedure. However the absence of the fringes can be caused by

other factor, such as the loss of temporal coherence along the beam trace. To test

the functionality and the sensibility of the piezoelectric translator is by observing the

fringes system. When the piezo-electric stage is moved by steps of ∆l = λ/4 � 158

nm, the passage from a constructive and destructive interference on the same spatial

position must be evident and clear as shown in Figure 3.9b.

5. The last step to the Michelson configuration is inserting the two polarizers in the

lines of interferometer. As described in Section 2.2, the s line is characterized by

the (P1) polarizer, which has the main axis parallel to the vertical y direction, while

the (P2) polarizer has the main axis parallel to the horizontal x direction. As the

lines are polarizing along two perpendicular directions, the interferometric image

disappears and a uniform spot is seen.

The final Michelson configuration is now aligned, but it needs to be equalized. The

equalization procedure consists on positioning the main axis of the input (IN) polarizer to

the correct inclination θ, in order to have the same final intensity in both p and s lines. The

intensity is measured by aligning the analysis system with the photodiode, as described

in Section 2.4, with the difference that the analysis polarizer (POL) is removed. As the

two output beams are superposed, the intensities of one line is measured by stopping

the propagation of the opposite line, for example by covering one optical element. The

equalization is finely adjusted by manually rotating the (IN) polarizer. The two intensity

values are measured and compared until they are equal. At the end the system is equalized

for θ = +49◦,

Ps = 85, 5 nA Pp = 85, 4 nA

where Ps is the power of the s line, while Pp is the power of the p line1

1
For convenience the power measured by the photodiode can be normalized to its supply voltage, and

consequently it assumes the expression in Ampere.

68



3.2. Second Step: The Polarization System with Michelson Configuration

Figure 3.9: (a) The image shows the effects of the rotation of M1 mirror placed on the rotator
in the Michelson interferometer. The sequence is made for rotations of a constant angle at the
order of some µrad. (b) The piezoelectric translator was firstly tested by making a translation of
λ/2 � 316 nm. An inversion of the fringe position was aspected, and so it was in real practice,
too. (c) The real interferometer image in Michelson configuration for different rotations of the
polarizer. The angle indicates the position of the main axis of polarizer with the respect to the
vertical direction y. The red traced lines A and B shows the expected effect of the appearing and
disappearing fringes described in Section 2.4. The linearly ±45◦ polarized areas are clearly visible,
as they are denoted by maximum and minimum peak.
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3.2.1 The Tests

Different experimental tests have been carried out to verify the proper functioning of the

system.

The first test is carried to verify the polarization states in the fringes system, as de-

scribed in Section 2.4. For this purpose the photodiode is replaced by a CCD and the

(POL) analysis polarizer is slowly rotated. The phenomenon of the appearing and disap-

pearing of polarized fringes is clearly seen and it is shown in Figure 3.9c. The positions of

the maximum and minimum peaks correspond to the linearly polarized areas. While the

central part of transition regions indicates the circularly polarized areas, whose intensity

never changes for any rotation of (POL). Moreover it is possible to see the inversion of

the fringes, when the (POL) analysis polarizer rotates from -45◦ position to +45◦ posi-

tion. For example in reference to Figure 3.9c, the area crossed by the red line A has a

minimum peak (of intensity close to 3 nA) when the (POL) is rotated of -45◦, while it has

a maximum peak (of intensity close to 130 nA) when the (POL) is rotated of +45◦. This

means that the area is characterized by a linearly +45◦ polarized waves. On the contrary,

the inversion of fringes on the red line B indicates that the area is linearly -45◦ polarized.

The second test is aimed to verify the controllability of the polarization through the

piezoelectric. The polarization state of the output beam is measured for different position

of the piezoelectric. As the interferometric image is structured in fringes, it doesn’t present

a uniform polarized spot. So the fringes are enlarged by acting the rotator of (M2) mirror,

until obtaining only a unique fringe. A small central area of the unique fringe is selected

by aligning the iris (D) of the analysis system, which permits a fine selection. Figure

3.10 and Figure 3.16 show some of the possible polarization state of the output beam for

different positions of the piezoelectric. The measures and fits are obtained by fixing the

piezoelectric in a position and by measuring the intensities for a complete 360◦ rotation of

the analysis polarizer (POL) in steps of 10◦. The measured values are graphically fitted by

using the phase delay δ as variable parameter; then the ellipses are recovered (see Figure

3.11). Table 3.1 describes the datas and fits reported in Figure 3.10.

Translator Polarization Angle Of Phase Delay Figure Color

(nm) Ellipticity χ (rad)

N/D Linear 0.18◦ 0.0 Red
20 Elliptical 20.05◦ 0.7 Blue
60 Almost Circular 38.43◦ 1.8 Green
120 Almost Linear 12.65◦ 2.7 Orange
150 Elliptical 18.86◦ 3.8 Brown
388 Circular 44.64◦ 4.7 Purple

Table 3.1: The Polarization states obtained by the Michelson configuration in reference to Figure
3.10. The angle of ellipticity χ is obtained by the original relation described in equation (1.9).
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3.2. Second Step: The Polarization System with Michelson Configuration

In order to test the sensibility of the system to the movement of the piezoelectric stage,

three consecutive measures are shown in Figure 3.14. The measured intensities refer to

three different position of the piezoelectric, which is moved by steps of ∆l = 20 nm. Again

after performing the graphical fits, the polarization ellipses are recovered and shown in

Figure 3.15.

An example of data referring to a measure with an output beam in linear polarization

state is shown in Figure 3.12. The maximum intensity value is 126 nA, while the minimum

intensity is 6 nA, measured respectively when the main axis of the analysis polarizer

(POL) is set at +45◦ and -45◦. Its angle of ellipticity results to be 0.18◦. By moving the

piezoelectric of a step ∆l = 40 nm, the angle of ellipticity χ changes to 20.05◦, as shown

in the Figure 3.12.

The final consists in measuring the path difference ∆l of the piezoelectric between

a -45◦ linear polarization and a +45◦ linear polarization state. This corresponds to the

translation from a minimum peak to a maximum peak, when the analysis polarizer (POL)

is set to have the main axis at +45◦ with the respect to the vertical direction. Theoreti-

cally the translation between the two linear polarized states occurs when the total phase

displacement is π, and consequently the path difference ∆l is λ/4 � 159 nm. As shown in

Figure 3.17, the real results are in agreement with the theoretical expectation as clearly

graphically demonstrated. The quantification of the error requires the definition of a

method and procedure, which is part of a future work.

In conclusion, the tests confirm a fine controllability of the polarization state,as the

results faithfully follow the theoretical simulations.
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Figure 3.10: The figure shows the intensity distribution, obtained for different translations of the
piezoelectric in the Michelson configuration. For each translation of the piezoelectric, the intensities
are measured for a complete rotation of 360◦ of the analysis polarizer (POL). The (POL) polarizer
is manually rotated with step of 10◦. The measured intensities are indicated with circles, while the
lines indicates the graphical fits of the measures.

Figure 3.11: The graphical fits of the intensity distribution of Figure 3.10 provide the phase
delaies δ, which permits the reconstruction of the polarization ellipse.
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3.2. Second Step: The Polarization System with Michelson Configuration

Figure 3.12: The best linearly polarized state obtained in the Michelson configuration. Its real
angle of ellipticity is 0.18◦.

Figure 3.13: In reference to Figure 3.12, by translating the piezoelectric of 40 nm from the
linearly polarized position, an elliptical polarization beam of phase delay δ = 0.7 rad is obtained.
Its real angle of ellipticity is 20.05◦.
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Figure 3.14: The system is very sensible to the movements of the piezoelectric. The figure show
three consecutive measures obtained by moving the piezoelectric of a step of 20 nm.

Figure 3.15: The ellipses in reference to Figure 3.14.
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3.2. Second Step: The Polarization System with Michelson Configuration

Figure 3.16: All possible states of polarization obtained by the Michielson configuration: from
±45 linearly polarized waves to circularly polarized. For clearness the measured datas are not
reported.

Figure 3.17: The analysis polarizer is set along the +45◦ direction, coincident to the inclination
of the oscillating plane of linearly polarized waves. The test consists in measuring the difference
path of the piezoelectric between the series of consecutive max-min or min-max peaks. The x axis
refers to the position of the piezoelectric, while the y axis refers to the difference path between two
consecutive measurements of max-min or min-max peaks. The red line indicates the theoretical
path difference for two consecutive measurements, which is ∆l = λ/4 � 159 nm. The yellow line
is the arithmetic mean of the measures, which is 155 nm.
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3.3 Third Step: The Polarization System with Mach-Zehnder

Configuration

The Mach-Zehnder configuration described in section 2.3 has been realized on an optical

bench: a view of the final system is shown in Figure 3.18 and Figure 3.19. The main

elements used are:

• 2x BEAM SPLITTER: the beam splitters are BK7 ones with intensity division of

50/50.

• 8x MIRRORs: plane aluminum mirrors. Each mirror is fixed on its proper tip-tilt

support, which permits a fine regulation along the 3 axis.

• 2x BREWSTER WINDOW: the Brewster windows are BK7 ones working at 56◦ of

incident angle.

• 1x PIEZOELECTRIC STAGE: it is the same used in Michelson configuration. It is

configured in close loop mode with a declared fine control of 10 nm.

The alignment procedure is mainly organized in the following steps:

1. The first beam splitter (BM1) is placed and aligned.

2. The mirror (ML3) is aligned, in order to obtain a parallel propagation of the s and

p lines beams.

3. The Brewster window (B1) is placed to polarize the beam along the horizontal di-

rection. For this purpose the input polarizer (IN) is set with the main axis perpen-

dicular to the horizontal direction x and (B1) is finely tilted until the reflected beam

completely disappear. In this position (B1) works at its Brewster angle.

4. The (M1), (ML1) and (ML2) mirrors are sequentially aligned.

5. The Brewster window (B2) is aligned in order to polarize the beam along the vertical

direction. The alignment procedure of (B2) is similar to (B1): the (IN) polarizer is

set with the main axis perpendicular to the vertical direction y.

6. The (M2), (ML5) and (ML6) mirrors are sequentially aligned. The (M2) and (ML5)

are placed on the piezoelectric stage.

7. The (ML4) is fixed on a rotator stage, and aligned in order to achieve a perpendicular

intersection between the s and p beam.

8. The beam splitter (BM2) is placed and aligned in order to recombine the beams

coming from the s and p lines. However, the interferential effects obtained from this
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3.3. Third Step: The Polarization System with Mach-Zehnder Configuration

Figure 3.18: A general view of the Mach-Zehnder configuration. The input polarizer (IN) is
used to balance the system. The optical elements (DL), (CL) and (D) belong to the analysis
system. The mirror (ML4) is mounted on a micrometer rotator bench, in order to controll the
width of interferometric fringes.

superposition doesn’t create a fringes pattern because the beams are perpendicularly

polarized to each other. On the other hand, by inserting an analysis polarizer (POL)

with the main axis at ±45◦, the fringes pattern appears and their distribution can

be finely controlled by the micrometer rotator of (ML4).

The final Mach-Zehnder configuration is now aligned, but it has to be equalized. The

equalization procedure is the same adopted for the Michelson system: the input polarizer

(IN) is finely rotated until the two lines have the same beam intensity value. At the end

of the equalization process the input rotation was θ = 50◦, with

Ps = 26, 1 nA Pp = 26, 2 nA

where Ps is the power of the s line, while Pp is the power of the p line.

3.3.1 Tests

Different experimental tests have been carried out to verify the proper functioning of the

system.

The first test is aimed to verify the polarization states in the fringes system. The

test is led similarly to the Michelson one: the photodiode of the analysis system is re-

placed by a CCD and the analysis polarizer (POL) is slowly rotated. The appearance and

disappearance of the fringes is shown in Figure 3.20.
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M2 

B2 

ML4 
ML5 

BS1 

ML6 

IN 
(a)

(b)

Figure 3.19: (a) In the s line the (ML5) and (M2) mirrors are fixed on the piezoelectric bench,
which is able to control the optical path difference between the lines. (b) In the p line the optical
elements works rotated of 90◦ with the respect to the s line, as the Brewster window has to polarize
the beam along the p horizontal direction.
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Polarization Angle Of Phase Delay Figure Color

Ellipticity χ (rad)

Almost Linear 9.61◦ 0.0 Red
Almost Linear 10.87◦ 0.7 Blue

Circular 43.60◦ 1.8 Green

Table 3.2: The Polarization states obtained by the Mach-Zehnder configuration in reference to
Figure 3.21. The angle of ellipticity χ is obtained by the original relation described in equation
(1.9).

Polarization Angle Of Phase Delay Figure Color

Ellipticity χ (rad)

Almost Linear 32.17◦ 1.0 Blue
Almost Linear 27.38◦ 0.9 Red

Table 3.3: The Polarization states obtained by the Mach-Zehnder configuration in reference to
Figure 3.23. The angle of ellipticity χ is obtained by the original relation described in equation
(1.9).

The second test is carried out to verify the controllability of the polarization through

the piezoelectric actuator. As for the Michelson test, the fringes are enlarged by acting the

rotator of (ML4) mirror, until obtaining only a unique fringe. A small central area of the

unique fringe is selected by a iris (D) of the analysis system. Figure 3.21 shows some of the

possible polarization state of the output beam for different positions of the piezoelectric

actuator. The piezoelectric is fixed at different positions and the intensities are measured

for a complete 360◦ rotation of the analysis polarizer (POL) in steps of 10◦. The measured

values are graphically fitted by using the phase delay δ as variable parameter; then the

ellipses are recovered (see Figure 3.22). Table 3.2 summarizes the datas and fits reported

in Figure 3.21.

The last test was devoted to determine the sensibility of the system to the piezoelectric

stage movement. Two consecutive measures are shown in Figure 3.23, by steps of ∆l = 20

nm. Their polarization states are reported in Table 3.3. Again after the graphical fits, the

polarization ellipses are recovered and shown in Figure 3.24.

In conclusion, as for the Michelson configuration, the quantification of the error requires

the definition of a method and procedure, which will be investigated in a future work.

But the results faithfully reproduce the theoretical simulations and they confirm the fine

controllability of the polarization state of the outcoming beam.
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Figure 3.20: The effect of the appearing and disappearing fringes in the Mach-Zehnder config-
uration for different angle of the analysis polarizer (POL). The angle values refer to the position
of the main axis of (POL) with the respect of the y vertical direction. The red line A indicates a
+45◦ linearly polarized area, while the line B indicates a -45◦ linearly polarized area.
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Figure 3.21: The best linear polarized and circular polarization state in Mach-Zehnder config-
uration. The system should be optimized with higher performance elements to obtain a better
linear polarization state.
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Figure 3.22: By the fits of Figure 3.21 the polarization ellipse are obtained.
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Figure 3.23: The figure shows the intensity distribution, obtained for different translations of
the piezoelectric in the Mach-Zehnder configuration. For each translation of the piezoelectric, the
intensities are measured for a complete rotation of 360◦ of the analysis polarizer (POL). The
(POL) polarizer is manually rotated with step of 10◦. The graph shows as the Mach-Zehnder
configuration can finely control the polarization status of the beam by a translation ∆l = 20 nm.
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Figure 3.24: By the fits of Figure 3.23 the polarization ellipse are obtained.
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Future Perspectives

Michelson and Mach-Zehnder configurations have been developed in the VIS range. The

next step is to verify the functionality of the systems for wavelengths in the UV (200 −
400 nm). Theoretically both systems should work in the UV band, since there are no

substantial differences than the VIS range, beside optimization of the efficiency of the

optical elements. On the contrary at shorter wavelengths in the extreme ultraviolet EUV

band (<200 nm), the materials become opaque, and it is necessary to use optical systems

which work completely in reflection. For this reason, an all-reflective Mach-Zehnder has

been realized on the optical bench (see Figure 4.1). Beam splitter elements working in

transmission have been replaced with mirrors working in grazing incidence and in Iloyd

configuration. The beam impinges the edge of the mirror (SM1), which divides it into two

spots with the shape of a half moon. The recombination of the s and p lines is done by

SM2 

ML3 
M1 

B1 

B2 

ML2 

ML4 

ML1 

SM1 

M2 

IN 

ML6 

OUT 

y 

z 
x 

ML5 

Figure 4.1: A schematic view of the Mach-Zehnder configuration with only mirrors: the beam is
split and superposed by two grazing mirrors (SM).
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superposing the small central area of each half moon through the grazing mirror (SM2).

As a first experiment, the all-reflective Mach-Zehnder configuration has been built and

tested at CNR - IFN in Padova (see Figure 4.2); but nevertheless, to complete the experi-

mental analysis, some optical elements must be replaced with some higher performancing

ones. The alignment of this system is particularly critical for different reason. First of

all the grazing incidence mirror needs to be positioned with special care. Than the re-

combination of the beam presents some intrinsic limitation, for example due to the fact

that the Iloyd configuration determines a tilt between the two s and p wavefronts that

determine the appearance of a fringes system; selection of the central fringe with desired

width is no longer possible, and the uniform area of the central portion of the beam is

very limited. However, some interesting and promising results have been obtained. Figure

4.3 shows the effect of the fringes that appear and disappear depending on the position

of the axis of the analysis polarizer (POL). Such a result confirms the controllability of

the polarization status for the all-reflective Mach-Zehnder. Actually this configuration

requires further studies and tests, but it opens new fronts to the control of the state of

polarization for wavelengths in the EUV band.

SM2 
ML3 

M1 

B1 

B2 

ML2 

ML4 

ML1 

SM1 

M2 
IN 

ML6 

OUT 

ML5 

IN 

Figure 4.2: The Mach-Zehnder with only mirrors: the (SM1) mirror spatially divides the beam
in the the s and p line, while the (SM2) recombine the lines in a unique interferometric beam. The
(SM) mirrors theoretically work at the grazing incidence, however for convenience in this first test
the working angle is set to 45◦.
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Figure 4.3: The appearing and disappearing phenomena is shown for the three configuration of
the system for different angle of the analysis polarizer (POL).
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