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Chapter 1

Introduction

A large variety of engineering disciplines have huge advantages in studying
signals in their frequency domain, rather than the classic time domain.

The significant contribution in this direction has been provided by the
Fourier transform and thus its decomposing signals into theirs costituent
frequencies. Though being proposed by French matematician Joseph Fourier
as early as 1811, the Fourier transform began to fulfil its real and vast
potential only over a century later and especially thanks to the discrete
Fourier transform, or DFT, which, alongside the plain old Fourier transform
and the Fourier series, is part of the three varieties in which the Fourier
transform comes. Particularly, what makes the DFT so powerful is the fast
Fourier transform, the algorithm first described by James Cooley and John
Tukey in 1965 and used to easily calculate DFTs on computers.

In this sense, a very new and exciting theory emerging only in the last
few years has seen a flurry of researches developing tools towards a sugges-
tive yet realistic reduction in time and power costs of many imaging and
signal processing applications: Compressed Sensing, or CS. The innovative
approach of CS seems to put the entire signal processing theory well beyond
the renowned Shannon sampling theorem.

Moreover, considering that every data acquisition inevitably comes with
noise, a neat recovery of the original data is of great interest in many prac-
tical applications.

In this regard, this thesis presents a brief introduction to the Fourier
analysis and offers basic insight into CS theory, followed by an actual ap-
proach of denoising data applied to MRI acquisitions.
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Chapter 2

Basic Concepts on Fourier
Analysis

Let us begin providing useful definitions and notions on Fourier transforms
and signal processing.

2.1 Continuous-Time Fourier Analysis

2.1.1 Periodic Signals

Recalling a periodic signal definition, that is

x(t) = x(t+ T ), for all t (2.1)

for some positive, nonzero value of T , with T0 the fundamental period of
x(t), that is the smallest positive value of T for which eq. (2.1) holds, and
2π/T0 the fundamental frequency, let us consider the periodic sinusoid signal

x(t) = cosω0t (2.2)

and the periodic complex exponential

x(t) = ejω0t . (2.3)

Relying on the above signals is particularly advantageous in the light of the
immediate and useful properties that convolutional systems yield, expressly
in terms of the frequency response, given the simple yet powerful way with
which it affects the involving signals. Indeed, considering an input signal
x(t) and the output signal y(t) resulting by the convolution of input and
impulsive response h(t), with h(t) ∈ `1:

x(t) = ejω0t −→ y(t) = H(jω0)ejω0t, (2.4)

with H(jω) =
∫∞
−∞ h(τ)e−jωτ dτ being the frequency response of the system.

7
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It is therefore interesting to analyse linear combinations of exponential
signals, taking into account periodic signals firstly, in the form of the set of
harmonically related complex exponentials

φk(t) = ejkω0t, k = 0,±1,±2, . . . (2.5)

periodic with period T0. Then, the following signal is also periodic with
period T0:

x(t) =

N2∑
k=N1

akφk(t) =

N2∑
k=N1

ake
jkω0t. (2.6)

In this regard, we refer to the components for k = +n and k = −n as
the nth harmonic components.

We therefore determine the Fourier series coefficients through equation

ak =
1

T0

∫
T0

x(t)e−jkω0t dt . (2.7)

Remark 1. Energy over the period of the signal x(t) highlights the preserving
of geometrical properties:

E(T ) =

∫
T0

|x(t)|2 dt = T0

N2∑
k=N1

|ak| <∞ (2.8)

Remark 2. Eq.(2.7) holds for every periodic signal x of period T absolutely

integrable over the period:
∫ T

0 |x(t)| dt <∞.

In order to have a clear view of which signals are representable in the
form of x(t) =

∑+∞
k=−∞ ake

jkω0t, the following theorem is introduced:

Theorem 2.1.1 (Riesz-Fisher Theorem). Let {ak}∞k=−∞ be a sequence of
complex numbers for which

∞∑
k=−∞

|ak|2 <∞ (a = {ak}∞k=−∞ ∈ `2) (2.9)

holds, that is {ak}∞k=−∞ ∈ `2, then there exist a signal x over [0, T ] of finite
energy over [0, T ] such that eq. (2.7) holds.

Conversely, given a signal x of finite energy over [0, T ], its Fourier co-
efficients are well defined by (2.7) where condition of (2.9) also holds.

Furthermore, defining sN (t) =
∑N

k=−N ake
jkω0t, then sN shows mean-

square convergence (in L2)

lim
N→∞

∫ T

0
|x(t)− sN (t)|2 dt = 0 (2.10)
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To reconcile absolute integrability of the signal as in Remark 2 to finite
energy requested by Theorem 2.1.1, it is recalled that L2(0, T ) ⊆ L1(0, T ).

Theorem 2.1.1 does not explicitly require periodic signals, however the
following Remark applies:

Remark 3. Replacing x with its periodic repetition repTx(t), Theorem 2.1.1
has validity on R.

Therefore, under the Riesz-Fisher Theorem conditions, the Fourier series
is defined as follows:

Definition 2.1 (Fourier Series). The Fourier series of a periodic and abso-
lutely convergent signal over a period, that is

∫
T0
|x(t)| dt < ∞, is a repre-

sentation of the signal in the form of

x(t) =

+∞∑
k=−∞

ake
jkω0t, (2.11)

accordingly to Theorem 2.1.1, where the limit is in the mean-square sense.

Furthermore, a pointwise convergence to their Fourier series of contin-
uous periodic signals is guaranteed by the so-called Dirichlet Conditions,
that basically cover almost all the interesting signals. That is, under the
following conditions, signals are representable by Fourier series:

1. x(t) must be absolutely integrable over any period:∫
T0

|x(t)| dt <∞ ; (2.12)

2. x(t) has at most a finite number of maxima and minima during any
single period;

3. in any finite interval of time, discontinuities, which must be finite, are
at most in a finite number.

Remark 4. Dirichlet Conditions also imply the square-integrability over a
period of the signal: ∫

T0

|x(t)|2 dt <∞ . (2.13)

Thus, the Fourier series of continuous periodic signals converges and equals
the original signal at every value of t, whereas periodic signals with discon-
tinuities have their equal Fourier series representation everywhere except
at the isolated points of discontinuity at which the convergence is to the
average value of the signal left- and right-hand side limits.
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2.1.2 Aperiodic Signals

As per aperiodic signals, we can always suit the above theories, constructing
a periodic signal x̃(t) from the aperiodic signal x(t) of finite duration, x(t)
being one period for x̃(t). This leads to rewriting and extending eqs. (2.11)
and (2.7) as follows:

Definition 2.2 (Fourier Transform). We define the Fourier Transform of
an aperiodic signal x(t) of finite energy (

∫∞
−∞ |x(t)|2 dt <∞) as

X(jω) =

∫ +∞

−∞
x(t)e−jωt dt, (2.14)

where the limit is in the mean-square sense.

and the

Definition 2.3 (Inverse Fourier Transform).

x(t) =
1

2π

∫ +∞

−∞
X(jω)ejωt dω , (2.15)

again in a mean-square sense of the limit.

Pointwise convergence is also guaranteed as per the Dirichlet conditions.

2.2 Discrete-Time Fourier Analysis

Analogously to the above dealing with continuous-time signals, here we han-
dle the same theory for discrete-time signals.

2.2.1 Periodic Signals

Let us consider a periodic discrete-time signal:

x[n] = x[n+N ] for some positive N (2.16)

and the set of all discrete-time complex exponential signals periodic with
period N , that is

φk(n) = ejk
2π
N
n , k = 0,±1,±2, . . . (2.17)

that are all harmonically related having frequencies multiples of the same
fundamental frequency 2π/N .

Yet it is noteworthy to observe that, contrary to continuous-time signals,
recalling that discrete-time complex exponentials differing in frequency by
a multiple of 2π are identical, there are only N different signals in the set
given in eq (2.17). Therefore, dealing with a more general representation
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including linear combinations of the sequences φk[n] in eq (2.17), letting k
vary over a range of N consecutive integers, we have:

x[n] =
∑
k=〈N〉

akφk[n] =
∑
k=〈N〉

ake
jk 2π

N
n . (2.18)

Definition 2.4 (Discrete-Time Fourier Series). The discrete-time Fourier
series of a periodic signal is a representation of the signal in the form of
eq. (2.18).

We therefore determine the Fourier series coefficients through the equa-
tion:

ak =
1

N

∑
n=〈N〉

x[n]e−jk
2π
N
n (2.19)

2.2.2 Aperiodic Signals

As previously, an aperiodic sequence x[n] of finite duration lets us to consider
the periodic sequence x̃[n] for which x[n] is a single period. Then, analysing
the Fourier representation of x̃[n] and conveniently adapting it to x[n], we
are able to define the discrete-time counterparts of eqs. (2.14) and (2.15):

Definition 2.5 (Discrete-Time Fourier Transform). We define the Discrete-
Time Fourier Transform (DTFT) of an aperiodic signal x[n] of finite energy
(
∑+∞

n=−∞ |x[n]|2 <∞) as the mean-square limit

X(ejθ) =
+∞∑

n=−∞
x[n]e−jθn (2.20)

and the

Definition 2.6 (Inverse Discrete-Fourier Transform).

x[n] =
1

2π

∫
2π
X(ejθ)ejθn dθ . (2.21)

2.2.3 Discrete Fourier Transform (DFT)

Dealing with discrete-time signals allows us to consider yet another analysis
of the Fourier theory that leads to the so called Discrete Fourier Transform
(DFT). This technique retains a particular importance in the light of the
very efficient algorithm used for its calculation, that is the Fast Fourier
Transform (FFT), which has helped the extensive development of discrete-
time signals analysis.

Namely, as before, we consider a signal of finite length x[n] and construct
the periodic signal x̃[n] for which x[n] is one period. Then, from the Fourier
series coefficients of x̃[n] over the interval x̃[n] = x[n] we have:
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Definition 2.7 (Discrete Fourier Transform (DFT)). We denote with X̃(k)
the DFT of x[n] calculated as

X̃(k) = ak =
1

N

N−1∑
n=0

x[n]e−jk
2π
N
n , k = 0, 1, . . . , N − 1 . (2.22)

Remark 5. The Discrete Time Fourier Transform (DTFT) of the considered
signal yields:

X(ejθ) =
∞∑

n=−∞
x[n]e−jθn =

N−1∑
n=0

x[n]e−jθn, (2.23)

thus resulting in Nak = X(ejk
2π
N ) being samples of X(ejθ).

We can therefore observe that the finite duration signal can be seen both
as specified by the finite set of nonzero values it assumes or by the finite set
of values of X̃(k) in its DFT.

2.3 Fourier Transform Properties

Several properties descend directly from the Fourier transforms, hence of-
fering useful relationships between time and frequency domains of signals
that are easily extended to corresponding properties for Fourier series too
and facilitating computational complexity of Fourier transforms and inverse
transforms.

Accordingly, follows a brief overview of the most common and impor-
tant properties of signals ant their Fourier transforms through the Fourier
series coefficients, here presented for continuous-time signals, but straight-
forwardly extending to discrete-time signals:

• Isometry: it preserves the `2 norm (meaning conservation of distance
and ortogonality);

• Linearity:

αx1(t) + βx2(t)
F←→ αak + βbk;

• Time-Shifting:

x(t− t0)
F←→ ake

−jkω0t0 ;

• Frequency-Shifting:

x(t)ejM(2π/T )t F←→ ak−M ;

• Conjugation:

x∗(t)
F←→ a∗−k;
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• Time Reversal:
x(−t) F←→ a−k;

• Time Scaling:

x(αt), (α > 0,periodic with period T/α)
F←→ ak;

• Periodic Convolution:∫
T
x(τ)y(t− τ) dτ

F←→ Takbk;

• Multiplication:

x(t)y(t)
F←→

+∞∑
l=−∞

albk−l;

• Symmetry:

– x(t) real-valued ⇔ a−k = a∗k;

– x(t) even (x(−t) = x(t)) ⇒ {ak} even (a−k = ak);

– x(t) odd (x(−t) = −x(t)) ⇒ {ak} odd (a−k = −ak);
– x(t) real-valued and even ⇔ {ak} real-valued and even;

– x(t) real-valued and odd ⇔ {ak} purely imaginary and odd.

Furthermore, confronting Fourier transform and inverse transform expres-
sions, a neat duality emerges (though duality for discrete-time signals is to
be traced in the Fourier series eqs. (2.18) and (2.19)).

Also of fundamental importance are modulation and convolution proper-
ties, alongside the powerful Plancherel Theorem, which offer an insight into
the strong and effective means that Fourier analysis delivers.
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Chapter 3

Compressed Sensing: Beyond
the Sampling Theorem

The impressive and dramatic changes that Fourier analysis has brought since
its introduction have recently further developed into new studies and appli-
cations based on Compressed Sensing, or CS. Particularly, CS offers an
innovative approach to sampling signals, leading to results well beyond the
ones of the Shannon Sampling Theorem.

To truly appreciate this new theory, let we firstly recall the Shannon
Sampling Theory:

Theorem 3.0.1 (Shannon Sampling Theorem). Let x(t) be a bandlimited
signal, with its Fourier transform X(jω) = 0 for all |ω| > ωM . Then,
denoting with {x(nT ), n ∈ Z} its samples, with

ωs =
2π

T
(3.1)

if

ωs > 2ωM (3.2)

the signal is uniquely determined in a mean-squared sense by its samples.

In this regard, eqs. (3.1) and (3.2) are respectively defined as the Nyquist
frequency and the Nyquist rate.

Therefore, according to the sampling theorem, in order to avoid aliasing
and to reconstruct the exact signal from its samples, the sampling rate
must be at least twice the Nyquist rate. Hence, to afford sampling at lower
rates than the Nyquist rate and still recovering the exact signal, we cannot
rely on the sampling theorem and it is in this sense that CS opens up to
new strategies of sampling, allowing to reconstruct signals from even fewer
samples.

15
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3.1 CS Signal Reconstruction

The new sampling approach introduced by CS, is mainly based upon two
principles: Sparsity of the signal and Incoherence of its sensing.

Namely, the sparsity of a signal refers to its concise representation in a
suitable basis, whereas incoherence, on the other hand, expresses the dual
spread of the signal in its frequency domain. The immediate convenience of
this setting is that natural signals are actually sparse.

Therefore, in this frame, given a signal f(t), we are interested in its
information in the form of its correlation with waveforms φk(t), that is
recording the values f(t) is obtained by:

yk = 〈f, φk〉, k = 1, . . . ,m. (3.3)

Dealing with CS, specifically considering discrete signals f ∈ Rn, the at-
tention comes to cases of m < n, available measurements fewer than signal
dimension. It is especially in this sense that the strength of CS emerges: we
pose the problem of recovering f ∈ Rn from y ∈ Rm, with n > m through
the sensing matrix Am,n.

Accordingly, let us consider the vector f ∈ Rn and its representation in
an orthonormal basis Ψ = [ψ1, . . . , ψn] through its coefficients xi = 〈f, ψi〉,
i = 1, . . . , n:

f(t) =
n∑
i=1

xiψi(t) (3.4)

that is f = Ψx, with Ψ the n× n matrix having ψi as columns.
Therefore, as per the above tenets, signal sparsity allows discarding small

coefficients without appreciable loss.

Definition 3.1 (S-sparse Vector). Let fS(t) be the result of (3.4) setting
to zero all but the S largest values of xi: fS := ΨxS . We define S-sparse a
vector with at most S nonzero entries.

Recalling the Φ basis used to sense f in (3.3), we can define a new
parameter involving both the orthonormal bases Φ,Ψ of Rn:

Definition 3.2 (Coherence). The coherence between matrices Φ and Ψ is
defined as the largest correlation among any two of their respective elements:

µ(Φ,Ψ) =
√
n · max

1<k,h<n
|〈φk, ψh〉|. (3.5)

Remark 6. Definition (3.5) sets µ(Φ,Ψ) ∈ [1,
√
n], meaning that the more

correlated elements Φ and Ψ have, the larger their coherence is.

As per CS, the aim is to deal with pairs of orthonormal bases as little
coherent as possible. In this sense, an interesting occurrence is the one of
the canonical basis Φ to sense f , opposed to the Fourier basis Ψ to represent
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f , respectively φk(t) = δ(t− k) and ψh(t) = 1√
n
ej2πht/n, where µ(Φ,Ψ) = 1,

underlying the maximal incoherence between spikes of the time domain and
sinusoids of the frequency domain.

A significant feature of sparsity in CS comes from the large incoherence
random matrices present: precisely we can state that µ(Φ,Ψ) '

√
2 lg n with

high probability. Relying on orthonormal bases to compute f through its
coefficients xi guarantees a negligible error in terms of the `2 norm:

‖f − fS‖`2 = ‖x− xS‖`2 . (3.6)

Furthermore, handling with values from (3.3) (only a subset m < n of all
the available), let us recover the signal f by `1 norm minimization (convex
optimization):

yk = 〈φk,Ψx̃〉, k = 1, . . . ,m selecting min
x̃∈Rn
‖x̃‖`1 . (3.7)

In this regard, the following theorem sets a new CS-based sampling:

Theorem 3.1.1 (Incoherent Sampling Theorem). Let x be the S-sparse
representation of f ∈ Rn in the basis Ψ, collecting a subset of m values in
the Φ domain uniformly at random. Then if

m ≥ C · µ2(Φ,Ψ) · S · lg n, C ∈ R+ (3.8)

the convex optimization of (3.7) is exact with overwhelming probability.

Theorem 3.1.1 highlights the importance of low coherence, which directly
determines how few samples are needed in order to perfectly recover signal
f . Particularly, the lower endpoint of coherence, by its definition in eq. (3.5),
conveys to only S lg n samples needed, instead of n. Moreover, only sparsity
of the interested signal plays a key role, while all the information on the
nonzero xi coefficients could well be unknown a priori.

3.2 Incoherent counter to Linear Sampling

A straightforward comparison of the two sampling Theorems 3.0.1 and 3.1.1
exposes some of the advantages of CS:

• Shannon Sampling Theorem 3.0.1

– the support of f in the frequency domain is a known connected
set of size S,

– exact signal reconstruction from S uniformly distributed samples
of the time domain,

– linear reconstruction by sinc interpolation;
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• Incoherent Sampling Theorem 3.1.1

– the support of f in the frequency domain is an arbitrary and
unknown set of size S,

– exact signal reconstruction from ∼ S lg n almost arbitrarily dis-
tributed samples,

– nonlinear reconstruction by convex programming.

Of appreciable remark for CS is the independence between measurement
techniques and the signals involved. Further, CS proposes sampling at low
rates in the sense that the relevant information is collected from just the
few sensors computing fS .

Finally, figure 3.1 recalls the CS-based methods to recover signals.

Figure 3.1: CS paradigm guarantees S-term quality recovery from measure-
ments in the order of just ∼ S lg (n).

Straightforwardly from the above theories, different and various appli-
cations emerge, each providing interesting and challenging views on new
CS-based developments. Specifically, data acquisition and compression and
channel coding are among the discussed and studied subjects. In this sce-
nario, another possible unfolding attains to the so called inverse problems,
involving fixed sensing environments but still recoverable signals by virtue
of their sparse representation. Particularly, this is the case of Magnetic
Resonance Imaging (MRI) which we aim to in the following chapter.



Chapter 4

CS and Denoising on MRI

CS and MRI match comes rather naturally, due to the enhanced accuracy
provided by the former on the strict constraints of the latter. Especially,
what renders MRI so suitable to CS applications, is sparsity, which, as seen
in section 3.1, is a prominent feature in CS.

Magnetic Resonance as diagnostic tool is based on image processing
through Fourier analysis and, specifically, recovering the requested signals
by the use of the inverse Fourier Transform. On the other hand, the main
purpose of MRI being medical demands of tight process performances, both
in acquisition time and image quality terms. It is therefore in this sense that
MRI fittingly sets into CS frame. Particularly, the non-linear recovery of
highly incoherent and sparse samples as proposed by Theorem 3.1.1 applies
to MRI, having sinusoids sensing waveforms recorded as their corresponding
Fourier coefficients.

4.1 MRI Denoising

In MRI, as per every data acquisition, the collected information comes with
noise and it is thus of fundamental importance to reduce it as much as
possible. Though having to take into account noise effects onto the entire
MRI process, acceptable estimation can be made in order to relate accurately
to the original noise-free data.

Let us therefore consider an appropriate describing system: Y noisy
observations of the interested data matrix X0

m,n

Yi,j = X0
i,j +Wi,j Wi,j

iid∼ N (0, τ2)
i = 1, . . . ,m

j = 1, . . . , n
(4.1)

Hence, through eq. (4.1) we characterize disturbances as Gaussian noise,
setting the goal of estimating X0. A precise approximation is met under the
quite mild assumption of X0 having low rank, which is actually the reality

19
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of MR images with columns of X0 showing the high correlation between
nearby wavelengths.

4.1.1 Thresholding Approximation

Assuming the Gaussian model of eq. (4.1) with X0 having low rank, two
different unbiased estimators can be considered. Primarily, let we consider
the following

Definition 4.1 (Singular Value Decomposition). The singular value decom-
position of a matrix Ym,n is a factorization of the form

Y = UΣV ∗ (4.2)

with Um,m orthogonal (unitary) matrix, Σm,n diagonal matrix and V ∗n,n uni-
tary conjugate transpose of V matrix.

Firstly, a Singular Value Hard Threshold (SVHT) approach is possible:

SVHTλ(Y ) = min
X∈Rm×n

1

2
‖Y −X‖2 + λ · rank(X), λ ∈ R+. (4.3)

Otherwise, SVHT being a discontinuous estimator in Y , a soft-thresholding
method (SVT) is preferred instead:

SVTλ(Y ) =

min(m,n)∑
i=1

(σi − λ) + uiv
∗
i . (4.4)

Both estimators propose a truncation of the singular value decomposition
of Y , while, to completely appreciate the estimation quality, the mean-
squared error is minimized through Stein’s Unbiased Risk Estimate (SURE).
Particularly, a SURE formulation for MR applications involving Gaussian
iid noise as per 4.1 is

SURE(SVTλ(Y )) = −2mnτ2 +

min(m,n)∑
i=1

min(λ2, σ2
i ) + 2τ2div(SVTλ(Y )),

(4.5)
with ’div’ being the divergence of the nonlinear mapping SVTλ.

Despite SVT being an efficient and direct approach to estimate the noise-
free MR images, choosing an appropriate threshold parameter remains a
challenging question.

4.2 MRI Applications

Applying denoising strategies to MRI applications is of primal importance,
in order to relate to reliable morphological and clinical data. This can be
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reflected onto an as high as possible signal to noise ratio (SNR). Particularly,
thinking of cardiac MRI takes into account a very dynamic signal, due to
natural breathing and cardiac cycled motion, thus further degrading SNR.

Therefore, denoising MRI data through SVT, implies a set of t separate
n × n images referred to as in 4.1. Furthermore, MRI data demand multi-
dimensional acquisitions, thus surmounting temporal dimensionality, that is
n2 >> t, resulting in a very thin Yn2,t matrix. Under these circumstances,
a direct SVT approach does not yield an accurate estimation, reflecting
instead the low degrees of freedom onto flawed results of the temporal terms.
In order to overcome this limitation, a different approach is possible: image
sets can be analysed separately, based on a spatial block organization of
the total space dimensionality. The proposed spatial block-wise solution is
practically employed appropriately extracting k2 rows from each k×k spatial
block by the way of a binary operator Rb. Hence, to analyse the set Ω of
blocks globally composing the image domain, a block-wise SVT (BSVT) is
defined as

BSVTλ(Y ) = c−1
∑
b∈Ω

R∗bSVTλ(RbY ), c > 0. (4.6)

Remark 7. The BSVT analysis on a singular block of k = n, |Ω| = 1, yields
to the standard SVT as defined in eq. (4.4)

Basically, BSVT estimates submatrices of Y by SVT, collecting a weighted
sum of the results. In this context, recalling the unbiased risk estimator in-
troduced by eq. 4.5, the divergence ’div’ of the nonlinear mapping BSVTλ

is:

div BSVTλ(Y ) = c−1
∑
b∈Ω

divR∗bSVTλ(RbY ). (4.7)

Finally, considering the mean-squared error (MSE) of BSVTλ

MSE(λ) = E‖X0 − BSVTλ(Y )‖2, (4.8)

the unbiased estimator of 4.8 is given by SURE as in 4.5. In this respect
figure 4.1 shows a block-wise approach onto a series of MR images, whereas
BSVT and global SVT performances are compared.
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Figure 4.1: Singular values of Y formed from different extracted blocks,
including a dynamic region (yellow) and background noise (magenta), while
plots of MSE and SURE of both BSVT and global SVT as a function of
threshold value λ result in a lower MSE for BSVT than global SVT.
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4.2.1 SVT-denoised MRI Examples

Let us illustrate some practical examples of the above explained theories on
actual SVT-based denoising of MRIs.

Firstly, a data simulation of a myocardial perfusion MRI is performed
on a free-breathing model, having n = 128 and t = 50, adding iid Gaus-
sian noise of τ = 30. Results are collected implementing on 101 equispaced
values in [10−1, 107] both global SVT and BSVT (the latter with k = 7
and |Ω| = n2). Particularly, figure 4.2 shows interesting results, comparing
the original noise-free data to each of the noisy, SVT-denoised and BSVT-
denoised data over three successive time frames (early, middle and late),
while SVT threshold values are based on the MSE/SURE-minimizers as
plotted in figure 4.1. In this sense, as figure 4.2 clearly suggests, both

Figure 4.2: Real-time myocardial perfusion MRI simulation in original
(truth), noisy and SVT/BSVT-denoised versions.

SVT and BSVT achieve an appreciable noise reduction, accurately preserv-
ing morphological and contrast aspects. On the other hand, in terms of
smoothness and closeness to truth, is notably significant the greater preci-
sion BSVT yields. This is primarily due to the lower MSE of BSVT than
global SVT.

A second interesting experiment is based on a cine-cardiac MRI series,
setting n = 192, t = 19 and subsequently denoising by SVT. Background
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noise is characterized with τ = 0.67, while BSVT applies k = 5 on |Ω = n2|,
choosing the parameter over 101 values equispaced over [10−3, 105]. In this
regard, figure 4.3 highlights the importance of threshold value parameter
selection for both SVT and BSVT. Consequences of wrongly estimating λ

Figure 4.3: Cine-cardiac MRI series denoised by global SVT and BSVT in
different threshold values.

are clearly visible from figure 4.3 for each denoising strategy. Although
BSVT performing again slightly better in terms of noise reduction, critical
results are achieved in cases of non-optimized thresholds. While a λ under-
estimation does not remove noise acceptably, over-estimating λ causes a
spatio-temporal blurring. In particular, blurring prominence appears differ-
ently, based on the denoising strategy: global SVT shows flawed results in
areas of high motion (as for the tricuspid heart valve, indicated with the red
arrow) and cleaner representations of more static areas, whereas BSVT has
a quite reverse trend, with a neater denoising of dynamic areas and blurred
less active areas.

The two previous examples underlie the strong efficacy of unbiased risk
estimations to reduce noise via SVT. The proposed methods are clearly ex-
tended to every other than cardiac MRI. Furthermore, analogously to thresh-
old values optimization, unbiased risk estimation can also be performed to
determine BSVT optimal block-size.
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Conclusions

Through the previous chapters, an insight into new techniques of data pro-
cessing were presented. Particularly, the given theories on both CS and
SVT are especially interesting because of their suitability to natural and
real cases of undersampled and noisy data. Of primal effectiveness is also
the vast and straightforward generalization of the proposed methods, fit-
ting to various and different practical applications in many fields, besides
opening new challenges into research developments.

As per MRI applications, CS and SVT theories result in a complemen-
tary solution to the overwhelming demands of reconstructing undersampled
matrices on both quality and fidelity constraints. While efficiently founding
on recent research developments on matrix completion, the new theories are
strongly establishing in the light of promising possibilities of SURE appli-
cation also on undersampled problems. In this sense, parameter selection
in undersampled contests enhances interest in studies and researches in this
direction.

Besides the challenging and exciting future prospects CS and SVT of-
fer, the surge of new CS and SVT-based applications is already visible and
competently covers actual available technologies such as the previously ex-
plained MRIs, analogue-to-digital CS-based conversions and many others.
On the other hand, the continuing interest in fastening and increasing qual-
ity of applications is of primal care and attraction for further researches and
developments.

25
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