

Università degli Studi di Padova Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Scienze Geologiche

Processi fisico-chimici ed evoluzione dell'attrito nelle faglie durante i terremoti

Relatore: Giulio Di Toro

Candidata: Stefania Simion

Indice

- I terremoti
 - Cosa sono i terremoti
 - Come studiare l'attrito durante i terremoti
- I terremoti in laboratorio
 - Apparati tipo Rotary
 - Evoluzione dell'attrito
 - Processi proposti in letteratura
- Processi di fusione nelle rocce coesive silicatiche
 - Flash heating
 - Fusione per attrito (frictional melting)
 - Confronto tra rocce di faglia sperimentali e naturali
- Conclusioni

I terremoti

Cosa sono i terremoti

Fasi:

- Enucleazione della rottura (ipocentro)
- Propagazione della rottura lungo faglia
- Scivolamento dei blocchi rocciosi (attrito)

onde sismiche

Come studiare l'attrito durante i terremoti

- Sismologia: studio delle onde sismiche
- Ipocentro
- Epicentro
- Direttività
- Magnitudo...

Evoluzione della sforzo di taglio con lo solvolamento Limitazioni: Dipendenza dal modello Valori di stress relativi

Come studiare l'attrito durante i terremoti Approccio sperimentale per lo studio dell'attrito nelle rocce durante i terremoti

ESPERIMENTI CONVENZIONALI

Apparati sperimentali triassiali e biassiali

ESPERIMENTI NON-CONVENZIONALI

Apparati sperimentali tipo Rotary

Come studiare l'attrito durante i terremoti

ESPERIMENTI CONVENZIONALI

Apparati sperimentali triassiali e biassiali

10⁻⁶

VELOCITA' DI SLIP

- <u>Basse velocità di slip</u> (V < 1 mm s^{-1})
- <u>Rigetti modesti</u> (δ < 1 cm)
 - $0.60 < \mu < 0.85$ Dove $\mu = \tau / \sigma_n$

10⁻⁹

SUB-SISMICHE - <u>Velocità sismiche (0.1 m $s^{-1} < V < 10 m s^{-1}$)</u>

VELOCITA' DI SLIP

SISMICHE

- <u>Rigetti elevati</u> ($\delta > 50$ m)

v (m/s)

 10^{-3}

- <u>Stress normali elevati</u> (σ_n > 50 MPa)

ESPERIMENTI NON-CONVENZIONALI Apparati sperimentali tipo Rotary

$$\mu \approx ?$$

I terremoti in laboratorio

Apparati tipo Rotary

ROSA (ROtary Shear Apparatus) Padova

SHIVA (Slow to High Velocity Apparatus) *Roma*

Di Toro, Nielsen et al., Rendiconti Lincei, 2010

Apparati tipo Rotary

V = 5 m/s (0 to 5 m/s in 0.1 s) σ_n = 25 MPa

Gabbro roccia silicatica coesiva

Di Toro et al., Rendiconti Lincei, 2010, Niemeijer et al., JGR 2011

Evoluzione dell'attrito

In centinaia di esperimenti condotti su diversi tipi di rocce è emerso che:

L'attrito decresce significativamente a velocità di slip sismico (V>0.1m/s): Iubrificazione del piano di faglia

Di Toro et al, Nature, 2011

Processi proposti in letteratura

Flash heating

(Rice, 2006; Goldbsy & Tullis, 2011)

Frictional melting

(Jeffreys, 1942; McKenzie & Brune, 1972; Sibson, 1975; Di Toro et al., 2006; Fialko & Khazan, 2006; Nielsen et al. 2008)

Superplasticity

(Green et al., subm.; De Paola et al., subm.)

Silica gel lubrication

(Goldsby & Tullis, 2002; Di Toro et al., 2004)

Thermal pressurization

(Sibson, 1973; Lachenbruch, 1980)

Thermochemical

pressurization

(Sulem & Famin, 2008; Brantut et al., 2008; Ferri et al., 2010)

Normal interface vibrations

(Brune et al., 1993)

Acoustic fluidization

(Melosh, 1996)

Elastohydrodynamic lubrication

(Brodsky & Kanamori, 2001)

Tribochemical reactions

(Han et al., 2007; Di Toro et al., 2011)

Powder lubrication

(Han et al., 2010; Reches & Lockner, 2010)

Mirror-surface lubrication

(Chen et al., 2013)

Processi di fusione nelle rocce coesive silicatiche

Gabbro

V = 3 m/s (0 to 3 m/s in 0.5 s) $\boldsymbol{\sigma}_{\rm n}$ = 20 MPa

6 5 Shear stress (MPa) 2 0 100 200 300 500 400 Time (ms) <u>20 mm</u>

Camera infrarosso: flash heating seguito da strenghening e indebolimento finale (fusione per attrito)

Hirose and Shinamoto, JGR 2005; Niemeijer et al., JGR 2011

Flash heating

Processo di fusione nelle prime fasi di scivolamento localizzato nelle asperità (alla scala dei micron)

Flash heating

Ropy-like structures coprono la superficie di scivolamento nel gabbro dopo 5 mm di slip. Localmente temperatura > 1200°C. [immagine FESEM]

Fusione per attrito (frictional melting)

Processo di fusione «totale» della superficie di scivolamento. Successivo al flash heating.

Fusione per attrito (frictional melting)

Rapporto shear stress vs. normal stress non lineare

Fusione per attrito (frictional melting)

Peridotite Strutture vetrose

Del Gaudio et al., JGR 2009

Confronto tra rocce di faglia sperimentali e naturali

Confronto tra rocce di faglia sperimentali e naturali

Le strutture sono simili!

Conclusioni

- I terremoti sono dovuti a propagazione di rottura e scivolamento lungo faglia.
- L'attrito è fondamentale per descriverne la meccanica
- Le condizioni estreme di deformazione durante lo scivolamento cosismico sono riprodotte in laboratorio con apparati tipo Rotary: lubrificazione della faglia
- Negli esperimenti, le rocce silicatiche coesive si indeboliscono per flash heating e fusione per attrito.
- I prodotti sperimentali sono simili ai prodotti naturali

Grazie per l'attenzione!