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Abstract

The benefits of incremental learning make it desirable for many real-world applications. It en-
ables efficient utilization of resources by eliminating the need to start training from scratch
when the considered set of tasks is updated. Additionally, it reduces memory usage, which is
particularly important in situations where privacy limitations exist, such as in the healthcare
sector where storing patient data for a long time is prohibited. However, the main challenge
of incremental learning is catastrophic forgetting, which causes a decline in the performance
of previously learned tasks after learning a new one. To overcome this challenge, various incre-
mental learning methods have been proposed.
In this work, we explore the influence of class ordering on class incremental learning and the re-
silience of the method to different class orderings. Additionally, we examine how the complex-
ity of incremental learning scenarios or task split strategies affects themodel’s performance. We
start with a pre-existing approach and then introduce extensions to improve its performance.
Experimental results show that the model’s performance is not too significantly impacted by
the sequence in which classes are presented, but the complexity of the incremental tasks plays
a crucial role in determining the model’s performance. Additionally, starting with a higher
number of classes typically results in better performance.
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1
Introduction

Deep neural networks (DNNs) have attained remarkable results in a variety of computer vision
tasks such as image classification, object detection, and segmentation, and have become state-
of-the-art in the field. Despite their impressive performance in standard offline learning, where
all the training data is available in a single session, it remains challenging for them to learn con-
tinuously and avoid starting from scratch when new data is introduced. Continual Learning
(CL) [1] or Lifelong Learning (LFL) refers to the scenario in which the model needs to learn
from a continuous stream of data.
In most incremental learning (IL) scenarios, the model is presented with tasks in a sequential
manner, where only the data from one task is available for learning in each session. After each
training session, the learner (DNN) should be capable of performing all previously seen tasks.
The biological inspiration for this learning model is clear, as it reflects how humans acquire
and integrate new knowledge: when presented with new tasks to learn, we leverage knowledge
from previous ones and integrate newly learned knowledge into previous tasks [2].

Incremental learning has gained attention in the last few years due to its application in solving
several problems, such as memory restrictions for systems that cannot store all data and need
to learn incrementally, data security/privacy restrictions for systems that learn from data that
cannot be permanently stored, and sustainable ICTwhere the cost of retraining deep learning
algorithms for every task update is high. Incremental learning offers a more computationally
efficient solution that only requires the processing of new data when updating the system.
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The main challenge in continual learning is that DNNs tend to forget previous knowledge
when learning new tasks, this phenomenon is called catastrophic forgetting [3, 4, 5]. This phe-
nomenon occurs when a neural network model is trained for a new task, causing it to forget
its previous training for a different task. This results in a good performance for the new task,
but poor performance for the older one. When a network is trained for a new task, its weights
are adjusted to optimize performance for the new task. This can cause the weights to change
significantly from their initial values to the point where they no longer capture the previous
knowledge.
Another challenge is the stability-plasticity dilemma [6], where a learner needs to balance its
ability to learn new information (plasticity) without forgetting the previously learned knowl-
edge (stability).

In this work, we consider class incremental learning, which is one of the three scenarios of
continual learning as defined in [1]. In class incremental learning, each task consists of a set of
classes that is distinct from the classes in previous tasks. The main goal is to develop a unified
classifier that can accurately classify all classes encountered at different stages, without relying
on task identification during inference.
There are multiple solutions proposed to solve class incremental learning, including storing
a fraction of old data for joint training and using deep generative models to generate pseudo-
samples of previous classes. However, training big generative models is inefficient and they suf-
fer from catastrophic forgetting. Another approach is to penalize future changes to important
parameters, but this is only effective with multi-head classifiers and task identifiers available at
inference and has shown poor performance in CIL scenarios.

The objective of this thesis is to investigate the impact of class ordering on class incremen-
tal learning and the robustness of the method to class ordering. We also analyze the effect
of the complexity of incremental learning scenarios or split strategies on the performance of
the model. We begin with the incremental learning method proposed in [7]. This method is a
non-exemplarmethod that does not store examples fromprevious classes. Instead, it augments
a prototype from each previously learned class in the feature space and utilizes self-supervised
learning to develop comprehensive and transferable features. To evaluate the method’s robust-
ness to class ordering, we used two distinct class ordering strategies, random order, and super-
class order (ordered by grouping together similar classes). Additionally, we trained and tested
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the model on different sequences of tasks (1, 4, 5, 9, 01, 19, 20) and compared the results of
each learning scenario using Cifar-100 dataset. The evaluation of the overall performance for
each sequence of tasks involves twometrics. First, the average accuracy is calculated after reach-
ing the last task. Second, the average forgetting on all previously learned classes is computed.
Finally, we developed an additional loss to enhance the model’s performance.

The thesis is structured in the following manner: Chapter 2 provides an introduction to the
problemof image classification, anddescribes convolutional neural networks and existingCNN-
based approaches to address this problem. Chapter 3 is dedicated to incremental learning and
covers the fundamental challenges associated with it, along with the techniques used to over-
come them. Chapter 4 presents the details of the proposed model, including its architecture
and optimization strategies that are adopted for training. Chapters 5 and 6 are focused on
presenting the experimental results obtained through the proposed model and drawing con-
clusions based on the findings.
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2
Image Classification

This chapter introduces some background knowledge and theory about image classification
tasks. The related or essential concepts are explained in more detail to help readers better un-
derstand the thesis, while the others are mentioned to complete the review.

2.1 Image classification

Image classification is one of the most essential tasks in computer vision. It is the process of
assigning a label or class to an image using features or information extracted from them. Let C
be a fixed set of classes, x an input image, image classification is the task that designs a model h
that predicts the class y ∈ Y to which the input image x belongs.

h(x) = y (2.1)

Image classification is based on the assumption that the image depicts one or more features
and that each of these features belongs to one of several distinct and exclusive classes [8]. The
classes may be specified a prior by an analyst (as in supervised classification) or automatically
clustered (i.e. as in unsupervised classification) into sets of prototype classes, where the analyst
merely specifies the number of desired categories [8].

5



Figure 2.1: The classifier assign label to the input image from a fixed set of classes.

2.2 Supervised Learning

In supervised learning, the training dataset S is composed of pairs (input x, output y) and the
goal is to learn a model that associate inputs with their outputs. In classification problems, the
output is the set of classes or categories.
The learning process aims to determine the possible hypothesis (model ĥ) that best maps input
to the corresponding output from the hypothesis spaceH. The hypothesis space is the set of all
possible hypotheses that can map inputs to their outputs, it is defined prior based on the data
and restrictions applied to the data.

H = {h1, h2, ..h|H|} (2.2)

The model ĥ is the one with the minimum empirical loss. Empirical loss Ls(h)is the mismatch
between model output (predicted) and true output ,defined on the training dataset S.

Ls(h) =
1
|S|

∑
(x,y)∈s

l(h(x), y). (2.3)

ĥ = argminh∈HLs(h) (2.4)

The problem with hypothesis space is that, it may explode when the dataset has high number
of features. To overcome this problem , artificial neural networks are introduced and the hy-
pothesis space became fixed and represented by parameterized model.

H = {Mθ, θ ∈ Θ} (2.5)
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Θ is the parameter space, and the best parameter is obtained by minimizing empirical loss.

θ̂ = argminθ∈ΘLs(Mθ) (2.6)

2.3 Artificial neural networks

In this subsection, wewill introduce artificial neural networks (ANNs), which come in various
forms and are used to solve a wide variety of tasks, including image classification. First, we
will explain the ANN architecture, the algorithm used to optimize ANNmodels, and then we
will describe in detail the convolutional neural networks (CNNs). CNN is more relevant to
understand ResNet-18, the model we used to solve our task.

2.3.1 Artificial neural network architecture

Artificial neural network is inspired by biological neural networks and is presented as a com-
bination of neurons that can calculate values based on the input. A neuron is defined as an
information-processingunit that is fundamental to theoperationof aneural network [9]. ANNs
architecture compose of three main layers:

• Input layer which receives inputs to be processed.

• One or more hidden layers enable the network to learn complex tasks by extracting pro-
gressively more meaningful features from the input patterns [9]. For example, the first
hidden layer can extract basic features as lines or edges from the input image, the next
layer can learn more complex features as shapes.

• The output layer performs the required task such as classification or prediction.

ANN layer’s are represented by several neurons (nodes) act in parallel. The neuron is the com-
puting unit of the network, it receives input vector x and performs affine transformation (fig-
ure 2.3). The neuron output is computed by adding the sum of the inputs (x1, ...xn) multi-
plication by their corresponding weights (w1, ...wn) to the bias b, then the result fed to the
activation function f. The weights w determines how the input of the previous layer will affect
the output of the next layer, and the bias b helps tomove the activation function to the positive
and negative sides on the coordinate graph.
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Figure 2.2: ANN architecture.

Figure 2.3: Neuron structure.

Activation function decides if the neuron will be activated or not. There is two types of activa-
tion function, linear and non-linear activation function. Non-linear activation functions help
to increase the approximation quality of ANNs. Non-linear activation functions used in the
thesis are:

• Leaky Rectified Linear Unit (ReLU)

f(x) =

{
x if x > 0
Otherwise, k.x

(2.7)

• SoftMax: Also known as the normalized exponential function It represents a probability
distribution over a discrete variable with n possible values. It is used in the output layer
nodes of a classifier as in our case.

softmax(xi) =
exp(xi)∑
j exp(xj)

(2.8)
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2.3.2 Convolutional neural networks

Convolutional neural network (CNN) is a class of ANN. CNN is more suitable for 2D struc-
ture data, such as images, because it has essential properties, Local connectivity, and spatial
parameters. Local connection means each neuron is connected only to nearby neurons from
the previous layers, and the latter property enables using the same filter by different neurons in
the same layer, which reduces the required memory size and number of learnable parameters.
CNN architecture composes of convolutional layers, pooling layers, and fully connected layers
(figure 2.4). We will go into details of each layer below.

Figure 2.4: CNN image classification pipeline.

Convolutional layers act as feature extractors, learning the feature representations of their in-
puts. Convolutional layers’ neurons are organized into feature maps. Each neuron in a feature
map has a receptive field that encodes a specific feature, and is linked to a neighborhood of neu-
rons in the previous layer by a set of trainable weights known as a filter or kernel. The number
of neurons in each hidden layer defines how many features will be represented at each layer.
To compute the feature map, consider the kernel to be a sliding window that moves along the
spatial dimensions of the input, evaluating a dot product element-wise among its entries and
the input’s selected entries. Different kernels generate different outputs (feature maps) from
the same input. In the case of colored image (RGB), the kernel will have a different weight for
each RGB channel and the output is computed by summing up the output of convolutions
over each channel, look to figure 2.6 for more clarification. The hyperparameters of the convo-
lutionl layer are kernel size, the stride which defines the step size by which the kernel move, and
the padding that defines how many pixels (usually with zero value) will be added to surround
the image to preserve image size in the feature map.
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Figure 2.5: The 3x3 kernel slides as a window over the image(source pixel) and the dot product is computed to produce
feature map.

Figure 2.6: The input image is RGB with 3 channels, so there are three kernels with different weights, one for each channel.
the output is computed by sum up the outputs from the convolution of each input channel with its kernel .

Pooling layers’ purpose is to reduce the spatial resolution of the feature maps, achieving spatial
invariance to input distortions and translations. As the kernel in convolutional layer, the slider
window moves over the input but instead of computing a dot product, it outputs the maxi-
mum or the average value in the window depending on the type of pooling (average or max
pooling). Pooling layer is characterized by window size, stride, and padding.
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Figure 2.7: The max pooling returns the maximum value in the specific window , and average pooling returns the average of
the values in the specific window.

CNNs can have one ormore fully connected layers following convolutional and pooling layers.
Convolutional and pooing layers extract abstract feature representation and Fully connected
layer interpret these features and performhigh-level functions like classification and prediction.
In the classification case in the last fully connected layer, refer to as classification layer SoftMax
activation function is used to get probabilities of the input being in a particular class instead of
ReLU.

2.3.3 Backpropagation

Backpropagation is an optimization algorithm used to learn CNN parameters θ (weights w,
bias b). It trains CNNby applying gradient descent to a cost function (empirical lossLs). Back-
propagation algorithm is composed of two passes, the forward and the backward pass. In the
forward pass, the input propagates forward through the network layer by layer to produce the
output, and during this pass, the network parameters don’t change. The difference between
the predicted output and the real output is calculated, and this error is propagated backward
through the network (backwardpass). Thepartial derivative of the error is computedbackward
with respect to all network parameters starting from the output layer using chain rules to know
howmuch of the loss every node is responsible for. The parameters θ are updated at each time
t toward the negative gradient using the updating rule:

θk(t+ 1) = θk(t)− η · ∂l(t)
∂θk(t)

(2.9)
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Loss function l(t) is evaluated on random batch at step t, and learning rate η is a training hy-
perparameter that quantifies howmuch a model weight can change at every step.
Instead of computing the loss andupdating theweights after passing all the training data (batch
gradient descent), a better approach is employed in the batch gradient descent, where instead of
using a single sample for the optimization (as in stochastic gradient descent), a group of them
is used (batch) this allows attaining a much more stable estimate for the loss function gradient
which, in turn, leads to better overall convergence.

2.4 ResNet-18

ResNet, short for a residual network is a deep convolutional neural networkwith residual block
or skipped connections. In our work, we used ResNet as our model to perform feature extrac-
tion from input images.
Training a deep convolutional neural network using backpropagation is problematic due to
gradient vanishing. The propagation of the gradient backward through multiple layers makes
the gradient smaller and smaller leading to saturation or even degrading in the network perfor-
mance. The use of residual blocks solves the vanishing gradient problem through the use of
skip connections that leads to network compression at first and then exploration of multiple
features of the input. The idea is that we skip the layers that are not useful for reducing the
loss.

Figure 2.8: Residual Block.

• If the input x and the output y have the same dimension :

y = F(x) + x (2.10)
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• If the dimension is different , a linear projectionWs is used to match the dimension:

y = F(x) +Ws x (2.11)

There is a variant architecture of ResNet, but we adopt ResNet-18 to have a comparable result
with [7]. ResNet-18 is CNN, and the architecture is the same as ResNet-34 which is shown in
figure 2.10, but there is a little difference are illustrated in the bellow table. The convolutional
layers mostly have 33 filters and follow two simple design rules: (i) for the same output feature
map size, the layers have the same number of filters, and (ii) if the featuremap size is halved, the
number of filters is doubled to preserve the time complexity per layer [10]. The down-sampling
is directly applied by using convolution layers with a stride of 2. The last layers of themodel are
the average pooling layer and a 1000-way (in our case 100) fully connected layers with SoftMax
activation function to perform the classification task.
The solid line in figure 2.10 represents identity mapping. When the dimensions increase (dot-
ted line shortcuts) in figure 2.10, we consider two options:

• The shortcut still performs identity mapping, with extra zero entries padded for increas-
ing dimensions. This option introduces no extra parameter.

• The projection shortcut is used to match dimensions (done by 11 convolutions).

Figure 2.9: The first two columns of the table describe the difference between the architecture of the ResNet‐18 and
ResNet‐32. Building blocks are shown in brackets, with the numbers of blocks stacked. Down sampling is performed by

conv3‐1, conv4‐1, and conv5‐1 with a stride of 2.
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Figure 2.10: A residual network with 34 parameter layers ResNet‐34.

2.5 Dataset

To train, test, and evaluate the performance of ourmodel, we used the Cifar-100 dataset. Cifar-
100 [11] has 100 classes, and they are grouped into 20 superclasses. Each image has a fine label
representing the class to which it belongs and a coarse label determines the superclass to which
it belongs. Cifar-100 has 500 training images and 100 testing images for each class. The images
are colored images (RGB) and have a size of 32x32.
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Figure 2.11: Cifar‐100 dataset images samples.
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3
Incremental learning

DeepNeuralNetworkmodels typically require all training data to be available at once for train-
ing. However, in real-world scenarios, data may be received in small batches or incrementally
over time. To address this, models need to be able to learn new data while preserving knowl-
edge learned from previous data, a process known as incremental learning. In this chapter, we
will discuss the concept of incremental learning, as well as techniques and evaluation metrics
used in this type of learning.

3.1 Incremental learning

Incremental learning is the capability of machine learning architectures to continuously im-
prove the learnedmodel by feeding newdatawithout losing previously learned knowledge [12].
This behaviour is inherently present in the human brain, which is continuously able to incor-
porate new data while preserving previously acquired Knowledge. Incremental learning has
already been deployed in image classification and object detection [13, 14, 15]. One of the key
benefits of incremental learning is that it allows the model to continuously adapt and improve
over time, rather than being trained on a fixed dataset and then remaining unchanged. This can
be particularly useful in applications such as online advertising, where the data is constantly
evolving and the model needs to be able to adapt to changes in user behavior and preferences.
Deep neural networks,though, tend to forget previously learned tasks when trained on a new
task, a phenomenon known as catastrophic forgetting [3, 4, 5]. There are three scenarios for
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incremental learning [1]:

• Task incremental learning: model architecture used in this scenario has a multi-headed
output layer, meaning that each task has its own output units but the rest of the network
is (potentially) shared between tasks [1]. The task boundary is known, and at inference
time, task identity is known. The learned model can discriminate between classes be-
longing to the same task but not from different tasks.

• Domain incremental learning: the structure of the task remains the same, while the in-
put distribution is changing. There are no task boundaries, and at test time task identity
is not known.

• Class incremental learning: the task boundaries is known but the task identity is not
known at inference time. here the learnedmodel should discriminate between all classes
learned so far.

Figure 3.1: The three scenarios of incremental learning.

The following sections will introduce in more detail class incremental learning because, in our
work, we are more interested in class incremental learning for image classification.

3.2 Class incremental learning (CIL)

Class incremental learningwhen a neural networkmodel (learner) is trained on a series of tasks,
and in each task it learns several classes disjoint from other classes in previous or future tasks.
During the training process, learner has access only to classes belonging to the current task and
should be able to classify all classes learned so far. The purpose of class incremental learning is
to learn a unified model that can classify unseen data of all previously learned classes.
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Figure 3.2: Illustration of class incremental learning scenario.

Practically, CIL problem is composed of n sequence tasks {(C1,D1), (C2,D2), ....(Cn,Dn)}.
where each task t is represented by a set of classes Ct = {Ct

1,Ct
2, ...Ct

nt} and training data Dt,
Dt = {Xt,Yt} = {xt,j, yt,j}Nt

j=1 is the training dataset of task t, Nt is the number of data, and
yt,j ∈ Ct is a class label corresponding to an input xt,j. During training a task t has access only
toDt and class set are disjoint between tasks (Cij = Φ if i ̸= j).
Our class incremental learning model consists of a feature extractor Fθ (ResNet-18) and a clas-
sifier Gφ (fully connected layer). At each step t, the goal is to minimize a loss function L on a
new datasetDt while also maintaining or improving upon the performance on previous tasks.

θt,φt = argminθt,φtLt(G(F(Xt, θt),φt),Yt) (3.1)

• θt,φt are the feaatures extractor (F) and classifier (G) parameters optimized in step t.

• Lt(G(F(Xt, θt),φt),Yt) is the current model (at step t) loss on all previously learned
datasetDi and also on the current datasetDt.

At each step t ∈ [1, n] the current model receives only new data Dt and is required to learn
those data without forgetting old dataDi ∀i ∈ [1, t − 1]. The problem of balancing between
maintaining knowledge from previous tasks and learning new information from current task
is known as the stability-plasticity dilemma [6].
ForLt, a cross entropy loss is used, also known as the log loss, is a common loss function used in
classification tasks. Itmeasures the distance between the predicted probability distribution and
the trueprobability distribution for a given class. The loss is calculated as thenegative logarithm
of the predicted probability for the correct class. It is a widely used loss function because it is
easy to compute, and has the property that it penalizes large errorsmore than smaller ones. The
cross entropy loss is defined as:

Lce = −
∑
i

yi log(pi) (3.2)
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where yi is the true label for class i and pi is the predicted probability for class i. The loss is
minimized when the predicted probabilities are close to the true labels.
Twomain challenges exist in class incremental learning (CIL): classifier bias and task-level over-
fitting. Classifier bias can occur when the decision boundary learned from the initial dataset
is dramatically changed by the incorporation of new data, leading to an unbalanced treatment
of the different classes. Task-level overfitting occurs when the model becomes too specific to
the training data and is unable to generalize to new data. This can be difficult to avoid in CIL,
as the model needs to continuously adapt to new data and integrate it into the model in a way
that avoids overfitting. To address these challenges in CIL, it is important to focus on learning
task-agnostic representations, which can help to improve themodel’s generalization ability and
reduce bias.
There are several approaches that have been developed to address the challenges of class incre-
mental learning. These approaches can be divided into three categories: regularization-based
methods, rehearsal based methods, and bias-correction methods.

• Rehearsal based methods [16, 17, 18] : these strategies involve storing a portion of the
old data and using it to jointly train the model with the current data. However, These
approaches is not always feasible due to memory limitations or privacy concerns. As an
alternative, some researchers have suggested using deep generative models to generate
pseudo-samples of previous classes. While this approach can be effective in some cases,
it can be inefficient for complex datasets and is also prone to catastrophic forgetting.

• Regularization methods [19, 20, 21]: involve adding a penalty term to the classification
loss function of the original model in order to regularize the important parameters and
prevent them from being changed during the training of a new task. This approach is
suitable when multi head classifiers or task incremental learning are used only in case
task identifier, an alternative solution is to use knowledge distillation to perform regu-
larization.

• Bias-correction methods [22, 23, 24]: aim to equalize the performance of the model
on classes from all tasks, by adjusting the network’s bias or classifier norm. This bias is
often caused by the fact that a model tends to have an advantage for classes that have
been recently learned, leading to a larger classifier norm and a bias towards these classes.
As an example of this approach is adjusting the normof new classweight vectors to those
of the old class weight vectors.

In this work, we adopted knowledge distillation technique, and a novelmethod called PASS de-
veloped in [7]. PASS consists of prototype augmentation, where one class-representative proto-
type is created for each old class in the deep feature space tomaintain the decision boundary of
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previous tasks, and self-supervised learning (SSL) to learn more generalizable and transferable
features for other tasks. We will elaborate on these techniques in more detail in the following
subsection.

3.2.1 Prototype Augmentation

The main idea behind prototype augmentation is to maintain the decision boundary of previ-
ous tasks by memorizing one class-representative prototype for each old class and augmenting
the deep feature space with these prototypes during training on new tasks.
To implement prototype augmentation in an incremental learning setting, the model is first
trained on the first task and the class-representative prototypes are computed for each class in
the task. These prototypes are then added to the deep feature space, which allows the model
to maintain the decision boundary for the classes in the first task while learning the classes in
the second task. This process is repeated for each subsequent task, with the class representative
prototypes for all previous tasks being added to the feature space.
Instead of store sample from previous task, one prototype for each old class is computed and
added to the deep feature space. The class prototype is obtained by taking the mean of all the
features of the images belonging to that class as shown in 3.3.

μt,k =
1

Nt,k

Nt,k∑
n=1

F(Xt,k, θt) (3.3)

When learning new task, the prototype of each old class, e.g. class kold at stage told, is augmented
as below:

Fkold,told = μkold, told + e ∗ r (3.4)

r2 =
1

K1 ∗D

K1∑
k=1

Tr(Σ1,k) (3.5)

• e is a Gaussian NoiseN(0, 1)

• r is a scale to control uncertainty of augmented prototype

• K1 is the number of classes in the first task

• D is the dimension of the deep feature space

• Σ1,k is the covariance matrix for the features of class k at first stage
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During training session, at each step t, only the current data setDt is available. After themodel
has learned the current classes, a prototype for each of these classes is computed using equa-
tion 3.3. In the next step t + 1, the prototypes for each old class are augmented using equa-
tion 3.4 and fed to the classifier along with the deep features of new task data for classification.
This helps tomaintain the discrimination and balance between old and new classes when learn-
ing a new task (see figure 3.5). The prototypes are augmented via guessing noise to allow the
classifier to account for the uncertainty and variability in the features of old classes.

Figure 3.3: prototypes augmentation helps to maintain the discrimination and balance between old and new classes while
learning a new task, thus preventing the decision boundary from being dramatically changed and preventing catastrophic

forgetting [7].

3.2.2 Self supervised learning based label augmentation

Self supervised learning based label augmentation combines self supervised learning with la-
bel augmentation to train the model to predict the transformations applied to the input data,
rather than relying on explicit labels. This helps the model learn richer features.
Label augmentation is a technique used to increase the number of training examples available
for amachine learningmodel by generating additional examples from the existing ones. This is
typically done by applying various transformations to the input data, such as rotating, flipping,
cropping, or adding noise, and assigning new labels to the transformed examples. The goal of
label augmentation is to improve the generalization performance of the model by providing
it with more diverse training data, which can help it learn more robust and invariant features.
Here rotation transformation is used, the training data for each class is rotated by 90, 180, and
270 degrees to create 3 new classes. This extends the originalK-class problem to a new 4K-class
problem, with the goal of helping themodel learnmore robust and generalizable features. The
rotated data is assigned new labels using self supervised learning to be used for training.
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X′

t = rotate(Xt, θ) , θ ∈ {90, 180, 270} (3.6)

Self supervised learning (SSL) refers to learningmodels with the use of automatically generated
labels. Compared to supervised learning methods which require a data pair Xi and Yi while Yi

is annotated by human labor, self-supervised learning is also trained with data Xi along with
its pseudo label Pi while Pi is automatically generated for a predefined pretext task without
involving any human annotation [25].
New labels Y′

t are assigned to augmented samples X′
t used 4-way self supervised tasks(is a type

of SSL), for more information refer to [26].
The above approach of using self supervised tasks to augment labels during training can help
to relax certain invariant constraints, allowing themodel to learn richer andmore generalizable
features by learning both the original task and the self-supervised tasks simultaneously.

Figure 3.4: Deep features space for base and novel classes without SSL.

Figure 3.5: SSL helps to better distinguish the distribution of novel classes, resulting in a decrease in overlap between
previously learned (base) classes and new classes. [7]

23



3.2.3 Knowledge distillation

Knowledge distillation (KD) refers to the process of transferring knowledge from a pretrained
model (called the ”teacher” model) to a new model (called the ”student” model) that is being
trained to perform the same or a similar task. The goal of knowledge distillation is to improve
the performance of the studentmodel, by leveraging the knowledge and expertise of the teacher
model.
There are several ways to perform knowledge distillation, but one commonmethod is to train
the student model to imitate the teacher’s output. This is done by minimizing the difference
between the teacher’s output and the student’s output, using a distance measure such as mean
mean-squared error or the Kullback-Leibler divergence.
In class incremental learning the teacher model is a model that has been trained on all tasks
up to the current one, and the student model is a model that is being trained on the current
task. In other words, the knowledge of previous model Ft−1 is transferred to the new model Ft
as model Ft learns a new task, with the goal of helping model Ft learn the new task while still
preserving the knowledge from Ft−1. By transferring the knowledge of model Ft−1 to model Ft,
model Ft can retain a better representation of the previous tasks, which can help tomitigate the
effects of catastrophic forgetting.

3.3 Evaluation metrics

There are several evaluationmetrics that are commonly used to assess the performance of a class
incremental learning (CIL) model. Here we use accuracy and average forgetting as evaluation
metrics.

3.3.1 Accuracy

Accuracy is defined as the proportion of correctly classified samples in the total number of
samples. It is calculated by dividing the number of correctly classified samples by the total
number of samples, and then multiplying by 100 to get the percentage accuracy.
In class incremental learning, accuracy is typically computed as the average accuracy of all the
classes that have already been learned. This allows us to assess the model’s overall performance
on all tasks, rather than just a single task.
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3.3.2 Average forgetting

Average forgetting is defined as ameasure of howmuch the performance of themodel on previ-
ous tasks has decreased after learning new tasks. It is calculated as the average of the percentage
change in performance on all previous tasks after learning a new task. A lower average forget-
ting value indicates better performance in retaining knowledge of previous tasks while learning
new tasks. Average forgetting is an important evaluationmetric inCIL because it helps to iden-
tify howmuch the model is prone to forgetting previously learned knowledge and how well it
can retain this knowledge while learning new tasks.
The average forgettingmeasure Fk is calculated by averaging the forgettingmeasure for all tasks
i that were learned before task k.

Fk =
1

k− 1

k−1∑
i=1

fik.

f ik = max{t∈1,...,k−1}(at,i − ak,i) ∀i < k

(3.7)

• f ik is the forgetting measure of the i-th task after training k-th task.

• ak,i is the accuracy of task i after training task k.
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4
Models

This thesis builds on the work proposed in [7], which have been further discussed in chapter 3.
Based on this framework, we developed some extensions to improve the performance of the
proposed model, with a focus on analyzing its performance under different class ordering and
incremental scenarios. Specifically, we have examined the impact of class order on class incre-
mental learning (CIL).

The base model for class incremental learning was developed using PyTorch [27] implemen-
tation of ResNet-18 as a starting point. The ResNet-18 (F ) extracts features from RGB input
images and is followed by a fully connected layer (classifier) G that classifies both the base and
new classes incrementally.
The training data sets are augmented using rotation-based transformations outlined in subsec-
tion 3.2.2, before being applied to the feature extractor to learn more generalized and richer
features.

In the subsequent section, we will present the loss function used to train our model, and per-
form an analysis of the impact each term of the loss function has on the feature space. Math-
ematical definitions of each term will be provided. Separate sections will be dedicated to the
discussion of class ordering and the various incremental scenarios adopted during the training
of our model.
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4.1 Loss function

Themodel (ResNet-18+classifier) is trained tominimize a loss function on the training dataset
Dt to learn new classes without forgetting previously acquired knowledge. The loss function
as outlined in [7] is composed of cross entropy loss Lce, prototype augmentation loss LprotoAug,
knowledge distillation loss Lkd and we add a novel loss which is clustering loss Lclus. The loss
function at each incremental step t can be defined as:

Lt = Lt,ce + αLt,protoAug + βLt,kd + γLt,clus (4.1)

• α, β, γ are hyperparameters and represent the weighting factors for the losses

4.1.1 Cross entropy loss

Cross entropy loss Lce is commonly used in multi-class classification tasks to train a model to
predict the correct class for each input sample. Lce is calculated for each sample in the training
batch and then the values are averaged across all samples to obtain the final loss value.

Lce = − 1
N

N∑
i=1

C∑
j=1

yi,j log(pi,j) (4.2)

Where,

• N is the number of samples in the batch

• C is the number of classes

• yi,j is the true label of class j for sample i, where yi,j = 1 if sample i belongs to class j, and
0 otherwise

• pi,j is the predicted probability of class j for sample i

pi,j is computed by applying the softmax function to the output of the last layer of the model,
as previously mentioned in chapter 2.
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4.1.2 Knowledge distillation loss

The purpose of knowledge distillation is to preserve the knowledge gained through incremen-
tal learning. As discussed in subsection 3.2.3. The previously learned model will be used at
each training step to guide the preservation of previous classes. We don’t store any previous
images or labels from training data, we store only the previous models. The fundamental con-
cept behind knowledge distillation is tomake the currentmodel, Ft, replicate the output of the
previous model, Ft−1, so that the model parameters, θt, can recognize the previously learned
classes using θt−1.
Practically, at training step t, we load the previous model Ft−1 and we apply input xt from the
current training dataset batch to both models. Then, we calculate the difference between the
output of the two models by using the L2 norm in the feature space, as represented in equa-
tion 4.3. By minimizing this difference, we enforce the current model’s output to be similar to
the previous model’s output, thus preserving the previous knowledge.

Lt,kd = ∥Ft(xt, θt)− Ft−1(xt, θt−1)∥ (4.3)

4.1.3 Prototype augmentation loss

As previously stated, our method is non-exemplar, meaning that we do not store any specific
samples of old classes. Instead, we create a class-representative prototype in the deep feature
space to remember each class. When learning new tasks, these old prototypes are augmented
withdisturbances as defined in equation3.4 andpassed to theunified classifier for classification.
At training step t, prototype augmentation loss LprotoAug is calculated as follow

Lt,protoAug =
t−1∑
i=1

L(G(Fi,φt),Yi) (4.4)

where Fi is the feature augmentation of old classes Ci.
The Augmentation of old class prototypes to the feature space will help to maintain the dis-
tribution of old classes ( Figure 4.1) while learning new classes, thereby reducing catastrophic
forgetting phenomena.
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Figure 4.1: The first image depicts the distribution of the base classes in the feature space. In the subsequent figure, three
classes were incrementally added, and it is obvious that the distribution of the original classes is still preserved up to a

certain point

4.1.4 Clustering loss

The clustering loss term is derived from the Clustering approach, which is a popular unsuper-
vised learning technique used for grouping similar objects into classes or clusters. it identifies
patterns in the data and groups similar observations or items based on their characteristics or
features. In the context of image classification, clustering can be used to extract features from
images and then group those features based on their similarity. Distance functions such as Eu-
clidean distance or cosine similarity are used tomeasure similarity between data, and clustering
minimizes the distance function to group similar data into one cluster.
The Clustering loss objective is to tighten feature vectors within a class around the centroids
and exert a repulsive force on the centroids of different classes, causing them to move apart.

Given a batch of training dataDi = [xi, yi]withN samples, we extract features F(Xi) and com-
pute the centroids for each class by averaging the corresponding features. Then, the clustering
loss is calculated as follows:

Lt,clus =
1
N

N∑
i=1

d(F(xi), cyi)−
1
C
∑
i∈C

∑
j∈C
j̸=i

d(ci, cj) (4.5)

where,

• F(xi) is the extracted feature of the input image xi

• cyi is the centroid corresponding to the label y of the i-th feature.

• C is the number of unique labels seen until now (previous label) including distinct labels
in the current batch.

• d() represents a generic function to measure the distance.
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The first componentmeasures the proximity of the feature vectors to their respective centroids,
while the second component evaluates the distance between the class centroids. For the dis-
tance function, we employed the L1 and L2 norms, with better results obtained using the L1
norm. The centroids vector also includes a unique label from previous tasks (prototypes). The
aim of minimizing the clustering loss Lt,clus is to center the feature vectors around their respec-
tive centroids and to increase the separation between the clusters corresponding to different
classes. This reduction of confusion between classes will help the model effectively identify
and distinguish between different classes while retaining its knowledge of previously learned
classes.

4.2 Class Incremental learning scenarios

Our objective is to train amodel incrementally, where the training dataset is divided into several
partitions and the trainingprocess is executed in a sequenceof steps,with themodel onlyhaving
access to one partition at each stage. The partitions are disjoint. To assess the performance of
the model, we perform experiments on different incremental setups to investigate its ability to
handle both simple and complex incremental learning tasks. The Cifar-100 dataset is used as
the benchmark for our evaluation, as outlined in section 2.5. To define an incremental learning
setup, we need to specify the following:

• The set of learnable classes C, in our case we have |C| = 100

• The set of tasks s, which is represented as s = s1, ..., sN, whereN is the number of incre-
mental steps.

• The set of classes Ck, to be learned at each step sk, which is a subset of C. It is required
that the union of all Ck overall steps should equal to C, and the sets of classes Cj and Ck
must not have any overlapping elements for j ̸= k.

• The training dataset Dk for each task sk and it only contains input samples that belong
to the class set ck.

The training procedure for our model begins with a set of base classes, and at each subsequent
training stage sk, an additional number of classes are introduced. The specific incremental learn-
ing scenarios that our model is trained on are defined in the below table.

31



Incremental steps Base classes
Number of added
classes per step

1 50 50
4 20 20
5 50 10
9 10 10
10 50 5
19 5 5
20 40 3

Table 4.1: CIL training scenarios

4.3 Class ordering

Model performance and ability to learn and generalize to new classes can be affected by the
order inwhich classes are introduced to themodel. To study the effect of class order, we defined
different class ordering strategies for Cifar-100 dataset and evaluated our model’s performance
on these different strategies. The class ordering strategies we used are:

• Random order: permute the original class order of Cifar- 100 dataset, which is an alpha-
betic order. Random ordering can provide a baseline for comparing the performance of
the model with other methods of class ordering since it accounts for the variability in
performance due to the order of classes. Refer to AppendixA for the original order of
the CIFAR-100.

• Order Cifar-100 based on a predefined grouping or taxonomy. The original Cifar-100
dataset is divided into 20 groups or superclasses, each of which contains 5 macro classes
(look to Table 7.1 in AppendixA).
In this ordering approach, the new classes provided to the model in each incremental
step are ordered based on the superclasses, meaning that they belong to the same group.
This approach helps to evaluate the model’s ability to learn related classes together, and
its ability to handle the complexity of the incremental learning task.

In the upcoming chapter, we will present the outcomes of the proposed model under various
training scenarios based on both random and superclass class orders.These results will examine
the performance of our model under different conditions and provide a comprehensive evalu-
ation of its effectiveness.
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5
Results

In this chapter, our objective is to evaluate the proposed framework in chapter 4. To achieve
this, we consider two settings for the model. The first setting involves training the model us-
ing only the cross-entropy loss, distillation loss, and prototype augmentation loss, while in the
second set, we add the clustering loss to these terms. We trained the model using different
incremental steps to assess the impact of scenario complexity on the model’s performance. Ad-
ditionally, to analyze the effect of class order on the model, we employed two distinct class
orders for the dataset: random order and superclass order.
In section 5.1, we will provide a description of the implementation and training details, in the
following sections, we will report the evaluation of the model on the test dataset for both set-
tings and compare their respective performances.

5.1 Implementation Details

The framework was implemented using Pytorch, and Tensorboard was used for monitoring
the learning process and visualizing the model output. The model was trained on a single
Nvidia Geforce GTX 1070 GPU, which had 8GB of dedicated memory. Furthermore, the
most extended training session conducted with this setup took slightly more than 24 hours to
complete.

In our experiments, we utilized ResNet-18 as the base model and added a fully connected layer
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on top of it to construct a unified classifier. The model was initially trained on the base classes,
after which we sequentially incorporated the remaining classes. We evaluated our approach us-
ing different incremental learning scenarios, including starting with 50 classes and adding the
remaining 50 classes in the final step, starting with 20 classes and adding 20 classes in each of
the following four steps, and additional scenarios with 5, 9, 10, 19, and 20 phases. After each
phase, we assessed themodel’s performance in all the previously learned classes up to that point.

We trained the model using Adam optimizer [28] with an initial learning rate of 0.001 and
a batch size of 64. We continued training the models for 100 epochs, and at the 45th and 90th
epochs, we reduced the learning rate by multiplying it by 0.1.
We trained and tested our model on the CIFAR-100 dataset. The training dataset contains
5000 samples, with 500 images per class, while the testing dataset composes of 1000 samples,
with 100 images per class, both of size 32 × 32. Before training each batch, we augmented
images in the batch by rotating them by 90◦, 120◦, and 270◦, and hence the classification prob-
lem was extended from k class to 4K class by adding 3 new classes. We utilized self supervised
learning to assign labels for the newly generated images.

5.2 The loss function excluding cluster loss

In this section, wewill present and analyze the results of optimizing the loss function expressed
in Equation 4.1 while excluding the cluster loss term. We set the weight balances for prototype
augmentation loss and knowledge distillation loss, namely α and β, to 10, as proposed in [7].

In Table 5.1, we compare the classification accuracy results of our Class Incremental Learning
(CIL) method on Cifar-100 dataset using two distinct class orders for different incremental
learning scenarios. Additionally, Figure 5.1 illustrates the accuracy of the current model at
each incremental step on all previously learned classes, including the current classes.

For the random order strategy, The model achieved an accuracy of 63.84% in a one-step task,
starting with 50 base classes and 50 added classes. However, the accuracy decreases as the num-
ber of base and added classes decreases in subsequent tasks. For example, in 9 tasks, which
include only 10 base classes and add 10 classes at each training session, the accuracy is reduced
to 35.26%. The worst performance is observed in 19 incremental steps, which add 5 classes at
each step, resulting in an accuracy of only 21.07%.
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On the other hand, when adding classes in the superclass order, the performance of the model
is generally lower than that of the random order strategy. For the first task, which included one
incremental step, the accuracy is 61.79%, which is lower than the corresponding accuracy of
63.84% obtained with the random order strategy. The worst performances are observed in 9
and 19 sequential tasks with an accuracy of 30.67% and 13.6%, respectively.
We expand our analysis by evaluating our model also on another class order setting, where we
initially train the model on 20 classes as base classes, one from each superclass. We then add
the remaining classes on the same basis (one class from each superclass), in the following four
steps. The performance of this setting can be seen in Figure 5.1(h). The Accuracy is 47.65%
which is the same as in random order 47.29% for 4 incremental steps.

Table 5.2 displays the forgetting results of our incremental model at the last incremental step
on all previously learned classes. The results show that the forgetting rate is 16.14% for a sin-
gle incremental step, and it increases to 28.55% after 20 incremental steps. This suggests that
the forgetting phenomenon becomes more severe as the number of sequential tasks increases.
Please refer to Figure 7.11, and Figure 7.12 in AppendixA for the detailed forgetting rates at
each incremental step.

The lower performance of the superclass order strategy can be attributed to the grouping of
classes from the same superclass, which results in the increased similarity between them. This
makes it more challenging for the model to learn discriminative features and leads to easier for-
getting over time. For instance, in 19 tasks, where each step adds a superclass (5 macroclasses),
the accuracy is the lowest at 12.15%. It is worth noting that in this case also, the classes at each
incremental step are different from each other because they are from different superclasses (for
example, at step t − 1, we add the fish superclass and at step t, we add the flower class), which
makes the learned features more prone to modification over time.
Moreover, it is clear that when starting with a large number of base classes, even if the number
of sequence tasks is big, the performance does not decrease significantly as in the cases of 19
and 9. This is because themodel is exposed to different classes at the first training stage and can
learn to discriminate between them effectively. A larger number of classes generally results in
better performance, most likely because anchoring to the first task already yields amore diverse
set of features.
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In conclusion, the complexity of incremental steps significantly impacts the model’s perfor-
mance, while the class ordering strategy has no significant effect on the accuracy of the model.

Incremental steps Base classes Added classes per step
Accuracy

Random (Alphabetically
order)

Superclass order

1 50 50 63.84 61.79
4 20 20 47.29 42.94
5 50 10 56.34 52.8
9 10 10 35.26 30.67
10 50 5 49.69 46.9
19 5 5 21.07 13.6
20 40 3 47.57 43.55

Table 5.1: CIL accuracy result on cifar‐100 for different tasks

Phases Base classes Added classes per step
Forgetting

Random (Alphabetically
order)

Superclass order

1 50 50 16.14 12.32
4 20 20 20.012 15.07
5 50 10 20.11 17.69
9 10 10 20.58 18.42
10 50 5 27.7 24.36
19 5 5 16.01 12.15
20 40 3 28.55 26.56

Table 5.2: CIL forgetting result on Cifar‐100 for different incremental tasks
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Results of classification accuracy on Cifar‐100, which contains 1, 4, 5, 9, 10, 19 and 20 sequential tasks using
random and superclass order
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5.3 The loss function including cluster loss

The model was trained on the loss function 4.1, which included the cluster loss term, and the
hyperparameter for the cluster losswas optimizedover 10 sequential tasks. The results of theop-
timization are presented in Table 5.3, and it was found that the best performance was achieved
with a hyperparameter value of γ = 0.01.
The classification accuracy on different sequential tasks (1, 5, 10, 19, 20) with γ = 0.01 is pre-
sented in Table 5.4. Surprisingly, it was found that the accuracy decreased for both random
and superclass order when the cluster term was added. This indicates that the addition of the
cluster term did not enhance the model’s performance, but rather it had an adverse effect on
the model’s accuracy.

gamma Tasks Accuracy
10 10 32.77
1 10 30.85
0.1 10 28.37
0.01 10 33.83
0.001 10 32
0 10 49.69

Table 5.3: Hyperparameter selection for the cluster loss term

Incremental steps Base class
Added classes
per step

Accuracy
Random order Superclass order

1 50 50 62.62 61.72
5 50 10 45.76 45.92
10 50 5 33.83 33.67
19 5 5 13.84 12.82
20 40 3 27.01 24.23

Table 5.4: CIL accuracy result with the use of cluster loss
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6
Conclusion

This thesis aimed to investigate the impact of class ordering and task complexity on class incre-
mental learning using the Cifar-100 dataset. To achieve this, we employed themodel proposed
in [7], which is a non-exemplar method that does not store examples from previous classes. In-
stead, it augments a prototype from each previously learned class in the feature space and uses
self-supervised learning to learn rich and generalizable features. We considered two different
class ordering methods, namely random order and superclass order, and evaluated the model’s
performance on different incremental learning scenarios consisting of 1, 4, 5, 9, 10, 19, and 20
tasks.

Our results indicate that the proposed model with random order performed slightly better
than the superclass order, with a small difference in performance (around 5%), except for the
case of 19 sequential tasks, where the difference was slightly larger (about 7%). Additionally,
we observed that the model’s performance decreased as the complexity of the incremental task
increased. Specifically, the model’s highest performance was achieved when we had only one
incremental step (63.84%, and 61.79% for random and superclass order respectively), while
the worst performance was observed in the case of 19 tasks, with 21.07% and 13.6% for ran-
dom and superclass order, respectively. we can conclude that the performance of the model is
not significantly affected by the order of classes, but the complexity of incremental tasks has a
significant impact on the model’s performance. The results also indicate that starting with a
larger number of classes typically leads to superior performance. This is likely because anchor-
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ing to the first task results in a richer set of features.

Furthermore, we proposed the use of a cluster loss to organize more the feature space and re-
duce confusion between new and previous classes. However, our experiments showed that this
approach did not improve the model’s performance, instead, it led to a decrease in the classifi-
cation accuracy.

For future work, we suggest exploring different class ordering methods to further check the
model’s robustness. For instance, we could use confusion matrices to group highly miss classi-
fied classes together or group rarely miss classified classes together to feed them to the model in
the same task. Additionally, we could test and train the model on other dataset to evaluate its
performance.
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7
AppendixA

Cifar-100 class order:
In this section we present the two class ordering , which are used to train and test our model.

Cifar-100 dataset original order:
apple, aquarium-fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl, boy, bridge,
bus, butterfly, camel, can, castle, caterpillar, cattle, chair, chimpanzee, clock, cloud, cockroach,
couch, crab, crocodile, cup, dinosaur, dolphin, elephant, flatfish, forest, fox, girl, hamster,
house, kangaroo, keyboard, lamp, lawn-mower, leopard, lion, lizard, lobster, man, maple-tree,
motorcycle,mountain,mouse,mushroom, oak-tree, orange, orchid, otter,palm-tree, pear, pickup-
truck, pine-tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road, rocket,
rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snake, spider, squirrel, streetcar, sun-
flower, sweet-pepper, table, tank, telephone, television, tiger,tractor, train, trout, tulip, turtle,
wardrobe, whale, willow-tree, wolf, woman, worm.
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Superclass Macroclass
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 7.1: Cifare‐100 datatset superclasses and macroclasses

Confusion matrix:
Figure 7.1 to Figure 7.8 show the confusion matrices for different sequential tasks (1, 5, 9, 19)
for random order and superclass order.

48



Figure 7.1: Confusion matrix for 1 sequential tasks for superclass order.

Figure 7.2: Confusion matrix for 5 sequential tasks for superclass order.
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Figure 7.3: Confusion matrix for 9 sequential tasks for superclass order.

Figure 7.4: Confusion matrix for 19 sequential tasks for superclass order.
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Figure 7.5: Confusion matrix for 1 sequential tasks for random order.

Figure 7.6: Confusion matrix for 5 sequential tasks for random order.
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Figure 7.7: Confusion matrix for 9 sequential tasks for random order.

Figure 7.8: Confusion matrix for 19 sequential tasks for random order.

52



Classification accuracy for each tasks:
Figure 7.9, Figure 7.10 show the classification accuracy results at each incremental step for new
classes only.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.9: Classification accuracy at each step for 1, 4, 5, 9,10, 19, 20 sequential tasks for superclass order and 4 one class
per supeclass
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.10: Classification accuracy at each step for 1, 4, 5, 9,10, 19, 20 sequential tasks for random order

Forgetting result:
Figure 7.11, Figure 7.12 show the forgetting results at each incremental step for previously
learned classes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.11: Forgetting result at each step for 1, 4, 5, 9,10, 19, 20 sequential tasks for superclass order and 4 one class per
supeclass
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.12: Forgetting result at each step for 1, 4, 5, 9,10, 19, 20 sequential tasks for random order
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Adding Cluster loss term results:
The figures below visualize classification accuracy at each step on the previously learned classes,
classification accuracy of each step and forgetting result at each task on old classes. we provide
the results for tasks 1,5,10,19, 20 after adding cluster loss term to the loss function.

(a) (b) (c)

Figure 7.13: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 1 with
random class ordering

(a) (b) (c)

Figure 7.14: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 5 with
random class ordering

(a) (b) (c)

Figure 7.15: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 10
with random class ordering

(a) (b) (c)

Figure 7.16: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 19
with random class ordering

57



(a) (b) (c)

Figure 7.17: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 20
with random class ordering

(a) (b) (c)

Figure 7.18: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 1 with
superclass ordering

(a) (b) (c)

Figure 7.19: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 5 with
superclass ordering

(a) (b) (c)

Figure 7.20: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 10
with superclass ordering

(a) (b) (c)

Figure 7.21: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 19
with superclass ordering
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(a) (b) (c)

Figure 7.22: Classification accuracy at each step, classification accuracy and forgetting result on old classes for task 20
with superclass ordering
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