
 ANNO ACCADEMICO 2012/2013  

 

 

EXTRACTION OF DYNAMIC PATTERNS FROM 

STATIC RNA EXPRESSION DATA: AN APPLICATION 

TO HEMATOLOGICAL NEOPLASMS 

 

 

 

Relatore: Barbara Di Camillo 

Correlatore: Dott.ssa Alessandra Trojani 

 

Laureando: Giulia Bianchi 

 

 

  



 

 



 

Nothing worth gaining 

was ever gained without effort. 

 

Theodore Roosevelt 

 





i 

Index 

Section 1 INTRODUCTION 1 

1.1. Extraction of temporal dynamics from gene expression data 2 

1.2. Chronic Lymphocytic Leukemia 3 

1.3. IgM Monoclonal Gammopathy of Undetermined Significance and Waldenstrӧm’s 

Macroglobulinemia 4 

Section 2 DATA 7 

2.1. CLL Data set 8 

2.2. WM/MGUS Data set 8 

Section 3 SAMPLE PROGRESSION DISCOVERY 10 

3.1. Methods 10 

3.2. SPD step by step 12 

3.2.1. Input format 12 

3.2.2. Gene filtering 12 

3.2.3. Clustering 13 

3.2.4. Construct MSTs – Compare modules and MSTs 14 

3.2.5. Identify modules similar in terms of progression 16 

3.3. Results and discussion 17 

Section 4 PARAMETER SETTING 19 

4.1. Input configuration 19 

4.2. Result evaluation 20 

4.3. Conclusions 26 

Section 5 APPLICATION TO CHRONIC LYMPHOCYTIC LEUKEMIA 28 

5.1. Gene selection 28 

5.2. SPD results 29 

Section 6 APPLICATION TO WALDENSTRÖM’S MACROGLOBULINEMIA 

AND IgM MGUS 39 

6.1. Gene selection 39 

6.2. SPD results 40 

Section 7 DISCUSSION 45 

Acknowledgements 49 

Section 8 REFERENCES 51 

Section 9 APPENDIX 55 





1 

 

 

 

Section 1 

INTRODUCTION 

Development and evolution of a disease are dynamic processes that, from a molecular point of 

view, involve changes in some gene expression levels in the involved organs and cells. A 

possible approach to study the behavior of such dynamic phenomena is to sample individuals, 

tissues or other relevant units at subsequent time-points throughout the progression. In this thesis 

we focused on two pathological conditions: chronic lymphocytic leukemia (CLL) and 

Waldenström’s macroglobulinemia (WM). In the first case we sought genes responsible for 

different prognosis of CLL and tried to classify patients with an undefined prognosis. In the 

latter case we sought genes responsible for the evolution of IgM monoclonal gammopathy of 

undetermined significance (IgM MGUS) in Waldenström’s macroglobulinemia. 

To gain our goals, we used a tool, Sample Progression Discovery (SPD), developed by Peng Qiu 

et al. (1). This software, given gene expression data, extracts those features that, by gradually 

changing their expression values throughout samples, are responsible for leading some 

biologically meaningful process. A progression is not necessarily temporal: can also represent 

the disease evolution, or any other kind of progression, provided an ordering criterion was 

previously specified. 

CLL has been widely studied and two prognosis classes have been defined, based on two 

biomarkers: the mutational status of IgVH and the expression of ZAP70. An un-mutated status of 

IgVH together with positive expression of ZAP70 is correlated to a poor prognosis and the need 

of treatment. On the other hand, a mutated status of IgVH and negative expression of ZAP70 is 

related to a positive prognosis and no treatment is provided. Some uncertainty arises when, in a 

patient, the two biomarker values are such that the classification into one of the prognostic 

classes is not possible, i.e. the patient shows mutated IgVH and ZAP70 positive expression. 

Hence, we tried to establish how to consider such undefined cases. 

Regarding MGUS and WM, recent studies showed that MGUS is the most common plasma cell 

dyscrasia and is associated with a lifelong risk of progression to multiple myeloma or related 

disorders (2). Thus we used SPD to have a better understanding on such evolution and the 

involved genes. 
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After a first part of the thesis, during which we had to evaluate how to set SPD parameters and 

how to preprocess data, we went into a second part. Indeed, high-throughput expression data are 

affected by noise as the number of genes is great (~5∙10
4
), whereas the number of samples for 

each patient is one or two. In the latter part, we actually applied the method to reach our aims. 

 

 

1.1. Extraction of temporal dynamics from gene expression data 

High-throughput expression data can be used to infer temporal orderings by assuming that the 

process evolution can be detected by relatively smooth and continuous changes in the 

transcriptome (3). 

The estimate of accurate time series for biological processes is a hard task, due to the complexity 

of the problem. First of all, it is not always linear. For example, in the formation of blood cells, 

hematopoietic stem cells can differentiate in both myeloid and lymphoid cells. The latter two are 

the starting point of several parallel pathways, eventually leading to all blood cell types (4). 

 

 

Figure 1 

 

Besides the process itself, a further issue concerns the experiment to extract genetic material 

from cells for gene expression analysis. Indeed, time series data are usually drawn from a 

population of cells and, if they are not synchronized, samples can contain mixtures of the 
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temporal process. Moreover, heterogeneity among the members of the population further 

complicates the temporal samples and can lead to ambiguous situations, in which sample 

orderings are correct with respect to absolute time, but don’t follow the dynamics of the 

biological process. 

 

 

1.2. Chronic Lymphocytic Leukemia 

Chronic Lymphocytic Leukemia (CLL) is a chronic inherited lymphoproliferative disorder. It is 

the most common type of leukemia in Western countries, and is characterized by an increasing 

amount of mature-looking immuno-incompetent lymphocytes; 95% being B cells. The 

amassment of the clonal cell population occurs in blood, bone marrow, lymph nodes and spleen. 

The diagnosis of CLL is conventionally set in the presence of more than 5,000 small mature-

appearing lymphocytes per μl of peripheral blood. It is more common in males than in females, 

and affects especially elderly people. The etiology of CLL is still being investigated, as it is not 

known yet, but seems reasonable that the genetic predisposition may be the best explanation. In 

fact there is a higher prevalence of the disease in the family of the patients and there is no 

established role of the environment as inducing or influencing factor (5). 

As a matter of fact, CLL is a disease with a highly variable course, mainly falling into two 

subclasses, the most important difference being the illness aggressiveness. For patients in whom 

the disease has a slow course, there is no need for a specific therapy, whereas, for those suffering 

from a more aggressive pathology, treatment is urgently needed. CLL patients presenting 

leukemic cells that have rearranged genes coding for the variable region of the heavy chain of 

sIg (IgVH) with more than 2% mutations are in general considered good prognosis patients, 

whereas those ones who do not show IgVH mutations have in general worse prognosis (6). As the 

DNA sequencing to determine the status of IgVH mutation is expensive and not usually 

performed in all clinical contexts, several studies aimed to find alternative factors and 

biomarkers that can be correlated to such a difference. 

Nowadays, one well established of such markers is ZAP70, an intracellular protein that triggers 

activation signals delivered to T lymphocytes and natural killer cells by surface receptors for 

antigens. It is rarely present in normal B cells, but has been found in B cells from patients with 

CLL (6). 

Indeed, DNA analysis on gene expression of B cells showed ZAP70 expression to be strongly 

associated with mutational status of the IgVH gene. More specifically, further analysis confirmed 

that ZAP70 positivity is related to an un-mutated IgVH gene status, whereas ZAP70 negativity is 
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associated with a mutated IgVH gene status (7). Thus, according to the combination of these two 

conditions, patients can be stratified into two prognostic groups (8): 

 positive prognosis, characterized by mutated IgVH and ZAP70 negative (M-ZAP70
-
); 

 poor prognosis, characterized by un-mutated IgVH and ZAP70 positive (UM-ZAP70
+
). 

Other independent molecular markers in CLL include surface CD38 expression and the presence 

of specific chromosomal aberrations, such as trisomy 12 and 11q22-23, 13q14, 6q21, 17p13 

deletions (5). More recently, lipoprotein lipase (LPL) expression has been shown to correlate 

with IgVH mutational status (9), as well as deregulation of expression of genes coding for 

enzymes controlling lipid metabolism (8). 

 

Prognosis 
Biomarkers 

IgVH mutational status ZAP70 expression 

POSITIVE mutated - 

POOR un-mutated + 

Table 1 

 

 

1.3. IgM Monoclonal Gammopathy of Undetermined Significance 

and Waldenstrӧm’s Macroglobulinemia 

MGUS is an asymptomatic premalignant disorder characterized by limited monoclonal plasma 

cell proliferation in the bone marrow and absence of end-organ damage. MGUS is differentiated 

from multiple myeloma and related disorders based on the presence or absence of end-organ 

damage that can be attributed to the plasma cell disorder. It is characterized by a serum IgM 

concentration lower than 3.0 g/dL, infiltration of clonal plasma cells in the bone marrow lower 

than 10% and the absence of end-organ damage. Among all MGUS cases, approximately 15% 

involves serum IgM paraprotein. It is more common in men than women and in whites than 

blacks. Patients diagnosed IgM MGUS have an increased risk of Waldenstrӧm’s 

macroglobulinemia and, therefore, IgM MGUS is considered a precursor of WM (10). 

WM is a clonal IgM monoclonal protein-secreting lymphoid and plasma cell disorder. It is 

defined as an IgM monoclonal gammopathy with infiltration of clonal plasma cells in the bone 

marrow greater than 10%. Smoldering Waldenstrӧm’s macroglobulinemia (also referred to as 

indolent or asymptomatic WM) is defined as serum IgM monoclonal protein level greater or 

equal to 3g/dL and/or bone marrow lymphoplasmacytic infiltration greater or equal to 10% and 
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no evidence of end-organ damage, such as anemia, constitutional symptoms, hyperviscosity, 

lymphadenopathy, or hepatosplenomegaly (2). 

Patients with IgM MGUS and smoldering WM have an overall survival rate similar to the 

general population and should not be considered to have a malignant disease. 

 

Diagnosis IgM concentration [g/dL] Bone marrow infiltration [%] End-organ damage 

IgM MGUS <3 <10 no 

WM <3 <10 yes 

sWM ≥3 ≥10 no 

Table 2 
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Section 2 

DATA 

As previously explained, this thesis is divided into two parts. 

The main objective of the first part was to understand how to handle SPD. More specifically, we 

faced two main issues: selection of differentially expressed genes and the parameter setting. 

These two problems are closely connected, as they both affect the number of genes that are 

actually used by SPD to extract a progression. 

To come up with an appropriate strategy of gene selection and suitable parameter values, we 

proceeded in the following way. Starting from microarray expression data belonging to patients 

suffering from CLL with known prognosis, we made five different selections of genes, as further 

explained later on, and tested SPD by checking if it could classify correctly patients in the two 

prognostic groups. For each of the five selections provided to SPD, we set the standard deviation 

threshold within a range of values and evaluated the classification error for each of them. 

 

During the second part of the thesis, we used two other data sets to obtain different kind of 

information for two different diseases: CLL and WM. 

Concerning CLL, we used the same data set used for the first part with a couple of differences: 

two microarrays have been added; a third class of patients with uncertain prognosis has been 

taken into account, as the objectives of this part were to evaluate how to treat undefined 

prognosis patients and try to classify one patient for which IgVH mutational status was not 

available. 

Regarding WM, we used a totally different data set. We analyzed microarray data belonging to 

97 patients. Twenty-five of them were diagnosed IgM MGUS, the remaining 72 with WM. 

Samples were taken from different cell types: CD19 antigen positive, CD138 antigen positive 

and antigen negative. 
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2.1. CLL Data set 

We examined microarray expression data belonging to patients affected by Chronic 

Lymphocytic Leukemia, diagnosed at the Division of Hematology at Niguarda Hospital, Milan, 

Italy. They were submitted to a software application called Sample Progression Discovery (1) to 

extract a progression underlying gene expression data. Microarray data belong to 112 patients 

divided into three classes: class 1 with mutated IgVH and ZAP70
-
, class 2 with un-mutated IgVH 

and ZAP70
+
, class 3 including both un-mutated IgVH and ZAP70

-
 and mutated IgVH and 

ZAP70
+
. Peripheral blood mononuclear cells (PBMCs) from all samples were isolated by Ficoll 

density gradient centrifugation (Invitrogen, Milan, Italy) at 800 rpm for 20 minutes and soon 

after CD19
+
 cells were purified using MACS CD19 Microbeads (Miltenyi Biotech, Bologna, 

Italy) from fresh PBMCs of all 112 CLL patients following the manufacturer’s instructions; the 

purity of CD19
+
 cell was greater than 97% as determined by flow citometry. CD19

+
 cells 

(     ) were resuspended in 100 µl of RNAlater (Ambion, Applied Biosystems, Milan, Italy) 

and stored in a CLL cell bank at -20°C until RNA extraction was performed (8). 

 

 

2.2. WM/MGUS Data set 

This data set consisted of 97 probes belonging to patients diagnosed either with WM or with IgM 

MGUS. Bone marrow CD19
+
, CD138

+
 and NEG cells were isolated from WM patients and IgM 

MGUS patients as shown in Table 3. Bone marrow mononuclear cells from all samples were 

isolated by Ficoll density gradient centrifugation at 800 rpm for 20 minutes. Right after CD19
+
 

cells were selected using MACS CD19 Microbeads (Miltenyi Biotech, Bologna, Italy); 

afterwards CD138
+
 cells were positively isolated from the collected CD19

-
 cells using MACS 

CD138 Microbeads following the manufacturer’s instructions (Miltenyi). Gene expression 

profiling has been performed on total RNA extracted from bone marrow CD19
+
, bone marrow 

CD138
+
 and NEG cells. The concentration and quality of the RNA samples have been evaluated 

using Nanodrop 2000 UV-vis spectrophotometer (Euroclone, Milan, Italy). 

 

97 probes 

38 CD19
+
 

27 WM 

72 WM 

25 IgM MGUS 

11 IgM MGUS 

31 CD138
+
 

24 WM 

7 IgM MGUS 

28 NEG 
21 WM 

7 IgM MGUS 

Table 3 
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Section 3 

SAMPLE PROGRESSION DISCOVERY 

Peng Qiu et al. developed a tool, called Sample Progression Discovery (SPD), which aims to 

reveal biological progression underlying a microarray data set. 

 

Based on the hypothesis that to any step of biological progression corresponds a gradual change 

in expression levels of some subsets of genes, SPD assumes that individual samples of a 

microarray data set are linked by an unknown biological process, and that each sample represents 

one unknown point along the progression of such process. So SPD can be useful when 

microarray samples are available but their ordering is unknown and not necessarily linear. In the 

latter case, SPD can detect branching points along the progression. It also has a feature selection 

ability that enables to reveal the candidate genes that regulate that progression. 

 

SPD was tested on a variety of biological processes such as differentiation, development, cell 

cycle and disease progression. Microarray data sets, obtained by sampling a biological process at 

different points along its progression, were provided to SPD, without any other piece of 

information regarding either the progression itself or meaningful gene features. 

 

 

3.1. Methods 

SPD is implemented in Matlab 7 (The MathWorks, Natick, MA) using a graphical user interface. 

The software, at its second version, is available and freely downloadable on the internet at 

http://odin.mdacc.tmc.edu/~pqiu/software/SPD/. 

 

The algorithm executes four main steps on gene expression data to finally extract a disease 

progression from expression data. 

http://odin.mdacc.tmc.edu/~pqiu/software/SPD/
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At first, co-expressed genes are grouped together into modules via clustering. This is necessary 

to speed up the analysis. The method used to cluster and obtain consistent gene modules is a 

consensus k-means agglomerative algorithm. The stopping criterion is the desired module 

coherence that is computed as the average Pearson correlation between each gene in the cluster 

and the cluster mean, and it is chosen by the user. 

Information about the behavior of genes in the same module is translated into a minimum 

spanning tree (MST): each MST represents a group of highly co-expressed genes following the 

same pattern. Each node is a microarray sample and the edges are weighted by the distance 

between sample gene expression profiles. By definition, given a connected, undirected graph, a 

spanning tree is a sub graph that is a tree and connects all the vertices together. If a weight is 

assigned to each edge, the minimum spanning tree is the ST with weight less than or equal to the 

weight of every other ST. Hence, a MST connects samples that are closer to each other. Using 

such a structure to describe a progression enables SPD to find progressions with branching 

points, as well as linear ones. 

Modules that share common MST structure are selected; the overall MST, representing the 

global progression, is pieced together using only the genes belonging to selected modules. 

 

Figure 2 

 

To assess the resemblance of progression patterns, SPD compares modules and MSTs. More 

specifically, it computes the earth mover’s distance between all the modules and all the genes. 

This is one of the major differences between the latter version of SPD and the former one. To 

clustering genes 

create clusters of co-expressed genes 

construction of minimum spannining tree 
create a MST for each cluster 

module selection 
compare and select clusters with similar MST 
structure 

final progression 
create a MST based on genes in the selected 
clusters only 
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identify similar modules in terms of progression, SPD generates a similarity matrix. It is 

necessary to choose a threshold that determines whether the fit between a module and a tree is 

significant. This parameter is user defined and its default value is 0.05: it means that, among all 

the module-tree pairs, the top 5% with most significant earth mover’s distances are considered to 

“fit well with each other”, and are used to construct the PSM. 

The selection of modules needed to obtain the overall MST, thus the sought progression, is done 

manually. The user decision is supported by the progression similarity matrix. Each element 

represents the number of trees that are concordant with the two correspondent modules. Genes 

belonging to the selected modules are the ones supporting the overall progression. Hence, the 

feature selection is made by evaluating the statistical concordance between each gene module 

and each MST. 

 

 

3.2. SPD step by step 

3.2.1. Input format 

To start using SPD is necessary to prepare a file .mat which contains at least three variables: 

 probe_names: N∙1 cell array with the N names of genes or features; 

 exp_names: 1∙M cell array with the M names of samples or arrays; 

 data: N∙M matrix of expression data. 

Two optional variables can be added for the color coding of results: 

 color_code_names: K∙1 cell array with a name for each desired color code; 

 color_code_vectors: K∙M matrix with the clinical info corresponding to each color code. 

 

Once the input file is ready, it can be loaded. It is also possible to load previous results. 

 

3.2.2. Gene filtering 

SPD gives the users three options to filter genes: standard deviation threshold, number of 

acceptable nulls per gene and throw away “_x_at” probes. If more appropriate filtering is 

needed, users can customize their own selection when preparing the input file, and then ignore 

the filtering options in the GUI. 
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The aim of the first option is to keep only those genes that are differentially expressed along the 

probes for the following analysis. In fact SPD computes for each gene the standard deviation σ 

on the expression values and all the genes with σ<σth are not taken into account. 

 

The second and the third options allow the user to “clean” the data set by removing all the genes 

with more NULL entries than acceptable and the “_x_at” probes. In the Affimetrix U133a 

GeneChip the “_at” suffix designates a unique probe set, while “_s_at” and “_x_at” suffixes 

designate probe sets that can cross hybridize with multiple genes (11). 

 

The software shows the basic information after filtering. 

 

3.2.3. Clustering 

The aim of clustering is to group together highly co-expressed genes into modules so that the 

number of gene expression patterns to be tested is reduced. The algorithm chosen to cluster is an 

iterative consensus k-means procedure. 

 

A k-means clustering algorithm performs the following steps: 

1. randomly select k initial centers; 

2. assign each element to the closest center according to a chosen metric; 

3. re-calculate centers; 

4. repeat 2 and 3 until a stopping condition is reached. 

The number of clusters k has to be previously decided. SPD uses k=2 and iterates the algorithm 

for L=200 times. 

Starting from the N∙M expression data matrix, it creates a N∙L matrix in which the (i, j) element 

represents the cluster assignment of gene i at iteration j. To have the consensus, k-means is 

applied again on the N∙L matrix. 

At this point, SPD creates modules by further clusterization based on the coherence of already 

existing clusters. The coherence is computed as the average Pearson correlation between each 

gene in the cluster and the cluster mean. If the coherence is less than a pre-specified threshold, 

such cluster is partitioned by iterating the procedure until all the clusters have coherence greater 

than the threshold that is set equal to 0.9. 

The modules obtained so far, are not the ultimate ones. To be sure they are not similar to each 

other, they are compared pairwise. If the Pearson correlation of two modules centers is higher 
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than a user defined threshold, the modules are merged together. The suggested value for module 

coherence is 0.7 but, if the histogram of all the pair-wise correlations shows a heavy tail, a higher 

coherence parameter may be more appropriate. 

 

3.2.4. Construct MSTs – Compare modules and MSTs 

SPD builds a minimum spanning tree for each module, based on expression data of genes 

belonging to the same module. 

 

Given a connected, undirected graph        , with V the set of vertices and E the set of 

edges, for each edge         a cost function       is defined. A minimum spanning tree 

is an acyclic subset     that connects all of the vertices and it is such that the total weight 

                    is minimum. 

 

All the minimum spanning trees built on gene modules have samples as vertices and the weight 

of an edge connecting samples       is defined as the Euclidean distance between gene 

expression profiles of sample u and v. This way, MSTs connect samples that are similar to each 

other, but they are slightly different for a gradual change in gene expression. 

 

The comparison between modules and trees is made by using the earth mover’s distance (EMD) 

as a metric to build a progression similarity matrix. The goal is to seek for statistical concordance 

between all the modules and all the trees and, hence, determine the progression supported by 

meaningful features. 

The earth mover’s distance is the extension of the notion of distance between single objects to 

distance between distributions. Given two distributions, one can be seen as a mass of earth 

spread in the space, the other one as a collection of holes in the same space. If needed one can 

switch what is called earth and what is called holes so that there is always at least as much earth 

as needed to fill all the holes completely. The EMD measures the least amount of work necessary 

to fill the holes with earth, where work corresponds to transporting a unit of earth by a unit of 

ground distance (12). 



15 

The computation of EMD is based on the transportation problem. It deals with suppliers and 

consumers: suppliers have sources available to satisfy the consumer’s demand. The goal is to 

minimize the cost for shipping the sources. This is a bipartite network flow problem, since the 

nodes can be divided into two parts with all arcs going from one part to the other (13), as shown 

in Figure 3, which represents an example with three supplier and two consumers. 

 

The problem can be formalized as the following linear programming problem: let I be a set of 

suppliers, J a set of consumers, and cij the cost to ship a unit of supply from     to    . The 

solution is a set of flows fij that minimize the overall cost  

         
      

 

subject to the following constraints: 

      

for    ,    ; 

 

    
   

    

for    , where yj is the total capacity of consumer j; 

 

    
   

    

for    , where xi is the total supply of supplier i. 

 

The first constraint allows shipping of supplies from a supplier to a consumer and not vice versa. 

The second constraint forces the consumers to fill up all of their capacities and the last constraint 

supplier 

consumer 

J 

cij 

I 

Figure 3 
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limits the supply that a supplier can send to its total amount. A feasibility condition is that the 

total demand does not exceed the total supply: 

   
   

    

   

 

 

Once the transportation problem is solved, the earth mover’s distance is defined as: 

         
               

           
 

               

      
 

 

In general, the ground distance cij can be any distance and it will be chosen according to the 

problem to handle (12). 

 

3.2.5. Identify modules similar in terms of progression 

The main step of SPD that enables the extraction of the final progression is the comparison 

between the expression of gene modules and trees constructed from other modules. Based on the 

statistical concordance between al the modules and all the trees, which is user defined, a 

progression similarity matrix is derived. From this matrix, similar modules are easily 

recognizable, because they lie on the diagonal and they have red shade, darker or lighter 

depending on greater or smaller similarity. Since the number of modules in the progression 

similarity matrix is usually small, the module selection is to be performed manually. 

 

Given the expression data of a gene module in M samples, a M∙M distance matrix D is defined, 

where Dij is the EMD distance between the gene expression profiles i and j. A second M∙M 

matrix A is defined to represent the tree structure. It is an adjacency matrix in which Aij=1 if 

samples i and j are directly connected in the tree, otherwise Aij=0. 

The concordance between a gene module and a tree is then defined as the concordance between 

the distance matrix D and the adjacency matrix A: 

      

     

 

In this way, the distance on the progression between connected samples is small whereas the 

distance between not connected samples is relatively greater. To derive the p-value of s, SPD 

performs 1000 random permutations. The threshold to compare the p-value is user defined, 

thought the suggested values to use are 0.05 (the default), 0.10 and 0.15. 
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Once the user chooses similar modules by visual inspection of the progression similarity matrix, 

SPD creates the overall progression based on genes belonging to those modules. 

 

 

3.3. Results and discussion 

SPD underwent trials to prove its potentiality of retrieving biological processes given microarray 

samples. The authors prepared several microarray data sets to test SPD. For each data set, the 

actual underlying progression was known, but was not provided to SPD, and was used merely as 

a comparison to validate the results. 

The data sets included a cell cycle time series, B-cell differentiation data and a prostate cancer 

microarray data set. In all of the trials, SPD was able to recover respectively the correct time 

order of the samples, the correct order of different stages of normal B-cell differentiation, and the 

progression consistent with disease evolution. Moreover, the genes identified and involved to 

assess the progression were consistent with the biological process itself. 

 

SPD has some distinctive features which make its analysis on microarray data more complete 

than other previously adopted techniques. Unlike other machine learning algorithms, such as 

unsupervised clustering, supervised classification and statistical tests for differential expression, 

whose goal is to identify discrepancies between different sample groups by assuming that 

samples in the same group are similar, SPD is based on an alternative approach. As it considers 

individual samples as different points along an unknown biological progression, it has the 

potential to discover how samples progress both within and across groups. 

Furthermore, it is capable to extract the genes associated with the progression with no a priori 

knowledge about meaningful gene features. 

One of the key aspects of this tool is the way used to measure the similarity among gene 

modules. Unlike methods using correlation and regression, in which the expression profiles of 

gene modules are directly compared with each other, in SPD the comparison is assessed via 

minimum spanning trees. MSTs represent progression patterns and the similarity between gene 

modules is based on the number of MSTs they share. 

This way, SPD can identify similarities that correlation and regression-based analysis may miss. 
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Section 4 

PARAMETER SETTING 

To study the evolution of chronic lymphocytic leukemia, we decided to use SPD as a tool to 

assess the progression of the disease. First of all, we needed a method to decide how to set 

parameters in SPD. As here in below explained, results may greatly vary depending on such 

parameters; hence we tested SPD on 5 groups of genes. Each group was obtained via different 

methods of selection, by coding with R language (14). 

 

 

4.1. Input configuration 

We provided SPD with different sets of data. All were from the same microarray data set of a 

cohort of 112 patients, each group differing from the others for the gene selection. Out of the 112 

patients, only those with a known prognosis were considered, namely 89. 

The data set had to be normalized because samples were taken at different times, so we 

multiplied each column by a scale factor (columns represent patients, rows represent probes). We 

computed the median for each column and then computed the overall median (median of the 

medians). Each scale factor was given by the overall median divided by the median of each 

column. Once data were homogeneous, we ordered patients according to their class and deleted 

those belonging to class 3. We obtained a matrix with N=54675 probes on the rows and 89 

patients on the columns, of which the first 61 belong to class 1, the remaining 28 to class 2. 

The first subset used corresponds to the overall data set with 54675 probes. 

The second subset counted 677 differentially expressed genes selected using Significance 

Analysis for Microarrays (15) and false discovery rate 5%. 

The third subset was obtained performing a SAM selection (15) on the data. It consisted of 2870 

genes. In order to accomplish such a selection, we used the sam function of Bioconductor (16) 

performed with 100 iterations and α=2.5%. No correction for multiple testing was used, so to 

gain a comparable number of probes to that of the group afterwards obtained. 
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Probes of the fourth subset were extracted using MAD and Wilcoxon test. MAD (Median 

Absolute Deviation) was computed on both classes. Five samples from each class were then 

randomly chosen for 100 times, to have an estimate of both class MAD values. Assuming 

samples of the two groups to be independent and to belong to two different populations with the 

same but unknown distribution, and the same standard deviation, Wilcoxon test was performed. 

Using a significance level given by Bonferroni correction α=0.025/N, 2320 genes were selected.  

The last subset is given by the union of the probes of the third and fourth data set, and contained 

4698 probes. 

That said, each group is referred to as in Table 4. 

 

Subset Selection mode # of genes 

1 CLL_89_tot no selection 54675 

2 CLL_89_sam_fdr sam fdr=5% 677 

3 CLL_89_sam sam α=2.5% 2870 

4 CLL_89_mad mad + wilcoxon 2320 

5 CLL_89_union sam U mad 4698 

Table 4 

 

 

4.2. Result evaluation 

As reported by Peng Qiu et al., and as had become clear during the thesis, SPD is very sensible 

to the input data, meaning that, depending on the genes provided, results may greatly vary. 

Particularly, we needed a criterion to evaluate how to set the user defined parameters in SPD. 

We focused mainly on the standard deviation threshold for gene filtering, because of the strong 

dependence of results on such parameter. To find a rational decision rule, we tested SPD on each 

group using different threshold values, and then attempted to extract those giving best results. 

Standard deviation threshold values used ranged between 0 and the maximum value still 

producing at least two meaningful modules, with a pitch of 0.1. SPD actually gave an error when 

building the progression similarity matrix if the modules to compare were less than two. For 

subset CLL_89_tot, the initial standard deviation value was not 0 but 0.5, due to very long 

running times to complete the computation of the clustering step and the comparison between 

modules. 
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In Figure 4 it is shown, as an example, the output of SPD. It is the results obtained from subset 

CLL_89_sam for standard deviation threshold value equal to 0.9. Blue dots represent patients 

with positive prognosis, whereas green diamonds represent patients with poor prognosis. 

 

 

Figure 4 

 

To evaluate the reliability of the results obtained, we checked whether the subdivision in the two 

prognostic classes was correctly or not recovered. The measure of correctness was made by 

manually counting how many samples were misclassified. And by dividing it by 89. 

 

Once we had the relative error trend and its average, we restricted the range of standard deviation 

values to those ones giving an “acceptable” error. As a general rule, we considered an error to be 

“acceptable” if it was below the average. 

 

Based on the chosen range of standard deviation threshold, we computed the pairwise distances 
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adjacency matrices A and B, defined as in section 3.2.5, and        , the distance was 

computed as the following score: 

  
       

       
 

Element Sij of matrix S is equal to 1 if and only if in one of the progressions there is an edge 

connecting two samples that is missing in the other one. Thus, the greater s is, the greater is the 

distance between the two progressions. The distance s was plotted versus               

using boxplots. 
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For each subset and for each value of standard deviation threshold we obtained a progression of 

the same kind as the one shown in Figure 4. For each output given by SPD, we computed and 

plotted the relative error of classification and the number of filtered genes versus standard 

deviation threshold values (Figure 5 and Figure 6). We got two plots for each subset of genes. 

Based on these figures, for each subset, we chose a range of standard deviation threshold. As a 

criterion to make such choice, we looked at the relative error trend, and we selected a range of 

values for which the error was below the average for that subset. Furthermore, we highlighted 

the number of genes filtered for the selected range of standard deviation threshold (Figure 6), 

and we computed and plotted the distances between progressions versus the difference of 

standard deviation threshold (Figure 7). 

 

Figure 5 shows the behavior of the relative classification error versus standard deviation 

threshold, for each subset of genes. 

 

It is evident from the average error trends that gene selection is essential. Indeed, when using all 

the genes of the microarray to find a progression, SPD produced results with high 

misclassification error, regardless of the standard deviation threshold (Figure 5-A). This 

experimental evidence suggests that gene expression values for the whole microarray include too 

much noise. Such noise exceeds the information content peculiar for that pathology. We can also 

see in Figure 6 that the number of filtered genes that produce good results varies a lot. 

In Figure 5-B the average classification error is the lowest obtained, meaning that in the 

progressions most of the patients were recognized as belonging to their actual prognostic class. 

For this reason we decided not to select any restricted range of standard deviation threshold 

values. 

From the trend of classification error for CLL_89_sam subset (Figure 5-C) is clear which is the 

best range of standard deviation threshold values, and the average error is the second smallest 

obtained. The correspondent number of filtered genes is the highest, ranging from 1523 to 103. 

The third method of gene selection that we computed, producing subset CLL_89_mad is shown 

in Figure 5-D, was the second worst result obtained. Indeed, the average relative error is 

approximately 14%. This result had also a negative influence on subset CLL_89_union, since it 

was given by the union of subset CLL_89_sam with subset CLL_89_mad. It seems fair to expect 

a result that is a combination of the two previous ones and, as a matter of facts, it is. In Figure 5-

E we can see that the error trend has common characteristics with trends in Figure 5-C and D. 
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Moreover, the average error is about the average of the previous two averages, and so it is the 

number of genes for the selected range of standard deviation threshold. 

Concerning the distances between progressions, from Figure 7 we can see how different 

progressions are from each others. Even for a small variation in standard deviation threshold, 

resulting progressions presented heterogeneous structures. 

 

 

4.3. Conclusions 

As expected, using rough data does not produce reliable results, as only a small fraction of genes 

is not specifically related to the disease. The greatest part of genes prevents SPD from recovering 

a progression, increasing the noise that exceeds the informative content. Thus, a selection of 

genes is absolutely necessary. 

Among the methods we used to reduce the number of genes to extract the most meaningful ones, 

SAM selection with fdr=5% (CLL_89_sam_fdr) and SAM selection with α=2.5% 

(CLL_89_sam) gave the best results. SPD was able to classify subjects in the two prognostic 

classes, with low misclassification error. 

In particular, for subset CLL_89_sam, the average error was 8.3% and, for standard deviation 

threshold values ranging from 0.5 to 1.6, the error was below the average. The corresponding 

number of genes used to produce the progressions ranged from 1523 to 103. Subset 

CLL_89_sam_fdr, on the other hand, gave good results for standard deviation threshold values 

ranging from 0 to 2.1 and a number of genes ranging from 677 to only 23. The average error of 

classification was 4.6%, being the lowest obtained. 

 

The worst results after gene selection was given by subset CLL_89_mad. 

Knowing that results are strongly affected by the initial gene selection, as a general rule, we 

could suggest to use a standard deviation threshold value, chosen among those ones giving 

acceptable results, that is as conservative as possible in regard to the number of genes. As a 

consequence, it seems reasonable to make several trials, and choose suitable parameter values by 

visual inspection of the results. 
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Section 5 

APPLICATION TO CHRONIC 

LYMPHOCYTIC LEUKEMIA 

After evaluating the behavior of SPD on different inputs and several settings of standard 

deviation threshold parameter, we applied it to another two data sets associated to chronic 

lymphocytic leukemia and Waldenström’s macroglobulinemia. 

 

 

5.1. Gene selection 

Given the results previously obtained, for this part of the thesis, gene selection was performed by 

using significance analysis of microarrays (15) with false discovering rate 5%. Thus, from an 

initial amount of 54675 genes, only 4374 were selected. The number of probes, i.e. of patients, 

was 114 split in the following groups: 

1. 62 patients with positive prognosis (M-IgVH and ZAP70
-
) referred to as “Positive”; 

2. 28 patients with poor prognosis (UM-IgVH and ZAP70
+
) referred to as “Negative”; 

3. 23 patients with undefined prognosis (UM-IgVH and ZAP70
-
, or M-IgVH and ZAP70

+
) 

referred to as “NC”; 

4. 1 patient with unknown prognosis referred to as “NA”. 

This subset is referred to as CLL_114. 

 

CLL_114 

Class name # of patients Prognosis 

Positive 62 Positive 

Negative 28 Poor 

NC 23 Undefined 

NA 1 Non available 

Table 5 
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5.2. SPD results 

Basing on previous results and being aware that SPD is extremely sensible to the input, when we 

applied it to subset CLL_114, we used values of standard deviation threshold ranging from 0.5 to 

1.6. For each of them, we evaluated the error of classification as follows. As in this situation 

there were three classes to be distinguished, we exploited the fact that class “Negative” was 

clearly isolated from class “Positive” and class “NC”, for every value of standard deviation 

threshold. Thus, we assumed patients belonging to class “Positive” and class “NC” as being part 

of the same group, so that the error of classification could be computed as described in 4.2 for 

CLL_89 subsets. As shown in Figure 8, relative classification error is much more regular 

compared to previous results, and close to the average value, which is 5.75%. 

 

 

Figure 8 

 

We show in Figure 9 one of the progression produced by SPD, to summarize the results obtained 

for this data set. 

SPD cuts off poor prognosis samples and groups together patients with a good or undefined 

prognosis. According to this result, patients presenting prognostic marker values not following 

the standard for prognostic classification, should be considered and treated as those ones with a 

positive prognosis. 

It is interesting to point out that patient “LLC043” precedes “LLC043.2”, which is actually the 

same patient who underwent RNA exam twice at different times. This patient has been stable 

since diagnosis, and is not being treated as presents a positive prognosis. Only one time, for 

sd=1.0, they were both misclassified, but still linked to each other. 
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A closer look to patients in class “NC” revealed that their association to patients with positive 

prognosis was due to the mutational status of IgVH. Indeed, IgVH is a more relevant prognostic 

biomarker, rather than ZAP70 expression. 

Another result to highlight is about patient “LLC160”. SPD classified it with classes “Positive” 

and “NC” patients for all standard deviation threshold values but for sd=1.4. Furthermore, to 

such value corresponds a relative classification error greater than the average. Hence, it could be 

considered to have a positive prognosis. When that was the case, “LLC160” position along the 

progression was either close to class “Negative” misclassified patients, or among class “Positive” 

and “NC” patients. 

 

 

Figure 9 

 

We chose, as the most representative progression, the one given by sd=1.2, because for this value 

the relative misclassification error is below average and subjects “LLC043”, “LLC043.2” and 

“LLC160” position reflects the overall outcomes previously depicted. 
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We extracted the gene lists actually used to build each progression and put them together in two 

different ways: we evaluated their union and intersection. For this data set and for the standard 

deviation threshold values considered, the union included 213 genes, as represented in Table 6, 

whereas the intersection was empty. Among all of those genes, the ones highlighted in the table 

have already been pointed out in several studies as being related to IgVH mutational status, and 

could be considered eligible candidate as additional prognostic biomarkers (8). 

For the sake of completeness, we performed a functional annotation clustering on genes reported 

in Table 6. We used the “functional annotation clustering” tool available on DAVID 

Bioinformatics Resources (17), (18) to cluster together genes with similar annotation. Results are 

shown in Table 11 in Section 9. 

 

Table 6 

PROBE ID GENE ID GENE NAME 

205978_at KL klotho 

210401_at P2RX1 purinergic receptor P2X, ligand-gated ion channel, 1 

1554733_at MGC24125 hypothetical protein MGC24125 

227530_at AKAP12 A kinase (PRKA) anchor protein 12 

222453_at cybrd1 cytochrome b reductase 1 

227265_at FGL2 fibrinogen-like 2 

204254_s_at VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 

230287_at SGSM1 small G protein signaling modulator 1 

214453_s_at IFI44 interferon-induced protein 44 

206181_at SLAMF1 signaling lymphocytic activation molecule family member 1 

1556209_at CLEC2B C-type lectin domain family 2, member B 

231356_at LOC100131014 hypothetical LOC100131014 

215145_s_at CNTNAP2 contactin associated protein-like 2 

230578_at ZNF471 zinc finger protein 471 

209815_at ptch1 patched homolog 1 (Drosophila) 

232584_at TSHZ2 teashirt zinc finger homeobox 2 

1553196_a_at FCRL3 Fc receptor-like 3 

212446_s_at LASS6 LAG1 homolog, ceramide synthase 6 

238071_at LCN10 lipocalin 10 

204083_s_at tpm2 tropomyosin 2 (beta) 

212698_s_at SEPT10 septin 10 

230831_at Frmd5 FERM domain containing 5 

219255_x_at Il17rb interleukin 17 receptor B 

229552_at LOC283454 hypothetical protein LOC283454 

202393_s_at KLF10 Kruppel-like factor 10 

212985_at Apbb2 amyloid beta (A4) precursor protein-binding, family B, member 2 

203030_s_at Ptprn2 protein tyrosine phosphatase, receptor type, N polypeptide 2 

211637_x_at LOC100126583 hypothetical LOC100126583 
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224156_x_at Il17rb interleukin 17 receptor B 

226425_at CLIP4 CAP-GLY domain containing linker protein family, member 4 

229344_x_at RIMKLB ribosomal modification protein rimK-like family member B 

218418_s_at KANK2 KN motif and ankyrin repeat domains 2 

231303_at NCRNA00158 non-protein coding RNA 158 

206978_at CCR2 chemokine (C-C motif) receptor 2 

206100_at CPM carboxypeptidase M 

204646_at DPYD dihydropyrimidine dehydrogenase 

221802_s_at KIAA1598 KIAA1598 

244740_at MGC9913 hypothetical protein MGC9913 

223380_s_at Lats2 LATS, large tumor suppressor, homolog 2 (Drosophila) 

238983_at nsun7 NOL1/NOP2/Sun domain family, member 7 

219304_s_at PDGFD platelet derived growth factor D 

225897_at MARCKS myristoylated alanine-rich protein kinase C substrate 

215489_x_at HOMER3 homer homolog 3 (Drosophila) 

213566_at RNASE6 ribonuclease, RNase A family, k6 

204834_at FGL2 fibrinogen-like 2 

211474_s_at serpinb6 serpin peptidase inhibitor, clade B (ovalbumin), member 6 

203796_s_at BCL7A B-cell CLL/lymphoma 7A 

211643_x_at IGKV3D-15 immunoglobulin kappa variable 3D-15 (gene/pseudogene) 

219300_s_at CNTNAP2 contactin associated protein-like 2 

236918_s_at LRRC34 leucine rich repeat containing 34 

204454_at Ldoc1 leucine zipper, down-regulated in cancer 1 

207120_at ZNF667 zinc finger protein 667 

234284_at GNG8 guanine nucleotide binding protein (G protein), gamma 8 

219738_s_at PCDH9 protocadherin 9 

226926_at Dmkn dermokine 

203642_s_at Cobll1 COBL-like 1 

1560562_a_at ZNF677 zinc finger protein 677 

223620_at GPR34 G protein-coupled receptor 34 

225133_at KLF3 Kruppel-like factor 3 (basic) 

209674_at CRY1 cryptochrome 1 (photolyase-like) 

205414_s_at RICH2 Rho-type GTPase-activating protein RICH2 

228557_at L3mbtl4 l(3)mbt-like 4 (Drosophila) 

214720_x_at SEPT10 septin 10 

212442_s_at LASS6 LAG1 homolog, ceramide synthase 6 

216491_x_at IGHV3-11 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

216491_x_at IGHV3-7 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

216491_x_at IGHG3 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 
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216491_x_at Ighg1 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

216491_x_at IGH@ 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

216491_x_at IGHM 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

216491_x_at ighv4-31 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

214032_at zap70 zeta-chain (TCR) associated protein kinase 70kDa 

202241_at TRIB1 tribbles homolog 1 (Drosophila) 

228855_at NUDT7 nudix (nucleoside diphosphate linked moiety X)-type motif 7 

209854_s_at KLK2 kallikrein-related peptidase 2 

201670_s_at MARCKS myristoylated alanine-rich protein kinase C substrate 

225864_at FAM84B family with sequence similarity 84, member B 

210102_at vwa5a von Willebrand factor A domain containing 5A 

244741_s_at MGC9913 hypothetical protein MGC9913 

242064_at sdk2 sidekick homolog 2 (chicken) 

201540_at fhl1 four and a half LIM domains 1 

227013_at Lats2 LATS, large tumor suppressor, homolog 2 (Drosophila) 

220066_at NOD2 nucleotide-binding oligomerization domain containing 2 

228297_at cnn3 calponin 3, acidic 

211640_x_at IGHV1-69 immunoglobulin heavy variable 1-69; similar to hCG1773549 

211640_x_at LOC100133862 immunoglobulin heavy variable 1-69; similar to hCG1773549 

219302_s_at CNTNAP2 contactin associated protein-like 2 

232821_at GTSF1L gametocyte specific factor 1-like 

204334_at KLF7 Kruppel-like factor 7 (ubiquitous) 

235570_at RBMS3 RNA binding motif, single stranded interacting protein 

203548_s_at Lpl lipoprotein lipase 

238870_at KCNK9 potassium channel, subfamily K, member 9 

226485_at VSIG10 hypothetical protein FLJ20674 

228494_at ppp1r9a protein phosphatase 1, regulatory (inhibitor) subunit 9A 

236894_at L1TD1 LINE-1 type transposase domain containing 1 

227529_s_at AKAP12 A kinase (PRKA) anchor protein 12 

1552736_a_at NETO1 neuropilin (NRP) and tolloid (TLL)-like 1 

206983_at CCR6 cyclin L2; chemokine (C-C motif) receptor 6 

206983_at Ccnl2 cyclin L2; chemokine (C-C motif) receptor 6 

212190_at SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2 

236600_at spg20 spastic paraplegia 20 (Troyer syndrome) 

226517_at BCAT1 branched chain aminotransferase 1, cytosolic 

202555_s_at MYLK myosin light chain kinase 

231358_at mro maestro 
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235616_at TSHZ2 teashirt zinc finger homeobox 2 

200897_s_at palld palladin, cytoskeletal associated protein 

223595_at TMEM133 transmembrane protein 133 

203549_s_at Lpl lipoprotein lipase 

203705_s_at FZD7 frizzled homolog 7 (Drosophila) 

232383_at TFEC transcription factor EC 

205771_s_at AKAP7 A kinase (PRKA) anchor protein 7 

210612_s_at SYNJ2 synaptojanin 2 

202599_s_at NRIP1 nuclear receptor interacting protein 1 

203641_s_at Cobll1 COBL-like 1 

219737_s_at PCDH9 protocadherin 9 

235743_at SNED1 sushi, nidogen and EGF-like domains 1 

243375_at GRIK1 glutamate receptor, ionotropic, kainate 1 

210644_s_at Lair1 leukocyte-associated immunoglobulin-like receptor 1 

204731_at Tgfbr3 transforming growth factor, beta receptor III 

219496_at ANKRD57 ankyrin repeat domain 57 

205992_s_at IL15 interleukin 15 

209732_at CLEC2B C-type lectin domain family 2, member B 

204072_s_at FRY furry homolog (Drosophila) 

226625_at Tgfbr3 transforming growth factor, beta receptor III 

215767_at ZNF804A zinc finger protein 804A 

213714_at CACNB2 calcium channel, voltage-dependent, beta 2 subunit 

235800_at ENO4 chromosome 10 open reading frame 134 

221261_x_at MAGED4B melanoma antigen family D, 4B; melanoma antigen family D, 4 

221261_x_at MAGED4 melanoma antigen family D, 4B; melanoma antigen family D, 4 

218613_at PSD3 pleckstrin and Sec7 domain containing 3 

213906_at mybl1 v-myb myeloblastosis viral oncogene homolog (avian)-like 1 

206865_at HRK harakiri, BCL2 interacting protein (contains only BH3 domain) 

239246_at FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 (chondrocyte-derived) 

212655_at ZCCHC14 zinc finger, CCHC domain containing 14 

227792_at Itpripl2 inositol 1,4,5-triphosphate receptor interacting protein-like 2 

213093_at Prkca protein kinase C, alpha 

212503_s_at dip2c DIP2 disco-interacting protein 2 homolog C (Drosophila) 

236635_at ZNF667 zinc finger protein 667 

227034_at ANKRD57 ankyrin repeat domain 57 

227810_at ZNF558 zinc finger protein 558 

229347_at LOC729506 hypothetical LOC729506 

244521_at TSHZ2 teashirt zinc finger homeobox 2 

214452_at BCAT1 branched chain aminotransferase 1, cytosolic 

206115_at EGR3 early growth response 3 

1562713_a_at NETO1 neuropilin (NRP) and tolloid (TLL)-like 1 

230793_at Lrrc16a leucine rich repeat containing 16A 

223535_at NUDT12 nudix (nucleoside diphosphate linked moiety X)-type motif 12 

214953_s_at APP amyloid beta (A4) precursor protein 

1556839_s_at SPTBN5 spectrin, beta, non-erythrocytic 5 

201669_s_at MARCKS myristoylated alanine-rich protein kinase C substrate 
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243940_at TSHZ2 teashirt zinc finger homeobox 2 

212526_at spg20 spastic paraplegia 20 (Troyer syndrome) 

233985_x_at ppp1r9a protein phosphatase 1, regulatory (inhibitor) subunit 9A 

224361_s_at Il17rb interleukin 17 receptor B 

201876_at PON2 paraoxonase 2 

238447_at RBMS3 RNA binding motif, single stranded interacting protein 

1569346_a_at P2RX1 purinergic receptor P2X, ligand-gated ion channel, 1 

225285_at BCAT1 branched chain aminotransferase 1, cytosolic 

224823_at MYLK myosin light chain kinase 

219841_at AICDA activation-induced cytidine deaminase 

211634_x_at IGHV1-69 immunoglobulin heavy variable 1-69; similar to hCG1773549 

211634_x_at LOC100133862 immunoglobulin heavy variable 1-69; similar to hCG1773549 

216620_s_at arhgef10 Rho guanine nucleotide exchange factor (GEF) 10 

203029_s_at Ptprn2 protein tyrosine phosphatase, receptor type, N polypeptide 2 

202342_s_at trim2 tripartite motif-containing 2 

204647_at HOMER3 homer homolog 3 (Drosophila) 

211635_x_at IGHV1OR15-9 

V-set and immunoglobulin domain containing 7; 

immunoglobulin heavy variable 1/OR15-5 pseudogene; 

immunoglobulin heavy variable 1/OR15-9 (non-functional) 

211635_x_at VSIG7 

V-set and immunoglobulin domain containing 7; 

immunoglobulin heavy variable 1/OR15-5 pseudogene; 

immunoglobulin heavy variable 1/OR15-9 (non-functional) 

211635_x_at IGHV1OR21-1 

V-set and immunoglobulin domain containing 7; 

immunoglobulin heavy variable 1/OR15-5 pseudogene; 

immunoglobulin heavy variable 1/OR15-9 (non-functional) 

241278_at FCRL3 Fc receptor-like 3 

226164_x_at RIMKLB ribosomal modification protein rimK-like family member B 

225330_at IGF1R insulin-like growth factor 1 receptor 

228532_at C1orf162 chromosome 1 open reading frame 162 

207245_at UGT2B17 UDP glucuronosyltransferase 2 family, polypeptide B17 

1560225_at cnr1 cannabinoid receptor 1 (brain) 

205419_at Gpr183 G protein-coupled receptor 183 

238577_s_at TSHZ2 teashirt zinc finger homeobox 2 

228033_at E2F7 E2F transcription factor 7 

217371_s_at IL15 interleukin 15 

221337_s_at ADAM29 ADAM metallopeptidase domain 29 

203355_s_at PSD3 pleckstrin and Sec7 domain containing 3 

223696_at arsD arylsulfatase D 

203795_s_at BCL7A B-cell CLL/lymphoma 7A 

204439_at IFI44L interferon-induced protein 44-like 

203881_s_at dmd dystrophin 

213436_at cnr1 cannabinoid receptor 1 (brain) 

225140_at KLF3 Kruppel-like factor 3 (basic) 

226247_at plekha1 
pleckstrin homology domain containing, family A (phosphoinositide binding specific) 

member 1 

238512_at CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1 

202600_s_at NRIP1 nuclear receptor interacting protein 1 

216541_x_at IGHV1-69 immunoglobulin heavy variable 1-69; similar to hCG1773549 

216541_x_at LOC100133862 immunoglobulin heavy variable 1-69; similar to hCG1773549 

226846_at phyhd1 phytanoyl-CoA dioxygenase domain containing 1 
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1569345_at P2RX1 purinergic receptor P2X, ligand-gated ion channel, 1 

224499_s_at AICDA activation-induced cytidine deaminase 

238778_at MPP7 membrane protein, palmitoylated 7 (MAGUK p55 subfamily member 7) 

221704_s_at vps37b vacuolar protein sorting 37 homolog B (S. cerevisiae) 

230673_at PKHD1L1 polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 

200602_at APP amyloid beta (A4) precursor protein 

231093_at FCRL3 Fc receptor-like 3 

232820_s_at GTSF1L gametocyte specific factor 1-like 

228737_at TOX2 TOX high mobility group box family member 2 

219955_at L1TD1 LINE-1 type transposase domain containing 1 

211633_x_at IGHV3-11 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

211633_x_at IGHV3-7 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

211633_x_at IGHG3 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

211633_x_at Ighg1 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

211633_x_at IGH@ 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

211633_x_at IGHM 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

211633_x_at ighv4-31 

immunoglobulin heavy constant gamma 1 (G1m marker); 

immunoglobulin heavy constant mu; immunoglobulin heavy variable 3-7; 

immunoglobulin heavy constant gamma 3 (G3m marker); 

immunoglobulin heavy variable 3-11 (gene/pseudogene); 

immunoglobulin heavy variable 4-31; immunoglobulin heavy locus 

222457_s_at LIMA1 LIM domain and actin binding 1 

214039_s_at Laptm4b lysosomal protein transmembrane 4 beta 

203695_s_at Dfna5 deafness, autosomal dominant 5 

204255_s_at VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 

201911_s_at FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 (chondrocyte-derived) 

206486_at LAG3 lymphocyte-activation gene 3 

229598_at Cobll1 COBL-like 1 

222258_s_at SH3BP4 SH3-domain binding protein 4 

210517_s_at AKAP12 A kinase (PRKA) anchor protein 12 

238919_at PCDH9 protocadherin 9 

228974_at ZNF677 zinc finger protein 677 

221088_s_at ppp1r9a protein phosphatase 1, regulatory (inhibitor) subunit 9A 
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213056_at FRMD4B FERM domain containing 4B 

227379_at MBOAT1 membrane bound O-acyltransferase domain containing 1 

203706_s_at FZD7 frizzled homolog 7 (Drosophila) 
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Section 6 

APPLICATION TO 

WALDENSTRÖM’S 

MACROGLOBULINEMIA AND IgM 

MGUS 

The second application that with considered in this thesis regarded IgM monoclonal 

gammopathy of undetermined significance and Waldensström’s macroglobulinemia. In 

particular we were concerned by the possible evolution of the former one in the latter one. 

 

 

6.1. Gene selection 

As explained in 2.2, this data set consisted in 97 probes extracted from different cell types. The 

first problem we had to deal with was a strong batch effect on microarray data. Batch effect, that 

is a non biological experimental variation, is pretty common in microarray experiments and it 

makes it inappropriate to combine data sets without adjusting for it. We used a function which 

exploits an empirical Bayesian framework (19). Named function is ComBat in the sva R package 

of Bioconductor (20). 

The next step consisted in performing a SAM selection (15) only on genes belonging to those 

microarrays extracted from antigen CD19 positive cells. By using a false discorvery rate of 5%, 

we obtained 750 genes for each of the 38 samples. These samples, corresponding to as many 

individuals, presented two different diagnosis: 

1. IgM MGUS: 11 patients (referred to as “MGUS”); 

2. WM: 27 patients (referred to as “WM”). 

This subset is referred to as WM_MGUS_38. 
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WM_MGUS_38 

Class name # of patients Diagnosis 

MGUS 11 IgM MGUS 

WM 2 27 WM 

Table 7 

 

 

6.2. SPD results 

We had to make some attempts before having good results according to the trend of the relative 

classification error and hence the ability to distinguish between the two pathological conditions. 

At first, we divided the data set in 3 subsets of probes. Each subset consisted of the same number 

of genes, i.e. 54675 as no gene selection was performed, and samples were grouped together 

according to the cell type: CD19
+
, CD138

+
, NEG. SPD wasn’t able to retrieve a progression 

representative of the different diagnosis for the two latter subsets, and results on the former 

subset were affected by the large number of genes, as expected. We then performed gene 

selection for each group, with the method explained in section 6.1. Again results for CD138
+
 and 

NEG groups were not outstanding, meaning that the information content is in CD19
+
 cells. 

 

 

Figure 10 

 

The relative classification error, shown in Figure 10, was computed by counting the number of 

sample swaps needed to have the right classification, and dividing by the total number of 

samples, namely 38. 
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Results gained on subset WM_MGUS_38 were satisfactory, as the trend of the relative 

classification error showed: the average relative error is approximately 5.3%. SPD was capable 

of distinguishing between IgM MGUS and WM patients. For a restricted range of standard 

deviation threshold values the number of filtered genes was constant, as consequently was the 

correspondent error.  

 

 

Figure 11 

 

In Figure 11, we show one of the progressions made by SPD for standard deviation threshold set 

to 0.5. 

For this subset of genes, other labels for each probe were available: WM label, bone marrow 

infiltration percentage, sex and age, as reported in Table 10. For each progression given by SPD, 

we checked if patients were classified according to some labels other than diagnosis. None of the 

progressions reflected the partition of patients according to any other labels. 
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Table 8 - Correspondence between SPD samples and microarray 

# / Probe Name 

1 / 2001_02_22_WM03_CD19_U133_PLUS2 

2 / 2010_02_16_WM02_CD19 

3 / 2010_03_15_WM01_CD19_U133_PLUS2 

4 / 2010_03_25_WM04_CD19_U133_PLUS2 

5 / 2010_03_25_WM06_CD19_U133_PLUS2 

6 / 2010_03_31_WM07_CD19 

7 / 2010_03_31_WM08_CD19 

8 / 2010_04_08_WM09_CD19_PLUS2 

9 / 2010_05_07_WM13_19_U133_PLUS2 

10 / 2010_05_11_WM12_CD19_U133_PLUS2 

11 / 2010_08_27_WM18_CD19_U133_PLUS2 

12 / 2010_08_27_WM19_CD19_U133_PLUS2 

13 / 2010_08_31_WM15_CD19_U133_PLUS2 

14 / 2010_09_03_WM21_CD19_U133_PLUS2 

15 / 2011_02_18_WM22_CD19_U133_PLUS2 

16 / 2011_02_24_WM23_CD19_U133_PLUS2 

17 / 2011_03_01_MGUS02_CD19_U133_PLUS2 

18 / 2011_03_02_MGUS03_CD19_U133_PLUS2 

19 / 2011_05_17_WM24PV_CD19_U133_PLUS2 

20 / 2011_05_20_WM25PV_CD19_U133_PLUS2 

21 / 2011_05_20_WM31_CD19_U133_PLUS2 

22 / 2011_06_09_WM26_CD19_U133_PLUS2 

23 / 2011_06_09_WM27_CD19_U133_PLUS2 

24 / 2011_06_17_WM28_CD19_U133_PLUS2 

25 / 2011_09_20_WM35_CD19_U133_PLUS2 

26 / 2011_10_27_MGUS16_CD19_U133_PLUS2 

27 / 2012_01_11_WM05_CD19_U133PLUS2 

28 / 2012_01_18_MGUS22_CD19_U133PLUS2 

29 / 2012_04_11_MGUS24_CD19 

30 / 2012_04_11_MGUS25_CD19 

31 / 2012_04_11_MGUS28_CD19 

32 / 2012_06_21_WM37_CD19 

33 / 2012_06_29_MGUS17_CD19_2 

34 / 2012_06_29_MGUS21_CD19_2 

35 / 2012_07_04_WM39_CD19 

36 / 2012_07_04_WM41_CD19 

37 / 2012_07_04_WM42_CD19 

38 / 2012_07_04_WM43_CD19 
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Table 9 

PROBE ID GENE ID GENE NAME 

232687_at GPRIN3 GPRIN family member 3 

1562153_a_at PVT1 Pvt1 oncogene (non-protein coding) 

224156_x_at Il17rb interleukin 17 receptor B 

1562754_at LOC339260 hypothetical protein LOC339260 

230793_at Lrrc16a leucine rich repeat containing 16A 

215767_at ZNF804A zinc finger protein 804A 

1553333_at C1orf161 chromosome 1 open reading frame 161 

218309_at Camk2n1 calcium/calmodulin-dependent protein kinase II inhibitor 1 

203404_at ARMCX2 armadillo repeat containing, X-linked 2 

210550_s_at RASGRF1 Ras protein-specific guanine nucleotide-releasing factor 1 

1564077_at GPRIN3 GPRIN family member 3 

1556697_at GPRIN3 GPRIN family member 3 

203215_s_at myo6 myosin VI 

212935_at MCF2L MCF.2 cell line derived transforming sequence-like 

224361_s_at Il17rb interleukin 17 receptor B 

226408_at TEAD2 TEA domain family member 2 

209498_at CEACAM1 carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein) 

228560_at Cacna1d calcium channel, voltage-dependent, L type, alpha 1D subunit 

225757_s_at CLMN calmin (calponin-like, transmembrane) 

229656_s_at Eml6 echinoderm microtubule associated protein like 6 

229147_at rassf6 Ras association (RalGDS/AF-6) domain family member 6 

227556_at NME7 non-metastatic cells 7, protein expressed in (nucleoside-diphosphate kinase) 

210640_s_at GPER G protein-coupled estrogen receptor 1 

1560762_at LOC285972 hypothetical protein LOC285972 

242785_at Eml6 echinoderm microtubule associated protein like 6 

219255_x_at Il17rb interleukin 17 receptor B 

 

 

As for subset CLL_114, we evaluated the union and the intersection of the genes used to build 

each progression given by standard deviation threshold values ranging from 0 to 1.5. Union 

included 739 genes, not reported, whereas the intersection included 31 genes, as represented in 

Table 9. None of them was found in literature as being related to the evolution of IgM MGUS in 

WM. 

For the sake of completeness, we performed a functional annotation clustering on genes reported 

in Table 9, as in 5.2. Results are not reported as fdr values were too high, i.e. greater than 5%. 
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Section 7 

DISCUSSION 

Within the study of pathological conditions starting from the analysis of high-throughput data, 

the usual approach consists in using supervised classification algorithms. The initial information 

about classes, usually two, is given by clinicians and is often affected by uncertainty. As emerges 

from literature, the supervised approach frequently fails, for two main reasons: the definition of 

classes is a tough task itself, and each sample belongs to a different stage along the disease 

progression. 

 

The rationale was to exploit an unsupervised approach to arrange samples, according to the 

progression state of a disease. To do so, we used a tool, Sample Progression Discovery (SPD), 

developed by Peng Qiu et al. (1), that, starting from gene expression data, seeks to retrieve 

sample position along a biologically meaningful progression, and extracts genes responsible for 

such progression. 

We then applied SPD to two pathological conditions: chronic lymphocytic leukemia (CLL) and 

Waldenström’s macroglobulinemia (WM). To the purpose, we had to evaluate the reliability of 

SPD results, first. Indeed, they depend on the input provided (gene selection) and SPD internal 

parameter setting. 

 

We used a data set consisting of 89 patients, who were diagnosed CLL, with a well defined 

prognosis. We tried different methods of gene selection and, for each of the subsets we obtained, 

we varied parameter values. We then evaluated quality of the results relying on SPD ability to 

classify patients in the right prognostic class. This former analysis proved that gene selection is 

essential, the best method being Significance Analysis of Microarrays (15) with false discovery 

rate threshold 5%; it is also necessary to evaluate outputs with parameter values. 

 

That said, we were enabled to focus on the application of SPD to hematological neoplasms. 

We considered two distinct hematological neoplasms: chronic lymphocytic leukemia and 

Waldenström’s macroglobulinemia. Both of them are B-cell malignancies, often compared in the 
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literature, but we studied them separately, as finding differences or similarities between them 

was beyond our aims (21). 

One reason to choose CLL is because this is a widespread disease within the population. Indeed, 

it’s one of the most common types of leukemia and, though it has been widely studied, the 

definition of prognostic classes is not well established yet. We then explored the possibility of 

using SPD to help us finding prognostic factors and supporting doctor’s decisions. 

As to Waldenström’s macroglobulinemia, the reason that prompted us to focus on it was the 

following. The etiology of WM is largely unknown. Patients with IgM monoclonal gammopathy 

of undetermined significance (IgM MGUS) are at the greatest risk of developing WM compared 

to the general population, and, therefore, MGUS is considered a precursor of WM 

 

For CLL, guidelines based on prognosis biomarkers have already been established, but not all 

patients behave according to such guidelines. It was proven that un-mutated IgVH and ZAP70 

positive expression is related to a poor prognosis, whereas mutated IgVH and ZAP70 negative 

expression corresponds to a positive prognosis. We submitted to SPD a data set that included 

patients not respecting such classification, hence with undefined prognosis, and a single patient 

with non available prognosis. The result given by SPD was a progression in which poor 

prognosis patients were isolated from the others, who were mixed together. A possible 

explanation is that undefined prognosis patients should be treated the same way as those with a 

positive prognosis. We also evaluated genes used by SPD to get to the progression. Some of 

them have already been studied and found to be correlated to the disease progression (8). Further 

analysis is needed, since most of the genes involved in building the progression still have to be 

evaluated. 

 

Nowadays, it is a well established notion that a subset of IgM monoclonal gammopathy of 

undetermined significance represents the precursor state of Waldenström’s macroglobulinemia 

(21). We used a data set consisting of 38 patients, 11 of them diagnosed IgM MGUS and the 

other 27 suffering from WM. SPD was able to recover a progression characterized by patients 

being grouped together according to their diagnosis. Such result is only a starting point. First of 

all it confirms that the gene selection made was actually appropriate for SPD, since noise due to 

all gene expression values was reduced. On the other hand, genes extracted to build the 

progression have to be further studied, as it is not yet clear what is responsible for the evolution 

of IgM MGUS into WM. 
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Even if Sample Progression Discovery results are strongly affected by the way input is prepared, 

it can be a powerful tool. Indeed, it was capable of recognizing patient membership to their own 

class, according to gene expression profiles, thus providing at least an idea on the disease 

evolution and on how to handle uncertain situations. Moreover, it detects genes underlying 

progressions. 

 

  



48 

  



49 

 

 

 

 

Acknowledgements 

Vorrei ringraziare tutte le persone che, in diversa misura, mi hanno accompagnato durante questo 

percorso di studi e di vita, grazie ai quali è stata possibile la realizzazione di questo progetto. 

 

Grazie ai miei genitori che mi hanno sostenuto, moralmente ed economicamente, senza i quali 

tutto ciò non sarebbe stato possibile. Con la speranza che sia stato ripagato anche il loro sforzo e 

che siano soddisfatti e orgogliosi. 

 

Un sentito grazie agli amici conosciuti a Padova, con i quali ho condiviso gioie e dolori 

dell’esperienza universitaria. In particolare, ringrazio la Vivi per tutti gli anni passati in 

appartamento assieme, per esserci stata nei momenti bui, ma soprattutto, per esserci stata nei 

momenti felici. Grazie a Laura, per essere stata degna sostituta della Viviana e anche di più. E 

grazie a Stefano, che è sopravvissuto due anni circondato da ragazze in preda ad altalenanti stati 

d’animo. 

Grazie a Giulio, fedele compagno di esami, e a tutti i compagni di corso, per le risate, per le 

chiacchierate, per le serate assieme, e per i loro immancabili commenti su ogni paio di orecchini 

o colore di smalto. 

 

Un ringraziamento alla professoressa Di Camillo per avermi presa in tesi e avermi trasmesso 

tanti insegnamenti durante lo svolgimento del lavoro. 

Grazie a Mark Bordovsky per avermi dedicato parte del suo tempo, consentendomi di imparare 

più di quanto abbia insegnato al suo corso. Grazie di cuore perché ha trasformato la mia 

esperienza in America, dandole un senso e arricchendola significativamente. 

 

Grazie alla Michi, alla Silvia e a tutti coloro che non sono stati citati personalmente, ma a cui 

sono riconoscente in egual misura. 

 



50 

  



51 

 

 

 

Section 8 

REFERENCES 

 

1. Discovering Biological Progression Underlying Microarray Samples. Qiu, Peng, Gentles, 

Andrew J. and Plevritis, Sylvia K. 4, 2011, PLoS Comput Biol, Vol. 7, pp. 1-11. 

doi:10.1371/journal.pcbi.1001123. 

2. Monoclonal Gammopathy of Undetermined Significance, Waldenstrom Macroglobulinemia, 

AL Amyloidosis, and related plasma cell disorders: diagnosis and treatment. Rajkumar, 

S. Vincent, Dispenzieri, Angela and Kyle, Robert A. 2006. Symposium on oncology 

practice: hematological malignancies. pp. 693-703. 

3. Reconstructiong the temporal ordering of biological samples using microarray data. 

Magwene, Paul M., Lizardi, Paul and Kim, Junhyong. 7, 2003, Bioinformatics, Vol. 19, 

pp. 842-850. doi:10.1093/bioinformatics/btg081. 

4. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. 

Socolovsky, Merav, Lodish, Harvey F. and Daley, George Q. 1998, Proc. Natl. Acad. 

Sci. USA, Vol. 95, pp. 6573-6575. 

5. Chronic Lymphocytic Leukemia. Boelens, Jerina, et al. 2009, Anticancer Research, Vol. 29, 

pp. 605-616. 

6. Chornic Lympocytic Leukemia. Chiorazzi, Nicholas, Rai, Kanti R. and Ferrarini, Manlio. 

2005, N Engl J Med, Vol. 352, pp. 804-815. 

7. ZAP-70 expression is associated with enhanced ability to respond to migratory and survival 

signals in B-cell chronic lymphocytic leukemia (B-CLL). Richardson, Sarah J., et al. 

2006, blood, Vol. 107, pp. 3584-3592. doi:10.1182/blood-2005-04-1718. 

8. Gene expression profiling idenfies ASRD as a new marker of disease progression and the 

sphingolipid metabolism as a potetial novel metabolism in chronic lympocitic leukemia. 

Trojani, Alessandra, et al. 2011/2012, Cancer Biomarkers, Vol. 11, pp. 15-28. 

doi:10.3233/CBM-2012-0259. 



52 

9. Lipoprotein lipase is differentially expressed in prognostic subsets of chronic lymphocytic 

leukemia but displays invariably low catalytical activity. Mansouri, Mahamoud, et al. 3, 

2010, Leukemia Research, Vol. 34, pp. 301-306. doi:10.1016/j.leukres.2009.07.032. 

10. Waldenstrom Macroglobulinemia: A Review of the Entity and Its Differential Diagnosis. 

Shaheen, Saad P., et al. 1, 2012, Adv Anat Pathol, Vol. 19, pp. 11-27. 

11. An analysis of intra array repeats:the good, the bad, and the non informative. Elbez, Yedid, 

Farkash-Amar, Shlomit and Simon, Itamar. 1, 2006, BMC Genomics, Vol. 7, p. 136. 

doi:10.1186/1471-2164-7-136. 

12. A metric for distributions with applications to image databases. Rubner, Yossi, Tomasi, 

Carlo and Guibas, Leonidas J. Bombay, India : s.n., 1998. Proceedings of the 1998 IEEE 

International Conference on Computer Vision. 

13. Jensen, Paul A. and Bard, Jonathan F. Operation Research Models and Methods. s.l. : 

John Wiley and Sons, 2003. 

14. (2012), R Development Core Team. R: A language and environment for statistical 

computing. Vienna, Austria : R Foundation for Statistical Computing. URL http://www.R-

project.org/. ISBN 3-900051-07-0. 

15. Significance analysis of microarrays applied to the ionizing radiation response. Tusher, 

Virginia Goss, Tibshirani, Robert and Chu, Gilbert. 9, 2001, Proc Natl Acad Sci USA, 

Vol. 98, pp. 5116-5121. doi:10.1073/pnas.091062498. 

16. Bioconductor: open software development for computational biology and bioinformatics. 

Gentleman, Robert C., et al. 2004, Genome Biology, Vol. 5, p. R80. URL 

http://genomebiology.com/2004/5/10/R80. 

17. Systematic and integrative analysis of large gene lists using David Bioinformatics Resources. 

Huang, D. W., Sherman, B. T. and Lempicki, R. A. 1, 2009, Nature Protoc., Vol. 4, pp. 

44-57. 

18. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of 

large gene lists. Huang, D. W., Sherman, B. T. and Lempicki, R. A. 1, 2009, Nucleic 

Acid Res., Vol. 37, pp. 1-13. 

19. Adjusting batch effect in microarray expression data using empirical Bayes methods. 

Johnson, W. Evan, Li, Cheng and Rabinovic, Ariel. 1, 2007, Biostatistics, Vol. 8, pp. 

118-127. doi:10.1093/biostatistics/kxj037. 



53 

20. Leek, Jeffrey T., et al. sva: Surrogate Variable Analysis. R package version 3.0.2. 

21. Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more 

similar to chronic lymphocytic leukemia than multiple mieloma. Ching, Wee J., et al. 

2006, blood, Vol. 108, pp. 2755-2763. doi:10.1182/blood-2006-02-005488. 

 

 

  



54 

 

  



55 

Section 9 

APPENDIX 



 

Table 10 

CHIP ID DIAGNOSIS WM LABEL BONE MARROW INFILTRATION [%] SEX AGE (at blood sample) PATIENT ID 

2001_02_22_WM03_CD19_U133_PLUS2 WM 1 90 F 79.5 WM03 

2010_02_16_WM02_CD19 WM 1 90 F 53.9 WM02 

2010_03_15_WM01_CD19_U133_PLUS2 WM 1 50 F 80.9 WM01 

2010_03_25_WM04_CD19_U133_PLUS2 WM 2 30 F 77.2 WM04 

2010_03_25_WM06_CD19_U133_PLUS2 WM 3 10 F 73 WM06 

2010_03_31_WM07_CD19 WM 2 30 M 70.1 WM07 

2010_03_31_WM08_CD19 WM 2 50 F 76.7 WM08 

2010_04_08_WM09_CD19_PLUS2 WM 3 50 F 53.6 WM09 

2010_05_07_WM13_19_U133_PLUS2 WM 3 10 F 65.8 WM13 

2010_05_11_WM12_CD19_U133_PLUS2 IgM MGUS 5 2 M 65.6 MGUS19/WM12 

2010_08_27_WM18_CD19_U133_PLUS2 WM 2 30 M 78.4 WM18 

2010_08_27_WM19_CD19_U133_PLUS2 WM 2 70 F 65.7 WM19 

2010_08_31_WM15_CD19_U133_PLUS2 WM 3 80 F 75.6 WM15 

2010_09_03_WM21_CD19_U133_PLUS2 WM 3 20 F 73.7 WM21/MGUS11 

2011_02_18_WM22_CD19_U133_PLUS2 IgM MGUS 5 9 F 76.5 MGUS12/WM22 

2011_02_24_WM23_CD19_U133_PLUS2 WM 1 80 M 69.7 WM23 

2011_03_01_MGUS02_CD19_U133_PLUS2 WM 2 90 F 80.5 WM33/MGUS02 

2011_03_02_MGUS03_CD19_U133_PLUS2 WM 3 50 M 63.3 WM34/MGUS03 

2011_05_17_WM24PV_CD19_U133_PLUS2 IgM MGUS 5 0 F 76.1 MGUS18/WM24PV 

2011_05_20_WM25PV_CD19_U133_PLUS2 WM 3 45 M 64.3 WM25PV 

2011_05_20_WM31_CD19_U133_PLUS2 WM 3 40 M 78 WM31/MGUS07 

2011_06_09_WM26_CD19_U133_PLUS2 IgM MGUS 5 0 F 62.4 MGUS20/WM26 

2011_06_09_WM27_CD19_U133_PLUS2 WM 2 30 M 86.7 WM27 

2011_06_17_WM28_CD19_U133_PLUS2 WM 3 10 F 62.9 WM28 

2011_09_20_WM35_CD19_U133_PLUS2 WM 3 70 F 61.9 WM35/MGUS14 



 

2011_10_27_MGUS16_CD19_U133_PLUS2 IgM MGUS 5 0 M 72.3 MGUS16 

2012_01_11_WM05_CD19_U133PLUS2 WM 3 10 F 71.3 WM05 

2012_01_18_MGUS22_CD19_U133PLUS2 IgM MGUS 5 9 F 58.4 MGUS22/WM36 

2012_04_11_MGUS24_CD19 IgM MGUS 5 0 M 75.9 MGUS24 

2012_04_11_MGUS25_CD19 IgM MGUS 5 9 F 73.9 MGUS25 

2012_04_11_MGUS28_CD19 IgM MGUS 5 0 M 75.4 MGUS28 

2012_06_21_WM37_CD19 WM 3 30 M 77.8 WM37 

2012_06_29_MGUS17_CD19_2 IgM MGUS 5 0 M 70.6 MGUS17 

2012_06_29_MGUS21_CD19_2 IgM MGUS 5 9 F 80.5 MGUS21 

2012_07_04_WM39_CD19 WM 3 30 M 69.7 WM39 

2012_07_04_WM41_CD19 WM 2 50 M 55.4 WM41 

2012_07_04_WM42_CD19 WM 3 50 M 74.3 WM42 

2012_07_04_WM43_CD19 WM 3 10 F 70.5 WM43 

 

 

 

  



 

Table 11 

Annotation Cluster 1 Enrichment Score: 1.9161 
     

Category Term Count % PValue Genes FDR 

GOTERM_MF_FAT 
GO:0005539~glycosaminoglycan 

binding 
6 4.0541 0.0038 LPL, APP, NOD2, SERPINE2, TGFBR3, PTCH1 0.0488 

GOTERM_MF_FAT GO:0001871~pattern binding 6 4.0541 0.0057 LPL, APP, NOD2, SERPINE2, TGFBR3, PTCH1 0.0721 

GOTERM_MF_FAT 
GO:0030247~polysaccharide 
binding 

6 4.0541 0.0057 LPL, APP, NOD2, SERPINE2, TGFBR3, PTCH1 0.0721 

GOTERM_MF_FAT GO:0008201~heparin binding 5 3.3784 0.0071 LPL, APP, SERPINE2, TGFBR3, PTCH1 0.0897 

GOTERM_MF_FAT 
GO:0030246~carbohydrate 

binding 
7 4.7297 0.0472 LPL, APP, NOD2, SERPINE2, CLEC2B, TGFBR3, PTCH1 0.4717 

SP_PIR_KEYWORDS heparin-binding 3 2.0270 0.0784 LPL, APP, SERPINE2 0.6499 

       

Annotation Cluster 2 Enrichment Score: 1.8333 
     

Category Term Count % PValue Genes FDR 

SP_PIR_KEYWORDS actin-binding 10 6.7568 0.0001 PPP1R9A, LIMA1, SPTBN5, CNN3, DMD, CAPZA1, MARCKS, TPM2, PALLD, MYLK 0.0009 

GOTERM_MF_FAT GO:0003779~actin binding 10 6.7568 0.0007 PPP1R9A, LIMA1, SPTBN5, CNN3, DMD, CAPZA1, MARCKS, TPM2, PALLD, MYLK 0.0089 

GOTERM_MF_FAT 
GO:0008092~cytoskeletal 

protein binding 
12 8.1081 0.0012 

PPP1R9A, FRMD5, LIMA1, SPTBN5, CNN3, DMD, CAPZA1, MARCKS, TPM2, PALLD, 

FARP1, MYLK 
0.0158 

SP_PIR_KEYWORDS cytoskeleton 12 8.1081 0.0058 
PPP1R9A, LIMA1, SPTBN5, DMD, FRMD4B, CAPZA1, AKAP12, MARCKS, TPM2, PALLD, 

SEPT10, LATS2 
0.0726 

GOTERM_CC_FAT GO:0005856~cytoskeleton 19 12.8378 0.0111 
LIMA1, SPTBN5, CNN3, CAPZA1, PSD3, AKAP12, PALLD, TPM2, SEPT10, LATS2, FARP1, 

PPP1R9A, FRMD5, APP, HOMER3, DMD, FRMD4B, SYNJ2, MARCKS 
0.1289 

GOTERM_CC_FAT GO:0015629~actin cytoskeleton 7 4.7297 0.0143 PPP1R9A, LIMA1, SPTBN5, CAPZA1, MARCKS, TPM2, PALLD 0.1638 

GOTERM_CC_FAT GO:0044430~cytoskeletal part 14 9.4595 0.0217 
LIMA1, CNN3, SPTBN5, CAPZA1, PSD3, PALLD, TPM2, SEPT10, LATS2, APP, PPP1R9A, 

HOMER3, SYNJ2, MARCKS 
0.2384 

GOTERM_BP_FAT 
GO:0030036~actin cytoskeleton 

organization 
5 3.3784 0.0793 PPP1R9A, LIMA1, SPTBN5, CNN3, CAPZA1 0.7356 

GOTERM_BP_FAT 
GO:0007010~cytoskeleton 

organization 
7 4.7297 0.0931 PPP1R9A, LIMA1, SPTBN5, CNN3, DMD, CAPZA1, PALLD 0.7924 

GOTERM_BP_FAT 
GO:0030029~actin filament-

based process 
5 3.3784 0.0950 PPP1R9A, LIMA1, SPTBN5, CNN3, CAPZA1 0.7993 

GOTERM_CC_FAT 
GO:0043228~non-membrane-

bounded organelle 
22 14.8649 0.3505 

LIMA1, SPTBN5, CNN3, CAPZA1, PSD3, AKAP12, MYBL1, PALLD, TPM2, SEPT10, LATS2, 

FARP1, VDR, PPP1R9A, FRMD5, APP, HOMER3, DMD, FRMD4B, SYNJ2, MARCKS, MRO 
0.9953 

GOTERM_CC_FAT 
GO:0043232~intracellular non-

membrane-bounded organelle 
22 14.8649 0.3505 

LIMA1, SPTBN5, CNN3, CAPZA1, PSD3, AKAP12, MYBL1, PALLD, TPM2, SEPT10, LATS2, 

FARP1, VDR, PPP1R9A, FRMD5, APP, HOMER3, DMD, FRMD4B, SYNJ2, MARCKS, MRO 
0.9953 

       



 

Annotation Cluster 4 Enrichment Score: 1.7209 
     

Category Term Count % PValue Genes FDR 

UP_SEQ_FEATURE domain:Ig-like C2-type 3 6 4.0541 0.0019 VSIG10, SDK2, PALLD, MYLK, LAG3, FCRL3 0.0273 

UP_SEQ_FEATURE domain:Ig-like C2-type 4 5 3.3784 0.0022 VSIG10, SDK2, PALLD, MYLK, FCRL3 0.0318 

INTERPRO 
IPR013783:Immunoglobulin-like 

fold 
12 8.1081 0.0026 

VSIG10, IGHG1, LAIR1, IGHV1-69, IGHG3, SDK2, IGKV3D-15, LOC100133862, PALLD, 

IGHM, FCRL3, IGHV3-11, TRIM2, IGHV3-7, IGH@, IGHV4-31, LAG3, MYLK, LOC100126583 
0.0349 

INTERPRO IPR007110:Immunoglobulin-like 11 7.4324 0.0040 
VSIG10, IGHG1, IGHV1-69, IGHG3, SDK2, IGKV3D-15, LOC100133862, PALLD, IGHM, 

SLAMF1, FCRL3, IGHV3-11, IGHV3-7, IGH@, IGHV4-31, LAG3, MYLK, LOC100126583 
0.0527 

UP_SEQ_FEATURE domain:Ig-like C2-type 5 4 2.7027 0.0072 SDK2, PALLD, MYLK, FCRL3 0.1016 

INTERPRO 
IPR013106:Immunoglobulin V-

set 
7 4.7297 0.0104 

IGHG1, VSIG10, IGHV1-69, IGHG3, IGKV3D-15, LOC100133862, IGHM, FCRL3, IGHV3-11, 

IGHV3-7, IGH@, IGHV4-31, LAG3, LOC100126583 
0.1322 

UP_SEQ_FEATURE domain:Ig-like C2-type 1 6 4.0541 0.0120 VSIG10, SDK2, PALLD, MYLK, LAG3, FCRL3 0.1637 

UP_SEQ_FEATURE domain:Ig-like C2-type 2 6 4.0541 0.0122 VSIG10, SDK2, PALLD, MYLK, LAG3, FCRL3 0.1669 

INTERPRO IPR013151:Immunoglobulin 6 4.0541 0.0171 
VSIG10, IGHV3-11, IGHG1, IGHG3, IGHV3-7, SDK2, IGHV4-31, IGH@, IGHM, LAG3, FCRL3, 

LOC100126583 
0.2071 

SP_PIR_KEYWORDS Immunoglobulin domain 9 6.0811 0.0194 
IGHG1, VSIG10, LAIR1, IGHG3, SDK2, IGHM, PALLD, SLAMF1, FCRL3, IGHV3-11, IGHV3-

7, IGH@, IGHV4-31, LAG3, MYLK 
0.2230 

INTERPRO 
IPR003596:Immunoglobulin V-

set, subgroup 
4 2.7027 0.0200 

IGHV3-11, IGHG1, IGHV1-69, IGHG3, IGHV3-7, IGKV3D-15, LOC100133862, IGHV4-31, 

IGH@, IGHM, LOC100126583 
0.2387 

UP_SEQ_FEATURE domain:Ig-like C2-type 6 3 2.0270 0.0288 SDK2, MYLK, FCRL3 0.3520 

SMART SM00406:IGv 4 2.7027 0.0333 
IGHV3-11, IGHG1, IGHV1-69, IGHG3, IGHV3-7, IGKV3D-15, LOC100133862, IGHV4-31, 
IGH@, IGHM, LOC100126583 

0.3064 

INTERPRO 
IPR003598:Immunoglobulin 

subtype 2 
5 3.3784 0.0655 VSIG10, SDK2, PALLD, MYLK, FCRL3 0.5991 

INTERPRO 
IPR003599:Immunoglobulin 

subtype 
6 4.0541 0.0977 VSIG10, LAIR1, SDK2, MYLK, LAG3, FCRL3 0.7504 

SMART SM00408:IGc2 5 3.3784 0.1141 VSIG10, SDK2, PALLD, MYLK, FCRL3 0.7298 

SMART SM00409:IG 6 4.0541 0.1775 VSIG10, LAIR1, SDK2, MYLK, LAG3, FCRL3 0.8789 

INTERPRO 
IPR013098:Immunoglobulin I-

set 
3 2.0270 0.2712 SDK2, PALLD, MYLK 0.9860 

       

Annotation Cluster 5 Enrichment Score: 1.6320 
     

Category Term Count % PValue Genes FDR 

GOTERM_CC_FAT GO:0005886~plasma membrane 46 31.0811 0.0001 

IGHG1, IGHG3, LIMA1, GRIK1, IL15, IGHM, IL17RB, FCRL3, GNG8, APP, NOD2, FRMD5, 

HOMER3, SYNJ2, LAG3, PRKCA, LAIR1, PTPRN2, PSD3, PCDH9, MPP7, CCNL2, IGHV3-11, 

CCR6, CCR2, CYBRD1, AKAP7, IGH@, GPR183, CPM, AKAP12, CACNB2, NETO1, IGF1R, 
DMD, CLEC2B, CNR1, ZAP70, LPL, ADAM29, KL, SLAMF1, FZD7, IGHV3-7, PPP1R9A, 

GPR34, P2RX1, PON2, TGFBR3, IGHV4-31, PTCH1, FAM84B, PLEKHA1 
0.0016 



 

GOTERM_CC_FAT 
GO:0044459~plasma membrane 
part 

31 20.9459 0.0004 

GPR183, LIMA1, GRIK1, CACNB2, IL15, IL17RB, GNG8, IGF1R, APP, HOMER3, DMD, 

CLEC2B, CNR1, ZAP70, SYNJ2, LAG3, ADAM29, KL, PTPRN2, PSD3, MPP7, SLAMF1, 

CCNL2, PPP1R9A, CCR6, GPR34, P2RX1, CCR2, CYBRD1, TGFBR3, AKAP7, PTCH1 
0.0044 

GOTERM_CC_FAT 
GO:0005887~integral to plasma 

membrane 
18 12.1622 0.0055 

GPR183, ADAM29, GRIK1, KL, PTPRN2, CACNB2, IL15, CCNL2, IL17RB, IGF1R, APP, CCR6, 

GPR34, P2RX1, CNR1, CLEC2B, CCR2, TGFBR3, PTCH1 
0.0667 

GOTERM_CC_FAT 
GO:0031226~intrinsic to plasma 

membrane 
18 12.1622 0.0069 

GPR183, ADAM29, GRIK1, KL, PTPRN2, CACNB2, IL15, CCNL2, IL17RB, IGF1R, APP, CCR6, 

GPR34, P2RX1, CNR1, CLEC2B, CCR2, TGFBR3, PTCH1 
0.0826 

SP_PIR_KEYWORDS receptor 21 14.1892 0.0085 

IGHG1, GPR183, IGHG3, GRIK1, IGHM, NETO1, FCRL3, IL17RB, VDR, IGF1R, CNR1, CRY1, 

LAIR1, PTPRN2, PKHD1L1, SLAMF1, FZD7, CCNL2, IGHV3-11, IGHV3-7, CCR6, GPR34, 

P2RX1, CCR2, TGFBR3, IGHV4-31, IGH@, PTCH1 
0.1042 

SP_PIR_KEYWORDS glycoprotein 44 29.7297 0.0097 

IGHG1, ARSD, IGHG3, GRIK1, IL15, IGHM, LASS6, IL17RB, FCRL3, APP, KCNK9, 
SERPINE2, DMKN, CNTNAP2, PDGFD, LAG3, VSIG10, LAIR1, PTPRN2, SDK2, PCDH9, 

PKHD1L1, CCNL2, IGHV3-11, UGT2B17, CCR6, CCR2, CYBRD1, IGH@, CPM, NETO1, 

IGF1R, CLEC2B, CNR1, FGL2, LPL, ADAM29, KLK2, KL, RNASE6, SLAMF1, LCN10, FZD7, 
IGHV3-7, GPR34, SNED1, P2RX1, PON2, TGFBR3, IGHV4-31, PTCH1 

0.1174 

SP_PIR_KEYWORDS signal 35 23.6486 0.0115 

IGHG1, CPM, IGHG3, ARSD, GRIK1, IL15, IGHM, FCRL3, NETO1, IL17RB, IGF1R, APP, 

SERPINE2, DMKN, CNTNAP2, FGL2, PDGFD, LAG3, VSIG10, LAIR1, LPL, ADAM29, KLK2, 
KL, PTPRN2, SDK2, RNASE6, PCDH9, PKHD1L1, LCN10, SLAMF1, FZD7, IGHV3-11, IGHV3-

7, UGT2B17, SNED1, ITPRIPL2, TGFBR3, PON2, IGHV4-31, IGH@ 
0.1378 

SP_PIR_KEYWORDS cell membrane 26 17.5676 0.0117 

IGHG1, GPR183, IGHG3, CPM, GRIK1, CACNB2, IGHM, FCRL3, IL17RB, NETO1, GNG8, 

HOMER3, DMD, CNR1, ZAP70, PRKCA, LPL, LAIR1, KL, PSD3, PCDH9, SLAMF1, CCNL2, 
IGHV3-11, IGHV3-7, CCR6, GPR34, CCR2, TGFBR3, AKAP7, IGHV4-31, IGH@, PLEKHA1 

0.1409 

UP_SEQ_FEATURE signal peptide 35 23.6486 0.0126 

IGHG1, CPM, IGHG3, ARSD, GRIK1, IL15, IGHM, FCRL3, NETO1, IL17RB, IGF1R, APP, 

SERPINE2, DMKN, CNTNAP2, FGL2, PDGFD, LAG3, VSIG10, LAIR1, LPL, ADAM29, KLK2, 
KL, PTPRN2, SDK2, RNASE6, PCDH9, PKHD1L1, LCN10, SLAMF1, FZD7, IGHV3-11, IGHV3-

7, UGT2B17, SNED1, ITPRIPL2, TGFBR3, PON2, IGHV4-31, IGH@ 
0.1710 

UP_SEQ_FEATURE 
glycosylation site:N-linked 
(GlcNAc...) 

42 28.3784 0.0138 

IGHG1, ARSD, IGHG3, GRIK1, IL15, IGHM, LASS6, IL17RB, FCRL3, APP, KCNK9, 
SERPINE2, CNTNAP2, PDGFD, LAG3, VSIG10, LAIR1, PTPRN2, SDK2, PCDH9, CCNL2, 

IGHV3-11, UGT2B17, CCR6, CCR2, CYBRD1, IGH@, CPM, NETO1, IGF1R, CLEC2B, CNR1, 

FGL2, LPL, ADAM29, KLK2, KL, RNASE6, SLAMF1, LCN10, FZD7, IGHV3-7, GPR34, SNED1, 
P2RX1, PON2, TGFBR3, IGHV4-31, PTCH1 

0.1856 

UP_SEQ_FEATURE disulfide bond 30 20.2703 0.0265 

IGHG1, GPR183, IGHG3, CPM, IL15, IGHM, FCRL3, NETO1, IGF1R, APP, CLEC2B, 

CNTNAP2, FGL2, PDGFD, LAG3, VSIG10, LAIR1, LPL, ADAM29, KLK2, SDK2, RNASE6, 

PALLD, LCN10, SLAMF1, FZD7, CCNL2, IGHV3-11, IGHV3-7, CCR6, GPR34, P2RX1, SNED1, 
CCR2, PON2, IGHV4-31, IGH@ 

0.3280 

UP_SEQ_FEATURE topological domain:Extracellular 29 19.5946 0.0288 

GPR183, GRIK1, IL17RB, NETO1, FCRL3, IGF1R, APP, KCNK9, CLEC2B, CNR1, CNTNAP2, 

LAG3, VSIG10, LAIR1, ADAM29, KL, PTPRN2, SDK2, PCDH9, PKHD1L1, SLAMF1, FZD7, 
CCNL2, CCR6, GPR34, P2RX1, ITPRIPL2, CCR2, TGFBR3, PTCH1 

0.3520 

SP_PIR_KEYWORDS membrane 56 37.8378 0.0360 

IGHG1, IGHG3, GRIK1, VPS37B, IGHM, LASS6, IL17RB, FCRL3, GNG8, APP, FRMD5, 

KCNK9, HOMER3, SYNJ2, CNTNAP2, LAG3, VSIG10, PRKCA, LAIR1, PTPRN2, SDK2, PSD3, 

PCDH9, MPP7, PKHD1L1, CCNL2, FRY, IGHV3-11, TMEM133, UGT2B17, CCR6, CCR2, 
CYBRD1, AKAP7, IGH@, GPR183, CPM, CACNB2, NETO1, IGF1R, CNR1, CLEC2B, DMD, 

ZAP70, LAPTM4B, LPL, C1ORF162, ADAM29, KL, SLAMF1, FZD7, SH3BP4, IGHV3-7, 

GPR34, P2RX1, ITPRIPL2, MBOAT1, TGFBR3, PON2, PTCH1, MARCKS, IGHV4-31, 
PLEKHA1 

0.3761 

SP_PIR_KEYWORDS disulfide bond 30 20.2703 0.0376 IGHG1, GPR183, IGHG3, CPM, IL15, IGHM, FCRL3, NETO1, IGF1R, APP, CLEC2B, 0.3895 



 

CNTNAP2, FGL2, PDGFD, LAG3, VSIG10, LAIR1, LPL, ADAM29, KLK2, SDK2, RNASE6, 

PALLD, LCN10, SLAMF1, FZD7, CCNL2, IGHV3-11, IGHV3-7, CCR6, GPR34, P2RX1, SNED1, 

CCR2, PON2, IGHV4-31, IGH@ 

GOTERM_BP_FAT 

GO:0007166~cell surface 

receptor linked signal 

transduction 

20 13.5135 0.0669 
GPR183, ADAM29, GRIK1, KL, KLF10, AKAP12, FZD7, CCNL2, GNG8, IGF1R, APP, CCR6, 
GPR34, HOMER3, CNR1, CCR2, ZAP70, TGFBR3, PTCH1, LAG3, PLEKHA1 0.6722 

SP_PIR_KEYWORDS transmembrane protein 9 6.0811 0.0884 IGF1R, GPR183, APP, CCR6, CNR1, PTPRN2, CCR2, TGFBR3, LAG3, CCNL2 0.6960 

UP_SEQ_FEATURE topological domain:Cytoplasmic 30 20.2703 0.1654 
GPR183, GRIK1, LASS6, IL17RB, NETO1, FCRL3, IGF1R, APP, KCNK9, CLEC2B, CNR1, 
CNTNAP2, LAG3, VSIG10, LAIR1, ADAM29, KL, PTPRN2, SDK2, PCDH9, PKHD1L1, 

SLAMF1, FZD7, CCNL2, CCR6, GPR34, P2RX1, ITPRIPL2, CCR2, TGFBR3, PTCH1 
0.9314 

GOTERM_CC_FAT 
GO:0031224~intrinsic to 

membrane 
45 30.4054 0.2534 

IGHG1, IGHG3, GRIK1, IL15, IGHM, LASS6, IL17RB, FCRL3, APP, FRMD5, KCNK9, 

CNTNAP2, LAG3, VSIG10, LAIR1, PTPRN2, SDK2, PCDH9, PKHD1L1, CCNL2, FRY, 
TMEM133, IGHV3-11, UGT2B17, CCR6, CCR2, CYBRD1, AKAP7, IGH@, GPR183, CPM, 

CACNB2, NETO1, IGF1R, CLEC2B, CNR1, LAPTM4B, LPL, C1ORF162, ADAM29, KL, 

SLAMF1, FZD7, IGHV3-7, GPR34, P2RX1, ITPRIPL2, MBOAT1, TGFBR3, IGHV4-31, 
MARCKS, PTCH1 

0.9733 

SP_PIR_KEYWORDS transmembrane 39 26.3514 0.3372 

IGHG1, GPR183, IGHG3, GRIK1, IGHM, LASS6, FCRL3, NETO1, IL17RB, IGF1R, FRMD5, 

APP, KCNK9, CNR1, CLEC2B, CNTNAP2, LAG3, VSIG10, LAPTM4B, LAIR1, C1ORF162, 
ADAM29, KL, PTPRN2, SDK2, PCDH9, PKHD1L1, SLAMF1, FZD7, CCNL2, FRY, IGHV3-11, 

TMEM133, IGHV3-7, UGT2B17, CCR6, GPR34, P2RX1, CCR2, ITPRIPL2, CYBRD1, MBOAT1, 

TGFBR3, PTCH1, IGHV4-31, IGH@ 
0.9950 

UP_SEQ_FEATURE transmembrane region 38 25.6757 0.3938 

GPR183, GRIK1, LASS6, FCRL3, IL17RB, NETO1, IGF1R, FRMD5, APP, KCNK9, CLEC2B, 
CNR1, CNTNAP2, LAG3, VSIG10, LAPTM4B, LAIR1, C1ORF162, ADAM29, KL, PTPRN2, 

SDK2, PCDH9, PKHD1L1, SLAMF1, FZD7, CCNL2, FRY, TMEM133, UGT2B17, CCR6, GPR34, 

P2RX1, CCR2, ITPRIPL2, MBOAT1, CYBRD1, TGFBR3, PTCH1 
0.9994 

GOTERM_CC_FAT 
GO:0016021~integral to 

membrane 
41 27.7027 0.4521 

IGHG1, GPR183, IGHG3, GRIK1, CACNB2, IL15, IGHM, LASS6, FCRL3, NETO1, IL17RB, 

IGF1R, FRMD5, APP, KCNK9, CNR1, CLEC2B, CNTNAP2, LAG3, VSIG10, LAPTM4B, LAIR1, 

C1ORF162, ADAM29, KL, PTPRN2, SDK2, PCDH9, PKHD1L1, SLAMF1, FZD7, CCNL2, FRY, 
IGHV3-11, TMEM133, IGHV3-7, UGT2B17, CCR6, GPR34, P2RX1, CCR2, ITPRIPL2, CYBRD1, 

MBOAT1, TGFBR3, PTCH1, IGHV4-31, IGH@ 
0.9994 

       

Annotation Cluster 7 Enrichment Score: 1.3862 
     

Category Term Count % PValue Genes FDR 

GOTERM_CC_FAT GO:0043005~neuron projection 9 6.0811 0.0037 IGF1R, APP, PPP1R9A, KIAA1598, GPR34, CNN3, GRIK1, SYNJ2, APBB2 0.0444 

GOTERM_CC_FAT GO:0042995~cell projection 10 6.7568 0.0702 IGF1R, APP, PPP1R9A, KIAA1598, GPR34, CNN3, GRIK1, CYBRD1, SYNJ2, APBB2 0.5948 

GOTERM_CC_FAT GO:0044463~cell projection part 5 3.3784 0.0938 APP, PPP1R9A, CNN3, CYBRD1, SYNJ2 0.7054 

GOTERM_CC_FAT GO:0030425~dendrite 4 2.7027 0.1185 PPP1R9A, GPR34, CNN3, GRIK1 0.7908 

 

 


