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1
Introduction

1.1 LargeHadron Collider

Particle physicists use accelerators [1][2][3]to investigate particle interactions andfindnewphe-
nomena, improving our understanding of matter in the Universe. The LargeHadronCollider
(LHC), based at CERN in Geneva, Switzerland, is the most advanced particle accelerator cur-
rently in use.

The LHC is a CERN accelerator that collides proton beams with a center-of-mass energy
of up to 14 TeV and a luminosity of 1034 cm−2s−1. It can also accelerate lead ions to 2.76 TeV
per nucleon pair at its center of mass. The LHC is useful for exploring scientific phenomena
at the TeV energy scale, such as the Higgs mechanism, and verifying the Standard Model’s
consistency (SM). It also investigates alternate possibilities and attempts to combine nature’s
fundamental forces. It uses the current CERN accelerator chain Fig.1.1 to obtain an injection
energy of 450 GeV. Utilizing current facilities offers technical and economic benefits but also
creates architectural limits due to the LEP tunnel’s fixed curve.

High-field superconducting magnetic dipoles, capable of reaching a stable field of 8.3 T,
are required to bend the beam trajectory within the existing tunnel. Acceleration to the de-
sign energy is achieved using superconducting radio-frequency cavities, and the entire system
ismaintained at a temperature of 2.1Kusing superfluid helium to sustain the superconducting
regime.
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Figure 1.1: An exploded view of the CMS at CERN

The LHC collides bunches of approximately 1.1× 1011 protons each, with a beam spot size
of σz ≈ 53 mm and σxy ≈ 15μm, at a design bunch crossing (BX) frequency of 40 MHz. The
design option for collision proton-proton (pp) beams provides numerous advantages:
energy range flexibility: Hadrons, like protons, can experiment with various energies uti-

lizing fixed-energy beams. Protons are not simple particles; their interactions need components
(quarks and gluons) that carry different amounts of proton energy, making them valuable in
discovery experiments.
Production Efficiency: At high energies, proton-proton and proton-antiproton (pp̄) total

cross sections are similar. However, protons are easier and faster to create than antiprotons.
This results in increased brightness and better beam stability. Two independent beampipelines
are required to manage proton bunches circulating in opposite directions.
Reduced Synchrotron Radiation: In a circular motion, energy loss due to synchrotron

radiation is inversely proportional to the fourth power of the particle mass. Being almost 2000
times heavier than electrons, Protons experience significantly less synchrotron radiation. Using
this method, the LEP tunnel can be reused to build a collider capable of reaching higher energy
levels than its predecessor through the re-use of the tunnel.

Considering an average magnetic field of 5.4 T, this leads to a maximum energy of 14 TeV,
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roughly seven times that of the Tevatron. Table 1.1 summarizes some relevant LHC parame-
ters.

Parameter p-p Pb-Pb M.U.
Energy per nucleon (TeV) E 7 2.76
Design Luminosity (cm−2s−1) L 1034 1027
Bunch Separation (ns) 25 100
Number of bunches NB 2080 592
Particles per bunch NP 1.15× 1011 7.0× 107
β value at IP (m) β∗ 0.55 0.5
RMS of beam radius at IP (μm) σ∗ 16.7 15.9
Luminosity lifetime (h) τX 15 6
Number of collisions/crossing 20 -
Bunch length (σz) (mm) 53
Beam current (mA) 560

Table 1.1: Beam parameters of the LHC.

1.2 The CompactMuon Solenoid

The Compact Muon Solenoid [4] is one of the two general-purpose experiments that will op-
erate at the LHC. It is a detector designed to investigate the physics phenomenology of p-p
collisions, but it will operate in heavy ions mode. The experiment is located 100 meters un-
derground along the LHC tunnel near the French village of Cessy. The requirements of good
reconstruction of charged particles, high electromagnetic energy resolution, precise missing
transverse energy and jet measurements, and good muon identification and pt reconstruction
operate the CMS design. To achieve these goals and maintain the detector’s compactness si-
multaneously, a high solenoidal magnetic field of 4 T has been chosen to provide large bending
power. TheCMSExperiment is one of theLHC’s fourmajor experiments, and it is intended as
a general-purpose detector for researching the StandardModel of particle physics and pursuing
novel physics beyond it.

It comprises several subdetectors arranged in a cylinder around the beam pipe. Each sub-
detector detects a specific physical attribute of a certain particle type. Endcap detectors are
used to instrument the flat portions of the cylinder. This shape gives virtually flawless coverage
throughout four solid angles with an active detector area. CMS is the second-biggest experi-
ment at the LHC, with a length of around 29 m and a diameter of 15m.
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Figure 1.2: Overview of the CMS detector.

1.2.1 Overall Design Physical Requirement

The CMS detector [5, 6] (shown in Fig.1.2) has a cylindrical barrel of five slices and two disk-
like endcaps. The overall length of the detector is 21.6meters, its diameter is around 15meters,
and its total weight is approximately 12500 tons. Because of the difficult operational environ-
ment, high-granularity detectorswith good time resolutionmust be utilized to limit occupancy.
Furthermore, the large radiation flux projected at the LHC design luminosity (1-2 kGy/year)
necessitates the inclusion of radiation-hard components, particularly in the central tracking
system.

To achieve the goals of the LHC physics program, the detector must meet the following
requirements:

• Excellentmuon identification andhigh-resolutionmomentummeasurementover awide
range of angles and momenta allows for precision reconstruction of di-muon invariant
masses (1% resolution at 100 GeV) and clear muon charge determination up to 1 TeV/c.

• High reconstruction efficiency and precise momentummeasurement for charged parti-
cles in the inner tracking system, with particular emphasis on charm, bottom jet trigger-
ing, and offline tagging.
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• High electromagnetic resolution at 100GeV allows di-photon and di-electron invariant
mass reconstruction with 1% precision. Excellent geometrical coverage, efficient pho-
ton/lepton isolation at high luminosity, and strong π0 rejection capacity.

• Hadron calorimeters with a high degree of hermeticity, comprehensive geometrical cov-
erage, and precise segmentation to ensure accurate missing transverse energy measure-
ments and high-resolution dijet mass reconstruction.

The compactness of the detector is ensured using a high field superconducting solenoid, 16
m long and of 6 m inner diameter, able to generate a field up to 4 T. A silicon-based inner
tracking system, a homogeneous PbWO4 scintillating electromagnetic calorimeter and a high
hermeticity brass/scintillator sampling hadron calorimeter are accommodated in the solenoid
bore. Themagnetic field outside the solenoid is strong enough to saturate the iron return yoke,
where a complex muon spectrometer, based on four layers of Drift Tubes detectors and Cath-
ode Strip Chambers, respectively, is placed in barrel and endcaps. A Resistive Plate Chamber
complements the other muon subdetectors, ensuring redundancy and improving trigger abili-
ties. A longitudinal view of a quarter of the detector and a transversal view of the barrel region
are given in Fig.1.3.

In CMS, a right-handed coordinate system, centered at the nominal collision point, is de-
fined: the x-axis points radially inward to the center of the accelerator ring, the y-axis points
upward, and the z-axis is parallel to the beam pipe (pointing to the Juramountains). The polar
angle θ is measured from the z-axis using a 0 ≤ θ ≤ π range, while the azimuthal angle φ is
measured in the x-y plane from the x-axis in a 0 ≤ φ ≤ 2π range. Usually the polar angle is
replaced by the pseudorapidity (η) defined as follows:

η = − ln
(
tan

θ
2

)
. (1.1)

This is because particle production is loosely constant as a function of rapidity (y), and η is the
ultra-relativistic limit of y:

y =
1
2
ln
(
E+ pz
E− pz

)
≈ η =

1
2
ln
(
|p⃗|+ pz
|p⃗| − pz

)
= − ln

(
tan

θ
2

)
. (1.2)
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Figure 1.3: Longitudinal view of one quarter of the CMS detector(top); transversal view of the barrel region of apparatus
(bottom).

In the above formulas, E, p⃗, and pz represent, respectively, energy, 3-momentum, and z-axis
momentum components of a particle coming out from the interaction point. In the following
sections, a brief overview of every subdetector is given. Particular attention is also devoted to
describing the CMS trigger and data-acquisition systems.
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1.2.2 The Tracking System

The tracker [7, 8] is the innermost subdetector of the CMS experiment, measuring 5.8 m in
length and 2.5 m in diameter. It efficiently detects and measures the trajectory of charged par-
ticles with pT > 1 GeV/c, and precisely reconstructs their secondary vertices for jet-flavor tag-
ging. It plays a crucial role in electron and muon track reconstruction and is heavily used in
the high-level trigger. At LHC design luminosity, around 1000 charged particles from p-p in-
teractions are produced every 25 ns, necessitating a high granularity and radiation-hard system.
The CMS tracker comprises a fine granularity pixel detector system in its innermost parts and
silicon stripmodules of different pitch in the central and external parts, maintaining track occu-
pancy around 1% during high luminosity p-p collisions and ensuring reasonable levels during
Pb-Pb collisions (1% in pixels, 20% in silicon microstrip detector). High granularity results in
elevated power consumption and requires efficient cooling infrastructure to prevent radiation
damage. The tracker’s material is minimized to reduce multiple scattering and interactions.

1.2.3 The Pixel Detectors

The pixel detector system[9] consists of finely segmented silicon pixels placed on a silicon sub-
strate with a cell size of 100× 150 μm2. It is built to ensure precise 3D vertex reconstruction to
allow efficient τ and b jets identification, and it covers a pseudorapidity range up to |η| < 2.5.
The small pixel size allows single channel occupancy per bunch crossing around 10−4 even in
the expected high flux scenario (107 particles/s at 10 cm).

Figure 1.4: Overview of the pixel detector layout (left); longitudinal view of one‐quarter of the pixel detector and its hit
coverage as a function of (right).
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The final layout of the pixels is shown in Figure1.4. It consists of three barrel layers (located
at a mean radius of 4.4, 7.3, and 10.2 cm) and two disks (located in a radial region extending
from 6 to 15 cm) in the endcaps. However, only two barrel layers and one endcap disk will be
placed during the low luminosity phase. An interpolated measurement, based on the analog
readout of charge deposited in nearby pixels, will ensure a hit resolution of 10 μm in theφ plane
and 15 μm in the zone for the barrel layer. Correspondingly, a 15 μm and 20 μm respectively in
φ and z is expected in the endcaps.

1.2.4 The SiliconMicrostrip Detectors

The outermost regions of the tracking system [10]contain several layers of silicon microstrip
detectors, as shown in Fig.1.5. The system is divided into theTracker Inner Barrel (TIB),which
consists of the four innermost barrel layers, and the Tracker Outer Barrel (TOB), which con-
sists of the six outer barrel layers. The Tracker Inner Disk (TID) includes three layers of disks
on each side of the TIB, while the Tracker End-Cap (TEC) is made up of nine detector disks
perpendicular to the beam axis, placed after the TOB and TID. The silicon microstrip detec-
tors cover up to |η| < 2.5, as high track density and radiation levels prevent their use beyond
this range. In the TIB/TID regions, the minimum cell size is 10 cm × 80 μm, with an occu-
pancy of about 2-3% per BX, a cell thickness of 320 μm, a pitch size of 80 − 120 μm, and a
spatial resolution of 23 − 35 μm. In the TOB, the minimal cell size is 25 cm × 180 μm, with
an occupancy of about 1% per BX, strip thickness of 500 μm, pitch size of 122− 183 μm, and
a spatial resolution of 35− 53 μm. In the TEC, the four innermost rings have a strip thickness
of 320 μm, while the five outermost ones have a thickness of 500 μm, with pitch sizes ranging
from 97 to 184 μm.
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Figure 1.5: Longitudinal view of one‐quarter of the silicon strips and pixels detectors.

1.2.5 The Electromagnetic Calorimeter

The Electromagnetic Calorimeter[11] (ECAL) is designed to accurately reconstruct electron
and photon positions and energies, working alongside the Hadron Calorimeter for precise
hadronic jet measurements. Fig. ?? is A longitudinal view of the HCAL layout. Its primary
goal is to achieve 1% resolution for the H → γγ decay channel. The ECAL is built using
lead tungstate (PbWO4) crystals, chosen for their radiation hardness, smallMolière radius, and
short radiation length, ensuring good shower containment and compactness. These crystals,
which have a rapid scintillation decay time, enable 80% light collection within 25 ns. Photode-
tectors, specificallyVacuumPhotodiodes (VPT) andAvalanche Photodiodes (APD),maintain
performance in high magnetic fields and require thermal stability. The crystals are trapezoidal,
with dimensions of 230 mm in the barrel and 220 mm in the endcaps. The ECAL system ex-
tends to |η| < 3.0. A pre-shower detector, consisting of a two-layer sampling calorimeter, is
used for better photon and electron position measurements. The ECAL energy resolution for
energies below 500 GeV can be parameterized as follows:

( σ
E

)2
=

(
S√
E

)2

+

(
N
E

)2

+ C2

with S = 2.8%,N = 0.12%, and C = 0.30%.
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1.2.6 TheHadron Calorimeter

The Hadron Calorimeter [12] (HCAL) works with the ECAL to measure the direction and
energy of hadronic jets and estimate missing transverse energy (ET). It also aids in identify-
ing electrons, photons, and muons. HCAL uses a sampling calorimeter system with brass ab-
sorbers and plastic scintillators designed for precision and compactness. The barrel (HB) cov-
ers |η| < 1.4 with segmentation for optimal di-jet separation and mass resolution. An outer
calorimeter (HO) enhances hadron shower containment.

Figure 1.6: Longitudinal view of one‐quarter of the HCAL subsystem.

The endcap (HE) covers 1.4 < |η| < 3.2, and the forward calorimeter (HF) extends cov-
erage up to |η| < 5.2. HCAL’s energy resolution varies from σ/E ≈ (65/

√
E ⊕ 5)% in the

barrel to σ/E ≈ (83/
√
E⊕ 5)% in the HE and σ/E ≈ (100/

√
E⊕ 5)% in the HF.

1.3 TheMagnet

The CMSmagnet system [13] is designed to identify the charge of high pt muons andmeasure
the momentum of charged particles at the LHCwith high precision. It requires a momentum
resolution of Δp/p ≈ 10% for momenta up to 1 TeV/c and a 1% resolution for 100 GeV/c
particles. To meet these requirements and ensure detector compactness, a high-field, modest-
sized, superconducting solenoid has been developed. The CMS magnet is 12.9 m long, has
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an inner diameter of 5.9 m, and generates a 4T magnetic field. The magnetic flux is returned
using an iron yoke, which also hosts the muon spectrometer. The 2T residual field in the iron
provides sufficient bending power for efficient pT-basedmuon trigger selection in the |η| < 2.4
region. Table 1.2 lists the magnet parameters.

Parameter Value
Field 4 T
Residual field in the yoke 2 T
Inner bore 5.9 m
Length 12.9 m
Number of turns 2168
Operation temperature 4.5 K
Nominal current 19.14 kA
Stored energy 2.6 GJ
Hoop stress 64 atm

Table 1.2: Parameters of the CMS superconducting solenoid.

1.4 TheMuon System

Many significant physical processes anticipated at the LHC will result in final states involving
high pT muons. Therefore, a robust and redundant muon spectrometer is crucial for precise
muon identification, high-resolution pT measurements, and effective trigger capabilities.

Themuon system [14] is the outermost group of subdetectors in the CMS experiment, cov-
ering a pseudorapidity range up to |η| < 2.4. Its layout is depicted in Fig. 1.7. The system
includes three types of gaseous detectors, selected based on the extensive area to be covered and
the varying conditions of radiation and magnetic fields across different η regions.

Drift Tube Chambers (DTs) are employed in the barrel region (|η| < 1.2), where they man-
age low track occupancy and residualmagnetic fields. For the endcaps (0.8 < |η| < 2.4), Cath-
ode Strip Chambers (CSCs) are used due to their capability to handle high particle fluxes and
the non-uniform magnetic field present in these areas. To enhance redundancy and improve
trigger capabilities, Resistive Plate Chambers (RPCs) supplement both DTs and CSCs in the
barrel and endcaps, covering up to |η| < 2.1. Although RPCs offer only coarse spatial reso-
lution, their fast response and excellent time resolution ensure unambiguous bunch-crossing
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identification for the muon trigger.
For muons with transverse momentum (pT) up to approximately 200 GeV/c, the system res-

olution is primarily limited bymultiple scattering before the particle reaches the first spectrom-
eter station. At higher pT, the precision of chamber measurements becomes more dominant.
Figure 1.8 illustrates the overall pT resolution as a function of η, including resolutions obtained
using information solely from the tracker or the muon system. It is clear that at low transverse
momentum, tracker precision prevails, whereas at higher pT, combining data from both the
tracker and the muon system enhances the overall resolution.

Figure 1.7: Longitudinal view of one‐quarter of the muon spectrometer.

1.4.1 The Drift Tube Chambers

The barrel region of the muon system [15] is characterized by low residual magnetic field and
occupancy, makingDrift Tube (DT) technology suitable for precise spatial measurements and
extensive surface coverage.

The layout of the DT system is depicted in Figure 1.9. It follows the segmentation of the
yoke and consists of five iron wheels, each divided into 12 azimuthal sectors covering approxi-
mately 30° each. Each wheel contains four concentric rings of chambers, referred to as stations,
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and named MB1, MB2, MB3, and MB4 (where MB stands for Muon Barrel). Each station
comprises 12 DT chambers, except for MB4, which includes 14 chambers.
The fundamental detector element of the DT system is a rectangular drift tube cell with a

transverse size of 4.2 cm× 1.3 cm and a length ranging from 2 to 4m. These cells are filled with
an 85%/15% Ar/CO₂ gas mixture and arranged parallel to form detection layers. Groups of
four layers form a superlayer, and a block of two superlayers measuring the φ coordinate, along
with one superlayermeasuring the z coordinate, constitute aDT chamber. The only exception
is the MB4 stations, where only the two φ superlayers are present. A schematic layout of a
single DT chamber is shown in Fig. 1.10.

Figure 1.8: Muon transverse momentum resolution as a function of pT in the barrel (left) and endcap (right) region; results
obtained using tracker only, muon system only, and a combination of muon spectrometer and tracker information are
shown.

DT cells exhibit an efficiency of 99.8% and a spatial resolution of around 200 μm, resulting
in a radial resolution of 100 μm for an 8-point φ reconstructed segment. A single DT chamber
schematic layout is shown in 1.10.

1.4.2 The Cathode Strip Chambers

The high magnetic field [16] and particle rate expected in the muon system endcaps do not
allow the use of drift tube detectors for measurements at large η values. Therefore, Cathode
Strip Chamber (CSC) detectors have been adopted. CSCs are gaseous ionization detectors
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Figure 1.9: Transversal view of the CMS DT system. Station and sector numbers are shown in the figure.

operating in avalanche mode and are characterized by a short drift length. Information about
the position of the incoming particle is collected both in the anode wire and on a set of finely
segmented cathode strips. The cathode strips allow for the center of gravity measurements,
ensuring high position resolution, while the anodewires provide a fast signal suitable for trigger
purposes.

The layout of theCSC subsystem is shown in Fig. 1.11(left). Trapezoidal detector chambers
are arranged to form four disks of concentric rings placed between the endcap iron yokes. All
rings, except for the third of the first endcap disk (ME1/3), are arranged staggered in φ to avoid
azimuthal dead regions. The innermost ring of each disk hosts 18 chambers, except for the first
one, which hosts 36 chambers like the rest of the system.

One single chamber comprises six layers of 9.5 mm thick arrays of anode wires enclosed be-
tween two cathode planes, as shown in Fig. 1.11(right). One of the cathodes features fine strip
segmentation, enabling precise radial measurements, while the anode wires, placed perpendic-
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Figure 1.10: Schematic view of a CMS drift tube chamber.

ular to the strips, measure the r coordinate. Anode information is collected in groups of 5 to 16
wires to reduce the number of readout channels. The chambers are filledwith a 30%/50%/20%
Ar/CO₂/CF₄ gas mixture. The ME/1 disk operates in higher magnetic field conditions than
the rest of the system, so the anodewires are tilted by 20° to compensate for the Lorentz drift ef-
fect. The gap thickness is also reduced to 6mm, doubling the number of strips in the |η| > 2.0
region.

Stripmeasurement resolution varies fromapproximately 70μmfor the innermost stations to
approximately 150 μmfor the outermost ones. In contrast, the r coordinate can be determined
with a precision of approximately 0.5 cm.

Figure 1.11: Layout of the CSC subsystem (left). Schematic overview of a CSC chamber (right).
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1.4.3 The Resistive Plates Chambers

Resistive plate chambers (RPCs)[17] are utilized in both the barrel and endcaps, supplement-
ing the Drift Tubes (DT) and Cathode Strip Chambers (CSC) systems to ensure robustness
and redundancy in the muon spectrometer. RPCs are gaseous detectors characterized by their
coarse spatial resolution, but they excel in precise timemeasurements comparable to those pro-
vided by scintillators. This enables accurate bunch crossing (BX) identification for the muon
trigger system.

The CMS uses double-gap RPC chambers constructed from four bakelite planes, which
alternate to form two 2 mm thick gas gaps, as illustrated in Fig. 1.12. These planes are coated
with graphite to create electrodes set at a potential difference of 9.5 kV. The central part of the
chamber is equipped with insulated aluminum strips that collect signals generated by crossing
particles. The design choice of using double-gap chambers enhances the induced signal.

Figure 1.12: Schematic view of a CMS double gap RPC.

In the barrel region, the strips are rectangularly segmented (12.1 to 41 cmwide and 80 to 120
cm long) and aligned along the beam axis. At the same time, the endcaps feature trapezoidal-
shaped strips covering an approximate range of Δφ = 5− 6◦ and Δη = 0.1. The strip length
constraint makes measurements in the η coordinate impossible. The gas mixture in the gap
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comprises 90% freon (C₂H₂F₄) and 5% isobutane (i-C₄H₁₀). The detector operates in avalanche
mode instead of the more common streamer mode to sustain higher rates, necessitating im-
proved electronic multiplication due to reduced gas multiplication.

The system layout in the barrel follows the DT segmentation. Two RPC stations are at-
tached to each side of a sector’s two innermost DT chambers, while a single RPC is attached
to the inner side of the third and fourth DT chambers. This setup extends the low pT reach of
the trigger system in the barrel, allowing the detection of low pT muons using four RPC layers
before they stop in the iron yoke. This configuration is unnecessary in the endcaps since higher
η values correspond to higher total momentum for the same pT.

1.5 TheUpgradedOBDTboardElectronicsArchitec-
ture

The Phase-2 upgrade of the CMS detector at the Large Hadron Collider (LHC) involves sig-
nificant improvements to the Drift Tubes (DT) sub-detector. This upgrade is necessary to
accommodate the increased data and trigger processing demands posed by the High Luminos-
ity LHC (HL-LHC) environment. The existing on-detector electronics, known asMiniCrate
(MiC),will be replacedby amore advanced and simplified systemcalled theOn-BoardElectron-
ics for Drift Tubes (OBDT) board. The OBDT board is designed to enhance data processing
capabilities, improve maintainability, and ensure reliability in the high-radiation environment
of the HL-LHC . Figure 1.13 shows the schematic design of the drift tube OBDT board at
INFN Padova.

1.5.1 Design and Functionality of the OBDT Board

The OBDT board is specifically designed for the HL-LHC environment and will serve as the
sole type of on-detector electronics for the DT subdetector. Built around a Microsemi Po-
larFire flash-based FPGA, the OBDT board hosts 240 Time-to-Digital Converters (TDCs)
with nanosecond resolution, ensuring the precise timing measurements necessary for muon
tracking [18].
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Figure 1.13: Schematic OBDT board on the drift tube INFN Padova.

1.5.2 Key Features of the OBDT Board

• High Precision Time Digitization: The FPGA on the OBDT board digitizes signals
from the DT front-end comparators, utilizing its TDCs to achieve nanosecond timing
accuracy [18].

• High-Speed Data Transmission: Data processed by the OBDT board are transmitted
via high-speed optical links, usingQSFP+ transceivers capable of up to 12Gbps per lane,
ensuring rapid data transfer to the backend electronics [18].

• Control and Timing: The integration of GBTx and SCA chips allows for comprehen-
sive control over slow signals, time distribution, and analog signal generation, enhancing
the flexibility and reliability of the system [18].

• Radiation Hardness: The main component of the OBDT board is the flash-based Po-
larFire FPGA fromMicrosemi, selected for its good resistance to radiation. This is cru-
cial for the LHC’s high-radiation environment [].
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Figure 1.14: Schematic view of an OBDT board at INFN Padova.

1.5.3 Radiation Testing and Validation

Given the high-radiation environment of the HL-LHC, radiation hardness is a critical require-
ment for the OBDT board. Extensive radiation tests were conducted at the INFN-TIFPA Pro-
tontherapyCentre in Trento, Italy, where theOBDTboardwas exposed to proton beamswith
energies typical of the LHC environment. The total dose delivered to the electronics during
these tests was 191.6 Gy, much higher than the 0.5 Gy expected over ten years of HL-LHC
operation [19].
During testing, the OBDT board demonstrated excellent resilience to radiation-induced er-

rors. The main issues identified were single event upsets (SEUs) in the FPGA and occasional
failures in the safety comparator circuit, which were within acceptable limits for the opera-
tional environment. These errors were manageable within the system’s design, demonstrating
the OBDT board’s capability to handle the HL-LHC’s demanding conditions [19].

1.5.4 Development and Future Implementation

Initial prototypes of theOBDTboard have been developed and tested using aVirtex7 FPGA to
simulate the new electronics environment. The full assembly and further testing of theOBDT
boards are planned as the next steps, with installations in a DT sector scheduled during LS2
(2019-2020) [18].

The full deployment of the OBDT boards will simplify the CMS DT electronics system
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by eliminating the need for separate trigger paths and allowing the L1 Trigger Track Finders
direct access to complete datasets. This integration will optimize performance and enhance
the reliability of muon detection in the CMS experiment [18].
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2
Theoretical Basis andMathematical Tools

2.1 Fourier Transform and Signal Analysis

The Fourier Transform [20] is a fundamental mathematical tool used in signal processing to
analyze the frequency components of a signal. Named after the French mathematician Jean-
Baptiste JosephFourier, this transformconverts a time-domain signal into its frequency-domain
representation. The importance of the Fourier Transform lies in its ability to decompose com-
plex signals into a sum of sinusoidal waves, each characterized by a specific frequency, ampli-
tude, and phase.

Mathematically, the continuous Fourier TransformF{x(t)} of a signal x(t) is defined as:

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt

where:
- X(f) is the frequency-domain representation of the signal.
- x(t) is the time-domain signal.
- f is the frequency.
- j is the imaginary unit.
The magnitude of X(f) at a specific frequency f indicates the strength of that frequency

component in the original signal. The angle of X(f) gives the phase shift of the sinusoidal
component relative to the origin.

21



It provides a complete description of the signal in terms of its frequency components, mak-
ing it easier to analyze andmanipulate. Signals are often discrete and of finite length in practical
applications. Therefore, the Discrete Fourier Transform (DFT), a sampled version of the con-
tinuous Fourier Transform, is commonly used.

2.1.1 Discrete Fourier Transform (DFT)

TheDiscrete Fourier Transform (DFT) [20] is used to analyze discrete signals. Given a discrete
signal x[n] with N samples, the DFT transforms it into a sequence of complex numbers X[k]
representing the signal’s frequency spectrum. The DFT is mathematically expressed as:

X[k] =
N−1∑
n=0

x[n]e−j 2πN kn, k = 0, 1, . . . ,N− 1

Here, k corresponds to the frequency index, and N is the total number of samples in the
signal. While the DFT is a powerful tool, its computational complexity can be a limitation, es-
pecially for large datasets. This leads to the need for amore efficient algorithm, the Fast Fourier
Transform (FFT).

2.1.2 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT)[20] is an optimized algorithm for efficiently computing the
Discrete FourierTransform (DFT). IntroducedbyCooley andTukey in 1965, the FFT reduces
the computational complexity of the DFT from O(N2) to O(N logN), making it feasible to
analyze large signals in real-time applications.

The FFT exploits the symmetry and periodicity properties of theDFT to reduce the number
of calculations required. Several variants of the FFT algorithm, including theRadix-2, Radix-4,
and Split-Radix algorithms, each designed to optimize performance under different conditions.

For a sequence x[n] of length N, where N is a power of 2, the FFT recursively divides the
DFT into two smaller DFTs of lengthN/2 until the problem size is small enough to be solved
directly. This approach dramatically reduces the computational complexity from O(N2) to
O(N logN).
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2.2 Short-Time Fourier Transform (STFT)

The Short-Time Fourier Transform (STFT)[21] is a fundamental signal processing tech-
nique used to analyze the frequency content of a signal over time. It allows for the examina-
tion of localized changes in the spectral properties of a signal by dividing the signal into short,
overlapping segments and applying the Fourier transform to each segment. This process pro-
vides a time-frequency representation of the signal, particularly useful for non-stationary sig-
nals where the spectral characteristics vary over time.

2.2.1 STFT as a Transform

The STFT of a signal x[n] is defined as the discrete Fourier transform (DFT) of a windowed
segment of the signal. Mathematically, it can be represented as:

X[k,m] =

m+(N−1)∑
n=m

w[n−m]x[n]e−jωk(n−m)

Where:

• X[k,m] is the STFT of the signal at frequency bin k and time indexm.

• w[n−m] is the window function applied to the signal segment.

• ωk =
2πk
N represents the discrete angular frequency.

• N is the length of the windowed segment.

The window function w[n] plays a crucial role in the STFT by determining the trade-off
between time and frequency resolution. Common choices for the window function include
the Hamming, Hanning, and rectangular windows, each offering different spectral properties.

2.2.2 STFT as a Linear-Frequency Filterbank

The STFT can also be interpreted as a bank of bandpass filters that decompose the signal into
various frequency components. Each filter is centered around a specific frequency, and the
output of each filter corresponds to the energy of the signal at that frequency over time. This
perspective is useful for understanding how the STFT captures the signal’s frequency content
and can be visualized as a series of overlapping bandpass filters.

23



In this filterbank interpretation, the STFT is given by:

X[k,m] = x[m] ∗ hk[−m]

where:

• hk[m] = w[m]ejωkm is the impulse response of the filter centered at frequency ωk.

• ∗ denotes the convolution operation.

2.2.3 Inverse STFT

The inverse STFT (ISTFT) allows for reconstructing the original signal from its STFT repre-
sentation. This process involves applying the inverse DFT to the STFT coefficients and over-
lapping the resulting segments to recover the time-domain signal. The ISTFT is essential for
applications that require time-frequency manipulation and subsequent reconstruction of sig-
nals.

The ISTFT can be expressed as:

x[n] =
1

NW(0)

n∑
m=n−(N−1)

N−1∑
k=0

X[k,m]ejωk(n−m)

WhereW(0) is the normalization factor for the overlap and windowing effects.

2.3 Autocorrelation

Autocorrelation [22][23], also known as serial correlation, refers to the correlation of a time
series with its past and future values. In time series analysis, understanding autocorrelation
is crucial as it can indicate patterns and inform the development of more accurate predictive
models.

2.3.1 Mathematical Definition

Autocorrelation measures the relationship between time series observations separated by vari-
ous lags. Mathematically, the autocorrelation function (ACF) at lag k is defined as:
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ρk =
∑T−k

t=1 (Xt − μ)(Xt+k − μ)∑T
t=1(Xt − μ)2

Where:

• Xt is the value of the time series at time t,

• μ is the mean of the time series,

• T is the total number of observations,

• k is the lag.

2.3.2 Practical Visualization Using Plots

In practice, one of the most effective ways to identify and understand autocorrelation in time
series data is through visual analysis, particularly using plots such as the correlogram. A correl-
ogram plots the autocorrelation coefficients at different lags, providing a visual representation
of how observations in a time series are related to each other over time.

The correlogram helps to identify patterns of positive or negative autocorrelation quickly:

• Positive Autocorrelation: When the correlogram shows positive spikes at certain lags,
it suggests that high values tend to be followed by high values and low values by low
values, indicating a trend or persistence in the data.

• Negative Autocorrelation: Conversely, negative spikes indicate that high values are
likely followed by low values and vice versa, suggesting a mean-reverting behavior.

2.3.3 Importance in Time Series Analysis

Understanding and addressing autocorrelation is critical in time series analysis. By visually iden-
tifying autocorrelation using plots like correlograms and interpreting the patterns they reveal,
we can improve the accuracy and reliability of our models. This approach allows for better
predictions from time series data, as it accounts for the temporal dependencies often present.
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2.4 Inter-Arrival Times Analysis

Inter-arrival times analysis is a crucial tool in time series analysis, particularly when studying
the timing and frequency of events. The inter-arrival time is the elapsed time between con-
secutive events in a time series. Analyzing these intervals helps identify patterns, trends, and
dependencies, providing information about the processes that generate the observed data.

2.4.1 Definition of Inter-Arrival Times

In the time series context, the inter-arrival time [23][24]is defined as the time difference be-
tween successive events. Ifwedenote the times of events asT1,T2, . . . ,Tn, then the inter-arrival
times ΔTi are calculated as:

ΔTi = Ti+1 − Ti, for i = 1, 2, . . . , n− 1

where:

• Ti is the time at which the i-th event occurs,

• ΔTi is the inter-arrival time between the i-th and (i+ 1)-th events.

2.4.2 Significance of Inter-Arrival Times in Time Series Analy-
sis

Analyzing inter-arrival times [22]can reveal important data characteristics that are not evident
when looking solely at the raw time series. Key insights include:

• Event Regularity: By examining the distribution of inter-arrival times, we can deter-
mine if events occur at regular intervals or if there are periods of clustering and sparsity.

• Temporal Dependencies: Patterns in inter-arrival times can indicate dependencies be-
tween events, such as bursts of activity or periodic behavior.

• Process Understanding: understanding the inter-arrival times helps model the under-
lying stochastic processes, such as Poisson or renewal.
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2.4.3 Distribution Analysis of Inter-Arrival Times

To analyze inter-arrival times, it is common to study their statistical distribution. Key steps
include:

• Histogram of Inter-Arrival Times: Plotting a histogram of the inter-arrival times vi-
sually represents their distribution. For example, exponential inter-arrival times suggest
a memoryless process typical of Poisson processes.

• Fit StatisticalModels: Fit different probability distributions (e.g., exponential, gamma,
Weibull) to the inter-arrival times data to find the best model that describes the observed
patterns.

Inter-arrival times analysis provides a robust framework for understanding the timing and
frequency of events in a time series. By examining the intervals between events, we can uncover
patterns and dependencies that are not immediately apparent in the raw data. This analysis is
instrumental here because the timing of events is crucial, enabling the development of better
models and more accurate predictions.

2.5 Machine Learning Techniques

2.5.1 Isolation Forest Algorithm for Anomaly Detection

In iForest [25],[26],[27], ”isolation” means separating an instance from the rest of the data.
Anomalies are different from other data points and occur rarely. The algorithm works on the
idea that anomalies can be separated from the rest of the data faster because they are unique
and occur infrequently. This is done by creating a series of binary trees called Isolation Trees
(iTrees), which divide the data into smaller groups.

An Isolation Tree is a type of tree that divides data points into smaller groups until each
point is separated. The path length from the top to the bottom of these trees shows how easy
it is to separate a data point. Anomalies that need fewer divisions to be separated usually have
shorter paths. By averaging the path lengths across a group of iTrees, the algorithm assigns a
score to each data point, with shorter paths having higher scores.

2.5.1.1 Algorithm

The iForest algorithm has two main stages: training and evaluation.
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During the training stage, a forest of trees is created by building each tree using a small, ran-
dom subset of the data. This process is repeated for a set number of trees (t). The building stops
when a point is isolated or a specific tree height (l) is reached. Using small sub-samples and ran-
dom partitioning allows iForest to quickly build effective models with linear time complexity
O(tψ logψ), where ψ is the sub-sample size.

In the evaluation stage, the algorithmcalculates an anomaly score for each instance in the test
set. The score is based on each instance’s expected path length E(h(x)) as it moves through the
iForest. Instances with shorter path lengths are more likely to be anomalies. The complexity
of this stage isO(nt logψ), where n is the size of the test set.
iForest offers several advantages, including efficiency with linear time complexity and a low

constant factor, making it suitable for large datasets. It also demonstrates scalability by effi-
ciently handling high-dimensional data and large-scale problems with minimal memory usage.
The algorithm’s sub-sampling approach also helps mitigate swamping and masking, ensuring
robust anomaly detection.

Algorithm 2.1 iForest Algorithm
Input: Given data set X, number of trees t, sub-sampling size ψ.
Output: A set of t iTrees.
1: Initialize an empty Forest.
2: Set the height limit l = ⌈log2 ψ⌉.
3: for i = 1 to t
4: X′ ← sample(X,ψ)
5: Forest← Forest∪ iTree(X′, 0, l)
6: end for
7: return Forest

iForest offers several advantages, including efficiency with linear time complexity and low
constant factor, making it suitable for large datasets. It also demonstrates scalability by effi-
ciently handling high-dimensional data and large-scale problems with minimal memory usage.
Additionally, the algorithm’s sub-sampling approach helps mitigate swamping and masking,
ensuring robust anomaly detection.

2.5.2 Local Outlier Factor(LOF)

TheLOFalgorithm [26],[27], helps identify outliers in data by comparing the density of points
to their neighbors. This is achieved by comparing each point’s local density to its neighbors’
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density. Points with a much lower density compared to their neighbors are considered outliers.

Algorithm 2.2 LOF Algorithm
Input: given data setD, number of neighbors k.
Output: LOF score for each point in the dataset.

1. Find the k-nearest neighbors for each point.

2. Calculate the reachability distance between points.

3. Calculate the local reachability density (LRD).

4. Calculate the LOF score for each point.

The LOF algorithm helps identify local anomalies in datasets when density varies across the
data space. However, it needs careful selection of parameters such as k, and its performance
might degrade in high-dimensional spaces.

2.5.3 Gaussian mixture model

The GMM algorithm [28] is essential for using GaussianMixture Models, which assume data
comes from amix of different Gaussian distributions. This is useful for clustering, where each
Gaussian part can show a different group in the data. The EM process helps the model adjust
the parameters, like the mean, covariance, and mixing coefficients, to best match the observed
data.

The algorithm begins with initial guesses for themeans, covariances, andmixing coefficients
in the Initialization step. Then, in the Expectation Step, the chances that each data point
belongs to a certain part are calculated. In the Maximization Step, the algorithm uses these
chances to update the parameters of the Gaussian distributions, making the model fit the data
better. The Convergence Check ensures the algorithm stops when the parameters have settled,
and further iterations won’t improve the model’s likelihood by much.

This structured approach to the GMM algorithm allows it to cluster complex data flexibly
and efficiently. It accommodates the data’s natural changes bymodeling it as amix of Gaussian
distributions. We use this as one way to find noise in the frequency data.
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Algorithm 2.3 GaussianMixture Model (GMM) Algorithm
1: Input: Data set X, number of componentsK, threshold ε, max iterations max_iterations.
2: Initializemeans μk, covariances Σk, and mixing coefficients πk for each k.
3: Repeat until convergence:
4: E-Step: Compute responsibilities γik:

γik =
πkN (xi|μk,Σk)∑K
j=1 πjN (xi|μj,Σj)

5: M-Step: Update parameters μk, Σk, πk:

μk =
1
Nk

N∑
i=1

γikxi, Σk =
1
Nk

N∑
i=1

γik(xi − μk)(xi − μk)
T, πk =

Nk
N

6: Compute log-likelihood and check for convergence.
7: Output: Parameters μk, Σk, πk.

2.6 One-ClassSupportVectorMachine (One-ClassSVM)

One-Class SVM[29] is anunsupervisedmachine learning techniqueprimarilyused for anomaly
and outlier detection in datasets where most data belongs to a single class. Unlike traditional
classification tasks, One-Class SVM is designed to distinguish the ”normal” class from all other
possible outliers or anomalies. The One-Class SVM algorithm aims to find a decision bound-
ary that encloses most data points in the feature space, minimizing the boundary’s complexity
whilemaximizing themargin around the data. This boundary is created using kernel functions
that map the input data to a higher-dimensional space, allowing for more flexible and accurate
separation.

2.6.1 Algorithm

TheOne-Class SVM is used inmany fields to find unusual items in data. It works best when
there’s mostly one kind of data or when rare anomalies are hard to label. It’s very flexible be-
cause it uses kernel functions for non-linear decision-making. Also, it works well with complex
data that has many dimensions.

In conclusion, One-Class SVM is a strong tool for finding anomalies in datasets where most
things are of one type. It does this by learning a boundary around the ”normal” data, which
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Algorithm 2.4One-Class SVMAlgorithm
Input: Given dataset X, kernel functionK, regularization parameter ν.
Output: A trained One-Class SVMmodel.
1: Choose a kernel functionK(x, x′) to map input data to a high-dimensional feature space.

2: Set the regularization parameter ν that controls the trade-off between the fraction of out-
liers and the margin size.

3: Solve the following quadratic optimization problem to find the hyperplane:

min
w,ρ,ξ

(
1
2
∥w∥2 + 1

νn

n∑
i=1

ξi − ρ

)

4: Subject to:
(w · φ(xi)) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , n

5: Calculate the decision function for new data point x:

f(x) = sign((w · φ(x))− ρ)

6: return The trained One-Class SVMmodel.
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helps to recognize outliers and anomalies that don’t follow the usual patterns.

2.7 Deep Learning Techniques

2.7.1 Long Short-TermMemory (LSTM)Model

Long Short-Term Memory (LSTM)[30][31][32] networks are a type of recurrent neural net-
work (RNN) architecture created to model sequential data and capture long-range connec-
tions. They were developed by Hochreiter and Schmidhuber in 1997. LSTMs solve the van-
ishing gradient problem found in traditional RNNs, making them highly effective for task like
time series forecasting. LSTM networks are designed to hold onto information for long pe-
riods, allowing them to capture time-based connections within sequential data. Unlike tradi-
tional RNNs, which encounter problems like vanishing or exploding gradients during back-
propagation, LSTMs use a gating mechanism to control the flow of information, effectively
maintaining and updating the cell state over time. This ability allows LSTMs to hold onto im-
portant information for long periods while letting go of unimportant details, which is crucial
for understanding long-term connections.

2.7.1.1 LSTMArchitecture

The architecture of an LSTM network [33]includes three main components known as gates:
the input gate, the forget gate, and the output gate. These gates control the flowof information
through the cell state, as described below:

• Input Gate: The input gate decides which values from the input should be updated in
the cell state. It uses a sigmoid activation function to regulate the amount of information
to be added.

• Forget Gate: The forget gate determines which information from the cell state should
be discarded or retained. It also uses a sigmoid activation function to output values
between 0 and 1, where 0 represents ”completely forget” and one represents ”completely
retain.”

• Output Gate: The output gate controls the output of the cell state to the next hidden
state. It combines a sigmoid activation function and a tanh function to output the next
hidden state based on the cell state.
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2.7.2 Mathematical Formulation

TheLSTMunit operates based on the following equations, defining the operations of the gates
and the update mechanism for the cell state:

ft = σ(Wf · [ht−1, xt] + bf) (Forget gate)

it = σ(Wi · [ht−1, xt] + bi) (Input gate)

C̃t = tanh(WC · [ht−1, xt] + bC) (Candidate cell state)

Ct = ft ∗ Ct−1 + it ∗ C̃t (Updated cell state)

ot = σ(Wo · [ht−1, xt] + bo) (Output gate)

ht = ot ∗ tanh(Ct) (Hidden state)

where:

• ft is the forget gate vector,

• it is the input gate vector,

• C̃t is the candidate cell state vector,

• Ct is the cell state vector,

• ot is the output gate vector,

• ht is the hidden state vector,

• Wf,Wi,WC,Wo are weight matrices,

• bf, bi, bC, bo are bias vectors,

• xt is the input vector at time step t,

• σ is the sigmoid activation function,

• tanh is the hyperbolic tangent activation function.
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2.7.3 LSTMAlgorithm

LSTM models are an advanced type of recurrent neural network. They are designed to effec-
tively handle data that occurs in a sequence by capturing long-term connections. They have
become a standard choice for many tasks involving modeling sequences and can identify ma-
chinery abnormalities by analyzing sensor data over time.

Algorithm 2.5 LSTMAlgorithm
Input: Input sequence X = {x1, x2, . . . , xT}, initial hidden state h0, initial cell state C0.
Output: Output sequenceH = {h1, h2, . . . , hT}.
1: Initialize h0 and C0 to zeros (or small random values).
2: for each time step t from 1 to T
3: Compute the forget gate:

ft = σ(Wf · [ht−1, xt] + bf)
4: Compute the input gate:

it = σ(Wi · [ht−1, xt] + bi)
5: Compute the candidate cell state:

C̃t = tanh(WC · [ht−1, xt] + bC)
6: Update the cell state:

Ct = ft ∗ Ct−1 + it ∗ C̃t
7: Compute the output gate:

ot = σ(Wo · [ht−1, xt] + bo)
8: Update the hidden state:

ht = ot ∗ tanh(Ct)
9: end for
10: return Output sequenceH = {h1, h2, . . . , hT}

34



3
Experimental Setup and Noise Mitigation

3.1 Experimental Setup and equipment

3.1.1 Introduction

Themain aim of this thesis is to study the impact of commonmode current noise on the CMS
Drift Tubes Phase 2 upgrade. Accurate measurement is vital in high-energy physics research
to ensure precise experimental findings. By minimizing and managing this type of electromag-
netic interference, we can improve the reliability andprecision ofmuondetection, which could
significantly impact high-energy physics research.

3.1.2 Cable Design and Configuration

Designing cabling systems for high-energy physics experiments requires a modular system ar-
chitecture offering several key advantages. First, modular systems provide flexibility, allowing
for easy upgrades and adjustments without extensive reconfiguration. This is particularly im-
portant in high-energy physics environments where experiments frequently change and may
require different setups over time. Modular systems make maintenance easier by quickly iden-
tifying and replacing faulty components. In places like CERN, where uptime and reliability
are crucial, quickly addressing issues without long downtimes is essential.

We carefully planned and implemented a structured cabling system in this experiment to
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ensure the best performance. Due to the systems’ complexity, meticulous planning and ex-
ecution were vital to maintain signal quality and ensure electromagnetic compatibility. We
used a modular system architecture, which provided the necessary flexibility to adapt to evolv-
ing experimental needs and made maintenance easier. This approach allowed us to select and
integrate each component, such as cables, connectors, and related hardware, with precision,
ensuring that each part was chosen for its optimal performance. By doing so, we were able to
maintain compatibility across the system andminimize potential signal issues, contributing to
the overall success of the experiment.

3.1.3 Common-Mode Currents on Cables

Cables must have common-mode currents by EMC rules. Various issues, including EMI, in-
correct cable designs, and grounding problems, can cause these currents. These issues can arise
from the large and complex cabling systems used in high-energy physics experiments such as
CMSdrift tube testing. Unwanted currents fromEMImight damage cable shielding and outer
conductors, and potential differences from incorrect grounding can result in common-mode
currents. Additionally, a system may be more susceptible to severe interference from unbal-
anced cable configurations that result in different current flows. Finding solutions to these
problems in key experimental settings is crucial to maintaining signal integrity and reducing
noise.

The adverse effects of common-mode currents can significantly impact high-energy physics
experiments. These effects include signal degradation leading to errors and data corruption,
common-mode currents acting as sources of EMI, and radiating noise affecting other equip-
ment and systems, leading to substantial losses.

In addition to causing overheating[34] and damage to cables and connectors, continuous
common-mode currents can shorten equipment lifespans and increase maintenance expenses.
These are issues that must be addressed. Solutions to common-mode current mitigation in-
clude improved cable design, adequate grounding and joining practices, and,most importantly,
more sophisticated signal processing techniques. Thesemethods are not just tools but essential
for identifying and eliminating common-mode noise and improving overall signal integrity in
complex cable systems. In EMC strategy, they are an indispensable component.
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3.1.4 Current Probes

A current probe is a precise tool for measuring the electrical current flowing through a con-
ductor without making direct contact or disrupting the circuit. These devices are crucial for
diagnosing and fixing electrical and electronic issues. The most common current probes in-
clude clamp meters, which measure current by clamping around a conductor using magnetic
induction or Hall effect sensors.

Currentprobes offernonintrusivemeasurement capabilities, ensuring the safety and integrity
of electrical systems. When choosing a current probe, the expected current range, frequency
bandwidth, measurement accuracy, and the physical constraints of the application environ-
mentmustbe considered to enhanceoperational safety. Oneof themost helpful pre-compliance
measurements is the commonmode current on all cables attached to the board.

The radiation from the cable is directly related to the common mode current on that cable.
Common mode current refers to an unbalanced current (current not returned) on the cable.
If this current is not returned to the cable, in the case of differential-mode signals, the current
flows down one wire of the cable and returns to an adjacent wire. As a result, the net current
is zero, and the common-mode radiation is eliminated.

Because cables are always a significant source of product radiation, measuring the common-
mode current is one of the most valuable tests for a clamp-on current probe Figure 3.1 and a
spectrum analyzer. The current probe [35]is about 2 3/4 in diameter and has a 1-in hole in the
center for the cable. The current has a flat frequency response from2 to 250MHz. The transfer
impedance of the current probe is 5 Ω (+14 dBΩ). Therefore, a 1 μA current will produce a
5 μV output from the current probe.

Most common-mode cable radiation occurs below 250MHz, making the bandwidth of the
F33-1 probe usually sufficient. Its frequency response, from 40 MHz to 1 GHz, allows for a
wide range of testing. The transfer impedance of the F-61 probe is 18 Ω (+25 dB Ω), meaning
a 1μA current will produce an 18μV output from the probe.

It’s crucial to measure the commonmode current for all cables. If this test fails, the radiated
emission test will also fail, emphasizing the significant role of common-mode current testing.
For class B products, the current must be precisely less than 5 μA (15 μA for a class A prod-
uct). These limits apply to cables that are 1 meter long or longer. For cables shorter than 1 m,
the allowable current is inversely proportional to the cable length, underscoring the process’s
precision. A μA is equivalent to 14 dBμA.
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Figure 3.1: A common‐mode current clamp.

Therefore, when measuring the current on the cable 1 m long or longer, the probe output
voltage, read on a spectrum analyzer, should be less than 28 dBμV for the cable missions to
pass theClass B limit. TheClass A product’s voltage reading should be less than 38 dBμv. This
technique is not limited to specific cable types butworks equallywell on shielded or unshielded
cables. It’s a versatile tool that can determine the effectiveness of cable shield termination. The
current probe measurement will indicate their effectiveness.

3.1.4.1 Test Pocedure

In this study, we utilized current probes to measure the current flowing through conductors
without direct contact. These probes detect the magnetic field produced by the current and
convert it into a measurable voltage. We employed both Class A and Class B current probes to
ensure comprehensive testing and reliable results.

Class A current probes were used for high-performance applications requiring precise and
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sensitive current measurements across a wide frequency range, typically from a few kilohertz
(kHz) to several gigahertz (GHz). These probes are highly sensitive and can accurately detect
low current levels, critical for identifying tiny emissions that could negatively impact electronic
performance. With their exceptional linearity, dynamic range, and noise immunity, Class A
probes are ideal for professional test facilities andmanufacturers needing tomeet stringent reg-
ulatory standards. In our experiment, we utilizedClass A probes for thorough emission testing
and analysis, as they provided the precision necessary to evaluate our devices comprehensively.
Conversely, Class B current probes are recommended for general-purpose use, with lower

frequency ranges and sensitivity requirements. These probes are suitable for initial compliance
checks, internal pre-compliance testing, and instructional purposes, though they lack the sensi-
tivity ofClass A probes. We employedClass B probes for our preliminary testing requirements,
recognizing that they offer a cost-effective alternative with less precision than Class A probes.
The choice of current probes significantly impacted the testing results. Class A probes, with

their higher sensitivity and broader frequency range, were preferred for their ability to identify
low-level emissions, ensuring regulatory compliance accurately. In contrast, Class B probes
provided a more economical solution with reduced precision.
During this research, I aimed to reduce the common-mode current on each cable to less than

5 μA (15 μA for a Class A product). A critical challenge I encountered was the interaction
between cables, where reducing the common-mode current on one cable could inadvertently
increase it on another. This potential interaction required careful consideration.
To address this, I measured the current on each cable individually using a common-mode

current clamp. I employed common-mode filters, ferrite chokes, and cable shields to reduce
the current below the required limit. After adjusting one cable, I proceeded to the next and
repeated the process. Once all cables were addressed, I rechecked the currents, as they might
have increased on previously adjusted cables. This iterative process continued until the current
on each cable was under the limit. Sometimes, I had to repeat the process two or three times
per cable. Ultimately, I reduced the current on each cable to under 5 μA (15 μA for a Class A
device), thereby eliminating the radiated emission problem.
Cables can radiate energy coupled to them from the product and also pick up energy from

external sources. To validate the common-mode current measurement, I conducted a simple
test by turning off the electronic system and checking if the signal read zero. If any signal re-
mained, it indicated external pickup. Standingwaves were present on the cables under test, and
I used various techniques, such as moving the current probe along the cable, to directly detect
the maximum. At frequencies above 30 MHz, the current probe was moved approximately
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one meter (an arm’s length) to locate the maximum.
The iterative process of current reduction was crucial in ensuring that all potential sources

of electromagnetic interference were addressed. By carefully monitoring and adjusting each
cable, I was able to systematically minimize interference across the entire system. This method
ensured compliance with regulatory standards and enhanced the electronic system’s overall sta-
bility and performance.

3.2 Procedure forNoiseMeasurement

3.2.1 SpectrumAnalyzer

Electromagnetic compatibility (EMC) testing is important for making sure that electronic de-
vices are not affected by electromagnetic interference. The spectrum analyzer is an important
tool in these tests since it compares the amplitude of an input signal vs frequency across the
instrument’s whole frequency range. Spectrum analyzers show us the frequency (horizontal
axis) and strength (vertical axis) of signals, helping us to find, study, and control electromag-
netic interference.

Inmy research, the spectrum analyzer played a pivotal role in evaluating the electromagnetic
emissions of electronic components, particularly in the context ofCMSdrift tubesused inhigh-
energy physics experiments. In my research, the spectrum analyzer was crucial for evaluating
the electromagnetic emissions of electronic components, especially in the context ofCMSdrift
tubes used in high-energy physics experiments.

The spectrum analyzer’s [35] ability tomeasure frequencies up to at least 1 GHzwas crucial
for our comprehensive analysis. This wide frequency range allowed for detecting low and high-
frequency noise sources that could interferewith our devices’ proper functioning. The device’s
max-holdmode proved valuable, enabling continuousmonitoring and recording of peak signal
amplitudes over extended periods.

This function was important because it helped capture signals that might have been missed
during a single sweep, giving abetter overall picture of the emissions. The50Ωinput impedance
ensured that our standard measurement setups worked well, reducing reflections and main-
taining the accuracy of our measurements. The spectrum analyzer had both peak and average
detector functions. We used the peak detector for most of our initial measurements, which
provided a conservative estimation of emission levels.

However, we also used peak and average detectors to assess emission characteristics for con-
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ducted emission measurements thoroughly. Although a quasi-peak detector is often used for
compliance testing due to its ability to weigh signals based on their pulse repetition rates, we
mainly relied on peak and average detectors for initial testing. This allowed us to balance thor-
oughness with practical considerations, as peak and average detectors were enough to identify
significant emissions and guide our efforts to reduce them.

Figure 3.2: Spectrum analyzer used in identifying and quantifying common mode current noise.

My research focused on finding and fixing specific noise frequencies that caused common-
mode current and other interference problems. I used a spectrum analyzer to locate these trou-
blesome frequencies accurately. I tested various ways to reduce the interference, such as using
ferrite chokes, and shielding the cables. Each time I tried a new method, I used the spectrum
analyzer to check that it worked. The max-hold function on the analyzer helped capture occa-
sional noise events, ensuring I didn’t miss any major sources of interference.
We used the spectrum analyzer to confirm that our noise reduction strategies were effective.

By turning off the electronic system and checking for any remaining signals, we could deter-
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mine if they were caused by external noise or issues within our setup. This validation step was
important for confirming that our interventions worked.
The spectrum analyzer is an important tool in our EMC testing. Its wide frequency range,

max-hold mode, and dual detector functions enable us to accurately measure and analyze elec-
tromagnetic emissions, helping us ensure the reliability of our electronic components.

3.2.1.1 Test Procedure

In our research, we used advanced measurement tools, such as spectrum analyzers, to meet
EMC standards and ensure that our electronic systems perform effectively. I continued this
iterative process until all the cables’ currents were under the limit. I had to go through the
process two or three times on each cable. When I finished, the current on each cable was un-
der 5μA (15μA for a Class A device), and the cables no longer presented a radiated emission
problem. Cables radiate energy coupled to them from the product and pick up energy from ex-
ternal sources. I did a simple validation test for common-mode current measurement, turning
the electronic system off and trying to determine if the signal read zero. If it remained, it was
due to external pickup. Standing waves existed on the cables under test. Some actions, such as
moving the current probe along the cable, directly detected the location of the maximum. At
frequencies above 30MHz, only the current probe was moved about a meter (an arm’s length)
to detect the maximum.

3.3 NoiseDataAcquisitionandAnalysisTechniques

3.3.1 Data Acquisition

Data is crucial for understanding and addressing noise in the CMS Drift Tubes Phase 2 up-
grade. The main goal is to collect accurate noise data to help identify and reduce common
mode current (CMC) noise in the cabling system. We used an advanced data collection system
(DAQ) to handle the precise data needed for our experiments. TheDAQ system included high-
resolution converters to accurately convert analog signals from various sensors and probes into
digital signals. We used special current probes to measure common mode currents and volt-
age probes to capture the associated voltage signals. Additionally, we placed environmental
sensors to track and record factors such as temperature and humidity, which could impact the
measurements.
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Figure 3.3: high‐voltage power supply and data acquisition equipment.
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We carefully calibrated all sensors, probes, and theDAQ system to ensure themeasurements
are accurate and reliable before collecting data. Each DAQ channel was set up to match the in-
put signals from the probes, and we adjusted the sampling rate to capture the full frequency
spectrum of the noise. This helps prevent aliasing by following the Nyquis standard. We
used both continuous and triggered methods to collect data. Continuous collection helped
us gather data over long periods, capturing steady noise. Triggered collection targeted sudden
noise events and situations that required precise timing. We made sure to log data carefully to
avoid losing any, and we stored the data in multiple places to keep it safe.3.3
Before digitizing the signals, we applied basic filtering techniques to remove unwanted fre-

quency components. We then adjusted the signals to match the input range of the ADCs for
optimal resolution and accuracy. To ensure compatibility with analysis software, we stored the
data in standard file formats such as CSV and txt.
Weneeded to keep the environmental conditions consistent during experiments tominimize

variability in the noise data. We used electromagnetic shielding to prevent external interference
from affecting the DAQ system and sensors and potentially distorting the results. The high-
resolution ADCs in the DAQ system allowed us to capture even the smallest signal variations
accurately.
We made sure to acquire data at a rate at least twice the highest frequency of interest. In

some cases, we even gathered more data than required. This allowed us to collect high-quality,
reliable noise data that gave us valuable insights into the characteristics of CMCnoise affecting
the CMS Drift Tubes cabling. By performing detailed measurements and analysis, we devel-
oped effective noise reduction strategies, which improved the performance and reliability of
the CMS detector system.

3.3.2 Noise Data Analysis Methods

In our research, we carefully analyzed the noise data collected from the CMS Drift Tubes to
identify and address any potential issues that could interfere with their performance. First, we
processed the rawdata to filter out irrelevant noise and focus on the frequencies that could pose
a risk. By converting the data into a frequency format, we could easily spot the critical noise
frequencies and understand how they might affect the system. We also examined the data over
time to identify sudden noise spikes that could disrupt operations.

After identifying the primary noise sources, we tested various methods to reduce or elimi-
nate these issues. We measured the noise levels again after applying these solutions to see their
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effectiveness. This analysis showed that our strategies significantly reduced the noise, especially
at the most critical frequencies, which helped improve the overall reliability of the CMS Drift
Tubes.

3.4 Noise Reduction Strategies

3.4.1 Shielding Techniques

Shielding is an important way to reduce electromagnetic interference. It involves techniques
around cables and essential components to stop outside noise fromaffecting themeasurements.
These techniques reflect or absorb electromagnetic waves, thus protecting the signal’s integrity.

A shield is ametal barrier that controls the spread of electromagnetic fields between different
areas. It’s used to contain electromagnetic fields and protect equipment outside the shield. A
shield can also block electromagnetic radiation from entering a specific area. Regarding overall
system efficiency, it’s better to shield the source of noise rather than the receiver.

When making a shield, it’s important to prevent electromagnetic energy from entering or
exiting through cable penetrations. Cables can pick up and transfer noise from one side of
the shield to the other. To maintain the shielded enclosure’s integrity, it’s crucial to filter out
noise voltages from all cables that enter the shield. This applies to both power and signal cables.
Additionally, cable shields penetrating a shielded enclosure should be bonded to the enclosure
to prevent noise coupling across the boundary.

3.4.1.1 Near Fields And Far Fields

The space around a radiation source is divided into two distinct regions: the near field and the
far field. The boundary between these regions is typically defined by a distance of λ/2π from
the source, whereλ is thewavelengthof the emitted radiation. The characteristics of these fields
are determined by several factors, including the source (such as an antenna), the surrounding
medium, and the distance from the source to the point of measurement.

In the near field, the parameters of the electromagnetic field are predominantly influenced
by the source’s characteristics. When the near field is primarilymagnetic, it typically indicates a
source with low voltage and high current, where the ratio of the electric field E to themagnetic
fieldH is less than 377 ohms

( E
H < 377

)
. Conversely, when the near field is primarily electric,

the source tends to have high voltage and low current, with anE/H ratio greater than 377 ohms( E
H > 377

)
. As the distance from the source increases, the impedance of thenear field gradually
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transitions towards the impedance of free space, which is 377 ohms, marking the beginning of
the far field.
Thewave impedance of amagnetic field, such as that producedby a loop antenna, is lownear

the antenna and increases with distance. In the near field, the electric field strength decreases at
a rate of 1/r2, while themagnetic field strength diminishesmore rapidly at a rate of 1/r3. In the
far field, the electric and magnetic fields decrease at a rate of 1/r, forming a plane wave with a
constant impedance of 377 ohms. The wave impedance is the ratio of the electric field E to the
magnetic fieldH. In the far field, this ratio equals the characteristic impedance of the medium,
which, for air or free space, is Z0 = 377 ohms.

Thefield’s behavior in the far field is significantly influencedby theproperties of themedium,
affecting both the electric and magnetic components of the wave. Electric and magnetic fields
are generally more significant in the near field, while plane waves, characterized by a constant
wave impedance, are a feature of the far field.

3.4.1.2 Shielding Effectiveness in Electromagnetic Fields

When evaluating howwell a material blocks electromagnetic fields, it’s important to consider a
few things: the material’s properties, howmuch it reduces electric andmagnetic field strength,
and how its shape and the frequency of the fields affect its effectiveness. Shielding effective-
ness is usually measured in decibels (dB), which show how well the material reduces the field
strength. This reduction is described by the shielding effectiveness (S) for electric fields from
E0 to E1, and magnetic fields fromH0 toH1:

S = 20 log
(
E0

E1

)
dB

S = 20 log
(
H0

H1

)
dB

Creating a shielded enclosure involves two main factors: the shielding effectiveness of the
material used and the impact of any openings or gaps. The first factor provides the baseline per-
formance, while the second factor can greatly affect effectiveness, especially at high frequencies.
Shielding effectiveness depends on several different factors:

• Geometry of the Shield: The shape and size of the shield influence howwell it reduces
incident fields.

• Frequency: Higher frequencies generally require higher conductivity and permeability
materials to maintain effectiveness.

46



• Position within the Shield: The field’s measurement location inside the shield can
show variations in effectiveness.

• Type of Field: Different strategies may be necessary for shielding electric fields versus
magnetic fields.

• Angle of Incidence and Polarization: The direction and nature of the incident wave
can affect shielding performance.

3.4.1.3 Absorption and Reflection Losses

When assessing how well a solid material without openings can block radiation (S), it’s impor-
tant to consider howmuch is absorbed (A), howmuch is reflected (R), and a correction factor
for multiple reflections (B). The total shielding effectiveness is calculated by combining these
factors:

S = A+ R+ B dB

When an electromagnetic wave passes through a material, it loses energy due to heat and
other factors within thematerial. The relationship between the initial and final field intensities,
considering absorption, is given by:

E1 = E0e−t/δ

H1 = H0e−t/δ

Here, δ represents the skin depth:

δ =

√
2
ωμσ

Different materials like copper, aluminum, steel, and mumetal absorb electromagnetic en-
ergy differently due to their different skin depths. For example, copper is less effective at higher
frequencies and needs to be thicker to shield effectively at lower frequencies. The shielding
effectiveness against electromagnetic interference depends on the shield’s material, frequency,
and construction.
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3.4.1.4 Reflection Loss in Electromagnetic Shielding

When an electromagnetic wave encounters a boundary between two materials with different
characteristic impedances, some of the wave is reflected back. This reflection loss is important
for effective electromagnetic shielding. The intensity of the transmitted wave for electric and
magnetic fields (E1 andH1) can be expressed as:

E1 =
2Z2

Z1 + Z2
E0

H1 =
2Z2

Z1 + Z2
H0

The reflection lossR is given by:

R = 20 log
(
E0

E1

)
= 20 log

(
Z0

Zs

)
This indicates that reflection loss is more significant at lower frequencies and for materi-

als with higher conductivity. In the near field, reflection loss depends on the source’s char-
acteristics. For point sources, reflection loss can be calculated using specific formulas based
on the source’s distance to the shield and the wave impedance. The frequency of the wave,
the impedance of the materials, and the distance from the source all contribute to the over-
all outcome. Copper and aluminum, which are highly conductive materials, reflect loss more
effectively at higher frequencies. Therefore, reflection loss plays a crucial role in determining
electromagnetic shielding efficiency.

3.4.1.5 Effective shielded cabling in the CMSDrift Tubes

I used shielded cables to reduce electromagnetic interference and protect sensitive equipment
in the experiment. The results demonstrated that the shielded cables effectively blocked or
absorbed electromagnetic waves, significantly reducing unwanted noise in the measurements.
In addition, I found that the effectiveness of the shielding was influenced by factors such as the
material of the shield, the frequency of the electromagnetic waves, and the positioning of the
cables within the shielded area. Overall, the experiment confirmed that using shielded cables
can greatly enhance system efficiency by effectively targeting the noise source rather than just
shielding the receiver.

48



3.5 Grounding

Grounding is crucial for connecting electronic devices and reducing unwanted noise to ensure
system reliability. In my experiment, especially with the CMS Drift Tubes’ cabling systems, a
well-designed grounding system is important for reducing interference and protecting sensitive
equipment. By focusing on effective grounding techniques, my goal was to enhance electro-
magnetic compatibility (EMC) and ensure accurate signal transmission, particularly in high-
frequency environments.

Grounding can be categorized into two main types: safety grounding, which protects per-
sonnel and equipment from electrical hazards, and signal grounding, which serves as a return
path for signal and power currents. In my experiment, I concentrated on signal grounding to
reduce noise and improve the system’s performance.

3.5.1 Effective Grounding Techniques in the CMSDrift Tubes

In the experiment, single-point grounding was used for lower frequencies, ensuring each com-
ponenthad a single ground reference,which reducedground loops andminimized low-frequency
noise. For high-frequency applications, multipoint grounding was employed by connecting
multiple ground points to a single ground plane. This approach minimized loop areas, de-
creased impedance in ground return paths, and reduced the potential for radiated emissions.

Shielded cables with properly grounded shields were crucial in this experiment, as they pro-
vided a continuous path for noise to return to the ground, preventing the formation of com-
mon mode currents and reducing overall noise levels. The CMS Drift Tubes were designed
with multiple grounding points connected to a single ground plane, which helped dissipate
high-frequency noise and create low-impedance ground return paths.

Throughout the experiment, grounding techniques were carefully tested and adjusted to
optimize noise reduction. By fine-tuning the positions and connections of grounding points,
a significant reduction in common mode current noise was achieved, thereby enhancing the
signals’ reliability and accuracy. These results demonstrate the importanceofproper grounding
in maintaining complex electronic systems’ overall performance and reliability.
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4
Analysis of CommonMode Current Noise

in CMSDrift Tube Cabling

4.1 Introduction

TheCMSDrift Tubes are crucial for trackingmuons in theCMSdetector at the LargeHadron
Collider. However, the performance of these detectors can be significantly affected by com-
mon mode current noise, particularly in the cabling infrastructure, which can create false sig-
nals. This chapter analyzes commonmodenoise using signal processing and advancedmachine
learning techniques. The goal is to identify, describe, and reduce the impact of noise on the
Drift Tubes, with a specific focus on maintaining optimal performance during the Phase 2
Upgrade.

4.2 Data Collection and Preprocessing

This study gathered data from field measurements to observe the electrical signals transmitted
through the cabling of the CMS Drift Tubes. Our main objective was to identify and ana-
lyze noise events, particularly those that could potentially degrade signal quality. The initial
step involved decoding the raw data. This decoding process extracted essential features such as
channel ID, bunch crossing, orbit count, and fine Time-to-Digital Converter (TDC) values,
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making it ready for further analysis.

We created three important plots from the decoded data to fully understand the noise char-
acteristics and how they affect the signal quality. These include theOC value distribution plot,
the TDCvalue distribution plot, and the BX value distribution plot. Each plot gives us unique
insights into different aspects of the collected data.

• Orbit Count(OC) Value Distribution Plot(Unshielded Low Threshold Dataset):
TheOrbitCount (OC) value distribution plot graph shows the number of hits recorded
at different orbit counts across various channels. This graph is important for identify-
ing noise. Any significant deviations or anomalies, like spikes at specific OC values, can
indicate the presence of noise or electronic interference. If a channel shows a dispro-
portionately high number of hits at certain orbit counts, it suggests that noise might be
artificially increasing the hit count. This can make it harder to accurately reconstruct
muon paths and obscure real signals, degrading the overall data quality. In Figure 4.1,
please display the spike and confirm the presence of the noise.
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Figure 4.1: Orbit Count(OC) Value Distribution Plot(Unshielded Low Threshold Dataset).

• TimeToDigital(TDC)ValueDistributionPlot(UnshieldedLowThresholdDataset):
The Time-to-Digital Converter (TDC) value distribution plot, figure 4.2 shows us the
exact timing of signals as they pass through the cables. A good TDC plot will have clear,
distinct peaks that match the expected timing intervals. However, if the plot shows a
more erratic distribution with toomuch variation ormultiple peaks, it means that there
is interference affecting the timing measurements. This interference can cause signal
timing changes, leading to inaccuracies in muon tracking and ultimately affecting the
detector’s performance.
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Figure 4.2: Time To Digital(TDC) Value Distribution Plot(Unshielded Low Threshold Dataset).

• BunchCrossing(BX)ValueDistributionPlot(UnshieldedLowThresholdDataset):

The Bunch Crossing (BX) value distribution plot, figure 4.3 shows the uniformity of
hits recorded across different bunch crossings. Ideally, the graph should be mostly flat,
showing that hits are spread out evenly across all bunch crossings. This indicates reliable
and unbiased detection. If the graph shows significant variations or trends, like certain
bunch crossings consistently having higher or lower hit counts, it could mean synchro-
nization issues are affecting the timing of event detection. These irregularities can lead
to data collection biases and affect muon tracking accuracy.
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Figure 4.3: Bunch Crossing(BX) Value Distribution Plot(Unshielded Low Threshold Dataset).

Our study used four different cable setups for our research:

• UnshieldedwithHighThreshold: This configuration tested the system’s performance
under conditions where cables were not shielded, and a high detection threshold was
applied. The purposewas to understand howmuchnoisewas present in an unprotected
setup when less sensitive to smaller noise signals.

• Short Cable: A shorter cable was employed to evaluate the effect of cable length on
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noise propagation. This setup helped identify whether shorter cables reduce noise due
to shorter transmission paths.

• Unshielded with LowThreshold: Similar to the first setup but with a lower threshold,
this configuration was used to capture and analyze more subtle noise events that might
be missed at higher thresholds.

• Shielded: Shielded cables were used to assess the effectiveness of shielding in reducing
noise, particularly in the context of common mode currents that can induce unwanted
signals.

The noise from commonmode currents in each setup was tested and analyzed to determine
the impact of different cable setups on the noise levels in the CMSDrift Tubes.

In addition to these practical setups, advanced signal processing techniques were used to
improve our analysis further:

• Fast Fourier Transform (FFT):The Fast Fourier Transform (FFT) was used to convert
the time-domain signals into the frequencydomain. Thismethod enabledus toprecisely
identify and characterize the dominant noise frequencies in the system. This transfor-
mation was imperative for isolating specific noise sources, including those originating
from power line interference or other electromagnetic disturbances.

• Machine Learning and deep learning Models for Noise Prediction: Machine learn-
ing and deep learningmodels were explicitly used in Long Short-TermMemory (LSTM)
networks to detect better and classify common mode current noise in the CMS Drift
Tubes cabling. This approach helps us identify noise patterns more accurately, improve
noise management, and ensure the reliable operation of CMS Drift Tubes during criti-
cal phases.

4.3 FrequencyAnalysisAcrossDifferentCableCon-
figurations

The analysis of common mode current noise across the four cable setups (Unshielded with
High Threshold, Short Cable, Unshielded with Low Threshold, and Shielded) showed that
each setup had different levels of noise and frequencies. This demonstrates how different cable
setups can affect the suppression of noise.
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4.3.1 Shielded and Short Cable Data Setup

The Shielded setup had more high-frequency noise, with the strongest peak at 748.64 Hz for
channel 224. This means that while shielding reduces lower-frequency noise, it may still let
higher-frequency components, possibly from outside electromagnetic interference or internal
cable resonance, remain. Other significant frequencies in the Shielded data included 173.40
Hz for channel 228 and various lower frequencies (ranging from 29.65Hz to 66.63Hz) across
different channels. These findings show that the Shielded setup captures a wide range of noise,
from low to high frequencies, effectively separating noise sources but not eliminating higher
frequency disturbances.

On the other hand, the ShortCable setup displayed a prominent peak at 292.76Hz for chan-
nel 224, which is lower than the peak in the Shielded setup. This implies that using shorter
cables in the Short Cable setupmay reduce high-frequency noise, although it doesn’t eliminate
it. Most other channels in this setup had frequencies between 29.60Hz and 39.98Hz, indicat-
ing that short cables mainly pick up lower-frequency noise. These frequencies are depicted in
Figure ??.
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Figure 4.4: 3D Bar Plot Comparing Channel Frequencies for Shielded and Short Cable Data Configurations.

4.3.2 Low andHigh Threshold Unshielded Data Setup

The frequency analysis of the Low Threshold and High Threshold data reveals a contrast-
ing distribution of noise frequencies between the two configurations. In the Low Threshold
setup, the system exhibited significant sensitivity to a broad range of noise frequencies, with
notable peaks at 581.50 Hz and 572.50 Hz on channels 158 and 161, respectively. The high-
est recorded frequency was 1229.50 Hz on channel 167, indicating that lowering the detec-
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tion threshold increases the system’s sensitivity to a broader array of noise, including higher
frequency components. Conversely, the High Threshold data primarily captured lower fre-
quency noise, with the highest frequency recorded at 20.56 Hz on channel 207. This sug-
gests that the High Threshold setting effectively filters out most noise, particularly the high-
frequency components. However, it may also miss subtle noise signals due to its selective na-
ture. Consequently, TheHighThreshold configuration reduces interference fromminor noise
events, but it may miss lower amplitude noise that could affect the CMS Drift Tubes’ perfor-
mance during critical operations. These frequencies are depicted in Figure 4.5.
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Figure 4.5: 3D Bar Plot Comparing Channel Frequencies for Low and High Threshold Data Configurations.

The analysis of different cable setups shows that each one affects noise differently. Shielded
cables reduce low-frequencynoise butmay still let high-frequencynoise throughdue to outside
interference. Shorter cables reduce high-frequency noise butmainly pick up lower frequencies.
Unshielded setups with low thresholds detect a wider range of frequencies, including higher
ones. On the other hand, high thresholds filter out most noise but may also miss subtle signals.
These findings highlight the importance of choosing the right cables and thresholds to reduce
noise effectively in the CMSDrift Tubes.
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4.4 Multifaceted Time-Series Analysis

The time-series analysis was investigated common mode noise’s temporal and spectral charac-
teristics across four datasets. Advanced signal processing techniques were employed, includ-
ing the Fast Fourier Transform (FFT) to identify dominant noise frequencies, the Short-Time
Fourier Transform (STFT) to analyze frequency evolution, and autocorrelation to assess peri-
odicity and self-similarity. Inter-arrival time distributions were also examined to understand
the temporal clustering of noise events. Together, these methods provided a comprehensive
understanding of the noise processes, allowing us to identify potential interference sources and
their impact on the CMSDrift Tubes.

Each dataset was loaded into a data frame, with channels selected based on their relevance
to the noise study (channels 158-169 and 204-207 in two datasets and 223-239 in the others).
The ’absolute timing’ data was used with a consistent time resolution of 50 microseconds, or-
ganizing the timestamps into time series representing event counts in equally spaced intervals.
This data was then analyzed using FFT to identify key frequency components in the noise, and
the results were plotted to detect critical peaks indicating external interference.

Additional techniques were applied to enhance the analysis. Inter-arrival times between
events were calculated to reveal timing patterns and clustering. STFT was used to capture the
frequency content over time, generating spectrograms that showed how the noise profile var-
ied during the recordings. Autocorrelation was used to examine the temporal structure and
randomness of the noise, with plots visualizing recurring patterns or behaviors.

4.4.1 Dataset1:Shielded Analysis

4.4.1.1 FFT Analysis for Shielded Dataset

The frequency spectrum (FFT) for channels 224 through 227 shows distinct characteristics.
Channel 224 displays a wider frequency range with higher magnitudes at low frequencies,
which supports noise observation. Noise often consists of dominant low-frequency compo-
nents. Channels 225 and 226 have a consistent signal with less noise, distributing power evenly
across frequencies. However, Channel 227 has the least power in the lower frequencies, sug-
gesting it is the least noisy of the four channels. Channel 224 has more low-frequency compo-
nents, which correlate with irregular event patterns in the inter-arrival times, indicating that
this channel is noisier. Figure 4.6 shows these changes.
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Figure 4.6: Time Series and Frequency Spectrum Analysis for Channels 224 to 227 (shielded).

Figure 4.7, The FFT method analysis shows that Channel 228 has a wider and stronger fre-
quency spectrum, indicating the presence of significant noise. This broad spectrum is charac-
teristic of a noisier signal, where the energy is spread across a wider range of frequencies. In
contrast, Channels 229 and 231 have spikes in their FFT plots, but they are more isolated and
focused than Channel 228. These spikes show that these channels have specific high-energy
frequency components, which could represent periodic signals or recurring artifacts. On the
other hand, Channel 230 has a more even frequency distribution with no significant spikes,
suggesting a stable and consistent signal without dominant periodic components.
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Figure 4.7: Time Series and Frequency Spectrum Analysis for Channels 228 to 231 (shielded).

In the FFT analysis, Channel 232 appears to be the most noisy, with a broader frequency
spectrum indicating significant noise. The energy is spread across a wider range of frequencies,
characteristic of a noisier signal. Channel 233 also shows some noise but is slightly more con-
centrated, suggesting less energy dispersion than Channel 232. Channel 234 has a spike with
high magnitude at a specific frequency, indicating a dominant periodic component or artifact
in the signal. Channel 235, while generally stable, shows a narrower frequency distribution
with some noise present, but less than in Channel 233. Figure 4.8 shows these changes.
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Figure 4.8: Time Series and Frequency Spectrum Analysis for Channels 232 to 235 (shielded).

In the FFT analysis, Channel 237 appears to be themost noisy, with a broader andmore pro-
nounced frequency spectrum that indicates significant low-frequency noise. The energy is dis-
persed across a wide range of frequencies, a characteristic of noisier signals. Channels 239,238
show a notable spike with high magnitude at a specific frequency, suggesting the presence of
a strong periodic component or artifact in the signal. Channel 236 also displays some noise,
with energy slightly spread across lower frequencies but less pronounced than in Channel 237.
Figure 4.9 shows these changes.
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Figure 4.9: Time Series and Frequency Spectrum Analysis for Channels 236 to 239 (shielded).

The analysis of Channels 224 to 239 in the shielded dataset using FFT shows a strong domi-
nance of low frequencies, indicating stable processeswithminimal high-frequencynoise. How-
ever, Channels 224, 228, and 234 show higher noise or irregularities.

4.4.1.2 Inter-Arrival Times Analysis for Shielded Dataset

In figure ??, The inter-arrival time histograms for channels 224 to 227 exhibit a typical expo-
nential decay, indicative of a Poisson process common in stochastic signal processes. Channel
224 shows higher density at very low time intervals, suggesting that it is more prone to noise,
potentially due to an increased rate of spurious events or artifacts. Channels 225 and 226 fol-
low a similar pattern but with slightly lower densities, indicating less frequent noise. Channel
227 presents the cleanest pattern, with the inter-arrival timesmore spread out, implying amore
stable and less noisy signal. A sharp peak at lower intervals in Channel 224 suggests it may be
more susceptible to bursty noise, where many events are clustered closely in time.
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Figure 4.10: Inter‐arrival Times Analysis for Shielded Dataset.

The inter-arrival timehistograms showa typical exponential decay for all channels, butChan-
nel 228’s histogramhas a higher density at lower intervals, reflecting its noisiness. Channels 229
and 231 display more spread-out inter-arrival times, corresponding to their spiky nature in the
frequency domain.
The inter-arrival time histograms in Channel 232 show a higher density at shorter intervals,

indicating more frequent noise events. At the same time, Channel 234 exhibits more spread-
out intervals due to its dominant periodic component.
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The inter-arrival time histograms reveal that Channel 237 has a higher density at shorter
intervals. Channels 239 and238 showmore spread-out intervals, corresponding to theperiodic
components observed earlier. Channel 236 exhibits a similar pattern to 237 butwith a little less
density than 237, indicating fewer noise-induced events.

4.4.1.3 Auto Correlation Analysis for Shielded Dataset

On Channel 224 figure??, the autocorrelation function is broader and more diverse, suggest-
ing the presence of periodic noise or irregularities in the signal. Channels 225 and 226 have
sharper peaks at zero lag, indicating more consistent signals. Channel 227 has the sharpest and
most defined peak, suggesting the least noise or periodic disturbances. Channels 228 and 232
show broad peaks in their autocorrelation plots, indicating periodic noise or signal irregulari-
ties. Channel 234 has a sharp peak, suggesting amore consistent signal with occasional external
noise.

The autocorrelation plot for Channel 228 exhibits a broader peak, indicating periodic noise
or irregularities in the signal. This aligns with the noisy characteristics observed in the FFT and
STFTanalyses. Channels 229 and231, however, show sharper peakswith additional secondary
peaks, suggesting the presence of recurring patterns or spikeswithin the signal, correlatingwith
the high-magnitude spikes seen in their FFT and STFT analyses. Channel 230 has a sharp
autocorrelation peakwithminimal side lobes, indicating amore consistent and less noisy signal.

The autocorrelation plot for Channel 232 displays a broader peak, indicating periodic noise
or irregularities in the signal. This is consistent with the noisiness observed in the FFT and
STFT analyses. Channel 233 also shows a broader peak but is slightly sharper than Channel
232, suggesting some regularity despite the noise. Channel 234 has a sharp peak in its autocor-
relation plot, corresponding to the strong periodic component identified in the FFT and STFT
analyses. Channel 235 shows a sharp autocorrelation peak.
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Figure 4.11: Auto‐Correlation for Shielded Analysis.

Moreover,Channel 237 shows abroader autocorrelationpeak,which suggests periodicnoise
or irregularities, consistent with its noisiness observed in the FFT and STFT analyses. Chan-
nels 239 and 238 display sharp peaks in their autocorrelation plots, indicating strong periodic
components aligning with the spikes observed in the FFT and STFT.
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4.4.1.4 Short-Time Fourier Transform (STFT) for Shielded Dataset

The spectrograms for these channels showhow the frequencies change over time. Channel 224
displays higher intensity across the spectrogram, particularly in the lower frequencies, which
matches the findings of the previous FFT analysis and indicates that it is noisy. The sudden
spike in energy observed in Channel 234 suggests a sudden burst of energy, possibly caused
by external interference. Channels 225 to 227 exhibit more consistent spectrograms with less
variation over time, indicating more stable signals.

The STFT spectrograms for these channels further support the FFT findings. Channel 228
shows a higher intensity across the time-frequency domain, particularly at lower frequencies,
which aligns with the observation of a noisier signal in the FFT analysis. Channels 229 and 230
display more uniform and less intense spectrograms. Channels 229, 230, and 231, prominent
vertical lines in these spectrograms correspond to specific frequencies with highmagnitudes, as
noted in the FFT analysis. These vertical lines suggest that these channels have strong, consis-
tent frequency components, which could be due to periodic signals or artifacts.

The STFT spectrograms support the findings from the FFT analysis. Channel 232 shows
high intensity across time and frequency, especially in the lower frequencies, confirming that
it’s noisy. Channel 234’s spectrogram reveals a prominent vertical line corresponding to the
high-magnitude spike in the FFT, indicating a strong and consistent frequency component
over time. Channel 233 and 235, with a more uniform and less intense spectrogram with less
noise.
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Figure 4.12: STFT analysis for the shielded analysis.

The STFT spectrograms support the findings from the FFT analysis. Channel 237 shows
high intensity across the time-frequency domain, particularly in the lower frequencies. The
Channels 239 and 238 spectrograms reveal prominent vertical lines corresponding to the high-
magnitude spikes seen in the FFT, suggesting strong and consistent frequency components
over time. Channel 236 has amoderate intensity in its spectrogram, indicating some noise, but
this is less than Channel 237. The spectrogram of Channels is more stable overall, with less
variation. Figure 4.12 shows these analyses.
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4.4.1.5 ConclusionandCorrelationof ShieldedDatasetWithSpectrumAn-
alyzer Findings

Based onour analysis, Channels 224, 228, 232, 234, and 235have been identified as the noisiest.
Channel 224 is the most affected, showing broad frequency components, high-intensity spec-
trograms, and irregular autocorrelation. Similarly, Channel 228 exhibits high noise, especially
in the low-frequency range. Following this, Channel 232 displays broad autocorrelation peaks
and dispersed frequency energy, confirming its classification as noisy. Channel 234, while gen-
erally less noisy, exhibits a distinct spike in the frequency domain, likely due to external interfer-
ence, suggesting a strong but isolated artifact. Channel 235 also shows notable noise, though
less than other Channels. The analyses show low-frequency noise, periodic components, and
external interference are the main factors affecting signal stability across these channels.

Figure 4.13: spectrom analyzer for the Shielded Analysis.

The spikes observed at 198 MHz and 462 MHz in the spectrogram analyzer closely match
the periodic components identified in the FFT analyses of Channels 234, 239, and 238. These
channels displayed similar spikes in their frequency patterns, indicating that they could be par-
ticularly affected by outside noise or interference at these specific frequencies. This suggests a
strong correlation between the spikes in the spectrogram and the noise detected in these chan-
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nels, pointing to external electromagnetic interference that the shieldingmay not fullymitigate.

The spectrogramshows ahighbackgroundnoise level in the lower frequencies, whichmatches
Channels 224, 228, and 232 findings. These channels all had significant low-frequency noise
issues. The consistent interference across multiple channels suggests that a common external
noise source affects the overall signal quality. The spectrogram analysis further confirms this.

The experiment’s use of shielded cables or equipment has led to spikes and elevated noise
levels in the spectrogram and channel data. These issues indicate that the current shielding
may be ineffective, especially at 198 and 462 MHz frequencies. The data shows that certain
frequencies are more likely to pass through the shielding due to possible issues with grounding
or design flaws. This means we need better shielding to protect the experiment from outside
interference and improve the signal reliability.

4.4.2 Dataset2:short cable anlysis

4.4.2.1 FFT Analysis for Short Cable Dataset

The FFT analysis of Channels 224 to 227, figure 4.14 reveals vital insights into the frequency
content of the event data. The study using FFT shows that Channel 224 is very noisy. The fre-
quency plot has a highmagnitude, indicatingmuch low-frequency noise. The broad spectrum
suggests that the signal in Channel 224 is heavily influenced by noise and unstable. Channels
225, 226, and 227 have less noise than Channel 224. Channel 225 has slightly higher noise
levels than Channels 226 and 227. This is shown by more noticeable but still moderate noise
in the frequency domain.
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Figure 4.14: Time Series and Frequency Spectrum Analysis for Channels 224 to 227(Short Cable).

The analysis of Channels 228 to 231, Figure 4.15 using FFT shows that Channel 229 is
the noisiest among the four channels. This is evidenced by a prominent spike in the frequency
spectrum, indicating a strongperiodic component or interference that significantly impacts the
stability of the signal. Channel 229 has a high noise level with a dense frequency distribution
but is slightly less pronounced than Channel 228. Channels 230 and 231 have lower noise
levels, with Channel 231 being the least noisy of the four. The noise in these channels has a
more stable frequency distribution, which indicates less interference or periodic noise.
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Figure 4.15: Time Series and Frequency Spectrum Analysis for Channels 228 to 231(Short Cable).

Channels 232 to 235 analysis using FFT consistently shows a strong low-frequency pattern
across all channels. This suggests the presence of steady, slowly changing processes. Channel
232 has slightly higher low-frequency values; a more robust signal is indicated. Channels 233
and 235 also show significant low-frequency content with minimal higher-frequency noise,
indicating stable processes with occasional variations. However, Channel 234 displays more
variability, with higher peaks in the frequency spectrum, which may indicate either noise or a
more complexprocess influencing the signal. Overall, the dominance of low-frequency content
across these channels suggests consistent, regular processes with minimal rapid fluctuations.
Figure 4.16 shows these changes.
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Figure 4.16: Time Series and Frequency Spectrum Analysis for Channels 232 to 235(short cable).

The analysis of Channels 236 to 239 shows thatmainly steady and slow changes are happen-
ing across all channels, with Channel 236 displaying slightly more pronounced low-frequency
patterns. Channels 237 to 239 show similar patterns with minimal high-frequency content,
suggesting that consistent, low-frequency signals mainly drive the data. No significant high-
frequency peaks across these channels indicateminimal rapid or sudden events. Any variations
in the data are likely due to noise or minor fluctuations. Figure 4.17 shows these changes.
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Figure 4.17: Time Series and Frequency Spectrum Analysis for Channels 236 to 239(short cable).

4.4.2.2 Inter-Arrival Times Analysis for Short cable Dataset

This analysis alignswith the observations from the inter-arrival timehistograms,figure??, where
Channel 224 shows a higher density at shorter intervals, indicative of frequent noise-induced
events. Meanwhile, Channels 225, 226, and 227 have more evenly distributed inter-arrival
times, corresponding to their less noisy signals as reflected in their auto-correlation plots.
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Figure 4.18: Inter‐arrival Times Analysis for Shielded Dataset.

The inter-arrival time histograms align with these observations. Channel 229 shows irregu-
lar steps and ahigher density at shorter intervals, supporting the conclusion that it is the noisiest
channel due to frequent noise-induced events. Channel 228 also shows some irregularities but
to a lesser extent. Channels 230 and 231 display more evenly distributed inter-arrival times,
indicating fewer disruptions and a more stable signal.
The inter-arrival timehistograms show thatChannel 234has a higher density at shorter inter-

vals, further supporting its status as the noisiest signal among the four channels. Channels 233
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and 232 display more evenly spread inter-arrival times, indicating fewer noise-induced events.

The inter-arrival time histograms show that Channel 236 has a denser concentration of
shorter intervals, indicative of more frequent noise-induced events. Channels 237 and 238
exhibit more evenly distributed inter-arrival times, corresponding to their more regular and
stable signals. Channel 239 shows a slight concentration at shorter intervals, consistent with
its FFT and STFT findings.

4.4.2.3 Auto correlation Analysis for Short Cable Dataset

The auto-correlation plot, figure 4.19 for Channel 224, shows a significant peak around 0.2,
indicating irregularities and substantial noise in the signal. This matches the high noise levels
seen in the FFT and STFT analyses. In contrast, Channels 225, 226, and 227 have sharp peaks
near zero, reflectingmore regular and less noisy signals. This disparity highlightsChannel 224’s
instability compared to the more stable signals in the other channels.
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Figure 4.19: Auto‐Correlation for Shielded Analysis.

The autocorrelation plot for Channel 229 is distinctly different from the others, showing
irregularities and a broader peak, which reflects the strong periodic noise identified in the FFT
and STFT analyses. Channel 228 has a higher autocorrelation density than Channels 230 and
231, indicating more noise and less signal regularity. Channel 230 shows a sharper peak, sug-
gesting a more regular and less noisy signal. At the same time, Channel 231 has the sharpest
andmost defined autocorrelation peak, indicating the cleanest signal among the four channels.
The autocorrelation plot for Channel 234 shows a broad peak, reflecting irregularities and
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periodic noise within the signal. Channel 235 also exhibits a broad peak, though less pro-
nounced thanChannel 234, indicating someperiodicnoise. Channels 233 and232have sharper
peaks in their autocorrelation plots, suggesting more regular signals with less noise.

The autocorrelation plot for Channel 236 is distinctly different, with multiple peaks rather
than the sharp single peak seen in the other channels. This indicates a higher level of irregularity
and noise within this channel. Channels 237 and 238 have sharp and well-defined peaks, sug-
gesting more regular and less noisy signals. Channel 239, while showing a single peak, shows
minor irregularities similar to Channel 236, though less pronounced.

4.4.2.4 STFT Analysis for Short Cable Dataset

The STFT spectrograms support the FFTfindings. Channel 224 in figure 4.20 displays intense
activity across the time-frequency domain, especially at lower frequencies, indicating that this
channel is very noisy. In addition, the spectrograms for Channels 225 and 226 show strong
spikes. The spike in 225 is stronger than in 226. Furthermore, 227 shows more noisy patterns,
which matches the noise level observed in the FFT analysis.
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Figure 4.20: STFT analysis for the short cable analysis.

The STFT spectrograms reinforce the findings from the FFT analysis. Channel 229 shows
intense activity in specific frequency bands over time, which correlates with the spike observed
in the FFT, indicating persistent interference or noise at that frequency. Channel 228 also dis-
plays important noise across a wide range of frequencies, though it is less concentrated than in
Channel 229. Channels 230 and 231 have more uniform spectrograms with lower intensity,
suggesting more stable signals with less noise. The spectrogram for channel 230 shows fewer
and less intense frequency components, indicating that this signal is less affected by interfer-
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ence.
The STFT spectrograms further support the findings from the FFT analysis. Channel 234

showshigh intensity across the time-frequencydomain, particularly at lower frequencies, which
confirms that this channel is heavily impacted by noise. The spectrogram for Channel 235 also
displays notable intensity but to a lesser extent than Channel 234. Channels 233 and 232 have
more uniform and less intense spectrograms, indicatingmore stable signals with reduced noise.
The lower intensity in these spectrograms suggests that the signals inChannels 233 and 232 are
less affected by external interference.
The STFTspectrograms show thatChannel 236has some irregularities, especially compared

to the other channels. It displays a more varied intensity across the time-frequency domain,
which aligns with the findings from the FFT analysis. Channels 237 and 238 display more uni-
form and consistent spectrograms, indicating more stable signals with less interference. Chan-
nel 239, while generally stable, shows minor fluctuations in intensity, suggesting the presence
of some noise but less than what is observed in Channel 236.

4.4.2.5 Conclusion of Short Cable Dataset

In conclusion, based on the short cable dataset, Channel 224 has been identified as the noisiest.
It shows broad frequency components, high-intensity spectrograms, and a broad autocorre-
lation peak, indicating significant low-frequency noise. Additionally, Channel 229 demon-
strates strong interference, especially with a notable spike in the frequency domain and irreg-
ular autocorrelation patterns. Channel 238, 237, and 231 are the least noisy and have stable
frequencies, consistent spectrograms, and clear autocorrelation peaks. Channel 228 is nois-
ier, with a dense frequency distribution and high autocorrelation density. Channel 236, while
not the noisiest, shows a distinct pattern in its autocorrelation, indicating unique irregularities.
The analysis shows low-frequency noise and periodic interference significantly impact channel
signal stability. Channels 224, 229, and 228 are the most affected.

4.4.3 Dataset3:Unshielded LowThreshold Analysis

4.4.3.1 FFT Analysis For Unshielded LowThreshold

In figure 4.21, After reviewing the FFT plots for Channels 158 to 161, it is clear that Channel
158 exhibits the highest level of noise, with broad energy distribution across the spectrum and
a noticeable vertical line at 40 Hz, indicating significant interference. Channel 159 displays
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similar characteristics butwith even less noise. Channel 161 is noisy noise, too, with a narrower
energy distribution and a minimal or absent 40 Hz line. Channel 160 suggests it is the least
affected among the four channels.

Figure 4.21: Time Series and Frequency Spectrum Analysis for Channels 158 to 161 (Unshielded Low Threshold ).

The timestamps maintain a consistent nonlinear trend in the figure 4.22 similar to the pre-
vious set. Channel 164 has themost noise, which is evident from the broad and uneven energy
distribution across the frequency spectrum. This suggests significant interference or a noisy
signal. Channel 165 also exhibits noise, but to a slightly lesser degree than Channel 164, with
a somewhat more concentrated energy distribution. On the other hand, Channels 162 and
163 show amuch cleaner signal, with less distributed noise and amore defined frequency spec-
trum. Among these, Channel 162 appears to be the least affected by noise, followed closely by
Channel 163.
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Figure 4.22: Time Series and Frequency Spectrum Analysis for Channels 162 to 165(Unshielded Low Threshold ).

The time series histograms for Channels 169 and 167 show sparse events with occasional
spikes, and also the FFT plots for Channels 166, 167, and 169 reveal distinct noise charac-
teristics. Channel 167 shows the highest noise level, with a broad and uneven energy distri-
bution across the spectrum, indicating significant interference. This noisy signal is especially
pronounced in the lower frequencies. Channel 169 also exhibits considerable noise, though it
is slightly less severe than in Channel 167, with a more concentrated energy distribution but
still impacted by interference. In contrast, Channel 166 presents a much cleaner signal, with
less distributed noise andmore defined frequency peaks. This suggests that Channel 166 is the
least affected by noise among the three channels. Figure4.23 shows these analyses.
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Figure 4.23: Time Series and Frequency Spectrum Analysis for Channels 166 to 169 (Unshielded Low Threshold ).

Figure 4.24, Channel 207 shows the highest noise level, as indicated by a broad and uneven
energy distribution across the frequency spectrum, offering important interference. Channels
204 and 206 both display lower levels of noise compared toChannel 207, but subtle differences
can be observed: Channel 206 has a slightly more concentrated energy distribution, indicating
a bit more stability than Channel 204. Channel 205 stands out as the cleanest, with the most
defined frequency peaks and the least amount of distributed noise, suggesting it is the least
affected by noise among the four channels.
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Figure 4.24: Time Series and Frequency Spectrum Analysis for Channels 204 to 207(unshielded low threshold ).

4.4.3.2 Inter-arrivalTimesAnalysis forUnshieldedLowThresholdDataset

The inter-arrival time histograms of Channel 158 show a broad and irregular distributionwith
multiple peaks, indicating highly inconsistent event timing, likely due to significant noise inter-
ference. This irregularity suggests that the events are not occurring at regular intervals, which is
often a hallmark of a noisy or unstable signal. Channel 161 also displays a somewhat irregular
distribution, though it is narrower and slightly more consistent than Channel 158, implying
some improvement in event timing but still affected by noise. Channel 159 shows a more fo-
cused distribution with fewer peaks, reflecting more regular and consistent intervals between
events. Although noise is still present, it is lower than 158 and 161. Channel 160 exhibits the
narrowest and most regular distribution of inter-arrival times, with distinct and sharp peaks,
indicating the most stable and noise-free signal among the four channels.
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Figure 4.25: Inter‐arrival Times Analysis for unshielded low threshold Dataset.

Channel 164, figure4.25 shows a broad and irregular distribution, indicating irregular event
timing likely due to noise. Channel 165 also shows a wide distribution but with slightly more
regularity than Channel 164. Channels 162 and 163 have more narrowly distributed inter-
arrival times, with Channel 162 showing the most regular event intervals, indicating a cleaner
and more stable signal. Channel 163 also demonstrates regular event timing but with slight
irregularities.

Channel 167 has a wide and irregular distribution with multiple peaks, which suggests in-
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consistent event timing and significant noise interference. Similarly, Channel 169 also shows
irregularity, but the distribution is slightly narrower, indicating more consistent intervals than
Channel 167, although it is still affected by noise. Channel 166 has a more consistent pattern
of event timing and less noise interference, as shown by the regular distribution of inter-arrival
times and a distinct peak in the analysis. This aligns with the lower noise levels observed in the
FFT and STFT analyses for Channels.

The inter-arrival time histograms in Channel 207 display a broad and irregular distribution,
stating uneven event timing due to noise. Channel 204 has a similar but slightly narrower dis-
tribution, suggesting more regular event intervals. Channel 206 shows further improvement
with a more concentrated distribution, indicating more consistent event timing. Channel 205
stands out with the narrowest and most regular distribution, reflecting minimal noise interfer-
ence and consistent event intervals.

4.4.3.3 AutoCorrelation Analysis For Unshielded LowThresholdDataset

In these plots,figure4.26 a sharp peak at zero lag is expected, indicating the perfect correlation
of the signal with itself. However, significant fluctuations around the zero-lag peak are partic-
ularly notable across all four channels, indicating a lack of smooth decay in the autocorrelation
function. For Channel 158, these fluctuations are pronounced, reflecting a high noise level
and instability in the signal. These fluctuations suggest that the signal experiences random vari-
ations over time, contributing to the noise and irregularities observed in the inter-arrival time
analysis. Channel 161 shows similar fluctuations, though slightly less severe thanChannel 158.
This indicates a noise reduction but points to underlying instability in the signal’s temporal
structure. Channel 159 exhibits these fluctuations but is less pronounced, suggesting a more
stable signal with reduced noise levels. However, fluctuations still indicate some residual noise
or irregularity in the signal. Channel 160 shows the least fluctuation around the zero-lag peak,
with a smoother decay in the autocorrelation function. This suggests Channel 160 has the
most stable and consistent signal, with minimal noise interference.
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Figure 4.26: Auto Correlation Analysis for Unshielded Low Threshold Dataset

.

Channel 164 displays significant fluctuations around the zero-lag peak, indicating highnoise
and temporal instability. Channel 165 also shows fluctuations, but they are less severe, reflect-
ing slightly better temporal consistency. Channels 162 and 163 have much smoother autocor-
relation plots, with Channel 162 showing the least fluctuation around the zero-lag peak, indi-
cating the most consistent and stable signal over time. However, channel 163 exhibits good
stability with marginally more noise than Channel 162.
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Channel 167 displays large fluctuations around the zero-lag peak, indicating that the signal’s
temporal structure is noisy and unstable. These random fluctuations suggest that the signal is
highly affectedbynoise. Channel 169 alsohas somefluctuations but is less strong thanChannel
167. This suggests amore consistent signal but still some noticeable interference. Channel 166
has the smoothest plot, showingminimal fluctuations around the zero-lag peak. This indicates
the most stable and consistent signal with the slightest noise interference.

Also, Channel 207 shows significant fluctuations around the zero-lag peak, indicating high
temporal instability and noise. Channel 204 also has fluctuations, though they are slightly
less pronounced, indicating better signal consistency. Channel 206 exhibits fewer fluctuations
thanChannel 204, offering amore stable signal with less noise. Channel 205 has the smoothest
autocorrelation plot between the four channels, withminimal fluctuations around the zero-lag
peak, indicating the most stable and consistent signal among the four channels.

4.4.3.4 Short-Time Fourier Transform (STFT) Analysis For Unshielded Low
Threshold Dataset

The STFT analysis for Channels 158 to 161, figure 4.4.3.4 provides information about the
time-frequency characteristics of the signals, highlighting the noise levels and temporal stability
of the frequency components. Channel 158’s STFT reveals a highly noisy signal, with energy
spread across a wide range of frequencies over time, showing significant and persistent interfer-
ence. This noise is consistent throughout the time window, suggesting ongoing instability in
the signal.

Channel 161 also shows considerable noise in its STFT, though it is slightly less pronounced
than in Channel 158. The time-frequency distribution still reflects significant interference
but with more defined structures than Channel 158. Channel 161’s STFT reveals a similar
noise pattern, though less intense, with frequency components being more stable over time
yet still showing some noise-related fluctuations. Finally, Channel 160 displays the cleanest
STFT among the four channels, with amore stable and uniform energy distribution across fre-
quencies over time, indicating that this channel is less affected by noise and maintains a more
consistent signal.
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Figure 4.27: Short‐Time Fourier Transform (STFT) Analysis for unshielded low threshold Dataset

.

Channel 164 shows a significant energy spread across a wide range of frequencies, indicating
considerable noise and temporal instability. The distribution appears chaotic, with no clear,
consistent frequency components characteristic of a highly noisy signal. Channel 165 also dis-
plays evidence of noise, though it is less severe than in Channel 164. The time-frequency rep-
resentation shows some structured patterns, but the noise still disrupts the signal, leading to a
less stable frequency distribution over time. In contrast, Channels 162 and 163 have different
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time-frequency characteristics. Channel 162 has a consistent energy distributionwithminimal
interference, indicating a stable and clean signal. The frequency components in this channel re-
main consistent over time, suggesting minimal noise impact. Similarly, Channel 163 exhibits
a relatively stable time-frequency distribution, though slightly more variation than Channel
162.

Channel 167 exhibits significant noise across a wide range of frequencies, with chaotic and
unstable energy distribution throughout the signal duration, describing continuous interfer-
ence. Channel 169 also shows less severe noise, with some structured patterns but still no-
ticeable disruptions. In contrast, Channel 166 displays a much more stable and consistent
time-frequency distribution, with energy concentrated in specific frequency bands and min-
imal noise, confirming it as the channel with the cleanest signal.

Channel 207 exhibits the most significant noise, with an unstable and widespread energy
distribution across a wide range of frequencies over time, indicating continuous interference.
Channel 204 also shows noise but is slightly less than Channel 207. Channel 206 displays
a more stable and structured energy distribution, with less noise interference than Channels
204 and 207, though some instability remains. Channel 205 has the cleanest time-frequency
representation, with concentrated energy in specific frequency bands and minimal noise.

4.4.3.5 ConclusionandCorrelationofUnshieldedLowThresholdDataset
with Spectrum Analyzer Findings

In summary, Channel 167 has the highest noise level and instability compared to all other chan-
nels, making it the noisiest channel. Channel 169 has significant noise but is slightly less severe
than Channel 167. Channel 158 has noticeable noise but is more stable than Channels 167
and 169. Channels 161 and 158 are both noisy, but 161 is less noisy. However, Channels 205,
163, 160, and 162 consistently have the clearest and most stable signals. Channel 205 has the
least noise and the most reliable signal. This analysis indicates that Channels 205, 163, 160,
and 162 are best for further processing and analysis. Channels 167, 169, and 158 have higher
noise levels, so you should be cautious when dealing with them.
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Figure 4.28: spectrom analyzer for Unshielded Low Threshold Analysis.

The spectrum analyzer, figure 4.28, shows a frequency spectrum ranging from 1 MHz to
1 GHz, with significant peaks around 76 MHz and 462 MHz, indicating specific frequencies
with considerable energy or interference. These peaks likely correlate with the high noise levels
detected inChannels 167 and 169 from the unshielded low threshold dataset. The broad distri-
butionofnoise across the spectrum, as seen in the analyzer,matches the chaotic andwidespread
energy observed in these channels, suggesting to persistent interference. Channel 158, while
also noisy, shows slightlymore stability thanChannels 167 and 169. The extensive noise across
the analyzer’s spectrum could explain the variations and noise identified in Channel 158.

In contrast, Channels 205, 163, 160, and 162, which were identified as having the most
minor noise in the dataset, align with the spectrum analyzer’s observation that, despite the
noise peaks, The background noise level stays fairly consistent and not too high, especially in
areaswithout strongpeaks. The stability in the noise level probably happens because the signals
are clearer in these channels. This means the results from the spectrum analyzer support the
dataset analysis. The frequencies have significant energy in the noisiest channels, while the
cleaner channels have more stable parts of the frequency spectrum.
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4.4.4 Dataset4:UnshieldedHigh Threshold Analysis

4.4.4.1 FFT Analysis For UnshieldedHigh Threshold

In figure4.29, FFT plots for Channels 158 to 161 reveal the frequency spectrum of these sig-
nals. While Channel 159 shows a slightly noisier signal than the others, the channels exhibit
similar spectral characteristics overall. The frequency distributions are relatively flat, with no
significant peaks or anomalies that would clearly distinguish one channel from the others. The
similarity across all channels suggests that they all have similar noise levels, making it hard to
identify one as noticeably noisier than the others. However, Channel 159 shows slightly more
variation in volume, indicating a slightly higher noise level.

Figure 4.29: Time Series and Frequency Spectrum Analysis for Channels 158 to 161 (Unshielded High Threshold).

In the figure4.30, Channel 162, in particular, shows a noticeable step in the data, which
could indicate a minor but distinct shift or anomaly in the signal’s frequency content. How-
ever, all four channels show similar frequency distributions with no significant noise or anoma-
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lies distinguishing one channel from the others. The spectra are relatively flat and consistent,
representing that the signals are not heavily influenced bynoise andmaintain a stable frequency.

Figure 4.30: Time Series and Frequency Spectrum Analysis for Channels 162 to 165(Unshielded High Threshold).

Moreover, FFT analyzing between 167,168, and 169, Channel 169 shows a subtle step in the
data, suggesting a slight deviation or anomaly in the frequency content. Overall, the spectral
characteristics of all three channels are very similar. The frequency distributions are mainly
flat and consistent across these channels, with no significant peaks or noise that would clearly
distinguish one channel as noisier than the others. The minor differences, such as the slight
step in Channel 169, represent very subtle variations, but all channels show low noise levels
and stable frequency content. figure 4.31 shows these analyses.
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Figure 4.31: Time Series and Frequency Spectrum Analysis for Channels 167 to 169(Unshielded high Threshold Dataset).

The FFT plots, figure 4.32 reveal that the frequency spectra of Channels 204 to 207 are very
similar, with no noticeable peaks or anomalies that could offer remarkable noise. Channel 207,
initially slightly noisier, showsminimal variations from the others, suggesting that all channels
have a similar frequency distribution and low noise levels.
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Figure 4.32: Time Series and Frequency Spectrum Analysis for Channels 204 to 207 (Unshielded High Threshold Dataset).

4.4.4.2 Inter-ArrivalTimesAnalysis forUnshieldedHighThresholdDataset

The histograms,figure4.33 show that most events occur within a very short time interval, with
all channels displaying a similar pattern. The data shows that there are no significant unusual
data points or irregularities. This suggests that the timing of the event is consistent across all
channels. Channel 159 may have slightly more irregular event intervals, but all channels show
similar regularity overall.
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Figure 4.33: Inter‐arrival Times Analysis for Unshielded High Threshold Dataset.

The inter-arrival time histograms for Channels 162 to 165 show the distribution of time
intervals between consecutive events. The histograms show that most events occur within very
short intervals, with all channels displaying similar patterns. There are no remarkable outliers,
which shows that the event timing is consistent across the channels. Even though Channel
162 shows slight deviations in other analyses, its inter-arrival time distribution remains regular,
showing that these deviations do not significantly impact the timing of events in the signal.
The histograms for the time between events onChannels 166, 167, and 169 show that most
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events happen close together. AlthoughChannel 169might have slightly more uneven timing,
the overall differences between the channels are slight. This consistent timing suggests that the
signals are stable and not affected much by noise.

The inter-arrival time histograms for Channels 204 to 207 all show that events occur within
very short intervals, with a highly consistent distribution across channels. There are no signif-
icant outliers or variations in the tail of the distributions, offering that the timing of events is
regular in all channels.

4.4.4.3 AutoCorrelationAnalysis ForUnshieldedHighThresholdDataset

The autocorrelation plots, figure 4.34All four channels exhibit a sharp peak at zero lag; the data
shows smooth decays, indicating relatively stable signals as expected. However, subtle fluctua-
tions are present in the autocorrelation functions, particularly in Channel 159, which means
a slightly higher level of temporal variations and noise. Despite this, the overall similarity in
the autocorrelation plots across all channels builds up the notion that they are all affected by
similar noise characteristics, with only minor differences in stability.
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Figure 4.34: auto correlation Analysis for unshielded high threshold Dataset.

As expected, the autocorrelation plots for Channels 162 to 165 display a sharp peak at zero
lag, indicating strong self-correlation. However, the autocorrelation plot for Channel 162
shows slight irregularities, with the level of the autocorrelation curve near zero lag being lower
and flat than the other channels. This could correlate with the step observed in the FFT and
the subtle variations seen in the STFT. Despite these relatively minimal differences, the overall
temporal stability across the channels remains similar, indicating that these irregularities do not
significantly impact the consistency of the signals.
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As expected, the autocorrelation plots for Channels 166, 167, and 169 demonstrate strong
temporal consistency, with sharp peaks at zero lag. However, Channel 169 shows very slight
irregularities, with the level of the autocorrelation curve near zero lag being slightly lower and
flat compared to the other channels. The autocorrelation functions for all channels show that
the signals maintain high stability, with no significant temporal noise that would differentiate
one channel as noisier than the others.

The channels between 204 and 207 exhibit a sharp peak at zero lag with minimal fluctua-
tions, representing high temporal stability. No significant irregularities in the autocorrelation
functions show that these channels behave similarly.

4.4.4.4 Short-Time Fourier Transform (STFT) Analysis For Unshielded High
Threshold Dataset

The STFT plots,figure4.35 show that all four channels have a consistent energy distribution
across time and frequency, with no significant deviations or unique noise patterns. The energy
spreadout across the entire rangeof frequencies, andnoprominentfluctuationsor shiftswould
indicate the presence of substantial interference in any specific channel. This also shows that
the noise levels are similar across all these channels, and no one channel has significantly higher
noise levels than the others.
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Figure 4.35: STFT Analysis for Unshielded High Threshold Dataset.

The STFT plots for Channels 162 to 165 show that Channel 162 has a distinct vertical line
and a more visible background, indicating a recurring event or interference. This aligns with
the step observed in the FFT data, offering that while Channel 162 remains generally stable, it
experiences slight, consistent fluctuations not seen in the other channels. Despite these differ-
ences, the overall signal integrity across all channels remains strong, with minimal noise.
Channel 169 shows a slightly more visible background with a subtle vertical line, which

might indicate an event or interference. However, like theFFTresults, theoverall time-frequency
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distribution remains consistent across Channels 166, 167, and 169, representing that the sig-
nals are stable over time with minimal fluctuations.
The STFT plots further confirm the consistency across the channels between 204 to 207.

The time-frequency distributions show uniform patterns with no significant variations or dis-
ruptions. The slight vertical lines observed in some channels, particularly in Channel 207, are
subtle and do not show any major noise issues. The overall background remains consistent in
all channels, fixing the stability of the signals.

4.4.4.5 ConclusionAndCorrelationOfUnshieldedHighThresholdDataset
With Spectrum Analyzer Findings

In conclusion, the channel analyses show remarkably similar signal stability, noise levels, and
temporal consistency characteristics. However, Channels 162 and 169 stand out slightly due
to minor anomalies. Channel 162 and 169 show a step in the FFT data and subtle irregular-
ities in the autocorrelation. At the same time, Channel 169 exhibits a very slight increase in
noise, particularly in the STFT and autocorrelation plots. Despite these small variations, these
differences are minimal, and overall, all channels maintain stable signals with low noise levels,
making them equally reliable for further processing and analysis.

Figure 4.36: Unshielded High Threshold Dataset with Spectrum Analyzer.
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With the legacy electronic equipment turned off, the spectrum analysis figure4.36 revealed
significantly reduced noise levels across all channels. The previously prominent peaks associ-
ated with the legacy electronics have largely disappeared, confirming that much of the earlier
detected interference was directly caused by these devices. This noise reduction directly cor-
relates with the minor anomalies and slightly elevated noise levels observed in Channels 162
and 169 during the earlier signal analyses (FFT, STFT, autocorrelation, and inter-arrival time).
These channels were particularly sensitive to the noise from the legacy electronics, which led
to the observed deviations when the electronics were active. By eliminating this source of inter-
ference, the signals across all channels became more uniform, stable, and reliable. This result
emphasizes the importance of minimizing environmental noise to maintain the integrity of
signal processing and analysis.

4.5 Anomaly Detection UsingMachine Learning

Usingmachine learning algorithms to detect anomalies in event counts is a powerful andmean-
ingful way to ensure the accuracy of time-sensitive systems, such as Drift Tubes or other exper-
imental setups that depend on precise event timing. Each recorded event, or hit, is important
for analyzing overall performance in these systems. These events are logged with specific times-
tamps, and the frequency or count of events over time provides detailed insight into the sys-
tem’s behavior. Under normal conditions, the event count at each time step should follow a
consistent pattern, reflecting the system’s expected performance.

However, any significant variation from this expectedpattern,whether it’s anunusually high
or low number of events, signals abnormal behavior or an anomaly. Such anomalies can arise
from various factors, including noise, external interference, or internal system issues. Identify-
ing these anomalies is critical because they can serve as early warnings of potential problems,
allowing us to take action before more serious issues occur.

Anomalydetection algorithms areparticularly suitable for identifyingoutliers, as data points
differ significantly frommost datasets. In event counts, an outlier represents a time step where
the number of events deviates substantially from the norm. One of the key strengths of these
algorithms is their ability to detect anomalies without requiring predefined notions of what
normal or abnormal event counts are. Instead, they automatically identify these anomalies
based on how isolated or unusual the events are within the overall data distribution. This capa-
bility makes them highly effective tools for uncovering hidden patterns and issues in complex
datasets.
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To achieve this, we employed advanced machine-learning techniques to detect critical noise
events that could affect the functionality of Drift Tubes. We utilized models such as Isolation
Forest, Local Outlier Factor (LOF), One-Class SVM, and Gaussian Mixture Model (GMM)
to identify abnormal patterns in time-series data. The data was thoroughly prepared and pro-
cessed to address missing values and standardize frequency data, ensuring consistency and ac-
curacy. Hyperparameters for each model were fine-tuned to optimize performance, and the
models were evaluated using precision, recall, F1 score, and ROC-AUCmetrics. Our findings
demonstrate that these models effectively detected multiple high-frequency noise anomalies,
underscoring the critical role of machine learning in improving the robustness of the system.

4.5.1 MachineLearningApproachesforAnalyzingShieldedData

4.5.1.1 Isolation Forest Technique

In this analysis, machine learning techniques were utilized to identify anomalies in the fre-
quency data using the Isolation Forest algorithm. The model detected 11721 anomalies, rep-
resented as red points in the scatter plot. These irregularities show significant differences from
the expected frequency patterns. The model is evaluated using a few different metrics. The
model’s precision is 0.8951, showing the percentage of correctly identified anomalies. Its re-
call is 1.0000, indicating that it successfully detected all true anomalies. The F1 Score, which
balances precision and recall, is 0.9446, representing the overall accuracy of the anomaly de-
tection. The Confusion Matrix shows the model’s classification results, confirming that all
true anomalies were accurately identified without missing any. The ROC curve confirms the
model’s performance, with an AUC of 1.00, indicating excellent discriminatory ability. In ad-
dition, the top 10 anomalies are listed based on their frequency values, which may indicate
particularly severe or impactful deviations in the data.the result demonstrated in the 4.37.
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Figure 4.37: Result Of Isolation Forest for Shielded Dataset

We used a more advanced Isolation Forest model to thoroughly investigate anomalies in the
protected dataset. Our goal was to uncover unusual patterns in absolute timing changes and
closely examine how the number of events varied.

The results of this extended analysis, illustrated in Figure 4.38, highlight a new set of anoma-
lies in the channels. The initial Isolation Forest analysis found 902 anomalies based on absolute
timing deviations. The refined model focuses on detecting anomalies in the time series by ex-
amining the variations in event counts. The anomalies, shown as red points on the scatter plot,
indicate time steps where event counts significantly differ from the norm, suggesting potential
noise, interference, or other disturbances.
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Figure 4.38: Anomaly detection results for 16 channels using the extended Isolation Forest model(shielded Dataset)

After checking the results, the model found unusual patterns in the number of events de-
tected in each channel. some channels showed more frequent unusual patterns than others.
These findings align with the patterns observed in the FFT, STFT, autocorrelation, and inter-
arrival time analyses. This supports the idea that the unusual patterns have been correctly iden-
tified as anomalies.
The table below highlights each channel and the number of anomalies detected by the Iso-

lation Forest model. The results from the Isolation Forest analysis confirm the findings from
other analyticalmethods, showing that the detected anomalies are valid. For example, channels
224 and 228 in the shielded datasets, which displayed slight differences in the FFT and STFT
analyses, also showed more anomalies in the event counts. These channels seem more likely
to be affected by noise and interference. The anomalies identified by the Isolation Forest and
the signal characteristics observed in the FFT, STFT, and other analyses show that this method
effectively finds and understands noise patterns in the dataset.
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Channel Number of Anomalies
224 78
225 68
226 61
227 64
228 69
229 56
230 67
231 70
232 25
233 60
234 65
235 62
236 55
237 57
238 34
239 44

Table 4.1: Number of Anomalies Detected with Iforest in Each Channel for shielded dataset

4.5.1.2 Local Outlier Factor(LOF) Technique

TheLOFmethod spotted 84492 anomalies in the dataset, highlighted in red on the scatter plot,
and assessed using precision, recall, and F1 Score. The precision of 0.9504 means only a small
portion of the discovered anomalies were valid with a recall of 0.5414. The F1 Score of 0.6898
indicates the model’s low effectiveness in balancing precision and recall.

The confusion matrix shows many false negatives (68,029) and a considerable number of
false positives (4,195), resulting in amoderate precision score of 0.5414. TheROC curve, with
an AUC of 0.67, indicates that the Local Outlier Factor (LOF) model performs slightly better
than randomguessingbuthas challenges effectively distinguishing anomalies fromnormal data.
The table lists the top 10 anomalies by frequency, highlighting the most significant outliers.
The result is demonstrated in the ??.
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Figure 4.39: result of LOF for shielded dataset

4.5.1.3 GaussianMixtureModel (GMM) for Shielded Dataset

TheGaussianMixtureModel (GMM) identified10,391 anomalies in the frequencydata, repre-
sented as red points in the scatter plot, indicating significant outliers. Themodel demonstrated
high performance with a recall of 0.9664, meaning it correctly identified 96.64% of the actual
anomalies. The F1 score was 0.9829, reflecting a strong balance between precision and recall,
highlighting the model’s overall effectiveness.

The confusionmatrix shows that themodel accurately classified all normal instanceswithno
false positives, while it correctly identifiedmost of the anomalies, with only 352 false negatives.
The ROC curve, with an AUC of 0.98, further confirms the model’s ability to distinguish
between normal data and anomalies. The table lists the top 10 anomalies by frequency, show-
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casing themost significant deviations identified by theGMM. It highlights themost significant
differences found by the model. The result is demonstrated in the 4.40.

Figure 4.40: result of GMM for shielded dataset

4.5.1.4 One-Class SVMWith Cross-Validation for Shielded Dataset

The One-Class SVMmodel was applied to detect anomalies in the dataset, identifying 20,278
anomalies, indicated by red points in the scatter plot. The model achieved a high recall of
0.9490, meaning it correctly identified 94.90% of the actual anomalies. However, the F1 score
was 0.6471, reflecting a moderate balance between precision and recall due to some false posi-
tives and false negatives.

The confusion matrix shows that the model accurately classified 148,171 normal instances
but also resulted in 10,004 false positives and 535 false negatives, indicating areas for improve-
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ment. TheROCcurve, with anAUCof 0.94, demonstrates strongperformance in distinguish-
ing between normal data and anomalies. The table lists the top 10 anomalies by frequency,
highlighting the most significant deviations detected by the One-Class SVM model. The re-
sult is demonstrated in the 4.41.

Figure 4.41: result of One‐Class SVM with cross‐validation for shielded dataset

4.5.1.5 Conclusion

In conclusion, the analysis using various anomaly detection techniques demonstrated varying
degrees of success in identifying anomalieswithin the shieldeddataset. The IsolationForest and
GMMmethods exhibited high precision, recall, and F1 scores, suggesting their robust ability
to detect anomalies accurately with minimal false positives and negatives. On the other hand,
the LOF and One-Class SVMmodels showed moderate effectiveness, with a notable number

111



of false positives and false negatives, indicating challenges in distinguishing between normal
data and anomalies.

4.5.2 MachineLearningApproachesforAnalyzingShortCable
Data

4.5.2.1 Isolation Forest for Short Cable Dataset

The Isolation Forest algorithm was applied to detect anomalies in a dataset of frequency val-
ues, identifying 12,115 anomalies. The model achieved a precision of 87.22% of the detected
anomalieswere true anomalies, with aminimal number of false positives. The recall was perfect
at 1.0000, meaning all anomalies in the dataset were successfully detected without any misses.
The F1 score was 0.9318.

The confusionmatrix provides further insight, showing that out of 93,364 instances, 81,649
normal data points were correctly identified, while 1,548 normal instances were incorrectly
labeled as anomalies. The ROC curve was 0.99, which highlights the model’s excellent ability.
figure 4.47 show these results.
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Figure 4.42: Result Of Isolation Forest for Short Cable Dataset

Initially, I applied the Isolation Forest model to detect anomalies in the frequency domain,
identifying significant deviations that suggested potential noise interference. Following this, I
again applied the Isolation Forest model, focusing on detecting anomalies in the event counts
and time series data. The results of this second analysis, figure 4.43, 4.2are presented below.
The red points in the figure represent the anomalies identified by the Isolation Forest model,
which are instances where the event count deviated significantly from the expected pattern.
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Figure 4.43: Anomaly Detection Results for 16 Channels Using The Isolation Forest Model(Short Cable Dataset)
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Channel Number of Anomalies
224 66
225 49
226 70
227 67
228 63
229 65
230 63
231 52
232 51
233 64
234 60
235 58
236 56
237 51
238 51
239 54

Table 4.2: Number of Anomalies Detected in Each Channel

These detected anomalies are consistent with the last section’s results from other time series
analysismethods. This alignment suggests that the channels showingmore anomalies are likely
more affected bynoise and interference. The table highlights the number of anomalies detected
in each channel, confirming that thepatterns identifiedby the IsolationForestmodel agreewith
the results of multi-faceted time series analysis.

4.5.2.2 Local Outlier Factor(LOF) for Short Cable Dataset

Using the Local Outlier Factor (LOF) algorithm, 46,882 anomalies were identified in the fre-
quency dataset. The model achieved a precision of 0.8002, showing that 80.02% of detected
anomalies were correct. However, the recall was lower at 0.5245, meaning it only identified
52.45% of all true anomalies, resulting in an F1 score of 0.6337. The confusion matrix shows
many false negatives (34,005) and false positives (9,367). The ROC curve, with an AUC of
0.55, suggests limited effectiveness in distinguishing between normal data and anomalies. The
top 10 anomalies by frequency highlight the most significant outliers detected. figure4.44
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shows the consequence of this algorithm.

Figure 4.44: Local Outlier Factor(LOF)for Short Cable Dataset

4.5.2.3 GaussianMixtureModel (GMM) for Short Cable Dataset

The GaussianMixtureModel (GMM) identified 10,314 anomalies in the dataset, as shown by
the red points in the scatter plot. The model achieved a perfect precision of 1.0000, meaning
all anomalies detected were true positives, with no false positives. It also had a high recall of
0.9761, indicating it successfully identified 97.61% of all actual anomalies. The F1 score of
0.9879 reflects a strong balance between precision and recall, showcasing the model’s overall
effectiveness.

The confusion matrix reveals that 83,197 normal data points were correctly identified out
of all instances, and no normal instances were incorrectly classified as anomalies. However, 253
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anomalies were missed. The ROC curve, with an AUC of 0.99, demonstrates the model’s abil-
ity to distinguish between normal data and anomalies. This performance shows the GMM’s
robustness in accurately detecting anomalies in the dataset. Figure 4.45 demonstrates these
results.

Figure 4.45: Result of Gaussian Mixture Model (GMM) for Short Cable Dataset

4.5.2.4 One-Class SVM for short Cable Dataset

The One-Class SVMmodel identified 11,249 anomalies in the dataset, as indicated by the red
points in the scatter plot. The model achieved a precision of 0.4978, meaning that about
49.78% of the detected anomalies were true positives. The recall was 0.5300, indicating that
the model correctly identified 53.00% of the actual anomalies present in the data. This led to
an F1 score of 0.5134, reflecting a moderate balance between precision and recall.
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The confusion matrix shows that 77,548 normal data points were correctly classified out
of the total instances, but 5,649 normal instances were mistakenly labeled as anomalies. Ad-
ditionally, the model missed 4,967 true anomalies. The ROC curve, with an AUC of 0.73,
suggests the model has a fair ability to distinguish between normal data and anomalies. Figure
4.46demonstrates these results.

Figure 4.46: result of One‐Class SVM for short cable dataset

4.5.2.5 Conclusion

In conclusion, applying various anomaly detection algorithms showed that the Isolation For-
est algorithm demonstrated robust performance with high precision and perfect recall, effec-
tively identifying all anomalies with minimal false positives. This highlights its suitability for
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detecting significant deviations in frequency data. The GaussianMixture Model (GMM) also
performed well, achieving perfect precision and high recall, making it effective for distinguish-
ing normal data from anomalies. In contrast, the Local Outlier Factor (LOF) and One-Class
SVM models showed moderate effectiveness, with LOF struggling with many false negatives
andOne-Class SVMpresenting a balanced but lower accuracy. These results suggest that while
Isolation Forest and GMM are reliable for anomaly detection in such datasets, LOF and One-
Class SVMmay not be the best fit for this particular dataset.

4.5.3 MachineLearningApproachesforAnalyzingLowThresh-
old Unshielded Data

4.5.3.1 Result Of Isolation Forest for LowThreshold Unshielded Dataset

The results show the use of the Isolation Forest algorithm for finding anomalies in a dataset.
The algorithmdetected 49 anomalieswith a precision of 0.7551 and a recall of 1.0000, resulting
in an F1 score of 0.8605. This means themodel was very effective at identifying true anomalies,
with only one false positive, as seen in the confusion matrix.

The ROC curve has an area under the curve (AUC) of 0.99, indicating excellent perfor-
mance with no compromise between detecting true positives and avoiding false positives. The
top 10 most frequent anomalies are listed, with the highest frequency being 1282051905.9,
showing these points are significantly different from normal data. Figure 4.47 illustrates these
results.
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Figure 4.47: Result Of Isolation Forest for Low Threshold Unshielded Dataset

I reapplied the Isolation Forest model to detect event counts and time series data anomalies.
The results of this secondary analysis are shown in Figure 4.48 andTable 4.3. The red points in
the figure show the anomalies detected by the Isolation Forest model. They indicate instances
where the event counts were significantly different from expected patterns.
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Figure 4.48: Anomaly Detection Results for 16 Channels Using The Isolation Forest Model(Unshielded Low Threshold
Dataset)
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Channel Number of Anomalies
158 8
159 8
160 4
161 9
162 0
163 2
164 5
165 10
166 4
167 15
168
169 12
204 5
205 6
206 2
207 7

Table 4.3: Number of Anomalies Detected (Isolation Forest On The Time Series Of The Low Threshold Unshielded
Dataset)in Each Channel

These detected anomalies are consistent with the last section’s results from other time series
analysismethods. This alignment suggests that the channels showingmore anomalies are likely
more affected bynoise and interference. The table highlights the number of anomalies detected
in each channel, confirming that thepatterns identifiedby the IsolationForestmodel agreewith
the multi-faceted time series analysis results, thereby validating the accuracy of these findings.

4.5.3.2 Local Outlier Factor(LOF) for LowThreshold Unshielded Dataset

The Local Outlier Factor (LOF) algorithm detected 497 anomalies in the dataset. The model
achieved a perfect precision of 1.0000, indicating that all identified anomalies were true pos-
itives with no false positives. The recall was 0.9881, meaning the model correctly identified
98.81% of the actual anomalies present in the data, resulting in a high F1 score of 0.9940.

Figure 4.49 describes that the confusion matrix reveals that the model accurately classified
492 normal data points and 497 anomalies, with only six false negatives, demonstrating its
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strong ability to detect anomalies effectively. The Receiver Operating Characteristic (ROC)
curve, with an area under the curve (AUC) of 0.99, further confirms the model’s excellent
performance distinguishing between normal and abnormal data points.

Figure 4.49: Result of Local Outlier Factor(LOF) for Low Threshold Unshielded Dataset

4.5.3.3 GaussianMixtureModel (GMM)forlowthresholdunshieldeddataset

Figure 4.50 describes The GaussianMixtureModel (GMM), which identified 40 anomalies in
the dataset with a precision of 0.9000 and a recall of 0.9730, leading to an F1 score of 0.9351.
The confusion matrix shows that the model accurately detected 36 true anomalies with only
four false positives andone false negative. TheROCcurve,with anAUCof0.98, highlights the
model’s ability to differentiate between normal and abnormal data. The table lists the top 10
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anomalies by frequency, showcasing significant deviations, with the highest frequency anomaly
being 147380.8941287525.

Figure 4.50: Result Of Gaussian Mixture Model (GMM) Low Threshold Unshielded Dataset

4.5.3.4 One-Class SVM for LowThreshold Unshielded Dataset

Based on the results,figure4.51, The One-Class SVM algorithm detected 79 anomalies in the
dataset, achieving a precision of 0.4557 and a recall of 0.9730, which results in an F1 score
of 0.6207. The confusion matrix reveals that the model correctly identified 36 anomalies and
flagged 43 normal instances as anomalies, indicating a moderate rate of false positives. The
ROC curve, with an AUC of 0.96, demonstrates the model’s strong performance distinguish-
ing between normal and abnormal data points.
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Figure 4.51: Result Of One‐Class SVM for Low Threshold Unshielded Dataset

4.5.3.5 Conclusion

In conclusion, the application of various anomaly detection algorithms—Isolation Forest, Lo-
calOutlier Factor (LOF),GaussianMixtureModel (GMM), andOne-Class SVM—on the low
threshold unshielded dataset revealed differing levels of effectiveness in identifying anomalies.
The Isolation Forest and GMM models showed high precision and recall, with F1 scores of
0.8605 and 0.9351, respectively, indicating their robust performance in detecting true anoma-
lies with minimal false positives. While achieving a high recall of 0.9730, the One-Class SVM
had a lower precision, resulting in a moderate F1 score of 0.6207, suggesting a higher rate of
false positives. Although consistent with other time series analysis methods, the LOF model
confirmed that certain channels are more prone to noise and interference. Overall, these mod-
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els collectively validate the presence of important anomalies in the dataset.

4.5.4 MachineLearningApproachesforAnalyzingHighThresh-
old Unshielded

4.5.4.1 Isolation Forest forHigh Threshold Unshielded Dataset

The Isolation Forestmodel was used to detect anomalies, successfully identifying 3,072 anoma-
lies with a precision of 0.8451, a perfect recall of 1.0000, and an F1 score of 0.9160. These re-
sults indicate that the model effectively detected all true anomalies without missing any (high
recall) while maintaining high accuracy (precision) in minimizing false positives. The confu-
sionmatrix supports these findings, showing 2,596 true anomalies correctly identifiedwithout
any false negatives and 476 normal data points incorrectly classified as anomalies. The ROC
curve, with an AUC of 1.00, demonstrates the model’s exceptional ability to distinguish be-
tween normal and abnormal data points. .figure 4.52 showS the results.
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Figure 4.52: Result Of Isolation Forest for High Threshold Unshielded Dataset

I applied the (Iforest) to the dataset to detect anomalies in the frequency domain and time se-
ries data. Initially, the Iforest identified significant deviations that suggested potential noise in-
terference in the frequency domain. Following this, themodel was used again to detect anoma-
lies in the event counts over time. The results of this secondary analysis are shown in Figure4.53
and Table 4.4. The red points in the figure show the anomalies detected by the Isolation Forest
model, representing instances where the event counts significantly deviated from the expected
patterns.
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Figure 4.53: Anomaly detection results for 16 channels using the Isolation Forest Model(Unshielded High Threshold
Dataset)
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Channel Number of Anomalies
158 170
159 169
160 170
161 169
162 164
163 165
164 166
165 168
166 167
167 169
168
169 172
204 166
205 168
206 167
207 172

Table 4.4: Number of Anomalies Detected (Isolation forest on the time series of the low threshold unshielded dataset)in
Each Channel

The anomalies we found match the results of other methods we used to analyze time series
data. Shows that most of the channels are in a specific frequency range and without noise.

4.5.4.2 Local Outlier Factor(LOF) forHigh ThresholdUnshieldedDataset

In the top left plot, figure 4.54 anomalies identified by the model are marked in red, showing
significant deviations from the normal data patterns. Themodel achieved a precision of 0.8410
and a recall of 0.8293, indicating good detection accuracy and a substantial ability to identify
actual anomalies correctly. The F1 score of 0.8351 reflects a strong balance between precision
and recall, emphasizing the model’s overall effectiveness.

The confusion matrix provides a detailed breakdown of the model’s performance, showing
that it correctly classified 21,163 normal data points while mistakenly labeling 4,069 normal
instances as anomalies. Additionally, it accurately identified 21,523 anomalies, with 4,430 ac-
tual anomalies missed. The ROC curve, with an AUC of 0.83, suggests the model has a good
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ability to distinguish between normal and abnormal data points.

Figure 4.54: Result Of Local Outlier Factor for High Threshold Unshielded Dataset

4.5.4.3 GaussianMixtureModel(GMM)

In the scatter plot, figure4.55, the anomalies detectedby themodel aremarked in red, indicating
deviations from normal data patterns. It demonstrated perfect precision at 1.0000, meaning
all detected anomalies were true positives. It also achieved a high recall of 0.9861, capturing
98.61% of all actual anomalies. The F1 score, a balance between precision and recall, was no-
tably high at 0.9930, emphasizing the model’s strong performance in accurately identifying
anomalies.

The confusion matrix offers a detailed view of the model’s accuracy, showing that 48,589
normal data points were correctly identified, with no false positives, and that 2,560 anomalies
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were correctly detected. However, 36 anomalies were missed, reflecting a minimal rate of false
negatives. TheROCcurve, featuring anAUCof0.99, further validates themodel’s exceptional
ability to distinguish between normal and abnormal instances. The table on the bottom right
lists the top 10 anomalies by frequency, showing the most significant outliers in the dataset as
identified by the GMM.

Figure 4.55: Result of Gaussian Mixture Model (GMM) High Threshold Unshielded Dataset

4.5.4.4 One-Class SVM forHigh Threshold Unshielded Dataset

TheOne-Class SVMmodel was used for anomaly detection, identifying 6,142 anomalies high-
lighted in red in the scatter plot 4.56. Themodel achieved a precision of 0.4227, indicating that
approximately 42.27% of the detected anomalies were true positives. The recall was perfect at
1.0000, meaning the model successfully identified all actual anomalies. However, the preci-
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sion score suggests many false positives, leading to an F1 score of 0.5942, reflecting a moderate
balance between precision and recall.
The confusionmatrix shows that 45,043 normal data points were correctly identified, while

3,546 normal instanceswere incorrectly classified as anomalies. TheROCcurve, with anAUC
of 0.96, demonstrates the model’s ability to distinguish between normal and abnormal data
points. The table on the bottom right lists the top 10 anomalies by frequency, emphasizing the
most significant deviations detected by the One-Class SVMmodel.

Figure 4.56: result of One‐Class SVM for high threshold unshielded dataset

4.5.4.5 Conclusion

In summary, the anomaly detection methods applied to the high threshold unshielded dataset
yieldedvarying levels of effectiveness. The IsolationForest andGaussianMixtureModel (GMM)
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performed exceptionally well, achieving high precision and recall and effectively distinguishing
between normal and abnormal data points. The Local Outlier Factor (LOF) showed good per-
formance but with a higher rate of false positives. While identifying all true anomalies, the
One-Class SVMmodel had lower precision, indicating more false positives. Overall, the Isola-
tion Forest and GMMwere the most effective for accurate anomaly detection in this dataset.

4.6 Advanced Predictionwith Deep Learning

In this section, we describe implementing and evaluating a Long Short-TermMemory (LSTM)
model used to predict time series data related to frequency measurements.

4.6.1 DeepLearningModelforUnshieldedHighThresholdDataset

The LSTM model was built using the TensorFlow Keras library. The architecture consists
of two LSTM layers with 128 and 64 units, respectively. Each LSTM layer is followed by a
dropout layer with a dropout rate of 0.2 to prevent overfitting. The final output layer is a dense
layer with a single neuron, which is suitable for the regression task. The model was compiled
using the Adam optimizer and mean squared error as the loss function.

4.6.1.1 ModelTrainingandEvaluationonUnshieldedHighThresholdDataset

The LSTM model was trained for 50 epochs with a batch size of 32, using 80% of the train-
ing data for training and 20% for validation. The training and validation loss over epochs is
depicted in Figure 4.57, showing a rapid convergence of both losses, indicating a well-trained
model.

133



Figure 4.57: Training and Validation Loss Over Epochs and Actual vs Predicted Value (Unshielded High Threshold Dataset)

Themodel was evaluated on the test dataset, achieving a test loss of 6× 10−6, mean absolute
error (MAE) of 0.000854, and root mean square error (RMSE) of 0.002360 on the scaled data.
These metrics demonstrate the model’s high accuracy in predicting the time series data on a
normalized scale.

When the predictions were inverse-transformed to the original scale, the model achieved a
mean absolute error of 0.000033 and a root mean square error of 0.000092. These results are
summarized in Table 4.5.

Metric Value
Test Loss 6× 10−6

Test MAE (Scaled) 0.000854
Test RMSE (Scaled) 0.002360
Mean Absolute Error (Original Scale) 0.000033
Root Mean Square Error (Original Scale) 0.000092

Table 4.5: Evaluation Metrics for the LSTM Model (Unshielded High Threshold Dataset)

The actual versus predicted values on the original scale are shown in Figure 4.57, illustrating
that themodel’s predictions closely follow the actual data points, further validating themodel’s
effectiveness.

4.6.2 DeepLearningModelforUnshieldedLowThresholdDataset

The architecture comprises two LSTM layers, with 128 and 64 units, respectively. Each LSTM
layer is followed by a dropout layer with a dropout rate of 0.2 to mitigate overfitting. The
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final output layer is a dense layer containing a single neuron, suitable for the regression task of
predicting a continuous value. The model was compiled with the Adam optimizer and mean
squared error as the loss function.

4.6.2.1 ModelTrainingandEvaluationonUnshieldedLowThresholdDataset

The LSTMmodel was trained for 50 epochs with a batch size of 32, using 80% of the data for
training and 20% for validation. Figure 4.58 illustrates the training and validation loss over the
epochs. Notably, the training loss decreases steadily, while the validation loss initially decreases
but shows some divergence as training progresses, indicating potential overfitting.

Figure 4.58: Training and Validation Loss Over Epochs and Actual vs Predicted Values (Unshielded low Threshold Dataset)

The model was evaluated on the test dataset, achieving a test loss of 1.3× 10−5, mean abso-
lute error (MAE) of 0.002218, and root mean square error (RMSE) of 0.003596 on the scaled
data. These metrics suggest the model performs well in predicting the time series data on a
normalized scale.

When the predictions were inverse-transformed to the original scale, the model achieved a
mean absolute error of 5.0× 10−5 and a root mean square error of 8.0× 10−5. The results are
summarized in Table 4.6.
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Metric Value
Test Loss 1.3× 10−5

Test MAE (Scaled) 0.002218
Test RMSE (Scaled) 0.003596
Mean Absolute Error (Original Scale) 5.0× 10−5

Root Mean Square Error (Original Scale) 8.0× 10−5

Table 4.6: Evaluation Metrics for the LSTM Model (Unshielded Low Threshold Dataset)

The actual versus predicted values on the original scale are depicted in Figure 4.58. The fig-
ure shows that the model’s predictions closely follow the actual data points, further validating
the model’s effectiveness in capturing the temporal dependencies inherent in the data.

4.6.3 Deep LearningModel for Shielded Dataset

The LSTMmodel was trained using a dataset that focused on a single channel (column ’224’)
from the dataset. The model used two LSTM layers with 128 and 64 units, each followed by
a dropout layer with a rate of 0.2 to prevent overfitting. The final dense layer aimed to predict
the sequence, aligning with the input shape. The model used the Adam optimizer and mean
squared error (MSE) as the loss function.

4.6.3.1 Model Training and Evaluation on Shielded Dataset

I used two LSTM layers with 128 and 64 units and dropout layers to prevent overfitting. The
model was compiled using the Adam optimizer and mean squared error as the loss function.
Callbacks for early stopping and learning rate reduction were implemented. The model was
trained for a maximum of 50 epochs with a batch size of 32, using an 80/20 split for training
and validation data. The training and validation loss over epochs are depicted in Figure ??,
showing effective model convergence with minimal overfitting.
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Figure 4.59: Training and Validation Loss Over Epochs for Shielded Dataset)

The model was tested using the test dataset; on the original scale, the model’s predictions
resulted in a mean absolute error (MAE) of 827.62 and a root mean square error (RMSE) of
9041.15. These results show that the model accurately predicts the time series data and effec-
tively captures the underlying patterns.

Themodel’s R-squared valuewas calculated for the training and testing datasets. Themodel
achieved nearly perfect scores of 1.0000 for the training dataset and 0.9997 for the testing
dataset, showing excellent model fit and generalization capability. The actual versus predicted
values on the original scale are shown in Figure 4.62 . This diagram shows that themodel’s pre-
dictions closely match the actual data points, confirming that the model effectively captures
the time-based patterns in the data.

137



Figure 4.60: Actual vs Predicted Values on Original Scale

4.6.4 Deep LearningModel for Short Cable Dataset

The Long Short-TermMemory (LSTM)model was implemented using the TensorFlowKeras
library for time series prediction. The model’s architecture includes two LSTM layers, consist-
ing of 128 and 64 units, respectively. Each LSTM layer is followed by a dropout layer with
a dropout rate of 0.2 to mitigate overfitting by randomly dropping a fraction of the neurons
during training. The final output layer has a single neuron and is suitable for the regression task
of predicting continuous values. The model used the Adam optimizer, known for efficiently
handling large datasets and noisy gradients. The mean squared error (MSE) was used as the
loss function because it effectively penalizes large errors more severely than small ones.

4.6.4.1 Model Training and Evaluation on Short Cable Dataset

The LSTMmodel was trained over 50 epochs with a batch size of 32. The dataset was divided
into two parts: 80% for training and 20% for validation. Figure 4.61 shows the training and
validation loss over the epochs. The training loss quickly decreased in the first epochs, indicat-
ing that the model learned the data patterns effectively. The validation loss decreased overall,
suggesting that the model generalized well to new data without overfitting.
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Figure 4.61: Training and Validation Loss Over Epochs

After completing the training, we tested the model using a separate dataset to see how well
it could predict. The results showed that the test loss was extremely low at 4.66× 10−7 on the
scaled data. The original scale’smean absolute error (MAE)was 143,971.21, and the rootmean
square error (RMSE) was 875,234.67. These results indicate that the model is highly accurate
in predicting time series data, effectively capturing the patterns and relationships within the
dataset.

Metric Value
Test Loss (Scaled) 4.66× 10−7

Mean Absolute Error (Original Scale) 143,971.21
Root Mean Square Error (Original Scale) 875,234.67

Table 4.7: Evaluation Metrics for the LSTM Model

Figure 4.62 shows the real values versus the predicted values on the original scale. The
model’s predictions match closely with the actual data points, which confirms its ability to
capture the patterns in the time series data. This shows that the model can handle complex
patterns well and predict future data points accurately.

139



Figure 4.62: Actual vs Predicted Values on Original Scale

I found that the Mean Absolute Error (MAE) and Mean Absolute Scaled Error (MASE)
were quite high after evaluating the LSTMmodel on my dataset. This is likely due to the very
noisy nature of the data, which contains a lot of variability and outliers. The high level of noise
makes it difficult for the model. I applied the model to two datasets, one with time intervals
and another with frequencies.

4.6.5 Conclusion

(LSTM) models developed and evaluated in this study for various datasets show the effective-
ness of deep learning in time series prediction tasks. Across all datasets, the models could cap-
ture temporal dependencies and accurately predict frequency and time interval, as indicated
by low test loss values and strong R-squared scores. However, The datasets showed signifi-
cant challenges due to inherent noise and variability, especially for the shielded and short ca-
ble datasets. In this case, the Mean Absolute Error (MAE) and Mean Absolute Scaled Error
(MASE) were notably higher. This indicates that although LSTM models are strong at han-
dling complex temporal patterns.
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5
Conclusion

5.1 Summary of Findings

This study looked at the commonmode current noise in the CMSDrift Tube cabling in order
to better understand and reduce electromagnetic interference (EMI) in high-energy physics
experiments. We used experimental measurements, signal processing, machine learning, and
deep learning techniques to studydifferent cable configurations and their impact onnoise levels
in theCMSDriftTubes, especially in relation to theLargeHadronCollider (LHC) operations.

5.1.1 Cable Configuration Analysis

We examined four different cable setups: Unshielded with High Threshold, Short Cable, Un-
shielded with Low Threshold, and Shielded. Our findings show the following:

1. Shielded Setup: Shielding reduced low-frequency noise but unexpectedly let in some
high-frequency noise, possibly because of outside electromagnetic interference or internal ca-
ble resonance. This shows how complex EMI pathways are and how challenging it is to block
noise with shielding completely.

2. Short Cable Setup: Short cables generally have lower noise levels across most frequencies,
suggesting that shorter transmission paths can effectively reduce high-frequency noise. How-
ever, some low-frequency noise is still present, showing that cable length alone is not enough
to completely eliminate noise.
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3. Unshielded with Low and High Thresholds: The unshielded setups showed different
reactions to noise based on the detection threshold. The setup with a low threshold captured
a wide range of frequencies, including higher-frequency components. At the same time, the
high threshold configuration effectively filtered outmost noise but alsomissed lower amplitude
signals. These results show the trade-offs between sensitivity and noise reduction in finding
subtle signals in high-energy physics experiments.

5.1.2 Advanced Signal Processing andMachine Learning

We used advancedmethods like Fast Fourier Transform (FFT), Short-Time Fourier Transform
(STFT), autocorrelation, and machine learning and deep learning models to study noise char-
acteristics and identify irregularities. These techniques helped us understand noise patterns
across different cable configurations.

5.1.2.1 Signal Processing Techniques

Analysis using FFT and STFT showed different frequency components and changes in noise
over time with various cable setups. Autocorrelation and inter-arrival time analyses found pat-
terns and groupings in the noise. These findings are important for identifying noise sources
and creating specific plans to reduce the noise.

5.1.2.2 Machine Learning for Anomaly Detection

Variousmachine learningmodels, including IsolationForest, LocalOutlier Factor (LOF),Gaus-
sian Mixture Model (GMM), and One-Class SVM, were employed to detect anomalies in the
frequency data. The Isolation Forest and GMM models were very good at precision and re-
call, effectively identifying significant deviations indicative of noise or interference. In contrast,
LOF and One-Class SVM showed moderate effectiveness, with higher rates of false positives.

5.1.2.3 Deep Learning for Time Series Prediction

Long Short-Term Memory (LSTM) models were used to predict time series data related to
frequency and time interval. These models accurately predicted noise patterns, even though
the datasets had a lot of variability and inherent noise. They effectively captured time-based
relationships.
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5.1.3 ExperimentalResultsandCorrelationswithSpectrumAn-
alyzerMeasurements

After many tries, we discovered strong connections between the noise in the collected data and
the spectrum analyzer plot obtained using a common-mode current probe. Surprisingly, the
data showed that the unshielded cable setup performed slightly better than the shielded one in
certain situations. This unexpected outcome suggests that the noise propagation path is com-
plex andhard to predict or control. A significant findingwas that turning off the old electronics
near the test setup led to a big decrease in noise. This resulted in much lower noise levels in the
collected data, confirmed by a big drop in the spectrum analyzer readings. This discovery em-
phasizes how nearby electronic equipment can greatly affect noise levels. It also highlights the
importance of carefully controlling the environment around sensitive experimental setups to
reduce electromagnetic interference.

5.2 Implications for Future Research and Upgrades

The findings from this study have important implications for future research and the ongoing
Phase 2 Upgrade of the CMSDrift Tubes:

5.2.1 ImprovingNoiseMitigation Strategies

Analyzing the different types of cable setups and their noise characteristics can help us improve
our cable infrastructure and shielding methods. We should improve our shielding designs to
block out high-frequency interference in the future. We also need to look into using different
materials or setups that are less affected by outside noise sources.

5.2.2 Implementing at CERN

The results offer valuable information on noise behavior and its correlation with spectrum
analyzer measurements. These findings were obtained in a controlled environment at INFN
Padova. Future experiments should be carried out atCERN, directly on theCMSDrift Tubes,
to further validate these results and improve the noise reduction techniques. Conducting these
experiments in the actual operating environment of the LHC will provide a more thorough
understanding of noise propagation and its effects under real-world conditions. Moreover, ap-
plying these techniques at CERNwill allow for a more precise evaluation and optimization of
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the cabling and shielding configurations, ultimately improving detector performance in high-
energy physics experiments.

5.2.3 Expanding Deep Learning Applications

LSTMmodels have been successful in predicting time series data. This suggests deep learning
could be helpful in real-timemonitoring and adaptive noise filtering. Future researchers could
look into using deep learningmodels in online systems to adjust noise thresholds and optimize
signal quality during live experiments.
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