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Abstract

Magnetic polymers, where each monomer carries a magnetic moment or spin, are a class of
interacting polymers that have recently received attention from the polymer and statistical
mechanics community. The reason is at least twofold:

1. they have several applications in Materials Science, in information and communication
technology, in sound absorption, in biomedical engineering and in drug delivery;

2. from the statistical mechanics perspective, they are nice examples of interacting systems
where the entropy of the polymer substrate and the interaction energy between mag-
netic spins can give rise to rich equilibrium phase diagrams and non-standard critical
phenomena.

Moreover, in the last few years they have been successfully employed in the study of the chro-
matin folding. Chromatin is a giant polymer located in the cellular nucleus. Its monomers are
the nucleosomes, made of a DNA filament twisted around a protein called histone. When an
histonic marker (named also epigenetic markers) attaches to an histone, it induces a local mod-
ification of the chromatin. Magnetic polymer models are used to understand how the interplay
between chromatin (the polymer) folding and epigenetic landscape (the spins) can contribute
to shaping the genome organization in the nuclei.

In this thesis, we extended previously investigated models of Ising or Potts-like magnetic poly-
mers to the case in which the underlying magnetic system can, if embedded on a regular lattice,
display multicritical behaviours. In particular, we considered the Blume-Emery-Griffiths model
where vacancies (i.e. sites with no magnetic moment) are considered. On a regular square lat-
tice, the Blume-Emery-Griffiths model displays a tricritical point between a critical line and line
of first-order phase transition. Using mean-field approximations and Monte Carlo simulations,
we looked at how the equilibrium phase diagram and the corresponding phase transitions of
a lattice polymer model can be shaped by the magnetic interactions, exploring, in particular,
the role of the tricritical point on the configurational properties of the polymeric substrate.
Strikingly, a mean-field compact disordered phase emerges, that was previously obtained only
by driving the system out of equilibrium or by including an overall attractive contribution.
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Chapter 1

Introduction to magnetic polymers

1.1 Polymers

1.1.1 Polymer models

(a) (b)

(c)

Figure 1.1: The black line represents the polymer; purple circles correspond to the solvent
molecules. (a): in a good solvent the monomers like more the solvent molecules than the other
monomers. Thus, it assumes an open, swollen conformation. (b): a polymer immersed in
a solvent at the so called θ-point behaves as an ideal coil. The attraction among monomers
exactly balances the steric repulsion. (c): in a poor solvent the attraction among monomers is
stronger than the hard-core repulsion. The coil is therefore collapsed.

1



2 CHAPTER 1. INTRODUCTION TO MAGNETIC POLYMERS

A polymer is a molecule composed of many repeated subunits named monomers. A large variety
of such molecules can be find in biological systems: proteins are polymers whose monomer
units are the amino acids; nucleic acids (DNA and RNA) are sequences of nucleotides and
polysaccharides are long-chain polymeric carbohydrates composed of monosaccharide units.
The physics of such systems is determined by the interplay between the interactions among
monomers (inter-polymer interactions) and the effect of the solvent in which the molecules are
immersed (see Refs. [1], [2]). An important quantity in this context is the excluded volume
per monomer v, a volume inaccessible to other particles because of the presence of a monomer.
Thanks to this concept, it is possible to identify three possible regimes:

• If the attraction between monomers is weaker than the steric repulsion between monomers,
the excluded volume v is positive and the polymer swells. This corresponds to a good sol-
vent : the interaction between solvent molecules and monomers are energetically favorable
(see Figure 1.1(a), left);

• If the attraction between monomers just balances the effect of the steric repulsion, the
excluded volume vanishes and the chain will adopt a nearly ideal conformation. This
correspond to the so called θ-point (see Figure 1.1(b), center);

• If the attraction between monomers is stronger than the steric repulsion, the excluded
volume is negative and the polymer collapses. This corresponds to a poor solvent (see
Figure 1.1(c), right).

Since in an ideal chain excluded volume interactions between monomers are neglected, one can
build relatively simple models of ideal polymers, such as the freely jointed chain model, where
bonds between monomers have a fixed length and the directions of the different bonds are not
correlated. However, it is difficult, in general, to approach real (i.e. non ideal) polymers theo-
retically because one has to consider all the possible interactions among monomers, including
bonds and torsion angles.
In this work we focus on lattice models, where an N -monomers polymer can be mapped on
a (N − 1)-steps walk defined on a lattice of volume V (i.e. whose number of sites is V). The
polymer density ρ is defined as ρ = N/V . The advantages of using such an approach are its
simplicity and the possibility of easily study the equilibrium steady state of the system.
A first attempt of modeling a polymer on a lattice whose coordination number is z is to consider
a (N − 1) - steps random walk (RW): starting from a lattice site, the next step is determined
by selecting randomly one of the neighboring sites (i.e. with probability 1/z), regardless of
whether the site is occupied by another monomer or not. In general, this model is not a good
model for non-ideal polymers because it does not take into account repulsive interactions among
monomers, induced for instance by steric effects or by the chemical bonds. On the other hand,
it can be used to model a polymer in a θ solvent. A more realistic extension of the RW is the
so-called self-avoiding walk (SAW), a path on a lattice where a site can be occupied by only one
monomer; as such, the path can never cross itself (in Figure 1.2 a RW and a SAW are shown).
Given a SAW γ, its adjacency matrix Λγ

i,j is defined as follows:

Λγ
i,j =

{︄
1 if i, j ∈ γ are nearest neighbors

0 otherwise
(1.1)

This object allows us to determine the nearest neighbors of a given site and thus to write the
interaction terms among monomers in the Hamiltonian of the magnetic polymer model.
Let us consider an N − 1 steps SAW on a lattice with V sites. We are interested in estimating
the number of such walks ZSAW in the thermodynamic limit (N → ∞ and V → ∞ such shat
ρ = N/V remains finite). An exact answer to this problem is actually still an open problem
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and only estimates are possible. Heuristically, we can write:

ZSAW =
N !

(V −N)!

(︂ z
V

)︂N−1

. (1.2)

The first factor is the number of ways we can pick N different lattice sites from the total number
V . In general they will be far away from each other and do not describe a walk. For this reason
we correct this number by inserting the second factor: only the first bead has actually V
possible choices, while the remaining ones must be chosen among the z first neighbors. Finally,
exploiting the Stirling approximation for the factorials:

log(n!) ≈ n log n− n (1.3)

the number of walks can be rewritten as:

ZSAW =
(︂z
e

)︂N
exp (−V (1− ρ) log(1− ρ)) (1.4)

Given a SAW γ of N steps on a volume V , other quantities that we will encounter in the
following (see the Appendix A) are:∑︂

i,j∈γ

(Λγ
i,j)

−1 and
∑︂
i,j∈γ

Λγ
i,j (1.5)

An easy estimation of this quantity can be obtained restricting ourselves to the SAWs that are
almost space filling such as, for example, the subset of Hamiltonian walks. An Hamiltonian
walk is a path that visits each vertex of a lattice embedded in a volume V exactly once and
have been used to study equilibrium properties of highly compact polymers (see Ref. [3]). For
an Hamiltonian walk, the adjacency matrix of the SAW Λ takes the same form of the adjacency
matrix of the underlying lattice, characterized by the coordination number z. Since our polymer
has a density ρ = N/V the expected number of nearest neighbors for each lattice site is ≈ zρ,
thus: ∑︂

i,j

Λγ
i,j ≈ Nρz (1.6)

and ∑︂
i,j

(Λγ
i,j)

−1 ≈ N

ρz
. (1.7)

In the following it will be useful to find how many (N−1)-steps SAWs can be drawn on a finite
volume V .

1.1.2 Interacting SAW

The previous concepts can be easily used to to model the behavior of homopolymers (i.e.
polymers whose monomers are identical) in a solution. The polymer is modeled as a (N − 1)-
steps SAW γ on a volume V lattice whose coordination number is z. The interaction among
two nearest neighbor monomers i and j is supposed to be attractive:

I(i, j) = −ϵΛγ
i,j ϵ > 0. (1.8)

The Hamiltonian of such a model is:

H =
1

2

∑︂
i,j

I(i, j) = − ϵ

2

∑︂
i,j

Λγ
i,j (1.9)
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(a) (b)

Figure 1.2: Examples of walks. (a): In this picture a RW on a square lattice is shown. Such
kind of walks can cross themselves. (b): An example of self avoiding walk (SAW). It does not
cross itself. Red dashed line represents the self avoidance.

The thermodynamics of this model is obtained applying equilibrium statistical mechanics. The
partition function is defined as:

Z(β, ρ; ϵ) =
∑︂

γ∈SAW

exp

(︄
βϵ

2

∑︂
i,j

Λγ
i,j

)︄
(1.10)

where β = 1/T is the inverse temperature. Applying the relations Eqs. (1.2) and (1.6) we find:

ZMF (β, ρ; ϵ) =
(︂z
e

)︂N
exp

(︃
−V (1− ρ) log(1− ρ) +

βϵ

2
Nzρ

)︃
(1.11)

The free energy density is:

f(β, ρ; ϵ) = − 1

Nβ
logZMF (β, ρ, ϵ) = (1.12)

= − 1

β
log
(︂z
e

)︂
+

1

β

1− ρ

ρ
log(1− ρ)− ϵz

2
ρ. (1.13)

From the minimum free energy principle we can obtain the equilibrium polymer density ρ in
different temperature regimes. Let us Taylor expand Eq. (1.13) around ρ = 0:

1− ρ

ρ
log(1− ρ) = −1 +

ρ

2
+
ρ2

6
+
ρ3

12
+ . . . (1.14)

f(β, ρ; ϵ) = f0(β, ϵ) +

(︃
1

2β
− ϵz

2

)︃
ρ+

1

6β
ρ2 + . . . . (1.15)

where

f0(β; ϵ) = − 1

β
log
(︂z
e

)︂
− 1

β
(1.16)

Since the coefficients in front of the higher powers of ρ are positive, we expand till the second
order. Eq. (1.15) is quadratic in ρ therefore the position of the minimum depends on the sign
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of the linear coefficient:

ρ∗ = 0 if ϵzβ ≤ 1 (1.17)

ρ∗ =
3

2
(ϵzβ − 1) if ϵzβ > 1 (1.18)

Therefore, when β < 1/zϵ the polymer is in a swollen phase; when β > 1/zϵ the polymer
collapses in a compact phase. Since the function ρ∗(T ) is continuous at the critical temperature
β∗ = 1/zϵ, this simple model predicts a continuous swollen-disordered phase transition. In
Figure 1.3 the temperature trend of the equilibrium density has been computed numerically
from Eq. (1.13). In this figure the coordination number z and the magnitude of the attractive
interaction ϵ have been set to unity. The observed critical β∗ = 1 corresponds with the result
obtained previously.

Figure 1.3: Temperature behavior of the equilibrium polymer density ρ∗, computed numerically
from Eq. (1.13). In this plot z = ϵ = 1. The critical value of inverse temperature is β∗ = 1
which corresponds to the result obtained Taylor expanding the free energy density.
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1.1.3 Virial expansion

Starting from the free energy density we can compute the osmotic pressure Π. Its thermody-
namic definition is:

Π = − ∂f

∂(1/ρ)
= ρ2

∂f

∂ρ
(1.19)

By Taylor expanding it around ρ = 0, the osmotic pressure can be rewritten as a virial expan-
sion:

Π(ρ) = B1ρ+B2ρ
2 +B3ρ

3 + . . . , (1.20)

where Bi is the i-th virial coefficient. These coefficients can be determined starting from ex-
perimental data or can arise from a theoretical model.
In general the i-th virial coefficient is a “measure” of the i-bodies interaction. In particular,
the first virial coefficient is connected to the ideal behavior (and corresponds to the Van’t Hoff
osmotic pressure) and the second virial coefficient give us information about the excluded vol-
ume. When the second virial coefficient is positive, the excluded volume is finite and positive
meaning that the interaction between the monomers is, overall, repulsive. In this situation
the polymer is expected to swell (it corresponds to Figure 1.1(a)). When B2 is negative, the
opposite occurs: attraction dominates and the polymer is expected to collapse (Figure 1.1(c)
right). The ideal behavior is recovered when B2 = 0 (the θ point, Figure 1.1(b)).
The virial expansion helps us to study the properties of the swollen-disordered phase transi-
tion. For the interacting SAW model described before, the second and third virial coefficients
corresponds to the coefficients in front of the linear and squared term:

B2(β, ϵ) =
1

β

(︃
1

2
− βϵz

2

)︃
(1.21)

Bi(β) =
1

β

1

(i+ 1)
i > 2 (1.22)

and from B2 we can derive a measure of the excluded volume v:

v = βB2(β, ϵ) =

(︃
1

2
− βϵz

2

)︃
(1.23)

Therefore:

v > 0 if β < β∗ (1.24)

v = 0 if β = β∗ (1.25)

v < 0 if β > β∗ (1.26)

Varying the temperature, it is possible to go from a good solvent to a bad solvent. The
temperature θ = 1/β∗ such that v(θ) = B2(θ) = 0 is called theta temperature, that marks the
onset of the swollen-disordered phase transition.

1.1.4 Magnetic polymers

In physics many models have been defined in order to study the magnetic properties of materials.
In general, given a lattice, a magnetic model consists in assigning a spin variable Si to each
site i and defining how they interact among each others. In order to define a magnetic polymer
model, we need to take into account the topology of a SAW on the lattice: this can be done by
means of the adjacency matrix as defined in Eq. (1.1). The Hamiltonian of the model is:

Hγ({S}; {ψ}) =
1

2

N∑︂
i,j=1

Λγ
i,jI(Si, Sj;ψ), (1.27)
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where γ ∈ SAW is a self avoiding walk, J(Si, Sj;ψ) defines the interaction among the two spins
Si and Sj belonging to the walk γ and {ψ} is a set of parameters characterizing the interaction
(in a ferromagnetic Ising - like interaction, the parameter is the exchange energy). In this way
two spin variables may interact only if they below to the SAW and if they are nearest neighbors.
Starting from the Hamiltonian of the model one can theoretically compute the partition function
of the system:

Z(ρ, {O}, β; {ψ}) =
∑︂

γ∈SAW

∑︂
{S}

exp (−βHγ({S}; {ψ})) . (1.28)

β = 1/T is the inverse temperature, {O} is a set of n order parameters that, together with ρ,
characterize the macroscopic state of the system (in this work the maximum number of order
parameters, that will be considered, is n = 2 for the BEG model). From it we can derive the
whole thermodynamics of the system, including the free energy density:

f(ρ, {O}, β; {ψ}) = − 1

βN
logZ(β, ρ, {ψ}) (1.29)

where log is the natural logarithm. As well known, this is practically impossible because of
the complexity of the model. However, working in the mean field approximation, this task is
generally achievable.
The phase diagram of such a model can be numerically derived by solving a system of mean
field equations:

∂f

∂ρ
= 0

∂f

∂Oj

= 0 j = 1, . . . , n. (1.30)

varying the inverse temperature β and the parameters {ψ} of the model.
From the previous mean field equations it is possible to write the order parameters Oj(ρ) in
terms of the polymer density. By plugging these relations in Eq. (1.29) and expanding it around
ρ = 0 it is possible to derive the virial coefficients and study in detail the swollen-disordered
transition.
The phases a magnetic polymer system can display are typically characterized by the polymer
density ρ and the magnetization per spin m:

m =
1

N

N∑︂
i=1

Si = ⟨Si⟩. (1.31)

It is possible to define four phases on the basis of the values of the previous two order parameters:

• Compact ordered (CO): ρ > 0, m > 0;

• Compact disordered (CD): ρ > 0, m ≃ 0;

• Swollen ordered (SO): ρ ≃ 0, m > 0;

• Swollen disordered (SD): ρ ≃ 0, m ≃ 0;

A SO phase is typically never observed.

1.2 Ising magnetic polymer

In this section we summarize the results of Ref. [4] about an Ising magnetic polymer. The pro-
cedure detailed before will be applied to study the conformational phase transitions of an Ising
magnetic polymer, whose monomers interact ferromagnetically according to the Hamiltonian
of the Ising model.
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Figure 1.4: An Ising magnetic polymer is modeled as a SAW. All the monomers carry a spin vari-
able and nearest neighbor monomers interact ferromagnetically following Eq. (1.33). Straight
black lines represents the walk, the dotted line represent a ferromagnetic interaction among
two non consecutive beads.

1.2.1 Hamiltonian of the system

Let the spin variables Si assume the two following values: Si ∈ {−1, 1}. The interaction energy
among a couple of spin variables belonging to the SAW is defined as:

I(Si, Sj) = −JSiSj (1.32)

where J is the exchange energy. Moreover, let us add an homogeneous magnetic field hi ≡ h
for each site i of the SAW. Given a SAW γ, the Hamiltonian of the system becomes:

Hγ({S}; J, h) = −J
2

N∑︂
i,j=1

SiΛ
γ
i,jSj − h

N∑︂
i=1

Si (1.33)

In Figure 1.4 a sketch of Ising magnetic SAW is shown. Straight black lines represents the
walk, the dotted line represent a ferromagnetic interaction among two non consecutive beads.

1.2.2 Mean field theory

The partition function of the system is obtained summing the Boltzmann factors with respect
to all the possible SAWs and all the possible spin configurations:

Z =
∑︂

γ∈SAW

∑︂
{S}

exp

(︄
βJ

2

∑︂
i,j

SiΛ
γ
i,jSj + βh

∑︂
i

Si

)︄
(1.34)

All the calculation regarding this partition function are reported in the Appendix, section 1.
Let us summarize here the procedure:

• We perform an Hubbard - Stratonovich transformation in order to decouple the two spin
variables in the first term inside the exponential. In order to do this we must introduce
a set of local fields {ϕi}, one for each monomer, and to integrate over them;

• It is then possible to perform the summation on the spin variables;
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• Finally, an homogenous saddle point approximation allows us to find a mean field partition
function of the system. The sum on the SAWs is performed applying Eq. (1.2) and Eq.
(1.7).

The mean field partition function is:

Z ≈ A
(︂z
e

)︂N
exp

(︄
−V (1− ρ) log(1− ρ)− Nϕ2

2βρzJ
+

N∑︂
i=1

log(2 cosh(ϕ+ βh))

)︄
, (1.35)

where A is a constant factor. The mean field free energy density of this model is:

f(ϕ, ρ, β; J, h) = +
ϕ2

2ρβ2Jz
− 1

β
log

z

e
+

1

β

1− ρ

ρ
log(1− ρ)− 1

β
log(2 cosh(ϕ+ βh)), (1.36)

Which corresponds to Eq. (11) of Ref. [4]. Finally, we can derive the expression of the average
magnetization per spin m:

m = ⟨Si⟩ = −∂f
∂h

= tanh(ϕ+ βh). (1.37)

1.2.3 Phase diagrams and virial expansion

The mean field equations arising from Eq. (1.36) are:

∂f

∂ϕ
= 0 (1.38)

∂f

∂ρ
= 0 (1.39)

which correspond to:

ϕ2

2βJz
= −ρ− log(1− ρ) (1.40)

ϕ = βJzρ tanh(ϕ+ βh) = βJzρm (1.41)

Solving numerically the previous system of equations it is possible to draw the mean field phase
diagram of the Ising polymer. In general, given a couple (T, h) of values of temperature and
magnetic field, there could be multiple solutions. The physical one, which ensure thermody-
namical stability, is the one which minimizes the free energy density Eq. (1.36). In particular,
Eq. (1.41) allows us to link the field ϕ to the average magnetization per spin:

ϕ = βJzρm. (1.42)

In Figure 1.5 heat maps of the magnetization per spin m (left panel) and of the polymer density
ρ (right panel) are showed on the plane h-T . In these graphs, and in the following ones, the
coordination number has been set to z = 6 (which corresponds to a three dimensional squared
lattice) and the exchange energy is set to J = 1. From Figure 1.5 it is possible to identify the
presence of a CO and a SD phases. Moreover, the transition between these two phases seems
to be discontinuous for low values of h and continuous for large h. No other phase is observed.
We can Taylor expand Eq. (1.41) around ϕ = 0 up to the first order, finding out a relation
between the field ϕ and the polymer density ρ:

ϕ(ρ) ≈ βJρz tanh(βh)

βJρz tanh2(βh)− βJρz + 1
(1.43)
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(a) (b)

Figure 1.5: Heat maps computed numerically from the system of equations (1.40) and (1.41).
The coordination number has been set to z = 6 and the ferromagnetic exchange constant J = 1.
The white line corresponds to the CO - SD transition. A full and dashed line correspond to
a second order and a first order phase transition respectively. The red dot corresponds to the
tricritical point G. (a): magnetization m per spin in the h-T plane. (b): polymer density ρ in
the plane h-T plane.

Plugging this relation in Eq. (1.36) and Taylor expanding around ρ ≈ 0 it is possible to derive
the virial coefficients:

B2(β, J, h) =
β(J − 2)Jz tanh2(βh) + 1

2β
(1.44)

B3(β, J, h) =
1

3β
− βJ2(2J − 3)z2 tanh4(βh) + βJ2(2J − 3)z2 tanh2(βh) (1.45)

Both the coefficients vanish at the multicritical point G (the fourth coefficient is instead posi-
tive):

G = (TG, hG) =

(︄
9J

2
,
9J

2
arctanh

√
3

2

)︄
= (4.5J, 5.9J) (1.46)

Above the critical point, the condition B2(β, J, h) = 0 corresponds to the critical θ line, since
B3(β, J, h) > 0.
In the phase diagrams in Figure 1.5 the transition line between the CO and the SD phases is
shown. The continuous line corresponds to the continuous θ transition and has been drawn
putting the second virial coefficient to zero. The dashed line, corresponding to a discontinuous
phase transition and computed numerically, meets the previous one in the multi critical point G.
The swollen - disordered transition when the magnetic field h vanishes occurs at a temperature
T ≈ 1.886J .



Chapter 2

The Blume-Emery-Griffiths model

2.1 Introduction

Figure 2.1: A 4 × 4 square lattice. Each lattice sites carry a spin variable Si ∈ {0,±1} and
their interaction is ruled by Eq. (2.1).

The Blume-Emery-Griffith model (BEG model, see Ref. [5]) was proposed in the 1971 as a
lattice model for the fluid-superfluid transition of a binary mixture of He3 - He4. In fact, a gas
of He4 is a gas of bosons and ordinarily undergoes a second order phase transition from a non
zero to a zero viscosity phase by decreasing the temperature. Such a kind of a transition is of
the λ type because of the peculiar λ-shape assumed by the graph of the specific heat around
the critical temperature Tλ. By adding to this gas a certain amount of He3 (fermions), the gas
of bosons will be diluted, and therefore the critical properties of such a model are affected.
Experimentally it is observed that above a critical concentration of fermions xtc ≈ 0.67, the fluid
- superfluid transition becomes of the first order. The main feature of the BEG is to reproduce
this phenomenon, by predicting the presence of a tricritical point on the phase diagram which
separates a line of critical points from a line of first order transitions.
Starting from the Hamiltonian of the model, we derive a mean field theory of this model
through an Hubbard - Stratonovich transformation followed by an homogeneous saddle point
approximation. From the mean field free energy function it is possible to derive the mean

11



12 CHAPTER 2. THE BLUME-EMERY-GRIFFITHS MODEL

field equations and thus the phase diagram of this model. Let us consider a lattice whose
coordination number is z (for a square lattice defined in d dimension, z = 2d). Each lattice site
carries a spin variable Si ∈ {0,±1}, where i = 1, 2, . . . , N and N is the total number of sites
(see Figure 2.1). The Hamiltonian of the BEG model is:

H({S}; J,K,∆) = −J
∑︂
⟨i,j⟩

SiSj⏞ ⏟⏟ ⏞
ferromagnetic term

−K
∑︂
⟨i,j⟩

S2
i S

2
j +∆

∑︂
i=1

S2
i⏞ ⏟⏟ ⏞

interaction term

−∆N (2.1)

• In terms of Helium isotopes, vacancies represent an He3 (fermions) while ±1 spins repre-
sent He4 (bosons);

• Angular brakets ⟨ij⟩ are used to indicate a sum on neighboring spins;

• The first term, where J > 0 is responsible for the ”superfluid” ordering.

• The second (K ≥ 0 is the strength of the biquadratic interaction) and the third term (
∆ ∝ µ3 − µ4, where µ3 and µ4 are the chemical potentials of the two helium isotopes)
represent the interaction energy between isotopes.

• The last term is the chemical potential term.

In this chapter the BEG model is presented following Ref. [5]. We will analyze in detail the
two limiting cases K = 0 and J = 0 and finally we will discuss three cases with a finite ratio
K/J . The derivation of the free energy density for a BEG magnetic polymer is analogous to
that for an Ising magnetic polymer: the main differences are reported in the second chapter of
the appendix. Their expressions are:

Z = A
(︂z
e

)︂N
exp

(︃
− Nϕ2

2βzJ
− Nα2

2βzK
+N log(1 + 2e−β∆+α cosh(ϕ+ βh))

)︃
, (2.2)

f(β, ϕ, α, ρ) =
1

2β2z

(︃
ϕ2

J
+
α2

K

)︃
− 1

β
log(1 + 2e−β∆+α cosh(ϕ))−∆. (2.3)

2.2 K = 0

2.2.1 Mean field free energy

Setting to zero the strength of the biquadratic interaction, the Hamiltonian Eq. (2.1) reduces
to:

HK=0({S}; J,∆) = −J
∑︂
⟨ij⟩

SiSj +∆
N∑︂
i=1

S2
i −∆N. (2.4)

Notice that in the limit ∆ → −∞ one should recover the phenomenology of the Ising model
because of the absence of vacancies. Following the procedure reported in the section 2 of the
appendix, neglecting the biquadratic interaction, the computed mean field partition function
and free energy density are respectively:

Z(ϕ, β; J,∆) = exp

(︃
− Nϕ2

2zβJ
+N log

(︁
1 + 2e−β∆ cosh(ϕ)

)︁
+ β∆N

)︃
, (2.5)

f(ϕ, β; J,∆) = − 1

Nβ
logZN =

ϕ2

2zβ2J
− 1

β
log
(︁
1 + 2e−β∆ cosh(ϕ)

)︁
−∆. (2.6)
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To characterize the magnetic properties of such model we must compute the average magne-
tization per spin m = ⟨Si⟩. This task can be performed by introducing in the Hamiltonian a
−h
∑︁

i Si term; computing the magnetization from its thermodynamic definition:

m = −∂f
∂h

(2.7)

and finally sending h→ 0. The introduction of this novel term in the Hamiltonian induces the
presence of a +βh inside the hyperbolic cosine in Eq. (2.6). The result of this computation is:

m =
2e−β∆ sinhϕ

1 + 2e−β∆ coshϕ
. (2.8)

Let us compute another interesting thermodynamic variable: the average concentration of
vacancies (or of 3He) is defined as x = 1− ⟨S2

i ⟩:

⟨S2
i ⟩ =

∂f

∂∆
+ 1 (2.9)

x = − ∂

∂∆
f = 1− 2e−β∆ coshϕ

1 + 2e−β∆ coshϕ
=

1

1 + 2e−β∆ coshϕ
. (2.10)

In particular, the concentration of vacancies in the disordered phase is:

x(ϕ = 0) =
1

1 + 2e−β∆
(2.11)

and this quantity will be used in what follows in order to characterize the critical properties of
the BEG model.

2.2.2 Criticality and tricriticality

In order to study the critical properties of this model we want to Taylor expand the free energy
density Eq. (2.6). Because of the Z2 symmetry of this model we expect to observe only even
powers of ϕ in the Taylor expansion of f(ϕ, β; ∆) around ϕ = 0.
The free energy expansions in terms of ϕ is (neglecting terms that do not depend on ϕ, see
section 3 of the Appendix for technical details):

f(ϕ, β; ∆) =

(︃
1

2β2Jz
− 1

2βδ

)︃
ϕ2 − 1

8β

(︃
1

3δ
− 1

δ2

)︃
ϕ4 +

1

48βδ2
ϕ6

= a(β,∆)ϕ2 + b(β,∆)ϕ4 + c(β,∆)ϕ6

where we have defined:

δ = 1 +
eβ∆

2
(2.12)

a(β,∆) =

(︃
1

2β2Jz
− 1

2βδ

)︃
(2.13)

b(β,∆) = − 1

8β

(︃
1

3δ
− 1

δ2

)︃
(2.14)

c(β,∆) =
1

48βδ2
(2.15)
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Notice that c(β,∆) > 0 while instead a(β, ρ,∆) and b(β,∆) may change sign.
The critical condition is:

a(β,∆) = 0

b(β,∆) > 0,

which leads to:

βJz = δ

δ < 3

or equivalently to:

βJz =
1

1− x(ϕ = 0)

x(ϕ = 0) < 2/3

Which tell us that on the T − x plane the critical points lay on a straight line. x(ϕ = 0) =
1/(1 + 2e−β∆) is the concentration of vacancies in the disordered phase. The tricritical point
arises when both the previous coefficients vanish:

a(β,∆) = 0

b(β,∆) = 0

βTCJz = 3

δTC = 3

or equivalently:

βTCJz = 3

x(ϕ = 0)TC = 2/3

When δ > 3, or equivalently, when x(ϕ = 0) > 2/3 a first order phase transition is expected.
An analytical estimation of the transition temperature and of the boundaries of the coexistence
region on the x − T plane, valid in the proximity of the tricritical point, can be achieved by
imposing:

b2(β,∆) = 4a(β,∆)c(β,∆).

In this way, the two minima of the free energy Taylor expansion have the same height in the
graph. For lower temperatures, numerical methods are needed.

2.2.3 Numerical analysis and mean field phase diagrams

The mean field self consistent equation for the ϕ field is:

∂f

∂ϕ
= 0 → ϕ = βJz

sinhϕ
eβ∆

2
+ coshϕ

. (2.16)

It is interesting to notice that from Eqs. (2.8) and (2.16) we can derive a relationship between
the field ϕ and the magnetization per spin: ϕ = βJzm.
By solving numerically Eq. (2.16) for ϕ and applying Eq. (2.10) it is possible to derive heat
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(a) (b)

Figure 2.2: Lines represent the free energy Eq. (2.6) at different values of T; in particular, the
full red line corresponds to the free energy computed on the point of the phase diagram where
a transition is expected. (a): x(ϕ = 0) = 0.3 and therefore we expect to observe a continuous
phase transition. (b): x(ϕ = 0) = 0.8 and we observe a first order phase transition.

maps of the magnetization and of the concentration of vacancies in the ∆ − T plane. In
Figures 2.3(a) and 2.3(b) such kind of graphs are shown (the coordination number and the
ferromagnetic exchange energy have been set respectively to z = 6 and J = 1). In the first
panel, the magnetization per spin m changes smoothly from one to zero across the critical
line ∆ = T log(2(Jz/T − 1)) (derived from the definition of δ); the tricritial point is located in
(∆tc, Ttc) = (4 log 2J, Ttc = 2J). For ∆tc < ∆ ≲ 3J a discontinuity is observed. From the second
panel it is possible to observe that the ordered phase display a lower concentration of vacancies,
as expected. It is also possible to derive numerically the boundaries of the coexistence region
in the x − T plane (notice that here x is the concentration of vacancies, not just restricted to
the disordered phase) by using Eqs. (2.10) and (2.16). In Figure 2.3(c) the phase coexistence
region is displayed. An interesting result shown in Ref. [5] is that the slope of the λ line is
continuous in intersecting the right boundary of the coexistence region: this result is typical of
mean field theories.

2.3 J = 0

When the ratio K/J diverges (i.e. J = 0), only the interaction energy is present and therefore
the magnetization m is equal to zero. The Hamiltonian reduces to:

HJ=0({S};K,∆) = −K
∑︂
⟨i,j⟩

S2
i S

2
j +∆

∑︂
i=1

S2
i −∆N. (2.17)

The mean field partition function and mean field free energy density are respectively:

Z(α, β;K,∆) = A
(︂z
e

)︂N
exp

(︃
− Nα2

2βzK
+N log(1 + 2e−β∆+α)

)︃
, (2.18)

f(α, β;K,∆) =
1

2β2z

α2

K
− 1

β
log(1 + 2e−β∆+α)−∆. (2.19)

where A is a constant. In this case the average concentration of vacancies x is:

x =
1

1 + 2e−β∆+α
(2.20)
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(a) (b)

(c)

Figure 2.3: (a): heat map of the magnetization m on the T - ∆ plane. (b): heat map of
the average concentration of vacancies x on the T - ∆ plane. White lines corresponds to
the transition line: a dashed and a full line correspond respectively to a discontinuous and a
continuous phase transition. Red point corresponds to the tricritical point. (c): Phase diagram
in the T - x plane. Three different regions are distinguishable: an ordered one where the
magnetization m > 0, a disordered one, where m = 0, and a phase coexistence region, where
these two phases coexist.

The Taylor expansion of the free energy density around α = 0 is given by:

f(α, β;K,∆) = a(β,K,∆)α2 + b(β,K,∆)α3 + c(β,K,∆)α4 (2.21)
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where:

a(β,K,∆) =

1
Kz

− 2βeβ∆

(eβ∆+2)
2

2β2
(2.22)

b(β,K,∆) = −
eβ∆

(︁
eβ∆ − 2

)︁
3β (eβ∆ + 2)3

(2.23)

c(β,K,∆) = −
eβ∆

(︁
−8eβ∆ + e2β∆ + 4

)︁
12β (eβ∆ + 2)4

(2.24)

A critical point C is found when a(β,K,∆) = b(β,K,∆) = 0 and c(β,K,∆) > 0: this hap-
pens when T = 1/β = 3/2 and exp (β∆) = 2 implying x = 0.5 (see Figure 2.4). At lower
temperatures, the transition is expected to be discontinuous. The heat map is drawn solving
numerically the following mean field equation:

∂f

∂α
=

α
Kz

− 2eαβ
2eα+eβ∆

β2
= 0 (2.25)

and the binodal curve is numerically computed using Eqs. (2.20) and (2.25).

(a) (b)

Figure 2.4: Phase diagrams for the J = 0 case. The coordination number and the strength
of the biquadratic interaction have been set to z = 6 and K = 1 respectively. (a): heat
map showing the average concentration of vacancies x on the T −∆ plane. The white dashed
line corresponds to a discontinuous phase transition. The red dot position corresponds to the
critical point C. (b): phase diagram on the T − x plane. C is the critical point, and below it a
discontinuous phase transition separates two phases with different average number of vacancies.

2.4 Intermediate cases

Cases where 0 < K/J < ∞ are physically relevant because the presence of competing interac-
tions is ubiquitous in physical systems and usually brings a great richness to the phase diagram.
Indeed, we see that tricritical points and triple points appear, at different values of the ratio
K/J .
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The mean field free energy and the mean field partition functions are Eqs. (2.18) and (2.19).
The average magnetization per spin m = ⟨Si⟩ and the average concentration of vacancies
x = 1− ⟨S2

i ⟩ are respectively:

m =
2e−β∆+α sinh(ϕ)

1 + 2e−β∆+α cosh(ϕ)
(2.26)

x =
1

1 + 2e−β∆+α cosh(ϕ)
(2.27)

The phase diagram of such a model can be derived by solving numerically the following mean
field equations:

ϕ

βJz
− sinh(ϕ)

eβ∆−α

2
+ cosh(ϕ)

= 0 (2.28)

α

βKz
− cosh(ϕ)

eβ∆−α

2
+ cosh(ϕ)

= 0 (2.29)

This system of mean field equations allows us to link the field ϕ to the the average magnetization
per spin and the field α to the average concentration of vacancies:

ϕ = βJzm (2.30)

α = βKz(1− x) (2.31)

It is possible to derive again the position of the tricritical point in terms of the peculiar quantities
of this model. Expanding the free energy density in Taylor series around ϕ = 0 and α = 0, it
turns out (see Ref. [5]) that the tricritical temperature and the tricritical average concentration
of vacancies are:

Ttc =
1 + 2K/J

3 + 2K/J
z xtc =

2

3 + 2K/J
(2.32)

In the following the phase diagrams emerging from the same values of the ratio K/J chosen by
the authors of Ref. [5] are studied.

2.4.1 K/J = 0.16

A ratio K/J ≳ 0 causes only quantitative changes from the K = 0 case (see Figure 2.5, where
K/J = 0.16). The tricritical point shifts to a smaller value of x and a larger value of T . For
the case of the Figure 2.5, the coordinates of the tricritical point are (xtc, Ttc) ≈ (0.60, 2.39).

2.4.2 K/J = 2.88

As the ratio increases, it is possible to observe features of both the K = 0 and the J = 0
cases. In particular, this situation is rather peculiar because a tricritical point, a critical point
and a triple point appear together in the same phase diagram. See Figure 2.6, in the right
panel: the phase coexistence region displays two maxima: the first one is the tricritical point
(whose coordinates are (xtc, Ttc) ≈ (0.23, 4.63J)), at the intersection between the λ line, due to
the ferromagnetic term in the Hamiltonian; the second one is a new critical point C. A triple
point (whose coordinates are approximatively (xtp, Ttp) ≈ (0.6, 4.25J)) is also present, where
an ordered and poorly diluted phase coexists together with two disordered and diluted phases.



2.4. INTERMEDIATE CASES 19

(a) (b)

(c)

Figure 2.5: Phase diagrams for the K/J = 0.16 case. (a): heat map showing the magnetization
m in the T −∆ plane. The white dashed and continuous lines correspond to a discontinuous
and a full phase transition respectively. The red dot position corresponds to the tricritical
point. (b): heat map showing the average concentration of vacancies x on the T −∆ plane. (c):
Phase diagram on the T − x plane. The tricritical point has moved to a lower concentration of
vacancies x and an higher temperature with respect to the K/J = 0 case of Figure 2.3(c).

2.4.3 K/J = 3.8

Increasing again the ratio, the tricritical point moves below the critical point C (see Figure 2.7).
Actually, despite appearing on the phase diagram at the coordinates (xtc, Ttc) ≈ (0.19, 4.86J),
the ordered - disordered phase coexistence is metastable with respect to the phase coexistence
generated by the interaction. In fact, in Ref. [5], the authors draw a diagram similar to plane
on the right of Figure 2.4, where the λ - line merely intersects the boundaries of the phase
coexistence region.
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(a) (b)

(c)

Figure 2.6: Phase diagrams for the K/J = 2.88 case. (a): heat map showing the magnetization
m on the T − ∆ plane. The white dashed and full lines correspond to a discontinuous and a
continuous phase transition respectively. The red dot corresponds to the critical and tricritical
points. (b): heat map showing the average concentration of vacancies x on the T − ∆ plane.
(c): Phase diagram on the T − x plane. The triple point has been highlighted with a blue
dashed line.
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(a) (b)

(c)

Figure 2.7: Phase diagrams for the K/J = 3.8 case. (a): heat map showing the magnetization
m on the T − ∆ plane. The white dashed and full lines correspond to a discontinuous and a
continuous phase transition respectively. The red dot corresponds to the critical and tricritical
points. (b): heat map showing the average concentration of vacancies x on the T − ∆ plane.
(c): Phase diagram on the T − x plane. The tricritical point still appears but, as pointed out
in Ref. [5], it is metastable.
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Chapter 3

The Blume-Emery-Griffiths magnetic
polymer model

3.1 BEG model on the SAW polymer

Figure 3.1: A sketch BEG magnetic polymer modeled as a self avoiding walk. Each monomer
carry a spin variable Si ∈ {0,±1} and their interaction is ruled by Eq. (3.2).

In this chapter we study a Blume-Emery-Griffith magnetic polymer model, i.e. we transpose
the Blume-Emery-Griffith model from a lattice to the geometry of self avoiding walks. The
Hamiltonian of the system is:

H({S}; J,K,∆) = −J
2

∑︂
i,j

SiΛi,jSj −
K

2

∑︂
i,j

S2
i Λi,jS

2
j +∆

N∑︂
i=1

S2
i −∆N (3.1)

where Λi,j is the adjacency matrix of the SAW, N is the length of the SAW and J , K and
∆ are, as in the lattice BEG model, the ferromagnetic exchange energy, the strength of the
biquadratic interaction and the chemical potential factor.
The approach will be the same of the previous chapter: firstly we will study in detail the two
extremal limit K/J → 0 and K/J → ∞ and secondly we will show how the phase diagrams
of the system change as a function of the ratio K/J . For each case we will draw the phase

23
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diagram on the T −∆ and on the T − x planes, paying attention to the different phases and
to the appearance of critical, tricritical and triple points.
In the appendix, the mean field partition function and the mean field free energy density for
the general case are derived in detail.

3.2 K = 0

In order to study a BEG magnetic polymer, we assign to each monomer a spin variable Si ∈
{−1, 0, 1}. The Hamiltonian of such a system can be simply derived from the Hamiltonian of
the standard BEG model (on the lattice) by simply adding to the ferromagnetic term the SAW
adjacency matrix Λi,j (Refs. [3, 4, 6, 7]):

HK=0({S}; J,∆) = −J
2

∑︂
i,j

SiΛi,jSj +∆
N∑︂
i=1

S2
i −∆N (3.2)

where J is the ferromagnetic exchange energy, N is the length of the walk. The mean field
partition function and the mean field free energy density are:

Z ≈ A exp

(︃
N log

z

e
− 1− ρ

ρ
log(1− ρ)− ϕ2N

2βJzρ
+N log(1 + 2e−β∆ coshϕ) + β∆N

)︃
(3.3)

f(ϕ, β, ρ; J,∆) = − 1

β
log

z

e
+

1

β

1− ρ

ρ
log(1−ρ)+ ϕ2

2β2Jzρ
− 1

β
log
(︁
1 + 2e−β∆ coshϕ

)︁
−∆ (3.4)

It is interesting to notice that in the limit of no vacancies ∆ → −∞ one finds the same free
energy density and the same self-consistent equation of the Ising magnetic polymer model (see
Ref. [4]). From the previous definitions it is straightforward to derive the average magnetization
per monomer m and the average concentration of vacancies x:

m = ⟨Si⟩ =
2e−β∆ sinhϕ

1 + 2e−β∆ coshϕ
(3.5)

x = 1− ⟨S2
i ⟩ = − ∂

∂∆
f(β, ρ,∆) =

1

1 + 2e−β∆ cosh(ϕ)
(3.6)

In the Appendix, we show some trivial results about the BEG polymer model when the polymer
density ρ is fixed. The exact critical behavior of a lattice BEG model are recovered, with the
unique difference that the critical temperatures are directly proportional to the polymer density
ρ.
Let us minimize the free energy with respect to ϕ and ρ:

∂f

∂ρ
= 0

∂f

∂ϕ
= 0 (3.7)

This leads to the following mean field equations:

log(1− ρ) = −ρ− ϕ2

2βJz
(3.8)

ϕ = βJzρ
sinhϕ

coshϕ+ eβ∆

2

(3.9)

From Eq. (3.9) we can find a relation between the field ϕ and the average magnetization per
monomer, giving a physical meaning to this field:

ϕ = βJzρm. (3.10)
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(a) (b)

Figure 3.2: In both panels, the ferromagnetic exchange energy has been set J = 1 and the
coordination number to z = 6. (a): phase diagram of the BEG magnetic polymer when K = 0
on the T -∆ plane. A CO and a SD phase appear and they are separated by a discontinuous
phase transition (black dashed line). (b): phase diagram on the T -x plane. Notice that the
binodal lines extend also below T = 0.5 J .

We are now interested in finding the solutions of the system of these two equations. Clearly
(ϕ = 0, ρ = 0) is always a solution for each values of x and β. But there could be also
other solutions with ϕ > 0 and ρ > 0. In order to find them, numerical techniques have
been exploited. The computed phase diagrams in the T -∆ and in the T -x planes are shown
respectively in Figures 3.2(a) and 3.2(b). Only two phases appear: a compact ordered one (CO,
where ϕ > 0 and ρ > 0) and a swollen disordered one (SD, where ϕ ≃ 0 and ρ ≃ 0) divided
by a first order transition line. Notice that when ∆ → −∞, or equivalently, when x → 0, the
transition temperature approaches T ≈ 1.886J : this result has been already obtained in Ref.
[4] in the limit of a vanishing magnetic field h. It is interesting to look at the coefficients of the
virial expansion of the free energy density:

B2(β,∆) =
1

β
(3.11)

B3(β,∆) =
1

3β
− 2z

eβ∆ + 2
(3.12)

B4(β,∆) =
1

4β
(3.13)

(3.14)

Whatever the values of the third and the fourth virial coefficients, the second one is always
positive. Therefore no θ transitions are expected.
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3.3 J = 0

In this limit the Hamiltonian reduces to:

HJ=0({S};K,∆) = −K
2

∑︂
i,j

S2
i Λi,jS

2
j +∆

N∑︂
i=1

S2
i −∆N (3.15)

Because of the absence of an ordering ferromagnetic term, we expect to observe only disordered
phases. The mean field free energy density is:

f(α, β, ρ;K,∆) = − 1

β
log

z

e
+

1

β

1− ρ

ρ
log(1− ρ) +

α2

2β2zKρ
− 1

β
log(1 + 2e−β∆+α)−∆ (3.16)

The average concentration of vacancies is given by:

x =
1

1 + 2e−β∆+α
. (3.17)

Minimizing Eq. (3.16) with respect to α and ρ:

∂f

∂α
= 0

∂f

∂ρ
= 0 (3.18)

we find the following mean field equations:

α

βKzρ
− 1

eβ∆−α

2
+ 1

= 0 (3.19)

ρ+ log(1− ρ) +
α2

2βzK
= 0 (3.20)

From Eqs. 3.17 and 3.19 we can derive a relation among the field α and the average concen-
tration of vacancies:

α = βKzρ(1− x). (3.21)

By Taylor expanding the log(1− ρ) terms around ρ = 0 up to the second order we can derive
an approximated relation between the field α and the polymer density ρ:

α ≈
√︁
βKzρ. (3.22)

Plugging in Eq. (3.16) and expanding around ρ ≈ 0 we can easily derive the virial expansion,
whose second and third virial coefficients are:

B2(β,∆) =
1

β
− 2

√
βKz

β (eβ∆ + 2)
(3.23)

B3(β,∆) =
1

6β
− Kzeβ∆

(eβ∆ + 2)2
(3.24)

B4(β,∆) =
1

12β
−
Kzeβ∆

(︁
eβ∆ − 2

)︁√
βKz

3 (eβ∆ + 2)3
(3.25)

(3.26)

The point at which both the second and the third virial coefficient vanish (the fourth virial
coefficient is instead positive) is:

(T ∗,∆∗) = (
9

16
Kz,− 9

16
Kz log

3

2
)
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Moreover, we expect a continuous transition in density when B2(T,∆) = 0 and B3(T,∆) > 0.
Defining x(α = 0) as the concentration of vacancies in the α = 0 phase (no interactions, it is
expected to be the swollen phase):

x(α = 0) =
1

1 + 2e−β∆
(3.27)

one can easily recover the previous conditions on the T -x plane. The point at which the two
virial coefficients vanish is:

(T ∗, x∗) = (
9

16
Kz,

1

4
)

and moreover the critical line is:

T = zK(x− 1)2 x <
1

4
(3.28)

In Figures 3.3(a) and 3.3(b) we show the numerically computed mean field phase diagrams.
There is a continuous transition between a compact (disordered) phase and a swollen (disor-
dered) phase which becomes discontinuous if the concentration of vacancies is higher than a
critical value (in this case, 1/4). Moreover the slope of the transition line is continuous at the
tricritical point (as in the standard lattice BEG model).

(a) (b)

Figure 3.3: For these plots K = 1 and z = 6. (a): phase diagram on the T − ∆ plane. The
separation line between the two phases is split by a multicritical point. (b): phase diagram on
the T − x plane.

3.4 Intermediate cases

In this section we consider the full BEG model on the polymer with both the ferromagnetic
and the biquadratic interaction terms in the Hamiltonian.
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The mean field free energy per monomer is:

f(ϕ, α, β, ρ; J,K,∆) =− 1

β
log

z

e
+

1

β

1− ρ

ρ
log(1− ρ)+

1

2β2zρ

(︃
ϕ2

J
+
α2

K

)︃
− 1

β
log(1 + 2e−β∆+α cosh(ϕ))−∆. (3.29)

As in the previous cases, the magnetization per spin m and the average concentration of va-
cancies x are given by:

m =
2e−β∆+α sinhϕ

1 + 2e−β∆+α coshϕ
(3.30)

x =
1

1 + 2e−β∆+α coshϕ
(3.31)

The mean field phase diagrams can be studied by numerically solving the following mean field
equations:

∂f

∂ϕ
= 0

∂f

∂α
= 0

∂f

∂ρ
= 0 (3.32)

ϕ

βJzρ
− sinh(ϕ)

eβ∆−α

2
+ cosh(ϕ)

= 0 (3.33)

α

βKzρ
− cosh(ϕ)

eβ∆−α

2
+ cosh(ϕ)

= 0 (3.34)

ρ+ log(1− ρ) +
1

2βz

(︃
ϕ2

J
+
α2

K

)︃
= 0 (3.35)

In order to reach a detailed knowledge of the different kind of phase diagrams that appears it
is worth to use again the virial expansion. For the CD - SD transition we have already seen
what happens in the case K/J → ∞. Here we focus on the transition between the CO and the
CD phase. Dividing Eq. (3.34) by Eq. (3.33) we can derive a relation between the field α and
the field ϕ:

α(ϕ) = K/Jϕ cothϕ

Plugging this relation in Eq. (3.33) and Taylor expanding around ϕ ≈ 0 up to the third order
it is possible to write the field ϕ = ϕ(ρ) in terms of the polymer density ρ. It is thus possible to
Taylor expand the free energy density around the value of polymer density ρ∗ such as ϕ(ρ∗) = 0.
In this case:

ρ∗ =
(2e−β∆+K) + 1

2ze−β∆+K
T

Unfortunately it is not possible to derive an explicit analytical formula of the virial coefficients
because of the computational complexity. However it is possible to derive the values of the
coefficient numerically in each point of the phase diagram, by simply selecting a temperature
T and a value of ∆.
As seen previously, we expect a continuous transition when the second virial coefficient vanishes
and the third is positive. In Figure 3.4 it is possible to observe different situations: the red
and the blue lines represent respectively the points of the T -∆ plane where the second and the
third virial coefficient vanish. Below the blue curve the third virial coefficient is negative (all
the considerations have been made selecting z = 6).

• When K/J ≃ 0, the second coefficient vanishes when the third is negative; therefore we
do not expect any continuous transition between the ordered and the disordered compact
phases;
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• When K/J ≈ 1.8 the two curves intersects in one point for low values of ∆;

• When K/J ≈ 2.88 we expect a line of critical θ points when the red line lies above the
blue one. A multicritical point occurs at the intersection of the two curves;

• Increasing again the ratio, the red line will be completely above the blue one and only a
continuous transition is expected between the disordered and the ordered phase.

(a) (b) (c)

Figure 3.4: In all these graphs, J = 1 and z = 6. Lines represent the points where the second
and third virial coefficients vanish (respectively red and blue), for different values of the ratio
K/J . The third virial coefficient is negative below the blue line. (a): K/J = 0.8. The red line
lies below the blue line: no θ transitions are expected; (b): K/J = 1.8: the two curves are near
to each other. Therefore (at least, in the range of ∆ selected for this picture, no continuous
transitions between the compact phases are expected; (c): K/J = 2.88: a multicritical point
occurs when the two curves intersect each other.

K/J = 0.8

When the ratio increases again, the properties of the J = 0 limit start to appear. In fact,
a compact disordered CD phase starts to appear. For instance see Figure 3.5: the transition
between the CO and the CD phase is still discontinuous because of the negativity of the third
virial coefficient (see first panel in Figure 3.4). Moreover, the transition between the CD and
the SD phase is continuous, in fact the tricritical point of the K/J → ∞ limit case is expected
to be at an x = 1/4.

K/J = 1.8

For K/J = 1.8 the peculiarities of both the two limiting cases appear in the same phase
diagram; see for instance Figure 3.6. In particular, the red line of Figure 3.4 is still below the
blue one in the range of ∆ considered in Figure 3.6 therefore we see a discontinuous transition
between the CO and the CD phase. Moreover, the transition line between the CO and the CD
phase extends in the region x > 1/4 where it is actually discontinuous. This means that there
are two interesting points in the phase diagram:

• a triple point, where a CO phase coexists together with a CD and a SD phase. From
Figure 3.6 the coordinates of such a point are (∆ ≈ 1.95, T ≈ 3.95). In the panel b of the
figure, the isochemical line ∆ = 1.95 has been drawn inside the phase coexistence region;

• a tricritical point in the line between the CD and the SD phases.
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(a) (b)

Figure 3.5: In these graphs J = 1 and z = 6. (a): T − ∆ phase diagram with K/J = 0.8.
Notice the appearance of the CD phase. (b): T − x phase diagram with K/J = 0.8.

Moreover, in Figure 3.7, the free energy landscape for ∆ = 1.95 and different values of the
temperature T have been plotted. When T = 3.95 it is possible to appreciate three minimum at
the same height of the free energy, for three different values of ρ: the two values ρ > 0 correspond
to the CD (the lower) and the CO (the greater) phase; the ρ ≈ 0 minimum correspond to the
SD phase.

K/J = 2.88

Increasing again the ratio, a continuous line starts to appear between the CO and the CD phase
(see Figure 3.8(a)). The triple point is no more present in the phase diagram, in fact there
are no points where three first order transition lines intersect; the tricritical point of the limit
K/J → ∞ still appears (see Figure 3.8(b)).

3.5 Discussion

This phenomenology is very rich, as in the original lattice BEG model. Why these results are
interesting? There are at least three reasons:

• A compact disordered (CD) phase was obtained, within the Ising/Potts magnetic polymer
model, only when the system was driven out-of-equilibrium (see Ref. [3]) or adding an
overall positive contribution to the Hamiltonian (the parameter c in Ref. [6]). Here
instead such a phase is observed in equilibrium, for certain values of the strength of the
biquadratic interaction;

• A tricritical point in the transition line between a CD and a SD phase is observed. In the
papers cited before, such a transition was genuinely continuous;
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(a) (b)

Figure 3.6: In these graphs, J = 1 and z = 6. (a): T −∆ phase diagram with K/J = 1.8. Both
a tricritical point and a triple point appear in the same phase diagram. The first one lies on
the separation line between the CD and the SD phase; the second point is at the conjunction
of the three dashed lines. (b): T − x phase diagram. A isochemical line ∆ = 1.95 has been
drawn to stress the presence of a triple point in the phase diagram.

Figure 3.7: Free energy landscapes of the mean field free energy density related to the ratio
K/J = 1.8 as a function of the polymer density. The value of ∆ = 1.95 is the same for every
curve. The triple point condition can be observed on the T = 3.95 landscape where the three
minima of the free energy density have the same height. The two minima at ρ > 0 correspond
to the compact phases; the other one at ρ = 0 corresponds to a swollen disordered phase.
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(a) (b)

Figure 3.8: For these plots, J = 1 and z = 6. (a): mean field phase diagram of the BEG
magnetic polymer when K/J = 2.88 on the T -∆ plane. A tricritical point appears on the CD -
SD transition line. Notice that in this situation the triple point does not appear anymore. (b):
mean field phase diagram on the T -x plane.

• A triple point between all the three phases is predicted in the mean field phase diagram
when K/J ≈ 1.8.

How we can transpose these results in the field of the biophysics of the chromatin? Chromatin is
a giant polymer located in the cellular nucleus (see Ref. [8]). Its monomers are the nucleosomes,
made of a DNA filament twisted around a protein called histone. When an histonic marker
(named also epigenetic markers) attaches to an histone, it induces a local modification of the
chromatin. Historically, two types of chromatin have been identified: eterochromatin, extremely
dense and compact, and euchromatin, less packed. Both these two types are characterized
by specific historic markers, inducing for instance, a local folding in the former and a local
expansion in the latter.
The polymeric substrate of our magnetic polymer model can be thought as a representation of
the chromatin molecule, with each monomer corresponding to a nucleosome. Following Ref. [6]
we can associate to a state with Si = 0 a non-modified histone and to a state with Si = ±1 an
histone modified by one of the two most relevant eterochromatin histone markers (H3K9me3
and H3K27me3). The presence of a CO phase could be related to an highly packed chromosome,
whose histones are decored with almost one of the two heterochromatin histone markers, where
the biological processes of the transcription and translation cannot occur; a swollen disordered
phase could represent an open chromosome, not decored at all with markers and ready to be
transcribed; a compact disordered phase could be thought as an intermediate semi - compact
phase (remember that in the CD phase the polymer density ρ is typically lower than in the
CO phase) decorated with both the types of eterochromatin histone markers. Region of phase
coexistence between compact and swollen phases could be interpreted as a chromosome with
some regions highly packed and others much more open.



Chapter 4

Monte Carlo simulations

In this chapter, we show the results of our Monte Carlo simulations of the Blume-Emery-Griffith
magnetic polymer. In the first section the principles of such simulations are described; in the
following sections these results are compared with the mean field predictions of the previous
chapter.

4.1 Principles

As seen in the previous chapters, the physics of magnetic polymers is determined by the in-
terplay between magnetic and conformational degrees of freedom. Therefore, our Monte Carlo
method takes into account both:

• the evolution of the magnetic states;

• the changes of the polymeric substrate, i.e. of the SAWs representing the polymer.

The first part of the method is simply implemented as a standard Metropolis algorithm. In
particular, a Metropolis move consists in selecting a monomer, change the value of its spin
variable and accepting the new configuration according to the energy variation ∆E: the move
is in fact accepted with probability min(1, exp(−β∆E)).
Regarding the second part, in our simulations we will consider SAWs on a three-dimensional
cubic lattice (the coordination number is z = 6). We start our simulation from a linear walk
and, by using an appropriate Markovian process, we evolve this chain until it has reached the
equilibrium distribution. In order to do this, we use a combination of local and non local moves:

• Local moves : alter the configuration of a few consecutive monomers at the same time,
leaving the other vertices unchanged. We consider one bead flips, known also as corner
moves, and two beads crankshafts moves (see Figure 4.1(a) for examples). A local move
is accepted with probability min(1, exp(−β∆E)) where ∆E is the energy difference.

• Pivots : change the configuration of a great number of beads at the same time. We choose
randomly a monomer along the chain as a pivot point, and apply randomly one of the
possible symmetries of the cubic lattice (e.g. rotations and reflections), on all the sites
following our pivot point (see Figure 4.1(b)). Such kind of moves are necessary to ensure
the ergodicity of the system. As before, the new configuration is accepted with probability
min(1, exp(−β∆E)) (see Ref. [9] for details).

Let us expose in detail our algorithm. For each case we have studied, we have performed
simulations for the following polymer sizes: N = 50, 100, 200, 300, 400. We start from an initial

33
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(a) (b)

Figure 4.1: Examples of two dimensional moves for the Monte Carlo simulations. (a): Local
moves: above is shown a corner moves where the position of just one bead is changed; below it
is shown a crankshafts move, where two beads are moved. (b): A pivot move: the pivot is the
red bead. All the beads below it are subjected to a reflection with respect to the vertical axes.

straight linear magnetic polymer, whose spin variables are random. A Monte Carlo sweep
consists of the following passages:

1. A pivot is attempted;

2. We attempt N local moves;

3. We span all the monomers of the polymer and attempt a Metropolis move for each of
them.

In order to relax the system, in Ref. [10] it is suggested to perform at least 102 ·N Monte Carlo
steps. In our simulations, we have set the number of relaxation Monte Carlo steps to 105 for
each N . We choose the total length of the simulations t to be at least 500 times the maximum
autocorrelation times of the observables computed during the execution.
To speed-up the convergence of the algorithm we employ the Multiple Markov Chain strategy
i.e. we run in parallel M Markov Chains at different temperatures Ti with i = 1, 2, . . . ,M .
After each Monte Carlo sweep, we attempt to exchange configurations between adjacent pairs
of chains Ti, Ti+1 with probability:

p = min(1, exp((βi+1 − βi)(Ei+1 − Ei)). (4.1)

The main advantage of this kind of strategy is that it leads to an algorithm where metastable
states can be overcome, as the chains in these states can be swapped away at other higher
temperatures. Thanks to this fact, the equilibration time and the autocorrelation time are
sensibly reduced with respect to the single chain procedure. In our simulations we run in
parallel M = 30 different chains.
The interesting observables computed during the simulations are the following:

• Specific heat at fixed volume cV . Given ⟨ET ⟩ the average energy at temperature T , the
specific heat is defined as:

cV =
1

N

∂ET

∂T
=

⟨E2⟩T − ⟨E⟩2T
NkBT 2

(4.2)

• Average number of contacts nc and variance C:

C =
⟨n2

c⟩ − ⟨nc⟩2

N
(4.3)
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Cleary, if the number of contacts is small, the polymer will be in a swollen, open phase. On
the other hand, a compact polymer will display a large number of contacts. Peaks in the
graph of C vs T give us information about the swollen - ordered transition temperature.

• Average magnetization per monomer m and magnetic susceptibility χM defined as:

χM =
⟨m2⟩ − ⟨m⟩2

kBT
. (4.4)

Peaks on the graph χM -T give us information on the ordered - disordered transition
temperature.

• Average concentration of vacancies x, defined as:

x = 1− 1

N

N∑︂
i=1

S2
i (4.5)

where Si ∈ {0,±1} is the spin variable carried by the i-th monomer.

• Average radius of gyration ⟨RG⟩: let Ri be the position of the i-th monomer. The center
of mass of an homogeneous polymer RCM is:

RCM =
1

N

N∑︂
i=1

Ri. (4.6)

The radius of gyration is defined as:

R2
G =

1

N

N∑︂
i=1

∥Ri −RCM∥2 (4.7)

and it is subjected to important scaling laws: in a good solvent RG ∝ N0.6 (the polymer
is swollen), at the θ point RG ∝ N0.5 and in a bad solvent RG ∝ N1/3 (the polymer is
compact, resembling a sphere). Thus looking at the properties of these scaling we can get
information about the compact - swollen transition.

4.2 Results

4.2.1 K/J = 0

From the mean field phase diagram Figure 3.2(a), we expect a discontinuous phase transition
for ∆ < 3 between a CO and a SD phase. Let us apply our protocol to ∆ = 0 and ∆ = 1.
When ∆ = 0 the mean field transition temperature is T ≈ 1.5 J . In Figure 4.2(a) we show
the specific heat in the range 0.8J < T < 2J . Increasing the size N of the system, the
peak becomes sharper and it tends to the mean field value of the transition temperature. We
observe the same behavior in the graph of the magnetic susceptibility (in Figure 4.2(b)). It
can be shown (see Ref. [4]) that the shift ∆T of the transition temperature from its value at
N = ∞ goes like ∆T ∼ 1/N . In Figure 4.2(c) the temperature corresponding to the maximum
of the magnetic susceptibility for all the values of N has been plot in function of 1/N . From a
linear interpolation it is possible to infer the value of the transition temperature looking at the
intersection between the linear fit and the 1/N = 0 vertical line. In order to avoid finite size
effects, we have considered the first three points, corresponding to N = 200, 300 and 400. The
estimation of the transition temperature is T ≈ 1.53 J , very similar to the mean field transition
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temperature.
Given the value of R2

g for different values of the temperature, it is possible to verify the scaling

laws written above. In Figures 4.3(a) and 4.3(b) we show that the graphs of R2
g/N

2/3 computed
for different size of the polymer collapse on each others for low temperatures. The same occurs
at high temperatures to the graphs of R2

g/N
1.2. It is also possible to exploit the intersections

of the curves of R2
g/N for different size of the systems to get an estimation of the transition

temperature from configurational properties of the system (see Figure 4.3(c)). In Figure 4.4
we show the trend of the magnetization per spin m and of the concentration of vacancies x
for N = 200. The transition occur again around T = 1.5 J . In the plot are represented also a
snapshot of a compact ordered configuration of our BEG polymer (in the bottom left corner)
and a swollen disordered configuration (below the plot key): blue is associated to a spin variable
Si = +1, gray to Si = 0 and red to Si = −1.

(a) (b)

(c)

Figure 4.2: K/J = 0 and ∆ = 0. (a): Specific heat vs temperature. Increasing the size of
the system the maximum of the specific heat tends to the mean field value of the transition
temperature, i.e. T ≈ 1.5. (b): Magnetic susceptibility vs temperature. Also in this case
increasing the size of the system the maximum of χM tends to the mean field value. (c):
Temperature of the maximum of the magnetic susceptibility vs 1/N . A linear fit, taking into
account only the first three points (N = 200, 300 and 400) in order to avoid finite size effects,
is represented with a purple dashed line. The estimated transition temperature is T ≈ 1.53 J .
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(a) (b)

(c)

Figure 4.3: K/J = 0 and ∆ = 0. (a): Squared radius of gyration divided by N2/3 vs temper-
ature T . Notice how, for low temperatures, the curves collapse on each other. (b): Squared
radius of gyration divided by N1.2 vs temperature T . We observe a collapse at high tempera-
ture. (c): Squared radius of gyration divided by N vs temperature T .

For ∆ = 1 we expect a transition temperature of T ≈ 1.2J . Both the specific heat and the
magnetic susceptibility, computed with a size N = 400, show a peak at such a temperature
(see Figure 4.5(a)). A transition is observable also in the trend of the average magnetization
per spin m and of the average concentration of vacancies x (see Figure 4.5(b)).
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Figure 4.4: K/J = 0 and ∆ = 0. Average magnetization per spin and average concentration of
vacancies with respect to the temperature for N = 200. Two configurations of the polymer are
shown inside the plot: blue beads carry a +1 spin variable, gray ones carry a 0 spin variable
and red ones a -1 spin variable. On the left we show a compact ordered phase; on the right a
swollen disordered is represented.

(a) (b)

Figure 4.5: K/J = 0 and ∆ = 1 and N = 400. (a): Specific heat (purple) and magnetic
susceptibility (blue) as a function of temperature. (b): Average magnetization per spin and
average concentration of vacancies as a function of temperature.
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4.2.2 K/J = 2 and ∆ = 0

The mean field phase diagram of the BEG
magnetic polymer when K/J = 2 is of the
same kind of Figure 3.6(a). When ∆ = 0
we should observe two first order phase tran-
sitions: a CO - CD transition at a tempera-
ture T ≈ 4.5 J and a CD - SD transition at
T ≈ 5.5 J .
In Figure 4.7 we show the specific heat cV of
our system computed in the range 1.5 J < T <
7 J for different sizes N of the system. By in-
creasing N the presence of the second transi-
tion is more evident.
By computing the magnetic susceptibility and
the variance of the contacts it is possible to
observe individually the ordered - disordered
and the compact - swollen transition respec-
tively. In Figure 4.8 one can appreciate that
the peak in the magnetic susceptibility χM is
located at the same temperature of the first
peak in graph of the specific heat Figure 4.7;
similarly the peak in Figure 4.9 corresponds to
the second peak in Figure 4.7.
Unfortunately, the temperatures at which
both the transitions occur in the Monte
Carlo simulation are lower with respect to
the predictions coming from the mean field
phase diagram (see for instance the scal-
ing analysis in Figure 4.6, where the esti-
mated transition temperatures are T1 ≈ 3.4 J
for the CO-CD transition and T2 ≈ 4.5 J
for the CD-SD one). However we remark
that those phase diagrams have been com-
puted within the maen field approximation.

Figure 4.6: K/J = 2 and ∆ = 0. Tempera-
tures of the maximum of the magnetic suscep-
tibility and of the variance of contacts vs 1/N .
Linear fits are represented with dashed lines.

Figure 4.7: K/J = 2 and ∆ = 0. Specific heat
vs temperature.

Figure 4.8: K/J = 2 and ∆ = 0. Magnetic
susceptibility for different values of the tem-
perature.

Figure 4.9: K/J = 2 and ∆ = 0. Variance of
the number of contacts for different values of
the temperature.
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4.2.3 K/J = 3 and ∆ = 0

The mean field phase diagram of the BEG
magnetic polymer when K/J = 3 is of the
same kind of Figure 3.8(a). In this case, when
∆ = 0 we should observe a CO - CD transition
at a temperature T ≈ 5.5 J and a CD - SD
transition at T ≈ 8.0 J .
In Figure 4.10 the trends of the average magne-
tization per spin and of the average concentra-
tion of vacancies are shown for N = 400, both
characterizing the first of the two transitions
(CO-CD). The transition seems to occur at a
temperature around T1 ≈ 4.0 J . More details
can be obtained from Figure 4.11, where we
show the specific heat cV of our system com-
puted in the range 1J < T < 10J for different
sizes N of the system. By increasing N the two
peaks (and also the minimum between them)
become sharper and sharper. Notice in par-
ticular that the first peak is higher than the
second one: this is coherent with the fact that
the CO - CD phase transition is expected to
be continuous.
In Figure 4.12 one can appreciate that the peak
in the magnetic susceptibility χM is located at
the same temperature of the first peak in graph
of the specific heat Figure 4.11; similarly the
peak in Figure 4.13 corresponds to the second
peak in Figure 4.11.

Figure 4.10: K/J = 3 and ∆ = 0. Average
magnetization per spin and average concentra-
tion of vacancies with respect to the tempera-
ture for N = 400.

Figure 4.11: K/J = 3 and ∆ = 0. Specific
heat vs temperature.

Figure 4.12: K/J = 3 and ∆ = 0. Magnetic
susceptibility for different values of the tem-
perature.

Figure 4.13: K/J = 3 and ∆ = 0. Variance of
the number of contacts for different values of
the temperature.
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(a) (b)

Figure 4.14: K/J = 3 and ∆ = 0 and N = 400. (a): Temperature of the maximum of the
specific heat for different N vs 1/N . Interpolations are represented with dashed lines. (b):
Temperatures of the maximum of the magnetic susceptibility and of the variance of contacts
vs 1/N . Interpolations are represented with dashed lines.

In Figures 4.14(a) and 4.14(b) two scaling analysis coming from the maximum of the specific
heat (the former) for different N and from the maximum of χM and C for different N are
shown. Since the CO - CD transition is expected to be continuous and not of first order, the
shift ∆T of the critical temperature from its N = ∞ value is expected to go as ∼ N−1/2 (see
Ref. [4]), therefore we have interpolated the first three purple points (N = 200, 300, 400 to
avoid finite size effects) with a function of this kind. A linear fit has instead been performed
for the orange points (for N = 200, 300, 400) because the CD - SD transition is expected to be
of the first order. Again, the estimated transition temperatures seem to be lower than their
mean field values.
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Conclusions

In this thesis we have extended previous investigations on magnetic polymers by studying a
model in which the magnetic interactions are ruled by a Blume-Emery-Griffith Hamiltonian.
After having introduced the notion of a magnetic polymer (Chapter 1) and the standard Blume-
Emery-Griffiths model on lattice (Chapter 2), we have computed the free energy density and
the phase diagrams in the mean field approximation (Chapter 3). By varying the ratio between
the strength of the biquadratic interaction K and the ferromagnetic exchange energy J , we can
appreciate the richness of such phase diagrams:

• For K/J = 0 a first order phase transition between a swollen disordered (SD) and a
compact ordered (CO) phase is predicted;

• When K/J = 0.8 a compact disordered (CD) phase appears. Notably, this phase was
not present at equilibrium in previous studies but is expected in model of chromatin
organization;

• Increasing again the ratio up to K/J = 1.8, a coexistence between all these three phases
(CO-CD-SD) appears (i.e. a triple point); Moreover, a tricritical point in the compact-
swollen phase transition is observed;

• When K/J = 2.88, the CO-CD transition becomes continuous;

• Finally, increasing again this ratio, the ordered phase disappears.

Numerical results based on Monte Carlo simulations (Chapter 4) of a 3D BEG polymer on a
cubic lattice agree very well with the mean field predictions when K = 0 and ∆ = 0, 1, in
fact the observed transition temperature between the SD and the CO phase corresponds to the
mean field value. Analyizing the peaks of the specific heat, the magnetic susceptibility and
of the variance of contacts, we have observed in the K/J = 2 and K/J = 3 cases, both the
CO-CD and the CD-SD phase transitions, as predicted by the mean field phase diagrams.
Possible natural extensions of this thesis project are the following:

• Study magnetic models on different substrates. The polymers that we have considered
here are linear polymers modeled as self avoiding walks on lattice. However the majority of
natural and synthetic polymers are branched polymers, with multiple side chains attached
to a main backbone one. For instance in chromatin loop extruding factors can create
structures resembling bottle-brush polymers with looped side chains (see Figure 4.15).
Moreover, magnetic models on higher dimensional substrates like membranes (see Figure
4.15) could be interesting for technological applications (by tuning an external magnetic
field or the temperature of the system, it is possible to induce a mechanical transformation
of such an object that could be exploited in ICT);
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Figure 4.15: Examples of potential substrates over which one can implement magnetic-like
interactions. Above there are two branched polymers, made of side chains attached to a main
backbone chain. Below, a 2D polymer, i.e. a flexible membrane, is shown.

• Consider a bunch of several magnetically interacting polymer chains (i.e. with inter-
polymer interaction terms in the Hamiltonian) as models to study, for example, the
mixed-segregated phase transition, with applications to the chromosomal territories in
the cell nucleus;

Figure 4.16: In a system of mutually interacting polymers it is possible to observe the mixed
- segregated phase transition. In the mixed phase (left), polymers are intertwined with each
other; in the segregated phase polymers are no more mixed and are clearly identificable.

• Going out-of-equilibrium, it could be interested to study magnetic models on active poly-
mers, i.e. whose monomers consume internal or environmental energy in order to move.
Chromatin itself is an out-of-equilibrium system because of the presence of enzymes and
molecular motors running on the DNA filament thanks to the hydrolysis of ATP.

Figure 4.17: In an active polymer, some monomers exploit internal or environmental energy
in order to move. In this picture active monomers are colored in orange and a grey arrows
indicate their velocity.



Appendix A

Analytical calculations

A.1 Analytical derivation of the mean field free energy

for an Ising magnetic polymer

In this section, we derive the mean field free energy of an Ising magnetic polymer. Let us start
from the partition function of this system

Z =
∑︂

γ∈SAW

∑︂
{S}

exp

(︄
βJ

2

∑︂
i,j

SiΛ
γ
i,jSj + βh

∑︂
i

Si

)︄
=

=
∑︂

γ∈SAW

∑︂
{S}

exp

(︄
βJ

2

∑︂
i,j

SiΛ
γ
i,jSj

)︄
exp

(︄
βh
∑︂
i

Si

)︄
. (A.1)

It is difficult to perform the double summation in the first term on the rhs of Eq. (A.1) because
of the presence of two different spins in the factor inside the blue box. Therefore it is worth to
perform an Hubbard - Stratonovich transformation to decouple them by introducing additional
field variables. Given a matrix Â ∈ Rn×n and a vector b ∈ Rn the Hubbard - Stratonovich
transformation can be written as:

∫︂
dNx exp

(︄
−1

2

∑︂
ij

xiAijxj +
∑︂
i

bixi

)︄
= (2π)N/2(detA)−1/2 exp

(︄
1

2

∑︂
i,j

biA
−1
ij bj

)︄
(A.2)

Therefore by applying the following substitutions:

bi = Si (A.3)

bj = Sj (A.4)

Aij = βJΛi,j (A.5)

we can write:

detA = (βJ)−N det((Λγ)−1) = (βJ)−N det(Λγ)−1 (A.6)

45



46 APPENDIX A. ANALYTICAL CALCULATIONS

(we assumed Λ̂ is an invertible matrix) and so the term inside the box can be rewritten as:

exp

(︄
βJ

2

∑︂
i,j

SiΛ
γ
i,jSj

)︄
= (A.7)

= (2π)−N/2(βJ)−N/2 det(Λ)−1/2 ·
∫︂
dNϕ exp

(︄
− 1

2βJ

∑︂
i,j

ϕi(Λ
γ
i,j)

−1ϕj +
∑︂
i

Siϕi

)︄
(A.8)

where dNϕ ≡
∏︁N

i=1 dϕi. Let us call:

Dϕ ≡ (2π)−N/2(βJ)−N/2 det(Λ)−1/2dNϕ. (A.9)

Thus, continuing the chain of equivalences:

=

∫︂
Dϕ exp

(︄
− 1

2βJ

∑︂
i,j

ϕi(Λ
γ
i,j)

−1ϕj +
∑︂
i

Siϕi

)︄
. (A.10)

Plugging this result in Eq. (A.1):

Z =
∑︂

γ∈SAW

∑︂
{S}

∫︂
Dϕ exp

(︄
− 1

2βJ

∑︂
i,j

ϕi(Λ
γ
i,j)

−1ϕj +
∑︂
i

Si(ϕi + βh)

)︄
= (A.11)

=
∑︂

γ∈SAW

∫︂
Dϕ exp

(︄
− 1

2βJ

∑︂
i,j

ϕi(Λ
γ
i,j)

−1ϕj

)︄ ∑︂
{S}

N∏︂
i=1

exp (Si(ϕi + βh)) (A.12)

The expression in the box can be easily summated:

∑︂
{S}

N∏︂
i=1

exp (Si(ϕi + βh)) =
N∏︂
i=1

∑︂
Si∈{±1}

exp (Si(ϕi + βh)) = (A.13)

=
N∏︂
i=1

2 cosh(ϕi + βh) = (A.14)

= exp

(︄
N∑︂
i=1

log(2 cosh(ϕi + βh))

)︄
. (A.15)

where some elementary steps have been performed. Plugging it in place of the old expression
inside the box we find:

Z =
∑︂

γ∈SAW

∫︂
Dϕ exp

(︄
− 1

2βJ

∑︂
i,j

ϕi(Λ
γ
i,j)

−1ϕj +
N∑︂
i=1

log(2 cosh(ϕi + βh))

)︄
(A.16)

A mean field theory is achieved following the steepest descent approximation (or homogeneous
saddle point approximation) i.e. by replacing the integral with the value of the integrand at its
maximum which we assume is attained for ϕi = ϕ for all i (see Refs. [3], [4], [6]):

Z ≈ A
∑︂

γ∈SAW

exp

(︄
− ϕ2

2βJ

∑︂
i,j

(Λγ
i,j)

−1 +N log cosh(ϕ+ βh)

)︄
(A.17)
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where A is a constant. Using the Hamiltonian walks restriction, as reported in Chapter 1,∑︂
i,j

(Λγ
i,j)

−1 ≈ N

ρz
. (A.18)

Plugging this result in Eq. (A.17) we obtain:

Z ≈ A
∑︂

γ∈SAW

exp

(︃
− Nϕ2

2βρzJ
+N log(2 cosh(ϕ+ βh))

)︃
. (A.19)

As a last step, since the specific walk γ does not appear anymore, we need an estimation the
number of SAWs of N − 1 steps on a lattice of volume V . As shown in Ref. [4]:

ZSAW =
∑︂

γ∈SAW

1 =
(︂z
e

)︂N
exp (−V (1− ρ) log(1− ρ)) . (A.20)

Finally, the mean field partition function is:

Z ≈ A
(︂z
e

)︂N
exp

(︃
−V (1− ρ) log(1− ρ)− Nϕ2

2βρzJ
+ log(2 cosh(ϕ+ βh))

)︃
, (A.21)

and the mean field free energy density of this model is:

f(ϕ, ρ, β; J, h) = +
ϕ2

2ρβ2Jz
− 1

β
log

z

e
+

1

β

1− ρ

ρ
log(1− ρ)− 1

β
log(2 cosh(ϕ+ βh)). (A.22)

A.2 Analytical derivation of the mean field free energy

for the lattice BEG model

The approach followed in this Appendix is the same of the previous one. However there are
important differences:

• This model is defined on a lattice, therefore the matrix Λ is the adjacency matrix of the
lattice. In particular, the following identity holds:∑︂

i,j

(Λi,j)
−1 =

N

z
(A.23)

• Because of the presence of a biquadratic term in the Hamiltonian an additional Hubbard-
Stratonovich transformation is needed, with the consequent appearance of a new set of
fields {αi}. After this transformation, the partition function becomes:

Z =
∑︂
{S}

∫︂
DϕDα (A.24)

exp

(︄
− 1

2βJ

∑︂
i,j

ϕiΛi,jϕj −
1

2βK

∑︂
i,j

αiΛi,jαj +
∑︂
i

(ϕiSi + αiS
2
i − β∆S2

i ) + β∆N

)︄
,

(A.25)

where
Dα ≡ (2π)−N/2(βK)−N/2 det(Λ)−1/2dNα. (A.26)
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• The spin variables can assume three values: 0,±1 and in the final free energy expression
this fact will affect terms related to hyperbolic functions. We can easily expand the
summation on the spin variables:

∑︂
{S}

N∏︂
i=1

exp
(︁
ϕiSi + αiS

2
i − β∆S2

i

)︁
=

N∏︂
i=1

∑︂
Si=0,±1

exp
(︁
ϕiSi + αiS

2
i − β∆S2

i

)︁
(A.27)

=
N∏︂
i=1

(1 + 2e−β∆+αi cosh(ϕi)) (A.28)

= exp

(︄
N∑︂
i=1

log(1 + 2e−β∆+αi cosh(ϕi))

)︄
. (A.29)

After these steps we get:

Z = A

∫︂
DϕDα (A.30)

exp

(︄
− 1

2βJ

∑︂
i,j

ϕi(Λi,j)
−1ϕj −

1

2βK

∑︂
i,j

αi(Λi,j)
−1αj +

N∑︂
i=1

log(1 + 2e−β∆+αi cosh(ϕi))

)︄
(A.31)

Eventually, after an homogeneous saddle point approximation and using Eq. (A.23) we obtain
the expressions for the mean field partition function and the mean field free energy density:

Z = A
(︂z
e

)︂N
exp

(︃
− Nϕ2

2βzJ
− Nα2

2βzK
+N log(1 + 2e−β∆+α cosh(ϕ))

)︃
, (A.32)

f(β, ϕ, α, ρ) =
1

2β2z

(︃
ϕ2

J
+
α2

K

)︃
− 1

β
log(1 + 2e−β∆+α cosh(ϕ))−∆. (A.33)

where ϕ and α minimize the exponent of Eq. (A.31).
If we do not include the biquadratic interaction term (K = 0) in the Hamiltonian, the mean
field partition function and the mean field free energy density become:

Z = exp

(︃
− Nϕ2

2zβJ
+N log

(︁
1 + 2e−β∆ cosh(ϕ)

)︁
+ β∆N

)︃
, (A.34)

f(ϕ, β,∆) =
ϕ2

2zβ2J
− 1

β
log
(︁
1 + 2e−β∆ cosh(ϕ)

)︁
−∆. (A.35)

If instead we do not include the ferromagnetic interaction term in the Hamiltonian, we find:

Z = A
(︂z
e

)︂N
exp

(︃
− Nα2

2βzK
+N log(1 + 2e−β∆+α)

)︃
, (A.36)

f(β, α, ρ) =
1

2β2z

α2

K
− 1

β
log(1 + 2e−β∆+α)−∆. (A.37)

A.3 BEG model free energy expansion (no biquadratic

interaction)

In this section we perform the Taylor expansion of the free energy density when there is no
biquadratic interaction. Looking at the coefficients of the expansion it is possible to find critical
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and tricritical points.
In order to study the critical properties of this model we want to Taylor expand the free energy
density Eq. (A.35). Because of the Z2 symmetry of this model we expect to observe only even
powers of ϕ in the Taylor expansion of f(ϕ, β,∆) around ϕ = 0.
We need the Taylor expansions of the logarithm and of the hyperbolic cosine:

log(1 + x) = x− x2

2
+ . . . (A.38)

coshx = 1 +
x2

2!
+
x4

4!
+ . . . (A.39)

Proceeding with the expansion of the hyperbolic cosine inside the logarithm:

log(1 + 2e−β∆ coshϕ) ≈ log

(︃
1 + 2e−β∆

(︃
1 +

ϕ2

2!
+
ϕ4

4!

)︃)︃
= log

(︃
1 + 2e−β∆ + 2e−β∆

(︃
ϕ2

2!
+
ϕ4

4!

)︃)︃
= log

(︁
1 + 2e−β∆

)︁
+ log

(︃
1 +

2e−β∆

1 + 2e−β∆

(︃
ϕ2

2!
+
ϕ4

4!

)︃)︃

= log

(︃
δ

δ − 1

)︃
+ log

(︃
1 +

1

δ

(︃
ϕ2

2!
+
ϕ4

4!

)︃)︃
(A.40)

where we have defined:

δ(β,∆) ≡ 1 + 2e−β∆

2e−β∆
= 1 +

eβ∆

2
(A.41)

Now we can proceed expanding the logarithm inside the box up to the sixth order on ϕ:

log

(︃
1 +

1

δ

(︃
ϕ2

2!
+
ϕ4

4!

)︃)︃
≈ 1

δ

(︃
ϕ2

2!
+
ϕ4

4!

)︃
− 1

δ2

(︃
ϕ4

8
+
ϕ6

48

)︃
(A.42)

We get finally:

log(1 + 2 exp(−β∆) cosh(ϕ) ≈ log

(︃
δ

δ − 1

)︃
+

1

2δ
ϕ2 +

1

8

(︃
1

3δ
− 1

δ2

)︃
ϕ4 − 1

48δ2
ϕ6 (A.43)

and the free energy expansions in terms of ϕ is (neglecting terms that do not depend on ϕ):

f(β,∆) =

(︃
1

2β2Jz
− 1

2βδ

)︃
ϕ2 − 1

8β

(︃
1

3δ
− 1

δ2

)︃
ϕ4 +

1

48βδ2
ϕ6

= a(β,∆)ϕ2 + b(β,∆)ϕ4 + c(β,∆)ϕ6 (A.44)

where we have defined:

a(β,∆) =

(︃
1

2β2Jz
− 1

2βδ

)︃
(A.45)

b(β,∆) = − 1

8β

(︃
1

3δ
− 1

δ2

)︃
(A.46)

c(β,∆) =
1

48βδ2
(A.47)

Notice that c(β,∆) > 0 while instead a(β, ρ,∆) and b(β,∆) may change sign.
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A.4 Analytical derivation of the mean field free energy

for the lattice polymer BEG model

In the case of the BEG magnetic polymer we can compute the free energy density exactly as
in section 2 but replacing identity Eq. (A.23) with the identity Eq. (A.18) and remembering
to add a summation on all the SAWs of length N in a volume V in the computation of the
partition function. The mean field partition function and the mean field free energy density
are in the end:

Z ≈ A exp

(︃
N log

z

e
− 1− ρ

ρ
log(1− ρ)− ϕ2N

2βJzρ
− α2N

2βKzρ
+N log(1 + 2e−β∆+α coshϕ) + β∆N

)︃
(A.48)

f(β, ρ,∆) = − 1

β
log

z

e
+
1

β

1− ρ

ρ
log(1−ρ)+ ϕ2

2β2Jzρ
+

α2

2β2Kzρ
− 1

β
log
(︁
1 + 2e−β∆+α coshϕ

)︁
−∆

(A.49)

A.5 BEG magnetic polymer at fixed polymer density

How the critical properties of a BEG polymer change when the polymer density ρ is fixed?
Let us consider the K = 0 case, i.e. without the biquadratic interaction. Since ρ is a fixed
parameter, the Taylor expansion of the free energy density around ϕ = 0 is formally identical
to Eq. (A.44): the only difference is the presence of ρ in the coefficient in front of ϕ2:

f(β, ρ,∆) =

(︃
1

2β2Jzρ
− 1

2βδ

)︃
ϕ2 − 1

8β

(︃
1

3δ
− 1

δ2

)︃
ϕ4 +

1

48βδ2
ϕ6

= a(β, ρ,∆)ϕ2 + b(β,∆)ϕ4 + c(β,∆)ϕ6

where we have defined:

a(β, ρ,∆) =

(︃
1

2β2Jzρ
− 1

2βδ

)︃
(A.50)

b(β,∆) = − 1

8β

(︃
1

3δ
− 1

δ2

)︃
(A.51)

c(β,∆) =
1

48βδ2
(A.52)

As expected the coefficient of the sixth power, is always positive: c(β,∆) > 0.
The critical temperature in terms of the polymer concentration ρ and the parameter ∆ can be
estimated by solving a(β, ρ,∆) = 0 with respect to β. First notice how the concentration of
vacancies in the disordered phase (ϕ = 0) is related to the parameter δ:

x(ϕ = 0) =
1

1 + 2e−β∆
=
δ − 1

δ

which implies:

δ =
1

1− x(ϕ = 0)

Thus the critical temperature can be obtained as:

βc =
δ

Jzρ
→ Tc(x) =

Jzρ

kB
(1− x(ϕ = 0))
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which displays a linear dependence on the concentration of vacancies. This results is very
similar to the BEG on the lattice: the only difference is the direct proportionality with respect
to the polymer concentration ρ which affects the slope of the line in the T − x plane.
The tricritical point is obtained as usual:

a(β, ρ,∆) = 0

b(β,∆) = 0

The second equation implies δtc = 3, x = 2/3 and therefore:

Ttc =
Jzρ

3kB

This point separate continuous phase transitions from first oder ones. Again, the only difference
with respect to the squared lattice situation is that Ttc ∝ ρ.

A.6 BEG model and offset

In this section we reproduce the results of the Ref. [6] They show that, when an overall
attractive term is added in the Hamiltonian of the system, a CD phase appears in the mean
field phase diagram for certain values of the parameters. The same notation of the previous
sections holds.
For simplicity we illustrate the case where K = 0. Given two spins Si, Sj belonging to the i-th
and j-th monomers of the polymer, the ferromagnetic interaction can be parametrized as:

I(Si, Sj) = −JSiSj − 2c (A.53)

where J > 0 is the ferromagnetic coupling and c > 0 is an offset parameter. When c = 0 we
come back to the standard BEG hamiltonian.

Hc ≈
1

2

∑︂
i,j

I(Si, Sj)Λi,j +∆
N∑︂
i=1

S2
i −∆N (A.54)

In order to derive the partition function and then the mean field free energy per monomer the
same procedure followed in the other cases is applied. The main difference is the presence of
the following contribution inside the Boltzmann factors:

βc
∑︂
i,j

Λi,j = βcNρz (A.55)

which is involved neither in the Hubbard-Stratonovich transformation nor in the summation
on the spin variables. The free energy per monomer is:

fc(ϕ, ρ; β,∆) = f(ϕ, ρ; β,∆)− czρ (A.56)

= − 1

β
log

z

e
+

1

β

1− ρ

ρ
log(1− ρ) +

ϕ2

2β2Jzρ
− 1

β
log
(︁
1 + 2e−β∆ coshϕ

)︁
−∆− czρ (A.57)

In order to understand the critical properties of such a model we make use of the virial expan-
sion.
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A.6.1 CD - SD phase transition

Since we are looking for a transition between two disordered phase, we can plug ϕ = 0 in the
expression of the free energy, compute the osmotic pressure Π(ρ) and Taylor expand it around
ρ = 0:

βΠ

ρ
=

(︃
1

2
− czβ

)︃
ρ+

ρ2

3
+
ρ3

4
+
ρ4

5
+ . . . (A.58)

The second virial coefficient is therefore:

B2(T ) =
1

2
− czβ (A.59)

And the others are:
Bj(T ) = 1/j (A.60)

where j > 2. A continuous phase transition between the two phases occurs when:

T = 2zc (A.61)

which is independent on the typical quantities of the BEG model.

A.6.2 CO - CD phase transition

We are now interested in studying the transition between two compact phases, an ordered and
a disordered one. Let us consider the mean field equations:

ϕ

βzJρ
=

sinhϕ

coshϕ+ eβ∆

2

(A.62)

czJβρ2 + ρ+
ϕ2

2zJβ
+ log(1− ρ) = 0 (A.63)

Notice how the offset parameter c appears only in the second equation. Both the CO and the
CD phases are characterized by a finite and positive polymer concentration ρ > 0 while instead
ϕ > 0 in the CO phase and ϕ ≈ 0 in the CD phase.
Expanding the first equation up to the third order we can derive an estimation of the field ϕ:

ϕ2 ≈ 6(βzJρ− δ)
3βzJρ

δ
− zβJρ

(A.64)

In order to study the CO - CD transition we should expand the free energy for small ϕ which
is equivalent to plug Eq. (A.64) in the free energy density Eq. (A.57) and expand it around
ρ∗ = δ/(βzJ) (the value of the polymer density such that ϕ(ρ∗) = 0). In this way we obtain a
virial like expansion:

βΠ

(ρ− ρ∗)
= B2(T, c)(ρ− ρ∗) +B3(T )(ρ− ρ∗)2 +B4(T )(ρ− ρ∗)3 + . . . (A.65)

Where the expression of the second and third virial coefficients are respectively:

B2(T, δ, c) = −
z
(︂
cδ2 + δ + βz log

(︂
1− δ

βz

)︂)︂
δ2

(A.66)

B3(T, δ) =

3βz2
(︃
2βz log

(︂
1− δ

βz

)︂
− δ(δ2+β(3−2δ)z)

(δ−3)(βz−δ)

)︃
2δ3

(A.67)
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Notice that offset parameter c enters only in the B2 coefficient and not in the higher order
virial coefficients. Moreover, because of the expansion of the (1 − ρ)/ρ log(1 − ρ) term of the
free energy, a logarithm appears in the previous two coefficient, forcing the ratio δ/(βz) to be
greater than one:

δ

βz
> 1 or equivalently x(ϕ = 0) < 1− T

z
(A.68)

Which coincides interestingly with the critical condition of the lattice BEG model (valid again
only if δ < 3). The physical meaning is the following:

• When c < 0.6 only discontinuous transitions from the CO to the CD phases can occur.
This corroborates further the discontinuous transition observed in the non - offset model
case c = 0;

• When c = 0.6 a special situation occurs: two lines of first order phase transitions bifurcate
where both the second and the third virial coefficients vanish (see Figure A.1(b));

• When 0.6 < c < 0.9 a line of critical points is between two lines of first order phase
transitions between the CO and the CD phases. Therefore there exists two tricritical
points;

• If c > 0.9 only one of the two tricritical point survives and when c→ ∞ this point tends
to the tricritical point of the lattice BEG model. In fact one can show that in this limit
both the virial coefficients vanish at (xTC , TTC).

(a) (b)

Figure A.1: (a): curves corresponding to the vanishing of the second and third virial coefficients.
Since B3 does not depend on c, the condition B3(T, δ) = 0 is represented by a unique line. The
B2(T, δ, c) = 0 is shown for four different values of the offset parameter. (b): how the coordinate
x(ϕ = 0) of the tricritical points changes by varying the offset. One of the two tends to the
tricritical point of the lattice BEG model. The other one vanishes at 0 temperature around
c ≈ 0.9.
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