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3.1 Pontryagin duality for local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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3.4 The group of Idèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Idèle Class Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 L-functions and Representation Theory of the Idèles 73
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Introduction

In this thesis, the Iwasawa-Tate theory will be expounded, following an interpretation much closer
to the modern automorphic point of view of the Langlands program. The subject matter, usually
known as Tate’s thesis, aims to prove the functional equation of a large family of L-functions
through the harmonic analysis of the ring of adèles associated with a number field. To appreciate
the relevance of the result, it is helpful to review a hint of the deep connection between arithmetic
and L-functions starting with what can be considered the prototype of an L-function, the Riemann’s
ζ-function

ζ(s) =

∞∑︂
n=1

1

ns
.

This series was considered by Riemann as a function in the complex variable s, initially defined for
ℜ(s) > 1, where the sum converges absolutely. He was able to extend it analytically on the whole
complex plane except for a simple pole at s = 1. The importance of the ζ for arithmetic comes
from the link between its zeros on the strip 0 ≤ ℜ(s) ≤ 1 and the prime numbers. To get such a
connection, one relies on some special properties of the function ζ:

(i) Euler Product. On the right half-plane ℜ(s) > 1 the function ζ is equal to a product over all
primes p

ζ(s) =
∏︂
p

1

1− p−s
.

(ii) Gamma Factor and Functional Equation. After one multiplies ζ by a factor involving the
Gamma function, getting the completed zeta function

ζ̂(s) := π− s
2Γ

(︃
s

2

)︃
ζ(s) ,

one has a functional equation for ζ̂

ζ̂(s) = ζ̂(1− s) .

The functional equation and the Euler product cause the zeros of ζ̂ to be confined to the region
0 ≤ ℜ(s) ≤ 1 and contour integrals on this region lead to the so-called explicit formulas relating
critical zeros of ζ and prime numbers. Knowing more about the zeros gives better information about
the distribution of prime numbers. For example, the Prime Number Theorem, which is about the
asymptotic behaviour of the number of primes between 0 and N as N → ∞, can be deduced
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from the non-vanishing of ζ in the region ℜ(s) ≥ 1. This culminates with the famous Riemann
Hypothesis, which predicts that there are no zeros in the region ℜ(s) > 1

2 and is equivalent to
a precise estimate of the difference between the prime-counting function mentioned above and its
asymptotic approximation. Dirichlet studied a variant of ζ, the Dirichlet L-function

L(s, χ) =
∑︂

n∈N, (n,N)=1

χ(n)

ns

attached to a character χ of the group of units of Z/NZ. He obtained a proof of the homonymous
theorem on primes in arithmetic progression using the non-vanishing of L(s, χ) at s = 1. All this
generalizes to number fields, where Riemann’s ζ becomes a special case of the Dedekind ζ-function,
and Hecke L-functions generalize all the previous examples. Those mentioned are part of a larger
family of functions, called L-functions. For every L-function, one is interested in the properties
corresponding to those satisfied by Riemann’s ζ:

(i) Euler product over primes,

(ii) analytic continuation,

(iii) Gamma factors,

(iv) functional equation,

(v) Riemann hypothesis.

The Iwasawa-Tate theory provides a framework where one obtains all the properties from (i) to (iv)
for Hecke L-functions. This framework is based on the ring of adèles, a locally compact topological
ring associated with a number field and constructed using all its completions. The advantage of
working with the adèles is that we can use the techniques coming from the duality and measure
theory of locally compact abelian groups. Furthermore, above all, the adèles convey local-to-global
techniques: working in the local, namely on a completion of the number field, allows, through the
adèles, to obtain global data, i.e. information on the number field. As an example, consider the
field of rational numbers Q. Its ring of adèles is the restricted direct product

A = R×
∏︂′

p prime

Qp

which is a construction that produces a locally compact ring from the completions of Q. The field
Q is embedded diagonally in A as a lattice, in the sense that A/Q is compact and Q is discrete in A.
As a locally compact abelian group, A is isomorphic to its Potryagin dual, the group ˆ︁A of unitary
characters of A. It has a translation-invariant measure, the Haar measure, which is determined
uniquely by the choice of an isomorphism A ∼= ˆ︁A. The latter is induced by a unitary character ψ
of the quotient A/Q. This way, Q becomes a self-dual lattice in A. The relation between Q and
A is analogous to the one between the integers and the real number line. The argument used by
Riemann to obtain the functional equation of the completed ζ-function was based on the self-duality
of Z inside R: for ℜ(s) > 1, the function ζ̂ can be expressed as an integral

ζ̂(s) =

∫︂ ∞

0

x
s
2−1 1

2
(θ(x)− 1) dx ,
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where θ is the function
θ(x) =

∑︂
n∈Z

e−πn
2x .

The Poisson summation formula for the self-dual lattice Z of the real line implies a functional
equation for θ,

θ(x) =
1√
x
θ

(︃
1

x

)︃
,

which in turn allows us to eliminate the problematic integral over the interval (0, 1). Finally, one
obtains an expression

ζ̂(s) = −1

s
− 1

1− s
+

∫︂ ∞

1

(︂
x

s
2−1 + x

1−s
2 −1

)︂ 1

2
(θ(x)− 1) dx

for ζ̂ which make sense for all s ∈ C \ {0, 1} and is invariant by the symmetry s ↦→ 1 − s. The
framework developed by Tate allowed him to transport Riemann’s argument into the adèlic context.
He considered a functional, called zeta integral, operating on a space of nice enough functions
f : A → C, where the Fourier transform induces a linear automorphism. To define the zeta
integral, one needs to introduce the group of idèles A×. This is the group of units of the ring A and
it is again a restricted direct product involving the groups of invertible elements of every completion
of Q:

A× = R× ×
∏︂′

p

Q×
p .

The multiplicative group of invertible rational numbers Q× is a discrete sub-group of the idèles.
The characters

ω : A× −→ C×

which are trivial on Q× are called idèle class characters and they are part of the definition of the
zeta integral. There is a special idèle class character

|·| : A× −→ R×
+

with target the multiplicative group of positive real numbers, which is called idèlic norm. It gives
an inclusion of the complex plane inside the space of idèle class characters via the map s ↦→ |·|s.
The zeta integral associated with a couple (s, ω) is then defined on a function f : A→ C by

ζ(s, ω; f) =

∫︂
A×

f(x)ω(x)|x|s d×x ,

if it does exist. The Poisson summation formula∑︂
y∈Q

f(xy) = |x|−1
∑︂
y∈Q

ˆ︁f(x−1y)

is available thanks to the self-duality of Q in A. It enables us to use the same ideas of Riemann to
get the analytic continuation of ζ(s, ω; f) and the functional equation

ζ(1− s, ω−1; ˆ︁f) = ζ(s, ω; f) .
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What does the zeta integral have to do with L-functions? Dirichlet characters χ are examples
of idèle class characters and evaluating ζ(s, χ) on a particular function f produces the Dirichlet
L-function completed with its Gamma factors. Moreover, the restricted direct product structure
of the adèles and idèles makes it possible to analyze the zeta integral and characters locally on the
completions Qp, including the real numbers as the case of the “infinite prime” p = ∞. Explicitly,
idèle class characters ω are determined by families of local characters ωp : Q×

p → C×, and the global
zeta integral is determined by its local analogue

ζp(s, ωp; fp) =

∫︂
Q×

p

fp(xp)ωp(xp)|x|sp d
×xp .

Thanks to this, the Euler product decomposition of the L-function is already built into the global
zeta integral and the Euler factors are obtained by the local zeta integrals.

This thesis aims to present the above-discussed theory in the context of representation theory,
following the guideline given by S. Kudla in [Kud04]. This perspective focuses on a representation
S ′(A) of the idèles whose vectors are tempered distributions defined on the additive adèlic group.
From this point of view, the zeta integral is a meromorphic section of∐︂

ω

S ′(ω) ,

where ω ranges over idèle class characters and S ′(ω) is the 1-dimensional sub-representation of
S ′(A) with character ω. In this approach, the greatest effort is put into proving that S ′(ω) has
dimension one, a result that relies heavily on working locally at each completion of the number
field. Indeed, there is local-global parallelism in the whole setup: taking the field Q as an example,
there are representations S ′(Qp) of the multiplicative groups Q×

p for every completion of Q. Local
characters ωp identify 1-dimensional sub-representations S ′(ωp) and the adèlic construction are
recovered by these. The Fourier transform of tempered distributions induces isomorphisms

S ′(ω−1|·|1−s) ∼= S ′(ω|·|s) ,

whose appearance resembles the functional equation. This holds both locally and globally. Analysing
the local zeta integrals, one can construct non-zero distributions ζop(ωp) generating the space S ′(ωp)
for all local characters. Then, the Euler factors Lp(s, ωp) are recovered by proportionality between
the local zeta integral and ζop(ωp|·|

s
p). The product of the local data produces a non-zero vector

ζo(ω) of S ′(ω) for each idèle class character ω and the global L-function is recovered as a factor
of proportionality between the zeta integral and ζo(ω|·|s). The functional equation of the com-
pleted global L-function is then derived from the functional equation of the zeta integral and the
isomorphism S ′(ω−1|·|1−s) ∼= S ′(ω|·|s) induced by the Fourier transform.

Content of the chapters. In Chapter 1, we study absolute values and completions of global
fields. These are the fields to which the adèlic methods developed by Tate apply. We explain the
notion of place of a field, a class of equivalent absolute values corresponding to a completion of
the field. For number fields, places generalize primes by including some “infinite primes” whose
corresponding complete fields are R or C, along with usual (finite) primes and p-adic complete
fields. The completions of global fields are called local fields and they are the working ground for
the local analysis present at each step of the Iwasawa-Tate theory. Local fields are locally compact
topological fields and the adèles form a locally compact topological ring. For this reason, we include
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in Chapter 2 a synthesis of the theory of locally compact abelian groups on which we recall all the
tools needed in the rest of the thesis. They include the theory of characters and Pontryagin duality,
the integration theory with Haar measures, the Fourier transform and Poisson summation formula,
the module of locally compact rings and fields which links to the absolute values of Chapter 1, and
finally, a discussion about restricted direct products in general. In Chapter 3 we introduce the adèles
A of a global field and we describe its additive and multiplicative structure from the point of view of
the previous chapter’s notions. Regarding the additive structure, the goal is to show that the ring A
is its own Potryagin dual and that the global field becomes a self-dual lattice by this identification.
This is achieved through the additive self-duality of local fields and the construction of a suitable
additive character of the adèles. Then we study the group of idèles. This group encodes arithmetic
information of the global field, for example, it has quotients isomorphic to the group of fractional
ideals (or the divisor group) and the ideal class group (or the divisor class group). Another example
is the Product Formula (Proposition 3.4.5) for global fields, a property resembling the fact that
principal divisors have zero degree. We define the idèlic norm and non-canonical decompositions
of the group of idèles which are useful to describe idèle class characters (Section 3.5). Chapter 4 is
the last one and contains the representation-theoretic approach discussed above. It ends with the
proof of the functional equation of the zeta integral for all global fields in Section 4.4.
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Chapter 1

Global Fields

The notion of global field combines number fields and their geometrical analogue, function fields,
which are the fields of algebraic functions on the projective curves defined over a finite field. The
reason for us to introduce this notion is the possibility of developing the same adèlic formalism for
both types of fields, but the analogy between the two has a long history and is known as function
field analogy. The chapter presents the theory of valuations/absolute values and completion in full
generality, although we are interested in valuations of global fields. An extension of fields k ↪→ K
induces a map between the set of valuations in the other direction just like a morphism of rings
induces a map between the spectra. Then, the study of places (equivalent classes of valuations)
of global fields is reduced into two parts: the classification of places of Q and the field Fq(T ) of
rational functions on the projective line over the finite field Fq with q elements (Theorem 1.1.16),
and the study of the fibres over the set of valuations of Q and Fq(T ). In the classification theorem,
we see that the places of Q correspond to the primes p and the complete field Qp of p-adic numbers,
plus one more place, the infinite prime ∞, whose corresponding complete field is R. For the field
Fq(T ), places correspond to the points of the projective line over Fq. Knowing the places of a global
field K is then the same as knowing the ways each valuation of Q or Fq(T ) extend to K, and this
is determined by the action of the Galois group (Proposition 1.3.1). A reference for this chapter is
Chapter II of [CF67].

1.1 Valuations and places

The most familiar case of an absolute value is perhaps the usual one defined on Q, the one used to
define the field of real numbers via completion. The next more familiar example may be the norm
of a complex number. Continuing along these lines, one might have met the p-adic absolute values
used to define the p-adic numbers. The definition 1.1.1 of valuation encompasses all the above
examples with possibly an exponent. The need to consider exponents is motivated by measure
theory. For example, the square of the usual norm of a complex number is a more natural thing to
consider, from the point of view of measure theory, because it measures how multiplication affects
the size of subsets of the field (see Section 2.3).

Notation. The field of real numbers is denoted by R. The convention for intervals is the following:

[a, b) = {x ∈ R : a ≤ x < b} ,
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for a < b. We denote by R+ the set [0,+∞) of non-negative real numbers and R×
+ is the group of

invertible positive real numbers. The symbol × is used to indicate the group of invertible elements
of monoids, rings or fields.

Definition 1.1.1. Let K be any field. A valuation or absolute value is a function |·| : K → R+

satisfying the three properties written below:

A1. |x| = 0 if and only if x = 0 in K;

A2. for all x, y ∈ K the equality |xy| = |x||y| holds;

A3. there is some real constant C > 0 such that |x+ y| ≤ C · sup
{︁
|x| ,|y|

}︁
for all x, y ∈ K.

If axiom A3 is satisfied with constant C = 1 then |·| is said ultrametric or non-archimedean, if not
then is said archimedean. A field with a fixed valuation is called valued field for short. The term
absolute value will be used mostly to indicate the image |x| of an element x ∈ K as the absolute
value of x via the valuation |·|.

Given the first two axioms, it must be |u| = 1 for any roots of unity u ∈ K and axiom A3
become equivalent to the finiteness of the supremum

sup
|x|≤1

|1 + x| .

The constant C in the axiom corresponds to any real number C that realizes the bound

|1 + x| ≤ C , |x| ≤ 1 .

Example 1.1.2. Let K = R, the field of real numbers. The function |·|2 : R → R+ defined by
|x|2 = x2 for all x ∈ R is a valuation in the sense of Definition 1.1.1: it is multiplicative, the zero is
sent to itself and

sup
|x|≤1

|1 + x|2 = 4.

Remark 1.1.3. In the literature, the term discrete valuation usually refers to a map v : K → Z∪{∞}
satisfying

(i) v(x) =∞ if and only if x = 0;

(ii) v(xy) = v(x) + v(y) for all x, y ∈ K;

(iii) v(x+ y) ≥ min
(︁
v(x) , v(y)

)︁
for all x, y ∈ K,

where ∞ is assumed to be larger than any integer. Given a real number t ∈ (0, 1), we recover an
ultrametric valuation |·|v,t in the sense of Definition 1.1.1 by defining |x|v,t := tv(x) for all x ∈ K,
where t∞ is set equal to 0.

Example 1.1.4. Let R be a Dedekind domain with fraction field K, and p a maximal ideal of R
(for example R can be the ring of integers). If x ∈ K is non-zero, there is a unique integer n such
that x ∈ pn but x /∈ pn+1. Call it ordp(x). For a real number t ∈ (0, 1), define |x|p,t = tordp(x) for
all non-zero x ∈ K and set |0|p,t := 0. Then |·|p,t is an ultrametric valuation of K.
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Every valuation |·| induces a topology on K where a pre-basis of open neighbourhoods of an
element x0 ∈ K consists of the subsets

{︁
x ∈ K : |x− x0| < ε

}︁
for all ε > 0. The next goal is to

understand this topology, starting with a couple of lemmas on valuations.

Lemma 1.1.5. For any valuation |·| on K and any λ > 0 the function |·|λ is a valuation.

Proof. The map R+ → R+, x ↦→ xλ is a continuous, multiplication-preserving bijection that fixes
0 and 1, then axioms A1 and A2 are obviously preserved. The map is also increasing and then, for
all x ∈ K, the conditions |x| ≤ 1 and |x|λ ≤ 1 are equivalent, and the same is true for the conditions

|1 + x| ≤ C and |1 + x|λ ≤ Cλ. This is enough to verify that axiom A3 holds for |·|λ.

Lemma 1.1.6. If a valuation |·| on K satisfies

sup
|x|≤1

|1 + x| ≤ 2,

then it satisfies the triangle inequality:

|x+ y| ≤|x|+|y|

for any x, y ∈ K

Proof. The bound sup|x|≤1|1 + x| ≤ 2 implies the inequality |x+ y| ≤ 2·sup
{︁
|x| ,|y|

}︁
for all x, y ∈ K

and we can iterate this to obtain inequalities for the sum of two, four, eight and so on elements of
K. For example

⃓⃓
(x1 + x2) + (y1 + y2)

⃓⃓
≤ 2 · sup

{︁
|x1 + x2| ,|y1 + y2|

}︁
and with an iteration of the

inequality one gets |x1 + x2 + y1 + y2| ≤ 2 · 2 · sup
{︁
|x1| ,|x2| ,|y1| ,|y2|

}︁
, for all x1, x2, y1, y2 ∈ K. By

induction one has the formula ⃓⃓⃓⃓
⃓⃓ 2

n∑︂
i=1

xi

⃓⃓⃓⃓
⃓⃓ ≤ 2n · sup

1≤i≤2n
|xi|

for all x1, . . . , x2n ∈ K, n positive integer. Noticing that any positive integer n lies between two
consecutive powers of 2 and any sum of n elements of K can be completed to a sum of a power of
2 elements by adding zeroes, one has the relation⃓⃓⃓⃓

⃓⃓ n∑︂
i=1

xi

⃓⃓⃓⃓
⃓⃓ ≤ 2n · sup

1≤i≤n
|xi| ,

for any n elements x1 . . . , xn of K. In particular, letting xi be the identity of K for all i, produces
the estimate |n · 1K | ≤ 2n. Given that, we can estimate the absolute value of the sum of two
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elements x, y ∈ K as follows:

|x+ y| = n

√︂
(x+ y)n

⃓⃓
= n

⌜⃓⃓⃓
⎷
⃓⃓⃓⃓
⃓⃓ n∑︂
i=0

(︃
n

i

)︃
xiyn−i

⃓⃓⃓⃓
⃓⃓

≤ n

⌜⃓⃓⎷2(n+ 1) · sup
0≤i≤n

⃓⃓⃓⃓
⃓
(︃
n

i

)︃
xiyn−i

⃓⃓⃓⃓
⃓

≤ n

√︄
4(n+ 1) · sup

0≤i≤n

(︃
n

i

)︃
|x|i|y|n−i

≤ n

⌜⃓⃓⎷4(n+ 1) ·
n∑︂
i=0

(︃
n

i

)︃
|x|i|y|n−i

= n
√︁

4(n+ 1) ·
(︁
|x|+|y|

)︁
,

with n an arbitrarily large positive integer. Since n
√︁

4(n+ 1) approaches 1 as n tends to infinity,
the triangle inequality is established.

Proposition 1.1.7. The topology induced by a valuation |·| on K is equivalent to a topology induced
by a metric. Moreover, the addition, multiplication and inversion of K are continuous, making it
a topological field.

Proof. Let C be the constant of axiom A3 for the absolute value. Since |1| = 1, the constant is
forced to be greater or equal to 1. If C = 1 then the triangle inequality is automatically satisfied
for |·| and the function d(x, y) = |x− y| is a metric on K. If C > 1 we have that |·|λ, for λ = log 2

logC ,
is a valuation satisfying triangle inequality by the previous two lemmas. Therefore, the function
d(x, y) = |x− y|λ is a metric and the equality{︁

x ∈ K : |x− x0| < ε
}︁
=
{︂
x ∈ K : d(x, x0) < ελ

}︂
guarantees that the two topologies induced by |·|λ and |·| respectively are equivalent, hence K is
metrizable and d is a metric inducing the topology of K. From general, basic theory of metric
spaces we know that the sets B(x0, ε) :=

{︁
x ∈ K : d(x, x0) < ε

}︁
, for all x0 ∈ K and ε > 0, form a

basis of the topology and that d is a continuous function from K ×K to the real numbers. In the
rest of the proof, we can assume that |·| already satisfies the triangle inequality, since the continuity
of the operations on K does not depend on the parameter λ.

To prove continuity of the addition, take (x0, y0) ∈ K ×K and a ball of radius ε > 0 around
x0 + y0. If (x, y) ∈ B(x0,

ε
2 )×B(y0,

ε
2 ) then

|x+ y − x0 − y0| ≤|x− x0|+|y − y0| <
ε

2
+
ε

2
= ε ,

so that x+ y belongs to the open set B(x0 + y0, ε).

10



Continuity of multiplication: consider again a ball of radius ε > 0 around the product x0y0.
Observing that

d(xy, x0y0) = |xy − xy0 + xy0 − x0y0| ≤|x| ·|y − y0|+ |y0| ·|x− x0|

and that the absolute value |x| is less or equal than |x− x0| +|x0|, we can consider the conditions
d(x, x0) < δ and d(y, y0) < δ for δ positive real number, and it follows the estimate

d(xy, x0y0) < (δ +|x0|) · δ + |y0| · δ .

If δ is sufficiently small, than (δ +|x0|) · δ + |y0| · δ < ε and xy ∈ B(x0y0, ε).
Continuity of inversion: let x ∈ K be non-zero and let B(x−1, ε) be a ball contained in K \ {0},

so 0 < ε < |x|−1
. For any y ∈ K \ {0}, the distance between x−1 and y−1 is

d(x−1, y−1) =
|x− y|
|xy|

.

If d(x, y) < δ < |x|, then |y| > |x| − δ and

|x− y|
|xy|

<
δ

|x| ·
(︁
|x| − δ

)︁ ,
ensuring that y−1 ∈ B(x−1, ε) when δ is small enough.

For a valuation |·| of K we saw that any real number λ > 0 produces another valuation |·|λ that
induces the same topology as the original one. The next proposition shows that all valuations that
induce the same topology as |·| are obtained in this way.

Proposition 1.1.8. Let |·|1 and |·|2 be two valuation on K. If they induce the same topology, then

there is a real number λ > 0 such that |·|2 = |·|λ1
Proof. Observe that for any x ∈ K and any valuation |·| inducing the topology of K, the sequence
(xn)n∈N of powers of x approaches zero if and only the sequence of absolute values |xn| goes to zero.
Knowing that |xn| = |x|n, it follows that the topological property

lim
n→∞

xn = 0

is equivalent to |x|i < 1 regardless of i being 1 or 2, because they induce the same topology. Then
the two conditions |x|1 < 1 and |x|2 < 1 are equivalent and the same argument for x−1 implies
that |x|1 > 1 and |x|2 > 1 are equivalent conditions too. If one of the two valuations is trivial, i.e.
|x|i = 1 for any non-zero x ∈ K, then also the other is trivial, because the condition |x|i = 1 is the
negation of

|x|i < 1 or |x|i > 1

which is independent of i. Excluding the trivial case, we can fix an element z ∈ K with absolute
value strictly greater than 1. Define a = |z|1 and b = |z|2, they are both strictly greater than 1 and
b = aλ for a unique λ > 0. The purpose of doing so is to measure the absolute values |x|1 and |x|2
of any x ∈ K with the absolute values of z and to deduce that |x|2 = |x|λ1 . The function

R→ R×
+ , t ↦→|z|ti
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parametrizes the positive part of the real line, then, for any x ∈ K×, there exists a unique t ∈ R
such that |x|i = |z|

t
i. By completeness of the real numbers, t is the infimum of the set of rational

numbers strictly larger than t or the supremum of the rationals strictly smaller than t and this fact
is transposed to exponentials because of the monotonicity of this operation so that we can assert
that

|x|i = inf
q∈Q
q>t

|z|qi .

Let m
n be a rational number and suppose that |x|1 < a

m
n . Then the observation made at the

beginning of the proof together with the multiplicativity of the valuation implies what follows:

|x|1 < a
m
n is equivalent to

|x|ni
am

< 1 ,

by multiplicativity
|x|n1
am

=

⃓⃓⃓⃓
xn

zm

⃓⃓⃓⃓
1

and

⃓⃓⃓⃓
xn

zm

⃓⃓⃓⃓
1

< 1 is equivalent to

⃓⃓⃓⃓
xn

zm

⃓⃓⃓⃓
2

< 1 .

Reversing the previous algebraic manipulations one obtains that⃓⃓⃓⃓
xn

zm

⃓⃓⃓⃓
2

< 1 if and only if |x|2 < b
m
n

and after an exponentiation by λ one has that the two inequalities

|x|λ1 < b
m
n and |x|2 < b

m
n

are equivalent. Taking the infimum for m
n > t it yields the equalities

|x|λ1 = bt

= |x|2
and the proof is complete.

Remark 1.1.9. As the proof shows, the topology is completely determined by the set of topologically
nilpotent elements i.e. the elements of the field whose increasing powers approach zero. The
operation of raising a valuation to a positive constant preserves the property of being or not being
archimedean, so it makes sense to say that the topological field K is or is not archimedean. In the
second case the closed set O of elements x ∈ K with |x| ≤ 1 is a valuation sub-ring of K, in the
sense that O is a sub-ring of K with the property that for all non-zero x ∈ K, at least one of x
or its inverse x−1 belongs to O. The set of topologically nilpotent elements is the unique maximal
ideal O, making it a local ring, and the set of invertible elements is O× =

{︁
x ∈ K : |x| = 1

}︁
, which

coincide with the set of non-zero elements x ∈ K such that neither x nor x−1 is topologically
nilpotent.

Definition 1.1.10. Two valuations |·|1 and |·|2 on a field K are said equivalent if they induce the
same topology. The equivalence class of a valuation is called a place. The set of valuations of K is
denoted by VK and the set of places by PK , with the convention that the place corresponding to
the trivial valuation is excluded from the set PK .
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By the proposition 1.1.8, the place corresponding to a valuation |·| is identified with the set{︂
|·|λ : λ > 0

}︂
and, as highlighted in the remark 1.1.9, it makes sense to speak about the archimedeanity of places.
Indeed this property is characterized by the absolute value of the elements n · 1K for n a positive
integer, as it will be described soon. The fact that any natural number has a basis expansion with
respect to all integer b larger or equal to 2 produces the following estimate inside a valued field:

Lemma 1.1.11. Let |·| be a valuation on a field K. Suppose n, b are positive integers with b > 1.
Then

|n · 1K | ≤ max(1,|b · 1K |)
log n
log b

Proof. Let n = a0 + a1b + · · · + arb
r the base-b expansion of n. Rising the valuation to some

positive real number does not change the validity of the inequalities stated, so we can suppose that
|·| satisfies the triangle inequality. In this case |m · 1K | ≤ m for any positive integer m, in particular
|ai · 1K | ≤ b for all i = 0, . . . , r and we get estimates

|n · 1K | ≤
r∑︂
i=0

⃓⃓⃓
aib

i · 1K
⃓⃓⃓

=

r∑︂
i=0

|ai · 1K ||b · 1K |i

≤ b
r∑︂
i=0

|b · 1K |i

≤ (r + 1) · b ·max(1,|b · 1K |)r

≤ (
log n

log b
+ 1) · b ·max(1,|b · 1K |)

log n
log b .

If one use the inequality with ns, for s ∈ N, in the place of n, they get

|n · 1K |s ≤ (s
log n

log b
+ 1) · b ·max(1,|b · 1K |)s

log n
log b

and
|n · 1K | ≤ max(1,|b · 1K |)

log n
log b

after an exponentiation to 1
s , with s→∞.

Corollary 1.1.12. Let |·| be a valuation on a field K. The following are equivalent:

(i) |·| is non-archimedean,

(ii) |1K + 1K | ≤ 1,

(iii) the set
{︁
|n · 1K | : n ∈ Z

}︁
is bounded.
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Proof. “(i) =⇒ (ii)” is obvious.
“(ii) =⇒ (iii)”: recall that |−n · 1K | = |n · 1K | for all n ∈ N. By the lemma 1.1.11

|n · 1K | ≤ max(1,|2 · 1K |)
log n
log 2 ,

but |2 · 1K | = |1K + 1K | ≤ 1 and then |n · 1K | ≤ 1 for all integers n.
“(iii) =⇒ (i)”: Suppose that C > 0 is a constant that dominates the absolute value of any

integer multiple of 1K . For any real number λ > 0, the bound

sup
n∈N
|n · 1K | ≤ C

is equivalent to
sup
n∈N
|n · 1K |λ ≤ Cλ ,

and the valuation |·| is non-archimedean if and only if |·|λ is non-archimedean, therefore the impli-

cation “(iii) =⇒ (i)” holds for |·| if and only if it holds for |·|λ. This means that we can replace |·|
with an equivalent valuation that satisfies the triangle inequality and prove the implication “(iii)
=⇒ (i)” for that valuation. We can assume without loss of generality that |·| satisfies the triangle
inequality. Let n be a non-zero positive integer and x, y ∈ K.

|x+ y| = n

√︂
(x+ y)n

⃓⃓
= n

⌜⃓⃓⃓
⎷
⃓⃓⃓⃓
⃓⃓ n∑︂
i=0

(︃
n

i

)︃
xiyn−i

⃓⃓⃓⃓
⃓⃓

≤ n

⌜⃓⃓⎷ n∑︂
i=0

⃓⃓⃓⃓
⃓
(︃
n

i

)︃
· 1K

⃓⃓⃓⃓
⃓|x|i|y|n−i

≤ n

⌜⃓⃓⎷ n∑︂
i=0

C ·max(|x| ,|y|)n

= n
√︁
C · (n+ 1)max(|x| ,|y|) .

If n→∞ then n
√︁
C · (n+ 1)→ 1 and the ultrametric equality is established.

Corollary 1.1.13. If K has positive characteristic then any valuation on it is non-archimedean.

Proof. The set
{︁
|n · 1K | : n ∈ Z

}︁
is finite, hence bounded.

Corollary 1.1.14. If |·| is an archimedean valuation on a field K then there is a real number λ > 0
such that for all positive integers n

|n · 1K | = nλ.

Proof. The set
{︁
n ∈ N : |n · 1K | > 1

}︁
must be non-empty, otherwise, the absolute value would be

non-archimedean. Let n be an integer in this set and let b ∈ N be strictly larger than 1. By lemma
1.1.11,

|n · 1K | ≤ max
(︁
1,|b · 1K |

)︁ log n
log b .

14



If |b · 1K | ≤ 1 then |n · 1K | ≤ 1, which contradicts the assumption on n, therefore |b · 1K | > 1 and

|n · 1K | ≤|b · 1K |
log n
log b

for all b > 1. In particular, any integer larger or equal to 2 has absolute value strictly larger than
1 and given n,m like that

|n · 1K | ≤|m · 1K |
log n
log m

hold, or equivalently

|n · 1K |
1

log n ≤|m · 1K |
1

log m .

Since the above inequality is symmetric in n and m, we have the equality

|n · 1K |
1

log n = |m · 1K |
1

log m

for all n,m > 1. Define λ = log|2·1K |
log 2 , then

|n · 1K | = |2 · 1K |
log n
log 2

= nλ .

We can summarize all the corollaries after lemma 1.1.11 by saying that the archimedeanity of a
place ν of a field K depends only on the absolute value of multiples of the multiplicative identity
of the field. Moreover, if ν is archimedean then K has characteristic zero and there is a unique
absolute value |·|ν in the class ν such that

|n · 1K |ν = n

for all natural numbers n.
Any field embedding σ : k → K induces a map between valuation sets

VK → Vk , |·| ↦→|·|σ

defined by |x|σ =
⃓⃓
σ(x)

⃓⃓
for all x ∈ k and all valuation |·| of K. In light of the characterization of

places given by Proposition 1.1.8 it’s clear that the map of valuations also restricts to a well-defined
map between the sets of places.

Definition 1.1.15. Let p,P be places of k and K respectively. We say that P lies over p and we
write P|p if p is the image of P under the map PK →Pk just mentioned.

Any field is an algebra over the rational numbers or some finite field, then the first step to
analyze the places is their description in the case of prime fields. Note that any field that is
algebraic over a finite one consists, excluding the zero, of roots of unity, thus any valuation on it is
trivial. To get some non-trivial valuation on a field of positive characteristic there must be at least
one transcendental element over its prime field. The next theorem, due to A. Ostrowski, describes
the places in the two non-trivial simplest cases:
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Theorem 1.1.16. Denote as usual the rational numbers by Q and let Fq(T ) be the field of rational
functions in one variable T over the finite field Fq with q elements. Every non-trivial valuation on
Q is equivalent to one and only one of the following valuations:

- for p ∈ N prime, the non-archimedean p-adic valuation |·|p, defined on each prime l by

|l|p =

{︄
1
p if l = p

1 if l ̸= p

and then extended multiplicatively;

- the archimedean valuation |·|∞ defined, as usual, by

|x|∞ =

{︄
x if x ≥ 0

−x otherwise .

Analogously, every non-trivial valuation on Fq(T ) is equivalent to one and only one of the following
valuations:

- for a maximal ideal p of Fq[T ] generated by an irreducible polinomial of degree d, the non-
archimedean p-adic valuation |·|p, defined on each irreducible polynomial f ∈ Fq[T ] by

|f |p =

{︄
1
qd

if f ∈ p

1 if f /∈ p

and then extended multiplicatively;

- the non-archimedean valuation |·|∞ defined on every f
g ∈ Fq(T ), with f, g ∈ Fq[T ], by⃓⃓⃓⃓

f

g

⃓⃓⃓⃓
∞

=

{︄
qdeg f−deg g if fg ̸= 0

0 otherwise .

Proof. By corollary 1.1.14, an archimedean valuation on the field of rational numbers is equivalent
to a valuation |·| such that |n| = n for all natural number n. Since the valuation is multiplicative
and |−1| = 1 it must be |x| = |x|∞. Let |·| be a non-trivial, non-archimedean valuation on Q, then
any integer has absolute value less or equal to 1 and there is a non-zero integer n, which can be
assumed to be positive, such that |n| < 1. Let p be the minimal, positive, non-zero integer with
|p| < 1. Then it must be irreducible: if p = p1p2 for two positive integers p1, p2, then |p1| ·|p2| < 1
and it must be that |pi| < 1 for at least one i = 1, 2. Since p is the minimum of such natural
numbers, p ≤ pi, but pi is a factor of p and therefore p = pi. If l is a prime different from p then
1 = ap + bl for some integers a, b, hence 1 ≤ max( |ap| ,|bl| ). Knowing that |a| ≤ 1 and |b| ≤ 1, we
have

1 ≤ max( |ap| ,|bl| )
≤ max( |p| ,|l| )
≤ 1 ,
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so max( |p| ,|l| ) = 1, but |p| < 1 forces |l| = 1. The equality between valuation |l| = |l|λp , for

λ = − log|p|
log p , is true for every prime l and thus holds for all the rational numbers.

Now suppose that |·| is a valuation of Fq(T ). There are two possibilities: |T | ≤ 1 or |T | > 1. In
the first case Fq[T ] is contained in the subset of elements with absolute value less or equal to 1.
Note that Fq[T ] is an euclidean domain with fraction field Fq(T ), like Z for Q, hence the valuation is
determined by its behaviour on that sub-ring and we can repeat the same argument just presented
for the integers working instead with the degree of polynomials. The case |T | > 1 is traced back to
the previous case: define U = T−1, then Fq(T ) = Fq(U) and |U | < 1.

The place defined by the valuation |·|∞, described in Theorem 1.1.16 for both Q and Fq(T ), is
called the place at infinity or the infinite place and denoted by ∞, while the other places are said
finite places.

Definition 1.1.17. A global field is a field K that is of one of the following two types:

1. a finite extension of the field Q of rational numbers, or

2. a finite extension of the field Fq(T ) of rational functions in one variable over a finite field Fq
with q elements.

In the first case, we call K a number field, as opposed to the second case in which K is called a
function field.

Remark 1.1.18. For a finite extension K/Fq(T ) there is always an element U ∈ K, transcendental
over Fq, such that K is finite and separable over Fq(U), so any function field is a finite, separable
extension of a field isomorphic to Fq(T ). Recalling that Q is a perfect field we can say that any
global field is a finite and separable extension of Q or Fq(T ).

The description of all the places of fields in the aforementioned family is the main goal of these
sections. Each place has its own topology which is metrizable and, just like the real numbers are
obtained as the completion of the rational numbers with respect to the archimedean absolute value,
we can take completions of fields with respect to any place.

1.2 Completions

Although we are interested in global fields, completions make sense for any valuation on a general
field, so we let K and |·| be general.

Recall that a sequence (xn)n∈N of elements in the metric spaceK is Cauchy if, given an arbitrary
ε > 0, there is some positive integer N such that the distance between xn and xm is smaller then ε
for all n,m ≥ N . The distance function on K is constructed by choosing an appropriate valuation
equivalent to |·| that satisfies the triangle inequality, but it’s easy to see that for any real parameter
λ > 0, the sequence (xn)n∈N is Cauchy if and only if for all ε > 0 there is an integer N ≥ 0 such

that |xn − xm|λ < ε for all n,m ≥ N . Therefore, it’s reasonable to speak about Cauchy sequences
and completions with respect to places. Mimicking the construction of the completion of a metric
space with equivalence classes of Cauchy sequences one obtains analogous results in the case of
fields and places. They are summarized in the following theorem:

Theorem 1.2.1. Let K be a field, ν a place of it and |·| a valuation in the class of ν. There exists
a field Kν extending K, with the following properties:

17



i. Kν is complete with respect to a valuation |·|ν that extends the valuation of K, in the sense
that |x|ν = |x| for all x ∈ K;

ii. K is dense in Kν ;

iii. Kν satisfies the subsequent universal property: for any field F complete with respect to a
valuation |·|F and any field embedding σ : K → F satisfying

⃓⃓
σ(x)

⃓⃓
F
= |x| for all x ∈ K, there

is a unique field embedding σ′ : Kν → F compatible with the valuations such that σ′ restricted
on K is equal to σ.

Moreover, Kν is unique: suppose K ′ is a field over K, which is complete with respect to a valuation
|·|′ that extends the valuation of K and satisfies the universal property in iii. Then there is a unique

isomorphism of fields σ : Kν → K ′ that is the identity on K and such that |x|ν =
⃓⃓
σ(x)

⃓⃓′
holds for

all x ∈ Kν .

Remark 1.2.2. If K is a complete field with respect to a valuation |·| and F is a sub-field of K, then
the restriction of |·| to F is a valuation and the closure of F in K is a completion of F with respect
to that valuation. For example, if K has characteristic zero it must contain the rational numbers.
The valuation on them is trivial or equivalent to the p-adic valuation or the usual absolute value,
therefore K is an algebra over Q , Qp or R respectively.

One of the many benefits of working with complete fields is that finite dimensional vector space
over them carries a topology in a unique way, exactly as it happens in the case of real vector spaces.

Definition 1.2.3. Let K be a field with a valuation |·|, normalized to have the triangle inequality
property, and let V be a vector space over K. A norm is a function∥·∥ : V → R+ such that for any
v, u ∈ V and for any a ∈ K

• ∥v∥ = 0 if and only if v = 0;

• ∥a · v∥ = |a| ·∥v∥

• ∥v + u∥ ≤∥v∥+∥u∥

V is equipped with the metric topology induced by the distance function defined as d(u, v) =∥u− v∥
for u, v ∈ V . Two norms ∥·∥1 and∥·∥2 are called equivalent if there are positive real constants A,B
such that for all v ∈ V

∥v∥1 ≤ A ·∥v∥2 and ∥v∥2 ≤ B ·∥v∥1 .

If two norms are equivalent then define the same topology and the same Cauchy sequences, thus
completions depend only on the equivalence class of norms.

Example 1.2.4. For n positive integer, the canonical n-dimensional vector space Kn has the norm
defined by taking the maximum absolute value of the coordinates of a vector:⃦⃦

(x1, . . . , xn)
⃦⃦
= max

1≤i≤n
|xi|

This norm induces the product topology on Kn. For any vector space V of dimension n, each linear
isomorphism V → Kn defines a norm by pulling back the one mentioned above.
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Lemma 1.2.5. Let K and V be as in definition 1.2.3. Suppose that V has finite dimension n. Let
e1, . . . en be a basis with induced norm

∥x1e1 + · · ·+ xnen∥e = max
1≤i≤n

|xi| for all (x1, . . . , xn) ∈ Kn .

Then there is a positive real constant C that depends on the base chosen such that

∥v∥ ≤ C ·∥v∥e for all v ∈ V.

Moreover, if K is complete then V is complete with respect to ∥·∥e.
Proof. Take (x1, . . . , xn) ∈ Kn, then

∥x1e1 + · · ·+ xnen∥ ≤∥x1e1∥+ · · ·+∥xnen∥
= |x1| ·∥e1∥+ · · ·+|xn| ·∥en∥
≤ (∥e1∥+ · · ·+∥en∥) · max

1≤i≤n
|xi|

and so the value C =∥e1∥+ · · ·+∥en∥ works. Let v1, v2, v3, . . . be a Cauchy sequence of vectors for
the norm ∥·∥e. Let ξ1, . . . , ξn be the dual basis. For all i = 1, . . . , n and all vectors v⃓⃓

ξi(v)
⃓⃓
≤∥v∥e

by definition. Then, for all i, the sequence ξi(v1), ξi(v2), ξi(v3), . . . is Cauchy in K, which is com-
plete, thus it converges to some xi ∈ K. Define v = x1e1 + . . . xnen, then⃦⃦

v − vj
⃦⃦
e
= max

1≤i≤n

⃓⃓
xi − ξi(vj)

⃓⃓
goes to zero as j →∞ and v is the limit of the sequence of vectors.

Theorem 1.2.6. Let K be a field complete with respect to a valuation |·| and V a vector space of
dimension n over K. Then any two norms on V are equivalent and V is complete for any of them.

Proof. Let e1, . . . , en be a basis of V , with ξ1, . . . , ξn the dual basis and define∥·∥e as in the lemma.
The proof goes by induction on the dimension n. The theorem holds for n = 1 because any norm
is of the form∥e1∥|·| when it’s pulled back by an isomorphism K → V, a ↦→ ae1. Suppose n > 1 and
that the theorem holds for n − 1. It’s enough to prove that all norms are equivalent to the max-
norm ∥·∥e and by the lemma 1.2.5 it’s sufficient to show that for any norm ∥·∥ there is a constant
C > 0 such that to ∥·∥e ≤ C∥·∥. By contradiction, suppose that for any C > 0 there is some v ∈ V
such that ∥v∥e > C∥v∥. If

⃓⃓
ξi(v)

⃓⃓
= ∥v∥e then we can substitute v with ξi(v)

−1v in the inequality
without change it. So there is a sequence (vk)k≥1 of vectors such that ∥vk∥ < 1

k , their components
ξ1(vk), . . . , ξn(vk) have absolute value less or equal to 1 and ξi(vk) = 1 for at least one i = 1, . . . , n.
Up to passing to a subsequence and up to reordering the basis, we can suppose that for all k ≥ 1
the vector vk has the n-th component equal to 1. Define uk = vk − en and note that

∥uk − ul∥ =
⃦⃦
vk − en − (vl − en)

⃦⃦
=∥vk − vl∥ ,

thus the sequence (uk)k≥1 is Cauchy for∥·∥ because∥vk∥ → 0 as k →∞. The induction hypothesis
implies that ∥·∥ restricted to the subspace U generated by the vectors e1, . . . , en−1 is equivalent to
the max-norm, for which U is complete (lemma 1.2.5). Therefore (uk)k≥1 converges to some u ∈ U
for the norm∥·∥ and then (vk)k≥1 converges to u+ en for the same norm. But∥vk∥ → 0 as k →∞,
which forces u = −en, this is a contradiction: u ∈ U but −en /∈ U .
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If K/k is a finite extension of fields, with k complete for a valuation |·|k, then K, as a vector
space over k, is topologized in a unique way. Any norm∥·∥ of K viewed as a k-vector space induces
the topology of K, but it isn’t necessarily a valuation on K as a field. If there is a norm ∥·∥ that
commutes with the multiplication of the field K, then ∥·∥ is also a valuation of the field K that
extends the valuation |·|k of k. Indeed the norm of a k-vector is compatible with the valuation |·|k
by definition of norm, hence for all x ∈ k

∥x∥ =∥x · 1∥
= |x|k ·∥1∥

and the equality ∥1∥ = 1 can be easily deduced by the assumption that ∥·∥ is multiplicative. Con-
versely, a valuation |·| of K that extends |·|k satisfies the definition of the norm of a k-vector space.
This fact combined with Theorem 1.2.6 has the effect that any two valuations |·| ,|·|′ of K extending
|·|k are equivalent as norms, therefore they define the same topology. Proposition 1.1.8 implies that

there is a real λ > 0 such that |x|λ = |x|′ for all x ∈ K when we view |·| and |·|′ as valuations of
the field K. If we view them as norms of the same k-vector space K instead, we know by Theorem
1.2.6 and Lemma 1.2.5 that there is a positive, real constant C such that

1

C
|x| ≤|x|′ ≤ C|x| , for all x ∈ K .

These inequalities are compatible with the identity |x|λ = |x|′ if and only if λ = 1. What we observed
so far accounts for the proof of the uniqueness part stated in the following result:

Proposition 1.2.7. Let k be a field complete with respect to a valuation |·|k and K a finite extension
of k. Then there is a unique valuation |·|K on K such that for all x ∈ k

|x|K = |x|k .

Moreover, K is complete with respect to it and

|x|K =
⃓⃓⃓
NK/k(x)

⃓⃓⃓ 1
[K:k]

k
for x ∈ K,

where NK/k(x) is the determinant of the k-linear map on K corresponding to the multiplication by
x.

To complete the proof of Proposition 1.2.7 we should check that a valuation |·|K that extends
|·| exists. The problem of the existence can be addressed by separating the archimedean case from
the non-archimedean. For the archimedean case, there is a result of Ostrowski:

Theorem 1.2.8. Any complete, archimedean, valued field is isomorphic, both algebraically and
topologically, to R or C.

Proof. See Theorem 1.1 in Chapter 3 of [Cas86] or Theorem 4.2 in Chapter II of [NS99].

By Theorem 1.2.8 the only non-trivial extension of complete, valued, archimedean fields is
C/R and in this case, we know well how to extend the absolute value of R to C. In the case of
finite extensions of non-archimedean fields, the proof that the valuation of the smaller field can be
extended to the bigger one is given in [NS99], Chapter II, Theorem 4.9.
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Remark 1.2.9. Proposition 1.2.7 can be extended to the case in which K is a possibly infinite
algebraic extension of k because any element x ∈ K is contained in a finite extension of k. In that
case, the absolute value of x would be

|x|K =
⃓⃓⃓
Nk(x)/k(x)

⃓⃓⃓ 1
[k(x):k]

,

where k(x) is the smallest subfield of K containing k and x. Furthermore, if σ is an automorphism
of K/k, then |x|K =

⃓⃓
σ(x)

⃓⃓
K

for all x ∈ K because also
⃓⃓
σ(·)

⃓⃓
K

is a valuation on K that extends the
valuation of k. In particular, for K/k Galois of finite degree n, the formula

|x|nK =
∏︂
σ

⃓⃓
σ(x)

⃓⃓
K

=

⃓⃓⃓⃓
⃓∏︂
σ

σ(x)

⃓⃓⃓⃓
⃓
K

holds for all x ∈ K and with σ running through all the automorphism of K/k. One can read again
the correct formula for |·|K by recalling that NK/k(x) is the product of all conjugates of x in K in
the Galois case.

1.3 Classification of Places for Global Fields

This section is devoted to the classification of places in a global field. We fix some notation for this
goal:

- k denotes a field and K an algebraic extension of it;

- p,P denotes places of k and K respectively;

- the completion of a field is indicated with the sub-script: for example kp stands for the
completion of k with respect to the place p;

- for any place p of k fix an algebraic closure kp of the complete field kp;

- Gp = Aut(kp/kp) is the absolute Galois group of kp

Recall that this Galois group has a left action on the set Homk(K, kp) by left-composition.

Proposition 1.3.1. Let K/k be a finite and separable extension of fields. Then, for any place p of
k and any valuation |·| in the class p, there is a bijection

Gp · σ ↦→|·|σ ,

from the set Gp\Homk(K, kp) of left cosets to the set of valuations of K that extends |·|.

Proof. Let n be the degree of the extension K/k. By separability, there are exactly n morphisms of
k-algebras from K to any algebraically closed field that contains k as a sub-field. Fix a place p of k
and choose a valuation |·| in the equivalence class p. We can extend uniquely |·| to kp by Theorem
1.2.1 and Remark 1.2.9. Now define the map

Homk(K, kp)→ VK , σ ↦→|·|σ (1.1)
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that sends a k-algebra morphism σ to the valuation |·|σ defined by |x|σ =
⃓⃓
σ(x)

⃓⃓
for all x ∈ K. Since

σ is the identity on k, the valuation |·|σ is equal to |·| on k, thus the map (1.1) has image contained
in the set of valuations that extends |·| from k to K. If τ ∈ Gp, then |z| =

⃓⃓
τ(z)

⃓⃓
for all z ∈ kp by

Remark 1.2.9, so the map (1.1) is well-defined on the coset space Gp\Homk(K, kp). Now we prove
that the image of the map (1.1) is the set declared in the statement. If |·|P is a valuation of K
with associated place P that extends the one of k, we can extend it furthermore to the completion
KP. Since this field is complete, contains k and the absolute value agrees with |·| on k, there is
a completion isomorphic to kp inside KP and we can assume without loss of generality that kp is
indeed the topological closure of k in KP. Choose a basis x1, . . . , xn of K over k as a vector space,
which is the same as a choice of a k-linear isomorphism

φ : kn → K

that sends the canonical basis vector ei to xi. The space kn is dense in knp and we can extend φ to
a kp-linear map φ̃ : knp → KP by setting φ̃(ei) = xi for all i = 1, . . . , n. The square

kn K

knp KP

φ

φ̃

is commutative, thus φ̃(kn) is dense in KP. The image of φ̃ is closed because it’s a kp-vector
sub-space and it contains the dense set φ̃(kn), hence the image of φ̃ is all KP. This means that
KP is a finite extension of kp, so there exists an embedding σ : KP → kp. The uniqueness part of
Proposition 1.2.7 implies that the valuation |·|P is equal to |·|σ on KP and even more so it is on K.

Now we prove that the map is injective on the coset space. Take an embedding σ ∈ Homk(K, kp)
and an element x ∈ K. Denote by λ(X) the minimal polynomial of x over k and consider its
factorization

λ(X) =

r∏︂
i=1

λi(X)

into irreducibles polynomials in the ring kp[X]. The factors are irreducible and all distinct because
the separability of the extension K/k implies that λ(X) is a separable polynomial. The element
z := σ(x) is a zero of λi(X) for a unique i and all roots of λi(X) are the (not necessarily distinct)
conjugates of z under the action of Gp. We have that, for all τ ∈ Gp,⃓⃓

λj(τ(z))
⃓⃓
= 0 if and only if j = i

and, for all w ∈ kp, ⃓⃓
λi(w)

⃓⃓
= 0 if and only if w ∈

{︁
τ(z) : τ ∈ Gp

}︁
.

Separable, finite field extensions admit primitive elements, so we can suppose x is one of them for
the extension K/k. If σ′ : K → kp is an embedding that does not belongs to the coset Gp ·σ, it must
be τ(σ(x)) ̸= σ′(x) for all τ ∈ Gp and this means that z′ := σ′(x) is a root λ(X) but not a root of
λi(X). There must be a factor λj(X) different from λi(X) such that λj(z) ̸= 0 and λj(z

′) = 0. For
all real numbers ε, ε′ > 0 we can find a polynomial f(X) with coefficients in k such that⃓⃓

f(z)− λi(z)
⃓⃓
< ε and

⃓⃓
f(z′)− λi(z′)

⃓⃓
< ε′ .
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One can convince himself of this fact by observing that for any integer d > 0 and any w,w′ ∈ kp,
the map

kd+1
p kp(w)⊕ kp(w′)

(a0, . . . , ad) (a0 + a1w + · · ·+ adw
d, a0 + a1w

′ + · · ·+ adw
′d)

is a linear homomorphism between finite-dimensional kp-vector spaces, hence continuous for the
unique topology induced by any norm, and kd+1 is a dense subset of the domain. Note that
λi(z) = 0 and λi(z

′) ̸= 0, so that we can choose ε, ε′ small enough to have
⃓⃓
f(z)

⃓⃓
< 1

2

⃓⃓
λi(z

′)
⃓⃓
and⃓⃓

f(z′)
⃓⃓
> 1

2

⃓⃓
λi(z

′)
⃓⃓
. Finally, recall that z, z′ are the image of x via the k-algebra morphisms σ, σ′

respectively, therefore ⃓⃓
f(x)

⃓⃓
σ
=
⃓⃓
σ(f(x))

⃓⃓
=
⃓⃓
f(σ(x))

⃓⃓
<

1

2

⃓⃓
λi(z

′)
⃓⃓

and ⃓⃓
f(x)

⃓⃓
σ′ =

⃓⃓
σ′(f(x))

⃓⃓
=
⃓⃓
f(σ′(x))

⃓⃓
>

1

2

⃓⃓
λi(z

′)
⃓⃓
.

This implies that
⃓⃓
f(x)

⃓⃓
σ
̸=
⃓⃓
f(x)

⃓⃓
σ′ , which is enough to conclude the proof.

The bijection in Proposition 1.3.1 induces a bijection between the set of left cosets
Gp\Homk(K, kp) and the set of places P of K that lie over p, therefore the map of places

PK −→Pk

is surjective with finite fibres of cardinality less or equal to the degree of the extension K/k. If K
is a global field we can always find a subfield k ⊆ K isomorphic to Q or to Fq(T ) such that K/k is
finite and separable. Theorem 1.1.16 describes the set Pk and Proposition 1.3.1 characterizes the
fibre of PK →Pk, together they provide a classification of places of any global field:

Corollary 1.3.2 (Classification of places of a global field). Let K be a global field, finite and
separable over the field k, with k isomorphic to the field of rational numbers or rational functions
in one variable over a finite field. For each place p of k let |·|p be the choice of valuation defined in

Theorem 1.1.16 extended to kp. Then, for all places P of K there is a unique place p of k and an
embedding σ : K → kp of k-algebras such that P|p and the valuation

K → R+, x ↦→
⃓⃓
σ(x)

⃓⃓
p

represents the class P. The embedding σ is unique up to conjugation by elements of the absolute
Galois group of kp.
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Definition 1.3.3. Let k be a global field. The places of k that lie over the place ∞ are called the
infinite places of k. Let S ⊂ Pk be a finite set of places that contains the set of infinite places of
k. The sub-ring of k

Ok,S :=
{︂
x ∈ k : |x|p ≤ 1 for all place p /∈ S

}︂
is called the ring of S-integers of k.

The ring Ok,S is a Dedekind domain with fraction field k. If K is a finite, separable extension of
k, then the integral closure of Ok,S is the ring of S′-integers of K, where S′ is the set of places P of
K such that there is some p ∈ S with p|P. Observe that, with this notation, the ring of ∞-integers
of the rational numbers is Z, thus we get back the classical ring of integers of a number field K by
considering its ring of S-integers, where S is the set of infinite places. The notion of “place” can
be seen as a generalization of the primes, as the set of finite places of a global field k is in bijection
with the set of non-zero prime ideals of Ok. Precisely:

Theorem 1.3.4. Let k be a global field and S be a finite set of places containing the infinite ones.
Then:

(i) the rule

p ↦−→
{︂
x ∈ Ok,S : |x|p < 1

}︂
defines a bijection between the complementary of S in Pk and the set of non-zero prime ideals
of Ok,S;

(ii) the inverse of the bijection of point (i) is given by assigning a prime ideal P of Ok,S to the
place p represented by the valuation |·|p defined by

|x|p = tv(x|P) for all non-zero x ∈ k ,

where t is any fixed real number satisfying 0 < t < 1 and v(x|P) is the maximal integer n for
which x ∈ Pn;

(iii) if K is a finite, separable extension of k and p is a place of the smaller field with associated
prime ideal P, then, the map in point (i) induces a bijection between the set of places P of K
such that P|p and the set of prime ideals of OK,S′ containing P, where S′ is the set of places
of K lying over places of S.

Proof. It’s easy to check that the maps of (i) and (ii) are mutual inverses, and (iii) follows from
that.
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Chapter 2

Harmonic Analysis on Locally
Compact Abelian Groups

This chapter is a summary of what is needed in the theory of locally compact abelian groups and
their harmonic analysis, collecting the results from the first three chapters of [RV99]. We start
with some basic properties of the category of locally compact abelian groups, then we introduce
unitary characters and the dual of a group, namely the group of unitary characters on it. The first
section ends with the Pontryagin duality Theorem, stating that a locally compact abelian group is
naturally isomorphic to its double dual. In Section 2.2 we introduce the Haar measure of a locally
compact abelian group. This is a Radon measure invariant by the group’s operation, and, through
it, the Fourier transform can be defined. It is an integral transform sending functions of a group to
functions on its dual, and it combines well with Pontryagin duality, defining isomorphisms between
functional spaces attached to the group and its dual. The Fourier transform is used in Chapter 4
for the additive groups of local fields (see Definition 2.3.5) and adèle rings. These are special in
the sense that they are identified with their dual group, a case examined in Example 2.2.6. For
these special groups, one can choose uniquely a Haar measure and make the Fourier transform act
internally on functional spaces of the group. The last result of the section is a slightly more general
version of the Poisson summation formula (Theorem 2.2.8). Sections 2.3 introduce the module of
an automorphism of a locally compact abelian group, which is a real number that measures how
the automorphism changes the Haar measure. In the case of a locally compact field, the module
is a valuation of the field. Indeed locally compact fields that are not topologically discrete are
classified and they are precisely the completions of global fields. The module gives then to local
fields a canonical choice for the valuation that defines their topology. Finally, in Section 2.4 we
treat the restricted direct product of families of locally compact abelian groups. In some sense, this
construction lies in between the coproduct and the direct product of groups. We describe how to
construct a Haar measure on it, and how the integration of functions works. Regarding characters,
the dual of a restricted direct product is the restricted direct product of the duals (see Theorem
2.4.7). The content of Section 2.4 is useful to study the adèles and idèles in Chapter 3, as they are
both restricted direct products.
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2.1 Basic properties of locally compact abelian groups

Definition 2.1.1. A locally compact abelian group is, by definition, a topological group (A,+, 0)
that is Hausdorff and locally compact as a topological space and abelian as a group. We will
write that A is a LCA group for short. If A,B are LCA groups, a morphism between them is a
continuous group homomorphism A→ B. The term LCA is also used to indicate the category of
locally compact abelian groups and morphism between them.

Remark 2.1.2. Since an LCA group is Hausdorff as a topological space, there is no confusion in the
definition of local compactness: it means equivalently that any point of the group has a compact
neighbourhood or that it has a basis of compact neighbourhoods.

The following proposition summarises the properties of sub-objects and quotients.

Proposition 2.1.3 (subgroups and quotients). Let A be a LCA group, B ⊆ A a subgroup with
the subspace topology and C = A/B the quotient group with the topology induced by the projection
p : A→ C. Then the following holds for A,B and C:

(i) B is Hausdorff;

(ii) B is locally compact if and only if it is closed in A;

(iii) the projection p : A→ C is an open map;

(iv) C is locally compact;

(v) C is Hausdorff if and only if B is closed in A;

(vi) if B is open then it is automatically closed;

(vii) C is discrete if and only if B is open.

Proof. See [RV99], propositions 1-4 and 1-6.

Remark 2.1.4. The category LCA is pre-abelian, in the sense that it is Z-linear and it has finite
limits and colimits, in particular, kernels are computed in the usual way and the cokernel of a
morphism φ : A→ B is given by the quotient of B by the closure of the algebraic image of f . It is
not an abelian category because there are morphisms with trivial kernel and cokernel that aren’t
isomorphisms, like the morphism Rdisc → R, where the domain is the set of real numbers with the
discrete topology and the map is the identity on elements. In general, every morphism φ : A→ B
of LCA lies in a commutative square

A B

A/ ker f f(A)

φ

proj

φ̃

but the induced morphism φ̃ may not be an isomorphism, contrary to the case of abelian categories.
Still, one may consider strict morphisms, which are morphisms φ : A→ B in LCA such that φ̃ is
an isomorphism, and use the formalism of abelian categories for them. For example, one can work
with exact sequences in the usual way provided that each morphism of the sequence is strict. For
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what we need, is not necessary to introduce this notion of strict morphism, but it is nevertheless
convenient for us to use short exact sequences

0 B A C 0
φ ψ

(2.1)

as a visual aid. Therefore, we adopt the convention that a sequence like (2.1) is exact if ψ is a
cokernel of φ and φ is a kernel of ψ. This is equivalent to asking that φ and ψ are strict.

The category LCA can be enriched over topological Hausdorff abelian groups in the sense
that the abelian group HomLCA(A,B) of morphisms between two locally compact abelian groups
A,B has a topology that makes it a topological Hausdorff abelian group and the composition of
morphisms is continuous for this topology. This is the compact-open topology, determined by the
following pre-basis of open subsets: for all compact subsets K of A and all open subsets U of B, a
basic open subset of HomLCA(A,B) is the subset W (K,U) of morphisms φ that satisfy φ(K) ⊆ U .

Lemma 2.1.5. For all LCA groups A,B, the topological group HomLCA(A,B) is Hausdorff.
Moreover, for any C in the same category of A and B, the composition

◦ : HomLCA(B,C)×HomLCA(A,B)→ HomLCA(A,C) , (ψ,φ) ↦→ ψ ◦ φ

is continuous, where the domain has the product topology of the compact-open topologies of each
factor.

Proof. If φ ̸= ψ in HomLCA(A,B), then there is an element a ∈ A such that φ(a) ̸= ψ(a) and we
can choose disjoint open neighbourhood U1, U2 in B of φ(a) and ψ(a) because B is Hausdorff. If K
is any compact neighbourhood of a in A, it follows that W (K,U1) and W (K,U2) are disjoint open
neighbourhood separating φ and ψ, so that the topology of HomLCA(A,B) is Hausdorff.

To prove the continuity of the composition, suppose that K is compact in A and U is open in
C and observe that the pre-image of the basic open set W (K,U) of the target is the basic open set
W (φ(K), U)×W (K,ψ−1U) of the domain.

Our case of interest is when B is the unit circle.

Definition 2.1.6. LetA be an LCA group. Define the topological group ˆ︁A as the group Hom(A,S1)
with the compact-open topology, where S1 is the unit circle in the complex plane. The group ˆ︁A is
called Pontryagin dual or the group of unitary characters of A.

Remark 2.1.7. Here, the term character refers to continuous group-homomorphism to the multi-
plicative group of complex numbers C×. The adjective unitary is used to indicate a character with
image contained in the unit circle. In this chapter, we deal almost only with unitary characters,
the non-unitary case will be important in the last chapter.

Lemma 2.1.8. Let A be an LCA group, then ˆ︁A is also an LCA group. In particular, the rule
A ↦→ ˆ︁A defines a functor from LCAop to LCA such that any morphism φ : A → B is sent to the
morphism φ∗ : ˆ︁B → ˆ︁A defined by φ∗(χ) = χ ◦ φ for any unitary character χ ∈ ˆ︁B.

Proof. See Proposition 3-2 of [RV99] for the local compactness of ˆ︁A. The functoriality of A ↦→ ˆ︁A is
provided by the equality φ∗ ◦ ψ∗ = (ψ ◦ φ)∗ valid for all composable couples of morphisms φ,ψ of
LCA.
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The above functor is a duality of the category LCA in the sense expressed by the following
result and it is known as Pontryagin duality.

Theorem 2.1.9 (Pontryagin duality). The functor A ↦→ ˆ︁A defines a contravariant equivalence on

the category LCA and there is a functorial isomorphism A ∼= ˆ︁ˆ︁A given by the map

τ : A→ ˆ︁ˆ︁A , a ↦→ τa ,

with τa(χ) = χ(a) for all unitary character χ of A.

Proof. See Chapter 3 of [RV99] for the proof that the map a→ τa is an isomorphism. Functoriality
is obvious by definition: for all morphisms φ : A → B in LCA, the image of a ∈ A by the map
φ∗∗ ◦ τ is exactly the unitary character τφ(a) of ˆ︁B, since they both produce χ(φ(a)) when evaluated

at any χ ∈ ˆ︁B.

The following is an immediate consequence:

Corollary 2.1.10. The Potryagin dual commutes with limits and colimits in LCA. In particular,
if B is a closed subgroup of an LCA group A and C = A/B, then ˆ︁C is isomorphic to B⊥, the

subgroup of unitary characters of A that are trivial on B, and ˆ︁B is isomorphic to ˆ︁A/B⊥.

Proof. The Pontryagin duality is an equivalence by Theorem 2.1.9 and equivalences of categories
always respect limits and colimits when they exist. The sequence

0 B A C 0
φ ψ

is exact (recall the convention declared in Remark 2.1.4). Then, also

0 ˆ︁C ˆ︁A ˆ︁B 0
ψ∗ φ∗

is exact. In particular, ˆ︁C is isomorphic to ker(φ∗) that is equal to B⊥, and ˆ︁B is the cokernel of the

inclusion of B⊥ ↪→ ˆ︁A.
Corollary 2.1 shows how Pontryagin duality sub-groups with quotients and the next proposition

shows that it permutes compact groups with discrete groups.

Proposition 2.1.11. Let A be an LCA group and ˆ︁A its Pontryagin dual. If A is compact, thenˆ︁A is discrete, if A is discrete then ˆ︁A is compact.

Proof. Suppose that A is discrete. The underlying set of ˆ︁A is the set of algebraic homomorphisms
from A to the circle group and it is also a closed subset of the product

∏︁
A S1 of copies of the circle

indexed by A. Moreover, the topology of ˆ︁A is the subspace topology: compact subsets K of A are
finite subsets and the basic open set W (K,U) of ˆ︁A, for U open subset of the circle, is equal to the

intersection inside
∏︁
A S1 of ˆ︁A with the open subset

{︁
f ∈

∏︁
A S1 : f(a) ∈ U for all a ∈ K

}︁
. Since

S1 is compact and Hausdorff, then the same is true for the product
∏︁
A S1 and all its closed subset,

so ˆ︁A is compact.
Suppose that A is compact. Let U be an open neighbourhood of the identity in the circle group

and consider an open subset of ˆ︁A of the form W (A,U). If χ ∈ W (A,U), we have that χ(A) is a
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compact subgroup of the circle contained in U . The lemma 2.1.12 below ensures that for U small
enough W (A,U) is the subset containing only the trivial character and this implies that points of

the topological space ˆ︁A are open.

Lemma 2.1.12. Let C× be the group of invertible complex numbers. Then there is a neighbourhood
of the identity that does not contain non-trivial subgroups.

Proof. Consider the exponential map exp : C→ C×, z ↦→ ez. For a radius r > 0 small enough, the
map exp is a homeomorphism from the ball B(0, r) to an open neighbourhood U ⊂ C× of 1. Let
G be a subgroup of C× contained in U . Then exp−1(G) is a subgroup of (C,+) isomorphic to G
contained in B(0, r). Then, for all z ∈ exp−1(G) we have |n · z| < r for all integer n, but this is
possible if and only if z = 0 because C is an archimedean field, thus exp−1(G) = {0} and G is the
trivial group.

2.2 The Haar measure and the Fourier transform

The motivation behind the choice of LCA as the category to work with is the nice interplay between
topology, algebraic structure and measure theory. A locally compact abelian group always has a
special measure on it that is invariant by translations and it is unique up to a positive constant.
This is the notion of a Haar measure.

Definition 2.2.1. Let A be an LCA group. A Haar measure is a Radon measure µ on A such
that ∫︂

A

f(x− a) dµ(x) =
∫︂
A

f(x) dµ(x)

for all compactly supported, real-valued, continuous function f on A and every a ∈ A.

Remark 2.2.2. By the Riesz–Markov–Kakutani representation theorem, the definitions of Radon
measure given in terms of well-behaved measures on the σ-algebra of Borel sets or continuous
linear functionals on the space of compactly supported, continuous functions are equivalent. The
translation invariant property of a Haar measure µ given in the definition corresponds to the equality
µ(E) = µ(a+E) for a measurable set E and an element a of the group. For reference, see theorem
7.2 of [Fol99].

Recall that for an isomorphism φ : B → A in the category LCA there is an associated linear
isomorphism between the spaces of Radon measures, that sends a measure µ on A to its pullback
φ⋆µ defined on B by the integral ∫︂

B

f d(φ⋆µ) =

∫︂
A

f ◦ φ−1 dµ

for compactly supported, continuous functions f : B → R. The pullback of a Haar measure is again
a Haar measure since φ respects the group law.

Theorem 2.2.3. Let A be an LCA group. Then there exists a non-zero Haar measure µ on A
and for all Haar measure λ there is a unique positive, real constant c such that λ = cµ.

Proof. See Theorem 1 of Chapter 1 in the book [Bou04].
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As usual, Lp(A,µ) denotes the space of µ-measurable functions f : A→ C such that∫︂
A

⃦⃦
f(x)

⃦⃦p
C dµ(x)

is finite. Since Haar measures are proportional to each other, the finiteness of the integral of a
positive measurable function is independent of the choice of the Haar measure, so we can drop the
µ in the notation of the Lp-space and write Lp(A) for the space of power-p summable functions of

A. For an L1-function f : A→ C, the Fourier transform ˆ︁f of f is defined by the formula

ˆ︁f(χ) = ∫︂
A

f(x)χ(x) dµ(x)

for all unitary characters χ ∈ ˆ︁A. If ν is a Haar measure on ˆ︁A and ˆ︁f ∈ L1( ˆ︁A), by Pontryagin duality

we may regard the Fourier tranform of ˆ︁f as a function on A via the formula

ˆ︁ˆ︁f(x) = ∫︂ ˆ︁A ˆ︁f(χ)χ(x) dν(χ)
for all x ∈ A. As in the case of functions of real variables, suitable functions on the group A can
be represented as a “weighted sum” of unitary characters, where the Fourier transform ˆ︁f(χ) is the
weight of the character χ in the representation. To be explicit, the formula

f(x) = c

∫︂
ˆ︁A ˆ︁f(χ)χ(x) dν(χ)

holds for sufficiently nice functions f , where c is a constant independent of f but dependent on the
choice of the Haar measure ν. The unique measure ν on ˆ︁A that makes the constant c equal to 1 is
called the dual measure of µ. All this is formalized in the next theorem.

Theorem 2.2.4. Let A be an LCA group with a Haar measure µ. There is a unique Haar measureˆ︁µ on ˆ︁A such that for all f ∈ L1(A) the formula

ˆ︁ˆ︁f(x) = f(−x) (2.2)

holds for all x ∈ A whenever ˆ︁f is also in L1( ˆ︁A). Moreover, the Fourier transform induces an

isometry between the Hilbert spaces L2(A) and L2( ˆ︁A) equipped with the standard L2 inner products.

Proof. See the theorem 4.21 and 4.25 of [Fol95].

Example 2.2.5. Suppose that A is compact and let µ be a Haar measure. Let f be the function
that is constant and equal to 1 on all A. The function f is continuous, it’s Lp for all p ∈ (1,∞] and
its Fourier transform is ˆ︁f(χ) = ∫︂

A

χ(x) dµ(x) , χ ∈ ˆ︁A
The problem of computing the above Fourier transform is equivalent to the problem of computing
the integral of a unitary character on A. Since the Haar measure is invariant by translation of any
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element a ∈ A, we have

ˆ︁f(χ) = ∫︂
A

χ(x) dµ(x)

=

∫︂
A

χ(x− a) dµ(x)

= χ(−a)
∫︂
A

χ(x) dµ(x)

= χ(a) ˆ︁f(χ)
for all a ∈ A. So, ˆ︁f is zero when calculated on any non-trivial unitary character and it is equal to
µ(A) on the trivial character. Since A is compact, the group ˆ︁A is discrete and the counting measure
is a Haar measure on any discrete abelian group. So, the dual measure ˆ︁µ is equal to the counting
measure multiplied by a constant c. The formula of Theorem 2.2.4 determines c:

f(x) =

∫︂
ˆ︁A ˆ︁f(χ)χ(x) dˆ︁µ(χ)

= c
∑︂
χ∈ ˆ︁A

ˆ︁f(χ)χ(x)
= cµ(A) ,

where the last equality comes from the fact that ˆ︁f is the characteristic function of the trivial
character multiplied by the measure of A. The function f(x) is constant and equal to 1, so c =
µ(A)−1, in particular, if the Haar measure of A is normalized to give measure 1 to the whole group,
then the dual measure is simply the counting measure.

Example 2.2.6. Suppose that A is an LCA group with an isomorphism ψ : A→ ˆ︁A. It corresponds
to a bilinear continuous map

Ψ : A×A→ S1 , (ξ, x) ↦→ ψ(ξ)(x)

and we assume that Ψ is symmetric: Ψ(ξ, x) = Ψ(x, ξ), which is the same of asking that the diagram

ˆ︁ˆ︁A ˆ︁A
A

ψ∗

≀ ψ

commutes. Let µ be a Haar measure on A and ˆ︁µ its dual. Then there is another measure on A,
namely the pullback of the measure ˆ︁µ by ψ. Up to rescaling µ, we can suppose that µ is itself
the pullback of ˆ︁µ. In this case, µ is said to be self-dual with respect to the isomorphism ψ. The
identification of the group A with its dual permits to define the Fourier transform as a linear
automorphism F of L2(A) that sends an L2 function f to ˆ︁f ◦ ψ. To be explicit, the operator F is
defined on the functions f that belong to the dense subspace L1(A) ∩ L2(A) by[︁

F (f)
]︁
(ξ) =

∫︂
A

f(x)Ψ(ξ, x) dµ(x)
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for all ξ ∈ A. The newly defined Fourier transform satisfies the same properties of the abstract
transform stated in Theorem 2.2.4, namely, it is an isometry of L2(A) and the double transform
F ◦ F is the operator that sends a function f(x) in the variable x to the function f(−x). To
understand why, note that the condition ψ⋆ˆ︁µ = µ implies that∫︂

A

f(x)Ψ(ξ, x) dµ(x) =

∫︂
ˆ︁A f
(︁
ψ−1(χ)

)︁
Ψ
(︁
ξ, ψ−1(χ)

)︁
dˆ︁µ(χ)

for all functions f ∈ L1(A) and all ξ ∈ A, and

Ψ
(︁
ξ, ψ−1(χ)

)︁
= Ψ

(︁
ψ−1(χ), ξ

)︁
= χ(ξ)

thanks to the symmetry of Ψ. So, the equality of integrals is interpreted by the equality ˆ︁f ◦ ψ =
ˆ︂f ◦ ψ−1 of functions, which is sufficient to transport the properties of the abstract Fourier transform
to F . For a short exact sequence

0 B A C 0ι π

there is a commutative diagram with exact rows

0 B⊥ A A/B⊥ 0

0 ˆ︁C ˆ︁A ˆ︁B 0

ψ

π∗ ι∗

induced by the the identification A ∼= ˆ︁A, where the vertical arrows are all isomorphisms and the
group B⊥ consists of the elements ξ ∈ A satisfying Ψ(ξ, ι(y)) = 1 for all y ∈ B.

Now we explore how Haar measures and Fourier transforms interact with subgroups and quo-
tients. Let

0 B A C 0ι π

be an exact sequence in LCA. Suppose that α, β, γ are Haar measures of A,B,C respectively. If f
is a continuous function with compact support on A, we can define a continuous function f ♭ with
compact support on C by the average values of f on the B-cosets of A:

f ♭(π(x)) =

∫︂
B

f(x+ ι(y)) dβ(y)

for all x ∈ A. The rule f ↦→ f ♭ defines a continuous linear map from the space Cc(A) of continuous
functions with compact support on A to the corresponding functional space for C. For any element
a ∈ A and all functions f ∈ Cc(A), this map sends the shifted functions x ↦→ f(x−a) to the shifted
function z ↦→ f ♭

(︁
z − π(a)

)︁
, so that the continuous linear functional

Cc(A)→ R , f ↦→
∫︂
C

f ♭ dγ
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defines a Haar measure on A. Thus, up to rescaling one of the three Haar measures, we can integrate
on fibres: ∫︂

A

f(x) dα(x) =

∫︂
C

∫︂
B

f(z + y) dβ(y) dγ(z) (2.3)

for all functions f ∈ Cc(A), where f(z + y) is a short notation to indicate the value f(x+ ι(y)) for
any lift x ∈ A of z ∈ C obtained via the surjective map π.

Example 2.2.7. If the sequence is split, i.e. A = B⊕C, the measure α satisfies the normalization
of equation (2.3) also if B and C are permutated. Then the integral of a Cc-function f(y, z) in the
variables (y, z) ∈ B × C is computed equivalently by∫︂

C

∫︂
B

f(y, z) dβ(y) dγ(z) or

∫︂
B

∫︂
C

f(y, z) dγ(z) dβ(y) .

In this case, the measure α is called the product measure of β and γ.

The exact sequence involving the groups A,B,C is coupled with the exact mirror-sequence

0 ˆ︁C ˆ︁A ˆ︁B 0π∗ ι∗

and one can wonder what relationship there is between the Fourier transform and the averaging
transform f ↦→ f ♭. Since the Fourier transform of a continuous function with compact support is
not necessarily compactly supported on the Pontryagin dual, it is useful to note that the L1-norm
of f dominates the L1-norm of f ♭, and this allows us to extend the averaging transform to the space
of L1-functions.

Theorem 2.2.8 (Poisson summation formula). With the same notation as above, assume that f
is a continuous, integrable function on A with integrable Fourier transform. Then∫︂

B

f
(︁
ι(y)

)︁
dβ(y) =

∫︂
ˆ︁C ˆ︁f(︁π∗(ẑ)

)︁
dˆ︁γ(ẑ)

Proof. Let g be the Fourier transform of f . The equality to prove is equivalent to the equality of
f ♭ and g♭ when they are both calculated on the neutral element of C and ˆ︁B respectively. The key

is the Fourier inversion formula (2.2) for f ♭ combined with the relation ˆ︁f ♭ = g ◦ π∗ between the
Fourier transforms of f ♭ and f :

f ♭(z) =

∫︂
ˆ︁C ˆ︁f ♭(ẑ) · ẑ(z) dˆ︁γ(ẑ) for any z ∈ C

and, in particular, for z = 0

f ♭(0) =

∫︂
ˆ︁C ˆ︁f ♭(ẑ) dγ(ẑ) . (2.4)

Let’s prove that the Fourier transform of f ♭ is g ◦ π∗.

ˆ︁f ♭(ẑ) = ∫︂
C

f ♭(z) · ẑ(z) dγ(z)

and the integrand expands as

f ♭(z) · ẑ(z) =
∫︂
B

f
(︁
x+ ι(y)

)︁
· ẑ(π(x)) dβ(y) , with z = π(x) for some x ∈ A.
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Observe that for the character ẑ ◦ π is trivial on ι(B), hence the expression f
(︁
x + ι(y)

)︁
· ẑ
(︁
π(x)

)︁
can be replaced with h

(︁
x+ ι(y)

)︁
, where h is the function defined by

h(a) = f(a) · ẑ
(︁
π(a)

)︁
for all a ∈ A.

So, we have that f ♭ · ẑ is equal to h♭ and the value ˆ︁f ♭(ẑ) is computed by the integral of h♭ on C.
Recall that the measures α, β, γ satisfy the identity 2.3, which means that

ˆ︁f ♭(ẑ) = ∫︂
C

h♭ dγ

=

∫︂
A

h dα

=

∫︂
A

f(x) · ẑ
(︁
π(x)

)︁
dα(x) .

The bottom expression is the Fourier transform of f calculated on the character π∗(ẑ), thereforeˆ︁f ♭ is equal to g composed with the morphism π∗. To end the proof simply put together equation

(2.4) with the identity ˆ︁f ♭ = g ◦ π∗ and note that∫︂
ˆ︁C g
(︁
π∗(ẑ)

)︁
dγ(ẑ) = g♭(0) .

Remark 2.2.9. The argument used in the proof of Theorem 2.2.4 implies the stronger identity of
functions in the variable x ∈ A :∫︂

B

f
(︁
x+ ι(y)

)︁
dβ(y) =

∫︂
ˆ︁C ˆ︁f(︁π∗(ẑ)

)︁
· ẑ
(︁
π(x)

)︁
dˆ︁γ(ẑ) .

2.3 Locally compact fields

Before we move on to the main examples it will be useful to note that the automorphisms of a
locally compact abelian group act on its set of Haar measures: if an LCA group A is equipped
with a Haar measure µ and φ is an automorphism of A, then, by pullback, we get another Haar
measure φ⋆µ on A. Since any Haar measure on A is a positive multiple of µ, there must be a unique
positive real number |φ|, called the module of φ, such that φ⋆µ = |φ|µ. Note that the module of φ
is the same if we exchange the measure µ with cµ for some c > 0. This defines a homomorphism
|·| from the group of automorphism of A to the multiplicative group of the positive real line. Thus,
for any group G that acts continuously and linearly on A there is a homomorphism |·| : G → R×

+

that computes the module of an element g ∈ G viewed as an automorphism of A.

Definition 2.3.1. A locally compact ring is defined to be a topological, commutative ring (A,+, ·)
such that the additive group (A,+) belongs to the category LCA. A Haar measure of A is simply
a Haar measure of the additive group of A. A locally compact ring K is said to be a locally compact
field if the underlying ring of K is a field and the inversion map K× → K , x ↦→ x−1 is continuous
for the sub-space topology on the domain.
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Remark 2.3.2 (Notation for measure and integration). In the previous sections, we used the notation∫︂
A

f(x) dµ(x)

for the integral of a function f on a locally compact group A. From now on we can drop the µ in
the notation if the Haar measure is clear from the context and we write∫︂

A

f(x) dx

instead. We use the symbol dx for the measure µ and if φ is an automorphism of A, we use the
symbol dφ(x) for the measure φ⋆µ.

Let A be a locally compact ring with Haar measure dx, then the group of units A× acts on
the additive group of A by automorphisms in the category LCA. So it is well defined the module
homomorphism |·| : A× → R×

+ that satisfies the formal identity d(ax) = |a| dx for all a ∈ A×.

Lemma 2.3.3. Let K be a topologically non-discrete, locally compact field and |·| the module of
K×. Then |·| is an open continuous map whose image is a closed sub-group of R×

+. Moreover, if |·|
is extended to K by imposing |0| = 0, then |·| is a valuation of K and the topology of K is the same
as the induced valuation-topology and K.

This lemma is a synthesis of many results that are proved in Section 4.1 of [RV99] and in
Chapter VII, Section 10-11 of [Bou04]. These results lead to the classification of (non-discrete)
locally compact fields.

Theorem 2.3.4 ([RV99], Theorem 4-12). Let K be a topologically non-discrete, locally compact
field. Then, K is isomorphic, as a topological field, to one of the following:

(i) the field of real or complex numbers;

(ii) a finite extension of the field of p-adic numbers Qp for some prime integer p.

(iii) the field k((T )) of Laurent series with coefficients in a finite field k.

Proof. The field K with the module |·| is a valued field by Lemma 2.3.3. Locally compactness
implies that K is complete, as any Cauchy sequence with a convergent sub-sequence is convergent.
If K is archimedean then it is isomorphic to R or C by Theorem 1.2.8. If K is non-archimedean
then let O be the ring of elements x with |x| ≤ 1 and p the unique maximal ideal of O, which is
equal to the set of elements x with |x| < 1. The ring O is different from K and p ̸= 0 because K
is not topologically discrete. The ring O is the closed ball of radius 1 of K and the ideal p is the
open ball of the same radius. But O is also open because it is a union of cosets of p. The ideal p
is also closed because it is an open sub-group of the additive groups of K and O (see point (vi) of
Proposition 2.1.3). The group of units O× is the set of elements of absolute value equal to 1, so it
is the complement of p in O. Since the last two groups are both open and closed in K, then O× is
also both open and closed in K. This means that the quotient K×/O× is discrete. The valuation
|·| is open, hence its image is topologically isomorphic to K×/O×, which is discrete. The discrete
sub-groups of R×

+ are free of rank 1. Let π ∈ K be such that |π| generates the image of |·|. Then
{πnO : n ∈ Z} is the set of all balls of K with centre at zero. By local compactness, there must be
a compact ball centred at zero, so πnO is compact for some n ∈ Z. The operation of multiplication
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by πn is a homeomorphism of K, then O ∼= πnO also topologically and O must be compact. The
residue field κ := O/p is compact and discrete, hence finite. So far we have that K is a complete,
valued field with a finite residue field and K×/O× ∼= Z. It is known that such fields are finite
extensions of Qp or fields the form κ((T )) (see Proposition 5.2 of [NS99]).

Given the classification of locally compact fields of Theorem 2.3.4:

Definition 2.3.5. A local filed is defined to be a locally compact, topologically non-discrete field
or, equivalently, one of the fields of Theorem 2.3.4.

2.4 Restricted direct products

In this section, we introduce a general construction, with all the relevant properties, that will be
useful for the analysis of the ring of adèles and its multiplicative group of units. All the results
come from Tate’s exposition of his thesis in [CF67], Chapter XV, Section 3. Let P be a non-
empty, infinite set and {Aν}ν∈P a family of LCA groups with a specified compact, open sub-group
Kν ⊂ Aν for all ν ∈ P exept for a finite subset S0. For all finite subset S ⊂ P that contains S0,
define AS as the topological sub-group of the product of all Aν

AS =
{︁
(xν)ν∈P : xν ∈ Kν for all ν /∈ S

}︁
.

The group AS is topologically isomorphic to∏︂
ν∈S

Aν ×
∏︂
ν /∈S

Kν

which belongs to the category LCA, since it is the product of the compact, Hausdorf group
∏︁
ν /∈S Kν

with a finite product of LCA groups.

Definition 2.4.1. The restricted direct product of the groups Aν with respect to the compact,
open sub-groups Kν is the group∏︂′

ν∈P

Aν :=
{︁
(xν)ν∈P : xν ∈ Kν for almost all ν ∈P

}︁
with the maximal topology that makes the inclusion maps

AS ↪→
∏︂′

ν∈P

Aν

continuous for all finite subsets S ⊂P that contains S0.

For the rest of the section, A will denote the restricted product and the symbols S, S′, S′′, . . .
are used for finite subsets of P that contain S0. The subsets∏︂

ν∈P

Uν

of A, with Uν open subset of Aν for all ν and Uν = Kν for almost all ν, form a pre-basis of open
subset for the topology of A. It is easy to see that A is Hausdorff and locally compact because it
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is the union of the open sub-groups AS for S ⊂ P finite, indeed any two distinct elements a, b of
A, are contained in some AS , hence there are two disjoint open neighbourhoods of a and b in AS
respectively because AS is Hausdorff, and a basis of compact neighbourhoods of the neutral element
of A is given by taking products of compact neighbourhoods Tν ⊆ Aν of the neutral element of Aν
with Tν = Kν for almost all ν. In abstract terms, A is the colimit in the category LCA of the
filtrant diagram given by the natural inclusion-maps

AS ↪→ AS′

for S ⊂ S′. From this point of view, it’s clear that the restricted direct product is independent of
the choice of the finite set S0.

Construction. Since A is locally compact, it has Haar measures, but one can choose one canoni-
cally. Let dxν be a Haar measure on Aν given for any ν in such a way that Kν has measure 1 for
almost all ν. We can enlarge the finite set S0, where the compact, open sub-group is not specified,
to include the finite set of indexes ν where the condition on the measure of Kν is not imposed.
Enlarging S0 does not affect the restricted direct product, so, without loss of generality, we can
suppose that, for all ν /∈ S0, the measure of Kν is 1. Let KS be the product of all the compact
groups Kν for ν /∈ S. It can be naturally seen as a compact subgroup of A contained in any open
subgroup AS′ such that S ⊆ S′. Moreover, the sequence

0 KS AS
∏︁
ν∈S Aν 0

(xν)ν∈P (xν)ν∈S

is split-exact. EquipKS with the unique Haar measure of total measure 1. This choice is compatible
with the decomposition

KS = KS′ ×
∏︂

ν∈S′\S

Kν

for S ⊂ S′, because Kν has measure 1 by assumption. Equip AS with the product measure induced
by the decomposition

AS = KS ×
∏︂
ν∈S

Aν .

Note that any compact subset of A is contained in some AS because A is the union of the increasing
sequence of open sub-groups AS , so any compactly supported, continuous function of A is the
extension by zero of a unique function belonging to the space Cc(AS) for some S large enough. To
be more precise, the topological vector space Cc(A) is the colimit of the filtrant diagram obtained
by the obvious inclusion maps

Cc(AS)→ Cc(AS′)

that extend a function giving it the value zero on AS′ \ AS , for S ⊂ S′. This observation and
the conditions imposed on the measures defined so far ensure that there is a unique Haar measure
dx on A whose restriction to the open subgroup AS is the measure chosen before in a way that
is compatible for inclusions S ⊂ S′. If not specified, it will be assumed that the restricted direct
product has the measure constructed like dx, called the restricted product of the measures dxν .

The consequences of the construction can be summarized in the next proposition. Since the
inclusion A ⊂

∏︁
ν Aν is still continuous, also the projections A → Aν , x ↦→ xν are continuous. If
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we have a collection of functions fν defined on Aν , for each ν ∈P, such that fν(Kν) = 1 for almost
all ν, then the product

f(x) =
∏︂
ν

fν(xν)

defines a function of A. In this case, f is called factorizable with factors fν and is denoted by ⊗νfν .

Proposition 2.4.2. Let f be a measurable function on A. Then f is integrable if and only if

sup
S

∫︂
AS

⃓⃓
f(x)

⃓⃓
dx

is bounded, and in that case the integral of f is computed by∫︂
A

f(x) dx = lim
S

∫︂
AS

f(x) dx .

Moreover, if f is factorizable with factors fν for each ν, then∫︂
A

f(x) dx =
∏︂
ν

∫︂
Aν

fν(xν) dxν .

We conclude the section by describing the Pontryagin dual of the restricted direct product A.
It is again a restricted direct product, precisely the one corresponding to the data (ˆ︂Aν ,K⊥

ν ).

Lemma 2.4.3. Let B be an LCA group with a compact, open sub-group C. Then C⊥ is also a
compact, open sub-group.

Proof. Recall that C⊥ is isomorphic to the dual of B/C. Since C is open, the quotient group B/C
is discrete, therefore its dual must be compact. To see that C⊥ is also open consider the quotientˆ︁B/C⊥. It is isomorphic to the dual of C, but the dual of a compact group is discrete and thenˆ︁B/C⊥ is discrete, implying that C⊥ is open in ˆ︁B.

Lemma 2.4.4. Let B be an LCA group with a compact, open sub-group C. Suppose that dx is a
Haar measure on B and dχ is a Haar measure on ˆ︁B. Then, dx and dχ are dual to each other if
and only if (︃∫︂

C

dx

)︃
·
(︃∫︂

C⊥
dχ

)︃
= 1

Proof. Let f be the locally constant function equal to 1 on C and 0 on the complement. Its Fourier
transform calculated on the character χ ∈ ˆ︁B is

ˆ︁f(χ) = ∫︂
C

χ(x) dx .

By the observations made in the example 2.2.5, that integral is equal to the measure of C when χ
is trivial on C, i.e. when χ ∈ C⊥, and it is zero otherwise. Let c > 0 be the constant such that dχ
is the dual measure multiplied by c. By Fourier inversion formula

f(x) = c ·
∫︂

ˆ︁B ˆ︁f(χ)χ(x) dχ
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and for x = 0

1 = c ·
∫︂
C⊥

(︃∫︂
C

dx

)︃
dχ

= c ·
(︃∫︂

C

dx

)︃
·
(︃∫︂

C⊥
dχ

)︃
.

To conclude, observe that the identity in the statement of the lemma is equivalent to the equality
c = 1 which in turn is equivalent to dχ being the dual measure of dx.

By the above lemmas, the of groups ˆ︁Aν are equipped with an open, compact sub-group K⊥
ν and

the measure dχν dual to dxν gives measure 1 to the set K⊥
ν for almost all ν, so that the restricted

product of ˆ︁Aν is equipped with the restricted product measure dχ of the measures dχν . Note that

an element of
∏︂′

ν
ˆ︁Aν is a tuple (χν)ν of unitary characters χν ∈ ˆ︁Aν such that χν belongs to the

sub-group K⊥
ν for almost all ν, i.e. the character χν is trivial on Kν for almost all ν. If a is an

element of A, the product ∏︂
ν

χν(aν)

makes sense because almost all factors are equal to 1. The rule a ↦→
∏︁
ν χν(aν) defines a homo-

morphism A → S1 that we denote by ⊗νχν . Conversely, if χ is a unitary character of A, we can
consider the homomorphism χν : Aν → S1 obtained by the restriction of χ to the copy of Aν inside

A and ask if the tuple (χν)ν is an element of the restricted product
∏︂′

ν
ˆ︁Aν . The verification that

these constructions define morphisms between ˆ︁A and
∏︂′

ν
ˆ︁Aν is accomplished in the next lemmas.

Since it will be useful in the future, they are stated for more general characters.

Lemma 2.4.5. Let (ων)ν be an element of the product
∏︁
ν HomLCA(Aν ,C×) such that ων is trivial

on the sub-group Kν for almost all ν. Then the rule

ω : A −→ C× , x ↦−→
∏︂
ν

ων(xν)

defines a (not necessarily unitary) character of A.

Proof. Let S0 be a finite set of indexes large enough to contain all index ν for which ων is non-trivial
on Kν . Let S range over finite subsets of P that contain S0. The restricted direct product A is
the union of the open-subgroups AS , so, to give an element of ω ∈ HomLCA(A,C×) is the same as
to give a compatible system of elements of ωS ∈ HomLCA(AS ,C×), where ωS = ω|AS

.

Lemma 2.4.6. Let ω : A→ C× be a (not necessarily unitary) character of A. Then, for any index
ν, the map ων : Aν → C× defined by pre-composing ω with the morphism

ιν : Aν −→ A , xν ↦−→ (. . . , 0, xν , 0, . . . )

is a morphism of locally compact groups, and for all x ∈ A the equality

ω(x) =
∏︂
ν

ων(xν)

holds.
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Proof. The map ων is obtained by composing morphisms in LCA: for any finite set S of indexes
containing ν, the group-homomorphism ιν factors through the inclusion AS ↪→ A. Since Aν has
the product topology, the map Aν → AS is continuous and so is ιν , therefore it is a morphism in
LCA. To obtain the product formula for ω, choose an open neighbourhood U ⊂ C× that is small
enough to not contain sub-groups of C× except for the trivial one. The pre-image ω−1(U) is an
open neighbourhood of the neutral element of A, thus it contains a basic open subset V =

∏︁
ν Vν

where Vν is an open neighbourhood of 0 ∈ Aν for all ν and Vν is equal to the sub-group group Kν

for almost all index ν. If S is the set of indexes ν for which Vν ̸= Kν , then the compact group
KS is contained in V and in the bigger open set ω−1(U), so the group ω(KS) is contained in U ,
forcing it to be trivial. Any element x ∈ A is contained in some sub-set of the form AS′ and we
may suppose that S′ is a finite set of indexes containing S. The compact group KS′ is contained
in KS , so ω(KS′) is still the trivial group, moreover x is equal to∑︂

ν∈S′

ιν(xν)

modulo the sub-group KS′ . The two facts together imply that

ω(x) =
∏︂
ν∈S′

ω(ιν(xν)) ,

an equality that can be written as

ω(x) =
∏︂
ν

ων(xν)

by observing that the definition of ων is precisely the composition ω ◦ ιν and ων(xν) = 1 for
ν /∈ S′.

Theorem 2.4.7. With notations as above, the two maps

Φ : ˆ︁A −→ ∏︂′

ν

ˆ︁Aν , χ ↦−→ (χν)ν

and
Ψ :

∏︂′

ν

ˆ︁Aν −→ ˆ︁A , (χν)ν ↦−→ ⊗νχν

are morphisms in the category LCA, one the inverse of the other. With this identification, the dual
measure of A corresponds to the restricted product of the dual measures dχν .

Proof. Thanks to the lemmas 2.4.6 and 2.4.5 it’s easy to see that the two maps in the statement
are well-defined homomorphisms of groups, one the inverse of the other. It remains to check that
they are continuous for the restricted-product topologies. Recall that the restricted direct product
of the groups ˆ︁Aν , which in this proof is denoted by A′, is the filtered colimit of the groups

A′
S :=

⎛⎝⨁︂
ν∈S

ˆ︁Aν
⎞⎠⊕∏︂

ν /∈S

K⊥
ν
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while, by duality, we have a description of ˆ︁A in terms of a cofiltered projective limit:ˆ︁A = HomLCA(A,S1)
∼= lim←−

S

HomLCA(AS ,S1)

∼= lim←−
S

⎡⎢⎣
⎛⎝⨁︂
ν∈S

HomLCA(Aν ,S1)

⎞⎠⊕HomLCA

⎛⎝∏︂
ν /∈S

Kν , S1
⎞⎠
⎤⎥⎦ .

So, Ψ is continuous if and only if its restrictions ΨS to the open sub-groups A′
S are continuous as

S gets larger and larger. In turn, ΨS is continuous if and only if the morphisms ΨS,S′ obtained by
composition with the projections of the limit are continuous for S′ containing S. More explicitly,
ΨS,S′ is the morphism

ΨS,S′ : A′
S → HomLCA(AS′ ,S1) , (χν)ν ↦→ (⊗νχν)

⃓⃓
AS′

.

We can consider ΨS,S′ as the restriction of ΨS′,S′ and prove that the latter map is continuous.
Recall that, in a linear category with biproducts, one can identify the group of morphisms

Hom(X1 ⊕X2, Y1 ⊕ Y2)

with two-by-two matrixes of morphisms whose entrances belong to Hom(Xi, Yj) for all the possible
combination of i, j varying between 1 and 2. In what follows we prove that ΨS′,S′ is a morphism
corresponding to a matrix with three null components and one component that is an isomorphism
in the category LCA, so in particular, continuous. Note that, regarding the decomposition

HomLCA(AS′ ,S1) ∼= HomLCA

⎛⎝⨁︂
ν∈S′

Aν , S1
⎞⎠⊕HomLCA

⎛⎝∏︂
ν /∈S′

Kν , S1
⎞⎠ ,

the image of ΨS′,S′ is contained in the left component because a tuple (χν)ν belonging to A′
S′ has

the property χν(xν) = 1 for all xν ∈ Kν and all ν /∈ S′, so its image χ := ⊗νχν , that is defined by
the product χ(x) =

∏︁
ν χν(xν) for all x ∈ A, is trivial on all elements x for which xν ∈ Kν when

ν /∈ S′ and xν = 0 when ν ∈ S′, that is an element of KS′ . Note also that ΨS′,S′ is trivial on the
subgroup of A′

S′ corresponding to the factor
∏︁
ν /∈S′ K⊥

ν in the decomposition

A′
S′ =

⎛⎝⨁︂
ν∈S′

ˆ︁Aν
⎞⎠⊕ ∏︂

ν /∈S′

K⊥
ν

because
∏︁
ν χν(xν) = 1 for all x ∈ A′

S′ if χν is the trivial character for all ν ∈ S′ and χν ∈ K⊥
ν for

the rest of the indexes ν. Thus, ignoring the three null components of ΨS′,S′ , we are left with the
topological isomorphism that gives the identification

⨁︂
ν∈S′

ˆ︁Aν ∼= HomLCA

⎛⎝⨁︂
ν∈S′

Aν , S1
⎞⎠

in the category LCA, precisily because of the definition of ⊗νχν when ν ranges in a finite set.
Now we prove that Φ is continuous. Let Φν be the composition of Φ with the projection from

A′ to ˆ︁Aν .
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Claim. The map Φν is continuous.

To see this consider the inverse image Φ−1
ν (W (C,U)) of a (pre-)basic open set, where C ⊆ Aν

is compact and U is an open set of the circle. Define the compact subset Cν of ˆ︁A as the set of
elements x ∈ A for which xν ∈ C and xυ = 0 for υ ̸= ν, then

Φ−1
ν (W (C,U)) =

{︂
χ ∈ ˆ︁A : χ(Cν) ⊆ U

}︂
,

which the open set W (Cν , U) in ˆ︁A. Now, for the continuity of Φ, consider an open neighbourhood
V of the neutral element of A′ which is of the form V =

∏︁
ν Vν , with Vν open neighbourhood of 1

in ˆ︁Aν for all ν and Vν = K⊥
ν for all ν /∈ S, given a finite S. Consider the inverse-image Φ−1(V ) and

an open set U of the circle containing only the trivial sub-group of S1 and no other sub-group.

Claim.

Φ−1(V ) =

⎛⎝⋂︂
ν∈S

Φ−1
ν (Vν)

⎞⎠ ∩W (KS , U) .

If this is true then Φ−1(V ) would be open because W (KS , U) is a basic open set of ˆ︁A and Φν
is continuous. To prove the claim observe that χ belongs to Φ−1(V ) if and only if satisfies the
conditions {︄

χν(Kν) = 1 for all ν /∈ S;
χν ∈ Vν for all ν ∈ S.

The first condition is equivalent to χ(KS) = 1 and the second condition is equivalent to χ belonging
to the intersection of the sets Φ−1

ν (Vν) for ν varying in S. Finally, observe that χ ∈ W (KS , U) if
and only if χ(Ks) = 1, because χ(KS) is a sub-group of U and U contains only the trivial group.

The statement about the measure is a consequence of Proposition 2.4.2.

All the notions about restricted direct products in this section are used in the next chapters to
study the ring of adèles and the group of the idèles of a global field. Thus it is useful to observe here
that the restricted direct product of locally compact rings with given open and compact sub-rings
is again a locally compact ring if the multiplication on the product is defined pointwise.
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Chapter 3

Harmonic Analysis on the Ring of
Adèles

In this chapter, we study the ring of adèles using all the techniques developed in the previous ones.
Before starting, we summarize all the fundamental properties of the ring of adèles used in the final
chapter. The adèle ring A of a global field K is the restricted direct product of the local fields Kν

for all places ν and it sits in the middle of a short exact sequence

0 K A
A
K

0 ,

where K is discrete and A/K is compact. The Pontryagin dual of the quotient A/K is naturally
identified with the group of unitary characters of A that are trivial onK. Every non-trivial character

ψ ∈ ˆ︁A/K induces an isomorphism of locally compact groups A ∼= ˆ︁A which identifies K with ˆ︁A/K.
The isomorphism is given by the map

A −→ ˆ︁A , a ↦−→ ψa ,

where ψa(x) = ψ(ax) for all x ∈ A. The character ψ is of the form ⊗νψν for local characters ψν
of Kν inducing isomorphisms Kν

∼= ˆ︁Kν analogous to that of A induced by ψ. Attached to ψ and
ψν there are self-dual measures dx and dxν on A and Kν respectively. The global measure dx is
the restricted product of the local ones dxν . The group of units A× turn out to be the restricted
direct product of the groups K×

ν with respect to the sub-groups O×
ν . One defines a multiplicative

Haar measure d×xν := mν |xν |−1
ν dxν for each place ν, where the constant mν ensures that O×

ν

gets measure 1 for almost all places. The group A× is called the group of idèles and it acts as an
automorphism group of the additive structure of A via multiplication. The module of this action

|·| : A× −→ R×
+

is the idèlic norm. It is computed by the product of all local modules |·|ν of K×
ν . The kernel of the

idèlic norm, denoted by A×,1, contains the multiplicative group K×. A consequence of this is that
the self-dual measure dx of A is independent of the choice of the additive character ψ. The image⃓⃓
A×
⃓⃓
of the idèlic norm is R×

+ for K a number field and it is a free rank 1 sub-group of R×
+ if K is
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a function field. In both cases |·| admits a continuous splitting (or section) inducing non-canonical
isomorphisms

A× ∼= A×,1 ⊕
⃓⃓
A× ⃓⃓ and A×/K× ∼= A×,1/K× ⊕

⃓⃓
A× ⃓⃓ .

The multiplicative group of the global field is discrete in A×,1 and the quotient A×,1/K× is compact.
This and the non-canonical isomorphisms simplify integrals over the idèles and the description ΩK ,
the space of idèle class characters. These are of main interest in Chapter 4 and they are the (not
necessarily unitary) characters of the quotient A×/K×, the idèle class group. A choice of a section
of the idèlic norm induces an isomorphism

ΩK ∼=

⎧⎨⎩ ˆ︂A×,1/K× ⊕ C if K is a number field,

ˆ︂A×,1/K× ⊕ C/ 2πi
log qZ if K is a function field and q−1 generates

⃓⃓
A×
⃓⃓
.

Since the Pontryagin dual of a compact group is discrete, we get the space ΩK parametrized by
a discrete group and a complex variable s. The restricted direct product structure of A× gives a
decomposition of an idèle class character ω into local characters ων . Theorem 3.5.8 completes the
description of idèle class characters with the classification of local characters.

The results on the adèles are derived first from the analysis of local fields, so we start by studying
them together with their additive unitary characters. The main result of the next Section is the
self-duality of local fields (Theorem 3.1.3).

3.1 Pontryagin duality for local fields

As summarized in Section 2.3, there is a canonical choice for the valuation of a local field, that is
the module. The following results show how to calculate the module for finite extensions of local
fields.

Lemma 3.1.1. Let K be a local field and V an n-dimensional vector space over it, with the
topology given by any of its equivalent norms. Then V is a LCA group and the module of a
linear automorphism φ of V is equal to

⃓⃓
det(φ)

⃓⃓
, where |·| is the module of K.

Proof. The vector space V is isomorphic to Kn topologically and linearly, so it is locally compact
and Hausdorff. The module is a homomorphism, hence the formula can be checked on Gauss
operations, which is easy using the product measure of Kn.

Corollary 3.1.2. Let K/k be a finite extension of local fields, |·|k the module of k and |·|K the
module of K. Then

|x|K =
⃓⃓⃓
NK/k(x)

⃓⃓⃓
k

for all x ∈ K .

By Corollary 3.1.2 it is sufficient to know the module of the various completions of Q and Fq(T )
to know the module of an arbitrary local field. Indeed the valuations described in Theorem 1.1.16
are already normalized to compute the module of the corresponding local field. The verification
for the field R is done in Example 3.1.5 and for non-archimedean local fields K we can make the
following observation which also gives another way to compute the module: let O be the local ring
of K and µ a Haar measure of K satisfying µ(O) = 1. Let π be a generator of the maximal ideal
of O. Recall that any element x of K is of the form x = uπn for a unique unit u ∈ O× and a
unique integer n. The group O× is also the set of x ∈ K such that |x| = 1, hence the module |·| is
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determined by the value of |π|. The module of π can be calculated as the ratio µ(πE)/µ(E) for any
subset E with a non-zero measure. By the normalization of the measure, |π| = µ(πO). If q is the
cardinality of the residue field O/πO and x1, . . . , xq form a complete set of representatives of the
cosets of O/πO in O, we can decompose the local ring as the disjoint union

O =

q⋃︂
i=1

xi + πO

of the q cosets. They have the same measure of πO because µ is invariant by translations, therefore
q · µ(πO) = µ(O), which implies that |π| = q−1. You can check that the valuations chosen in
Theorem 1.1.16 to represent non-archimedean places are of this form.

From the point of view of harmonic analysis, the advantage of working with local fields is that
they are Pontryagin-self-dual, as explained in detail in the next Proposition, leading to a Fourier
calculus very close to the classical theory on the real vector spaces.

Theorem 3.1.3 (Lemma 2.2.1 of [CF67], Chapter XV). Let K be a local field and consider its
additive group. Let χ be a non-trivial, unitary character of K. Then the morphism

ψ : K → ˆ︁K
induced by the bilinear map

Ψ : K ×K → S1 , (ξ, x) ↦→ ψ(ξ)(x) := χ(ξx)

is an isomorphism of the locally compact additive group of K with its own Pontryagin dual.

Proof. The map Ψ is the composition of χ with the multiplication of K. The latter is Z-bilinear
and continuous, and the former is Z-linear and continuous, hence Ψ is Z-bilinear and continuous.
This implies that ψ is a morphism of locally compact abelian groups. The morphism ψ is a
monomorphism: if ξ ∈ K is non-zero then χ(ξx) ̸= 1 for x = ξ−1y, where y is an element of
K \ kerχ, and therefore ψ(ξ) is non-trivial. Let τ be the canonical isomorphism that identifies K

with the Pontryagin dual of ˆ︁K. We have that ψ = ψ∗ ◦ τ because

ψ∗(τ(ξ))(x) = τ(ξ)(ψ(x))

= ψ(x)(ξ)

= χ(xξ)

= χ(ξx)

= ψ(ξ)(x) .

The fact that ψ is a monomorphism implies that the dual morphism ψ∗ is an epimorphism, but
the identity ψ = ψ∗ ◦ τ ensures that ψ has the same property of ψ∗. This means in particular that
the image ψ(K) is dense in ˆ︁K. Now we prove that ψ is a homeomorphism from K to the image

ψ(K) considered as a topological sub-group of ˆ︁K. It is enough to check that ψ−1 : ψ(K) → K is
continuous in the trivial character. The family of open balls B(0, ε), for ε > 0, form a basis for the
filter of neighbourhoods of 0 ∈ K. We have to show that Vε := ψ

(︁
B(0, ε)

)︁
is a neighbourhood of the

trivial character inside ψ(K), namely that for all positive real ε there is a neighbourhood W ⊆ ˆ︁K
of the trivial character such that W ∩ ψ(K) ⊆ Vε. We search for a W of the form W (Cm, U),
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where Cm is the compact set of elements x ∈ K such that |x| ≤ m, for m > 0, and U is an open
neighbourhood of 1 ∈ S1. The character χ is non-trivial by assumption, hence there is a x0 ∈ K
such that χ(x0) ̸= 1. Let U be small enough to satisfy χ(x0) /∈ U and m large enough to have
|x0|m−1 ≤ ε. Take η ∈ W (Cm, U) ∩ ψ(K), so η = ψ(ξ) for a unique ξ ∈ K and η(Cm) ⊆ U . If η
is the trivial character then the relation η ∈ Vε is obvious, so assume that η is not trivial, which
means that ξ ̸= 0. By definition η(x) = χ(ξx) for all x ∈ K, hence the fact that χ(x0) /∈ U is
equivalent to η(x) /∈ U if we define x := ξ−1x0. But the relation η(x) /∈ U implies that x /∈ Cm
because η(Cm) ⊆ U , therefore |x| > m and we have the following consequences:⃓⃓⃓

ξ−1x0

⃓⃓⃓
> m because x = ξ−1x0, then

|ξ| < |x0|
m

by algebraic manipulations, and

|ξ| < ε because |x0|m−1 < ε by construction of m.

This proves that η ∈ Vε and therefore ψ(K) is a topological sub-group of ˆ︁K isomorphic to K, both
algebraically and topologically. This implies in particular that ψ(K) is a locally compact sub-group

of ˆ︁K because K is locally compact, hence ψ(K) must be a closed sub-group of ˆ︁K by Proposition

2.1.3. Recall that the image of ψ is dense in ˆ︁K, the fact that it is also closed means that ψ(K) = ˆ︁K
and ψ is an isomorphism between K and its dual.

Having already a canonical valuation on local fields, the next construction helps to find a canon-
ical measure on them.

Remark 3.1.4. Since K is self-dual with respect to ψ, by Example 2.2.6, there is a canonical Haar
measure µ on K associated to the character χ: the self-dual measure. Recall that µ is characterized
by the property ψ⋆ˆ︁µ = µ and the formula

f(x) =

∫︂
K

ˆ︁f(ξ)χ(ξx) dµ(ξ)
valid for continuous, integrable functions f with integrable Fourier transform, where

ˆ︁f(ξ) = ∫︂
K

f(x)χ(ξx) dµ(x) .

Suppose that η is another non-trivial character of K, then there is a unique a ∈ K× such that
η = ψ(a). One can ask how the self-dual measure changes if we exchange χ with η. Note that the
character χ is recovered by the computation

χ(x) = η(a−1x)

for all x ∈ K, thus, the Fourier inversion formula associated to the character χ can be written in
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terms of the character η as

f(x) =

∫︂
K

[︃∫︂
K

f(y)χ(ξy) dµ(y)

]︃
χ(xξ) dµ(ξ)

=

∫︂
K

[︃∫︂
K

f(y)η(a−1ξy) dµ(y)

]︃
η(xa−1ξ) dµ(ξ)

=

∫︂
K

[︃∫︂
K

f(y)η(ωy) dµ(y)

]︃
η(xω) dµ(aω) by the substitution ξ = aω

=

∫︂
K

[︃∫︂
K

f(y)η(ωy) dµ(y)

]︃
η(xω) ·|a| dµ(ω)

=

∫︂
K

[︃∫︂
K

f(y)η(ωy) ·|a|
1
2 dµ(y)

]︃
η(xω) ·|a|

1
2 dµ(ω) ,

from which it can be inferred that |a|
1
2µ is the self-dual measure for the character η. On a general

locally compact ring A which is isomorphic to its dual via a unitary character χ, we can repeat the
same computation: if µ is the self-dual Haar measure for χ and a ∈ A×, then the self-dual measure

for the character η defined by η(x) = χ(ax) for all x ∈ A is |a|
1
2 µ, where |·| is the module of A×

acting on A.

Example 3.1.5 (case K = R). On the field of real numbers consider the usual measure dx that
gives measure 1 to the interval [0, 1] and the unitary character

e∞ : R −→ S1 , x ↦−→ e2πix .

From classical Fourier analysis, it can be deduced that the measure dx is self-dual with respect to
the given character. Moreover, multiplication by a number a ∈ R× transforms the interval [0, 1] to
[0, a] if a > 0 or to [a, 0] if a < 0. In any case, it transforms a set of measure 1 to a set of measure
|a|∞, thus the measure-theoretic module of R is the same as the usual absolute value.

Example 3.1.6 (case K = C). For the complex numbers, you can choose the character

C −→ S1 , z ↦−→ e2πi(z+z) = e∞(TrC/R(z))

to give an isomorphism C ∼= ˆ︁C. The self-dual measure for that identification is twice the usual
Lebesgue measure of the plane and the module of z is zz for all z ∈ C.

The above examples cover the cases of archimedean local fields. The next results deal with
the non-archimedean case, starting with a lemma that describes characters for general groups that
carry a totally disconnected topology like the non-archimedean local fields.

Lemma 3.1.7. Let A be a LCA group with a basis of open neighbourhoods of the neutral element
given by open sub-groups and suppose that χ : A → C× is a character. Then χ is locally constant
with open kernel. If A is compact, then χ has finite image.

Proof. Let U be an open neighbourhood of 1 ∈ C× that does not contain sub-groups of the circle
except for the trivial one, which is possible by Lemma 2.1.12. The pre-image of U by χ is an open
neighbourhood of 0 ∈ A, so there is an open sub-group B contained in it by hypothesis. The set
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χ(B) is contained in U and is a sub-group of C×, thus it must be trivial, i.e. χ factors through the
quotient A/B. Any element a ∈ A has an open neighbourhood a + B on which χ is constant and
equal to χ(a), so the character is locally constant. In particular, for a belonging to the kernel of
χ we get an open neighbourhood a + B that is all contained in ker(χ), implying that χ has open
kernel. If A is compact, then A/B is finite because it is compact and discrete. The image of χ is a
group isomorphic to A/B, hence it must be finite.

Corollary 3.1.8. Let K be a non-archimedean local field and ψ a unitary, additive character of
K. Then ψ is locally constant.

Proof. Let O be the local sub-ring of K and π ∈ O a uniformizer. Pick an element x0 of K and let
n be the unique integer for which |x0| = |π|n. The open sub-group A = πnO is a compact, open,
sub-group of the additive group of K isomorphic to O, it contains x0 and the restriction

χ : A→ S1 , x ↦→ ψ(x)

is an additive, unitary character of A. The group A has a basis of open sub-groups, thus χ is
locally constant with an open kernel. Let U be the open neighbourhood x0 + kerχ of x0, then χ
is constant and equal to χ(x0) on U . Since U is also open in K, we have that ψ is constant on an
open neighbourhood of an arbitrary element x0 of K, i.e. ψ is locally constant.

Proposition 3.1.9. Let K be a non-archimedean local field and let ψ be a non-trivial, unitary,
additive character. Then the group O⊥ of elements ξ ∈ K such that ψ(ξx) = 1 for all x ∈ O is a
fractional ideal of K and it is the maximal one contained in the kernel of ψ. Moreover, the self-dual
measure of K with respect to the character ψ is the unique Haar measure µ such that

µ(O) · µ(O⊥) = 1 .

Proof. The fractional ideals ofK are all of the form πnO for some integer n, where π is a uniformizer
of K. Note that O⊥ is an O-module: if ξ ∈ O⊥ and y ∈ O then ψ(yξx) = 1 for all x ∈ O because
yO ⊆ O. There must be some integer n such that πm /∈ O⊥ for all integers m < n, otherwise O⊥

would be the whole field K, a condition that contradicts the non-triviality of ψ. Thus the minimal
integer n for which πn ∈ O⊥ exists and πnO ⊆ O⊥ by O-linearity. The locally compact group
K/O⊥ is isomorphic to the Pontryagin dual of the compact group O, hence the quotient is discrete
and O⊥ must be open in K. On the other hand, O⊥ is isomorphic to the Pontryagin dual of the
discrete group K/O, so it must also be compact. The fact that O⊥ is an open sub-group allows the
construction of the open cover

O⊥ =
⋃︂

ξ∈O⊥

ξ + πnO .

The compactness of O⊥ ensures that a finite sub-cover

O⊥ =
⋃︂
ξ∈F

ξ + πnO ,

for some finite subset F of O⊥, can be extracted from the open cover. O-linearity implies that O⊥

is generated by the finite set F ∪ {πn} and the minimality of n ensures that πnO = O⊥.
Now consider the kernel of ψ and suppose that a is a fractional ideal of K contained in kerψ.

If a is an element of a, then ax belongs to the fractional ideal for all x ∈ O. In particular, since
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a ⊆ kerψ, the element a satisfies ψ(ax) = 1 for all x ∈ O, which is the defining condition to be an
element of O⊥.

The last part of the statement is a specialization of Lemma 2.4.4.

Definition 3.1.10. Let χ be a non-trivial character of a non-archimedean local field K. The
conductor of χ is the maximal fractional ideal of K on which χ is trivial.

By Proposition 3.1.9, the conductor of χ is precisely O⊥ :=
{︁
x ∈ K : χ(xy) = 1 for all y ∈ O

}︁
.

If I is a fractional ideal of K, then its dual I⊥ :=
{︁
x ∈ K : χ(xy) = 1 for all y ∈ I

}︁
is equal to

O⊥I−1, as can be verified by a direct calculation on generators of the ideals. Note that, when χ has
conductor equal to O, the self-dual measure µ associated with the character χ must be the unique
one that satisfies µ(O) = 1 by the condition on the self-dual measure expressed in the last part of
the statement of Proposition 3.1.9.

Example 3.1.11 (case K = Qp). Consider the field Qp of p-adic numbers. The inclusion

Z[p−1] ↪→ Qp

becomes surjective on the quotient Qp/Zp and it has kernel Z, so that

Z[p−1]

Z
∼=

Qp
Zp

.

Since the Z[p−1]/Z is naturally a sub-group of R/Z, we get a group homomorphism

ep : Qp −→ S1

with kernel Zp by composition with the isomorphism

R/Z −→ S1 , t+ Z ↦−→ e2πit .

It’s easy to see that ep is locally constant since, by definition, it is constant on the open set x+Zp
for any p-adic number x. The orthogonal Z⊥

p consists of the elements ξ ∈ Qp such that ep(ξx) = 1
for all x ∈ Zp. By construction of ep, the latter condition is equivalent to ξZp ⊆ Zp and this is true
if and only if ξ is an element of Zp, so Z⊥

p = Zp. This fact makes clear that the self-dual measure
of Qp with respect to the character ep must be the one for which Zp has measure 1.

In this last example, we have the special property O⊥ = O, but this is not always true, as we
can change the character (hence the group O⊥) by multiplications of non-zero elements of the field.
Moreover, if K is a finite extension of Qp, it can happen that O⊥ ̸= O for any choice character,
but at least it’s possible to link the desirable property with the ramification of the extension K/Qp.
Indeed the trace TrK/Qp

: K → Qp induces a non-degenerate bilinear form onK and the composition
ψ := ep ◦ TrK/Qp

defines a non-trivial, unitary character of K. An element x ∈ K belongs to the
conductor of ψ if and only if ep(TrK/Qp

(xy)) = 1 for all y ∈ O. Recall that the kernel of ep is equal
to Zp, therefore the conductor is equal to the set{︂

x ∈ K : TrK/Qp
(xy) ∈ Zp for all y ∈ O

}︂
,

which is, by definition, the inverse of the different ideal relative to the extension K/Qp. The theory
of the different is treated, for example, in the book of Lang ([Lan70], Chapter III). The most
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important property for our current purpose is that the different of K/Qp is equal to O if and only
if the extension is unramified, which implies that O = O⊥ in the unramified case. We conclude this
section with the case of a local field of finite characteristic, which by the classification theorem is
isomorphic to a field of Laurent series over a finite field.

Example 3.1.12 (Case K = Fq((T ))). In this case, the local ring O of K is the ring of formal
power series Fq[[T ]]. The residue map

ϱ : K −→ Fq
that sands a series f(T ) =

∑︁
n anT

n to the coefficient a−1 is Fq-linear and vanishes on Fq[[T ]].
Choose a character χ of the additive group of Fq that is non-trivial on 1 ∈ Fq, then ψ := χ ◦ ϱ is
a non-trivial unitary character of K that vanishes on the local ring. Let’s compute the conductor
of ψ. Take a series f ∈ K with expansion f(T ) =

∑︁
n anT

n and suppose that ψ(fg) = 1 for
all g ∈ Fq[[T ]], in particular, ψ(aTnf(T )) = 1 for all a ∈ Fq and all positive integer n. If there
is an integer n < 0 such that the coefficient an in the expansion of f is non-zero then the series
a−1
n T−1−nf(T ) would have residue 1, but this violates the condition ψ(a−1

n T−1−nf(T )) = 1. So
it must be that an = 0 for all integers n < 0, which means that f(T ) ∈ Fq[[T ]]. The calculation
made shows that O = O⊥ for the character ψ, therefore the self-dual measure of K is the unique
one that gives measure 1 to the local ring.

3.2 Adèles of a global field

In the following section, we denote global fields by k and K. The symbol ν is used for places, the
set of places being P or Pk,PK if it’s necessary to highlight the field. kν denotes the completion
with respect to the place ν. The symbol Oν indicates the valuation subring of kν when ν is non-
archimedean, and πν is a uniformizer, namely a generator of the unique maximal ideal of Oν . Let
S vary in the family of finite sets of places of k that contain the set S∞ of infinite places.

Definition 3.2.1. The ring of adèles of a global field k is the restricted direct product of the local
fields kν for the compact and open sub-rings Oν . It is denoted by A or Ak to specify the field, its
elements are called adèles.

For the moment the definition of the adèles tells us only that we can collect together all the
completions of the global field in a way that produces an object compatible with the theory of locally
compact groups. In what follows we will progressively see how deep the link with the arithmetic
of k is. We start by showing that A becomes an algebra over the global k through a diagonal
embedding k → A that is discrete and co-compact, meaning that the quotient A/k is compact.
Once the embedding k ↪→ A is established we will consider k as if it is a subset of its ring of adèles
and we use normal letters like a, b, . . . and x, y, . . . to indicate elements of A. If x is an adèle we
use the subscript xν to indicate the component of x corresponding to the place ν. If S is a finite
set of places containing the infinite ones, we denote by AS or Ak,S the open sub-ring of adèles x
subject to the condition xν ∈ Oν for all places ν /∈ S.

We start by analysing the simple case of the field of rational numbers.

Example 3.2.2 (Case k = Q). Let x be a rational number. Since it is a quotient of two integers,
the set of primes p for which |x|p > 1 is finite, so x lies in the ring of p-adic integers for almost all
primes p. With this in mind, it’s easy to see that the diagonal map Q → A that sends a rational
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number x to the adèle (xν)ν defined by xν = x for all places ν is a well-defined homomorphism of
rings. If we define the open set V as the set of adèles x such that for all places ν{︄

|xν |ν ≤ 1, if ν is finite,

|xν |ν < 1, if ν =∞,

then V ∩ Q = 0, because a rational number has p-adic absolute bounded by 1 for all primes p if
and only if it is an integer, and 0 is the only integer with archimedean absolute value strictly less
than one. So for any x ∈ Q the open set x + V meets Q only in x, thus the rationals form a
discrete sub-group of A. The additive group of Q with the discrete topology is a locally compact
group and the embedding Q → A is a monomorphism in the category of locally compact groups.
Its quotient A/Q is again locally compact and now we prove that it is compact. The closure of V of
V is the compact subset of A isomorphic to the product of the closed interval [−1, 1] with

∏︁
p Zp.

The image of V through the projection A → A/Q is compact and if we can show that any adèles
has a representative in V modulo Q we obtain the compactness of the quotient. Take an adèle x,
it must belong to AS for some finite set of places S that contains ∞. For each prime p ∈ S \ {∞}
we have that xp is has a p-adic expansion

xp =
∑︂

n≥v(xp)

an(xp)p
n ,

where v(xp) is a possibly negative integer depending on the p-adic valuation of xp and an(xp) ∈
{0, 1, . . . , p} for all n. We can form the rational number

y :=
∑︂

p∈S,p ̸=∞

y(p) ,

where y(p) :=
∑︁
v(xp)≤n<0 an(xp)p

n is the representative of xp in Z[p−1] through the surjective
homomorphism

Z[p−1]→ Qp/Zp .

Not that y(ℓ) is a rational number that belongs to Zp for any prime ℓ different from p, therefore,
adding or subtracting the number y(ℓ) to a p-adic number does not change its class in the quotient
Qp/Zp. From this, we get that

xp − y ≡ xp − y(p) (mod Zp)

≡
∑︂
n≥0

an(xp)p
n (mod Zp)

≡ 0 (mod Zp).

By the above calculations, we get that the adèle x−y = (xν − y)ν belongs to A∞, i.e. it is an adèle
whose components corresponding to finite places have absolute value bounded by one. So far we
have shown that any element of the quotient A/Q has a representative in the sub-ring A∞. Note
that A∞ ∩Q = Z because any rational number with p-adic absolute value smaller or equal to 1, for
all primes p, must be an integer. We can find an integer n such that |x∞ − n|∞ ≤ 1, hence x−y−n
lies in V .
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Similar calculations lead to the compactness of Ak/k when k = Fq(T ). In general, the diagonal
embedding

k −→ Ak , x ↦−→ (. . . , x, x, x, . . . )

is well-defined because, given x ∈ k, the set of plaes ν such that |x|ν ̸= 1 is finite. For that condition
to hold it’s enough that for all x ∈ K the set of places ν such that |x|ν > 1 is finite, as it would apply
to both x and x−1 when x ̸= 0. The finitness condition can be deduced by observing that k is the
fraction field of the ring of integers Ok and the finite places correspond to the valuations induced
by prime ideals of Ok, so that, for all non-zero x ∈ k, the valuation of x is strictly larger than 1
precisely at those places that correspond to the primes that divide the denominator of x in a given
fraction representation x = ab−1, with a, b ∈ Ok. Otherwise, one can rely on the following simple
argument: consider a finite extension of fields K/k and let |·| be a non-archimedean valuation of
K. Suppose that x ∈ K satisfies |x| > 1 and let f(X) = a0 + a1X + · · · + an−1X

n−1 + Xn be a
monic polynomial over k such that f(x) = 0. Then xn = −(a0 + a1x+ · · ·+ an−1x

n−1) and we can
estimate the absolute value of x as follows:

|x|n =
⃓⃓⃓
a0 + a1x+ · · ·+ an−1x

n−1
⃓⃓⃓

≤ sup
0≤i<n

|ai||x|i

≤ sup
0≤i<n

|ai||x|n−1

where |x|i ≤|x|n−1
because |x| > 1. Therefore we obtain an estimate

|x| ≤ sup
0≤i<n

|ai| ,

which tells as that |x| ≤ 1 if |ai| ≤ 1 for all i = 0, . . . , n − 1. The estimate has the following
implication: if k is a field such that any element a ∈ k satisfies |a|ν ≤ 1 for almost all non-
archimedean places ν ∈Pk (like the fields Q or Fq(T )), then the same property lifts to the bigger
field K.

Now we return to the setting where K is a general global field with adèle ring A. We know that
K ⊂ A through the diagonal embedding, as observed above.

Theorem 3.2.3. The quotient A/K is compact and K is discrete in A.

Proof. The theorem is true for the fields Q and Fq(T ). One strategy is to rely on these two cases
using the fact that K is a finite, separable extension of them. Let k be the field of rational numbers
or Fq(T ) and suppose that K/k is a finite, separable extension of degree n. The lemma 3.2.4 below
provides an isomorphism AK ∼= Ank that identifies K with the discrete sub-group kn ⊂ Ank and the
quotient AK/K with the product of n copies of the quotient Ak/k, which is compact.

Lemma 3.2.4. Let K/k be a finite, separable extension of global fields of degree n. Then any basis
u1, . . . , un of K as k-vector space induces an isomorphism

ΥA : Ank → AK , (x(1), . . . , x(n)) ↦→
n∑︂
i=1

x(i)ui
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that fits in the commutative square

Ank AK

kn K

ΥA

Υ

where Υ is the k-linear isomorphism induced by the basis.

Proof. If S is a finite set of places of k, denote by S′ the set of places ν′ of K lying over some place
ν ∈ S. The lemma is true if the restriction of ΥA on Ank,S induces an isomorphism

ΥS : Ank,S → AK,S′ , (x(1), . . . , x(n)) ↦→
n∑︂
i=1

x(i)ui

for S larger and larger. This is further based on the following: let ν be a place of k and consider
the product ∏︂

ν′|ν

Kν′

as a kν-algebra through the diagonal embedding (recall that Kν′ is a field-extension of kν if ν′|ν).
Then the kν-linear map

knν →
∏︂
ν′|ν

Kν′ , (x(1), . . . , x(n)) ↦→
n∑︂
i=1

x(i)ui

is an isomorphism of topological vector spaces and, if ν is outside a large enough finite set S of
places, the above map defines an isomorphism

Oν ∼=
∏︂
ν′|ν

Oν′

of topological Oν-modules. This fact is the content of Proposition 4-39 in [RV99] and can also be
found in Chapter II, Section 10 of [CF67]. Given that, it is just a matter of grouping the places ν′

of K by the condition of dividing the same place of k and we obtain the isomorphism ΥS by the
chain of isomorphisms

Ank ∼=
∏︂
ν∈S

knν ×
∏︂
ν /∈S

Onν

∼=
∏︂
ν∈S

∏︂
ν′|ν

Kν′ ×
∏︂
ν /∈S

∏︂
ν′|ν

Oν′

∼=
∏︂
ν′∈S′

Kν′ ×
∏︂
ν′ /∈S′

Oν′

∼= AK,S′

53



Remark 3.2.5. Note that if A is the ring of adèles of a global field K then, for all finite sets of places
S containing the infinite ones, you can recover the ring of S-integers as the intersection

AS ∩K = OK,S ,

which is discrete in AS . You can also prove in general that

A = AS +K

which implies that the quotient A/K is the same as the quotient AS/OK,S . Using the latter
representation and the split exact sequence

0
∏︁
ν /∈S Oν AS

∏︁
ν∈S Kν 0 ,

it’s not hard to prove that the diagonal embedding

OK,S −→
∏︂
ν∈S

Kν , x ↦−→ (. . . , x, x, x, . . . )

is discrete with compact quotient. For S equal to the set of archimedean places you recover the
well-known fact that the ring of integers of a number field form a lattice in a real vector space by
the map

OK −→
∏︂
ρ

R×
∏︂
σ

C , x ↦−→ (. . . , ρ(x), . . . , σ(x), . . . ) ,

where ρ ranges over real embeddings of the number field and σ over the complex embeddings up to
conjugation.

3.3 Pontryagin duality for the adèles

In Section 3.1 we saw that the local fields are identified with their Pontryagin dual through the
choice of a non-trivial character. The ring of adèles of a global field K has the same property but
there are more subtleties in the selection of the character. Theorem 2.4.7 tells us that, for the
adèles, there is an isomorphism ˆ︁A ∼= ∏︂′

ν∈PK

ˆ︁Kν ,

where the group on the right is the restricted direct product of the duals of the local fields Kν

with respect to the sub-groups of characters trivial on the local ring Oν . By this isomorphism, it
is possible to express a character ψ of the adèles as a product ⊗νψν of local characters, namely
characters ψν of Kν that are trivial on Oν for almost all places ν. If Ψν : Kν → ˆ︁Kν is the
isomorphism induced by a non-trivial character ψν of Kν then there is a further isomorphism∏︂′

ν

(Kν ,O⊥
ν ) −→

∏︂′

ν

( ˆ︁Kν , ˆ︂Kν/Oν) , (ξν)ν ↦−→
(︁
Ψν(ξν)

)︁
ν
,

where the sub-groups of definition have been highlighted in the notation for the restricted direct
products. The isomorphism Ψν identifies the sub-groupO⊥

ν =
{︁
ξ ∈ Kν : ψν(ξx) = 1 for all x ∈ Oν

}︁
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with the group of characters of Kν that are trivial on Oν . Using all these identifications we get an
isomorphism ∏︂′

ν

(Kν ,O⊥
ν ) −→ ˆ︁A , (ξν)ν ↦−→ ⊗νΨν(ξν) (3.1)

that makes the diagram ∏︂′

ν

(Kν ,O⊥
ν )

ˆ︁A
∏︂′

ν

( ˆ︁Kν , ˆ︂Kν/Oν)

commute. Therefore, the dual of A can be A itself as long as the isomorphism is induced by a

tuple of non-trivial characters (ψν)ν ∈
∏︂′

ν

( ˆ︁Kν , ˆ︂Kν/Oν) such that O⊥
ν = Oν for almost all ν. In

that case, the isomorphism A ∼= ˆ︁A is the one associated with the character ψ := ⊗νψν , since the
character ⊗νΨν(ξν) send an adèle x to the product

∏︁
ν ψν(ξνxν), which is equal to ψ(ξx) if ξ is

an adèle. The problem now is to find characters ψν of the local fields Kν such that Oν = O⊥
ν for

almost all ν, but such examples were given at the end of Section 3.1 and we can make it explicit in
the following example.

Example 3.3.1 (Dualizing character of the adèles). Let K be a global field and suppose that it is
separable and of finite degree over k, where k is the field of rational numbers if K has characteristic
zero, otherwise k is the field of rational polynomials over a finite field. Let ν be a place of K and
suppose it lies over the place υ of k. Now we construct a character ψν of Kν that has conductor
Oν when the extension Kν/kυ is unramified (recall that this happens for almost all places of k).

(i) Suppose that k = Q. If υ is a finite place corresponding to the prime p ∈ Z, then define ψν
as the composition ep ◦ TrKν/Qp

, where ep is defined in Example 3.1.11. If υ = ∞ define ψν
as the composition e∞ ◦ TrKν/R, where e∞(t) = e−2πit for all t ∈ R. Let S be the finite set
of places of Q that consists of ∞ and all finite places υ such that the corresponding prime pυ
ramifies in the extension K. Let S′ be the finite set of places ν of K such that ν|υ for some
υ ∈ S. Then, for all places ν in the complement of S′ we have O⊥

ν = Oν with respect to the
character ψν .

(ii) Suppose that k = Fp(T ). For the place ∞, the local field k∞ is the field of Laurent series
Fp((T−1)) in the variable T−1. Mimicking Example 3.1.12, define a unitary characters φ∞ of
k∞ as follows:

φ∞(f) = e
2πi
p a−1 for every f(T ) =

∑︂
n≥ord∞(f)

anT
−n.

If υ is a finite place of k, let fυ be the corresponding irreducible polynomial of Fp[T ] and dυ
its degree. For every element x of kυ there is a unique g(T ) ∈ k of the form

g(T ) =

(︄
T dυ

fυ(T )

)︄n
·
(︂
a1T

−1 + c2T
−2 + · · ·+ cndυT

−ndυ
)︂
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such that x− g(T ) ∈ Oυ. Define

φυ(x) = e
2πi
p a1 .

Then φυ is a non-trivial unitary character of kυ with conductor Oυ. For the bigger field K,
define

ψν = φυ ◦ TrKν/kυ

for every place υ of k and every place ν over υ. Then ψν is a non-trivial unitary character of
Kν and its conductor is Oν for almost all places ν (see exercises 5,6 of [RV99] at the end of
Chapter 7).

Define ψ = ⊗νψν to get a character of A that induces an isomorphism A ∼= ˆ︁A.
We have chosen the character of Example 3.3.1 in this way because the choice of ψ influences

the position of the dual lattice

K⊥ :=
{︁
ξ ∈ A : ψ(ξx) = 1 for all x ∈ K

}︁
and we would like to have K = K⊥ inside the adèle ring. The latter property is achievable if ψ is
a character of A trivial on the field K, namely a character in the image of the monomorphism

ˆ︁A/K −→ ˆ︁A ,
as we will show.

Proposition 3.3.2. The character ψ ∈ ˆ︁A defined in Example 3.3.1 is trivial on the field K.

Proof. Suppose that K is a number field. Let x ∈ K and consider its trace TrK/Q(x) ∈ Q. We
claim that

TrK/Q(x) =
∑︂
ν|υ

TrKν/Qυ
(x) for all places υ of Q.

Let υ be any place of Q, to each place ν of K lying over υ it corresponds a unique Gυ-orbit Oν
of field-embeddings σ from K to an algebraic closure Qυ of Qυ, where Gυ is the Galois group of
Qυ/Qυ. If one chooses an embedding σν : Kν → Qυ, then the Gυ-orbit corresponding to the place
ν is generated by σν |K . We have

TrK/Q(x) =
∑︂

σ∈HomQ(K,Qυ)

σ(x)

because the trace of x relative to the extension K/Q is the sum of all the congiugates of x inside an
algebraic closure of Q, and the embeddings σ ∈ HomQ(K,Qυ) are precisely the embeddings of K
in the algebraic closure of Q inside Qυ. On the other side, we can express the set HomQ(K,Qυ) as
the disjoint union of its orbits, and each orbit is made by the conjugates of σν(x) inside Qυ, whose
sum compute the trace of x relative to the extension of local fields Kν/Qυ. Having observed this,
we get

TrK/Q(x) =
∑︂

σ∈HomQ(K,Qυ)

σ(x)

=
∑︂
ν|υ

∑︂
σ∈Oν

σ(x)

=
∑︂
ν|υ

TrKν/Qυ
(x) .
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The consequence of the claim is that for all primes p∏︂
ν|p

ψν(x) =
∏︂
ν|p

ep
(︁
TrKν/Qp

(x)
)︁

= ep

⎛⎝∑︂
ν|p

TrKν/Qp
(x)

⎞⎠
= ep

(︁
TrK/Q(x)

)︁
and for the infinite place ∞ ∏︂

ν|∞

ψν(x) =
∏︂
ν|∞

e∞
(︁
− TrKν/R(x)

)︁

= e∞

⎛⎝−∑︂
ν|∞

TrKν/R(x)

⎞⎠
= e∞

(︁
− TrK/Q(x)

)︁
,

thus we can compute ψ(x) in the following way:

ψ(x) =
∏︂

ν∈PK

ψν(x)

=
∏︂
υ∈PQ

∏︂
ν|υ

ψν(x)

= e∞
(︁
− TrK/Q(x)

)︁
·
∏︂

p prime

ep
(︁
TrK/Q(x)

)︁
.

The computation above makes clear that, if the statement is true for K = Q then it is true for all
number fields, so now we proceed to check that

e∞(−t) ·
∏︂

p prime

ep(t) = 1 for all t ∈ Q .

The equality is trivially satisfied if t = 0, hence suppose that t is a non-zero rational and S the
finite set primes p such that |t|p ̸= 1, so that the product over all primes reduces to a product over

the primes of S. Recall that, by definition, ep(t) = e2πitp , where tp is a rational contained in the
ring Z[p−1] such that

⃓⃓
t− tp

⃓⃓
p
≤ 1, thus

e∞(−t) ·
∏︂

p prime

ep(t) = e−2πit ·
∏︂
p∈S

e2πitp

= e2πi(−t+
∑︁

p∈S tp) .

We just have to verify that the rational number

z := −t+
∑︂
p∈S

tp
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is an integer. For all prime ℓ we can bound the ℓ-adic absolute value of z as follows:

|z|ℓ ≤ max

{︃
max

p∈S,p ̸=ℓ

⃓⃓
tp
⃓⃓
ℓ
, |tℓ − t|ℓ

}︃
for ℓ ∈ S ,

|z|ℓ ≤ max

{︃
max
p∈S

⃓⃓
tp
⃓⃓
ℓ
, |t|ℓ

}︃
for ℓ /∈ S .

If ℓ ∈ S then
⃓⃓
tp
⃓⃓
ℓ
≤ 1 for p ̸= ℓ because tp ∈ Z[p−1] and |tℓ − t|ℓ ≤ 1 by definition of tℓ. If ℓ /∈ S

then
⃓⃓
tp
⃓⃓
ℓ
≤ 1 for all p ∈ S and |t|ℓ ≤ 1 by definition of S. Putting together both cases we have that

|z|ℓ ≤ 1 for all primes ℓ, so z is an integer.
The proof for function fields is analogous (see Theorem 3 of [WW74], Chapter 4, §2).

Theorem 3.3.3. Let ψ be a non-trivial character of the adèles A that is trivial on the global field
K. Then, ψ induces an isomorphism A ∼= ˆ︁A for wich K⊥ = K, i.e. for any other character χ ∈ ˆ︁A
trivial on K there exists a unique ξ ∈ K such that χ(x) = ψ(ξx) for all x ∈ A.

Proof. We begin by proving that if ψ induces an isomorphism A ∼= ˆ︁A then K⊥ = K. For all ξ ∈ K
the product ξx is contained in K for all x ∈ K, thus K ⊆ K⊥ and K⊥ is a K vector space. The

isomorphism A ∼= ˆ︁A identifies K⊥ with the group ˆ︁A/K, when we consider the latter as a subgroup
of A. The quotient A/K is compact, hence its Pontryagin dual is discrete and therefore K⊥ is
discrete too. The quotient K⊥/K is a discrete sub-group of the compact group A/K and discrete
sub-groups of compact groups are finite. Since the cardinality of K is infinite, there are no non-
trivial K-vector spaces of finite cardinality. The quotient K⊥/K is a finite K-vector space, thus it
must be trivial and this is equivalent to K = K⊥. Now we prove that ψ induces an isomorphism
A ∼= ˆ︁A. Let ψ̃ be the character defined in the example 3.3.1, it is trivial on K and it induces a
duality

A× A −→ S1 , (ξ, x) ↦−→ ψ̃(ξx) ,

so there is a unique ξ ∈ K such that ψ(x) = ψ̃(ξx) for all x ∈ A. The element ξ must be non-zero
because ψ is non-trivial, therefore ξ ∈ O×

ν ∩K for almost all places ν of K. This last fact implies

that the local character ψν induces an identification Kν
∼= ˆ︁Kν for which Oν = O⊥

ν for almost all
places ν, because ψν is obtained by ψ̃ν via multiplication by ξ, an operation that does not change
the conductor if ξ ∈ O×, and the conductor of ψ̃ν is equal, by construction, to the local ring for
almost all places ν. Then ψ is a character of A that meets all the requirements for inducing an
isomorphism A ∼= ˆ︁A.

The position of the global field K inside its ring of adèles A is fundamental for A to be more than
just a collection of local data, moreover, the existence of the discrete and co-compact embedding
K ↪→ A it’s almost enough to characterize both the global field and its adèle ring. In [Iwa53],
Iwasawa has shown that, if a commutative topological ring R satisfies the following properties:

(i) R is semi-simple;

(ii) R is locally compact, non-compact, non-discrete;

(iii) R contains a discrete sub-field K such that the quotient R/K is compact;

then K is a global field and R is isomorphic to AK as a K-algebra and as a topological ring.
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3.4 The group of Idèles

In the previous section, we studied mainly the additive structure of the adèles and local fields, but
the multiplicative group of such rings encodes important arithmetic properties of the global field.
We know that the multiplicative group of a valued field has the sub-space topology, but this is
not true for general topological rings. Let K be a global field, ν a place, Kν the corresponding
local field with local ring Oν and maximal ideal pν if ν is non-archimedean. The group of units
O×
ν of Kν is an open and compact sub-group of K×

ν with a basis of compact open neighbourhoods
of 1 given by the multiplicative sub-groups 1 + pnν for n natural number. We generally have the
following description of the multiplicative group of local fields given by the image and the kernel of
the module |·|ν :

(i) The real numbers case: R× ∼= {±1} × R×
+ and the group of positive real numbers R×

+ is
isomorphic to the additive group of R via the logarithm;

(ii) The complex numbers case: C× ∼= S1 × R×
+ via representation of a non-zero complex number

in polar coordinates;

(iii) Kν non-archimedean: K×
ν
∼= O×

ν × Z where the factor Z comes from the fact that the image
of |·|ν is a discrete free sub-group of rank 1 in the positive real line.

Recall that the functor that computes the group of units of rings is co-represented by the ring
Z[X,Y ]/(XY − 1) which is finitely presented, this means that the functor commutes with filtered
colimits in addition to arbitrary limits of rings. The restricted direct product is a filtered colimit
of a product of rings by definition, hence the group of units of the ring of adèles A is naturally
identified with the restricted direct products of the groups K×

ν with respect to the sub-groups O×
ν .

The identification
A× ∼=

∏︂′

ν

K×
ν

is a priori algebraic, but K×
ν is a locally compact abelian group and O×

ν is open and compact inside
K×
ν , therefore it makes sense to consider the topology of restricted direct products on the group

A×.

Definition 3.4.1. Let K be a global field and A its ring of adèles. The group of idèles of K is the
group of invertible elements A× of the adèle ring. The structure of restricted direct product induces
the topology of A×. The invertible elements x ∈ K viewed as idèles by the diagonal embedding are
called principal idèles.

In this way, the group of idèles is a locally compact abelian group. Its topology is also the
weakest that makes the map

A× −→ A× A , x ↦−→ (x, x−1)

continuous, and it is different from the sub-space topology induced by the inclusion A× ⊂ A. If S
is a finite set of places that contains S∞, define the sub-group

(A×)S :=
{︁
x ∈ A× : xν ∈ O×

ν for all ν /∈ S
}︁
.

which is algebraically and topologically isomorphic to the product∏︂
ν∈S

K×
ν ×

∏︂
ν /∈S

O×
ν .
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Note that (AS)× = (A×)S , where on the left-hand side we have the group of units of the ring AS , so
we can simplify the notation and write A×

S to indicate both. As a restricted direct product, the idèle
group carries a Haar measure induced by a family of Haar measures d×xν defined on each group
K×
ν in a way that the group of units O×

ν gets measure 1 for almost all places ν. The multiplicative
Haar measure of K×

ν can be constructed using an additive Haar measure dxν of the local field:

define the multiplicative measure by d×xν := |xν |−1
ν dxν , where this means that the integral of a

continuous function f with compact support in K×
ν is∫︂

K×
ν

f(xν) d
×xν =

∫︂
Kν

f(xν) ·|xν |−1
ν dxν .

The measure d×xν as a functional of the space Cc(K×
ν ) is given by the composition of

Cc(Kν) −→ R , g(xν) ↦−→
∫︂
Kν

g(xν) dxν

after
Cc(K

×
ν ) −→ Cc(Kν) , f(xν) ↦−→ f(xν) ·|xν |−1

ν ,

where xν is considered as the variable of the functions defined on the local field Kν . The fact that
for all a ∈ K×

ν the additive measure transforms by the rule d(axν) = |a|ν dxν ensures that d×xν is
invariant by the group operation of K×

ν . The additive measure of Kν is fixed by the choice of a

character ψ ∈ ˆ︁A/K. To make the equality∫︂
O×

ν

d×xν = 1

true for almost all places it is sufficient to rescale the multiplicative Haar measure: set

d×xν := mν
dxν
|xν |ν

,

where {︄
mν = 1 for ν archimedean,

mν =
(︁
1− q−1

ν

)︁−1
for ν non-archimedean,

and qν is the number of elements of the residue field of Oν . The reason behind this choice is that
for almost all places ν the additive measure of Oν is 1 and therefore the measure of O×

ν is 1 minus
the measure of the maximal ideal pν of Oν , as O×

ν is equal to the complement of the maximal ideal
inside the local ring. The measure of pν is obtained by the fact that Oν is the union of qν cosets of
pν , implying that the measure of the local ring is qν times the measure of pν . The measure of the
idèles is the restricted direct product d×x of the multiplicative measures d×xν . The next discussion
is about the module

|·| : A× −→ R×
+ ,

also called idèlic norm.

Proposition 3.4.2. The module of an idèle a ∈ A× is computed as the product of the local absolute
values, i.e.

|a| =
∏︂
ν

|aν |ν ,

where |aν |ν = 1 for almost all places.
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Proof. The fact that |aν |ν = 1 for almost all places is obvious from the definition of idèles, as aν
must be a unit of Oν for almost all places ν and the group of units of the local ring is the kernel of
|·|ν . Let f = ⊗νfν be a factorizable function of A which is also continuous, positive and integrable.
On one side we have that ∫︂

A
f(a−1x) dx = |a|

∫︂
A
f(x) dx ,

on the other ∫︂
A
f(a−1x) dx =

∏︂
ν

∫︂
Kν

fν(a
−1
ν xν) dxν

=
∏︂
ν

[︄
|aν |ν ·

∫︂
Kν

fν(xν) dxν

]︄

=

[︄∏︂
ν

|aν |ν

]︄
·
∫︂
A
f(x) dx .

By comparing the two ways in which the integral of the function x ↦→ f(a−1x) is calculated we get

|a|
∫︂
A
f(x) dx =

[︄∏︂
ν

|aν |ν

]︄
·
∫︂
A
f(x) dx

and the fact that f has a non-zero integral concludes the proof.

From the way the idèlic norm is related to the local absolute values, it’s easy to see that it is
a continuous homomorphism: by definition of restricted product topology, it is enough that |·| is
continuous when restricted to A×

S for all S. For all x ∈ A×
S , the module |x| only depends on the

components xν of x for ν ∈ S, precisely

|x| =
∏︂
ν∈S
|xν |ν ,

therefore we get the map |·| from the following composition of continuous maps:

A×
S −→

∏︂
ν∈S

K×
ν , x ↦−→ (xν)ν∈S ; (3.2)

∏︂
ν∈S

K×
ν −→

(︂
R×

+

)︂S
, (xν)ν∈S ↦−→

(︁
|xν |ν

)︁
ν∈S ; (3.3)

(︂
R×

+

)︂S
−→ R×

+ , (tν)ν∈S ↦−→
∏︂
ν∈S

tν . (3.4)

The map (3.2) is continuous because A×
S has the product topology, the map (3.3) is continuous

because the valuation |·|ν is continuous on the local field Kν and the map (3.4) is simply the
multiplication of R which is continuous. The kernel of the idèlic norm is a closed sub-group of
the idèles denoted by A×,1, its elements are said idèles of norm 1 and it plays a special role: the
relation between the groups K× and A×,1 is a multiplicative analogue of the relation between K
and its adèles.
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Proposition 3.4.3. Let K be a global field, A× its group of idèles and
⃓⃓
A×
⃓⃓
the image of the idèlic

norm. The following holds:

(i) if K is a number field, then
⃓⃓
A×
⃓⃓
= R×

+, i.e. the idèlic norm is surjective;

(ii) if K is a function field, then
⃓⃓
A×
⃓⃓
is a free sub-group of R×

+ of rank 1.

Proof. If K is a number field, then there is a place ν of K such that Kν = R or Kν = C. The group
K×
ν is mapped canonically into the group of idèles and the idèlic norm on it is equal to the absolute

value |·|ν , which is surjective in the archimedean case. If K is a function field then it is an algebra
over a finite field Fq. Any local field Kν is non-archimedean and it has a uniformizer πν . The value
|πν |ν is the inverse of the cardinality of the residue field κν := Oν/πνOν . The latter is a finite field
over Fq, hence it has cardinality qdν , where dν is the degree of the extension κν/Fq. The image of
the local valuation |·|ν is free and generated by q−dν . By Proposition 3.4.2, the image of the idèlic
norm is generated by

{︁
q−dν : ν ∈PK

}︁
which is contained in the free sub-group

{︁
q−n : n ∈ Z

}︁
isomorphic to Z. Since all sub-groups of Z are free of rank 1, there must be a minimal positive
integer d such that

⃓⃓
A×
⃓⃓
is generated by q−d.

Proposition 3.4.4. There is a non-canonical isomorphism

A× ∼=
⃓⃓
A× ⃓⃓× A×,1

of locally compact abelian groups. The isomorphism is induced by the choice of a continuous section
of the idèlic norm, namely a morphism ρ :

⃓⃓
A×
⃓⃓
→ A× of locally compact abelian groups satisfying⃓⃓

ρ(t)
⃓⃓
= t for all t ∈

⃓⃓
A×
⃓⃓
.

Proof. We first show that there are continuous sections of the idèlic norm. If the global field K
is a function field over Fq, then Proposition 3.4.3 implies that the idèlic norm takes values in the
sub-group of the positive real numbers generated by t := |πν |ν for some place ν, where πν is a
uniformizer of the local field Kν . The map

logt|·| : A× −→ Z , x ↦−→ logt|x|

is a continuous, surjective homomorphism onto the discrete group Z. This always has a section and
it is trivially continuous. A section ρ is given by setting ρ(t) = ιν(πν), where ιν is the obvious map
from the local field Kν to the adèles of K. If K is a number field, then the idèlic norm is surjective,
as stated in Proposition 3.4.3. Chose an archimedean place ν̃ and for all t ∈ R×

+ define ρ(t) as the
idèle x such that, for all places ν, the component

xν =

{︄
t1/d if ν = ν̃,

1 if ν ̸= ν̃,

where d = 1 if Kν̃ = R and d = 2 if Kν̃ = C. In this way
⃓⃓
ρ(t)

⃓⃓
= t for all positive real numbers

t and ρ is continuous: take a basic open neighbourhood of 1 ∈ A× of the form V =
∏︁
ν Vν , where

Vν ⊂ K×
ν is an open neighbourhood of the identity and Vν = O×

ν for almost all places. Then

ρ−1(V ) =
{︂
t ∈ R×

+ : t1/d ∈ Vν̃
}︂
,
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which is open. Now, let K be a general global field and ρ a continuous section of the idèlic norm.
Define the homomorphism ⃓⃓

A× ⃓⃓× A×,1 −→ A× , (t, x) ↦−→ ρ(t) · x .

It is continuous because it is the product of continuous functions, and its inverse is the homomor-
phism

A× −→
⃓⃓
A× ⃓⃓× A×,1 , x ↦−→

(︁
|x| , x · ρ(|x|−1

)
)︁
,

which is also continuous because its components are: the first is the idèlic norm and the second is
the product of idA× with the composition of the continuous functions ρ and |·|−1

.

Now we analyse the relation between the global field and the idèles, starting with the next
proposition, which is an analogue of the fact that the divisor of a meromorphic function defined on
a compact Riemann surface has degree zero.

Proposition 3.4.5 (Product formula). Let K be a global field and denote by ν its places. Then∏︂
ν

|x|ν = 1

for all x ∈ K×.

Proof. Suppose first that K = Q and let x ∈ Q be different from zero. We can suppose that x is
positive because it does not change the valuation of x. Let

x =
∏︂
ν ̸=∞

pnν
ν

be the factorization of x into a product of prime powers with integer exponents, where pν is the
prime corresponding to the finite place ν. The valuation of x is computed as follows:

|x|ν =

{︄
x if ν =∞ ,

p−nν
ν otherwise ,

thus the product of the valuations over all places is∏︂
ν

|x|ν = |x|∞ ·
∏︂
ν ̸=∞

|x|ν

= x ·
∏︂
ν ̸=∞

p−nν
ν

= x ·

⎛⎝∏︂
ν ̸=∞

pnν
ν

⎞⎠−1

= x · x−1

= 1.

The proof of the formula for the field of rational functions is analogous to the case of rational
numbers. Suppose that K = Fq(T ) and let f(t) ∈ Fq(T ) be a non-zero rational function. Each
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finite place ν corresponds to an irreducible polynomial fν(T ) ∈ Fq[T ] of degree dν , as it is described
in Theorem 1.1.16. There is a factorization

f(T ) =
∏︂
ν ̸=∞

fν(T )
nν

for a unique tuple of integers nν that are equal to zero for almost all finite places. Therefore the
degree d of f(T ), namely the difference between the degrees of numerator and denominator of f(T ),
for any given representation of f(T ) as a ratio of polynomials, is computed by

d =
∑︂
ν ̸=∞

dν · nν . (3.5)

For each place ν, the valuation of f(T ) at ν is⃓⃓
f(T )

⃓⃓
ν
=

{︄
qd if ν =∞,
q−dν ·nν otherwise,

so the product formula ∏︂
ν

⃓⃓
f(T )

⃓⃓
ν
= 1

holds by equation (3.5). Now let K be general. We can assume that K is a finite, separable
extension of k, where k is the field of rational numbers or a field of rational functions over a finite
field. Let x ∈ K be non-zero, the valuation of x at the place ν of K is

|x|ν =
⃓⃓⃓
NKν/kυ (x)

⃓⃓⃓
υ
,

where υ is the place of k satisfying ν|υ. Then∏︂
ν∈PK

|x|ν =
∏︂
υ∈Pk

∏︂
ν|υ

⃓⃓⃓
NKν/kυ (x)

⃓⃓⃓
υ

(3.6)

and we can fall back into the case of rational numbers or rational functions by a computation of
the norm of the same nature as the trace computation done in the proof of Proposition 3.3.2. Let
υ be any place of k, Gυ the absolute Galois group of kυ and E the set of k-algebra embeddings of
K into an algebraic closure kυ of the local field kυ. For all places ν of K that lies over υ, let σν be
an embedding of the local field Kν into the algebraic closure of kυ and let Eν be the finite orbit of
σν |K under the action of Gυ. The norm of x relative to the extension K/k is the product of all the
conjugates σ(x) of x for σ ∈ E , while the norm of x relative to the extension Kν/kυ is the product
of all the conjugates σ(x) of x for σ ∈ Eν . The set E is the disjoint union of its orbits Eν for ν
varying in the set of places lying over υ, hence

NK/k(x) =
∏︂
ν|υ

NKν/kυ (x) . (3.7)

The two equations (3.6) and (3.7) together implies that∏︂
ν∈PK

|x|ν =
∏︂
υ∈Pk

⃓⃓⃓
NK/k(x)

⃓⃓⃓
υ
.

Since NK/k(x) ∈ k and the product formula holds for k we get that the product formula holds for
K too.
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Proposition 3.4.5 tells us that the multiplicative group K× of the global field lies in the kernel
A×,1 of the idèlic norm.

Remark 3.4.6. The self-dual Haar measure of A depends on the identification of A with its dual in
general, but the measure is unique if we assume that the duality A ∼= ˆ︁A is induced by a unitary
character ψ trivial on the field. Indeed, if ψ′ is another character with the same property, then
there is a unique ξ ∈ K such that ψ′(x) = ψ(ξx) for all adèles x (Theorem 3.3.3). Through the
calculation that we did in Remark 3.1.4, one can see that the dual measure associated with ψ′ is

dx′ := |ξ|
1
2 dx, where dx is the self-dual measure associated with ψ. But |ξ| = 1 by the product

formula and therefore dx′ = dx.

Corollary 3.4.7. The inclusion K× ⊂ A× is discrete.

Proof. By the fact that the idèlic norm is continuous, we have that the set

U :=
{︁
x ∈ A× : |x| < 1

}︁
is open in the group of idèles. It contains 1 and if x is a principal idèles different from 1, then x− 1
is also a principal idèles. By Proposition 3.4.5, it must be |x− 1| = 1 and in particular x /∈ U . This
means the sub-space topology induced by A× on K× is discrete.

The group K× is discrete inside A×,1 since the latter has the sub-space topology induced by
A×.

Definition 3.4.8. Let K be a global field and A its ring of adèles. The group A×/K× is called
idèle class group of K or the group of idèle classes.

By the non-canonical decomposition of the idèles in Proposition 3.4.4, we have a decomposition
of the idèle class group

A×/K× ∼=
⃓⃓
A× ⃓⃓× A×,1

K×

induced by the same section of the idèlic norm. The compactness of the group A×,1/K× is equivalent
to the statement of Dirichlet’s unit theorem plus the finiteness of the ideal class group of K. There
is a nice exposition of the equivalence in B. Conrad’s notes [Con]. They are based on [CF67],
Chapter II, Sections 14-18. The compactness of A×,1/K× can be proved directly by showing that
the topology of the group A×,1 is the same as the one induced by the inclusion of A×,1 into the
adèles, contrary to the full group of idèles. Then it is just a matter of providing a compact subset
W of A such that the projection

W ∩ A×,1 −→ A×,1/K×

is surjective (see the last lemma and the last theorem of [CF67], Chapter II, Section 16). This
relies on an adèlic version of Minkowski’s lemma, stating that there is a constant C > 0 such that
whenever an adèles a satisfies |a| > C, there must be a y ∈ K× with |y|ν ≤ |aν |ν for all places ν.
Then, the compact set W can be chosen to be

W :=
{︁
x ∈ A : |xν |ν ≤|aν |ν for all places ν

}︁
for any adèles a satisfying |a| > C. The connection of the compactness of A×,1/K× with the two
classical results of algebraic number theory derives from the fact that the group of fractional ideals
of K is realized as a quotient of the idèles, where principal idèles correspond to principal ideals. Let
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us see some details of that. Denote by J (OK) the group of fractional ideals of the ring of integers
of K. Set

A×
∞ := A×

S∞
=
{︁
a ∈ A× : |aν |ν = 1 for all finite place ν

}︁
for short. There is a map

L : A× −→ J (OK)

defined by setting
L(a) =

{︁
x ∈ K : |xaν |ν ≤ 1 for all finite place ν

}︁
for all idèles a (note the similarity with the linear spaces of meromorphic functions associated with
divisors). The map L is a surjective group homomorphism with kernel A×

∞, an open sub-group of
the idèles, thus L induces an isomorphism of discrete groups

A×

A×
∞
∼= J (OK) .

If a is a principal idèles, then an element x of the global field belongs to L(a) if and only if ax ∈ OK ,
which means that L(a) is equal to the principal ideal 1

aOK . Therefore, L induces an epimorphism

A×

K× −→ C(OK) (3.8)

onto the ideal class group C(OK). Using idèles belonging to the sub-group A×
∞ we can affect the

idèlic norm without affecting the image of L, then the induced map

A×,1/K× −→ C(OK) (3.9)

is still an epimorphism. By knowing that A×,1 is compact, we can infer the finiteness of the ideal
class group because it is the continuous image of a compact group and it is discrete. Inspecting the
compact kernel of the epimorphism (3.9) leads to a proof of Dirichlet’s unit theorem.

3.5 Idèle Class Characters

In Chapter 4, we will construct L-functions from the analysis of a particular representation of the
group of idèles made by generalized functions on the adèles. The one-dimensional sub-representations
whose character is a continuous homomorphism ω : A× → C× trivial on the group of principal are
the fundamental objects on which the argument is based. For this reason, in the current section,
we deal with the description of such characters: they turn out to be parametrized by couples (s, ω),
where s is a complex number and ω comes from a unitary character of the compact group A×,1/K×.

Definition 3.5.1. Let K be a global field and A its ring of adèles. Define ΩK to be the group of
continuous homomorphism ω : A× → C× such that ω(K×) = 1. Its elements are called idèle class
characters. An idèle class character is said unramified if it is trivial on the group A×,1.

Unramified idèle class characters factors through the image of the idèlic norm, hence they
correspond to the continuous homomorphisms from R×

+ to C× if K is a number field, and to the
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homomorphisms from Z to C× if K is a function field. In detail, if ω is unramified, then it fits in a
commutative triangle ⃓⃓

A×
⃓⃓

A× C×

ω̃|·|

ω

where ω̃ is a character of the image of the idèlic norm. When K is a function field, the latter is
generated by t := |πν |ν for some place ν and some uniformizer πν of the local fieldKν . The character
ω̃ is determined by its value ω̃(t) at t. Having observed this, we have that the homomorphism of
groups

C −→ ΩK , s ↦−→|·|s

parametrizes all unramified characters and it has kernel 2πi
log tZ, so two unramified characters |·|s1

and |·|s2 are equal if and only if s1 − s2 is an integer multiple of 2πi
log t . When K is a number field,

every unramified character ω decomposes through a character ω̃ of R×
+, making the diagram

R×
+

A× C×

ω̃|·|

ω

commutes. Thus we only need to classify the characters of R×
+ to obtain a complete description

of the unramified idèle class characters. This is done in Lemma 3.5.2, which state that every
homomorphism R×

+ → C× is of the form t ↦→ ts for a unique s ∈ C. The immediate consequence is
that the map

C −→ ΩK , s ↦−→|·|s

defines an isomorphism between the additive group of complex numbers and the group of unramified
idèle class characters.

Lemma 3.5.2. The map that sends a complex number s to the continuous homomorphism

R×
+ −→ C× , t ↦−→ ts

defines an isomorphism
C ∼= HomLCA(R×

+,C×)

from the additive group of the complex numbers to the group of characters of R×
+.

Proof. Recall that R×
+ × S1 ∼= C× by expressing a complex number z in polar coordinates z = ru,

with r ∈ R×
+ and u ∈ S1, so

HomLCA(R×
+,R

×
+)× ˆ︂R×

+
∼= HomLCA(R×

+,C×) .

By the logarithm, R×
+ is isomorphic to the additive group of the real numbers. The unitary charac-

ters of R are known: there is an isomorphism R ∼= ˆ︁R via the pairing eibx for b, x ∈ R. The continuous
endomorphisms of R are also known: they are the R-linear maps, and by post-composition with
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the exponential map, we obtain all homomorphisms R → R×
+. To obtain ˆ︂R×

+ and the endomor-
phisms of R×

+, use the logarithm log : R×
+ → R in the following way: a real number a goes to the

homomorphism
R −→ R×

+ , x ↦−→ eax ,

which in turn goes to the homomorphism

R×
+ −→ R×

+ , t ↦−→ ta

via the change of variable x = log t. In the same way, a real number b is sent to the homomorphism

R×
+ −→ R×

+ , t ↦−→ tib .

This gives an isomorphism

R× R −→ HomLCA(R×
+,R

×
+)× ˆ︂R×

+ , (a, b) ↦−→
(︁
[t ↦→ ta], [t ↦→ tib]

)︁
from which we deduce that

C −→ HomLCA(R×
+,C×) , s ↦−→ [t ↦→ ts]

is an isomorphism by the simple observation that ts = ru for r = ta, u = tib and s = a+ ib.

Corollary 3.5.3. Every unramified idèle class character ω of a global field K is of the form

ω(x) = |x|s , for all x ∈ A× ,

for a complex number s. If K is a number field, the number s associated with ω is unique. If K
is a function field, the complex number s is unique modulo integer multiples of 2πi

log t , where t is a
generator of the image of the idèlic norm.

Now that we have a description of the unramified characters, we can use a non-canonical splitting
A× ∼=

⃓⃓
A×
⃓⃓
× A×,1 to decompose non-canonically the space ΩK as a product of the complex plane

(or a quotient of it in the function field case) with the Pontryagin dual of A×,1/K×. We get the
group of unitary characters because the quotient A×,1/K× is compact and any character from a
compact group to C× is forced to be unitary, as we are going to see in Lemma 3.5.4.

Lemma 3.5.4. Let A be a compact abelian group and ω : A → C× a continuous homomorphism.
Then ω is a unitary character.

Proof. Consider the composition of ω with the absolute value of C. It is a continuous homomorphism
from A to the group of positive real numbers. Compose it further with the natural logarithm and
you obtain a continuous homomorphism from the compact group A to the additive group of the real
numbers. Its image is a compact sub-group of R, but any such group must be trivial because every
non-zero real number generates an unbounded sub-group of R (a consequence of the archimedean
nature of R). Thus

log
⃦⃦
ω(a)

⃦⃦
C = 0 for all a ∈ A,

which means that ⃦⃦
ω(a)

⃦⃦
C = 1 for all a ∈ A,

proving that ω is unitary.
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Theorem 3.5.5. Let ω be an idèle class character of the global field K. Let ρ :
⃓⃓
A×
⃓⃓
→ A× be

a continuous section of the idèlic norm. There is a unique unitary character χ of A×,1 which is
trivial on K× and a unique unramified character |·|s, for some s ∈ C, such that

ω(x) = χ
(︁
ρ(|x|)−1x

)︁
· |x|s for all x ∈ A×.

Proof. Recall, by Proposition 3.4.4, that ρ induces an isomorphism⃓⃓
A× ⃓⃓× A×,1 −→ A× , (t, a) ↦−→ ρ(t) · a .

Define χ ∈ ˆ︁A×,1 as the restriction of ω on the sub-group A×,1 of the idèles. It is trivial on K×

because ω(K×) = 1 by definition. The composition ω ◦ ρ ◦|·| is a continuous homomorphism from
A× to C× and it is trivial on A×,1 because that group is the kernel of |·|, therefore it is an unramified
idèle class character and by Corollary 3.5.3 there is a complex number s such that

ω
(︁
ρ(|x|)

)︁
= |x|s for all x ∈ A×.

If we write an idèle x as x = ρ(|x|) · ρ(|x|)−1 · x, then

ω(x) = ω
(︁
ρ(|x|) · ρ(|x|)−1 · x

)︁
= ω

(︁
ρ(|x|)

)︁
· ω
(︁
ρ(|x|)−1x

)︁
= |x|s · χ

(︁
ρ(|x|)−1x

)︁
= χ

(︁
ρ(|x|)−1x

)︁
· |x|s ,

which is the expression required in the statement. If χ′, s′ is another couple satisfying

ω(x) = χ′(︁ ρ(|x|)−1x
)︁
· |x|s

′
for all x ∈ A×,

then for all a ∈ A×,1

χ(a) = ω(a)

= χ′(︁ ρ(|a|)−1a
)︁
· |a|s

′

= χ′(a)

and for all t ∈
⃓⃓
A×
⃓⃓
we have

ts =
⃓⃓
ρ(t)

⃓⃓s
= ω

(︂
ρ
(︁ ⃓⃓
ρ(t)

⃓⃓ )︁ )︂
= ω

(︁
ρ(t)

)︁
= χ′(︁ ρ(⃓⃓ρ(t)⃓⃓)−1ρ(t)

)︁
·
⃓⃓
ρ(t)

⃓⃓s′
= χ′(1) · ts

′

= ts
′
.

This proves the uniqueness of χ and |·|s.
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Theorem 3.5.5 describes the idèle class characters from a global point of view, but they have
also a local structure given by the structure of the idèles as a restricted direct product. In Section
2.4 we described general characters of restricted direct products in terms of the characters of the
factors via the two lemmas 2.4.6 and 2.4.5. In the particular case of the idèles, we have that a
character ω : A× → C× is associated with a tuple of local characters ων : Kν → C× which are
trivial on O×

ν for almost all places and the relation with ω is given by the formula

ω(x) =
∏︂
ν

ων(xν) .

We now focus on the characters of local fields, the non-archimedean case first, so denote by K a
local field with its local sub-ring O, the maximal ideal is p, generated by π. Let ω : K× → C×

be a character, and consider the restriction to the group of units O×. It satisfies the hypothesis
of Lemma 3.1.7, hence there is a sub-group of O× of the form 1 + pn, for some n ∈ N, such that
ω(1 + pn) = 1. As a consequence, ω is locally constant and ω(O×) is a finite sub-group of C×. If
K is archimedean instead, then

K× ∼=

{︄
{±1} × R×

+ if K = R,
S1 × R×

+ if K = C,

therefore we can classify all the multiplicative characters ω of K× because we know all characters
of R×

+ (Lemma 3.5.2), {±1} and S1. Indeed the last two groups are compact, so, by Lemma 3.5.4,

their characters must be unitary and we know the dual groups ˆ︁{±1}, ˆ︂S1 : the unique non-trivial
character of the group with two elements sends the generator to −1, while a character χ of the
circle group, thought of as a subset of the complex plane, has the form χ(z) = zn for all z ∈ S1
and a unique integer n depending only on χ. Note that the sub-groups {±1}, S1 and O× are
precisely the sub-groups of elements of absolute value 1 inside R, C and a non-archimedean local
field respectively.

Definition 3.5.6. Let K be a local field. Denote by u the sub-group of K× consisting of the
elements x such that |x| = 1. A character ω of K× is said unramified if ω(u) = 1, otherwise it is
said ramified. If K is non-archimedean and ω is ramified, define the conductor of ω as the minimal
ideal f of O such that ω(1 + f) = 1.

Proposition 3.5.7. Let K be a local field and ω an unramified character of K×. Then there is a
complex number s such that

ω(x) = |x|s for all x ∈ K×.

The number s is unique when K is archimedean, otherwise, it is unique modulo 2πi
log|ϖ|Z, where ϖ

is a uniformizer of K.

Proof. The character ω factors through the quotient group K×/u, which is isomorphic to the image
of |·| and the image is equal to R×

+ or a free sub-group of rank 1. The characters of such groups are
completely understood and they are all of the forms ts, where s is a complex number and t varies
in the image of |·|. Then, for all x ∈ K×, the value ω(x) depends only on the absolute value t = |x|
and it is equal to ts. If K is archimedean, then s is unique, if K is non-archimedean, then |·| is
determined by t = |ϖ|, where ϖ is a generator of the maximal ideal of O, and ts = ts

′
is equivalent

to (s− s′) · log t belonging to the kernel of the complex exponential map ez.
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Theorem 3.5.8. Let ω be a character of a local field K and |·| the module of K. For K non-
archimedean, let p be the maximal ideal of its local ring and π a generator of p. Then ω is one of
the following characters:

(i) if K = R, there is a unique couple (s, n) ∈ C× {0, 1} such that

ω(x) = x−n|x|s+n for all x ∈ R×;

(ii) if K = C, there is a unique couple (s, n) ∈ C× N such that

ω(x) = x−n|x|s+
n
2 for all x ∈ C×

or
ω(x) = x−n|x|s+

n
2 for all x ∈ C×,

where x is the complex conjugate of x;

(iii) if K is non-archimedean, there is a character χ of O× and a complex number s such that

ω(x) = χ
(︁
xπ− ordp(x)

)︁
|x|s for all x ∈ K×.

Proof. The restriction of ω on the subgroup u is a unitary character χ.
Case (i): χ is determined by the image of −1 ∈ u. There is a unique integer n ∈ {0, 1} such that

χ(−1) = (−1)−n

The character

ω′ : x ↦−→ xn

|x|n
ω(x)

is unramified because ω′(−1) = (−1)nχ(−1) and the right-hand side term is equal to 1 idipendently
on n. Therefore, Proposition 3.5.7 implies that ω′ = |·|s for a unique complex number s and

ω(x) = x−n|x|n ω′(x)

= x−n|x|n|x|s

= x−n|x|s+n .

Case (ii): We have u = S1, so there is a unique integer n such that χ(x) = x−n for all x ∈ u.
For each non-zero complex number x, define

x̃ :=
x

|x|
1
2

,

so that x ↦→ x̃ is a continuous homomorphism C× → u which restricts to the identity on the
sub-group u. Let ω′ be the character defined by

ω′(x) = x̃nω(x) for all x ∈ C×,

then ω′ is unramified and there is a unique s ∈ C such that ω′ = |·|s by Proposition 3.5.7. One
concludes that

ω(x) = x̃−nω′(x)

= x̃−n|x|s .
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similarly to case (i). Simple algebraic manipulations lead to the formulas of the statement once we
have observed that x̃−1 is equal to the complex conjugate of x̃.

Case (iii): note that ordp(xy) = ordp(x) + ordp(y) for all x, y ∈ K×. Then, if we define
x̃ := xπ− ordp(x) for all x ∈ K×, the map x ↦→ x̃ is a continuous homomorphism from K× to the
group u that is the identiy on u. Therefore, the character that sends x ∈ K× to χ(x̃)−1ω(x) is
unramified and the conclusion is obvious from Proposition 3.5.7.

We now return to the characters ω : A×
K → C× for a global field K.

Definition 3.5.9. Suppose that ω =
∏︁
ν ων is a character of the idèles of K. It is said unramified

at ν if ων is unramified as a character of the local field Kν .

Since A× is the restricted direct product of the groups K×
ν relative to the sub-groups O×

ν , every
character ω of must satisfy ων(O×

ν ) = 1 for almost all ν, which is equivalent to saying that ω is
unramified at almost all places.

A natural question to ask is if there is a relationship between the ramification of Definition
3.5.9 and the ramification of Definition 3.5.1. If ω is an idèle class character, the condition of being
unramified at every place is equivalent to the existence of complex numbers sν such that ων = |·|sνν ,
i.e.

ω(x) =
∏︂
ν

|xν |sνν for all x ∈ A×.

For ω to be unramified in the sense of Definition 3.5.1, the complex numbers sν should be all equal
to each other. For K = Q, this is true, but for K general it is far from being so. For example,
characters of the ideal class groups induce idèle class characters which are unramified at every place
but are not trivial on the group A×,1. Let us see why: suppose that K is a number field with a
non-trivial ideal class group and let χ be a non-trivial character of it. Since the ideal class group
is an epimorphic image of the idèle class group via the map (3.8), there is a unique idèle class
character ω making the triangle

A×/K× C×

C(OK)

ω

χ

commute. The character ω is not trivial on A×,1 because the latter covers the ideal class group.
However, all idèle classes represented by an idèle x satisfying |xν | = 1 for every place ν are contained
in the kernel of the projection

A×/K× −→ C(OK) ,

thus ων is unramified for every place ν.
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Chapter 4

L-functions and Representation
Theory of the Idèles

In the following chapter, we are going to study a particular representation of the idèles S ′(A),
obtained as the dual of the space of Schwartz functions on the adèles, and its 1-dimensional sub-
representations S ′(ω) attached to idèle class characters ω. The goal is to obtain the fundamental
properties of a family of L-functions (the Hecke L-functions) from the analysis of the zeta integral
ζ(ω), an integral transform that belongs to the space S ′(ω). The L-function, completed with the
archimedean factor, is obtained by evaluating ζ(ω) on a nice Schwartz function f , while its functional
equation will be a consequence of the existence of a functional equation for the zeta integral. The
latter is established thanks to the self-duality of the lattice given by the global field inside its ring
of adèles. This is the only completely ‘global’ feature of the zeta integral, while the rest is done
by putting together local constructions and computations: given a global field K, we start from
local representations S ′(Kν) and the local zeta integrals ζν to construct the corresponding global
objects, following the exposition of Tate’s thesis in [Kud04]. We follow Chapter 3 of [Bum97] for
the functional equation of the global zeta integral.

4.1 Functional representations and the Fourier transform

In what follows, many definitions and results are simultaneously valid for local fields and the adèle
ring of global fields, so we use k to indicate a local field, A for the ring of adèles of a global field
K and k to indicate both k and A. For example, k× stands for the multiplicative group k× or the
group of idèles. We use the following notation for the local field k:

• if k is non-archimedean we let O be its local ring and π a choice of a generator of the maximal
ideal p;

• the residue field is denoted by κ and q is its cardinality;

• ψ is a non-trivial, unitary character of k inducing an identification k ∼= ˆ︁k for the additive
group of k;

• dx is the self-dual measure with respect to ψ and |·| is the module;
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• d×x is the multiplicative Haar measure of k×, defined by the condition that O× is of measure
1 if k is non-archimedean, otherwise is defined to be simply |x|−1

dx restricted on k×.

• if k = Kν is a completion of a global field K at some ν we add everywhere a subscript ν
in the notation given on previous points: Oν , πν , pν , κν , qν and |·|ν are the corresponding
notations for Kν . The character ψν and the self-dual measure dxν are understood as the local
components of a character ψ and a measure dx of the adèle ring AK .

In the case of the ring A, the character ψ inducing an isomorphism A ∼= ˆ︁A is assumed to be trivial
on the global field, the self-dual measure dx is unique by Remark 3.4.6 and the measure d×x of the
idèles is the restricted product of the local measures d×xν = mν |x|−1

dxν , where

mν =

⎧⎪⎨⎪⎩
1 if ν is archimedean,

1

1− q−1
ν

if ν is non-archimedean.

If k is an archimedean local field, we write S (k) for the classical space of complex-valued
Schwartz functions on k and S ′(k) for its topological dual, i.e. the space of tempered distributions
on k (see [Bon01], Chapter 9 for the definitions). If k is non-archimedean define S (k) to be the
complex vector space of locally constant, complex-valued functions with compact support on k and
S ′(k) the space of C-linear functionals on S (k). For f ∈ S (k) and λ ∈ S ′(k), we use the notation

⟨λ , f⟩ := λ(f).

For the adèles, we define the Schwartz space S (A) as the C-linear sub-space of C (A) ∩ L1(A)
generated by factorizable functions f = ⊗νfν such that fν ∈ S (Kν) for all ν, and fν is the
characteristic function of Oν for almost all ν. Instead of specifying a linear topology on S (A) and
taking the topological dual, we define directly S ′(A) in terms of the local spaces S ′(Kν), this will
be enough for our purposes. S ′(A) is the sub-space of C-linear forms on S (A) generated by the
standard linear forms λ = ⊗νλ, where λν ∈ S ′(Kν) and ⟨λν , 1Oν

⟩ = 1 for almost all ν, such that
λ operates on a factorizable Schwartz function f = ⊗νfν by

⟨λ , f⟩ =
∏︂
ν

⟨λν , fν⟩ .

Now assume that k is a local field or the ring of adèles. Note that the multiplicative group k× acts on
the additive group of k by multiplication, then the functional space S (k) becomes a representation
of k× if we define the action

k× ×S (k)→ S (k) , (a, f) ↦→ a · f

by (a · f)(x) = f(xa) for all x ∈ k. The rule

⟨a · λ, f⟩ = ⟨λ, a−1 · f⟩ for a ∈ k×, λ ∈ S ′(k), f ∈ S (k),

makes S ′(k) into a representation of k×, precisely, it is the dual representation of S (k). The map

S (k) −→ S ′(k) , g ↦−→ ⟨g, ·⟩ ,
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where

⟨g, f⟩ :=
∫︂
k
g(x)f(x) dx

for all f ∈ S (k), is not k×-equivariant, unless we modify the action of a ∈ k× on the space S (k)
in such a way that the function g(x) is sent to |a| g(ax). The space S (k) is contained in the space
of L1 functions of k, hence the Fourier transform is well defined by the integral

ˆ︁f(ξ) = ∫︂
k
f(x)ψ(xξ) dx ,

for all functions f ∈ S (k) and all elements ξ ∈ k. It is well known that the Fourier transform
of a Schwartz function defined on R or C is again in the Schwartz class. The same is true for
non-archimedean local fields and the following lemma helps to see why.

Lemma 4.1.1. Let k be a non-archimedean local field and let f be the characteristic function of the
local ring O in k. Then f is a Schwartz function and ˆ︁f is a constant multiple of the characteristic
function of O⊥, the constant being the measure of O.

Proof. The function f is of Schwartz type because it is locally constant with support equal to the
compact subset O. Take an element ξ ∈ k and lets compute the Fourier transform of f at ξ,

ˆ︁f(ξ) = ∫︂
k

f(x)ψ(xξ) dx

=

∫︂
O
ψ(xξ) dx .

Note that χ : O → C× defined by χ(x) = ψ(xξ) for all x ∈ O is a unitary character of O, so, by
example 2.2.5, the integral of χ on the compact abelian group O equals the measure of it or the
value 0 depending only on χ being trivial or not. The character χ is trivial if and only if ξ ∈ O⊥.
Consequently, ˆ︁f is the characteristic function of O⊥ multiplied by the measure of O.

Remark 4.1.2. Given this lemma, observe that, in the non-archimedean case, any Schwartz function
f can be decomposed as

f(x) =
∑︂
r

cr1O

(︃
xa− r
πm

)︃
for all x ∈ k,

where

1X is the characteristic function of a set X ⊂ k,

a is some element of k×,

r runs in a finite set of representatives of the cosets of O/pm for some positive integer m,

cr are complex numbers.

This happens because any Schwartz function f has compact support and any compact set of k is
contained inside πnO for some integer n. The support of f is therefore contained in a compact
subset of the form

{︁
x ∈ k : |x| ≤|a|

}︁
for some a ∈ k× and the function f ′ : x ↦→ f(xa−1) is a
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locally constant function supported in O. Since the latter is compact, there is a finite cover of
clopen subsets of O such that f ′ is constant on each one of them. A basis of neighbourhoods of 0
is given by the positive powers of p. Take a sufficiently large positive integer m in such a way that
the subsets r + pm, for r ranging in a finite set of representatives of the classes in O/pm, define a
refinement of the cover. The function f ′ is constant on r + pm for all r, so that we can write

f ′(x) =
∑︂
r

cr1r+pm(x)

with cr = f ′(r). Finally, simple manipulations of the above equation lead to the formula for f .

Proposition 4.1.3. The Fourier transform induces a C-linear automorphism of the Schwartz space
S (k).

Proof. For an archimedean local field k, it is a classical result, if k is non-archimedean, by remark
4.1.2 we have to prove only that the Fourier transform of the function

f(x) = 1O

(︃
xa− r
πm

)︃
in the variable x, for m, a, r as above, is of Schwartz type. But this calculation is straightforward by
the fact that we know the Fourier transform of 1O and how it behaves under linear transformations
on the domain: ˆ︁f(ξ) = c ·

⃓⃓⃓
a−1πm

⃓⃓⃓
· ψ(ξra−1) · 1O⊥(ξπma−1)

for all ξ ∈ k, where c is the measure of O. This function has compact support because of the
product with the characteristic function. The local behaviour of ˆ︁f is determined by the character
ξ ↦→ ψ(ξra−1) of the group aπ−mO⊥, which has finite image and open kernel by Lemma 3.1.7. In

particular, it’s a locally constant function on an open, compact neighbourhood of the support of ˆ︁f ,
which is enough to conclude the proof.

Suppose that k = A is the adèle ring of a global field K. By linearity, it is enough to check that
a factorizable Schwartz function f = ⊗νfν has Fourier transform in S (A). Let ξ ∈ A, then

ˆ︁f(ξ) = ∫︂
A
f(x)ψ(ξx) dx

=
∏︂
ν

∫︂
Kν

fν(xν)ψν(ξνxν) dxν

because the product of the two factorizable functions f and ψ is again factorizable,∫︂
Kν

fν(xν)ψν(ξνxν) dxν = ˆ︁fν(ξν)
by definition, therefore ∏︂

ν

∫︂
Kν

fν(xν)ψν(ξνxν) dxν =
∏︂
ν

ˆ︁fν(ξν)
=
[︁
⊗ν ˆ︁fν]︁(ξ) .
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The above calculations show that ˆ︁f is factorizable and ˆ︁f = ⊗ν ˆ︁fν . As we saw in the local field case,
we have ˆ︁fν ∈ S (Kν) for all ν. Let S be a finite set of places large enough to contain all the places
for which ψν has a conductor different from Oν and all the places for which fν is different from the
characteristic function of Oν . Then, for all ν /∈ S, the functions fν is the characteristic of Oν and
the equality O⊥

ν = Oν implies that also ˆ︁fν is the characteristic function of Oν , as stated in Lemma

4.1.1. This proves that ˆ︁f ∈ S (A).

Remark 4.1.4. Note that, in the proof of Proposition 4.1.3 for the adèlic case, we showed that
the Fourier transform of a factorizable Schwartz function f = ⊗νfν is of the same type, namelyˆ︁f = ⊗ν ˆ︁fν and ˆ︁fν = 1Oν

for almost all places.

The Fourier transform of S ′(k) is defined by duality: if λ ∈ S ′(k) then its Fourier transformˆ︁λ is defined on Schwarz functions f by

⟨ˆ︁λ, f⟩ = ⟨λ, ˆ︁f⟩.
This is well-defined as it is the Fourier transform of a tempered distribution in the case of an
archimedean local field, for a non-archimedean field there are no topological conditions to check.
For the adèle ring A, we have

⟨λ , ˆ︁f⟩ =∏︂
ν

⟨λν , ˆ︁fν⟩
for all standard λ = ⊗νλν and f = ⊗νfν , which implies that ˆ︁λ = ⊗νˆ︁λν . If ν is a place such that
ψν has conductor Oν and ⟨λν ,1Oν ⟩ = 1, then ˆ︃1Oν = 1Oν and

⟨ˆ︁λν ,1Oν
⟩ = ⟨λν ,ˆ︃1Oν

⟩
= ⟨λν ,1Oν

⟩
= 1 ,

so ˆ︁λ is standard. The above definition is compatible with the formula∫︂
k
g(x) ˆ︁f(x) dx =

∫︂
k
ˆ︁g(x)f(x) dx .

Lemma 4.1.5. Let f ∈ S (k) and λ ∈ S ′(k). Then, for any a ∈ k× we have

ˆ︃a · f = |a|−1
[︂
a−1 · ˆ︁f ]︂

and ˆ︃a · λ = |a|
[︂
a−1 · ˆ︁λ ]︂ .

Proof. The equality involving the function f is just an easy computation of the integral∫︂
k
f(ax)ψ(ξx) dx ,

wich is the Fourier tranform of a · f calculated at ξ ∈ k. By a change of variable x = a−1y we get∫︂
k
f(ax)ψ(ξx) dx =

∫︂
k
f(y)ψ(ξa−1y) |a|−1

dy ,
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where the right-hand side of the equality is the function |a|−1 ˆ︁f calculated at ξa−1. The case of λ
is obtained by the previous one via duality: for all f ∈ S (k) we have

⟨ˆ︃a · λ , f⟩ = ⟨a · λ , ˆ︁f⟩
= ⟨λ , a−1 · ˆ︁f ⟩
= ⟨λ ,|a|ˆ︂(a · f)⟩

= |a| ⟨ˆ︁λ , a · f⟩
=
⟨︂
|a|
[︁
a−1 · ˆ︁λ ]︁ , f⟩︂ .

From Lemma 4.1.5 it’s clear that the Fourier transform is not a k×-equivariant automorphism.
Still, it is an isomorphism of two closely related representations with underlying vector space S ′(k).

Definition 4.1.6. Let ω be character of k×. Define the space of ω-eigendistributions as the C-linear
sub-space

S ′(ω) :=
{︁
λ ∈ S ′(k) : a · λ = ω(a)λ for all a ∈ k×

}︁
of S ′(k).

If s is a complex number and ω is a character of k×, we use the pair (s, ω) to indicate the
character ω|·|s of k×. For example, the space S ′(s, ω) is made by all the distributions λ ∈ S ′(k)
such that a · λ = ω(a)|a|s λ for all a ∈ k×.

Theorem 4.1.7. Let (s, ω) be a character of k×. The Fourier transform induces an isomorphism

S ′(s, ω) ∼= S ′(1− s, ω−1) ,

i.e., for each (s, ω)-eigendistribution λ, the Fourier transform ˆ︁λ is an (1−s, ω−1)-eigendistribution.

Proof. Let λ ∈ S ′(s, ω). We have to check that

a · ˆ︁λ = ω(a)−1|a|1−s ˆ︁λ
for all a ∈ k×. Starting by the left-hand side, we have

a · ˆ︁λ = |a| ˆ︂a−1 · λ

by Lemma 4.1.5. Since λ is an (s, ω)-eigendistribution,

a−1 · λ = ω(a−1)
⃓⃓⃓
a−1

⃓⃓⃓s
λ

= ω(a)−1|a|−s λ .

By linearity of the Fourier transform, we get

|a| ˆ︂a−1 · λ = |a|ω(a)−1|a|−s ˆ︁λ
= ω(a)−1|a|1−s ˆ︁λ ,
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which proves that ˆ︁λ ∈ S ′(1− s, ω−1) and the Fourier transform define a linear map

S ′(s, ω) −→ S ′(1− s, ω−1) , λ ↦−→ ˆ︁λ
This is an isomorphism because (s, ω) ↦→ (1 − s, ω−1) is an involution, the Fourier transform
is invertible, its inverse is the Fourier transform relative to the unitary character ψ−1 and all
calculations that we have made so far are valid also for ψ−1, which does not change the self-
dual measure dx and satisfies the same assumptions of ψ (like the non-triviality and the vanishing
condition on the global field when k = A).

The space S ′(ω) is the sum of all sub-representations of S ′(k) isomorphic to the representation
C(ω), namely the 1-dimensional representation with character ω : k× → C×. A priori, it could be
that S ′(ω) = 0 for some ω, or S ′(ω) could have large dimension over C. In Section 4.3, we will
show that S ′(ω) has dimension 1 for all characters of a local field and all idèle class characters.

4.2 Zeta integrals

In the current section, we are going to define a functional on the space S (k) for each character
or idèle class character ω. This functional is an integral that is not defined for all ω, but, when it
does, it defines a non-zero ω-eigendistribution.

Definition 4.2.1. Let ω be a character of k×. Define ℜ(ω) as the unique real number such that
(−ℜ(ω), ω) is a unitary character of k×. Call it the real part of ω.

The intuition behind this definition comes from the fact that we can express a character ω in
the form

ω(x) = χ(x̃)|x|s , for x ∈ k×,

where s is a complex number, χ is a unitary character of the sub-group

k×,1 :=
{︁
x ∈ k× : |x| = 1

}︁
,

and x ↦→ x̃ is a continuous group-homomorphism from k× to k×,1 which is the identity on k×,1 (it
is possible by the two theorems 3.5.5 and 3.5.8). Since χ is unitary, we have that ω is unitary if
and only if ℜ(s) = 0, therefore ℜ(ω) = ℜ(s). Recall that s is unique up to the addition of a purely
imaginary complex number, so its real part is uniquely determined by ω. The real part of ω is also

the unique real number such that |x|ℜ(ω)
is the length of the complex number ω(x) for all x ∈ k×.

Note that ℜ(s, ω) = ℜ(s) + ℜ(ω) for all complex numbers s.

Definition 4.2.2. Let s be a complex number, ω a character of k× and f ∈ S (k). Define the zeta
integral of f associated with (s, ω) as

ζ(s, ω; f) :=

∫︂
k×
f(x)ω(x)|x|s d×x

when the integral exists.

Now we have to study the case of local fields separately from the case of adèles. We start by
observing when ζ(ω; f) is well-defined for a local field k.
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Lemma 4.2.3. Let f ∈ S (k) and ω a character of k× with ℜ(ω) > 0. Then, the function

k× −→ C , x ↦−→ f(x)ω(x)

is integrable with respect to the measure d×x.

Proof. Let ∥·∥ be the standard norm of the complex plane, i.e. the norm defined by ∥z∥2 = z · z.
We have to check that the function ⃦⃦

f(x)ω(x)
⃦⃦

in the variable x ∈ k× is d×x-integrable. Note that
⃦⃦
ω(x)

⃦⃦
= |x|σ, where σ = ℜ(ω). The measure

d×x is a constant multiple of |x|−1
dx, therefore a positive function g(x) is integrable for the measure

d×x if and only if g(x)|x|−1
is integrable for the measure dx. We can split the integral as a sum of

two integrals, one over the punctured ball

Ḃ =
{︁
x ∈ k× : |x| ≤ 1

}︁
and one over its complement in k×, like this:∫︂

k×

⃦⃦
f(x)

⃦⃦
·|x|σ d×x =

∫︂
Ḃ

⃦⃦
f(x)

⃦⃦
·|x|σ d×x+

∫︂
k×\Ḃ

⃦⃦
f(x)

⃦⃦
·|x|σ d×x .

The integral ∫︂
k×\Ḃ

⃦⃦
f(x)

⃦⃦
·|x|σ d×x

is finite if and only if ∫︂
k\B

⃦⃦
f(x)

⃦⃦
·|x|σ−1

dx

is finite, where B = Ḃ ∪ {0}. The function
⃦⃦
f(x)

⃦⃦
·|x|σ−1

is continuous and integrable in the open
set k \ B because the Schwartz function f has compact support in the non-archimedean case and,
for k archimedean, it remains integrable after multiplication by functions with polynomial growth
at infinity, like |x|σ−1

. All these observations ensure that∫︂
k\B

⃦⃦
f(x)

⃦⃦
·|x|σ−1

dx

is finite. Concerning the integral on B, we have∫︂
Ḃ

⃦⃦
f(x)

⃦⃦
·|x|σ d×x ≤ max

x∈B

⃦⃦
f(x)

⃦⃦ ∫︂
Ḃ

|x|σ d×x .

The maximum exists and is finite because f is continuous on k and B is compact. Then, it is
enough to prove that ∫︂

Ḃ

|x|σ d×x

is finite for σ > 0.
Suppose that k = R. Then ∫︂

Ḃ

|x|σ dx = 2

∫︂ 1

0

xσ−1 dx ,
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which is finite for σ > 0.
Suppose that k = C. Then we can express x ∈ C× in polar coordinates, which gives an

isomorphism of locally compact groups

φ : R×
+ × S1 −→ C× , (r, u) ↦−→ ru

Let d×r du be the product of the Haar measures d×r = r−1dr of R×
+ and du of S1, where dr is the

standard measure of R and du is the unique Haar measure that gives measure 1 to the circle. By
uniqueness of the Haar measure, there is a constant m > 0 such that the pull-back of md×r du by
φ−1 is equal to d×x. Then ∫︂

Ḃ

|x|σ d×x = m

∫︂
(0,1)×S1

r2σ d×r du

= m

(︄∫︂
(0,1)

r2σd×r

)︄
·
(︃∫︂

S1
du

)︃
= m

∫︂
(0,1)

r2σd×r

= m

∫︂ 1

0

r2σ−1 dr ,

and the last integral is finite if and only if σ > 0.
Suppose k is non-archimedean. Then B = O and O is the disjoint union of zero and all the sets

πnO× for n ∈ N, where π is a uniformizer of k, so∫︂
O\{0}

|x|σ d×x =

∞∑︂
n=0

∫︂
πnO×

|x|σ d×x .

The homomorphism |·| is trivial on O× and the measure d×x is invariant under multiplication of π,
hence ∫︂

πnO×
|x|σ d×x = q−nσ

∫︂
O×
d×x ,

where |π| = q−1 and q is the cardinality of the residue field of k. Therefore∫︂
O\{0}

|x|σ d×x =

(︃∫︂
O×
d×x

)︃ ∞∑︂
n=0

q−nσ .

The series 1 + q−σ + q−2σ + q−3σ + . . . is geometric, hence it converges if and only if q−σ < 1 and
this happens if and only if σ > 0.

As examples, we make some explicit calculations of ζ(ω; f) for specific functions f , which are
useful later.

Example 4.2.4 (k non-archimedean, ω unramified). Suppose that k is a non-archimedean local field
and ω is trivial on the group of units O× and has a positive real part. Let fo be the characteristic
function of the local ring O. It belongs to the space S (k), so we can compute its zeta integral:

ζ(ω; fo) =

∫︂
O\{0}

ω(x) d×x .
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The domain of integration is the disjoint union

O \ {0} =
∞⋃︂
n=0

πnO× ,

therefore the integral splits into the infinite sum∫︂
O\{0}

ω(x) d×x =

∞∑︂
n=0

∫︂
πnO×

ω(x) d×x

=

∞∑︂
n=0

∫︂
O×

ω(πnx) d×x

=

∞∑︂
n=0

ω(π)n
∫︂
O×

ω(x) d×x

and ω(x) = 1 for every x ∈ O×, hence

ζ(ω; fo) =

(︃∫︂
O×
d×x

)︃ ∞∑︂
n=0

ω(π)n

=

∫︁
O×d

×x

1− ω(π)
.

If the Haar measure is normalized to give O× measure 1, the cardinality of the residue field is q,
and s is a complex number for which ω = |·|s, we get the familiar local Euler factor

ζ(ω; fo) =
1

1− q−s
.

For a general unramified character ω of k×, we have that

ζ(s, ω; fo) =
1

1− ω(π)q−s

for all complex number s in the half-plane ℜ(s) > −ℜ(ω). Note that the right-hand side of the
equality is a holomorphic and non-vanishing function in the variable s for ℜ(s) > −ℜ(ω), and
it extends to a meromorphic function on the entire complex plane with poles in the vertical line
ℜ(ω) + iR. Observe that we could have tested the zeta integral on the characteristic function of
the group of units and would have got the simple value

ζ(ω;1O×) =

∫︂
O×

ω(x) d×x

=

∫︂
O×
d×x.

Example 4.2.5 (k non-archimedean, ω ramified). There is a complex number s with ℜ(s) = ℜ(ω)
and a unitary character χ of k× such that

ω(x) = χ(x)|x|s
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for all x ∈ k×, and χ is non-trivial on O×. In this case, the zeta integral of the characteristic
function of O is null because

ζ(ω;1O) =

(︃∫︂
O×

χ(x) d×x

)︃ ∞∑︂
n=0

q−ns

by repeating the same calculations as in Example 4.2.4 and∫︂
O×

χ(x) d×x = 0 ,

since χ is non-trivial on O× (see Example 2.2.5). Define fo = ω−11O× , then fo is supported in
the open, compact group O× and it is locally constant because ω(O×) is a finite sub-group of C×.
Thus fo ∈ S (k) and

ζ(ω; fo) =

∫︂
O×

ω(x)−1ω(x) d×x

=

∫︂
O×
d×x.

When O× has measure 1 for d×x, we get

ζ(ω; fo) = 1.

Example 4.2.6 (k = R, ω unramified). In the real case, if ω(−1) = 1, then

ζ(s, ω; f) = 2

∫︂ ∞

0

f(x)ω(x)xs−1 dx

for all s with ℜ(s) > −ℜ(ω) and all even Schwartz functions f . The character ω has only the effect
of translating the domain of the function in the variable s, there is no loss of generality if we assume
ω = 1. For all x ∈ R, let

fo(x) = e−πx
2

.

The function fo is of Schvartz type and even, the zeta integral is

ζ(s, 1; fo) = 2

∫︂ ∞

0

e−πx
2

xs−1 dx ,

and with the change of variable πx2 = t, we obtain

ζ(s, 1; fo) = π− s
2 Γ

(︃
s

2

)︃
,

where Γ(z) =
∫︁∞
0
e−ttz−1 dt is the Gamma function in the complex variable z.

Example 4.2.7 (k = C, ω unramified). As in Example 4.2.6, we can suppose that ω = 1 for the
unramified case. Let fo be the function in the variable x ∈ C

fo(x) = e−2π|x| .
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We can write the measure d×x as the pull-back of md×r du via the isomorphism R×
+ × S1 ∼= C×,

just like we did in the proof of Lemma 4.2.3 for k = C. The constant m can be calculated in the
following way: dx is twice the Lebesgue measure of the plane and d×x = |x|−1

dx, so∫︂
Ḃ

|x| d×x = 2π ,

where Ḃ is the punctured disk of radius 1 centred at the origin. By pull-back, we have the equality
of the integrals ∫︂

Ḃ

|x| d×x = m

∫︂
(0,1)×S1

r2 d×r du .

The left-hand side of the equality is 2π and the right-hand side is equal to m
2 , thus m = 4π. We

can also evaluate the zeta integral of fo through the measure 4π d×r du:

ζ(s, 1; fo) =

∫︂
C×

e−2π|x||x|s d×x

= 4π

∫︂
R×

+×S1
e−2πr2r2s d×r du .

Since the integrand depends only on the variable r and the circle has measure 1 with respect to the
measure du, we are left with

ζ(s, 1; fo) = 4π

∫︂
R×

+

e−2πr2r2s d×r

and, after a change of variable r = t√
2
,

ζ(s, 1; fo) = 2π · 2
∫︂
R×

+

e−πt
2

t2s2−s d×t .

One recognizes from the example of the real numbers that

2

∫︂
R×

+

e−πt
2

t2s d×t = π−sΓ(s) ,

hence
ζ(s, 1; fo) = (2π)1−sΓ(s) .

Example 4.2.8 (k archimedean, ω ramified). If k = R and ω is ramified, then the character must
be of the form

ω(x) = x−1|x|s+1
x ∈ R×

by Theorem 3.5.8. The real part of ω is ℜ(s). In this case, we can define

fo(x) = xe−πx
2

, x ∈ R ,

which is a Schwartz function, and we get

ζ(ω; fo) = 2

∫︂ ∞

0

e−πx
2

xs+1 d×x

= π− s+1
2 Γ

(︃
s+ 1

2

)︃
.
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The case k = C is similar. By Theorem 3.5.8, the character ω must be of the form

x−n|x|s+
n
2 or x−n|x|s+

n
2

for some s ∈ C, n ∈ N and the functions

xne−2πxx and xne−2πxx

belong to the Schwartz class. Let fo be chosen between the two Schwartz functions above in such
a way that the ramified part of ω is tamed, then

ζ(ω; fo) = (2π)
1−s−n

2 Γ(s+
n

2
).

Definition 4.2.9. For the choices of fo made in the previous examples, define the local L-function
associated with ω as the unique meromorphic function L(s, ω) in the complex variable s for which

L(s, ω) = ζ(s, ω; fo)

in the half-plane ℜ(s) > −ℜ(ω).

Note that, for every one of the examples we made above, the meromorphic function L(s, ω)
is non-vanishing in the entire complex plane and is holomorphic in the half plane where the zeta
integral is defined.

Theorem 4.2.10. Let ω be a character of k× with ℜ(ω) > 0. Then the zeta integral

ζ(ω) : S (k) −→ C , f ↦−→ ζ(ω; f)

is a non-zero ω-eigendistribution.

Proof. From Lemma 4.2.3, it is immediate to note that

ζ(ω) : S (k) −→ C , f ↦−→ ζ(ω; f)

is a well-defined linear form on S (k) for all characters ω satisfying ℜ(ω) > 0. This is enough for
ζ(ω) to be in the space S ′(k) for k non-archimedean. If the local field is archimedean, the zeta
integral ζ(ω) is continuous with respect to the family of semi-norms defining the topology of S (k).
Indeed, a sequence (fn)n of Schwartz functions converges to 0 if and only if

sup
x∈k

⃦⃦
p(x) · ∂fn(x)

⃦⃦
goes to zero as n→∞ for all ∂ and all p(x), where ∂ is a composition of partial derivatives and p(x)
is a continuous function on k with polynomial growth at infinity. One can check that the sequence
ζ(ω; fn) approaches zero by splitting the integral as in the proof of Lemma 4.2.3:

ζ(ω; fn) =

∫︂
B

fn(x)ω(x)|x|−1
dx+

∫︂
k\B

fn(x)ω(x)|x|−1
dx .

The integral over B is bounded by the sup-norm of fn multiplied by the constant∫︂
k

|x|ℜ(ω)−1
dx ,
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hence it goes to zero as n→∞. The integral over the complement of B has no issues because |x|−1

is continuous on k \B. Moreover, it is bounded by the integral∫︂
k\B

⃦⃦
fn(x)

⃦⃦
·|x|ℜ(ω)−1

dx

which can be expressed as ∫︂
k\B

⃦⃦
fn(x)

⃦⃦
·|x|N ·|x|−N+ℜ(ω)−1

dx ,

for all natural numbers N , leading to the inequality∫︂
k\B

⃦⃦
fn(x)

⃦⃦
·|x|ℜ(ω)−1

dx ≤ sup
x∈k\B

⃦⃦⃦
|x|N fn(x)

⃦⃦⃦
·
∫︂
k\B
|x|−N+ℜ(ω)−1

dx .

The integral of |x|−N+ℜ(ω)−1
over k \B is finite for N sufficiently large and the sup-norm

sup
x∈k\B

⃦⃦⃦
|x|N fn(x)

⃦⃦⃦
goes to zero as n→∞. This provides the convergence ζ(ω; fn)→ 0, hence ζ(ω) ∈ S ′(k).

If a ∈ k×, then

⟨a · ζ(ω) , f⟩ = ζ(ω; a−1 · f)

=

∫︂
k×
f(xa−1)ω(x) d×x

=

∫︂
k×
f(x)ω(ax) d×x

= ω(a)

∫︂
k×
f(x)ω(x) d×x

= ⟨ω(a)ζ(ω) , f⟩

for all functions f ∈ S (k), so ζ(ω) ∈ S ′(ω). To conclude, note that in the examples 4.2.4, 4.2.5,
4.2.6, 4.2.7 and 4.2.8, we gave a function fo ∈ S (k) for each character ω such that ζ(ω; fo) ̸= 0,
thus ζ(ω) is a non-zero vector in the space S ′(ω).

Remark 4.2.11. The zeta integral ζ(s, ω; f) is understood as a functional operating on a Schwartz
function f , but we can fix ω, f and let vary the complex number s in the half plane ℜ(s) > −ℜ(ω).
Here, ζ(s, ω; f) defines a holomorphic function: for all s0 with real part ℜ(s0) > ℜ(ω), we can
express |x|s as a power series centered in s0

|x|s = |x|s0
∞∑︂
n=0

logn|x|
n!

(s− s0)n

and use it to obtain a power series representation of the zeta integral

ζ(s, ω; f) =

∞∑︂
n=0

(s− s0)n

n!

∫︂
k×
f(x)ω(x)|x|s0 logn|x| d×x . (4.1)
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The verification that the sum can be interchanged with the integral and that the power series (4.1)
has a positive radius of convergence is reduced to the estimate of the integral∫︂

k×

⃓⃓
log|x|

⃓⃓n
∞

n!

⃦⃦
f(x)

⃦⃦
·|x|ℜ(s0)+ℜ(ω)

d×x .

This is accomplished in a way similar to calculations made in the proof of Lemma 4.2.3. On the
open set of elements x with |x| > 1 we can control the integral of

logn|x|
n!

⃦⃦
f(x)

⃦⃦
·|x|ℜ(s0)+ℜ(ω)

uniformly in n thanks to the properties of f as a Schwartz function. On the compact ball of elements
x with |x| ≤ 1 we can ignore f(x) and calculate∫︂

0<|x|≤1

⃓⃓
log|x|

⃓⃓n
∞

n!
|x|ℜ(s0)+ℜ(ω)

d×x

explicitly. We would get a value bounded uniformly in n by a constant that depends on ℜ(s0)+ℜ(ω).
Now, we can use the knowledge gained on the local zeta integral to analyse its global version.

Let K be a global field with adèle ring A and denote the places of K by ν as always. Let ω = ⊗νων
be a character of the group A× and f = ⊗νfν a standard function in the space S (A). Let ζ(s, ω; f)
be the global zeta integral. Since f is factorizable, ζ(s, ω; f) is a product of integrals∫︂

A×
f(x)ω(x)|x|s d×x =

∏︂
ν

∫︂
K×

ν

fν(xν)ων(xν)|xν |sν d
×xν ,

where the reader may recognize the local zeta integral

ζ(s, ων ; fν) =

∫︂
K×

ν

fν(xν)ων(xν)|xν |sν d
×xν

as the factor corresponding to the place ν. If necessary, a subscript ν will be added in the notation
to emphasise when the zeta integral is global or local. We do the same for the L-functions:

Lν(s, ων) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

1− ων(πν)q−sν
if ν is non-archimedean and ων is unramified,

1 if ν is non-archimedean and ων is ramified,

π− s
2 Γ
(︁
s
2

)︁
if Kν = R and ων(xν) = x−nν , n ∈ {0, 1},

(2π)
1−s

Γ(s) if Kν = C and ων(xν) = x−nν or ων(xν) = x−nν , n ∈ N .

Definition 4.2.12. For a finite set of places S, define

LS(s, ω) :=
∏︂
ν /∈S

Lν(s, ων)

for s in the right half-plane ℜ(s) > 1−ℜ(ω).
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The condition ℜ(s) > 1 − ℜ(ω) is necessary to make the product converge absolutely. The
function LS(s, ω) is holomorphic and non-vanishing.

Theorem 4.2.13. Let K be a global field and ω a character of its adèle ring A. Suppose that
ℜ(ω) > 1, then the global zeta integral

ζ(ω) : S (A) −→ C , f ↦−→ ζ(ω; f)

defines a non-zero ω-eigendistribution.

Proof. By linearity of the integral, it is enough to test ζ(ω) against a standard Schwartz function
f = ⊗νfν . For all places ν, the real part of ων is σ := ℜ(ω) indipendently on ν. This is because
ω(x)|x|−σ is unitary and its local component at ν is ων(xν)|xν |−σν , which must also be unitary since
it is the composition of the global unitary character with the natural embedding K×

ν ↪→ A×. By
hypothesis, σ > 1, hence, from Theorem 4.2.10, we know that the local zeta integrals ζν(ων) are
well-defined ων-eigendistributions. Recall that, for almost all places ν of K, the local character ων
must be unramified and fν = 1Oν

. Let S be a finite set of places large enough to include:

all infinite places;

all the places ν such that fν ̸= 1Oν ;

every place ν such that ων is ramified.

Then

ζ(ω; f) =
∏︂
ν

ζν(ων ; fν)

=
∏︂
ν /∈S

Lν(0, ων) ·
∏︂
ν∈S

ζν(ων ; fν)

= LS(0, ω)
∏︂
ν∈S

ζν(ων ; fν)

and LS(0, ω) is finite and non-zero because 0 > 1−ℜ(ω), hence λ := L(0, ω)−1ζ(ω) is a well-defined
standard distribution in the space S ′(A) of the form ⊗νλν , where

λν =

{︄
ζν(ων) if ν ∈ S,
Lν(0, ων)

−1ζν(ων) if ν /∈ S.

The property ζ(ω) ∈ S ′(ω) follow easely from the fact that ζν(ων) ∈ S ′(ων) for all ν, as we are
going to see. If a ∈ A×, we can enlarge S by including the places ν for which aν /∈ O×

ν , then
a−1
ν ·fν = fν for all ν /∈ S because 1Oν is invariant under the action of O×

ν . By this, a−1 ·f is again
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a standard function of S (A), hence ζ(ω; a−1 · f) decomposes as a product.

⟨a · ζ(ω) , f⟩ = ⟨ζ(ω) , a−1 · f⟩ by duality,

= ζ(ω; a−1 · f)

=
∏︂
ν

ζν(ων ; a
−1
ν · fν) because a−1 · f is factorizable,

=
∏︂
ν

⟨aν · ζν(ων) , fν⟩ by duality again,

=
∏︂
ν

⟨ων(aν)ζν(ων) , fν⟩ because ζν(ων) ∈ S ′(ων),

= ⟨ω(a)ζ(ω) , f⟩.

This is enough to prove that ζ(ω) ∈ S ′(ω).

Observe that also in the global case, the zeta integral defines a non-vanishing holomorphic
function

ζ(s, ω; f)

in the complex variable s belonging to the right half-plane ℜ(s) > 1 − ℜ(ω). This follows from
Remark 4.2.11, as f is a linear combination of standard functions and, on a standard function, the
zeta integral is a product

ζ(s, ω;⊗νfν) = LS(s, ω)
∏︂
ν∈S

ζν(s, ων ; fν)

of a finite number of holomorphic functions, given a large enough finite set S of places.

4.3 Dimension of eigendistribution spaces

As anticipated at the end of Section 4.1, we will prove that the spaces of eigenditributions S ′(ω) are
one-dimensional, following an argument of A. Weil presented in the chapter [Kud04] written by S.
Kudla. The goal of the current section is to prove the following result: let k be a local field or a ring
of adèles, ω a character of k× and S ′(ω) the sub-space of S ′(k) consisting of ω-eigendistributions,

Theorem 4.3.1. The space S ′(ω) has dimension one as a vector space over C.

The strategy is to prove the local version of Theorem 4.3.1 since the result for the adèles can
be deduced from the local case. Let k be a local field and ω a character of its multiplicative group.
Note that the zeta integral ζ(ω; f) would have been naturally well-defined if we had considered it
on functions f with compact support in the open set k\{0}. Indeed, if ω is unitary and f ∈ Cc(k×),
the integral ∫︂

k×
f(x)ω(x) d×x

computes the Fourier transform of f at ω−1 relatively to the multiplicative group structure of k×.
The first step toward the proof of Theorem 4.3.1 consists of passing from S (k) and S ′(k) to spaces
of functions defined on the locally compact abelian group k× defining representations of it and try
to obtain uniqueness results for the sub-representations isomorphic to C(ω).
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Definition 4.3.2. Denote by D(k×) the space of functions f ∈ S (k) with compact support in
k \ {0}, called compactly supported smooth functions of k×. If k is non-archimedean, let D(k×) be
endowed with the topology that makes all linear forms continuous. If k is archimedean, D(k×) is
identified with the classical topological vector space of compactly supported smooth functions on
the open set Rn \ {0}, for n = 1, 2. Define the space of distributions on k× as the topological dual
D ′(k×) of D(k×).

Given a distribution λ ∈ S ′(k), we can consider its restriction to the sub-space D(k×), where it
defines an element of D ′(k×), denotet by λ|k× . The spaces D(k×) and D ′(k×) are representations
of k×, the action being defined in the same way as for S (k) and S ′(k). The space D ′(ω) makes
sense and consists of the distributions λ ∈ D ′(k×) such that a · λ = ω(a)λ for all a ∈ k×. It is
straightforward to note that the restriction of a distribution in S ′(ω) belongs to D ′(ω).

Lemma 4.3.3. For every character ω of k×, the complex vector space D ′(ω) is one-dimensional
and generated by the distribution

ω(x) d×x ,

i.e., given any λ ∈ D ′(ω), there is a complex number c such that

⟨λ , f⟩ = c

∫︂
k×
f(x)ω(x) d×x

for all functions f ∈ D(k×).

Proof. Let λ ∈ D ′(ω). If we pre-compose λ with the continuous, linear endomorphism

D(k×) −→ D(k×) , f ↦−→ ω−1f ,

given by point-wise multiplication of a function by the inverse of ω, we obtain a distribution λ̃
which is invariant by the action of k×, indeed, for all a ∈ k× and all f ∈ D(k×),

⟨a · λ̃ , f⟩ = ⟨λ̃ , a−1 · f⟩ by duality,

= ⟨λ , ω−1(a−1 · f)⟩ by definition of λ̃,

= ω(a)−1⟨λ , a−1 · (ω−1f)⟩ because ω is multiplicative,

= ω(a)−1⟨a · λ , ω−1f⟩ by duality again,

= ω(a)−1ω(a)⟨λ , ω−1f⟩ since λ ∈ D ′(ω),

= ⟨λ̃ , f⟩,

thus a · λ̃ = λ̃ for all a ∈ k×. If we could prove that λ̃ operates on functions as the Haar measure
multiplied by a constant complex number c, we would have

⟨λ , f⟩ = ⟨λ̃ , ωf⟩

= c

∫︂
k×
f(x)ω(x) d×x ,

as desired. We can assume without loss of generality that ω = 1 and proceed to prove that there is
a constant c ∈ C such that

⟨λ , f⟩ = c

∫︂
k×
f(x) d×x (4.2)
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for all f ∈ D(k×). Note that, if λ extends to a k×-invariant, continuous functional on the space
Cc(k×), then it defines a (complex-valued) Haar measure, hence it must be proportional to d×x by
the uniqueness of the Haar measure on locally compact abelian groups. In the non-archimedean
case, one can prove that λ is of the form (4.2) by working directly with the functions f ∈ D(k×)
expressed in the simple form of Remark 4.1.2. An argument following these lines can be found in
the proof of Proposition 4.3.2 of [Bum97]. For k archimedean, we have that the additive group of k
and the multiplicative group k× are locally isomorphic, so λ can be pulled back locally on k. The
fact that λ is invariant by the action of k× implies that its local pull-backs are locally invariant
by translation on k. Hence λ is locally constant on k×. In particular, all its derivatives are zero,
implying that λ extends to Cc(k×).

From Lemma 4.3.3, we have that for any λ ∈ S ′(ω), there is a complex number c ∈ C such that
the restriction λ|k× is equal to cω(x) d×x. This means that

⟨λ , f⟩ = cζ(ω; f)

for all Schwartz functions f whith compact support contained in k×. For other distributions
λ′ ∈ S ′(ω) with λ′|k× = cω(x) d×x, we have that λ − λ′ is an ω-eigendistribution which vanishes
on the space D(k×). The kernel of the restriction map from S ′(k) to D ′(k×) is the space of
distributions supported at 0, denoted by S ′

0(k), its intersection with S ′(ω) is denoted by S ′
0(ω).

For k non-archimedean, S ′
0(k) is generated by the Dirac delta distribution δ0 wich sends a function

f ∈ S (k) to f(0). Indeed, if λ ∈ S ′(k) is a non-zero distribution that vanishes on D(k×), then

⟨λ , f − f(0)g(0)−1g⟩ = 0 (4.3)

for all f ∈ S (k), where g is a fixed Schwartz function such that ⟨λ , g⟩ ̸= 0. This is because
f − f(0)g(0)−1g is locally constant with compact support and vanishes in zero, hence it vanishes
on a whole neighbourhood of it and this ensures that f − f(0)g(0)−1g belongs to D(k×). From
Equation 4.3 we obtain

λ = g(0)−1⟨λ , g⟩δ0 .

For k archimedean, it is known that the derivatives of δ0 generate the space of distributions sup-
ported at 0.

Lemma 4.3.4. The space S ′
0(ω) is at most 1-dimensional. Precisely,

(i) if k is non-archimedean, then S ′
0(ω) ̸= 0 if and only if ω is the trivial character, in which

case S ′
0(ω) is generated by δ0;

(ii) if k = R, then S ′
0(ω) ̸= 0 if and only if ω is the character x−n for some n ∈ N, in which case

S ′
0(ω) is generated by the n-th derivative of δ0;

(iii) if k = C, then S ′
0(ω) ̸= 0 if and only if ω is of the form x−lx−m for some l,m ∈ N, in which

case S ′
0(ω) is generated by ∂l ∂

m
δ0, where ∂ and ∂ are the partial derivative in the variables

x and x respectively.

Proof. If k is a non-archimedean local field, the space S ′
0(k) is 1-dimensional and generated by δ0.

For all a ∈ k× we have a · δ0 = δ0 because the multiplication by a does not change the value of
a Schwartz function at the origin, thus δ0 is an ω-eigendistribution if and only if ω = 1. Suppose
k = R. Let ∂ be the derivative operator of distributions associated with the derivative of smooth
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functions on the real line. For all non-zero real number a and each function f ∈ S (R), the n-th
derivative of the function f(a−1x) in the variable x is a−nf (n)(a−1x), hence

⟨a · ∂nδ0 , f⟩ = ⟨∂nδ0 , a−1 · f⟩
= (−1)n⟨δ0 , a−n(a−1 · f (n))⟩
= a−n(−1)nf (n)(0)
= ⟨a−n∂nδ0 , f⟩.

If λ =
∑︁N
j=0 cj∂

jδ0 is a general element of S ′
0(R), we have that

a · λ =

N∑︂
j=0

a−j∂jδ0 ,

thus the property a · λ = ω(a)λ is satisfied for each a ∈ R× if and only if there is a n ∈ {0, . . . , N}
such that ω(a) = a−n for all a ∈ R× and cj = 0 for all j ̸= n. The case of k = C is analogous.

The restriction of distributions produces an exact sequence of vector spaces

0 S ′
0(ω) S ′(ω) D ′(ω) = Cω(x) d×x .

By lemmas 4.3.3 and 4.3.4, we deduce a bound on the dimension of S ′(ω): it has at most dimension
1 if S ′

0(ω) = 0, and it has at most dimension 2 otherwise. Observe that S ′
0(ω) ̸= 0 never happens

if ℜ(ω) > 0. In this domain, we gave a non-zero ω-eigendistribution, namely ζ(ω), thus Theorem
4.3.1 is true for ℜ(ω) > 0. To complete the proof, we search for a holomorphic extension of

ζo(s, ω; f) := L(s, ω)−1ζ(s, ω; f)

to the whole complex plane and prove that the distribution ω(x) d×x does not extends to an ω-
eigendistribution when S ′

0(ω) ̸= 0.

The non-archimedean case.

Let k be non-archimedean. The zeta integral is well-defined when the real part of the character ω
is positive, and

L(ω)−1ζ(ω) = ζ(ω)− ω(π)ζ(ω)

in case ω is unramified. Since ζ(ω) ∈ S ′(ω), the equality ω(π)ζ(ω) = π · ζ(ω) holds. This mean
that the distribution ζo(ω) := L(ω)−1ζ(ω) operates on functions f ∈ S (k) in the following way:

ζo(ω; f) =

∫︂
k×

[︂
f(x)− f(π−1x)

]︂
ω(x) d×x .

The function f(x) − f(π−1x) is locally constant with compact support, moreover, it vanishes on
x = 0, thus on a whole neighbourhood of it. In other words, the image of the linear map

S (k) −→ S (k) , f ↦−→ f − (π−1 · f)
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is contained in the smaller space D(k×), therefore it is immediate to check that the map

ζo(ω) : S (k) −→ C , f ↦−→
∫︂
k×

[︂
f(x)− f(π−1x)

]︂
ω(x) d×x

is a well-defined ω-eigendistribution for every character ω. If fo = 1O, the function f − (π−1 · f)
is equal to 1O× , implying

ζo(ω; fo) =

∫︂
O×

ω(x) d×x .

When ω is unramified, ζo(ω; fo) is equal to the measure of O×, hence ζo(ω) is a non-zero ω-
eigendistribution for every unramified character ω. Moreover, the value ζo(ω; fo) does not depend
on the unramified character ω, thus the holomorphic function ζo(s, ω; fo) in the variable s is constant
and non-zero. The relation ζ(s, ω) = L(s, ω)ζo(s, ω) provides the meromorphic extension of ζ(s, ω)
to the whole complex plane, with the same poles of L(s, ω).

When the character ω is ramified, the integral of ω over O× is zero. From this fact, one obtains
an extension of ζ(s, ω) to ℜ(s) ≤ −ℜ(ω) in a way that resembles the principal value of integrals
with singularities on the real line. Define Bn as

Bn =
{︁
x ∈ k : |x| < q−n

}︁
,

where q is the cardinality of the residue field of k. The family {Bn : n ∈ N} is a basis of open
neighbourhoods 0 ∈ k, hence, for every function f ∈ S (k), there is a positive integer n such that

f |Bn
= f(0)1Bn

.

Suppose that ω is a ramified character with ℜ(ω) > 0, the zeta integral of ω and 1Bn
is zero, indeed∫︂

Bn

ω(x) d×x =
∑︂
j≥n

∫︂
πjO×

ω(x) d×x

=

⎛⎝∑︂
j≥n

ω(π)j

⎞⎠∫︂
O×

ω(x) d×x ,

the integral of ω on O× is zero by Example 2.2.5, while the sum is finite because ω(π) lies in the
circle of radius q−ℜ(ω). Therefore, for any f ∈ S (k) there exists a n ∈ N such that∫︂

k×
f(x)ω(x) d×x =

∫︂
k\Bn

f(x)ω(x) d×x

and for every integer l > n, we have∫︂
k\Bl

f(x)ω(x) d×x−
∫︂
k\Bn

f(x)ω(x) d×x = f(0)

∫︂
Bn\Bl

ω(x) d×x

= f(0)

⎛⎝ l∑︂
j=n

ω(π)j

⎞⎠∫︂
O×

ω(x) d×x

= 0 .
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This last computation shows that the value of the integral∫︂
k\Bj

f(x)ω(x) d×x

stabilizes if j is large enough, additionally, it also makes sense for ramified character ω with
ℜ(ω) ≤ 0. Through these observations, we see that the distribution defined by

ζo(ω; f) := lim
n→∞

∫︂
k\Bn

f(x)ω(x) d×x , (4.4)

for all f ∈ S (k), is a well-defined ω-eigendistribution for every ramified character ω and it gives
the holomorphic continuation of ζo(s, ω) to all ramified characters. If one set fo = ω−11O× , the
equality

ζo(s, ω; fo) = 1

holds for all s ∈ C and all ramified characters ω, so ζo(s, ω) is a non-zero distribution.
It remains to prove that S ′(ω0) is one-dimensional, where ω0 is the trivial character of k×. The

modified zeta integral ζo(ω0) defines a non-zero ω0-eigendistribution which is trivial on the space
D(k×): if f is a locally constant function with compact support in k×, then the integral ζ(ω0; f) is
finite and

ζo(ω0; f) = ζ(ω0; f)− ζ(ω0;π
−1 · ω0)

= ζ(ω0; f)− ω0(π)ζ(ω0;ω0)

= 0.

This means that ζo(ω0) belongs to the space S ′
0(ω0), which is generated by δ0 as we saw in Lemma

4.3.4. So ζo(ω0) is a constant multiple of the Dirac delta. A direct computation of ζo(ω0;1O)
shows that the constant must be the measure of O×, hence, up to rescaling the multiplicative Haar
measure,

ζo(ω0) = δ0 .

We have to show that S ′(ω0) = S ′
0(ω0) and this is obtained by showing that any distribution

λ which has a non-zero restriction to k× is not invariant by the action of k×. The argument
provided in [Kud04] proceed as follows: let V be the pre-image of D ′(ω) under the restriction of
distributions to k×. It is a two-dimensional vector space generated by δ0 and any distribution λ
such that λ|k× = c d×x for some non-zero constant c ∈ C. The argument consists in showing that V
is an indecomposable two-dimensional representation of k×, even more, the representation factors
through the quotient k×/O× ∼= Z and it is isomorphic to the representation

Z −→ GL(2,C) , n ↦−→
(︃
1 −n
0 1

)︃
. (4.5)

This would prove that S ′(ω0) = S ′
0(ω0) because S ′(ω0) is a sum of trivial representations of k×

which is contained in the two-dimensional space V and contains S ′
0(ω0). Since it can not be equal

to the indecomposable representation V , it must be equal to the space generated by δ0. Let us
prove that V is isomorphic to the representation given in Equation 4.5 providing a basis {δ0, λ0}
on which an element a ∈ k× operates via the matrix(︃

1 − ordp(a)
0 1

)︃
.
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Let λ0 be defined by

⟨λ0 , f⟩ :=
∫︂
k×

[︁
f(x)− f(0)1O(x)

]︁
d×x

for all f ∈ S (k). Its restriction to k× is the distribution d×x, thus {δ0, λ0} is a basis of V . Let
a ∈ k× and consider the distribution a · λ0. Its restriction to k× is again d×x because f(a−1x) −
f(0)1O(a

−1) = f(a−1x) for all functions f ∈ D(k×) and the integral of f(a−1x) over k× is equal
to that of f(x). This implies that λ0 and a · λ0 differs by a constant c(a) times the Dirac delta,
therefore a acts on the space V with basis {δ0, λ0} via the matrix(︃

1 c(a)
0 1

)︃
.

The map a ↦→ c(a) defines a homomorphism from k× to the additive group of complex numbers,
indeed

c(a1a2)δ0 + λ0 = (a1a2) · λ0
= a1 · (c(a2)δ0 + λ0)

= c(a2)δ0 + c(a1)δ0 + λ0 .

This shows that V is a sub-representation of S ′(k) and we have to determine the homomorphism
c. The distribution λ0 is invariant by the action of O× because a−1f −f(0)1O = a−1 · (f −f(0)1O)
for all a ∈ O× and all f ∈ S (k), thus c(O×) = 0 and the homomorphism c is determined by its
value at π. The value c(π) is obtained by the following computation:

c(π) = ⟨c(π)δ0 ,1O⟩
= ⟨π · λ0 − λ0 ,1O⟩,

=

∫︂
k×

[︂
1O(π

−1x)− 1O(x)
]︂
d×x−

∫︂
k×

[︁
1πO(x)− 1O(x)

]︁
d×x

= −
∫︂
O×
d×x ,

so, up to rescaling the Haar measure of k×, we have c(π) = −1.
At this point, Theorem 4.3.1 is proved for all non-archimedean local fields.

The archimedean case

Recall the classification of local characters given in Theorem 3.5.8. For k = R, all characters are of
the form (s, ωn) := ωn|·|s, where

ωn(x) = x−n

for all x ∈ R× and n ∈ Z. The representation of the character is not unique:

(s, ωn) = (s+ 2, ωn+2) ,

and (s, ωn), for n = 0, 1, parametize bijectively the whole space of characters. For k = C, every
character is of the form (s, ωn,m) := ωn,m|·|s, where

ωn,m(x) = x−nx̄−m
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for all x ∈ C×, and n,m ∈ Z. This representation of the complex characters is subject to the
relation

(s, ωn,m) = (s+ 1, ωn+1,m+1) ,

and every character is of the form (s, ωn,m) for a unique triple (s, n,m) provided that n,m ∈ N and
at least one between n and m is zero. In the real case, the zeta integral ζ(s, ωn) is a well-defined
and non-zero (s, ωn)-eigendistribution generating the space S ′(s, ωn) when ℜ(s) > n. The same
is true in the complex case: for ℜ(s) > n + m, the zeta integral ζ(s, ωn,m) generates the space
S ′(s, ωn,m). In the non-archimedean case, the derivation operator helps to extend the zeta integral
beyond its natural domain. Let us see this for k = R, as the case of C is analogous. Denote by ∂
the derivative of R with respect to the variable x. For every function f ∈ S (R) and every complex
number s with ℜ(s) > n+ 1, the function

f(x)x−n|x|s

is continuously differentiable on R and goes to zero at infinity. Its derivative is

∂
[︁
f(x)x−n|x|s

]︁
= f ′(x)x−n|x|s − nf(x)x−(n+1)|x|s + sf(x)x−n|x|s−1 x

|x|
. (4.6)

Integrating the functions of Equation (4.6) we obtain a relation between zeta integrals,

0 = ζ(s+ 1, ωn; f
′)− nζ(s+ 1, ωn+1; f) + sζ(s− 1, ωn−1; f) .

In therm of distributions, we have

∂ζ(s+ 1;ωn) = (s− n)ζ(s− 1, ωn−1) (4.7)

using the fact that (s− 1, ωn−1) and (s+ 1, ωn+1) represent the same character. Equation (4.7) is
valid for n ∈ Z and s ∈ C satisfying ℜ(s) > n + 1. Note that the left-hand side is well-defined for
ℜ(s) > n− 1 and we can use this to extend the zeta integral: for the trivial character ω0,

ζ(s, ω0) :=
1

s
∂ζ(s+ 2, ω1) for − 1 < ℜ(s) ≤ 0,

defines a meromorphic extension of ζ(s, ω0) to the right half-plane ℜ(s) > −1 with possibly a simple
pole at s = 0. For the character ω1,

ζ(s, ω1) :=
1

s− 1
∂ζ(s, ω0) for 0 < ℜ(s) ≤ 1,

defines a meromorphic extension of ζ(s, ω1) to ℜ(s) > 0. By induction, we get a formula for the
extension of ζ(s, ω0) to for ℜ(s) > −2N , given N ∈ N arbitrarily large:

ζ(s, ω0) =

⎛⎝N−1∏︂
j=0

1

(s+ 2j)(s+ 2j + 1)

⎞⎠ ∂2Nζ(s+ 2N,ω0) .

This extends ζ(s, ω0) meromorphically to the whole complex plane with simple poles at s = −2j
for all j ∈ N. There are no poles for s = −1 − 2j because the simple poles of (s + 2j + 1)−1 are

96



canceled by the zeros of ∂2Nζ(s+ 2N,ω0):⟨︂
∂2Nζ(2N − 2j − 1, ω0) , f

⟩︂
=

∫︂
R×

∂2Nf(x) |x|2(N−j)−1
d×x

=

∫︂
R
∂2Nf(x)x2(N−j−1) dx

= (2N − 2j − 2)!

∫︂
R
∂2(j+1)f(x) dx

= 0 .

For the zeta integral relative to the character ω1, the relation ζ(s, ω1) = (s − 1)−1∂ζ(s, ω0) gives
the meromorphic extension to the whole complex plane. Note again that the pole of (s − 1)−1 is
canceled by the zero of ∂ζ(s, ω0) at s = 1, indeed

ζ(s, ω0; ∂f) =

∫︂
R
∂f(x) dx = 0 .

Note the overlapping between the poles of ζ(s, ωn), for n = 0, 1, and the poles of π−s/2Γ(s/2).
Indeed, if we define

ζo(s, ω0) :=
π

s
2

Γ
(︁
s
2

)︁ζ(s, ω0) ,

ζo(s, ω1) :=
π

s
2

Γ
(︁
s
2

)︁ζ(s, ω1) ,

we obtain two entire (distribution-valued) functions. Moreover

ζo(s, ωn; f
o) = 1

for all s ∈ C, where
fo(x) = xne−πx

2

, n = 0, 1 .

Hence, the distribution ζo(s, ωn) is a non-zero vector of the space S ′(s, ωn).
When k = C, we have the following relations between the zeta integral and the derivatives ∂, ∂̄:

∂ζ(s, ωn,m) = (s− 1− n)ζ(s, ωn+1,m)

∂̄ζ(s, ωn,m) = (s− 1−m)ζ(s, ωn,m+1) .

Using them we obtain the meromorphic extension of the zeta integral. Moreover, for n,m ∈ N with
n = 0 or m = 0, the distribution

ζo(s, ωn,m) :=
(2π)

s−1

Γ(s)
ζ(s, ωn,m)

is entire and non-zero, as
ζo(s, ωn,m; fo) = 1

for
fo(x) = xnx̄me−2πxx̄ .
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It remains to prove that S ′(ω) = S ′
0(ω) in the cases of Lemma 4.3.4. We give the idea of the

proof for the case k = R since the complex case is similar. Consider the trivial character ω0. Let
V0 be the inverse image of D ′(ω0) under the restriction morphism S ′(R)→ D(R×). The complex
vector space V0 is generated by the Dirac delta δ0 and the extensions of d×x to S ′(R). Note that
the distribution d×x extends without effort to the space S (R; δ0) of functions f ∈ S (R) such that

f(0) = 0. This is because the smoothness of f implies that the function f(x)|x|−1
is bounded in a

neighbourhood of x = 0 when f(0) = 0, so the integral∫︂
R×

f(x) d×x =

∫︂
R

f(x)

|x|
dx

is finite. If g is a fixed even bump-function of the real line with g(0) = 1, the distribution λ0 defined
by

⟨λ0 , f⟩ :=
∫︂
R×

[︁
f(x)− f(0)g(x)

]︁
d×x , for all f ∈ S (R) ,

is a well-defined extension of d×x from S (R; δ0) to S (R). A basis of V0 is given by {δ0, λ0} and
we have to understand how R× acts on λ0. Let a be a non-zero real number, then

⟨a · λ0 , f⟩ =
∫︂
R×

[︂
f(a−1x)− f(0)g(x)

]︂
d×x

=

∫︂
R×

[︁
f(x)− f(0)g(ax)

]︁
d×x ,

from which it follows that a · λ0 = λ0 if a = −1 and

⟨a · λ0 , f⟩ = ⟨λ0 , f⟩ for all f ∈ S (R; δ0).

The space of distribution that is trivial on S (R; δ0) is precisely the one generated by δ0. Then

a · λ0 = λ0 + c(a)δ0 .

We have to prove that c(a) ̸= 0. Consider the difference a ·λ0−λ0. It acts on a function f ∈ S (R)
by

⟨λ0 , (a−1 · f) − f ⟩ =
∫︂
R

f(a−1x)− f(x)
|x|

dx .

Observe that the value of the integral depends only on f(0) because a · λ0 − λ0 = c(a)δ0. Choose a
sequence (fj)j∈N of Schwartz functions fj approximating the characteristic function 1(−1,1) of the

interval (−1, 1). Then

lim
j→∞

∫︂
R

fj(a
−1x)− fj(x)
|x|

dx =

∫︂
R

1(−1,1)(a
−1x)− 1(−1,1)(x)

|x|
dx

= 2

∫︂ ∞

0

1(0,|a|)(x)− 1(0,1)(x)

x
dx

= log(a2)

Therefore V0 is a representation of R× isomorphic to the indecomposable 2-dimensional represen-
tation

R× −→ GL(2,C) , a ↦−→
(︃
1 log(a2)
0 1

)︃
,
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thus S ′(ω0) must coincide with the 1-dimensional space generated by the Dirac delta δ0.
Now consider the character ω1(x) = x−1. The space D ′(ω1) is generated by the distribution

x−1d×x. The latter extends without effort to the space S (R; δ0, ∂δ0) of functions f ∈ S (R) such
that both f and its derivative vanishes at x = 0. Note that for the functions f in the latter space
we have ∫︂

R×

f(x)

x
d×x =

∫︂
R×

∂f(x) d×x ,

so λ1 := −∂λ0 is an extension of x−1d×x to the space S (R). It’s easy to verify that for any a ∈ R×

and any distribution λ ∈ S ′(R), the the actions of a and ∂ on λ are related by

a(a · ∂λ) = ∂(a · λ) .

In other terms, the diagram

S ′(R) S ′(R)

S ′(R)

S ′(R) S ′(R)

S ′(a)

∂

∂

S ′(a)

Scl(a)

is commutative, where S ′(a) is the action of a on S ′(R) and Scl(a) is the scalar multiplication by
a. From this, we can reconstruct the action of R× on λ1 from the action of the same group on λ0
as follows:

a · λ1 = −a−1∂(a · λ0)
= −a−1∂(λ0 + log(a2)δ0)

= a−1λ1 − a−1 log(a2)∂λ0

= ω1(a)λ1 − log(a2)ω1(a)∂δ0 .

Then λ1 /∈ S ′(ω1) and the space S ′(ω1) must be equal to the 1-dimensional space generated by
∂δ0. It should be clear how we can prove inductively that S ′(ωn) = C ∂nδ0 for all n ∈ N.

The global case

Let K be a global field with adèles ring A. Given a character of the idèles ω = ⊗νων , we have an
ων-eigendistribution ζ

o
ν (s, ων) for each place ν of K. For almost all ν, the value of the distribution

ζoν (s, ων) against the function 1Oν
is 1, so

ζo(s, ω) :=
⨂︂
ν

ζoν (s, ων)

is a standard distribution in the space S ′(s, ω). To conclude the proof of Theorem 4.3.1, one
observes that any distribution is a C-linear combination of standard distributions λ = ⊗νλν , and
each λν is determined by λ up to a scalar (see the discussion between Lemma 4.1 and Theorem
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4.2 in [Kud04]). If λ belongs to S ′(s, ω), then each local distribution λν belongs to S ′(s, ων).
As a consequence, λ is a scalar multiple of ζo(s, ω). For every ν, let foν be the function of the
space S (Kν) defined in the examples 4.2.4, 4.2.5, 4.2.6, 4.2.7 and 4.2.8, associated with the local
character ων . It satisfies ζoν (s, ων ; f

o) = 1 and for almost all places ν, the function fo is equal to
the characteristic function of the local ring Oν . Let fo := ⊗νfoν . Then fo is a standard Schwartz
function of A and

ζo(s, ω; fo) =
∏︂
ν

ζoν (s, ων ; f
o
ν )

= 1

for all s ∈ C, which ensures that ζo(s, ω) is a non-zero vector of S ′(s, ω).

4.4 The functional equation

We are now ready to approach the main application of the whole setting: the analytic continuation
and functional equation of the zeta integral and L-functions attached to idèle class characters.

Let K be a global field, A its ring of adèles, ψ a non-trivial additive character of A which is
trivial on K and dx the self-dual measure. All local data attached to a place ν of K are indicated
with a sub-script ν as before. Let ω = ⊗νων be an idèle class character. The distribution ζoν (s, ων)
constructed in Section 4.3 for the local field Kν , defines a basis vector for the one-dimensional
vector space S ′(s, ων). The local zeta integral ζν(s, ων) is also an (s, ων)-eigendistribution, so it is
a scalar multiple of ζoν (s, ων), precisely

ζν(s, ων) = Lν(s, ων)ζ
o
ν (s, ων) ,

and this defines the meromorphic continuation of the local zeta integral to the left half-plane
ℜ(s) ≤ ℜ(ω). The distribution

ζo(s, ω) =
⨂︂
ν

ζoν (s, ων)

is an (s, ω)-eigendistribution. For ℜ(s) > 1 − ℜ(ω), the zeta integral ζ(s, ω) is a well-defined,
non-zero (s, ω)-eigendistribution. Moreover

ζ(s, ω) =
⨂︂
ν

ζν(s, ων)

=
⨂︂
ν

Lν(s, ων)ζ
o
ν (s, ων)

=

(︄∏︂
ν

Lν(s, ων)

)︄
ζo(s, ω) .

For ℜ(s) > 1−ℜ(ω), define the completed global L-function as the product

Λ(s, ω) :=
∏︂
ν

Lν(s, ων)

of the local L-functions. It is the factor of proportionality between ζ(s, ω) and ζo(s, ω):

ζ(s, ω) = Λ(s, ω)ζo(s, ω) . (4.8)
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At the local level, a functional equation appears due to the Fourier transform. Theorem 4.1.7 asserts
that the Fourier transform induces an isomorphism between the spaces S ′(s, ων) and S ′(1−s, ω−1

ν ).
Hence, the Fourier transform of ζoν (1 − s, ω−1

ν ) is an element of S ′(s, ων), but this space is one-
dimensional by Theorem 4.3.1. Therefore, there is a scalar εν(s, ων) such that

ˆ︂ζoν (1− s, ω−1
ν ) = εν(s, ων)ζ

o
ν (s, ων) .

The factor of proportionality is called local epsilon factor and it is an invertible holomorphic function
in the variable s which can be calculated explicitly via

εν(s, ων) = ζoν (1− s, ω−1
ν ;ˆ︂foν ) .

If S is a finite set of places containing every ν such that:

ν is infinite,

or the conductor of ψν is different from Oν ,

or ων is ramified,

then, for all ν /∈ S, the function foν is the characteristic function of Oν , it is its own Fourier transform
and

εν(s, ων) = ζoν (1− s, ω−1
ν ;1Oν

)

= 1 .

The global epsilon factor is the product

ε(s, ω) :=
∏︂
ν

εν(s, ων) (4.9)

of the local ones. Since local epsilon factors are equal to 1 for almost all places, the product (4.9)
involves only a finite number of terms. The definition of the adèlic distribution ζo(s, ω) in terms of
its local versions produces a functional equation of the form

ˆ︂ζo(1− s, ω−1) = ε(s, ω) ζo(s, ω). (4.10)

The local epsilon factors may depend on the choice of the character ψ, as εν(s, ω) is an integral
that depends on the local measure dxν and the function integrated is a Fourier transform which

depends on the local character ψν . If ψ
′ is another character coming from the group ˆ︁A/K, then

εν(s, ων , ψ
′
ν) = |a|

s− 1
2

ν ων(a) εν(s, ων , ψν) , (4.11)

where a ∈ K× is the unique principal idèles such that ψ′(x) = ψ(ax) for all x ∈ A. The global
epsilon factor, instead, does not depend on the character ψ precisely because of relation (4.11):

ε(s, ω, ψ′) =
∏︂
ν

εν(s, ων , ψ
′
ν)

=
∏︂
ν

(︂
|a|s−

1
2

ν ων(a) εν(s, ων , ψν)
)︂

= |a|s−
1
2 ω(a) ε(s, ω, ψ)

= ε(s, ω, ψ) ,

101



where the last equality holds because the character ω is an idèle class character and the idèlic norm is
trivial on K×. Since both Λ(s, ω) and ζ(s, ω) are defined only in the right half-plane ℜ(s) > −ℜ(ω),
the well-defined distribution ζo(s, ω) with its functional equation wouldn’t be enough to obtain the
analytic continuation of the global L-function and its functional equation. The turning point comes
from the existence of the analytic continuation of the zeta integral to the whole complex plane,
together with the nicest possible functional equation for its Fourier transform. Precisely,

Theorem 4.4.1. Let ω be an idèle class character. Then the zeta integral ζ(s, ω) admits a mero-
morphic extension to all s in the complex plane except for simple poles which occur precisely when
ω|·|s is equal to the trivial character or the idèlic norm. Moreover, the Fourier transform of the
zeta integral satisfies the functional equation

ˆ︂ζ(1− s, ω−1) = ζ(s, ω) . (4.12)

Before presenting the proof of Theorem 4.4.1, let us look at its consequence. Equation (4.12) is
an identity of distributions, so

ζ(1− s, ω−1; ˆ︁f) = ζ(s, ω; f) (4.13)

for all f ∈ S (A). Consider the case f = fo. On the right-hand side of Equation (4.13) we have

ζ(s, ω; fo) = Λ(s, ω)

by Equation (4.8) relating the global zeta integral with ζo(s, ω), giving Λ(s, ω) the analytic contin-
uation to the whole complex plane. On the left-hand side of Equation (4.13) we have

ζ(1− s, ω−1;ˆ︂fo) = Λ(1− s, ω−1)ζo(1− s, ω−1;ˆ︂fo) again by Equation (4.8),

= Λ(1− s, ω−1)ε(s, ω) by the functional equation (4.10) of ζo(s, ω).

Therefore, we obtain the following result for the completed global L-function:

Corollary 4.4.2. Let ω be an idèle class character. Then the completed global L-function Λ(s, ω)
admits an analytic extension to the whole complex plane, except for complex numbers s such that
ω|·|s is equal to the trivial character or the idèlic norm, where Λ(s, ω) has a simple pole. Moreover,
Λ(s, ω) satisfies the functional equation

Λ(s, ω) = ε(s, ω)Λ(1− s, ω−1) .

Proof of Theorem 4.4.1

The analytic continuation of the zeta integral with its functional equation is a deep consequence of
the self-duality of the global field K inside its ring of adèles. The fact that ω is trivial on the group
of principal idèles means that the zeta integral is really an integral over the idèle class group. If E
is a Borel subset of A× such that

E −→ A×/K× , x ↦−→ xK×

is a bijection, then ∫︂
A×

f(x)ω(x)|x|s d×x =
∑︂
y∈K×

∫︂
E

f(xy)ω(xy)|xy|s d×x

=

∫︂
E

⎛⎝ ∑︂
y∈K×

f(xy)

⎞⎠ω(x)|x|s d×x .
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Integration over E defines a Haar measure of A×/K× still denoted by d×x, so that we may write

ζ(s, ω; f) =

∫︂
A×/K×

f×(x)ω(x)|x|s d×x ,

where the variable x takes values in A× (mod K×) and f× is defined by the sum

f×(x) =
∑︂
y∈K×

f(xy) .

Let ˆ︁f× be the function of A×/K× defined by

ˆ︁f×(x) = ∑︂
y∈K×

ˆ︁f(xy)
for all x. The reason behind the existence of the functional equation of the zeta integral is the
relation

f×(x) = −f(0) +|x|−1 ˆ︁f(0) +|x|−1 ˆ︁f×(x−1) (4.14)

implied by a Poisson summation formula for the adèles, as we are going to show. Equip K with the
counting measure and A/K with the unique Haar measure µ for which µ(A/K) = 1. From what we
observed at the end of Section 2.2, the Haar measure dx of A is equal to a positive scalar multiple
of the measure constructed using those of K and A/K: there is a constant m such that, for every
f ∈ Cc(A), the integral of f over A is∫︂

A
f(x) dx = m

∫︂
A/K

f ♭ dµ , (4.15)

where f ♭ is the continuous function of A/K defined by

f ♭(x+K) =
∑︂
y∈K

f(x+ y) for all x ∈ K .

Equation 4.15 is true also for Schwartz functions. The constant m is the measure of a fundamental
domain of A/K, which is a Borel subset of A inducing a bijection with the quotient A/K. This is
often called the volume of A/K. The Haar measure dx, which is the self-dual measure associated
with the character ψ satisfying the hypothesis of Theorem 3.3.3, is special also in that A/K has
volume 1 with respect to it. A way to see this is by Poisson summation formula 2.2.8:∑︂

y∈K
f(y) = m

∑︂
y∈K

ˆ︁f(y) (4.16)

for all f ∈ S (A). The constant m appears because the Fourier transform of f is computed using
the measure dx instead of the measure compatible with the exact sequence induced by K ↪→ A.
Using Equation 4.16 a second time with ˆ︁f in place of f , one obtains∑︂

y∈K
f(y) = m2

∑︂
y∈K

f(y) .
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Since this holds for a sufficiently large family of functions f , we deduce that m2 = 1, and m = 1
because m is positive. Hence, the Poisson summation formula for A has the following form,∑︂

y∈K
f(y) =

∑︂
y∈K

ˆ︁f(y). (4.17)

The following result is an immediate consequence.

Proposition 4.4.3. Let f ∈ S (A). Then∑︂
y∈K

f(xy) = |x|−1
∑︂
y∈K

ˆ︁f(x−1y) (4.18)

for all idèles x.

Proof. Apply the Poisson summation formula (4.17) to the function x · f .

It is straightforward to see that the formula (4.18) is equivalent to the relation (4.14) involving

f× and ˆ︁f×. Proposition 4.4.3 is often referred to as Riemann-Roch Theorem. Indeed, if K is the
field of rational functions on a projective curve C defined over a finite field, the classical, geometric
Riemann-Roch theorem can be proved for C using the identity (4.18) for a suitable function f (see
Section 7.2 of [RV99]).

Returning to the integral ∫︂
A×/K×

f×(x)ω(x)|x|s d×x ,

we can express it as a double integral by choosing a section

ρ : T −→ A×/K×

of the idèlic norm, where T is the image of |·|. The morphism ρ induces an isomorphism

T ⊕ A×,1

K×
∼=

A×

K× , (t, x) ↦−→ ρ(t)x ,

which can be used for decomposing the measure of the idèle class group as a product of the measures
of T and the compact group A×,1/K×. If K is a number field, T = R×

+ and we give it the measure
d×t = t−1dt, where dt is the usual Lebesge measure of R. If K is a function field, instead, the group
T is a rank-one, free, discrete sub-group of R×

+ and we use the symbol d×t to indicate the counting
measure on T . If K has characteristic p, then there is a positive power q of the prime p such that

Z −→ T , n ↦−→ q−n

is an isomorphism. In both cases, define d×,1x to be the unique Haar measure on A×,1/K× such
that ∫︂

A×/K×
g(x) d×x =

∫︂
T

(︄∫︂
A×,1/K×

g(ρ(t)x) d×,1x

)︄
d×t

for all g ∈ Cc(A×/K×). Given the classification of idèle class character by Theorem 3.5.5, we can
suppose that ω is a unitary idèle class character induced by a unitary character χ of A×,1/K×.
Then, the zeta integral assumes the following form,

ζ(s, ω; f) =

∫︂
T

ts
∫︂
A×,1/K×

f×(ρ(t)x)χ(x) d×,1x d×t .

104



Lemma 4.4.4. Let ω be an idèle class character and f a function in the space S (A). For s ∈ C,
define ζ>(s, ω; f) to be the integral

ζ>(s, ω; f) :=

∫︂
x∈A×, |x|>1

f(x)ω(x)|x|s d×x .

Then ζ>(s, ω; f) is a holomorphic function in the variable s defined on the whole complex plane.

Proof. There is no loss of generality in assuming that ω is unitary. In the region of the idèles x
with |x| > 1 we have ⃦⃦

f(x)ω(x)|x|s
⃦⃦
C ≤

⃦⃦⃦
f(x)|x|max(ℜ(s),2)

⃦⃦⃦
C

for all s ∈ C. Then ⃦⃦
ζ>(s, ω; f)

⃦⃦
C ≤

∫︂
A×

⃦⃦⃦
f(x)|x|max(ℜ(s),2)

⃦⃦⃦
C
d×x (4.19)

and the integral on the right-hand side of the inequality 4.19 is finite. For the holomorphicity, the
argument is analogous to that of Remark 4.2.11.

The zeta integral splits in the sum of two terms:

ζ(s, ω; f) =

∫︂
T

ts
∫︂
A×,1/K×

f×(ρ(t)x)χ(x) d×,1x d×t

=

∫︂
t∈T, t≤1

ts
∫︂
A×,1/K×

f×(ρ(t)x)χ(x) d×,1x d×t + ζ>(s, ω; f) .

By Lemma 4.4.4 we see that the obstruction to the analytic extension of ζ(s, ω; f) is caused by
the integral over the region consisting of the idèles with idèlic norm near zero. The relation (4.14)
involving f× is the key to getting around the singularity of the integral. In addition, it makes
explicit the possible poles and the symmetry under the transformation (s, ω; f) ↦→ (1 − s, ω−1; ˆ︁f).
We are going to prove that the zeta integral has the following form:

ζ(s, ω; f) = ζ>(s, ω; f) + ζ>(1− s, ω−1; ˆ︁f)
+ c(K)

(︃∫︂
A×,1

f(x)χ(x) d×x +

∫︂
A×,1

ˆ︁f(x)χ(x)−1 d×x

)︃
+ V (χ)

(︂
P (s)f(0) + P (1− s) ˆ︁f(0))︂ , (4.20)

where

• χ is the restriction of ω to the compact group A×,1/K×;

• V (χ) is the integral of χ, so that V (χ) is equal to zero when χ is non-trivial and equal to the
measure of A×,1/K× otherwise;

• c(K) is a constant that is equal to zero if K is a number field, otherwise c(K) = 1
2 ;

• P (s) is a meromorphic function with simple poles at the values of s for which |·|s is trivial.

From Equation (4.20), it is easy to see that the zeta integral satisfies the properties stated in
Theorem 4.4.1.
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Lemma 4.4.5. If ω is a unitary idèle class character and s is a complex number with ℜ(s) > 1,
then, the identity∫︂

x∈A×, |x|<1

f(x)ω(x)|x|s d×x =

ζ>(1− s, ω−1; ˆ︁f) − f(0)
∫︂
x∈ A×

K× , |x|<1

ω(x)|x|s d×x + ˆ︁f(0)∫︂
x∈ A×

K× , |x|<1

ω(x)|x|s−1
d×x

holds for all f ∈ S (A).

Proof. Since ω|·|s is trivial on K× we have∫︂
x∈A×, |x|<1

f(x)ω(x)|x|s d×x =

∫︂
x∈ A×

K× , |x|<1

f×(x)ω(x)|x|s d×x .

By proposition 4.4.3 we have that∫︂
x∈ A×

K× , |x|<1

f×(x)ω(x)|x|s d×x =

∫︂
x∈ A×

K× , |x|<1

[︂
|x|−1 ˆ︁f×(x−1)− f(0) +|x|−1 ˆ︁f(0)]︂ω(x)|x|s d×x .

Through the transformation x ↦→ x−1 we obtain∫︂
x∈ A×

K× , |x|<1

|x|−1 ˆ︁f×(x−1)ω(x)|x|s d×x =

∫︂
x∈ A×

K× , |x|>1

ˆ︁f×(x)ω(x)−1|x|1−s d×x

=

∫︂
x∈A×, |x|>1

ˆ︁f(x)ω(x)−1|x|1−s d×x

= ζ>(1− s, ω−1; ˆ︁f)
and the claim follows from this.

Now we have to calculate the difference

∆(s, ω; f) := ζ(s, ω; f)− ζ>(s, ω; f)− ζ>(1− s, ω−1; ˆ︁f)
and show that it has the form given in Equation (4.20). The case of function fields has to be
considered separately from the case of number fields because the integral over the region |x| ≤ 1 is
not the same as the integral over the region |x| < 1 in the former case. Suppose that K is a function
field of characteristic p and that T =

{︁
q−n : n ∈ Z

}︁
is the image of the idèlic norm, where q is a

power of the prime p. Then

∆(s, ω; f) =

∫︂
A×,1/K×

f×(x)ω(x) d×x

− f(0)
∫︂
x∈ A×

K× , |x|<1

ω(x)|x|s d×x + ˆ︁f(0)∫︂
x∈ A×

K× , |x|<1

ω(x)|x|s−1
d×x ,
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where the integral over A×,1/K× appears because, in the function field case, the subset of idèle
classes x with |x| = 1 has non-zero measure inside the group A×/K×. Consider the integral of f×ω
over A×,1/K× and use Equation (4.14) on a half of it, so that one obtains∫︂

A×,1/K×
f×(x)ω(x) d×,1x =

1

2

∫︂
A×,1/K×

f×(x)ω(x) d×,1x +
1

2

∫︂
A×,1/K×

ˆ︁f×(x)ω(x)−1 d×,1x

− 1

2
f(0)

∫︂
A×,1/K×

ω(x) d×,1x +
1

2
ˆ︁f(0) ∫︂

A×,1/K×
ω(x) d×,1x

after a change of variables x ↦→ x−1 in the integral where ˆ︁f× appears. We now have the zeta
integral decomposed as a sum of a symmetric term

ζ>(s, ω; f) + ζ>(1− s, ω−1; ˆ︁f) +
1

2

∫︂
A×

f(x)ω(x) d×x +
1

2

∫︂
A×

ˆ︁f(x)ω(x)−1 d×x (4.21)

and a singular term. The singularity comes from the integral∫︂
x∈ A×

K× , |x|<1

ω(x)|x|z d×x

where z is equal to s or s− 1. As before, we can assume that ω(x) = χ(xρ(t)−1), where t = |x|, χ
is a unitary character of A×,1/K× and ρ : T → A×/K× is a section of the idèlic norm. Let

V (χ) :=

∫︂
A×,1/K×

χ(x) d×,1x ,

then ∫︂
x∈ A×

K× , |x|<1

ω(x)|x|z d×x =

∫︂
t<1

tz
∫︂
A×,1/K×

χ(x) d×,1x d×t

=

∞∑︂
n=1

q−nzV (χ)

=
V (χ)q−z

1− q−z
.

Therefore, the difference between the zeta integral and the term (4.21) is equal to

V (χ)

2

(︄
−f(0)− 2f(0)

q−s

1− q−s
+ ˆ︁f(0) + 2 ˆ︁f(0) q1−s

1− q1−s

)︄
,

which becomes
V (χ)

2

(︄
f(0)

1 + qs

1− qs
+ ˆ︁f(0)1 + q1−s

1− q1−s

)︄
(4.22)

after a simple algebraic manipulation. The expression (4.22) is symmetric, and we have

P (s) =
1

2
· 1 + qs

1− qs
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regarding the claimed symmetric formula (4.20) for the zeta integral. This proves the analytic
continuation and the functional equation for the zeta integral of a function field. If K is a number
field, then the image of the idèlic norm is R×

+ and the difference

∆(s, ω; f) = ζ(s, ω; f)− ζ>(s, ω; f)− ζ>(1− s, ω−1; ˆ︁f)
is simpler:

∆(s, ω; f) = −f(0)
∫︂
x∈A×/K×

ω(x)|x|s d×x+ ˆ︁f(0)∫︂
x∈A×/K×

ω(x)|x|s−1
d×x

= −f(0)
∫︂ 1

0

tsV (χ)
dt

t
+ ˆ︁f(0)∫︂ 1

0

ts−1V (χ)
dt

t

= −f(0)V (χ)

s
+ ˆ︁f(0)V (χ)

s− 1
,

where χ is the character of A×,1/K× inducing ω via a section ρ : R×
+ → A×/K× of the idèlic norm,

and V (χ) is its integral over the group A×,1/K×. Finally, we get the following identity for the zeta
integral in the case of a number field

ζ(s, ω; f) = ζ>(s, ω; f) + ζ>(1− s, ω−1; ˆ︁f)− V (χ)

(︄
f(0)

s
+
ˆ︁f(0)
1− s

)︄
(4.23)

and the main theorem is proved.
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