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UNIVERSITY OF PADUA

Department of Information Engineering (DEI)

Abstract

Information Engineering

An overview of Hidden Markov Models

by Amirreza Soltani

Hidden Markov Models (HMM’s) are mathematical models of uncertain phe-

nomena, well suited to describe complex dynamical behaviours. HMMs find

applications in a variety of fields in the areas of digital signal processing,

control, and pattern recognition. Popular as they have become, HMM’s still

offer a wealth of challenging theoretical problems. HMM’s are an ongoing

research topic in engineering, statistics, and probability.

The simplest probabilistic models of uncertain phenomena are independent

processes. The basic feature of these models is their lack of memory: the

present value of the process is not influenced by its past or future values.

Independent processes are adequate to represent the randomness of games

of chance or other simple physical phenomena, but are of limited use in de-

scribing true dynamic behaviors. One step above independent processes, in

the hierarchy of probabilistic models, one finds Markov chain (MC) mod-

els. The present value of a MC depends on a finite (bounded) number of its

most recent past values. If their memory size is correctly adjusted, MC’s can

be used to describe approximately phenomena with complex dynamical be-

haviour. Hidden Markov Models are at the top of this hierarchy. Roughly

speaking, HMM’s are processes that can be represented as functions of MC’s

with a finite number of states: if X(n) is a (finitely valued) MC and h(.) a

given function, then Y(n) = h(X(n)) is an HMM.

In a HMM Y(n), in general the transformation h(.) destroys the Markov prop-

erty of the process X(n), and as a result the HMM process Y(n)=h(X(n)) can

exhibit infinite memory. That explains why HMMs are so popular: they are

very simple to describe, as functions of MCs, and at the same time they can
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capture complex dynamical behaviors thanks to their infinite memory.

The most basic probabilistic question is the characterization of HMM’s. Is

it possible to decide whether a process Y(t) is an HMM, knowing all of its

finite dimensional distribution functions? The positive answer to this ques-

tion was provided, independently, by Heller and by Furstenberg in the early

sixties and later rederived, within the framework of System Theory, by Picci

in 1976. Another probabilistic problem is the realization of HMM’s, i.e. given

the probabilistic description of the HMM Y(n), construct the parameters X(t)

and h(.), such that Y(n)=h(X(n)). This problem has very recently been gen-

eralized to the construction of an approximate realization where, given Y(n)

one constructs h(.) and X(n) such that the information theoretical criterion

D(Y(n)|| h(X(n)) (relative entropy) is minimized.

Statistical inference problems for HMM’s have also been intensively studied

since the early sixties, when Baum and his coworkers presented two related

algorithms (the Forward-Backward and a form of what is today known as

the EM algorithm) that helped solve the Maximum Likelihood parameter

estimation problem in the case of finitely valued HMM’s.
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Chapter I

Introduction

In the study of dynamic systems and sequential data, Hidden Markov Mod-

els (HMMs) have emerged as a powerful tool for modeling and analysis.

Originally developed in the 1960s, HMMs have found widespread applica-

tion in various fields such as speech recognition, bioinformatics, finance, and

more. Their ability to represent systems with hidden states and probabilis-

tic transitions makes them particularly suited for complex tasks where direct

observation of all system components is not possible.(Rabiner (1989))

HMMs are characterized by a set of hidden states, each associated with a

probability distribution. Transitions between these states are governed by a

set of probabilities, and observations are generated according to the prob-

ability distributions of the current hidden state. This dual structure allows

HMMs to capture both the observed data and the underlying state sequences,

making them a versatile and robust modeling framework.(Rabiner (1989))

The significance of HMMs lies in their flexibility and the richness of the

models they can produce. From decoding genetic sequences to predicting

stock market trends, HMMs have demonstrated their capability to handle a

wide range of applications, each with its own set of complexities and require-

ments.(Rabiner (1989))

This thesis aims to provide a comprehensive overview of Hidden Markov

Models, exploring their theoretical foundations, key algorithms, and prac-

tical applications. By delving into the details of HMMs, this work seeks to

highlight their importance and utility in modern data analysis and decision-

making processes.(Rabiner (1989))
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1.1 Background and Motivation

1.1.1 Historical Context

The development of Hidden Markov Models (HMMs) dates back to the 1970s,

with significant contributions from Leonard E. Baum and his colleagues at

the Institute for Defense Analyses. Initially, HMMs were introduced as a

mathematical model for a specific class of stochastic processes. Baum’s pio-

neering work laid the foundation for the theoretical underpinnings of HMMs,

including the Forward-Backward algorithm, the Viterbi algorithm, and the

Baum-Welch algorithm. Prior to this, in the 1960s, early work on Markov

chains was conducted by other researchers, setting the stage for the later de-

velopment of HMMs.(Baum and Petrie (1970)

In the early stages, HMMs were primarily theoretical constructs with limited

practical applications. However, the potential of HMMs to model sequences

with hidden states soon attracted interest from various research fields. One

of the first significant applications was in speech recognition. Researchers

at IBM in the 1970s and 1980s demonstrated that HMMs could effectively

model the temporal variability of speech signals, leading to substantial im-

provements in speech recognition systems.(Baker (1975))

The adoption of HMMs in speech recognition marked a pivotal moment,

showcasing their practical utility and sparking further research into their ca-

pabilities. As computational power increased and algorithms were refined,

HMMs found applications in other domains. In bioinformatics, HMMs be-

came invaluable for sequence alignment and gene prediction, helping to de-

code the complexities of genetic information. In finance, HMMs were em-

ployed to model market behaviors and predict stock prices, providing in-

sights into economic trends.(Baker (1975))

Throughout the 1990s and 2000s, advancements in machine learning and ar-

tificial intelligence further enhanced the capabilities of HMMs. Researchers

developed more sophisticated versions of HMMs, such as Hierarchical HMMs

and Coupled HMMs, expanding their applicability to more complex systems.

These innovations addressed some of the limitations of traditional HMMs,

such as handling multiple interacting sequences and incorporating hierar-

chical structures.(Fine et al. (1998))

Today, HMMs continue to be a vital tool in various fields, benefiting from

ongoing research and technological advancements. They have evolved from



1.1. Background and Motivation 3

a theoretical concept to a practical framework widely used in industry and

academia. The historical development of HMMs underscores their endur-

ing relevance and the continuous efforts to improve their performance and

extend their applications.(Rabiner (1989))

1.1.2 Importance of HMMs

The importance of Hidden Markov Models (HMMs) in modern data analy-

sis and modeling cannot be overstated. Their ability to capture and represent

complex sequential data with hidden states has made them an essential tool

in a variety of fields. Here are some key reasons why HMMs are so signifi-

cant:(Rabiner (1989))

1.Versatility in Modeling Sequential Data

HMMs are uniquely suited for modeling time series data where the system’s

underlying states are not directly observable. This makes them ideal for ap-

plications where the data sequence depends on hidden variables, such as in

speech recognition, handwriting recognition, and biological sequence analy-

sis.(Jurafsky and Martin (2009))

2. Robustness in Handling Noise and Uncertainty

One of the strengths of HMMs is their probabilistic nature, which allows

them to handle noise and uncertainty effectively. By modeling the system as

a stochastic process, HMMs can make robust predictions even in the presence

of noisy or incomplete data.(Fine et al. (1998))

3. Powerful Predictive Capabilities

HMMs excel in predicting future states of a system based on observed data.

This predictive power is leveraged in various applications, from forecasting

stock prices in finance to predicting weather patterns in meteorology.(Hassan

and Nath (2009))

4. Efficient Algorithms for Inference and Learning

The development of efficient algorithms, such as the Forward-Backward al-

gorithm, the Viterbi algorithm, and the Baum-Welch algorithm, has made

HMMs computationally feasible for real-world applications.These algorithms
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enable effective inference and learning of the model parameters from ob-

served data, making HMMs practical for a wide range of tasks.(Baum and

Petrie (1970))

5. Applications Across Diverse Domains

The applicability of HMMs spans numerous fields:

• Speech Recognition: HMMs have revolutionized automatic speech recog-

nition systems by modeling the temporal variability in speech signals.

• Bioinformatics: In genomics, HMMs are used for gene prediction, se-

quence alignment, and identifying functional regions in DNA sequences.

• Finance: HMMs help in modeling and predicting financial markets,

providing valuable insights for investment strategies.

• Natural Language Processing: HMMs are employed in tasks such as

part-of-speech tagging, language modeling, and machine translation.

• Robotics and Control Systems: HMMs aid in the navigation and decision-

making processes of autonomous systems.(Rabiner (1989))

6. Ongoing Research and Innovation

HMMs continue to be an active area of research, with ongoing efforts to en-

hance their capabilities and address existing limitations. Innovations such as

hierarchical HMMs, coupled HMMs, and deep learning-based extensions are

expanding the frontiers of what HMMs can achieve.(Ghahramani and Jordan

(1997))

In summary, the importance of HMMs lies in their versatility, robustness,

and powerful modeling capabilities, making them indispensable in both the-

oretical research and practical applications. Their ability to model hidden

states in sequential data provides a framework for understanding and pre-

dicting complex systems, solidifying their role as a cornerstone in the field of

probabilistic modeling.

1.1.3 Current Research Trends

The field of Hidden Markov Models (HMMs) is vibrant and continues to

evolve, driven by advances in computational power, algorithmic innova-

tion, and the expanding scope of applications. Current research trends in
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HMMs focus on enhancing their efficiency, improving accuracy, and inte-

grating them with other advanced machine learning techniques. Here are

some of the prominent research directions:

1. Scalability and Computational Efficiency

As datasets grow in size and complexity, scalability becomes a critical fac-

tor. Researchers are developing more efficient algorithms and computational

techniques to handle large-scale HMMs. Parallel processing, distributed com-

puting, and optimization of the Baum-Welch and Viterbi algorithms are some

of the key areas of focus. These advancements aim to make HMMs more

feasible for real-time applications and large-scale data analysis.(Gales and

Young (2007))

2. Hybrid Models

Combining HMMs with other machine learning models and techniques is

a growing trend. Hybrid models, such as integrating HMMs with neural

networks, have shown promise in improving performance. For example,

combining HMMs with deep learning architectures allows for more nuanced

feature extraction and state representation, enhancing the model’s ability to

handle complex data patterns.(Mohamed et al. (2011))

3. Deep Learning Integration

The integration of HMMs with deep learning methods has opened new av-

enues for research. Deep Hidden Markov Models (DHMMs) leverage the

strengths of both HMMs and deep learning, allowing for more powerful se-

quence modeling. Techniques such as Long Short-Term Memory (LSTM) net-

works and convolutional neural networks (CNNs) are being used in conjunc-

tion with HMMs to capture long-range dependencies and spatial features in

sequential data.(Graves et al. (2013))

4. Advances in Algorithmic Development

There is ongoing work to refine and develop new algorithms that improve

the performance of HMMs. Innovations such as variational inference meth-

ods, approximate Bayesian computation, and improved expectation-maximization
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techniques are being explored. These advancements aim to enhance the accu-

racy and efficiency of parameter estimation and state inference in HMMs.(Blei

et al. (2003))

5. Application-Specific Enhancements

Research is also focusing on tailoring HMMs to specific applications to im-

prove their performance. For instance, in bioinformatics, efforts are being

made to adapt HMMs for more accurate gene prediction and protein struc-

ture modeling. In finance, HMMs are being refined to better capture market

volatility and investor behavior. Each application area drives specific en-

hancements and adaptations of the HMM framework.(Eddy (1998))

6. Robustness and Adaptability

Enhancing the robustness and adaptability of HMMs to changing environ-

ments and data variability is another critical area of research. Techniques

such as adaptive HMMs, which can adjust their parameters in response to

new data, and robust HMMs, designed to handle outliers and noise, are be-

ing developed. These models aim to maintain high performance even in dy-

namic and uncertain environments.(Bishop (2006))

7. Multimodal and Multisensor Fusion

Combining data from multiple sensors or modalities using HMMs is an emerg-

ing trend. Multimodal HMMs integrate information from various sources,

such as audio and visual data, to improve the overall model’s performance.

This approach is particularly useful in fields like robotics, autonomous sys-

tems, and human-computer interaction, where multiple data streams need to

be analyzed simultaneously.(Atrey et al. (2010))

8. Interpretability and Explainability

With the growing use of HMMs in critical applications, there is a push to-

wards making these models more interpretable and explainable. Researchers

are developing methods to provide insights into the decision-making pro-

cesses of HMMs, helping users understand how and why certain predictions

are made. This trend is crucial for applications in healthcare, finance, and

other domains where transparency is essential.(Lipton (2018))
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In conclusion, the current research trends in HMMs reflect a dynamic and

innovative field. By addressing scalability, integrating with other machine

learning techniques, refining algorithms, and enhancing application-specific

performance, researchers are continually pushing the boundaries of what

HMMs can achieve. These efforts ensure that HMMs remain a relevant and

powerful tool in the ever-evolving landscape of data science and artificial

intelligence.

1.2 Objectives of the Thesis

1.2.1 Primary Objectives

The primary objectives of this thesis are to explore the theoretical founda-

tions of Hidden Markov Models (HMMs), investigate their practical appli-

cations across various domains, and address current challenges in the field.

By achieving these objectives, this thesis aims to provide a comprehensive

understanding of HMMs and demonstrate their significance in modern data

analysis and modeling.

1. Understanding the Theoretical Foundations

• Objective: To delve into the core principles and mathematical under-

pinnings of HMMs.

• Approach: Reviewing key literature, including foundational papers

and advancements, covering the basic structure of HMMs, the Forward-

Backward algorithm, the Viterbi algorithm, and the Baum-Welch algo-

rithm.

2. Investigating Practical Applications

• Objective: To explore and document the various applications of HMMs

in fields such as speech recognition, bioinformatics, and finance.

• Approach: Case studies and reviews of existing applications, high-

lighting how HMMs are utilized to solve specific problems in different

fields.
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3. Addressing Current Challenges

• Objective: To identify and discuss the main challenges faced by re-

searchers and practitioners working with HMMs.

• Approach: Reviewing recent research trends to identify common issues

like computational complexity and parameter estimation, and propos-

ing potential solutions and areas for future research.

1.2.2 Research Questions

This thesis seeks to address several key research questions that are funda-

mental to understanding and advancing the field of Hidden Markov Models

(HMMs). These questions aim to explore the theoretical aspects, practical

applications, and current challenges associated with HMMs.

1. What are the fundamental components and algorithms of HMMs?

This question aims to identify and explain the core elements that make up

HMMs, including states, observations, transition probabilities, emission prob-

abilities, and initial state distribution. It also covers the essential algorithms

like the Forward-Backward algorithm, the Viterbi algorithm, and the Baum-

Welch algorithm.

2. How do HMMs effectively model hidden states and sequential data?

This question focuses on understanding the mechanisms by which HMMs

capture and represent hidden states in sequential data. It explores the process

of modeling time-dependent data where underlying states are not directly

observable, and how HMMs manage to infer these states from observable

sequences.

3. What are the practical applications of HMMs in various fields?

This question aims to highlight the diverse applications of HMMs across dif-

ferent domains. It seeks to provide examples of how HMMs are applied in

fields such as speech recognition, bioinformatics, finance, and more, demon-

strating their versatility and utility in solving real-world problems.
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4. What are the current challenges and limitations in the use of HMMs?

This question addresses the difficulties and limitations encountered when

working with HMMs. It involves identifying issues such as computational

complexity, parameter estimation, and adaptability to large datasets, and

discussing how these challenges impact the effectiveness and efficiency of

HMMs

By addressing these research questions, this thesis aims to provide a thor-

ough exploration of HMMs, from their theoretical foundations to their prac-

tical applications and future prospects. This comprehensive approach en-

sures a well-rounded understanding of both the strengths and limitations of

Hidden Markov Models.

1.3 Structure of Thesis

1.3.1 Chapter Overview

This thesis is organized into five chapters, each focusing on different aspects

of Hidden Markov Models (HMMs) to provide a comprehensive understand-

ing of their theoretical foundations, practical applications, and ongoing re-

search challenges.

Chapter 2: Basics of Hidden Markov Models

This chapter introduces the fundamental concepts and components of HMMs,

including states, observations, transition probabilities, emission probabili-

ties, and initial state distribution. It also explains the basic structure and

functionality of HMMs.

Chapter 3: Theoretical Framework

This chapter delves into the mathematical foundations of HMMs, discussing

key algorithms such as the Forward-Backward algorithm, the Viterbi algo-

rithm, and the Baum-Welch algorithm. It provides a detailed examination of

how these algorithms work and their significance in the context of HMMs.

Chapter 4: Extensions and Variants of HMMs

This chapter explores various extensions and variants of traditional HMMs,

including Hierarchical HMMs, Coupled HMMs, and other advanced models.



10 Chapter I. Introduction

It also discusses how these variants improve upon the limitations of standard

HMMs and their applications in more complex systems.

Chapter 5: Applications of Hidden Markov Models

This chapter explores the practical applications of HMMs across various fields.

It presents case studies and examples from domains such as speech recogni-

tion, bioinformatics, finance, and more, demonstrating the versatility and

effectiveness of HMMs in solving real-world problems.

Chapter 6: Part of Speech (POS) Tagging with HMM

This chapter focuses on the application of HMMs in Natural Language Pro-

cessing, specifically in Part of Speech (POS) tagging. It covers the methodol-

ogy, implementation, and optimization techniques such as the Viterbi algo-

rithm for improving POS tagging accuracy.

Chapter 7: Conclusion

The final chapter summarizes the key findings and contributions of the the-

sis. It reflects on the significance of the research, discusses the implications of

the results, and suggests potential directions for future research. This chapter

concludes the thesis by highlighting the advancements made and identifying

areas that warrant further investigation.



11

Chapter II

Basics of Hidden Markov Models

2.1 Introduction to Hidden Markov Models

Hidden Markov Models (HMMs) are powerful statistical tools used to model

systems with observable outputs that depend on hidden internal states. The

concept of HMMs extends the basic theory of Markov chains, which have

been known and utilized by mathematicians and engineers for decades. While

Markov chains are effective for modeling processes with observable states,

HMMs allow for modeling systems where the states are not directly observ-

able (hidden), but can only be inferred through observable outputs.(Rabiner

(1989))

The basic theory of Markov chains is built on the principle that the future

state of a process depends only on the present state, not on the sequence of

events that preceded it. This is known as the Markov property. In an HMM,

this property is extended to include hidden states, which makes HMMs par-

ticularly suitable for modeling complex systems where the underlying pro-

cess is not directly visible.(Rabiner (1989))

Figure 2.1 shows the structure of a Hidden Markov Model (HMM). The hid-

den states (S1, S2, S3) are represented as circles, and the transitions between

these states are indicated by arrows labeled with transition probabilities (aij).

The observable outputs (O1, O2, O3) are shown as circles connected to the

hidden states by arrows representing emission probabilities. This diagram

helps in visualizing how the hidden states generate observable outputs and

how the model transitions between states.
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FIGURE 2.1: Structure of a Hidden Markov Model(Mariano
et al. (2015))

2.2 Components of HMMs

To understand HMMs, it is essential to grasp the basic components and defi-

nitions:

States

States are the hidden conditions or configurations of the system. In an HMM,

the states are not directly observable. Each state represents a distinct scenario

or situation that the system can be in. The number of states is finite and

denoted by N . The states are typically represented as S1, S2,. . . , SN . (Rabiner

(1989))

Observations

Observations are the visible outputs generated by the hidden states. These obser-

vations form the data used to infer the hidden state sequence. Observations can be

discrete symbols from a finite alphabet or continuous values. The number of possi-

ble observations is denoted by M , and they are typically represented as O1, O2, . . . ,

OM . (Rabiner (1989))

Transition Probabilities

Transition probabilities define the likelihood of transitioning from one state to an-

other. These probabilities are represented in a matrix form, known as the state tran-

sition matrix A . Each element aij in the matrix represents the probability of transi-

tioning from state Si to state Sj : (Rabiner (1989))

A = {aij} where aij = P(St+1 = Sj | St = Si)
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The transition probabilities must satisfy the following conditions:

aij g 0 and ∑
N
j=1 aij = 1

Emission Probabilities

Emission probabilities describe the likelihood of observing a particular output given

a specific state. These probabilities are represented in an observation probability

matrix B . Each element bj(o) represents the probability of observing o when the

system is in state Sj :

B = { bj(o)} where bj(o) = P(Ot = o | St = Sj)

For discrete HMMs, o is a symbol from a finite set of observations. For con-

tinuous HMMs, bj(o) is often modeled using probability density functions such as

Gaussians. (Rabiner (1989))

Initial State Distribution

The initial state distribution defines the probabilities of the system starting in each

possible state. This is represented by a vector π , where each element πi represents

the probability of starting in state Si : (Rabiner (1989))

π = {πi} where πi = P(S1 = Si)

The initial state distribution must satisfy the condition:

∑
N
i=1 πi = 1

Example: Coin Toss Experiment (Rabiner (1989))

To illustrate these components, consider a simple coin toss experiment modeled as

an HMM.

Hidden States:

• S1 : Represents the state when the coin shows heads.

• S2 : Represents the state when the coin shows tails.

Observations:

• O1 : The announcement “Heads”.

• O2 : The announcement “Tails”.

State Transitions:

• The probability of transitioning from heads to heads ( a11).

• The probability of transitioning from heads to tails ( a12).
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• The probability of transitioning from tails to heads ( a21).

• The probability of transitioning from tails to tails ( a22).

For a fair coin:

a11 = a12 = a21 = a22 = 0.5

Emission Probabilities:

• The probability of observing “Heads” given that the hidden state is heads ( b1(O1)

).

• The probability of observing “Tails” given that the hidden state is heads ( b1(O2) ).

• The probability of observing “Heads” given that the hidden state is tails ( b2(O1) ).

• The probability of observing “Tails” given that the hidden state is tails ( b2(O2) ).

For a fair coin:

b1(O1) = b1(O2) = b2(O1) = b2(O2) = 0.5

Initial State Distribution:

• The initial state distribution vector π represents the probabilities of starting in

heads or tails. For a fair coin, this might be:

π1 = π2 = 0.5

2.3 Types of HMMs

Hidden Markov Models (HMMs) come in various forms, each suited for different

types of data and applications. Understanding these types helps in selecting the ap-

propriate model for a given problem. Here, we explore the primary types of HMMs:

Discrete HMMs, Continuous HMMs, and Hidden Semi-Markov Models (HSMMs).

(Rabiner (1989))

2.3.1 Discrete HMMs

Discrete HMMs deal with discrete observations, meaning the outputs come from a

finite set of symbols. These models are commonly used in applications where data

can be categorized into distinct classes, such as in speech recognition, where each

sound can be represented by a phoneme. (Rabiner (1989))
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In a discrete HMM, observations are discrete and finite. The emission probabilities

are represented by discrete probability distributions, making this type of HMM suit-

able for tasks like speech and language processing, where the data is naturally cate-

gorical. The observation probability matrix B consists of probabilities bj(ok), where

ok is one of the possible discrete observations. Example applications include speech

recognition, mapping sequences of sound waves to phonemes, and part-of-speech

tagging, assigning parts of speech to words in a sentence.

FIGURE 2.2: Example of Discrete Hidden Markov Model (Ku-
mar (2023))

Figure 2.2 illustrates a Discrete Hidden Markov Model (HMM) with two hidden

states and three observable activities. The hidden states in this model represent the

weather conditions: “Rainy” and “Sunny”. The observable activities are “Walk”,

“Shop”, and “Clean”.

States:

• S1(Rainy)

• S2(Sunny)

Transition Probabilities:

• The arrows between “Rainy” and “Sunny” indicate the probabilities of transition-

ing between these states. For example, the probability of transitioning from “Rainy”
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to “Sunny” is 0.3, while the probability of transitioning from “Sunny” to “Rainy” is

0.4.

• The self-loops on the states represent the probabilities of staying in the same state.

For example, the probability of remaining “Rainy” is 0.7, and the probability of re-

maining “Sunny” is 0.6.

Initial State Probabilities:

• The model starts with a probability of 0.6 for “Rainy” and 0.4 for “Sunny”.

Emission Probabilities:

• The dashed lines connect the states to the observable activities, indicating the

probabilities of each activity given the current state. For instance, when the state

is “Rainy”, the probabilities of observing “Walk”, “Shop”, and “Clean” are 0.1, 0.4,

and 0.5, respectively.

• When the state is “Sunny”, the probabilities of observing “Walk”, “Shop”, and

“Clean” are 0.6, 0.3, and 0.1, respectively.

This figure exemplifies how a discrete HMM models a system with hidden states

(weather conditions) and observable outputs (activities). The transition probabili-

ties govern the changes between hidden states, while the emission probabilities de-

termine the likelihood of different observations given the current state.

2.3.2 Continuous HMMs

Continuous HMMs handle continuous observations, which can take any value within

a range. These models are suitable for applications involving real-valued data, such

as in signal processing or financial modeling.

In continuous HMMs, observations are continuous and can take any value within a

range. The emission probabilities are often modeled using probability density func-

tions (PDFs), such as Gaussians. This makes continuous HMMs suitable for tasks

involving real-valued data like sensor readings or financial time series. For state j

with observation o , the emission probabilities bj(o) are represented by PDFs, typi-

cally Gaussian distributions, as shown in the formula:

bj(o) =
1

√

2πσ2
j

exp

(

−
(o−µj)

2

2σ2
j

)

where µj and σ2
j are the mean and variance of the Gaussian distribution for state j .

Example applications include speech recognition, modeling the continuous acoustic

features of speech, and financial modeling, predicting stock prices based on histori-

cal continuous data. (Rabiner (1989))
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FIGURE 2.3: Example of Continuous Hidden Markov Model
(Vidhya (????))

Figure 2.3 illustrates a Continuous Hidden Markov Model (HMM) with multiple

hidden states and continuous observations. Each hidden state, represented as S1, S2, . . . , SN ,

is associated with a probability density function (PDF) that models the continuous

observations. The arrows between the states show the transition probabilities, such

as a12 for transitioning from state S1 to state S2, and self-loops like a11 represent the

probability of remaining in the same state.

In continuous HMMs, emission probabilities are modeled using PDFs, typically

Gaussian Mixture Models (GMMs). Each state has an associated PDF, depicted as

graphs above the states, which describe the distribution of observations when the

system is in that state. These PDFs, consisting of Gaussian components g1, g2, . . . , gM,

capture the characteristics of continuous data. This model illustrates how contin-

uous HMMs manage hidden states and continuous observations, with transition

probabilities governing state changes and PDFs describing the likelihood of obser-

vations given the current state.

2.3.3 Hidden Semi-Markov Models

Hidden Semi-Markov Models extend traditional HMMs by allowing the duration of

time spent in each state to follow an arbitrary distribution, rather than being geo-

metrically distributed as in standard HMMs. This flexibility makes HSMMs useful

for modeling more complex temporal patterns.

HSMMs allow the duration of time in each state to follow any specified distribution,

which is particularly useful for applications where the time spent in states varies

significantly and is not memoryless. These models are more complex and compu-

tationally intensive than standard HMMs. The duration distribution Dj(d) specifies
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the probability of remaining in state j for d time steps. Transition and emission prob-

abilities are similar to those in standard HMMs but account for the extended dura-

tion in states. Example applications include biological sequence analysis, modeling

the time between genetic events, and customer behavior modeling, understanding

the duration of time a customer spends in different stages of a buying process. (Zen

et al. (2004))

FIGURE 2.4: Example of Hidden semi-Markov Model (Anzhi
(2023))

Figure 2.4 illustrates a Hidden Semi-Markov Model (HSMM) with multiple hidden

states and observations over time. Each hidden state, represented as S1, S2, . . . , SN ,

has an associated duration distribution p(d) that models the time spent in each state.

The arrows between the states, such as a12 for transitioning from state S1 to state S2,

represent the transition probabilities.

Observations O1, O2, . . . , OT are generated based on the hidden states. Emission

probabilities, denoted as b1(o), b2(o), . . . , bN(o), describe the likelihood of different

observations given the current state. Unlike standard HMMs, HSMMs allow for

non-geometric duration distributions, shown as p1(d), p2(d), . . . , pN(d), providing

more flexibility in modeling the time spent in each state.

This model demonstrates how HSMMs manage hidden states and observations over

time, with transition probabilities governing state changes, emission probabilities

describing observations, and duration distributions modeling the time spent in each

state.

Figure 2.5 compares a standard Hidden Markov Model (HMM) with a Hidden Semi-

Markov Model (HSMM).

In the HMM (Figure 2.5a), the hidden states S1, S2, S3 are connected by transition

probabilities aij, indicating the likelihood of transitioning from one state to another.

Each state generates observations based on emission probabilities b1(·), b2(·), b3(·).

The initial state distribution π1 specifies the starting probabilities of each state. The
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FIGURE 2.5: Comparision between HMM and HSMM (Zen
et al. (2004))

time spent in each state follows a geometric distribution, as indicated by the loop

arrows.

In the HSMM (Figure 2.5b), the structure is similar, with hidden states and transition

probabilities a′ij, but it includes explicit duration distributions p′1(·), p′2(·), p′3(·)

that model the time spent in each state. The emission probabilities b′1(·), b′2(·), b′3(·)

describe the likelihood of observations given the current state. Unlike the HMM, the

HSMM allows for more flexible, non-geometric state durations, providing a more

accurate representation of processes with variable state durations.

This comparison highlights the additional complexity and flexibility of HSMMs in

modeling systems where the duration in each state is not memoryless, making them

more suitable for applications requiring precise duration modeling.

2.4 Summary

Chapter 2 provided an essential foundation for understanding Hidden Markov Mod-

els (HMMs). It began with an introduction to HMMs, highlighting their significance

in modeling complex dynamical systems with hidden states. The chapter covered

the basic concepts and components of HMMs, including hidden states, observations,

state transition probabilities, observation probabilities, and initial state probabilities.
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We explored the different types of HMMs, such as discrete, continuous, and Hidden

Semi-Markov Models (HSMMs), providing examples and figures to illustrate their

structures and functions. The discrete HMM was exemplified through a weather

model with states like “Rainy” and “Sunny” and observations such as “Walk,” “Shop,”

and “Clean.” The continuous HMM was discussed with reference to Gaussian Mix-

ture Models (GMMs) for observation probabilities, and the HSMM was introduced

with its ability to model state durations more flexibly.

Additionally, the chapter touched upon the importance of HMMs in various appli-

cations, setting the stage for more detailed discussions in later chapters. Through

this overview, readers gained a comprehensive understanding of the fundamental

elements and different types of HMMs, laying the groundwork for more advanced

topics in subsequent chapters.

In the next chapter, we will delve into the detailed algorithms that underpin HMMs.

We will explore the Forward-Backward Algorithm, Viterbi Algorithm, and Baum-

Welch Algorithm in depth, providing step-by-step explanations and examples. This

will enable us to understand how to evaluate, decode, and learn HMMs effectively,

setting the stage for their practical applications.
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Chapter III

Theoretical Framework

3.1 Introduction

In this chapter, we delve into the theoretical foundations and core algorithms that are

fundamental to the practical use of Hidden Markov Models (HMMs). These algo-

rithms enable us to evaluate, decode, and learn from HMMs, making them powerful

tools for a wide range of applications. Understanding these algorithms is essential

for anyone looking to apply HMMs to real-world problems.

We will cover the following key areas: probability theory in HMMs, detailed al-

gorithms for HMMs, estimation techniques, model selection and evaluation, and

extensions and variants of HMMs. Probability theory provides the essential back-

ground, introducing basic concepts and the principles of Markov processes. The

detailed algorithms section introduces the Forward-Backward Algorithm, Viterbi

Algorithm, and Baum-Welch Algorithm, providing step-by-step explanations and

examples. Estimation techniques such as Maximum Likelihood Estimation and the

Expectation-Maximization (EM) Algorithm will be discussed, alongside Bayesian

Estimation Methods. The model selection and evaluation section will cover model

complexity, cross-validation, and performance metrics to aid in selecting and eval-

uating HMMs. Finally, we will explore extensions and variants of HMMs to under-

stand how these models can be adapted and extended for more complex scenarios.

(Rabiner (1989))



22
Chapter III. Theoretical Framework

3.2 Markov Chains

Markov chains are sequences of random variables that exhibit a specific type of de-

pendency structure. A sequence of random variables (Xn)n g 0 taking values in a

state space X = {1, 2, . . . , r} is a Markov chain if, for all n g 0 and all x0, x1, . . . , xn+1

in X, the probability of transitioning to the next state depends only on the current

state and not on the sequence of events that preceded it. Formally, this property is

expressed as:

P(Xn+1 = j | Xn = i, Xn−1 = xn−1, . . . , X0 = x0) = P(Xn+1 = j | Xn = i)

This property implies that the future state depends only on the present state, making

Markov chains memoryless. (Blackwell and Koopmans (1957))

3.2.1 Homogeneous Markov Chains

A Markov chain is said to be homogeneous if the transition probabilities are inde-

pendent of time n. For a homogeneous Markov chain, the transition probability from

state i to state j is given by the entry aij of the transition probability matrix A, where

aij = P(Xn+1 = j | Xn = i). (Blackwell and Koopmans (1957))

The transition probability matrix A is a square matrix with nonnegative elements

where each row sums to 1. This property ensures that the matrix is stochastic, mean-

ing that it represents valid probability distributions over the states. Mathematically,

a matrix A is stochastic if:

∑j aij = 1 for all i.

3.2.2 Dependence Structure

The dependence structure of a Markov chain is such that the Markov property holds

even for non-consecutive indices. This is captured by the property that, for any

sequences of times 0 f s1 < s2 < · · · < sN < t1 < t2 < · · · < tM and any sequences

of states xs1
, xs2 , . . . , xsN

and xt1
, xt2 , . . . , xtM

,

P(Xt1
= xt1

, . . . , XtM
= xtM

| XsN
= xsN

, XsN−1
= xsN−1

, . . . , Xs1
= xs1

) = P(Xt1
=

xt1
, . . . , XtM

= xtM
| XsN

= xsN
).

This property emphasizes that the states of a Markov chain are conditionally inde-

pendent of each other given the present state. (Blackwell and Koopmans (1957))
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3.2.3 Probability of a Sequence

In a Markov chain, the probability of a sequence of states x0, x1, . . . , xn can be com-

puted as the product of the initial state probability and the transition probabilities

along the path:

P(X0 = x0, X1 = x1, . . . , Xn = xn) = πx0 ∏
n−1
t=0 axtxt+1

where πx0 is the initial state distribution. (Blackwell and Koopmans (1957))

Stationary Distributions

An important aspect of Markov chains is their long-term behavior, which is often

studied through the concept of stationary distributions. A stationary distribution

π is a probability distribution over the states that remains unchanged under the

dynamics of the Markov chain, meaning that if the chain starts in the stationary

distribution, it stays in that distribution. Formally, π is a stationary distribution if:

π = πA.

This means that π is a left eigenvector of the transition matrix A corresponding to

the eigenvalue 1. If a Markov chain has a unique stationary distribution and is irre-

ducible and aperiodic, the chain will converge to this stationary distribution regard-

less of the initial state distribution. (Blackwell and Koopmans (1957))

3.2.4 Ergodic Theorem for Markov Chains

The ergodic theorem for Markov chains states that for a finite state space X and a

primitive transition probability matrix A (where Ap is strictly positive for some p),

the chain will converge to a unique stationary distribution π. This is expressed as:

limn→∞ An = 1π

where 1 is a column vector of ones. This theorem implies that, in the long run, the

state distribution of the chain becomes independent of the initial state distribution

and is governed by π.(BlackwellandKoopmans (1957))

Example: Weather Model

Consider a simple weather model with two states: Sunny and Rainy. Let the transi-

tion probability matrix be:

A =

(

0.8 0.2

0.4 0.6

)

,
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where the entry aij represents the probability of transitioning from state i to state j. If

the initial state distribution is π0 = (0.5, 0.5), the state distribution after n steps can

be computed as πn = π0 An.

In summary, this section provided an in-depth look at Markov chains, focusing on

their definition, properties, and the concept of stationary distributions. Markov

chains form the foundation for understanding hidden Markov models (HMMs),

which will be explored in subsequent sections. In the next section, we will delve

into the detailed algorithms that underpin HMMs, including the Forward-Backward

Algorithm, Viterbi Algorithm, and Baum-Welch Algorithm. We will explore these

algorithms step-by-step to understand how to evaluate, decode, and train HMMs,

laying the groundwork for their practical applications. (Blackwell and Koopmans

(1957))

3.3 Algorithms for HMMs

Hidden Markov Models (HMMs) rely on several fundamental algorithms for their

practical use. These algorithms enable us to evaluate the probability of observation

sequences, decode the most likely sequence of hidden states, and learn the parame-

ters of the model from observed data. The three primary algorithms we will discuss

are the Forward-Backward Algorithm, the Viterbi Algorithm, and the Baum-Welch

Algorithm. (Rabiner (1989))

3.3.1 The Forward-Backward Algorithm

The Forward-Backward Algorithm is used to calculate the probability of a sequence

of observations given a model, addressing the evaluation problem. This algorithm

employs dynamic programming to compute the likelihood of the observed sequence

efficiently.

Forward Procedure

The forward procedure calculates the probability of being in a particular state at a

specific time given the observed sequence up to that time. The forward variable,

αt(i) , is defined as the probability of the partial observation sequence O1, O2, . . . , Ot

and state Si at time t :

αt(i) = P(O1, O2, . . . , Ot, St = Si | λ)

Steps:

1. Initialization:
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α1(i) = πibi(O1) for 1 f i f N

2. Recursion:

αt+1(j) =
[

∑
N
i=1 αt(i)aij

]

bj(Ot+1) for 1 f t f T − 1, 1 f j f N

3. Termination:

P(O | λ) = ∑
N
i=1 αT(i)

Backward Procedure

The backward procedure calculates the probability of the ending part of the obser-

vation sequence given a particular state at a specific time. The backward variable,

βt(i) , is defined as the probability of the partial observation sequence from t+1 to

the end, given state Si at time t and the model λ :

βt(i) = P(Ot+1, Ot+2, . . . , OT | St = Si, λ)

Steps:

1. Initialization:

βT(i) = 1 for 1 f i f N

2. Recursion:

βt(i) = ∑
N
j=1 aijbj(Ot+1)βt+1(j) for t = T − 1, T − 2, . . . , 1; 1 f i f N

Combining the forward and backward variables, the probability of being in state Si

at time t given the observation sequence can be calculated. (Rabiner (1989))

Figure 3.1 provides a visual representation of the key components and steps in-

volved in the algorithm.

• Panel (a):The forward procedure, which computes the forward variables αt(i) .

These variables represent the probability of being in state Si at time t , given the

observed sequence up to that time. The arrows show the transitions from state Si at

time t to state Sj at time t+1 , with associated transition probabilities aij .

• Panel (b): The backward procedure, which computes the backward variables βt(i)

. These variables represent the probability of the ending part of the observation

sequence given state Si at time t . The arrows indicate the transitions from state Si at

time t to state Sj at time t+1 , again with associated transition probabilities aij .

• Panel (c): A combined view showing the relationship between states and ob-

servations over time. The arrows between states S1, S2, . . . , SN and observations

o1, o2, . . . , oT represent the emission probabilities, indicating how likely a state is to

produce a particular observation.
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FIGURE 3.1: Illustration of Forward-Backward Algorithm (Li
(2024))

3.3.2 The Viterbi Algorithm

The Viterbi Algorithm is used to find the most likely sequence of hidden states given

a sequence of observations, addressing the decoding problem. This algorithm em-

ploys dynamic programming to ensure computational efficiency and is crucial for

tasks that require the identification of the underlying state sequence.

The Viterbi variable, δt(i) , represents the highest probability of any path that ends

in state Si and accounts for the first t observations:

δt(i) = maxS1,S2,...,St−1
P(S1, S2, . . . , St−1, St = Si, O1, O2, . . . , Ot | λ)

The steps of the Viterbi Algorithm are as follows:

1. Initialization:

δ1(i) = πibi(O1) for 1 f i f N

ψ1(i) = 0

• The algorithm starts by initializing the probabilities for the first observation. δ1(i)

is the probability of being in state Si at time 1, multiplied by the probability of ob-

serving O1 given that state.

2. Recursion:

δt+1(j) = max1fifN [δt(i)aij]bj(Ot+1) for 1 f t f T − 1, 1 f j f N
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ψt+1(j) =1fifN [δt(i)aij]

• For each subsequent observation, the algorithm updates the probabilities δt(i) by

considering all possible paths that could lead to each state and selecting the most

probable one. The variable ψt+1(j) keeps track of the state that provided the maxi-

mum probability for each step.

3. Termination:

P∗ = max1fifN δT(i)

S∗
T =1fifN δT(i)

• The algorithm identifies the maximum probability of the final observation se-

quence, P∗ , and the corresponding final state S∗
T .

4. Path Backtracking:

S∗
t = ψt+1(S

∗
t+1) for t = T − 1, T − 2, . . . , 1

Finally, the algorithm traces back through the states stored in ψ to reconstruct the

most likely sequence of hidden states. (Rabiner (1989))

3.3.3 The Baum-Welch Algorithm

The Baum-Welch Algorithm, an Expectation-Maximization (EM) algorithm, is used

to estimate the parameters of a Hidden Markov Model (HMM), addressing the learn-

ing problem. This algorithm iteratively adjusts the parameters to maximize the like-

lihood of the observed data.

The Baum-Welch Algorithm involves the following steps:

1. Initialization:

• Initialize the model parameters (transition probabilities aij , emission probabilities

bj(k) , and initial state distribution πi ) randomly or based on prior knowledge.

2. Expectation Step:

• Compute the forward variable αt(i) and the backward variable βt(i).

Forward Variable Calculation:

αt(i) = P(O1, O2, . . . , Ot, St = Si | λ)

Backward Variable Calculation:

βt(i) = P(Ot+1, Ot+2, . . . , OT | St = Si, λ)
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• The forward variable αt(i) represents the probability of the partial observation

sequence O1, O2, . . . , Ot and state Si at time t . The backward variable βt(i) represents

the probability of the partial observation sequence from t+1 to the end, given state

Si at time t and the model λ .

3. Maximization Step:

• Update the transition probabilities aij , emission probabilities bj(k) , and initial

state distribution πi using the expected values from the forward and backward vari-

ables.

Transition Probabilities:

aij =
∑

T−1
t=1 ξt(i,j)

∑
T−1
t=1 γt(i)

Emission Probabilities:

bj(k) =
∑

T
t=1,Ot=k γt(j)

∑
T
t=1 γt(j)

Initial State Distribution:

πi = γ1(i)

where:

γt(i) = P(St = Si | O, λ)ξt(i, j) = P(St = Si, St+1 = Sj | O, λ)

• The transition probabilities aij are updated based on the expected number of tran-

sitions from state Si to state Sj . The emission probabilities bj(k) are updated based

on the expected number of times observation k is generated from state Sj . The initial

state distribution πi is updated based on the probability of starting in state Si .

4. Convergence Check:

• Check for convergence of the algorithm by evaluating the change in the likelihood

of the observed data. If the change is below a certain threshold, the algorithm has

converged. Otherwise, repeat the Expectation and Maximization steps. (Rabiner

(1989))

The Figure 3.2 visualizes the key components and steps:

The horizontal axis represents time with states Si and Sj at times t and t+1 . Obser-

vations Ot−1, Ot, Ot+1, Ot+2 are shown at each time step.

The forward variable αt(i) represents the probability of the partial observation se-

quence up to time t and state Si at time t . Arrows into Si from previous observations

show αt(i) .
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FIGURE 3.2: Illustration of Baum-Welch Algorithm (med
(2024))

The backward variable βt(i) represents the probability of the partial observation

sequence from time t+1 to the end, given state Si at time t . Arrows out of Sj to

future observations show βt(i) .

The transition from Si at time t to Sj at time t+1 with transition probability aij and

emission probability bj(Ot+1) is depicted.

The expectation step combines forward and backward variables to calculate ex-

pected transitions and emissions, used to update model parameters.

The maximization step updates parameters aij and bj(k) based on expected values,

improving the likelihood of the observed data.

3.3.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a fundamental method for estimating the

parameters of a statistical model. In the context of Hidden Markov Models (HMMs),

MLE aims to find the model parameters that maximize the likelihood of the observed

data. The Baum-Welch Algorithm, previously discussed, is a practical implementa-

tion of MLE for HMMs.

The likelihood function for an HMM is defined as the probability of the observed

sequence O = {O1, O2, . . . , OT} given the model parameters λ = (π, A, B) :

L(λ | O) = P(O | λ)

The goal of MLE is to find the parameter set λ that maximizes this likelihood func-

tion:

λ̂ =λ L(λ | O)
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Steps in Maximum Likelihood Estimation:

1. Define the Likelihood Function:

• The likelihood function for HMMs involves summing over all possible state se-

quences, which can be computationally intensive. This is where the forward-backward

algorithm becomes useful.

2. Initialize Parameters:

• Start with an initial guess for the parameters λ = (π, A, B) . These can be randomly

chosen or based on prior knowledge.

3. Expectation-Maximization (EM) Algorithm:

• Use the Baum-Welch algorithm to iteratively update the parameters. This involves

two steps in each iteration:

Expectation Step (E-Step):

• Calculate the expected values of the sufficient statistics using the current parame-

ters. This involves computing the forward and backward variables, αt(i) and βt(i) ,

as well as the state occupancy probabilities γt(i) and transition probabilities ξt(i, j) .

Maximization Step (M-Step):

• Update the parameters to maximize the expected likelihood. This involves updat-

ing the transition probabilities A , emission probabilities B , and initial state distri-

bution π based on the expected values computed in the E-step.

4. Check for Convergence:

• Evaluate the change in the likelihood function. If the change is below a certain

threshold, the algorithm has converged, and the current parameters are considered

the MLE estimates.

5. Final Parameters:

• After convergence, the final parameter set λ̂ represents the maximum likelihood

estimates for the HMM. (Rabiner (1989))

Example of MLE in HMMs

Consider a simple HMM with two states (Rainy and Sunny) and observations (Walk,

Shop, Clean). The goal is to estimate the transition and emission probabilities from

the observed sequence of activities.

Initialization:

• Transition probabilities A and emission probabilities B are initialized randomly.
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E-Step:

• Compute the forward and backward variables for the observed sequence using

the current parameters.

M-Step:

• Update the transition and emission probabilities based on the expected state tran-

sitions and state-occupation counts.

Convergence:

• Check the likelihood of the observed sequence given the updated parameters. If

the likelihood has not changed significantly, stop; otherwise, repeat the E-step and

M-step.

Final Parameters:

• The resulting transition and emission probabilities maximize the likelihood of the

observed sequence under the HMM. (Rabiner (1989))

3.4 Bayesian Estimation

The Bayesian estimation approach for Hidden Markov Models (HMMs) provides

an alternative to the traditional Maximum Likelihood Estimation (MLE), which is

often computationally intensive and may suffer from convergence issues. Bayesian

estimators offer a robust framework by incorporating prior information into the es-

timation process.

In the context of HMMs, the objective is to estimate the parameters θ = (A, B), where

A represents the state transition probabilities and B represents the observation prob-

abilities. The Bayesian estimation method involves specifying a prior distribution

over the parameter space and updating this distribution based on observed data.

(Di Masi and Finesso (1996))

3.4.1 Bayesian Framework

The Bayesian approach starts with the definition of a prior distribution ν(·) on the

parameter space Θ. The prior encapsulates our initial beliefs about the parameters

before observing any data. As data becomes available, the prior is updated to a

posterior distribution using Bayes’ theorem.

Given observations y1, y2, . . . , yn, the posterior distribution p(θ | yn) can be com-

puted. The Bayesian estimator θ̂n is the expected value of the parameter with respect

to the posterior distribution: (Di Masi and Finesso (1996))
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n = E[θ | yn].

Dirichlet Priors

A common choice for the prior distribution in HMMs is the Dirichlet distribution,

which is conjugate to the multinomial distribution. This choice simplifies the poste-

rior updates. The Dirichlet prior for the transition probabilities A and the observa-

tion probabilities B can be specified as:

νD(θ) = ∏i

[

Γ( k
2 )

Γ( 1
2 )

k ∏j a
1
2−1

ij

]

∏l

[

Γ( q
2 )

Γ( 1
2 )

q ∏y b
1
2−1

ly

]

where Γ(·) is the Gamma function, k is the number of states, and q is the number of

observation symbols. (Di Masi and Finesso (1996))

Posterior Distribution

Using the Dirichlet prior, the posterior distribution after observing n data points can

be computed. The Bayesian estimator âij for the transition probabilities and b̂ly for

the observation probabilities are given by:

âij = E[aij | yn] =
Nij(xn)+

1
2

Ni(xn)+
k
2

where Nij(xn) is the number of transitions from state i to state j in the observed

sequence, and Ni(xn) is the number of times state i is visited.

Similarly, the estimator for the observation probabilities is:

b̂ly = E[bly | yn] =
Mly(yn)+

1
2

Ml(yn)+
q
2

where Mly(yn) is the number of times observation y is observed in state l, and Ml(yn)

is the number of times state l is visited. (Di Masi and Finesso (1996))

3.4.2 Consistency and Convergence

Under certain regularity conditions, the Bayesian estimators are consistent, mean-

ing that they converge to the true parameter values as the number of observations

increases. Specifically, if θ0 is the true parameter value, and the prior distribution is

strictly positive everywhere, then the Bayesian estimator θ̂n converges to θ0 almost

surely. (Di Masi and Finesso (1996))

Theorem 2.1 from the reference states

θ̂n → θ0 a.s. Pθ0

where the convergence is derived using a Laplace expansion and the Shannon-McMillan-

Breiman theorem, ensuring that the posterior distribution concentrates around the

true parameter values. (Di Masi and Finesso (1996))
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3.4.3 Practical Computation

The practical computation of Bayesian estimators involves discretizing the param-

eter space and evaluating the posterior distribution over a grid. For a fine enough

discretization, the Bayesian estimator can be approximated efficiently.

In summary, the Bayesian approach provides a powerful alternative to MLE for

HMM parameter estimation, leveraging prior information and ensuring consistent

estimates under appropriate conditions. This approach is particularly useful when

the traditional EM algorithm faces convergence issues or when prior knowledge

about the parameters is available.

This section provided an overview of Bayesian estimation for HMMs, highlighting

the use of Dirichlet priors and the consistency of Bayesian estimators. In the next

sections, we will delve into model selection and evaluation techniques, as well as ex-

plore extensions and variants of HMMs to address more complex scenarios. (Di Masi

and Finesso (1996))

3.5 Model Selection and Evaluation

Selecting and evaluating the best Hidden Markov Model (HMM) for a given prob-

lem is crucial for achieving accurate and reliable results. This section discusses tech-

niques for model selection, evaluating model performance, and ensuring that the

chosen model generalizes well to new data.

3.5.1 Model Complexity

Choosing the appropriate complexity for a Hidden Markov Model (HMM) is criti-

cal to its performance and generalization capabilities. The complexity of an HMM

primarily depends on the number of hidden states, the transition and emission prob-

abilities, and the potential use of regularization techniques.

1. Number of States:

The number of hidden states in an HMM is a crucial factor in its complexity. If the

model has too few states, it may not capture the underlying structure and dynamics

of the data. Conversely, if the model has too many states, it may overfit the training

data, leading to poor generalization on new data. Selecting the optimal number of

states involves balancing these two aspects.
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2. Transition and Emission Probabilities:

The complexity of the HMM is also influenced by the number of parameters in the

transition and emission matrices. A model with fewer parameters may be more

robust and easier to estimate but might miss important patterns in the data. On the

other hand, a model with more parameters can capture detailed patterns but may

overfit the data.

3. Regularization Techniques:

Regularization can help prevent overfitting by adding a penalty to the likelihood

function for more complex models. Techniques such as L1 (Lasso) or L2 (Ridge) reg-

ularization can be applied to the parameters of the transition and emission matrices

to discourage overly complex models and improve generalization. (Rabiner (1989))

Example of Model Complexity in HMMs

Consider an HMM used for part-of-speech tagging in natural language processing.

The goal is to determine the optimal number of hidden states representing different

parts of speech (e.g., nouns, verbs, adjectives). (Rabiner (1989))

• Too Few States: With only two states (e.g., noun and verb), the model might

fail to distinguish between other parts of speech like adjectives and adverbs,

leading to poor tagging accuracy.

• Too Many States: With too many states (e.g., 20 states), the model might

overfit the training data, capturing noise rather than meaningful patterns, re-

sulting in poor generalization to new sentences.

• Optimal Number of States: Through experimentation and evaluation, an

optimal number of states (e.g., six states representing noun, verb, adjective,

adverb, preposition, and conjunction) can be determined. This balance cap-

tures the necessary linguistic distinctions without overfitting.

3.5.2 Cross-Validation

Cross-validation is a robust technique used to assess the generalizability and per-

formance of a Hidden Markov Model (HMM) on independent data sets. It helps

in evaluating how well the model will perform on unseen data, thus preventing

overfitting. Cross-validation involves partitioning the data into subsets, training the

model on some subsets, and validating it on the remaining subsets.
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1. K-Fold Cross-Validation

In k-fold cross-validation, the data set is divided into k equally-sized folds. The

model is trained on k-1 folds and validated on the remaining fold. This process is

repeated k times, with each fold serving as the validation set once. The performance

metrics are then averaged over all k trials to provide a comprehensive evaluation of

the model.

Steps in K-Fold Cross-Validation:

• Divide the data into k folds.

• For each fold i (from 1 to k ):

• Train the HMM on k-1 folds (excluding fold i ).

• Validate the HMM on fold i .

• Record the performance metric (e.g., log-likelihood, accuracy).

• Average the performance metrics over all k folds to obtain the final evalua-

tion.

Example:

If you have a data set with 100 sequences and you choose k = 5 , each fold will

contain 20 sequences. The model is trained on 80 sequences and validated on the

remaining 20 sequences. This is repeated five times, and the results are averaged.

2. Leave-One-Out Cross-Validation (LOOCV)

LOOCV is a special case of k-fold cross-validation where k equals the number of

data points. Each data point is used once as a validation set while the remaining

points form the training set. LOOCV is computationally intensive but provides an

unbiased estimate of model performance.

Steps in LOOCV:

• For each data point i :

• Train the HMM on all data points except i .

• Validate the HMM on data point i .

• Record the performance metric.

• Average the performance metrics over all data points to obtain the final eval-

uation.

Example:
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If you have 100 sequences, the model is trained on 99 sequences and validated on the

remaining one sequence. This is repeated 100 times, and the results are averaged.

Example of Cross-Validation in HMMs:

Consider an HMM used for speech recognition. The goal is to evaluate how well the

HMM generalizes to new speech data.

• K-Fold Cross-Validation:

• Divide the speech data into 10 folds. Train the HMM on 9 folds and validate

it on the remaining fold. Repeat this process 10 times. Average the log-likelihoods

or accuracy scores to assess the model’s performance.

• LOOCV:

• Train the HMM on all but one speech sequence and validate it on the ex-

cluded sequence. Repeat this process for each sequence in the data set. Average the

results to obtain the final performance metric.

Performance Metrics:

• Log-Likelihood: Measure the log-likelihood of the validation set given the

trained model.

• Prediction Accuracy: Compare the predicted hidden states with the true

states if available.

Cross-validation provides a comprehensive way to evaluate the performance of HMMs,

ensuring that the model selected performs well on unseen data. By using techniques

like k-fold cross-validation and LOOCV, one can robustly assess and compare differ-

ent models, leading to better generalization and more reliable predictions. (Hastie

et al. (2009))

3.5.3 Performance Metrics

Evaluating the performance of Hidden Markov Models (HMMs) involves using a

variety of metrics to assess their accuracy, reliability, and generalizability. These

metrics help in understanding how well the model fits the data and how it is likely

to perform on unseen data. Common performance metrics for HMMs include log-

likelihood, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),

prediction accuracy, and measures like precision, recall, and F1-score.
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1. Log-Likelihood

The log-likelihood of the observed data given the model is a fundamental measure

of model fit. It quantifies how well the model explains the observed data. Higher

log-likelihood values indicate a better fit.

log L(λ | O) = log P(O | λ)

Example: In a speech recognition task, the log-likelihood can be used to measure

how well the HMM predicts the sequence of observed speech features.

2. Akaike Information Criterion (AIC)

AIC is used to compare models with different numbers of parameters. It penalizes

models with more parameters to prevent overfitting.

AIC = 2k − 2 log L(λ | O)

where k is the number of parameters in the model.

Example: Comparing HMMs with different numbers of states for a part-of-speech

tagging task, where the model with the lowest AIC is preferred.

3. Bayesian Information Criterion (BIC)

BIC is similar to AIC but includes a stronger penalty for models with more parame-

ters, especially when the sample size is large.

BIC = k log n − 2 log L(λ | O)

where n is the number of data points and k is the number of parameters. Example:

In a bioinformatics application, BIC can help select the optimal HMM for modeling

protein sequences.

4. Prediction Accuracy

For classification tasks, prediction accuracy measures the proportion of correctly pre-

dicted hidden states or observations.

Accuracy = Number of Correct Predictions
Total Number of Predictions

Example: In part-of-speech tagging, the accuracy of the predicted tags compared to

the true tags.

5. Precision, Recall, and F1-Score

These metrics are useful for evaluating model performance on imbalanced data sets.
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• Precision: The proportion of true positive predictions among all positive

predictions.

• Precision = True Positives
True Positives+False Positives

• Recall: The proportion of true positive predictions among all actual positive

instances.

• Recall = True Positives
True Positives+False Negatives

• F1-Score: The harmonic mean of precision and recall.

• F1-Score = 2 × Precision×Recall
Precision+Recall

Example: In medical diagnosis using HMMs, precision, recall, and F1-score can be

used to evaluate the model’s ability to correctly identify disease states.

Example of Performance Metrics in HMMs:

Consider an HMM used for handwriting recognition, where the goal is to evaluate

the model’s performance in recognizing handwritten characters.

• Log-Likelihood: Measure the log-likelihood of the observed sequences of

pen strokes given the model.

• AIC and BIC: Compare different HMMs with varying numbers of states and

transitions to select the model with the best balance of fit and complexity.

• Prediction Accuracy: Calculate the accuracy of the predicted characters com-

pared to the true characters in a test set.

• Precision, Recall, and F1-Score: Use these metrics to evaluate the model’s

performance in correctly identifying specific characters, especially if some char-

acters are less frequent than others.

By employing these performance metrics, one can comprehensively assess the effec-

tiveness of HMMs in various applications, ensuring that the chosen model provides

accurate and reliable predictions. (Burnham and Anderson (2004))

3.6 Summary

Chapter 3 delves into the theoretical foundations and core algorithms essential for

the practical application of Hidden Markov Models (HMMs). It begins with an intro-

duction to the importance of these algorithms, highlighting their roles in evaluating,

decoding, and learning from HMMs.



3.6. Summary 39

The chapter covers the fundamental probability theory underlying HMMs, includ-

ing basic probability concepts and Markov processes. This section explains how

random variables, probability distributions, conditional probabilities, joint proba-

bilities, and the properties of Markov chains form the bedrock of HMMs.

The detailed algorithms section provides an in-depth look at the Forward-Backward

Algorithm, the Viterbi Algorithm, and the Baum-Welch Algorithm. The Forward-

Backward Algorithm is crucial for evaluating the probability of a sequence of ob-

servations given a model. The Viterbi Algorithm is used to decode the most likely

sequence of hidden states, while the Baum-Welch Algorithm addresses the learning

problem by estimating the parameters of the HMM using an iterative Expectation-

Maximization approach.

Estimation techniques such as Maximum Likelihood Estimation (MLE) and Bayesian

Estimation Methods are discussed next. MLE seeks to find the parameters that max-

imize the likelihood of the observed data, while Bayesian methods incorporate prior

information to refine parameter estimates. The chapter also covers model selection

and evaluation, emphasizing the need to balance model complexity to avoid over-

fitting and ensuring that the chosen model generalizes well to new data. Techniques

like cross-validation and metrics such as log-likelihood, AIC, BIC, prediction accu-

racy, precision, recall, and F1-score are explained.

Overall, Chapter 3 provides a comprehensive theoretical framework for understand-

ing and applying HMMs, equipping researchers and practitioners with the knowl-

edge to effectively use these models in various complex applications.
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Chapter IV

Extensions and Variants of HMMs

4.1 Introduction

Hidden Markov Models (HMMs) have proven to be powerful tools for modeling

sequential data across various domains. However, the standard HMM framework

has limitations, particularly when dealing with complex systems that exhibit hierar-

chical structures or interactions between multiple processes. To address these limi-

tations, several extensions and variants of HMMs have been developed.

This chapter focuses on two significant extensions of HMMs: Hierarchical Hidden

Markov Models (HHMMs) and Coupled Hidden Markov Models (CHMMs). These

advanced models provide greater flexibility and can capture more intricate depen-

dencies and interactions in the data.

Hierarchical Hidden Markov Models introduce a multi-level structure, allowing the

modeling of nested temporal dependencies. This hierarchical approach is particu-

larly useful for systems where states themselves can be composed of other states,

such as in speech recognition or activity recognition.

Coupled Hidden Markov Models, on the other hand, allow for the interaction betw-

een multiple HMMs. This coupling enables the modeling of systems where multiple

dynamic processes influence each other, such as in multi-sensor fusion or human-

computer interaction.

By exploring these extensions, we aim to understand how they enhance the mod-

eling capabilities of HMMs and broaden their applicability to more complex real-

world problems. The following sections will delve into the structure, key compo-

nents, and applications of HHMMs and CHMMs, providing detailed explanations

and examples to illustrate their utility. (Rabiner (1989))

Next, we will discuss the structure of Hierarchical Hidden Markov Models (HH-

MMs) in detail.
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4.2 Hierarchical Hidden Markov Models

Hierarchical Hidden Markov Models (HHMMs) extend the traditional HMM frame-

work by introducing a multi-level structure. This hierarchical approach allows for

the modeling of systems where states can themselves be composed of other states,

capturing more complex and nested temporal dependencies. This section delves

into the structure, key components, and applications of HHMMs.

4.2.1 Structure of HHMMs

The structure of HHMMs is designed to capture hierarchical relationships within the

data. In an HHMM, states are organized into a hierarchy where higher-level states

can invoke sequences of lower-level states. This hierarchical structure enables the

model to represent different levels of granularity in the data.

In a typical HHMM, the top-level states represent high-level activities or processes,

while the lower-level states represent sub-activities or sub-processes. Transitions can

occur both within a level and across levels, allowing the model to capture dependen-

cies at multiple temporal scales. (Fine et al. (1998))

The main components of an HHMM structure include:

• Levels of Hierarchy: Each level contains states that represent a specific level

of granularity.

• State Transitions: Transitions can occur between states at the same level or

between different levels.

• Observation Emission: Observations can be emitted by states at any level,

providing flexibility in modeling the data.

4.2.2 Key Components of HHMMs

The key components of HHMMs include the state hierarchy, transition mechanisms,

and observation emission processes. Understanding these components is crucial for

implementing and utilizing HHMMs effectively. (Bui et al. (2002))

• State Hierarchy: The states in an HHMM are organized into a hierarchical

structure. Higher-level states can invoke sequences of lower-level states, al-

lowing the model to capture nested dependencies. Each level in the hierarchy

represents a different granularity of the data.

• Transition Mechanisms: Transitions in an HHMM can occur within a level

or across levels. Intra-level transitions capture dependencies within the same
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level, while inter-level transitions capture dependencies across different lev-

els. This flexibility allows the HHMM to model both short-term and long-term

dependencies in the data.

• Observation Emission: Observations can be generated by states at any level

in the hierarchy. This feature allows the HHMM to model observations that

can occur at different temporal scales. The emission probability distribution

for each state specifies the likelihood of observing a particular observation

given the state.

FIGURE 4.1: Hierarchical structure of HHMM with different
levels of states. (Appel (2021))

4.2.3 Applications of HHMMs

HHMMs are particularly useful in applications where the data exhibits hierarchical

or nested structures. Some common applications of HHMMs include: (Murphy and

Paskin (2001))

• Speech Recognition: In speech recognition, HHMMs can model the hier-

archical structure of speech, where phonemes form syllables, syllables form

words, and words form sentences. This hierarchical modeling improves the

accuracy of recognizing spoken language.

• Activity Recognition: HHMMs can be used to recognize complex activities

composed of simpler sub-activities. For example, in human activity recogni-

tion, an HHMM can model activities such as “making coffee” as a sequence

of sub-activities like “boiling water,” “grinding coffee beans,” and “pouring

coffee”.

• Natural Language Processing: In natural language processing, HHMMs

can model the hierarchical structure of text, where words form phrases, phrases

form sentences, and sentences form paragraphs. This approach improves the

ability to understand and generate natural language.
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4.3 Coupled Hidden Markov Models

Coupled Hidden Markov Models (CHMMs) are an extension of the standard HMM

framework designed to model multiple interacting processes. In CHMMs, several

HMMs are coupled together, allowing the state of one process to influence the state

transitions of other processes. This capability is particularly useful for systems where

multiple dynamic processes interact with each other, such as in multi-sensor fusion

or human-computer interaction. (Brand et al. (1997))

4.3.1 Structure of CHMMs

The structure of CHMMs is built to capture the interactions between multiple HMMs.

Each HMM, referred to as a chain, represents a distinct process with its own states

and observations. The chains are coupled through interaction terms, enabling the

state of one chain to affect the state transitions of another.

In a typical CHMM, the overall state space is the Cartesian product of the state

spaces of individual chains. This structure allows the model to represent complex

dependencies between different processes. The main components of a CHMM struc-

ture include: (Brand et al. (1997))

• Multiple Chains: Each chain represents a separate HMM with its own states

and transition probabilities.

• State Dependency: The state transitions in one chain can depend on the

states of other chains, capturing the interdependencies between processes.

• Joint State Space: The combined state space is the product of the state spaces

of all chains, representing all possible combinations of states across the chains

4.3.2 Key Components of CHMMs

Understanding the key components of CHMMs is essential for their implementation

and application. These components include the state spaces, transition mechanisms,

and observation processes for the coupled chains. (Brand et al. (1997))

• State Spaces: Each chain in a CHMM has its own state space, representing

the possible states of the process it models. The joint state space of the CHMM

is the Cartesian product of the individual state spaces.

• Transition Mechanisms: State transitions in a CHMM are influenced by the

states of other chains. The transition probability for a state in one chain may

depend on the current states of all chains, capturing the interactions between

processes.
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FIGURE 4.2: Coupled structure of CHMM with interacting
HMMs (Zou et al. (2022))

• Observation Processes: Each chain generates observations based on its cur-

rent state. The observation probability distributions for each chain are speci-

fied independently, allowing the CHMM to model complex observation pat-

terns.

4.3.3 Applications of CHMMs

CHMMs are particularly useful in applications where multiple interacting processes

need to be modeled. Some common applications of CHMMs include:

• Multi-Sensor Fusion: In multi-sensor fusion, CHMMs can integrate data

from multiple sensors to improve the accuracy and reliability of recognition

systems. For example, in a surveillance system, different sensors (e.g., cam-

eras, microphones) provide complementary information that, when combined,

offer a more comprehensive understanding of the environment. (Zhang and

Lessmann (2008))

• Human-Computer Interaction: CHMMs can model interactions between

different modalities, such as speech and gesture, in human-computer interac-

tion. This capability enhances the system’s ability to understand and respond

to user inputs. (Oliver et al. (2000))

• Financial Modeling: In financial modeling, CHMMs can capture the depen-

dencies between different financial indicators, such as stock prices, interest

rates, and economic indicators. This enables more accurate predictions and

insights for investment strategies and risk management. (Elliott et al. (2008))
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4.4 Summary

In this chapter, we explored advanced extensions of the traditional Hidden Markov

Model (HMM) framework, focusing on Hierarchical Hidden Markov Models (HH-

MMs) and Coupled Hidden Markov Models (CHMMs). These models enhance the

flexibility and applicability of HMMs by addressing complex scenarios involving

hierarchical structures and interacting processes.

Hierarchical Hidden Markov Models (HHMMs) introduce a multi-level structure

that allows states at higher levels to invoke sequences of states at lower levels. This

hierarchical approach is particularly effective in modeling nested temporal depen-

dencies, making HHMMs suitable for applications such as speech recognition, ac-

tivity recognition, and natural language processing. By capturing different levels of

granularity, HHMMs improve the model’s ability to represent and interpret complex

patterns in sequential data.

Coupled Hidden Markov Models (CHMMs) extend HMMs by allowing multiple

HMMs to interact with each other. This coupling enables the modeling of systems

where multiple dynamic processes influence one another. CHMMs are particularly

useful in applications like multi-sensor fusion, human-computer interaction, and

financial modeling. By capturing the dependencies between different processes,

CHMMs enhance the model’s ability to integrate and analyze data from diverse

sources, leading to more accurate and robust predictions.

The chapter provided detailed explanations of the structures and key components of

both HHMMs and CHMMs. Examples and figures illustrated how these models can

be applied to real-world problems, demonstrating their versatility and effectiveness.

In summary, the extensions and variants of HMMs discussed in this chapter offer

powerful tools for modeling complex systems with hierarchical structures and in-

teracting processes. These advanced models expand the applicability of HMMs and

provide more nuanced and accurate representations of sequential data.
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Chapter V

Applications of HMMs

5.1 Introduction to Applications

Hidden Markov Models (HMMs) have found widespread application across various

domains due to their versatility and effectiveness in modeling sequential data. This

chapter explores the practical applications of HMMs in several key areas: speech

recognition, bioinformatics, finance, natural language processing (NLP), and robotics

and control systems. By examining these applications, we aim to highlight the sig-

nificant impact of HMMs and illustrate how the theoretical concepts discussed in

previous chapters are implemented in real-world scenarios.

In each section, we will provide an overview of the application area, discuss how

HMMs are utilized within that context, and present a case study to demonstrate the

practical use of HMMs. These examples will showcase the flexibility and power of

HMMs in addressing complex problems and improving the accuracy and efficiency

of various systems. (Rabiner (1989))

5.2 Speech Recognition

Hidden Markov Models (HMMs) have revolutionized the field of speech recogni-

tion by providing a robust framework for modeling the variability and sequential

nature of speech signals. This section explores how HMMs are applied in speech

recognition systems, improving their accuracy and efficiency. (Rabiner (1989))

5.2.1 Overview

Speech recognition involves converting spoken language into text. The primary

challenge lies in the variability of speech due to differences in accent, speed, into-

nation, and background noise. Traditional methods struggled to cope with these

variations, but HMMs have proven to be highly effective in capturing the temporal

dynamics of speech.
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HMMs model speech as a sequence of observations (features extracted from the

speech signal) and hidden states (underlying phonetic units). By leveraging the

probabilistic nature of HMMs, speech recognition systems can handle variations in

speech and accurately predict the most likely sequence of words corresponding to a

given speech input. (Rabiner (1989))

5.2.2 HMMs in Speech Recognition

HMMs are used in speech recognition systems through several key steps: (Rabiner

(1989))

1. Feature Extraction

The first step in speech recognition is to convert the audio signal into a sequence of

feature vectors. This is typically done using techniques such as Mel-Frequency Cep-

stral Coefficients (MFCCs), which capture the essential characteristics of the speech

signal.

2. Model Training

HMMs are trained on a large dataset of labeled speech to learn the transition and

emission probabilities. This involves estimating the parameters of the HMM using

algorithms such as the Baum-Welch algorithm. The training process results in an

HMM for each phoneme or word in the vocabulary.

3. Decoding

During recognition, the trained HMMs are used to decode the sequence of feature

vectors into the most likely sequence of words. The Viterbi algorithm is commonly

used for this purpose, as it efficiently finds the optimal path through the state space

that maximizes the likelihood of the observed sequence.

4. Language Modeling

In addition to the acoustic model provided by HMMs, a language model is used

to incorporate syntactic and semantic constraints. This combination enhances the

accuracy of the recognition system by favoring more likely word sequences.

5.2.3 Case Study: Speech-to-Text Systems

Speech-to-text systems convert spoken language into written text. These systems

are widely used in applications such as virtual assistants, transcription services, and

voice-controlled interfaces. (Rabiner (1989))
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HMM Implementation:

• Feature Extraction: The audio signal is processed to extract MFCCs, which

serve as the input to the HMM.

• Model Training: HMMs are trained on a large corpus of speech data. Each

HMM represents a phoneme, and the models are trained using the Baum-

Welch algorithm to estimate the transition and emission probabilities.

• Decoding: During recognition, the Viterbi algorithm is used to find the most

likely sequence of phonemes given the sequence of MFCCs. This sequence is

then mapped to words using a dictionary.

• Language Modeling: A language model is integrated to improve the accu-

racy by incorporating syntactic and semantic rules.

Example

Consider a virtual assistant like Siri or Google Assistant. When a user speaks a com-

mand, the system processes the audio signal, extracts features, and uses HMMs to

decode the speech into text. The language model helps ensure the output text is co-

herent and contextually appropriate. This process allows the assistant to understand

and respond to user commands accurately.

5.3 Bioinformatics

Hidden Markov Models (HMMs) have become essential tools in bioinformatics for

analyzing biological sequences. By providing a probabilistic framework to model

sequence data, HMMs enable researchers to identify patterns, predict structural el-

ements, and infer evolutionary relationships within biological sequences. (Durbin

et al. (1998))

5.3.1 Overview

Bioinformatics involves the application of computational techniques to understand

and analyze biological data. DNA, RNA, and protein sequences are prime examples

of sequential data in bioinformatics. These sequences exhibit complex patterns and

dependencies that can be effectively modeled using HMMs.

HMMs are particularly useful in bioinformatics for tasks such as gene prediction,

sequence alignment, and protein structure prediction. The probabilistic nature of

HMMs allows for the modeling of biological variability and the identification of

conserved motifs and domains within sequences. (Durbin et al. (1998))
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5.3.2 HMMs in Bioinformatics

HMMs are applied in bioinformatics through several key processes: (Durbin et al.

(1998))

1. Model Construction

HMMs are constructed to represent specific biological features or domains. For ex-

ample, an HMM can be built to model a gene structure, including exons, introns,

and regulatory regions.

2. Training

The parameters of the HMM are estimated using training data, which typically con-

sists of known sequences annotated with the biological features of interest. The

Baum-Welch algorithm is commonly used for parameter estimation.

3. Decoding

Given a new biological sequence, the HMM can be used to decode the sequence and

identify regions that correspond to the modeled features. The Viterbi algorithm is

often used to find the most likely path through the states of the HMM.

4. Multiple Sequence Alignment

HMMs can be employed to perform multiple sequence alignment by aligning se-

quences to a profile HMM. This approach captures the conserved regions across

multiple sequences and highlights evolutionary relationships.

Multiple sequence alignment (MSA) is a critical task in bioinformatics that involves

aligning three or more biological sequences—DNA, RNA, or proteins—to identify

regions of similarity that may indicate functional, structural, or evolutionary rela-

tionships. Hidden Markov Models (HMMs) play an instrumental role in this process

by providing a probabilistic framework that can account for the inherent variability

and noise in biological data. In MSA, the objective is not only to find the optimal

alignment of sequences but also to handle gaps and mismatches that may occur due

to mutations or evolutionary divergence. HMMs are particularly well-suited for this

task because they can model the insertion and deletion events through their state

transition mechanisms, providing a robust means to generate alignments that reflect

the true evolutionary history of the sequences.

One of the key advantages of using HMMs in MSA is their ability to capture con-

served regions across sequences while also highlighting more variable or divergent
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sections. The HMM-based profile approach, known as a profile HMM, is often em-

ployed to align sequences to a consensus model, allowing researchers to align se-

quences even if they vary significantly from the template. This technique is espe-

cially valuable in cases where there is limited sequence homology, and traditional

alignment methods might struggle. By leveraging the probabilistic nature of HMMs,

MSA can reveal hidden patterns within sequences that are critical for understanding

biological functions, identifying domains, and inferring evolutionary relationships.

Thus, HMM-based MSAs provide a powerful and flexible tool in bioinformatics, en-

abling researchers to draw meaningful conclusions from large and complex datasets.

5.3.3 Case Study: Gene Prediction

Gene prediction involves identifying the regions of a DNA sequence that correspond

to genes. This is a fundamental task in genomics, as genes encode the proteins es-

sential for cellular functions. (Durbin et al. (1998))

HMM Implementation:

• Model Construction: An HMM is constructed to model the gene structure,

including promoter regions, exons, introns, and termination sites. Each state

in the HMM represents a different part of the gene structure.

• Training: The HMM is trained using a dataset of known gene sequences with

annotated gene structures. The Baum-Welch algorithm is used to estimate the

transition and emission probabilities.

• Decoding: For a new DNA sequence, the Viterbi algorithm is used to decode

the sequence and identify the most likely gene regions. This involves finding

the optimal path through the states that represents the gene structure.

Example

Consider the task of predicting genes in a newly sequenced genome. The HMM is

applied to the DNA sequence, and the Viterbi algorithm identifies the regions that

correspond to genes. This process allows researchers to annotate the genome with

predicted gene locations, facilitating further analysis and functional studies.

5.4 Financial Modeling

Hidden Markov Models (HMMs) are extensively used in the field of finance for

modeling and predicting time series data. Their ability to capture the temporal de-

pendencies and underlying states of financial systems makes them invaluable for
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tasks such as stock market prediction, risk management, and algorithmic trading.

(Elliott et al. (2008))

5.4.1 Overview

Financial markets are complex systems characterized by dynamic and often unpre-

dictable behavior. Modeling such systems requires tools that can handle the inher-

ent noise and variability. HMMs provide a probabilistic framework that captures

the stochastic nature of financial time series, allowing for better understanding and

prediction of market movements.

HMMs are particularly effective in identifying hidden states in financial data, such

as bull and bear markets, and predicting future trends based on these states. By

modeling the sequence of observed financial data and the underlying hidden states,

HMMs offer a robust approach to financial analysis and decision-making.(Elliott

et al. (2008))

5.4.2 HMMs in Financial Modeling

HMMs are applied in financial modeling through several key processes: (Elliott et al.

(2008))

1. Model Construction

An HMM is constructed to represent the different states of the financial market.

These states could represent various market conditions, such as high volatility, low

volatility, uptrend, or downtrend.

2. Training

The parameters of the HMM are estimated using historical financial data. This in-

volves identifying the transition probabilities between different market states and

the emission probabilities of observed financial metrics within each state.

3. Decoding

Given new financial data, the HMM is used to decode the sequence and identify the

most likely current state of the market. The Viterbi algorithm is often employed to

find the optimal state sequence.
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4. Prediction

Based on the identified states, the HMM can predict future market movements. This

involves forecasting the probability of transitioning to different states and the ex-

pected financial metrics associated with those states.

5.4.3 Case Study: Stock Market Prediction

Stock market prediction involves forecasting future stock prices or market indices

based on historical data. Accurate predictions can significantly enhance investment

strategies and risk management. (Elliott et al. (2008))

HMM Implementation:

• Model Construction: An HMM is constructed with states representing dif-

ferent market conditions, such as bullish, bearish, and neutral markets. Each

state has associated emission probabilities for stock price changes.

• Training: The HMM is trained using historical stock price data. The Baum-

Welch algorithm is used to estimate the transition and emission probabilities.

• Decoding: For current market data, the Viterbi algorithm is used to decode

the most likely sequence of market states. This helps in identifying the current

market condition.

• Prediction: The HMM predicts future stock prices by forecasting the proba-

bility of transitioning to different market states and the expected price changes

in those states.

Example

Consider a stock market prediction model for a major stock index. The HMM is

applied to historical price data to identify patterns corresponding to different market

conditions. Based on the current market state, the model predicts the likelihood of

future price movements, helping investors make informed decisions about buying

or selling stocks.

5.5 Natural Language Processing

Hidden Markov Models (HMMs) have been widely adopted in the field of Natural

Language Processing (NLP) due to their effectiveness in modeling sequential data.

They are particularly useful for tasks such as part-of-speech tagging, named entity

recognition, and language modeling, where understanding the sequence and struc-

ture of words is crucial. (Manning and Schütze (1999))
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5.5.1 Overview

Natural Language Processing involves the interaction between computers and hu-

man languages. It encompasses a range of tasks that require the understanding,

interpretation, and generation of human language. HMMs provide a probabilistic

framework that captures the dependencies between words and their parts of speech,

making them suitable for various NLP applications.

HMMs in NLP help in disambiguating words, predicting the next word in a se-

quence, and identifying entities in text. By modeling the sequence of words and

their underlying states, HMMs enhance the accuracy of language processing tasks.

(Manning and Schütze (1999))

5.5.2 HMMs in NLP

HMMs are applied in NLP through several key processes: (Manning and Schütze

(1999))

1. Model Construction

An HMM is constructed to represent the sequence of words and their associated

parts of speech or named entities. Each state in the HMM corresponds to a part of

speech or entity type.

2. Training

The parameters of the HMM are estimated using a labeled corpus of text. The

Baum-Welch algorithm is commonly used for parameter estimation, which involves

learning the transition probabilities between states and the emission probabilities of

words given the states.

3. Decoding

Given a new sequence of words, the HMM is used to decode the sequence and iden-

tify the most likely sequence of parts of speech or named entities. The Viterbi algo-

rithm is often employed for this purpose.

4. Prediction

Based on the identified sequence, the HMM can predict the next word or the part of

speech for a given word in a sentence. This involves calculating the probability of

different sequences and choosing the most likely one.
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5.5.3 Case Study: Part-of-Speech Tagging

Part-of-speech tagging involves assigning a part of speech to each word in a sen-

tence. This is a fundamental task in NLP that helps in understanding the grammati-

cal structure of a sentence. (Manning and Schütze (1999))

HMM Implementation:

• Model Construction: An HMM is constructed with states representing dif-

ferent parts of speech, such as nouns, verbs, adjectives, and prepositions. Each

state has associated emission probabilities for the words that commonly be-

long to that part of speech.

• Training: The HMM is trained using a labeled corpus where each word is an-

notated with its part of speech. The Baum-Welch algorithm is used to estimate

the transition and emission probabilities.

• Decoding: For a new sentence, the Viterbi algorithm is used to decode the

most likely sequence of parts of speech. This helps in tagging each word with

its appropriate part of speech.

• Prediction: The HMM predicts the part of speech for each word in the sen-

tence, enhancing the understanding of the sentence structure.

Example

Consider the sentence “The quick brown fox jumps over the lazy dog.” The HMM is

applied to this sentence, and the Viterbi algorithm decodes the sequence as follows:

• The (Determiner)

• quick (Adjective)

• brown (Adjective)

• fox (Noun)

• jumps (Verb)

• over (Preposition)

• the (Determiner)

• lazy (Adjective)

• dog (Noun)

This tagging helps in understanding the grammatical structure of the sentence, which

can be useful for further NLP tasks such as parsing and machine translation.
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5.6 Robotics and Control Systems

Hidden Markov Models (HMMs) are widely used in robotics and control systems

to model and predict the behavior of dynamic systems. Their ability to handle se-

quential data and incorporate probabilistic reasoning makes them ideal for applica-

tions such as autonomous navigation, fault detection, and human-robot interaction.

(Thrun et al. (2005))

5.6.1 Overview

Robotics and control systems involve the interaction between computational algo-

rithms and physical processes. These systems require accurate modeling and pre-

diction of states to function effectively. HMMs provide a robust framework for rep-

resenting the uncertainty and variability inherent in these systems.

In robotics, HMMs can be used to model the states of a robot and predict its move-

ments based on sensor data. In control systems, HMMs help in monitoring system

states and detecting anomalies, ensuring safe and efficient operation.(Thrun et al.

(2005))

5.6.2 HMMs in Robotics and Control

HMMs are applied in Robotics and Control through several key processes: (Thrun

et al. (2005))

1. Model Construction

An HMM is constructed to represent the states of the system. In robotics, states can

include different positions and orientations of the robot. In control systems, states

can represent various operational modes.

2. Training

The parameters of the HMM are estimated using historical data. This involves learn-

ing the transition probabilities between states and the emission probabilities of ob-

served signals or sensor readings.

3. Decoding

Given new sensor data, the HMM is used to decode the sequence and identify the

most likely current state of the system. The Viterbi algorithm is often used for this

purpose.
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4. Prediction and Control

Based on the identified states, the HMM can predict future states and help in mak-

ing control decisions. This involves calculating the probability of transitioning to

different states and selecting the optimal control actions.

5.6.3 Case Study: Autonomous Navigation

Autonomous navigation involves the ability of a robot or vehicle to navigate through

an environment without human intervention. Accurate state estimation and predic-

tion are crucial for successful navigation. (Thrun et al. (2005))

HMM Implementation:

• Model Construction: An HMM is constructed with states representing dif-

ferent positions and orientations of the robot. Each state has associated emis-

sion probabilities for sensor readings, such as distance measurements from

LIDAR or cameras.

• Training: The HMM is trained using data collected from the robot navigating

in different environments. The Baum-Welch algorithm is used to estimate the

transition and emission probabilities.

• Decoding: For new sensor data, the Viterbi algorithm is used to decode the

most likely sequence of states. This helps in determining the robot’s current

position and orientation.

• Prediction: The HMM predicts future states based on current sensor data

and helps in making navigation decisions. For example, if the HMM predicts

an obstacle ahead, the control system can adjust the robot’s path to avoid it.

Example

Consider an autonomous robot navigating through a building. The HMM is applied

to sensor data from LIDAR and cameras to estimate the robot’s position and orienta-

tion. The Viterbi algorithm decodes the most likely state sequence, helping the robot

navigate through corridors and avoid obstacles. The HMM also predicts potential

obstacles and guides the robot in real-time, ensuring safe and efficient navigation.

5.7 Summary

In this chapter, we explored the diverse applications of Hidden Markov Models

(HMMs) across several key domains, demonstrating their versatility and effective-

ness in handling sequential data and making predictions under uncertainty.
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Speech Recognition

HMMs have significantly advanced speech recognition technology by providing a

framework to model the temporal dynamics of speech. They enable the conversion

of spoken language into text with high accuracy, handling variations in speech pat-

terns, accents, and background noise. Through feature extraction, model training,

decoding, and language modeling, HMMs form the backbone of modern speech-to-

text systems.

Bioinformatics

In bioinformatics, HMMs are instrumental in analyzing biological sequences, such

as DNA, RNA, and proteins. They facilitate tasks like gene prediction, sequence

alignment, and protein structure prediction by capturing the complex patterns and

dependencies within biological data. HMMs help in identifying conserved motifs

and structural elements, aiding in the understanding of genetic information and

evolutionary relationships.

Finance

HMMs are widely used in finance for modeling and predicting time series data.

They capture the stochastic nature of financial markets and identify hidden states,

such as bullish or bearish conditions. By constructing models, training on historical

data, decoding current market states, and making predictions, HMMs enhance stock

market prediction, risk management, and algorithmic trading strategies.

Natural Language Processing (NLP)

In NLP, HMMs are employed for tasks such as part-of-speech tagging, named entity

recognition, and language modeling. They effectively model the sequence of words

and their parts of speech, improving the understanding and generation of human

language. HMMs enable accurate tagging of words in a sentence, facilitating further

NLP tasks like parsing and machine translation.

Robotics and Control Systems

HMMs are crucial in robotics and control systems for modeling and predicting the

behavior of dynamic systems. They support autonomous navigation, fault detec-

tion, and human-robot interaction by representing the states of a robot and predict-

ing its movements based on sensor data. HMMs help in making control decisions

and ensuring safe and efficient operation of robots and control systems.

Through detailed examples and case studies, we illustrated how HMMs are imple-

mented and utilized in each domain. These applications highlight the power of
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HMMs in addressing complex problems, enhancing prediction accuracy, and im-

proving decision-making processes.

In conclusion, the applications of HMMs span a wide range of fields, showcasing

their adaptability and robustness. By capturing temporal dependencies and han-

dling uncertainties, HMMs provide valuable insights and solutions in speech recog-

nition, bioinformatics, finance, NLP, and robotics. As technology and methodolo-

gies continue to evolve, the role of HMMs in these and other domains is expected

to expand further, driving innovation and advancing our understanding of dynamic

systems.
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Chapter VI

Part of Speech tagging with HHM

6.1 What is Part of Speech (POS) Tagging?

Part of Speech (POS) tagging involves assigning each word in a sentence its cor-

responding part of speech, such as noun, verb, adjective, or adverb. This process,

known as POS annotation, categorizes words into lexical tags or word classes. Tra-

ditionally, POS tagging was a manual task performed by human annotators. How-

ever, due to its labor-intensive nature, modern POS tagging is largely automated,

with manual annotation reserved for creating training datasets for new automatic

taggers.

POS tags provide significant information about words and their context, facilitat-

ing various NLP tasks. These tags are essential for applications such as information

retrieval, parsing, text-to-speech systems, information extraction, and linguistic re-

search. Additionally, POS tagging serves as a crucial intermediate step for higher-

level NLP functions like parsing, semantic analysis, and machine translation, mak-

ing it a foundational component in advanced natural language processing applica-

tions. (Great Learning Team (2022)

6.2 Techniques for POS Tagging

There are several techniques utilized for POS tagging, each offering unique advan-

tages. Here are some common methods:

1. Rule-based POS Tagging

This technique applies a set of manually crafted rules that use contextual informa-

tion to assign POS tags to words. These context frame rules, such as “If an ambigu-

ous/unknown word ends with ‘ing’ and follows a verb, label it as a verb,” guide

the tagging process. Rule-based systems are straightforward but can struggle with

exceptions and nuances in language.
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2. Transformation-based Tagging

This method combines predefined rules with rules automatically generated during

training. The system iteratively refines its rules to improve accuracy. Transformation-

based approaches, also known as Brill tagging, start with a rough guess and itera-

tively correct mistakes by applying transformation rules learned from the training

data.

3. Deep Learning Models

Advanced models like Meta-BiLSTM have been employed for POS tagging, achiev-

ing impressive accuracy rates of around 97%. These models leverage large datasets

and deep neural networks to capture complex patterns in the data. Deep learning

approaches can generalize well from large amounts of data, capturing subtleties in

word usage and context that simpler models might miss.

4. Stochastic (Probabilistic) Tagging

This approach uses statistical methods to assign POS tags based on frequency and

probability. The simplest stochastic method tags words according to their most fre-

quent tag in the training data. More sophisticated methods, such as Hidden Markov

Models (HMMs), calculate the probabilities of different tag sequences and select the

sequence with the highest probability, ensuring grammatical consistency. This prob-

abilistic approach balances between observed frequencies and contextual probabili-

ties to produce the most likely tag sequences.

Hybrid Approaches:

Some systems combine rule-based, probabilistic, and machine learning methods to

enhance tagging accuracy and robustness. By leveraging the strengths of multiple

techniques, hybrid approaches can address the limitations of individual methods.

Contextual Tagging:

Leveraging contextual cues, these techniques can improve the accuracy of tagging

homonyms and polysemous words by considering the surrounding words in a sen-

tence. This is particularly useful in disambiguating words that can serve multiple

grammatical functions.

These techniques have evolved significantly, providing robust tools for accurately

tagging large corpora, thereby facilitating more complex NLP tasks. (Great Learning

Team (2022)
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6.3 POS Tagging with Hidden Markov Model

Hidden Markov Model (HMM) is a probabilistic technique widely used for POS

tagging. HMMs are notable for their applications in various fields, including rein-

forcement learning and temporal pattern recognition such as speech, handwriting,

gesture recognition, musical score following, and bioinformatics.

To illustrate how HMM selects an appropriate tag sequence for a sentence, consider

the example by Dr. Luis Serrano. The process involves calculating the transition

and emission probabilities to determine the likelihood of different sequences of POS

tags.

FIGURE 6.1: Transition and Emission Probabilities for HMM
(Great Learning Team (2022)

In this example, we consider only three POS tags: noun, model, and verb. For the

sentence “Ted will spot Will,” tagged as noun, model, verb, and noun, we need to

calculate the probability associated with this sequence of tags using their Transition

and Emission probabilities.

Transition probability refers to the likelihood of a particular sequence, such as a noun

followed by a model, a model followed by a verb, and a verb followed by a noun.

This probability is crucial for determining if a sequence is likely to be correct.

Next, we determine the probability that each word in the sentence “Ted will spot

Will” corresponds to its respective POS tag. These probabilities are known as Emis-

sion probabilities and are important for ensuring accurate tagging.

Let’s calculate these probabilities for the following sentences:

• Mary Jane can see Will

• Spot will see Mary

• Will Jane spot Mary?
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• Mary will pat Spot

Note that Mary, Jane, Spot, and Will are all names.

FIGURE 6.2: Example Senteces with POS Tags (Great Learning
Team (2022)

In the provided sentences, the word “Mary” appears four times as a noun. To calcu-

late the emission probabilities, we can construct a counting table as follows:

TABLE 6.1: Counting Table for Emission Probabilities (Great
Learning Team (2022)

Words Noun Model Verb
Mary 4 0 0
Jane 2 0 0
Will 1 3 0
Spot 2 0 1
Can 0 1 0
See 0 0 2
Pat 0 0 1

Next, we divide each column by the total number of their occurrences. For instance,

the word “noun” appears nine times in the sentences above, so we divide each value

in the noun column by 9. The resulting table after this operation is shown below:

From the table, we can infer the following probabilities:
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TABLE 6.2: Normalized Counting Table for Emission Probabil-
ities (Great Learning Team (2022)

Words Noun Model Verb

Mary 4
9 0 0

Jane 2
9 0 0

Will 1
9

3
4 0

Spot 2
9 0 1

4
Can 0 1

4 0

See 0 0 2
4

Pat 0 0 1

• The probability that “Mary” is a Noun is 4
9

• The probability that “Mary” is a Model is 0

• The probability that “Will” is a Noun is 1
9

• The probability that “Will” is a Model is 3
4

Similarly, we can determine the rest of the emission probabilities.

Next, we need to calculate the transition probabilities. For this, we define two addi-

tional tags: < S > and < E > . The tag < S > is placed at the beginning of each sentence,

and < E > is placed at the end, as shown in the figure below.

FIGURE 6.3: Example Sentences with POS Tags and Transition
Tags < S > and < E > (Great Learning Team (2022)
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Let’s create another table and populate it with the co-occurrence counts of the tags.

TABLE 6.3: Co-occurrence Counts of the Tags (Great Learning
Team (2022)

N M V < E >

< S > 3 1 0 0
N 1 3 1 4
M 1 0 3 0
V 4 0 0 0

In the above figure, we see that the < S > tag is followed by the N tag three times,

thus the first entry is 3. The model tag follows the < S > just once, so the second

entry is 1. The rest of the table is filled in a similar manner.

Next, we divide each term in a row by the total number of co-occurrences of the tag

in consideration. For instance, the Model tag is followed by any other tag four times,

so we divide each element in the third row by four.
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FIGURE 6.4: Example Sentences with POS Tags and Transition
Tags < S > and < E > (Great Learning Team (2022)

TABLE 6.4: Normalized Co-occurrence Counts of the Tags
(Great Learning Team (2022)

N M V < E >

< S >
3
4

1
4 0 0

N 1
9

3
9

1
9

4
9

M 1
4 0 3

4 0

V 4
4 0 0 0

These are the respective transition probabilities for the above four sentences. Now

how does the HMM determine the appropriate sequence of tags for a particular

sentence from the above tables? Let us find it out.

Take a new sentence and tag them with wrong tags. Let the sentence, ‘ Will can spot

Mary’ be tagged as:

• Will as a model

• Can as a verb

• Spot as a noun

• Mary as a noun

Now calculate the probability of this sequence being correct in the following manner.
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FIGURE 6.5: Sequence Probability Calculation (Great Learning
Team (2022)

The probability of the tag Model (M) following the tag is 1
4 as seen in the table.

Additionally, the probability that the word “Will” is a Model is 3
4 . Similarly, we

calculate each probability in the graph. The product of these probabilities represents

the likelihood that this sequence is correct. Since the tags are not correct, the product

is zero:

1
4 ×

3
4 ×

3
4 × 0 × 1 × 2

9 ×
1
9 ×

4
9 ×

4
9 = 0

When these words are correctly tagged, we get a probability greater than zero, as

shown below.

FIGURE 6.6: Sequence Probability Calculation (Great Learning
Team (2022)

By calculating the product of these terms, we get:

3
4 ×

1
9 ×

3
9 ×

1
4 ×

3
4 × 1 × 4

9 = 0.00025720164

For our example, considering just the three POS tags mentioned, 81 different combi-

nations of tags can be formed. Calculating the probabilities for all 81 combinations

seems feasible. However, when tagging a larger sentence and including all the POS
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tags in the Penn Treebank project, the number of possible combinations increases

exponentially, making the task seemingly impossible to accomplish.

Let’s visualize these 81 combinations as paths, using the transition and emission

probability to mark each vertex and edge, as shown below.

FIGURE 6.7: Full Probability Paths (Great Learning Team (2022)

The next step is to remove all vertices and edges with zero probability, as well as

any vertices that do not lead to the endpoint. Also, we will highlight the remaining

paths.

FIGURE 6.8: Pruned Probability Paths (Great Learning Team
(2022)

Now, there are only two paths that lead to the endpoint. Let’s calculate the proba-

bility associated with each path:

For the path < S > → N → M → N → N →< E >:

3
4 ×

1
9 ×

3
9 ×

1
4 ×

1
4 ×

2
9 ×

1
9 ×

4
9 ×

4
9 = 0.00000846754

For the path < S > → N → M → N → V →< E >:

3
4 ×

1
9 ×

3
9 ×

1
4 ×

3
4 ×

1
4 × 1 × 4

9 ×
4
9 = 0.00025720164
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Clearly, the probability of the second sequence is much higher. Therefore, the HMM

will tag each word in the sentence according to this sequence. (Great Learning Team

(2022)

6.4 Optimizing HMM with Viterbi Algorithm

The Viterbi algorithm is a dynamic programming method used to identify the most

probable sequence of hidden states, known as the Viterbi path, that results in a se-

quence of observed events. This is particularly useful in the context of Markov in-

formation sources and hidden Markov models (HMM).

In the previous section, we optimized the HMM and reduced our calculations from

81 possible sequences to just two. Now, we will further optimize the HMM by ap-

plying the Viterbi algorithm. Let’s use the same example as before and demonstrate

the application of the Viterbi algorithm.

FIGURE 6.9: Paths Leading to the Circled Vertex with Probabil-
ities (Great Learning Team (2022)

Consider the vertex circled in the example above. There are two paths leading to

this vertex, as shown below, along with the probabilities of these two mini-paths.

FIGURE 6.10: Paths Leading to the Circled Vertex with Proba-
bilities (Great Learning Team (2022)

Now we are really concerned with the mini path having the lowest probability. The

same procedure is done for all the states in the graph as shown in the figure below
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FIGURE 6.11: Paths Leading to the Circled Vertex with Proba-
bilities (Great Learning Team (2022)

As illustrated in the figure above, we calculate the probabilities of all paths leading

to a node and then remove the edges or paths with lower probability. Additionally,

nodes with a probability of zero have no edges attached to them, as all paths to these

nodes have zero probability. The graph obtained after computing the probabilities

of all paths leading to each node is shown below.

FIGURE 6.12: Computed Probabilities for Each Path (Great
Learning Team (2022)

To obtain an optimal path, we start from the end and trace backward, since each

state has only one incoming edge. This gives us the path shown below.
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FIGURE 6.13: Optimal Path (Great Learning Team (2022)

As you may have observed, this algorithm returns only one path, whereas the pre-

vious method suggested two paths. By using the Viterbi algorithm, we have signifi-

cantly reduced the number of computations.

After applying the Viterbi algorithm, the model tags the sentence as follows:

• Will as a noun

• Can as a model

• Spot as a verb

• Mary as a noun

These tags are correct, indicating that the model successfully tags the words with

their appropriate POS tags. (Great Learning Team (2022)

6.5 Summary

Introduction to POS Tagging

POS tagging involves assigning each word in a sentence its corresponding part of

speech, such as noun, verb, adjective, or adverb. Traditionally a manual task, POS

tagging has largely been automated in modern applications, with manual annota-

tion reserved for creating training datasets. POS tags provide valuable contextual

information for various NLP tasks, such as parsing, information retrieval, text-to-

speech systems, and more advanced NLP applications like machine translation.

Techniques for POS Tagging

Several techniques are utilized for POS tagging:

1. Rule-based POS Tagging: Applies manually crafted rules using contextual infor-

mation to assign tags.

2. Transformation-based Tagging: Combines predefined rules with rules generated

during training.



6.5. Summary 73

3. Deep Learning Models: Utilizes advanced models like Meta-BiLSTM to achieve

high accuracy.

4. Stochastic (Probabilistic) Tagging: Uses statistical methods like Hidden Markov

Models (HMMs) to assign tags based on probability.

Hybrid approaches combine these techniques to enhance accuracy, while contextual

tagging leverages surrounding words to improve disambiguation.

POS Tagging with Hidden Markov Models (HMMs)

HMMs are widely used in POS tagging due to their ability to model sequential data

probabilistically. The process involves calculating transition and emission probabil-

ities to determine the most likely sequence of POS tags for a given sentence. Transi-

tion probabilities determine the likelihood of one POS tag following another, while

emission probabilities estimate the likelihood of a word corresponding to a specific

POS tag.

An example is provided where sentences are tagged, and the emission probabili-

ties are calculated by normalizing the counts of word occurrences as specific tags.

Transition probabilities are also calculated and used to determine the most likely tag

sequence for a sentence. The example shows how the HMM can correctly identify

POS tags based on these calculated probabilities.

Optimizing HMM with the Viterbi Algorithm

The Viterbi algorithm is a dynamic programming technique used to find the most

probable sequence of hidden states (POS tags) that produce a given sequence of ob-

served events (words). By applying the Viterbi algorithm, the HMM can be further

optimized to reduce the number of possible tag sequences, minimizing computa-

tional complexity.

The section demonstrates the application of the Viterbi algorithm to the earlier ex-

ample, showing how it effectively identifies the correct POS tags for a sentence by

tracing the most likely path through the sequence of states. This optimization results

in accurate POS tagging with reduced computational effort.
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Chapter VII

Conclusion

This thesis has provided an extensive exploration of Hidden Markov Models (HMMs),

offering a thorough understanding of their theoretical foundations, key algorithms,

and diverse practical applications. Throughout this journey, we have traversed from

the core concepts that define HMMs to their sophisticated uses in various domains,

thereby underscoring their significance in both academic research and real-world

problem-solving.

We began by establishing a solid foundation in the fundamental concepts of HMMs,

dissecting their components—states, observations, transition probabilities, and emis-

sion probabilities—and the relationships between them. This foundational knowl-

edge set the stage for a deeper dive into the different types of HMMs, including their

standard form and the more advanced variants such as Hierarchical Hidden Markov

Models (HHMMs) and Coupled Hidden Markov Models (CHMMs). By understand-

ing these variations, we appreciated the flexibility of HMMs in modeling complex

systems with multiple layers of dependencies or interacting processes.

Central to the utility of HMMs are the algorithms that enable their application,

and this thesis devoted significant attention to these key algorithms. The Forward-

Backward algorithm was explored as a means to compute the probability of a se-

quence of observations, while the Viterbi algorithm was highlighted for its role in

decoding the most likely sequence of hidden states. The Baum-Welch algorithm

was presented as a method for estimating the parameters of an HMM when they

are unknown, ensuring that the model can be trained effectively on data. Together,

these algorithms form the backbone of HMM functionality, enabling their use in a

wide array of sequential data problems.

In addition to algorithmic insights, this thesis discussed essential estimation tech-

niques that are critical for implementing HMMs effectively. Maximum Likelihood

Estimation (MLE) was detailed as a foundational method for parameter estimation,

focusing on maximizing the likelihood of the observed data. Meanwhile, Bayesian
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Estimation Methods provided a probabilistic framework for incorporating prior knowl-

edge into the model, offering a robust approach to parameter estimation, particu-

larly when dealing with limited data. These techniques contribute to the reliability

and accuracy of HMMs in practical applications.

Model selection and evaluation metrics were also a key focus, ensuring that the

HMMs developed are not only theoretically sound but also effective in practice.

Techniques for selecting the optimal model complexity were discussed, such as choos-

ing the appropriate number of hidden states to avoid overfitting or underfitting. The

use of cross-validation, along with metrics like Log-Likelihood, Akaike Information

Criterion (AIC), and Bayesian Information Criterion (BIC), provided a comprehen-

sive framework for evaluating model performance and ensuring that the chosen

model generalizes well to new data.

A significant portion of this thesis was dedicated to the application of HMMs in Part

of Speech (POS) tagging within Natural Language Processing (NLP). This practical

case study demonstrated the utility of HMMs in tagging words with their appropri-

ate parts of speech, which is a crucial task in various NLP applications such as ma-

chine translation, information retrieval, and text-to-speech systems. Different tech-

niques for POS tagging were explored, including rule-based tagging, transformation-

based tagging, deep learning models, and stochastic approaches. The optimization

of HMMs with the Viterbi algorithm was particularly emphasized, showcasing how

these models can be fine-tuned for enhanced accuracy and efficiency. Through prac-

tical examples and visual aids, this section provided a tangible understanding of

how HMMs operate in real-world NLP tasks.

The versatility and adaptability of HMMs, as highlighted throughout this thesis,

make them an indispensable tool for modeling sequential data and making pre-

dictions based on hidden states.Their applications are vast, spanning from speech

recognition—where they model the temporal dynamics of speech signals—to bioin-

formatics, where they are used to analyze biological sequences and infer evolution-

ary relationships. In finance, HMMs are employed to model and predict time series

data, aiding in stock market analysis and risk management. In robotics and control

systems, HMMs are used to model dynamic systems, enabling autonomous naviga-

tion and fault detection.

This thesis has underscored the importance of HMMs in both theoretical and prac-

tical contexts, demonstrating their broad utility and potential for innovation. As

data becomes increasingly complex and the demand for intelligent systems grows,

the role of HMMs is likely to expand further. The work presented here not only

contributes to the understanding of HMMs but also lays the groundwork for con-

tinued research and development in this dynamic field. By combining theoretical

rigor with practical applications, this thesis has highlighted the enduring relevance
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of HMMs in modern computational science, opening new avenues for their use in

future innovations.

In conclusion, Hidden Markov Models remain a powerful and flexible tool in the

arsenal of data scientists, engineers, and researchers. As we continue to explore the

vast potential of sequential data modeling, HMMs will undoubtedly play a crucial

role in shaping the future of technology and science. The insights gained from this

thesis will hopefully inspire further exploration and application of HMMs across an

even broader range of disciplines.
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