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Abstract

The contribution of the thesis to the repeated cross-sections Difference-in -Difference

(DiD) literature is threefold: first, it shows that the commonly-used DiD regression is

severely biased under realistic scenarios and proposes alternative corrections; second, it

presents a semi-parametric estimator robust to heterogeneity both in the treatment group

and time dimensions; finally, it compares through Monte Carlo simulations the empirical

performance of the proposed estimators with those suggested by the literature, in particular

with the semi-parametric doubly robust DiD of Sant’Anna and Zhao (2020). The estimators

are also modified to allow for machine-learning first-stage estimates, following the literature

of Chernozhukov et al. (2018). Results show that different semi-parametric estimators

outperform regression, even if corrections provide substantial benefits. Following Sequeira

(2016), the thesis estimates the effect of tariff reduction on bribing behavior by analyzing

trades between South Africa and Mozambique during the period 2006–2014. Contrarily

to the replication in Chang (2020), the thesis provides substantial proof that the effect is

close and even lower in magnitude than the one of the original paper. Still, the contribution

reinforces the evidence that tariff reductions tend to weaken bribing behavior.
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1 Introduction

Difference-in-Difference (DiD) is a widespread research design aimed at estimating the causal

effects of a policy treatment that affects only a subgroup of the entire population, called the

treated group, while leaving unaffected the other remaining part, referred to as the control

group. Since observations are taken before and after the treatment, DiD compares four different

groups of objects: the treated in the pre and post-treatment period, and the controls in the pre

and post-period. The rationale of this empirical strategy is that if treated and control groups are

subject to the same time trends, the control group can be used to estimate the counterfactual

potential outcome of the absence of treatment for the group of people who have instead received

the treatment. Indeed, DiD calculates the mean changes of the outcome variables for the non-

treated over time and adds them to the mean level of the outcome variable for the treated before

treatment to obtain the mean outcome the treated would have experienced if they had not been

subjected to the treatment. By estimating this counterfactual outcome, the researcher is then

able to retrieve the causal effect by taking the difference with the realized observed outcome in

presence of the treatment.

6



The thesis is organized as follows: Section 2 presents the baseline features of the DiD, it ana-

lyzes its common regression counterpart, also referred to as Two-Way-Fixed-Effects (TWFE),

and finally introduces alternative semi-parametric estimators; Section 3 implements a Monte

Carlo simulations under different scenarios to test the performance of the various estimators;

Section 4 provides an empirical application of the results of the simulations by analyzing the

effect of tariff reduction on bribing behavior between South Africa and Mozambique during the

period 2006–2014, as in Sequeira (2016); Section 5 concludes with the most relevant findings.

Available coding material can be found at: https://github.com/tommaso-manfe.
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2 The model

2.1 Notation and Causal Effect

Following Lechner et al. (2011), define the treatment variable 𝐷, where d ∈ {0, 1}1, as the

binary indicator for whether the individual 𝑖 belongs to the treated group, where the 𝑖 subscript

is left for ease of notation. Starting from the simplest scenario of only two time periods, define

𝑇 , where t ∈ {0, 1}, as the binary indicator that takes value zero in the time period before

the treatment (pre-treatment period) and one in the period after the treatment took place (post-

treatment period). Since the treatment is assumed to happen in between the two periods, every

member of the population is untreated in the pre-treatment period. DiD estimates the mean

effect of switching 𝐷 from zero to one on the outcome variable of interest. Thus, it is useful

to define the potential levels of the outcome variable by using indexes that refer to the potential

states of the treatment, so that 𝑌 𝑑
𝑡 denotes the outcome that would be realized for a specific

value of 𝑑 in period 𝑡. However, for each group and at each period only one of the potential is

observable. The outcome that is realized is denoted by𝑌𝑡 (not indexed by 𝑑). Finally, denote the

observable covariates by 𝑋 . Initially, we assume they do not vary over time but later on we are

going to analyze the implications of relaxing such an assumption. The object we are interested

1Capital letters denote random variables while small letters denote specific realizations or values
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in estimating is the average effect on the treated (ATT), which is defined as follows:

𝐴𝑇𝑇𝑡 = 𝐸 (𝑌1
𝑡 − 𝑌0

𝑡 ) |𝐷 = 1) (1)

= 𝐸 [𝐸 (𝑌1
𝑡 − 𝑌0

𝑡 |𝑋 = 𝑥, 𝐷 = 1) |𝐷 = 1]

= 𝐸𝑋 |𝐷=1𝛿𝑡 (𝑥)

where 𝛿𝑡 (𝑥), denoted as 𝐸 (𝑌1
𝑡 −𝑌0

𝑡 |𝑋 = 𝑥, 𝐷 = 1), represents the causal effect in the respective

subpopulations where X takes value x. While usually another parameter on interest is the

average treatment effect on the entire population (ATE), computing such a parameter requires

additional assumptions that are unlikely to hold and therefore the DiD setting usually focus on

the estimation of the ATT.

2.2 Assumptions

Also in this case, the notation and examples follow closely Lechner et al. (2011). The examples

refer to the setting where the researcher is evaluating the effect of participation in a training

program for unemployment on earnings. For both treated and control groups, databases suitable

for DiD contain information on the periods before and after training. The results of DiD design,

with just a few differences, hold for both panel data and repeated cross-sections, even if the

latter scenario will be the main focus of this paper.
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2.2.1 Stable unit treatment values assumption

The first hypothesis, the so-called Stable Unit Treatment Value assumption (SUTVA) as in

Rubin (1977), requires that the potential outcomes are not affected by the particular assignment

of treatment to the other units. As a consequence, only one of either the treated or the untreated

potential outcome is observable for every member of the population at a specific time point and

the observed outcome is therefore defined as:

𝑌𝑡 = 𝑑𝑌1
𝑡 + (1 − 𝑑)𝑌0

𝑡 (2)

If SUTVA is violated, we observe neither of the two potential outcomes, invalidating the

identification of the causal effect. For example, when we consider the case of the effect of

the training program on earnings, if the program is offered to a sizeable subpopulation, then

equilibrium wages in the labor market may be altered. Since the training helps individuals

in developing some specific skills, non-participants with comparable ability will be less likely

to find a job after training occurs because the supply of labor in this skill group is now

larger compared to the hypothetical scenario without the training program. Therefore, the

outcome of the non-participants is not the same as the counterfactual world without the program.

Consequently, SUTVA does not hold.
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2.2.2 Exogeneity of the Covariates

The second assumption, as standard practice for the identification of causal effects, is the

exogeneity of the covariates. Otherwise, estimates are invalidated by the issue of reverse

causality. Applying outcome notation to the explanatory variable 𝑋𝑑 , it implies:

𝑋1 = 𝑋0 = 𝑋, ∀𝑥 ∈ 𝜒 (3)

where 𝜒 denotes the subspace of 𝑋 used in the analysis. Intuitively, this hypothesis excludes

that the components of 𝑋 are influenced by the treatment. For instance, if post-treatment

job satisfaction is included in the job training model, the variable may be influenced by the

treatment, causing endogeneity bias. However, measuring variables before the treatment does

not automatically ensure exogeneity: individuals are forward-looking agents and may alter

their behavior according to expectations about the future evolution of some variable. If such

anticipatory behavior affects also the outcome variable, then the assumption of exogeneity

may be violated as well. It is also worth noting that variables that are constant over time are

exogenous by construction since treatment is a time-varying variable.

11



2.2.3 No Effect On Pre-treated

The third assumption is that in the pre-treatment period the treatment has no effect on the

pre-treatment population (NEPT):

𝛿0(𝑥) = 0, ∀𝑥 ∈ 𝜒 (4)

Note that NEPT in Equation (3) also rules out the possibility of the anticipation effect of a

future treatment on the pre-treatment outcome for the treated population. For instance, in the

training example when the dependent variable is unemployment, NEPT would not hold if agents

postpone their search for a job to the future because they may plausibly anticipate (in a way

not captured by the covariates) that participation in an attractive training program is likely to

increase both their probability of being hired and their wage received.

2.2.4 Common Trend

The assumption key for identification of causal effects in the DiD design requires that the

differences over time in the expected potential outcomes of no treatment is independent to
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belonging to the treated or control group:

𝐸 (𝑌0
1 |𝐷 = 1) − 𝐸 (𝑌0

0 |𝐷 = 1) = 𝐸 (𝑌0
1 |𝐷 = 0) − 𝐸 (𝑌0

0 |𝐷 = 0)

= 𝐸 (𝑌0
1 ) − 𝐸 (𝑌0

0 ) (5)

This is also known as the unconditional parallel trend (UCP) assumption. The hypothesis is

essential because the trend of untreated potential outcomes for units belonging to the treated

group is not known, but the path of untreated potential outcomes for controls is instead observ-

able. However, the parallel trends assumption is considerably more plausible to hold only after

conditioning on a set of observed covariates 𝑋:

𝐸 (𝑌0
1 |𝑋 = 𝑥, 𝐷 = 1) − 𝐸 (𝑌0

0 |𝑋 = 𝑥, 𝐷 = 1) = 𝐸 (𝑌0
1 |𝑋 = 𝑥, 𝐷 = 0) − 𝐸 (𝑌0

0 |𝑋 = 𝑥, 𝐷 = 0)

= 𝐸 (𝑌0
1 |𝑋 = 𝑥) − 𝐸 (𝑌0

0 |𝑋 = 𝑥); ∀𝑥 ∈ 𝜒 (6)

The conditional parallel trend assumption (CPT) implies that if the treated group had not

been subjected to the treatment, it would have evolved, conditional on 𝑋 , with the same trend

measured in the controls sub-population. Therefore, the inclusion of the covariates 𝑋 should

be driven to capture all variables that cause different time trends. For example, pretend that

unemployed workers from sectors that are shrinking have more probability of being selected into
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the training program. Consequently, the share of unemployed individuals who have previously

worked in these declining sectors is over-represented in the training program group. Since

such workers possess sector-specific experience and skills, their probability of reemployment is

likely to lower while the reemployment chances of unemployed individuals in rising sectors is

likely to increase. Since the respective presence of these groups of unemployed is unbalanced in

the treated and control groups of the sample, the common trend assumption does not hold until

we include the sector of the last employment as a control variable. In addition, the conditional

parallel trend assumption is violated in the canonical example of Ashenfelter’s dip. Ashenfelter

(1978) introduced the idea that earnings often fall just before entering a training program due to

negative idiosyncratic temporary shocks. If trainees experience a larger drop in earnings before

the program with respect to non-trainees, then, because wages have a natural tendency to mean

reversion, the DiD overestimates the causal effect of the participation in the training.

2.2.5 Common support

The conditional parallel trend assumption implies that it is necessary that observations with

characteristics 𝑥 exist in all four sub-samples determined by the treatment and time dummies.
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This is guaranteed by the so-called common support (CS) assumption:

𝑃[𝐷 |𝑋] < 1 − 𝜖 𝑎𝑛𝑑 𝑃[𝐷] > 0 (7)

for some 𝜖 > 0. In other words, the conditional probability of belonging to the treatment group

given 𝑋 is uniformly bounded away from one, imposing that for every value of the covariates

𝑋 there is at least a small chance that the unit is not treated, and in addition the proportion of

treated units is bounded away from zero, meaning that at least a small fraction of the population

that is treated. The common support assumption, in contrast to the previous ones, refers to

observable quantities and is therefore testable. In the case common support is not verified for

all values of 𝑋 , researchers usually restrict the definition of average treatment effect on the

treated units where 𝑥(𝜒) is observable in all four sub-populations. An example of a violation

of common support assumption would be if the training program were mandatory for a specific

age group, for instance those younger 25, and so there would not be any non-participants for

this sub-population.
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2.2.6 Proof of the Identification of the ATT

Recall that the conditional-on-X effect is defined as:

𝛿1(𝑥) = 𝐸 (𝑌1
1 − 𝑌0

1 ) |𝑋 = 𝑥, 𝐷 = 1)

= 𝐸 (𝑌1 |𝑋 = 𝑥, 𝐷 = 1) − 𝐸 (𝑌0
1 |𝑋 = 𝑥, 𝐷 = 1)

Note that the first term 𝐸 (𝑌1 |𝑋 = 𝑥, 𝐷 = 1) is identified because it coincides with the potential

observed outcome of the treated sub-population at time 𝑡 = 1, while the second term is the

counterfactual outcome at 𝑡 = 1 of no treatment for the treated sub-population, which instead is

not observable. However, the common trend hypothesis enables us to estimate the counterfactual

outcome:

𝐸 (𝑌0
1 |𝑋 = 𝑥, 𝐷 = 1) = 𝐸 (𝑌0

1 |𝑋 = 𝑥, 𝐷 = 0) − 𝐸 (𝑌0
0 |𝑋 = 𝑥, 𝐷 = 0) + 𝐸 (𝑌0

0 |𝑋 = 𝑥, 𝐷 = 1)

= 𝐸 (𝑌1 |𝑋 = 𝑥, 𝐷 = 0) − 𝐸 (𝑌0 |𝑋 = 𝑥, 𝐷 = 0) + 𝐸 (𝑌0 |𝑋 = 𝑥, 𝐷 = 1) (8)

which amounts to sum the common trend, estimated by taking the difference between the

observed outcome at 𝑡 = 1 and 𝑡 = 0 for the control group, to the observed outcome at 𝑡 = 0 for
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the treated sub-population. Putting all pieces together:

𝛿(𝑥) = 𝐸 (𝑌1 |𝑋 = 𝑥, 𝐷 = 1) − 𝐸 (𝑌0 |𝑋 = 𝑥, 𝐷 = 1)

− (𝐸 (𝑌1 |𝑋 = 𝑥, 𝐷 = 0) + 𝐸 (𝑌0 |𝑋 = 𝑥, 𝐷 = 0)) (9)

where we simplified the notation writing 𝛿1(𝑥) = 𝛿(𝑥) since 𝛿0(𝑥) = 0 because of there is no

causal effect before the treatment takes place. Since computed the missing counterfactual value

𝐸 (𝑌0
1 |𝑋 = 𝑥, 𝐷 = 1), the causal effect can be therefore identified by taking the difference in

outcomes from 𝑡 = 0 to 𝑡 = 1 in both the treated and control groups, and then taking a further

difference between these two quantities, hence the name Difference-in-Difference.

2.3 DiD Regression: Two-Way-Fixed Effect

The key for using DiD regression, usually referred to as Two-Way-Fixed Effect (TWFE), is

assuming an additive linear structure for potential outcomes. Using regression implicitly
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assumes that the conditional expectation function (CEF) follows:

𝐸 (𝑌0
0 |𝐷 = 0) = 𝛼

𝐸 (𝑌0
1 |𝐷 = 0) = 𝛼 + 𝛾

𝐸 (𝑌1
0 |𝐷 = 1) = 𝛼 + 𝛽

𝐸 (𝑌1
1 |𝐷 = 1) = 𝛼 + 𝛾 + 𝛽 + 𝛿

where 𝛼 represents the expected value of the control sub-population at the pre-treatment period,

𝛾 is the constant time effect between t=0 and t=1, 𝛽 represents the treatment-group effect, namely

differential in the potential outcome between the treated and control population in both t=0 and

t=1, and 𝛿 represents the effect of the treatment. Under these assumptions, DiD identifies the

ATT:

𝐴𝑇𝑇 = 𝐸 (𝑌1 |𝐷 = 1) − 𝐸 (𝑌0 |𝐷 = 1) − (𝐸 (𝑌1 |𝐷 = 0) − 𝐸 (𝑌0 |𝐷 = 0))

= (𝛼 + 𝛾 + 𝛽 + 𝛿) − (𝛼 + 𝛽) − (𝛼 + 𝛾) + (𝛼)

= 𝛿
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and the causal effect might also be estimated by means of regression. Usually the Two-Way-

Fixed-Effects (TWFE), in the case of absence of covariates, takes the following form:

𝑌𝑖 = 𝛼 + 𝛾𝑇𝑖 + 𝛽𝐷𝑖 + 𝛿(𝑇𝑖 · 𝐷𝑖) + 𝜖𝑖 (10)

where 𝑖 stands for individual 𝑖, 𝑇 ∈ {0, 1} is a time dummy that takes value 0 in the pre-treatment

period and 1 in the post, 𝐷 ∈ {0, 1} is the treatment group dummy that has value 1 in case

of the unit belongs to the treated individuals, and their interaction term captures the effect of

the treatment. Note that in this simple setting, because the model is saturated, the conditional

expectation of potential outcome coincides with the regression equation. As a consequence,

in case the unconditional parallel trend hypothesis is verified, regression is unbiased without

imposing several additional assumptions. However, in realistic settings, the common trend

assumption is likely to hold only after conditioning for a set of covariates. Therefore, in the

presence of X-specific trends, the TWFE specification needs to account for the presence of

covariates.
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2.4 TWFE With Covariates

Assuming that the CEF of the potential outcome depends linearly on a time-invariant set of

covariates 𝑋 = (𝑋1, 𝑋2, ..., 𝑋𝑝)′ with coefficients 𝜃 = (𝜃1, 𝜃2, ..., 𝜃𝑝)′, then:

𝐸 (𝑌0
0 |𝑋, 𝐷 = 0) = 𝛼 + 𝑋′𝜃

𝐸 (𝑌0
1 |𝑋, 𝐷 = 0) = 𝛼 + 𝛾 + 𝑋′𝜃

𝐸 (𝑌1
0 |𝑋, 𝐷 = 1) = 𝛼 + 𝛽 + 𝑋′𝜃

𝐸 (𝑌1
1 |𝑋, 𝐷 = 1) = 𝛼 + 𝛾 + 𝛽 + 𝛿 + 𝑋′𝜃

We are interested in computing:

𝛿𝐷𝑖𝐷 = 𝐸 (𝑌1
1 |𝑋, 𝐷 = 1) − 𝐸 (𝑌0

1 |𝑋, 𝐷 = 1)

Similarly as before, the common trend assumption implies:

𝐸 (𝑌0
1 − 𝑌0

0 |𝑋, 𝐷 = 1) = 𝐸 (𝑌0
1 − 𝑌0

0 |𝑋, 𝐷 = 0)

Rearranging:

𝐸 (𝑌0
1 |𝑋, 𝐷 = 1) = 𝐸 (𝑌0

1 |𝑋, 𝐷 = 0) − 𝐸 (𝑌0
0 |𝑋, 𝐷 = 0) + 𝐸 (𝑌1

0 |𝑋, 𝐷 = 1)

= 𝛼 + 𝛾 + 𝛽 + 𝑋′𝜃
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Therefore:

𝛿𝐷𝑖𝐷 = 𝐸 (𝑌1
1 |𝑋, 𝐷 = 1) − 𝐸 (𝑌0

1 |𝑋, 𝐷 = 1)

= (𝛼 + 𝛾 + 𝛽 + 𝛿 + 𝑋′𝜃) − (𝛼 + 𝛾 + 𝛽 + 𝑋′𝜃)

= 𝛿

In this case, the regression equation:

𝑌𝑖 = 𝛼 + 𝛾𝑇𝑖 + 𝛽𝐷𝑖 + 𝛿(𝑇𝑖 · 𝐷𝑖) + 𝑋′
𝑖 𝜃 + 𝜖𝑖 (11)

still coincides with the CEF of the potential outcomes. However, it is important to note that the

inclusion of the covariate holds only when three extremely restrictive additional assumptions are

verified: homogeneous treatment effects in 𝑋 , a restriction on how the covariates are allowed to

vary over time (here we implicitly assumed 𝑋 to be time-invariant, but next sections will also

allow for time-varying covariates) and the additive linear form of how the covariates affect the

outcome.

2.4.1 Dealing with X-specific trends

Under many scenarios, the naive inclusion of covariates in the TWFE model is a source of bias.

To show this, define 𝑋𝑑
𝑡 as the mean value of 𝑋 for treatment 𝑑 at time 𝑡. Consider for simplicity
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just one covariate, then:

𝐸 (𝑌0
0 |𝑋, 𝐷 = 0) = 𝛼0 + 𝜃0𝑋

0
0

𝐸 (𝑌0
1 |𝑋, 𝐷 = 0) = 𝛼 + 𝛾 + 𝜃1𝑋

0
1

𝐸 (𝑌0
0 |𝑋, 𝐷 = 1) = 𝛼 + 𝛽 + 𝜃0𝑋

1
0

𝐸 (𝑌0
1 |𝑋, 𝐷 = 1) = 𝛼 + 𝛾 + 𝛽 + 𝜃1𝑋

1
1

Then, assuming that the conditional parallel trend assumption holds implies:

𝐸 (𝑌0
1 − 𝑌0

0 |𝑋, 𝐷 = 1) = 𝐸 (𝑌0
1 − 𝑌0

0 |𝑋, 𝐷 = 0)

𝛼 + 𝛾 + 𝛽 + 𝜃1𝑋
1
1 − (𝛼 + 𝛽 + 𝜃0𝑋

1
0 ) = 𝛼 + 𝛾 + 𝜃1𝑋

0
1 − (𝛼 + 𝜃0𝑋

0
0 )

(𝜃1𝑋1
1 − 𝜃0𝑋

1
0 ) − (𝜃1𝑋0

1 − 𝜃0𝑋
0
0 ) = 0

𝜃1(𝑋1
1 − 𝑋0

1 ) − 𝜃0(𝑋1
0 − 𝑋0

0 ) = 0 (12)

where in the third passage the right-hand side is subtracted to the left one and the last line

rearranges the terms. However, the computed quantity may be different from zero under many

circumstances. For instance, assume X is time-invariant. Then, we can write 𝑋1
1 = 𝑋1

0 ≡ 𝑋1

and 𝑋0
1 = 𝑋0

0 ≡ 𝑋0 and Equation (12) becomes:

𝜃1(𝑋1
1 − 𝑋0

1 ) − 𝜃0(𝑋1
0 − 𝑋0

0 ) = (𝜃1 − 𝜃0) · (𝑋1 − 𝑋0) (13)
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This implies that for a covariate that does not vary over time, TWFE identifies the ATT if either:

(1) the means of the covariates are the same across groups or (2) the effects of the covariates

on the outcome variable are equal in the pre and post-treatment periods (Zeldow and Hatfield,

2019). Therefore, whenever there are X-specific trends denoted as 𝜏(𝑋) = 𝛾 + 𝜙𝑋 , this implies

that 𝜃1 = 𝜃0 + 𝜙𝑋1 and for homogeneous treatment effects 𝛾 the 𝐴𝑇𝑇 = 𝐸 (𝑌1
1 −𝑌0

1 |𝐷 = 1) can

be re-written as:

𝐴𝑇𝑇 = (𝛼 + (𝛾 + 𝜙𝑋1) + 𝛽 + 𝛿 + 𝜃0𝑋
1 − (𝛼 + 𝛽 + 𝜃0𝑋

1)) − (𝛼 + (𝛾 + 𝜙𝑋0) + 𝜃0𝑋0 − (𝛼 + 𝜃0𝑋
0))

= 𝛿 + 𝜙(𝑋1 − 𝑋0)

Thus, when 𝜙 ≠ 0, TWFE identifies the ATT only if 𝑋1 = 𝑋0, namely if the covariates X has

the same distribution over the treated and the untreated individuals, which is unlikely to hold in

non-randomized experiments.

Instead, when we allow for time-varying covariates, by replacing Equation (12) and 𝜏(𝑋)
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in the ATT, the following result is obtained:

𝐴𝑇𝑇 = (𝛼 + (𝛾 + 𝜙𝑋1
1 ) + 𝛽 + 𝛿 + 𝜃0𝑋

1
1 − (𝛼 + 𝛽 + 𝜃0𝑋

1
0 )) − (𝛼 + (𝛾 + 𝜙𝑋0

1 ) + 𝜃0𝑋
0
1 − (𝛼 + 𝜃0𝑋

0
0 ))

= 𝛿 + (𝜙 + 𝜃0) (𝑋1
1 − 𝑋0

1 ) − 𝜃0(𝑋1
0 − 𝑋0

0 )

Consequently, when allowing for time-varying covariates, two conditions must be both satisfied

to guarantee that 𝐴𝑇𝑇 = 𝛿: the relationship of the covariates to the outcome is constant (𝜙 = 0)

and the difference in the mean of the covariates among the two evolves equally between pre and

post-treatment periods (𝑋1
1 − 𝑋0

1 = 𝑋1
0 − 𝑋0

0 ) (Zeldow and Hatfield, 2019). As a consequence, a

time-varying covariate is a confounder if its relationship to the outcome is time-varying or the

covariate evolves differently in the treated and comparison groups.

However, the standard TWFE specification can be improved by allowing some corrections.

For example, the interaction terms between covariates and time can be included and the model

can be written as:

𝑌𝑖 = 𝛼 + 𝛾𝑇𝑖 + 𝛽𝐷𝑖 + 𝛿(𝑇𝑖 · 𝐷𝑖) + 𝑋′
𝑖 𝜃 + (𝑇𝑖 · 𝑋′

𝑖 )𝜔 + 𝜖𝑖 (14)
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Zeldow and Hatfield (2019) outlines that this version eliminates bias in case of homogeneous

treatment effects in X, especially when dealing with time-invariant covariates 𝑋 . If covariates

𝑋 do not vary over time, they are exogenous to the treatment and therefore there is no risk

of conditioning on covariates affected by the treatment. However, as shown in Section 3,

the correction only partially works in the case of time-varying covariates. Therefore, the

thesis analyzes another correction, which adds the interactions between the covariates and the

treatment group dummy:

𝑌𝑖 = 𝛼 + 𝛾𝑇𝑖 + 𝛽𝐷𝑖 + 𝛿(𝑇𝑖 · 𝐷𝑖) + 𝑋′
𝑖 𝜃 + (𝑇𝑖 · 𝑋′

𝑖 )𝜔 + (𝐷𝑖 · 𝑋′
𝑖 )𝜇 + 𝜖𝑖 (15)

This specification, by controlling for both the time and treatment group heterogeneity of the co-

variates, removes the trend also when dealing with time-varying covariates under homogeneous

treatment effects. However, when covariates are allowed to vary over time, the correction is

subject to the risk of conditioning on covariates affected by the treatment, namely bad controls.

The performance of the TWFE and its corrections are therefore tested in Section 3.

2.4.2 Heterogeneous effects

In most realistic settings, the effect of the treatment likely varies for different values of the

covariates 𝑋 . However, TWFE and its correction implicitly assume homogeneous treatment
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effects in X and therefore, when this additional restriction is not satisfied, the estimated causal

parameter may differ from the true ATT (Meyer, 1995; Abadie, 2005; Sant’Anna and Zhao,

2020; Roth et al., 2022). For instance, as in Cunningham (2021), let the treatment effect be

heterogeneous in 𝑋 , namely redefine the potential outcomes for the treated in the post period as

𝐸 (𝑌1
1 |𝑋, 𝐷 = 1) = 𝛼 + 𝛾 + 𝛽 + (𝛿 +𝜔𝑋1

1 ) + 𝜃𝑋1
1 . Then even assuming time-invariant covariates

and 𝜃1 = 𝜃0 yields:

𝐴𝑇𝑇 = 𝛿 + ((𝜃 + 𝜔)𝑋1 − 𝜃𝑋1) − 𝜃 (𝑋0 − 𝑋0)

= 𝛿 + 𝜔𝑋1

Therefore, whenever 𝜔 ≠ 0 and thus the treatment is heterogeneous in X the estimate obtained

by means of regression does not identify the true ATT, even when restricting covariates to be

time-invariant.

2.4.3 Non-additive linear form of the CEF for the covariates

Since in most of the settings it is not possible to use a fully saturated model in X for regression,

TWFE assumes a CEF that is a linear function of X, then regression equation might differ from

the true CEF. Indeed, including the control variables in a linear fashion implies the assumption

of common trends conditional on the linear index 𝑋′𝜃 which is more restrictive than assuming
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common trends conditional on X. For example, if the vector 𝑋 affects the potential outcome

introducing non-linearities, then the potential outcome

𝐸 (𝑌 𝑑
𝑡 |𝑋) = 𝑓 (𝛼 + 𝛾𝑇 + 𝛽𝐷 + 𝛿𝑇𝐷 + 𝜃𝑋)

≠ 𝛼 + 𝛾𝑇 + 𝛽𝐷 + 𝛿𝑇𝐷 + 𝜃𝑋

and yields biased estimates since it assumes a misspecified model that does not captures non-

linearities.

2.5 Semi-parametric DiD

To overcome the main limitations of TWFE, various semi-parametric estimators have been

proposed in the literature. In the following section, we start from the related estimators of

Heckman et al. (1997), Abadie (2005) and Sant’Anna and Zhao (2020). All three of the settings

work properly under the assumption of time-invariant covariates. More precisely, these models

assume that the pooled repeated cross-section data {𝑌𝑖, 𝐷𝑖, 𝑋𝑖, 𝑇𝑖}𝑛𝑖 , where 𝑖 refers to individual

𝑖 and 𝑛 is the number of observations, consist of independent and identically distributed (IID)
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draws from the mixture distribution:

𝑃(𝑌 ≤ 𝑦, 𝐷 = 𝑑, 𝑋 ≤ 𝑥, 𝑇 = 𝑡) = 𝑡 · 𝜆 · 𝑃(𝑌1 ≤ 𝑦, 𝐷 = 𝑑, 𝑋 ≤ 𝑥 |𝑇 = 1) (16)

+ (1 − 𝑡) · 𝑑 · (1 − 𝜆) · 𝑃(𝑌0 ≤ 𝑦, 𝐷 = 𝑑, 𝑋 ≤ 𝑥 |𝑇 = 0)

where (𝑦, 𝑑, 𝑥, 𝑡) ∈ R× {0, 1} ×R𝑘 × {0, 1}, with the joint distribution of (𝐷, 𝑋) being invariant

to T and 𝜆 representing the proportion of individuals at 𝑡 = 1. Such an hypothesis, together

with those described in Section 2.2, allows the three estimators to identify the ATT in the case

of repeated cross-sections. When panel data are available data, the authors instead assume that

data 𝑌𝑖0, 𝑌𝑖1, 𝐷𝑖, 𝑋𝑖
𝑛
𝑖=1 are independent and identically distributed (IID).

In all three estimators, covariates are thus not allowed to change over time, ruling out the

possibility of compositional changes. However, a few papers have tried to study the implica-

tions of allowing compositional changes in the covariates between the pre and post-treatment

periods. For instance, Hong (2013) showed that, when the distribution of X varies over time,

the traditional propensity score does not properly balance the covariates between the treated

and untreated groups. To relax such an assumption, the idea that the author proposes is to

define a multivariate propensity score that allows for both selection in treatment and time.

28



Alternatively,Blundell et al. (2004) and Blundell and Dias (2009) define the propensity score as

the probability of belonging to the treated group at the post-treatment period, 𝑃(𝑇 · 𝐷 |𝑋) = 1,

instead of the probability of just belonging to the treatment group, 𝑃(𝐷 = 1|𝑋). Their idea

is to therefore match the four different groups created by the time and treatment dimensions.

All these ideas are developed further in this section and the performance of the estimators

will be tested empirically through Monte Carlo simulations, which will be the main content of

Section 3.

2.5.1 Outcome Regression

The outcome regression (OR) approach, mainly employed in the form of regression adjustment

(RA), relies on researchers’ ability to specify the model for the outcome evolution. Indeed,

Heckman et al. (1997) starting from the definition of the ATT under conditional parallel trends

and using the law of iterated expectations yields:

𝐴𝑇𝑇 = 𝐸 [𝐸 (𝑌1 − 𝑌0 |𝑋, 𝐷 = 1) − 𝐸 (𝑌1 − 𝑌0 |𝑋, 𝐷 = 0) |𝐷 = 1]

= 𝐸 (𝑌1 − 𝑌0 |𝐷 = 1) − 𝐸 [𝐸 (𝑌1 − 𝑌0 |𝑋, 𝐷 = 0) |𝐷 = 1] (17)

where the first term in Equation (17) can be computed by taking sample averages, while the

second expected value must be estimated. To retrieve the missing term, the expected value can
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be estimated by fitting a regression in the controls group and taking predictions based on the

empirical distribution of 𝑋𝑖 among treated units. More formally:

𝛿𝑂𝑅 = 𝑌1,1 − 𝑌1,0 −
[

1

𝑛𝑡𝑟𝑒𝑎𝑡

∑︁
𝑖 |𝐷𝑖=1

( ˆ𝜇0,1(𝑋𝑖) − ˆ𝜇0,0(𝑋𝑖))
]

(18)

where 𝑌𝑑,𝑡 =
∑

𝑖 |𝐷𝑖=1𝑌𝑖𝑡/𝑛𝑑,𝑡 is the sample average outcome among units in treatment group 𝑑

and time 𝑡, and ˆ𝜇𝑑,𝑡 (𝑋) is an estimator of the true, unknown 𝑚𝑑,𝑡 (𝑥) ≡ 𝐸 [𝑌𝑡 |𝐷 = 𝑑, 𝑋 = 𝑥],

which is usually estimated by running a regression in the observed control sub-population

defined by 𝑑 and 𝑡 and obtaining fitted values based on the empirical distribution of 𝑋𝑖 among

the treated individuals. Intuitively, when using a linear specification for ˆ𝜇𝑑,𝑡 (𝑋), the model

would be close to the version of TWFE with covariates as in Equation (15) that includes also

interactions between 𝑋𝑖 with both treatment group and time dummies, even if they would differ

due to the fact that the outcome regression approach re-weights based on the distribution of

𝑋𝑖 among units with 𝐷𝑖 = 1 (Roth et al., 2022). In addition, the available methods in the

outcome regression approach for the estimation of ˆ𝜇𝑑,𝑡 (𝑋) are not limited to linear regression

and include more flexible semi-/non-parametric methods. For example, many papers employ

nearest neighbor matching to associate treated with untreated units with approximately identical

covariate values. The estimation, in this case, consists of a simple DiD estimator between treated
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units and the matched comparison group. However, the condition for the consistency of the

ATT of the outcome regression is the correct specification of ˆ𝜇𝑑,𝑡 (𝑋).

2.5.2 Inverse Probability Weighting

The Inverse Probability Weighting (IPW) approach proposed by Abadie (2005) avoids directly

modeling the outcome evolution while focusing on the treatment model, namely the conditional

probability of being in the treatment group given covariates, 𝑝(𝑋) ≡ 𝑃(𝐷 = 1|𝑋). In the

case of panel data, under the standard assumptions expressed in section 2.2, the ATT can be

expressed as

𝛿𝐼𝑃𝑊 =
1

𝐸 (𝐷) · 𝐸
[
𝐷 − 𝑝(𝑋)
1 − 𝑝(𝑋) · (𝑌1 − 𝑌0)

]
(19)

Intuitively, IPW produces a weighting scheme that works by weighting-down the distribution

of 𝑌1 − 𝑌0 for the untreated individuals that have values of the covariates which are over-

represented among the controls (namely with low 𝑝(𝑋)
1−𝑝(𝑋) ), and weighting-up 𝑌1 − 𝑌0 for the

individuals with values of the covariates under-represented among the controls (that is with

high 𝑝(𝑋)
1−𝑝(𝑋) ). Consequently, the adjustment balances the distribution of covariates between the
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treated and untreated groups. The IPW is then estimated by using the sample analog

𝛿𝐼𝑃𝑊 =
1

1
𝑛

∑𝑛
𝑗=1(𝐷 𝑗 )

· 1
𝑛

𝑛∑︁
𝑖=1

[
𝐷𝑖 − 𝜋(𝑋𝑖)
1 − 𝜋(𝑋𝑖)

· (𝑌𝑖1 − 𝑌𝑖0)
]

(20)

where 𝜋(𝑋) is an estimator of the true, unknown propensity score 𝑝(𝑥) = 𝑃(𝐷 = 1|𝑋). While

in the case of repeated cross-sections the ATT is estimated by :

𝛿𝐼𝑃𝑊 =
1

𝐸 (𝐷) · 𝜆 · 𝐸
[
𝐷 − 𝑝(𝑋)
1 − 𝑝(𝑋) · 𝑇 − 𝜆

1 − 𝜆
· 𝑌

]
(21)

where recall that 𝜆 represents the proportion of individuals at 𝑡 = 1. Thus, the sample analog

corresponds to:

𝛿𝐼𝑃𝑊 =
1

𝜆 · 1
𝑛

∑𝑛
𝑗=1(𝐷 𝑗 )

·
𝑛∑︁
𝑖=1

[
𝐷𝑖 − 𝜋(𝑋𝑖)
1 − 𝜋(𝑋𝑖)

· 𝑇𝑖 − 𝜆

1 − 𝜆
· 𝑌𝑖

]
(22)

The unknown propensity score 𝑝(𝑥) = 𝑃(𝐷 = 1|𝑋) is usually estimated by means of logistic

regression or a linear probability model, even if non-parametric models can be employed as

well. The IPW approach will generally be consistent in the case the propensity score model is

correctly specified.

2.5.3 Doubly Robust Methods

Sant’Anna and Zhao (2020) combine the OR and the IPW approaches into a doubly robust esti-

mand for the ATT. Double robustness is the property that if either (but not both) the propensity
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score model or the outcome regression models are misspecified, the resulting estimand still

identifies the ATT. Intuitively, the doubly robust Difference-in-Difference (DR DiD) estimator

they propose has the advantages of each of the two individual DiD methods and, at the same

time, circumvents some of their weaknesses.

Following Sant’Anna and Zhao (2020), we start from the case of panel data since it gives

an easier intuition. Denote Δ𝑌 = 𝑌1−𝑌0 and 𝜇
𝑝

𝑑,Δ
(𝑋) = 𝜇

𝑝

𝑑,1(𝑋) − 𝜇
𝑝

𝑑,0(𝑋) where 𝜇
𝑝

𝑑,𝑡
(𝑋) being

a model for the true, unknown outcome regression 𝐸 [𝑌𝑡 |𝐷 = 𝑑, 𝑋 = 𝑥] with 𝑑, 𝑡 ∈ {0, 1}. Then

the DRDiD estimand is:

𝛿𝑑𝑟,𝑝 = 𝐸

[(
𝐷

𝐸 [𝐷] −
(1−𝐷)𝑝(𝑋)
1−𝑝(𝑋)

𝐸

[
(1−𝐷)𝑝(𝑋)
1−𝑝(𝑋)

] ) (Δ𝑌 − 𝐸 [𝑌1 − 𝑌0 |𝐷 = 0, 𝑋 = 𝑥]
)]

(23)

The estimand can be decomposed in two parts. The first parenthesis is the IPW part of the

estimator, namely the weighting scheme. For the treated group, 𝐷 = 1 and 1 − 𝐷 reduces to

zero. The weight is therefore 1
𝐸 (𝐷) , where the denominator is there just to guarantee that weights

integrate up to 1. For controls, only 1−𝐷 does not reduce to zero and so the numerator displays
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the typical IPW weights for the ATT in the form of 𝑝(𝑋)
1−𝑝(𝑋) . Likewise, the denominator has the

function to let the weights to sum up to one. On the other hand, the right parenthesis shows

the outcome regression part of the estimator. 𝐸 [𝑌1 − 𝑌0 |𝐷 = 0, 𝑋 = 𝑥] is usually obtained

by estimating a linear regression model in the control group and fitting 𝑌1 − 𝑌0 based on the

empirical distribution of 𝑋𝑖 among the treated individuals. Similarly, the sample analog can be

written as:

𝛿𝑑𝑟,𝑝 =

𝑛∑︁
𝑖=1

[(
𝐷𝑖∑𝑛
𝑗=1 𝐷 𝑗

−
(1−𝐷𝑖)𝜋(𝑋𝑖)
1−𝜋(𝑋𝑖)∑𝑛

𝑗=1

[
(1−𝐷 𝑗 )𝜋(𝑋 𝑗 )
1−𝜋(𝑋 𝑗 )

] ) (Δ𝑌 − 𝜇
𝑝

0,Δ(𝑋)
)]

(24)

where ˆ𝜋(𝑋) be an arbitrary model for the true, unknown propensity score 𝑝(𝑋).

Instead, when dealing with repeated cross-section data, define 𝑚𝑟𝑐
𝑑,𝑡
(𝑥) ≡ 𝐸 [𝑌 |𝐷 = 𝑑, 𝑇 =

𝑡, 𝑋 = 𝑥], 𝑑, 𝑡 ∈ {0, 1} and for 𝑑 ∈ {0, 1}, 𝜇𝑟𝑐
𝑑,𝑌

(𝑇, 𝑋) ≡ 𝑇 · 𝜇𝑟𝑐
𝑑,1(𝑋) + (1 − 𝑇) · 𝜇𝑟𝑐

𝑑,0(𝑋) and

𝜇𝑟𝑐
𝑑,Δ

(𝑋) ≡ 𝜇𝑟𝑐
𝑑,1(𝑋) − 𝜇𝑟𝑐

𝑑,0(𝑋). Then the DR DiD estimator is defined as:

𝛿
𝑑𝑟,𝑟𝑐

1 = 𝐸 [(𝜔𝑟𝑐
1 (𝐷) − 𝜔𝑟𝑐

0 (𝐷,𝑇, 𝑋; 𝑝)) (𝑌 − 𝜇𝑟𝑐0,𝑌 (𝑇, 𝑋))] (25)
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where:

𝐸 [(𝜔𝑟𝑐
1 (𝐷)] = 𝐸 [(𝜔𝑟𝑐

1,1(𝐷)] − 𝐸 [(𝜔𝑟𝑐
1,0(𝐷)] (26)

𝜔𝑟𝑐
0 (𝐷,𝑇, 𝑋; 𝑝) = 𝜔𝑟𝑐

0,1(𝐷,𝑇, 𝑋; 𝑝) − 𝜔𝑟𝑐
0,0(𝐷,𝑇, 𝑋; 𝑝) (27)

and for 𝑡 ∈ 0, 1:

𝐸 [(𝜔𝑟𝑐
1,𝑡 (𝐷,𝑇)] = 𝐷 · 1{𝑇 = 𝑡}

𝐸 [𝐷 · 1{𝑇 = 𝑡}] (28)

𝐸 [(𝜔𝑟𝑐
0,𝑡 (𝐷,𝑇, 𝑋; 𝑝)] = (1 − 𝐷)𝑝(𝑋) · 1{𝑇 = 𝑡}

1 − 𝑝(𝑋)

/
𝐸

[
(1 − 𝐷)𝑝(𝑋) · 1{𝑇 = 𝑡}

1 − 𝑝(𝑋)

]
(29)

In addition, Sant’Anna and Zhao (2020) present also a locally semi-parametrically efficient ver-

sion of the above estimator, which means that asymptotic variance achieves the semi-parametric

efficiency bound when the working models for the nuisance functions are correctly specified.

𝛿
𝑑𝑟,𝑟𝑐

2 = 𝛿
𝑑𝑟,𝑟𝑐

1 + (𝐸 [𝜇𝑟𝑐1,1(𝑋) − 𝜇𝑟𝑐0,1(𝑋) |𝐷 = 1] − 𝐸 [𝜇𝑟𝑐1,1(𝑋) − 𝜇𝑟𝑐0,1(𝑋) |𝐷 = 1, 𝑇 = 1])

− (𝐸 [𝜇𝑟𝑐1,0(𝑋) − 𝜇𝑟𝑐0,0(𝑋) |𝐷 = 1] − 𝐸 [𝜇𝑟𝑐1,0(𝑋) − 𝜇𝑟𝑐0,0(𝑋) |𝐷 = 1, 𝑇 = 0]) (30)

By replacing 𝑝(𝑥) with 𝜋 and the expectation with sample means, the sample analog is obtained.

The outcome equation and the propensity score can be modeled either parametrically, for

instance with a linear and logistic regression respectively, or non-parametrically, including

machine learning methods. Indeed, the score function of the DRDiD satisfies the Neyman
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orthogonality condition that will be defined in Equation (42) and that is key for the debiased

machine learning literature (Chernozhukov et al., 2018). The authors instead opt to use the

inverse probability tilting estimator (Graham et al., 2012) for the treatment model and weighted

least-squares for the outcome model. Indeed, in the Monte Carlo simulations that are present

in their paper, this latter version outperforms others using the traditional parametric models.

This last locally-efficient version of the DRDiD, because of its advantages, is the one used in

section 3 for the Monte Carlo simulations. In addition, also modified versions using lasso and

random forest will be tested as well. DRDiD will generally be consistent if either one of the

propensity score and outcome models is correctly specified.

2.5.4 Triple Inverse Probability Weighting Regression Adjusted Estimator

The triple inverse probability weighting regression adjusted (3IPWRA) is an estimator for re-

peated cross-sections that builds on the idea of Blundell et al. (2004) and Blundell and Dias

(2009). In the repeated cross-sections setting, treated and controls groups in the pre-treatment

period are more likely to have structural differences with their respective group in the post-

treatment period since observations do not follow the same individuals over time. Indeed,

Hong (2013) warns of the risks for identification under compositional changes in 𝑋 over time.
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The authors show that in this scenario, matching on the standard definition of propensity score

𝑃(𝐷 |𝑋) = 1 would lead to biased estimates since it is not equivalent to match on the set of

covariates 𝑋 . As a consequence, Blundell and Dias (2009) suggests that, in the context of

matching, one way of achieving balance in the distribution of the relevant observable charac-

teristics among the four cells defined by eligibility and time is to extend the standard definition

of propensity score by denoting three propensity scores that match the treated group in the

post-treatment period with each of the other three remaining groups.

Likewise, 3IPWRA computes the propensity score as the probability of belonging to the treated

group in the post-treatment period. More precisely, the initial sample is split according to

the four groups defined by the interaction of time and treatment, and the propensity score is

separately computed in the three sub-samples obtained by merging the treated group in the

post-treatment period with each one of the three remaining sub-populations one at a time. In

this way, a specific propensity score for each of the four groups is defined. However, the propen-

sity score is not used for matching but in the context of inverse probability weighting. In fact,

3IPWRA uses the estimated propensity score to calculate the Horvitz-Thompson inverse prob-
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ability weights for the ATT that are finally employed in the standard TWFE specification with

covariates and their interactions with the time and treatment group dummy as in Equation (15).

In this way, the weighting scheme aims at balancing the distribution of the covariates among

the four different groups. The weighted least square estimation corresponds to the following

moment condition and sample analog:

𝐸

[ (
𝐷𝑇 − (1 − 𝐷𝑇)𝑝(𝑋)

1 − 𝑝(𝑋)

)
︸                         ︷︷                         ︸

= 𝑤𝑖

(𝑌𝑖 − 𝑋𝑖
′
𝜔)𝑋𝑖

]
= 0 (31)

1

𝑛

𝑛∑︁
𝑖=1

[(
𝐷𝑖𝑇𝑖 −

(1 − 𝐷𝑖𝑇𝑖)𝜋(𝑋𝑖)
1 − 𝜋(𝑋𝑖)

)
(𝑌𝑖 − 𝑋𝑖

′
𝜔)𝑋𝑖

]
= 0 (32)

where 𝜋(𝑋𝑖) is estimated ∀𝑖 ∈ (𝑡, 𝑑) = {(0, 1), (0, 0), (1, 0)} by merging the treatment group in

the post-treatment period, where (𝑡, 𝑑) = (1, 1), with the group (𝑑, 𝑡) where 𝑖 belongs and then

computing propensity scores. For the group such that (𝑡, 𝑑) = (1, 1) the weights are equal to

one, while in all other three sub-populations the weights correspond to 𝜋(𝑋𝑖)
1−𝜋(𝑋𝑖) . The notation

𝑋𝑖 refers to full vector of controls such as in Equation (15), namely 𝑇, 𝐷,𝑇𝐷, 𝑋′, 𝑇𝑋′, 𝐷𝑋′.

Such weighted regression, according to Imbens (2004), approximates the more general semi-

parametric version of the IPWRA estimator. Both logistic and machine learning estimators for

the propensity score will be analyzed in the simulations present in Section 3.
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2.5.5 Triple Weighting Doubly Robust Difference-in-Difference

The rationale of the triple weighting doubly robust Difference-in-Difference (3WDRDiD) es-

timator is to adapt the weighting scheme in the DRDiD of Sant’Anna and Zhao (2020) to

handle the weights utilized in the 3IPWRA estimator. Since it refers to repeated cross-sections

data, define again 𝑚𝑟𝑐
𝑑,𝑡
(𝑥) ≡ 𝐸 [𝑌 |𝐷 = 𝑑, 𝑇 = 𝑡, 𝑋 = 𝑥], 𝑑, 𝑡 ∈ {0, 1} and for 𝑑 ∈ {0, 1},

𝜇𝑟𝑐
𝑑,𝑌

(𝑇, 𝑋) ≡ 𝑇 · 𝜇𝑟𝑐
𝑑,1(𝑋) + (1 − 𝑇) · 𝜇𝑟𝑐

𝑑,0(𝑋) and 𝜇𝑟𝑐
𝑑,Δ

(𝑋) ≡ 𝜇𝑟𝑐
𝑑,1(𝑋) − 𝜇𝑟𝑐

𝑑,0(𝑋). Denote

𝑝(𝑋) = 𝑃(𝐷𝑇 = 1|𝑋), then the DR DiD estimator is defined as:

𝛿
𝑑𝑟,𝑟𝑐

1 = 𝐸 [(𝜔𝑟𝑐
1 (𝐷) − 𝜔𝑟𝑐

0 (𝐷,𝑇, 𝑋; 𝑝)) (𝑌 − 𝜇𝑟𝑐0,𝑌 (𝑇, 𝑋))] (33)

where:

𝐸 [(𝜔𝑟𝑐
1 (𝐷)] = 𝐸 [(𝜔𝑟𝑐

1,1(𝐷)] − 𝐸 [(𝜔𝑟𝑐
1,0(𝐷)] (34)

𝜔𝑟𝑐
0 (𝐷,𝑇, 𝑋; 𝑝) = 𝜔𝑟𝑐

0,1(𝐷,𝑇, 𝑋; 𝑝) − 𝜔𝑟𝑐
0,0(𝐷,𝑇, 𝑋; 𝑝) (35)

and for 𝑡 ∈ 0, 1:

𝐸 [(𝜔𝑟𝑐
1,1(𝐷,𝑇)] = 𝐷 · 1{𝑇 = 𝑡}

𝐸 [𝐷 · 1{𝑇 = 𝑡}] (36)

𝐸 [(𝜔𝑟𝑐
1,0(𝐷,𝑇)] = (1 − 𝐷)𝑝(𝑋) · 1{𝑇 = 𝑡}

1 − 𝑝(𝑋)

/
𝐸

[
(1 − 𝐷)𝑝(𝑋) · 1{𝑇 = 𝑡}

1 − 𝑝(𝑋)

]
(37)

𝐸 [(𝜔𝑟𝑐
0,𝑡 (𝐷,𝑇, 𝑋; 𝑝)] = (1 − 𝐷)𝑝(𝑋) · 1{𝑇 = 𝑡}

1 − 𝑝(𝑋)

/
𝐸

[
(1 − 𝐷)𝑝(𝑋) · 1{𝑇 = 𝑡}

1 − 𝑝(𝑋)

]
(38)
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On an intuitive level, with respect to the original Sant’Anna and Zhao (2020), the main difference

is the use of the "triple-matching weights", which are the propensity scores computed by

separately "matching" the treated and each of the three remaining groups one at a time, as in

3IPWRA. To allow for this weighting scheme, the weights for the treated group in the pre-

treatment period are not equal to one, as in Equation (28), but follow the adjustment employed

for two untreated sub-populations (see Equation (37)), since the idea is to adjust these three

groups for both the heterogeneity in time and treatment group dimensions.

2.6 Machine learning first-stage estimates

2.6.1 Debiased machine learning

There is growing literature on the use of machine learning for causal inference. In general,

the aim of machine learning methods is to predict 𝑌 assuming a model for the predictors 𝑋 .

Since machine learning methods optimize prediction, they are aimed to minimize the mean

square error (MSE) of the observations out of the sample. Since MSE is the sum of the squared

bias and the variance of the predictor, the optimum may, and usually does, implicitly allow

for some degree of bias. This characteristic makes machine learning estimators not directly

applicable to causal inference, where the aim is to obtain unbiased estimates of the causal

40



parameter of interest. However, Chernozhukov et al. (2018) studied a rather flexible approach

to employ the potential of machine learning in the field of causal inference. The idea is that in

many econometric settings there are intermediate parts of the estimation process that focus on

predicting values that are not readily available to the researchers. Chernozhukov et al. (2018)

found that, when three main conditions are met, first-stage estimates can be obtained through

machine learning predictors without creating bias in the final estimates of the causal parameter.

Suppose we are interested in estimating the causal parameter 𝜃0 in the presence of nuisance

functions 𝑔𝑜 and 𝑚0 which depend on high-dimensional functions of the covariates X. For

example, Bach et al. (2021) considers a Interactive Regression Model (IRM) in the form:

𝑌 = 𝑔0(𝐷, 𝑋) + 𝜁, 𝐸 (𝜁 |𝐷, 𝑋) = 0 (39)

𝐷 = 𝑚0(𝑋) +𝑉, 𝐸 (𝑉 |𝑋) = 0 (40)

where 𝑌 is the dependent variable, 𝐷 ∈ {0, 1} is the treatment variable of interest, the high-

dimensional vector 𝑋 = (𝑋1, ..., 𝑋𝑝) represents the other confounding covariates, and 𝜂 and 𝑉

are random errors. In this setting, Equation (39) is the outcome model equation, with the causal

parameter of interested being defined as 𝜃0 = 𝐸 [𝑔0(1, 𝑋) − 𝑔0(0, 𝑋) |𝐷 = 1], and Equation (40)

41



represents the treatment model. 𝑋 affects both the the policy variable 𝐷, through the function

𝑚0(𝑋), and the outcome variable, via the function 𝑔0(𝐷, 𝑋). Such a design generalizes the

standard linear regression models, which occurs when both 𝑔0(𝐷, 𝑋) and 𝑚0(𝑋) are linear

functions of 𝑋 and 𝐷 is additively separable. Therefore, machine learning estimators allow for

more flexible forms of 𝑔0(𝐷, 𝑋) and 𝑚0(𝑋) since they are able to handle the high dimension-

ality and non-linearity in 𝑋 .

However, machine learning estimates of the nuisance parameters can be employed only when

three conditions are satisfied. The first refers to the score function of the method-of-moments

estimator used to infer the casual parameter. Indeed, define the following moment condition:

𝐸 [𝜓(𝑊 ; 𝜃0; 𝜂)] = 0 (41)

where we call 𝜓 is the so-called score function, 𝑊 = (𝑌, 𝐷, 𝑋) is the set of observed variables,

𝜃0 is the causal parameter, and 𝜂 denotes nuisance functions with population value 𝜂0.

The first key condition when using machine learning to estimate the nuisance parameter 𝜂 is

employing a score function 𝜓(𝑊 ; 𝜃0; 𝜂) that (1) satisfies Equation (41) yielding 𝜃0 as a unique
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solution, and (2) that satisfies the Neyman orthogonality condition defined as:

𝜕𝜂𝐸 [𝜓(𝑊 ; 𝜃0; 𝜂)] |𝜂=𝜂0 = 0 (42)

The Neyman orthogonality expressed in Equation (42) guarantees that the moment condition

defined in Equation (41) and utilized to infer 𝜃0 is insensitive to small perturbations of the

nuisance function 𝜂 when close to 𝜂0. Intuitively, the Neyman orthogonality condition is sat-

isfied when the derivative of the score functions with respect to the parameter 𝜂 is equal to

0 in the neighborhood of 𝜂0. Since machine learning estimates 𝜂 of 𝜂 are generally biased

due to regularization, using a Neyman-orthogonal score eliminates the biases arising from the

first-stage estimates.

In the IRM setting, Bach et al. (2021) shows that the IPWRA score function

𝜓(𝑊 ; 𝜃0; 𝜂) ≡
𝐷 (𝑌 − 𝑔(0, 𝑋)

𝑝
− 𝑚(𝑋) (1 − 𝐷) (𝑌 − 𝑔(0, 𝑋)

𝑝(1 − 𝑚(𝑋)) − 𝐷

𝑝
𝜃 (43)

𝜂 = (𝑔, 𝑚, 𝑝), 𝜂0 = (𝑔0, 𝑚0, 𝑝0), 𝑝0 = 𝑃(𝐷 = 1)

satisfies the Neyman orthogonality condition in Equation (42). By substituting 𝑌 in Equa-

tion (43) with the variation Δ𝑌 between pre and post-treatment period and accordingly adjust
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the outcome regression estimates 𝑔(0, 𝑋), it can be shown that the Equation (43) corresponds to

the DRDiD estimator for panel data proposed by Sant’Anna and Zhao (2020). As a consequence,

in the DRDiD the outcome regression model and the treatment model can be estimated with

machine learning estimators without creating bias in the estimates of the causal parameter, as

long as other two conditions are matched.

The second condition refers to the rate of convergence of the machine learning estimators

used for the nuisance parameters. Formally, in the IRM setting outlined before the machine

learning estimators must satisfy:

| |𝑚0 − 𝑚0 | | + | |𝑔0 − 𝑔0 | | ≤ 𝑜(𝑁−1/4) (44)

where | | · | | indicates the 𝐿2(𝑃) norm operator and 𝑜(·) the little-o notation. Chernozhukov et al.

(2018) shows that such a condition is generally met by most machine learning estimators such

as lasso, ridge, random forests, neural nets, and various hybrids and ensembles of these methods.

Finally, the authors suggest is to use a form of sample splitting: the nuisance parameters

are estimated on a random partition, while the remaining sample is used for the estimation
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of the orthogonal score. For instance, when using a 2-fold partition, the dataset is randomly

split into two parts, one used for the estimation of the first-stage estimates and the other in the

computation of the score function. Such a procedure avoids biases that may arise from the

overfitting of the machine-learning estimates.

2.6.2 Lasso

Lasso is the machine learning method closest to standard linear regression. Following James

et al. (2013), consider a regression in the form:

𝑌 = 𝛽0 + 𝛽1𝑋1 + ...𝛽𝑝𝑋𝑝 + 𝜖 (45)

where 𝑌 is the outcome variable, 𝑋1, 𝑋2, ..., 𝑋𝑝 is the set of covariates, and 𝜖 is the error term.

Assuming that the outcome is related linearly with the predictors, then fitting the least squares

to predict the outcome will produce estimates that have low bias. When the number of ob-

servations 𝑛 is much larger than 𝑝, least-squares estimates tend to have low variance as well,

implying good prediction properties of the estimator. However, in the case 𝑝 is close to 𝑛, then,

because of the issue of overfitting, the least-squares fit usually shows high variance, leading to

poor predictions out of the training sample. This issue degenerates when 𝑝 > 𝑛, since in such

a scenario estimates cannot be produced at all since variance becomes infinite. Therefore, a
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useful approach is to shrink the estimated coefficients to substantially reduce the variance of

the estimator when this comes at the cost of a negligible increase in bias. Since this shrinkage,

also known as regularization, leads to some of the estimated coefficients to be exactly zero, it

can be intuitively interpreted as a form of variable selection.

From a more technical standpoint, lasso coefficients 𝛽𝐿
𝜆

minimize the formulation of the least-

squares with a penalty term governed by the parameter 𝜆:

𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝛽0 −

𝑝∑︁
𝑗=1

𝛽 𝑗𝑥𝑖 𝑗

)2
+ 𝜆

𝑝∑︁
𝑗=1

|𝛽 𝑗 | (46)

where the first term is the sum of squared residuals (RSS), while the second part, which is

multiplied by the tuning parameter 𝜆 ≥ 0, is the penalty term. The tuning parameter 𝜆 is

optimally determined by the use of cross-validation, which is a resampling method that splits

the data into test and train portions on different iterations to select the parameter that leads to the

lowest MSE. Often, lasso is compared with ridge regression, a similar approach which instead

minimizes:

𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝛽0 −

𝑝∑︁
𝑗=1

𝛽 𝑗𝑥𝑖 𝑗

)2
+ 𝜆

𝑝∑︁
𝑗=1

𝛽2𝑗 (47)
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The difference between the two is just the definition of the penalty term: lasso employs the 𝑙1

norm, while ridge regression the 𝑙2 norm. The lasso, when the tuning parameter 𝜆 is sufficiently

large, leads to some of the coefficient estimates to be exactly equal to zero, which is unlikely in

the case of ridge regression. For this reason, the lasso is said to perform variable selection.

2.6.3 Random forest

The basic idea of tree-based methods for classification and regression is to sequentially segment

the predictor space into multiple regions through a recursive binary splitting. As summarized in

James et al. (2013), tree-based methods mainly consists of two steps. The first is dividing the set

of possible values for 𝑋1, 𝑋2, ..., 𝑋𝑝 into 𝐽 separate and non-overlapping regions, 𝑅1, 𝑅2, ..., 𝑅𝐽 .

The second is, for every observation belonging to region 𝑅 𝑗 , computing the prediction by taking

the mean of the outcome values 𝑌 for the training observations in 𝑅 𝑗 . The aim is therefore to

find the regions 𝑅1, ..., 𝑅𝐽 that minimize the RSS of:

𝐽∑︁
𝑗=1

𝐽∑︁
𝑖∈R 𝑗

(
𝑦𝑖 − 𝑦R 𝑗

)2
(48)

where 𝑦R 𝑗 is the average response for the training observations in the 𝑗 th region. Since it is not

possible to consider each possible partition of the of the feature space into 𝐽 boxes, a feasible

computational method is recursive binary splitting, which consists of a binary splitting of the
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predictor space at each step. That is, we consider all predictors 𝑋1, ..., 𝑋𝑝, and all possible

values of the cutpoint 𝑠 for each of the predictors, and then select the variable and cutpoint that

leads to a tree with lowest RSS. More precisely, for any 𝑗 and 𝑠, define the pair of half-planes

𝑅1( 𝑗 , 𝑠) = {𝑋 |𝑋 𝑗 < 𝑠} 𝑅2( 𝑗 , 𝑠) = {𝑋 |𝑋 𝑗 ≥ 𝑠}

where the notation for 𝑅1( 𝑗 , 𝑠) indicates the region of predictor space in which 𝑋 𝑗 takes on a

value less than 𝑠, and greater than 𝑠 for 𝑅2( 𝑗 , 𝑠). Then recursive binary splitting looks for the

value of 𝑗 and 𝑠 that minimize the following equation:

∑︁
𝑖:𝑥𝑖∈R1 ( 𝑗 ,𝑠)

(
𝑦𝑖 − 𝑦R1

)2
+

∑︁
𝑖:𝑥𝑖∈R2 ( 𝑗 ,𝑠)

(
𝑦𝑖 − 𝑦R2

)2
(49)

where 𝑦R1 represents the average response for the training observations in the region 𝑅1( 𝑗 , 𝑠),

and 𝑦R1 is represents the average response for the training observations in the region 𝑅2( 𝑗 , 𝑠).

Then the process is repeated many times, each time considering the optimal split among the

existing regions until a stopping criterion is reached.

To avoid overfitting, tree pruning balances the trade-off between accuracy and complexity

of the overall tree. Similarly to regularization, it introduces a penalty term for tuning parameter
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𝛼 ≥ 0 to improve out-of-sample prediction. In this case, the algorithm minimizes:

|𝑇 |∑︁
𝑚=1

∑︁
𝑖:𝑥𝑖∈R𝑚

(
𝑦𝑖 − 𝑦R𝑚

)2
+ 𝛼 |𝑇 | (50)

where |𝑇 | represents the number of terminal nodes, 𝑅𝑚 is the subset of the predictor space

corresponding to the 𝑚th terminal node, and 𝑦R𝑚 is the mean of the training observations in

𝑅𝑚. Also in this case, the tuning parameter 𝛼 is selected by means of cross-validation.

Random forests is a machine learning estimator that uses decision trees but employs a par-

ticular type of bootstrap to drastically reduce the variance of the estimator. Bootstrap is the

technique of taking repeated random samples from the training data set and then taking the

average of each estimation. Intuitively, bootstrap employs the idea that, given a set of n inde-

pendent observations 𝑍1, ..., 𝑍𝑛, each with variance 𝜎2, the variance of the mean of 𝑍 is 𝜎2/𝑛.

So bootstrap when applied to decision trees leads to a final estimator

𝑓𝑏𝑎𝑔 (𝑥) =
1

𝐵

𝐵∑︁
𝑏=1

𝑓 𝑏𝑏𝑎𝑔 (𝑥) (51)

where 𝑓 𝑏
𝑏𝑎𝑔

(𝑥) is the prediction obtained from the 𝑏th bootstrapped training set and 𝐵 is the

number of repetitions.
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However, despite training the trees on different subsets, the predictions are usually highly

correlated, limiting the effectiveness of the central limit theorem. Random forest solves this

weakness by restricting at each node the split of the predictor space to a random subsample of

𝑚 predictors instead of the full set of 𝑝 predictors. For example, 𝑚 is usually chosen in the

order of √𝑝. Intuitively, random forest gains prediction efficiency by decorrelating the decision

trees and thereby causing the average to have lower variance.

3 Monte Carlo Simulations

This section conducts a series of Monte Carlo experiments in order to study the finite sample

properties of the proposed estimators in the case of repeated cross-sections. The different

methodologies are tested in three different experiments. In each design, one cross-section

is observed at 𝑇 = 0 and the other at 𝑇 = 1, constituting a total sample size of 𝑛 = 1000.

The Monte Carlo simulation consists of 500 random generations of the dataset and for each

repetition the estimation results are stored. Each of the three experiments considers a trend

that depends on the covariates under different scenarios. Indeed, in addition to X-specific

trends, Experiment 0 assumes randomized selection into treatment, time-invariant covariates,
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and homogeneous treatment effects in X. Following Section 2.4, in this setting we expect that

all estimation methods perform relatively well, including the TWFE, since its all assumptions

are satisfied. Conversely, Experiment 1 allows for non-random selection into treatment, test-

ing the robustness of the traditional TWFE under new circumstances. Finally, Experiment 2

relaxes both the assumption of absence of compositional changes in the covariates between the

pre and post-treatment periods and the homogeneity of treatment effects. Thus, Experiment 2

reproduces the more realistic setting since different dimensions of hetereogeneity are allowed.

Following the notation as in Sant’Anna and Zhao (2020) and Kang and Schafer (2007), each

experiments considers four different data generating processes (DPGs) which are aimed to

model whether or not the researcher can correctly specify the propensity score and the outcome

models. First of all, for a generic variable 𝑊 = (𝑊1,𝑊2,𝑊3,𝑊4)′, define the underlying true

outcome and propensity score model:

𝑓𝑟𝑒𝑔 (𝑊) = 210 + 25.4 ·𝑊1 + 13.7 · (𝑊2 +𝑊3 +𝑊4) (52)

𝑓𝑝𝑠 (𝑊) = 0.75 · (−𝑊1 + 0.5 ·𝑊2 − 0.25 · −0.1 ·𝑊4) (53)
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The function 𝑓𝑝𝑠 (𝑊), which determines selection into treament, is modeled through the inverse

of the logit function 𝑒𝑥𝑝𝑖𝑡 ( 𝑓𝑝𝑠 (𝑊)) =
𝑒𝑥𝑝( 𝑓𝑝𝑠 (𝑊))

1+𝑒𝑥𝑝( 𝑓𝑝𝑠 (𝑊)) and is studied to produce an average re-

sponse rate of 0.5. As consequence, estimators parametrically assuming a logit distribution will

conform to the true DPG. The baseline function for the outcome 𝑓𝑟𝑒𝑔 (𝑊), that will be adapted to

the context of each of the three experiments, produces a mean of 𝐸 (𝑌 ) = 𝐸 [ 𝑓𝑟𝑒𝑔 (𝑊)] = 210.0

and, when combined with 𝑓𝑝𝑠 (𝑊), leads to 𝐸 (𝑌 |𝐷 = 0) = 200.0 and 𝐸 (𝑌 |𝐷 = 1) = 220.0. As

outlined in Kang and Schafer (2007), the selection bias in this DPG is not severe because the

difference between the average of the treated units and the average of the full population is only

a one-quarter of a population standard deviation. Nevertheless, this difference is large enough

to invalidate the performance of naive estimates.

The generic 𝑊 represents two possible variables, 𝑋 and 𝑍 . Define 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4)′

as being distributed as 𝑁 (0, 𝐼4) with 𝐼4 representing the 4 × 4 identity matrix. For 𝑗 = 1, 2, 3, 4

define the standardized variable 𝑍 𝑗 = (𝑍 𝑗 − 𝐸 [𝑍 𝑗 ])
/√︃

𝑉𝑎𝑟 (𝑍 𝑗 ) where 𝑍1 = exp (0.5𝑋1),

𝑍2 = 10 + 𝑋2/(1 + exp (𝑋1)), 𝑍3 = (0.6 + 𝑋1𝑋2/25)3, and 𝑍4 = (20 + 𝑋2 + 𝑋4)2. The vector

𝑍 = (𝑍1, 𝑍2, 𝑍3, 𝑍4)′ is the set of variables that are observable by the researcher.
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The unique generic DPG (expressed in terms of 𝑊) for each experiment leads to four cases

depending on whether𝑊 is replaced by the observed variable 𝑍 or by the unobservable variable

𝑋 . When both modeling functions are 𝑓𝑝𝑠 (𝑍) and 𝑓𝑟𝑒𝑔 (𝑍), since the researcher observes 𝑍 ,

this will lead to correctly specified models for the estimation of both the propensity score and

the outcome regression (DPG A). However, when data are generated from 𝑓𝑝𝑠 (𝑋) and 𝑓𝑟𝑒𝑔 (𝑋),

the researcher, who has only access to 𝑍 , will misspecify both models (DPG D). Since 𝑍 is a

highly non-linear transformation of 𝑋 and its interactions, the misspecification is likely to cause

a sizeable bias in the estimation. However, such a scenario is the most realistic since researchers

do not know a priori the form of phenomenon they are analyzing. Finally, also the two cases in

which just one of the models has the correct specification is analyzed (DPG B and DPG C).

Table 1 summarizes the different methods that are tested in each experiment, which will be

evaluated in terms of average bias, root mean square error (RMSE), variance, and computa-

tional time required for the estimation. When not otherwise specified, all estimators consider

a logistic propensity score working model and a linear regression working model for the out-
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come evolution. Therefore, the first is estimated using maximum likelihood and the second by

ordinary least squares.

For the DRDiD and 3IPWRA we also allow for the possibility of first-stage machine learn-

ing estimates. Such non-parametric methods should better capture the non-linearities when the

working models are misspecified. When lasso is utilized, both the outcome and the treatment

model are designed as a penalized linear and a penalized logistic regression respectively. Lasso

is performed in R using the ’glmnet’ package (Friedman et al., 2010) and the shrinkage param-

eter 𝜆 is selected through 10-fold cross-validation and represents the largest value of 𝜆 such that

error is within 1 standard error of the minimum the average cross-validation error. Since lasso

implicitly performs variable selection and can therefore handle a multitude of covariates, in the

simulation this advantage is reflected by enabling lasso to employ an expanded set of covariates

that include all second order terms and interactions. Despite being technically possible in this

synthetic dataset to include all interactions terms also for the traditional estimators, the choice is

driven to emulate a more realistic scenario where it is not completely feasible for the researcher

to methodically include an expanded set of covariates under traditional estimation methods.
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Otherwise, there is the risk that the number of predictors 𝑛 will be close or even higher than the

number of observations 𝑝, invalidating the estimation.

When random forest is utilized, the estimation is implemented referring to the ’cforest’ R

package (Hothorn et al., 2006; Strobl et al., 2007, 2008). The number of trees is set to 100,

as suggested by Oshiro et al. (2012), in order to obtain a good balance between accuracy and

computational effort. At each node, as common practice, the number of randomly sampled

input variables is restricted to √
𝑝, where 𝑝 is again the number of predictors (James et al.,

2013). When utilizing machine learning tools, I do not perform sample splitting, as suggested

in Chernozhukov et al. (2018) and Bach et al. (2021), because of the limited dimension of the

dataset. Indeed, many of the analyzed methodologies have intermediate stages that rely on

estimations in each of the four sub-groups of the population defined by the time and treatment

group dimensions, and threfore sample-splitting would further reduce the number of available

observations. Preliminary results with 2-fold random partition of the observations did not

seem to improve results but, as indicated by Bach et al. (2021), future works should analyze,

when feasible, 4-fold and 5-fold random partitions which demonstrated to work better in a
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variety of empirical simulations. Despite of this, the final results on techniques that rely on ma-

chine learning first-stages are encouraging and the issue overfitting seems limited in our context.

We performed preliminary simulations of other estimators that utilized machine learning esti-

mates in the DiD, such as the one proposed by Chang (2020) and Nie et al. (2021), but the results

showed significantly higher variance that the ones studied in the simulation. Further analysis,

encompassing also Zimmert (2018), may be an interesting exercise for future contributions.
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Table 1: Summary table of the estimator utilized in the Monte Carlo simulation

Estimator Description
TWFE two-way-fixed-effects regression

with covariates as ineq. (11)

TWFE (T·X) two-way-fixed-effects regression
with covariates and their interaction
with the time dummy, as in eq. (14)

TWFE (T·X+D·X) two-way-fixed-effects regression
with covariates and their interaction with the time

and treatment group dummy, as in eq. (15)

IPW Inverse probability weighting (Abadie, 2005)

RA Outcome regression (Heckman et al., 1997)

DRDiD Improved locally efficient doubly robust estimator,
original version (Sant’Anna and Zhao, 2020)

LASSO DRDiD Locally efficient doubly robust estimator,
Sant’Anna and Zhao (2020) modified with lasso

RF DRDiD Locally efficient doubly robust estimator,
Sant’Anna and Zhao (2020) modified with random forest

3IPWRA Triple propensity score inverse probability weighting
regression adjusted estimator with logit

LASSO 3IPWRA Triple propensity score inverse probability weighting
regression adjusted estimator with lasso

RF 3IPWRA Triple propensity score inverse probability weighting
regression adjusted estimator with random forest

3WDRDiD Doubly robust DiD Sant’Anna and Zhao (2020)
adjusted with triple propensity score

inverse probability weighting
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3.1 Experiment 0: X-Specific Trends and Randomized Selection

Experiment 0 is randomized experiment with X-specific trends, time-invariant covariates, and

homogeneous treatment effects in X. Since in Experiment 0 the selection of treated individuals

is assumed to be random, DGP.A coincides with DPG.B and DPG.C is equivalent to DPG.D

because the true propensity score is a constant and there is no need to specify a correct propen-

sity score model. Because of that, Experiment 0 uses the notation DPG.AB and DPG.CD to

signal the aforementioned equality but to maintain the consistency in notation used in further

experiments. The DPGs are therefore specified as:

DPG.AB (PS and OR models correct)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝 = 0.5

𝜆 = 0.5

𝐷 = 1{𝑝(𝑍) ≥ 𝑈𝑑}

𝑇 = 1{𝜆 ≥ 𝑈𝑡 }

DPG.CD (PS and OR models incorrect)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖1(𝑑)

𝑝 = 0.5

𝜆 = 0.5

𝐷 = 1{𝑝(𝑋) ≥ 𝑈𝑑}

𝑇 = 1{𝜆 ≥ 𝑈𝑡 }
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where 𝜖0, 𝜖1(𝑑), 𝑑 = 0, 1 are independent standard normal random variables and represent the

stochastic error term of the potential outcomes, 𝑝 is the constant probability of being treated, 𝜆

is the proportion of the sample when 𝑇 = 1 and 𝑈𝑑 and 𝑈𝑡 are independent standard uniform

stochastic variables used to randomly select individuals into treatment and into post-treatment

period respectively. For a generic variable 𝑊 , 𝜐(𝑊, 𝐷) is an independent normal random

variable with mean 𝐷 · 𝑓𝑟𝑒𝑔 (𝑊) and variance one and represents the time-invariant group het-

erogeneity between treated and untreated populations. The trend is for simplicity specified

as 𝜏(𝑊) = 𝑓𝑟𝑒𝑔 (𝑊), and therefore in the post-treatment period 𝑇 = 1 it sums to the standard

function of the outcome model 𝑓𝑟𝑒𝑔. This explains the presence of the factor 2 · 𝑓𝑟𝑒𝑔 (𝑊)in 𝑌 𝑑
1 .

The available data to the researcher are {𝑌0, 𝐷, 𝑍} if 𝑇 = 0 and {𝑌1, 𝐷, 𝑍} when 𝑇 = 1, where

𝑌0 = 𝑌0
0 and 𝑌1 = 𝐷𝑌1

1 + (1 − 𝐷)𝑌0
1 . In the aforementioned DGPs, the true ATT is zero.

It is important to note that the trend here is a function that depends on the covariates. As

a consequence, the unconditional parallel trend does not hold and a correct inclusion of the

covariates is required to satisfy conditional parallel trends. As a consequence, in this setting,
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a TWFE specification without covariates would be biased. Since the simulation replicates

a randomized experiment, and therefore the mean of the distribution of the covariates is the

same among treated and controls (see Figure 1), we expect that the inclusion of time-invariant

covariates affecting the trend would eliminate bias. The results of the simulations are displayed

in Table 2 and Table 3 .
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Figure 1: Density plot of 𝑋2 among treated in pre- (black) and post- (blue) treatment periods

Treated

Controls

Notes: The graph considers a representative random sample from Exp.0 with DPG CD. The upper plot
compares the distribution of covariate 𝑋2 among the treated, while the lower one among controls. The black
vertical line represents the mean of the distribution of 𝑋2 in the pre-treatment period among the selected treatment
group category, while the blue one is the mean of the distribution of 𝑋2 in the post-treatment period for the same
treatment group category. Note that the distribution of 𝑋2 is time-invariant and, because of randomization, the
distribution is approximately the same among treated and controls.
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Table 2: Exp.0AB Outcome regression model correct

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -0.060 3.733 13.929 0.001
Regression, eq. (14) TWFE (T·X) -0.178 2.852 8.105 0.001
Regression, eq. (15) TWFE (T·X+D·X) 0.009 0.184 0.034 0.001

Abadie (2005) IPW 0.596 12.032 144.413 0.014
Heckman et al. (1997) RA -0.022 9.976 99.530 0.013

Sant’Anna and Zhao (2020) DRDiD 0.009 0.184 0.034 0.019
Sant’Anna and Zhao (2020)* LASSO DRDiD 0.016 0.375 0.141 1.068
Sant’Anna and Zhao (2020)* RF DRDiD -0.406 4.959 24.428 3.429

author’s work, eq. (32) 3IPWRA 0.008 0.185 0.034 0.018
author’s work, eq. (32) LASSO 3IPWRA 0.009 0.184 0.034 0.458
author’s work, eq. (32) RF 3IPWRA 0.012 0.193 0.037 1.287

Sant’Anna and Zhao (2020)* WDRDiD 0.070 0.632 0.395 0.019

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign
’*’ stands for ’modified’. TWFE is the standard regression specification with naively adding a set
of covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction
terms between the covariates and the time dummy (eq. (14)). IPW is the inverse probability
weighting (eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly
robust estimator and it is proposed in three versions: the original from the paper (eq. (30)) and
two versions that employ lasso and random forest for the propensity score and outcome regression
respectively. 3IPWRA is the weighted regression with weights specified as in and the propensity
score is estimated with logit, lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly
robust estimator that uses triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’
and ‘Time’, stand for the average simulated bias, simulated root mean-squared errors, average
estimator variance, and average required computational time respectively. Refer to the main text for
further details.
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Table 3: Exp.0CD Outcome regression model

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE 0.228 5.167 26.647 0.001
Regression, eq. (14) TWFE (T·X) 0.157 4.702 22.083 0.001
Regression, eq. (15) TWFE (T·X+D·X) 0.119 4.187 17.517 0.002

Abadie (2005) IPW -0.074 9.643 92.988 0.013
Heckman et al. (1997) RA -0.075 8.449 71.383 0.012

Sant’Anna and Zhao (2020) DRDiD 0.114 4.178 17.441 0.016
Sant’Anna and Zhao (2020)* LASSO DRDiD 0.105 3.230 10.420 1.148
Sant’Anna and Zhao (2020)* RF DRDiD -0.350 4.462 19.792 3.216

author’s work, eq. (32) 3IPWRA 0.089 4.159 17.292 0.053
author’s work, eq. (32) LASSO 3IPWRA 0.112 4.164 17.327 0.445
author’s work, eq. (32) RF 3IPWRA 0.379 2.875 8.122 1.246

Sant’Anna and Zhao (2020)* 3WDRDiD 0.123 4.155 17.252 0.019

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign
’*’ stands for ’modified’. TWFE is the standard regression specification with naively adding a set
of covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction
terms between the covariates and the time dummy (eq. (14)). IPW is the inverse probability
weighting (eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly
robust estimator and it is proposed in three versions: the original from the paper (eq. (30)) and
two versions that employ lasso and random forest for the propensity score and outcome regression
respectively. 3IPWRA is the weighted regression with weights specified as in and the propensity
score is estimated with logit, lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly
robust estimator that uses triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’
and ‘Time’, stand for the average simulated bias, simulated root mean-squared errors, average
estimator variance, and average required computational time respectively. Refer to the main text
for further details.
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In line with our expectations, when the outcome regression model is correctly specified, all

estimators, including the standard specification of the TWFE with covariates, perform well and

are approximately unbiased. In this case, the most efficient estimators are doubly robust DRDiD

estimator of Sant’Anna and Zhao (2020) (𝑅𝑀𝑆𝐸 = 0.184), the lasso and standard version of

3IPWRA (𝑅𝑀𝑆𝐸 = 0.184 and 𝑅𝑀𝑆𝐸 = 0.185 respectively) and the TWFE that includes both

time and treatment group interactions with the covariates (𝑅𝑀𝑆𝐸 = 0.184).

When instead the outcome model is incorrectly specified, a small degree of bias is present

among all estimates. However, overall all estimators perform relatively well, and methods that

employs machine-learning first stage estimates display a better efficiency in terms of variance

since they better capture the non-linearities needed to reproduce the true DPG. The lowest bias

(−0.074) is displayed by the IPW estimator of Abadie (2005) , but probably the DRDiD and

3IPWRA have an overall better performance. The lowest RMSE is the one of the random forest

specification of the 3IPWRA (𝑅𝑀𝑆𝐸 = 2.875).
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3.2 Experiment 1: X-specific Trends and Non-Randomized Selection

Experiment 1 closely replicates the simulation present in Sant’Anna and Zhao (2020). Besides

X-specific trends, here the selection to the treatment is not randomized, causing additional

obstacles to the identification of the causal parameter. The covariates are assumed to be time-

invariant, therefore disallowing the possibility of compositional changes in the independent

variables, and treatment effects are homogeneous in X. In a non-randomized experiment, a

propensity score model can be usefully employed for the estimation of the causal parameter and

therefore four different DPGs are specified as follows:

DPG.A (PS and OR models correct)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝(𝑍) =
exp ( 𝑓𝑝𝑠 (𝑍))

(1 + exp ( 𝑓𝑝𝑠 (𝑍)))

𝜆 = 0.5

𝐷 = 1{𝑝(𝑍) ≥ 𝑈𝑑}

𝑇 = 1{𝜆 ≥ 𝑈𝑡 }

DPG.B (PS model incorrect, OR correct)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖0(𝑑)

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝(𝑋) =
exp ( 𝑓𝑝𝑠 (𝑋))

(1 + exp ( 𝑓𝑝𝑠 (𝑋)))

𝜆 = 0.5

𝐷 = 1{𝑝(𝑋) ≥ 𝑈𝑑}

𝑇 = 1{𝜆 ≥ 𝑈𝑡 }
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DPG.C (PS model correct, OR incorrect)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖1(𝑑)

𝑝(𝑍) =
exp ( 𝑓𝑝𝑠 (𝑍))

(1 + exp ( 𝑓𝑝𝑠 (𝑍)))

𝜆 = 0.5

𝐷 = 1{𝑝(𝑍) ≥ 𝑈𝑑}

𝑇 = 1{𝜆 ≥ 𝑈𝑡 }

DPG.D (PS and OR models incorrect)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖1(𝑑)

𝑝(𝑋) =
exp ( 𝑓𝑝𝑠 (𝑋))

(1 + exp ( 𝑓𝑝𝑠 (𝑋)))

𝜆 = 0.5

𝐷 = 1{𝑝(𝑋) ≥ 𝑈𝑑}

𝑇 = 1{𝜆 ≥ 𝑈𝑡 }

where the notation closely follows the one in Experiment 0 (refer to Section 3.1). The major

difference with respect to the previous experiment is that now selection into treatment depends

on a propensity score which is specified as a logistic transformation of the generic function

𝑓𝑝𝑠 (𝑊), where𝑊 can be either 𝑍 or 𝑋 depending on whether we can retrieve a correctly specified

model or not. When the treatment selection is driven by the propensity score, treatment and

control groups are generally heterogeneous in the terms of covariate characteristics. Figure 2

demonstrates that distribution of 𝑋2 is indeed significantly different between the two groups.

This can be shown for the other three covariates as well. As explained by Kang and Schafer
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(2007), the DPG is studied to cause a difference in means of one-quarter of the population

standard deviation, creating therefore a realistic but meaningful selection bias that is enough to

cause some estimators to fail. The results of the simulation can be found in Table 4, Table 5,

Table 6 and Table 7.

67



Figure 2: Density plot of 𝑋2 among treated in pre- (black) and post- (blue) treatment periods

Treated

Controls

Notes: The graph considers a representative random sample from Exp.1 with DPG D. The upper plot compares
the distribution of covariate 𝑋2 among the treated, while the lower one among controls. The black vertical line
represents the mean of the distribution of 𝑋2 in the pre-treatment period among the selected treatment group
category, while the blue one is the mean of the distribution of 𝑋2 in the post-treatment period for the same
treatment group category. Note that the distribution of 𝑋2 is time-invariant but there is heterogeneity between
treated and controls populations, as captured by their difference in means.
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Table 4: Exp.1A Propensity score model correct, outcome regression correct

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -20.686 21.021 13.991 0.001
Regression, eq. (14) TWFE (T·X) -0.131 3.066 9.386 0.001
Regression, eq. (15) TWFE (T·X+D·X) 0.006 0.185 0.034 0.001

Abadie (2005) IPW -0.259 9.927 98.480 0.014
Heckman et al. (1997) RA -0.308 7.995 63.833 0.010

Sant’Anna and Zhao (2020) DRDiD 0.006 0.203 0.041 0.018
Sant’Anna and Zhao (2020)* LASSO DRDiD -0.116 0.345 0.106 1.007
Sant’Anna and Zhao (2020)* RF DRDiD -0.871 4.738 21.686 3.147

author’s work, eq. (32) 3IPWRA 0.007 0.203 0.041 0.045
author’s work, eq. (32) LASSO 3IPWRA 0.007 0.190 0.036 0.492
author’s work, eq. (32) RF 3IPWRA 0.007 0.212 0.045 1.240

Sant’Anna and Zhao (2020)* 3WDRDiD 0.027 0.438 0.191 0.019

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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Table 5: Exp.1B Propensity score model incorrect, outcome regression model correct

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -19.095 19.449 13.670 0.001
Regression, eq. (14) TWFE (T·X) -0.066 3.254 10.586 0.001
Regression, eq. (15) TWFE (T·X+D·X) 0.001 0.194 0.038 0.002

Abadie (2005) IPW -1.191 9.739 93.436 0.014
Heckman et al. (1997) RA -0.369 8.305 68.842 0.010

Sant’Anna and Zhao (2020) DRDiD 0.008 0.210 0.044 0.016
Sant’Anna and Zhao (2020)* LASSO DRDiD -0.004 0.346 0.120 1.119
Sant’Anna and Zhao (2020)* RF DRDiD -0.270 5.377 28.839 3.245

author’s work, eq. (32) 3IPWRA 0.006 0.207 0.043 0.039
author’s work, eq. (32) LASSO 3IPWRA 0.003 0.197 0.039 0.522
author’s work, eq. (32) RF 3IPWRA 0.002 0.212 0.045 1.273

Sant’Anna and Zhao (2020)* 3WDRDiD -0.002 0.552 0.304 0.019

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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Table 6: Exp.1C Propensity score model correct, outcome regression model incorrect

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -13.220 14.120 24.609 0.001
Regression, eq. (14) TWFE (T·X) -0.459 4.875 23.559 0.002
Regression, eq. (15) TWFE (T·X+D·X) -0.300 4.852 23.450 0.001

Abadie (2005) IPW 0.204 9.439 89.050 0.013
Heckman et al. (1997) RA -1.563 8.317 66.732 0.010

Sant’Anna and Zhao (2020) DRDiD -0.095 4.087 16.698 0.015
Sant’Anna and Zhao (2020)* LASSO DRDiD -0.142 3.657 13.351 1.089
Sant’Anna and Zhao (2020)* RF DRDiD 0.033 5.061 25.610 3.121

author’s work, eq. (32) 3IPWRA -0.113 4.134 17.081 0.020
author’s work, eq. (32) LASSO 3IPWRA -0.078 4.347 18.894 0.518
author’s work, eq. (32) RF 3IPWRA 0.004 3.089 9.543 1.244

Sant’Anna and Zhao (2020)* 3WDRDiD -0.155 4.144 17.145 0.020

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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Table 7: Exp.1D Propensity score model incorrect, outcome regression model incorrect

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -16.355 17.106 25.127 0.001
Regression, eq. (14) TWFE (T·X) -3.030 5.838 24.904 0.001
Regression, eq. (15) TWFE (T·X+D·X) -2.727 5.317 20.834 0.001

Abadie (2005) IPW -3.702 10.439 95.264 0.014
Heckman et al. (1997) RA -5.242 9.909 70.700 0.010

Sant’Anna and Zhao (2020) DRDiD -2.555 4.727 15.814 0.015
Sant’Anna and Zhao (2020)* LASSO DRDiD -1.720 4.116 13.981 1.140
Sant’Anna and Zhao (2020)* RF DRDiD -2.175 5.618 26.835 3.117

author’s work, eq. (32) 3IPWRA -2.578 4.787 16.267 0.026
author’s work, eq. (32) LASSO 3IPWRA -2.471 4.860 17.514 0.514
author’s work, eq. (32) RF 3IPWRA -1.470 3.333 8.951 1.233

Sant’Anna and Zhao (2020)* 3WDRDiD -2.634 4.838 16.466 0.018

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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In Experiment 1, the weaknesses of the TWFE specification with covariates are apparent.

Independently of the correct or incorrect specification of the propensity score and outcome

regression models, TWFE is severely biased, reaching of −20.686 even in the most favourable

scenario embodied by DPG A. However, as outlined by Zeldow and Hatfield (2019), in the case

the conditional independence assumption is satisfied by observing time-invariant covariates,

TWFE fixed effect can be corrected by including the interactions between these stationary

covariates and the time dummy. In experiment 1A, where the propensity score and outcome

regression are correctly specified, the correction works properly, but its performance, despite

offering a great improvement, gradually worsens when for the researcher is to possible to

correctly specify the models. In such a scenario, different semi-parametric estimators achieve

better results. In Exp.1D, the random forest version of the 3IPWRA has the lowest bias

(−1.470) and RMSE (3.333), followed by the lasso specification of the DRDiD with −1.720 and

4.116. Overall the different version of the 3IPWRA and DRDiD outperform other estimators,

in particular the IPW and RA which are less efficient, especially in terms of variance.
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3.3 Experiment 2:X-specific Trends and Non-Randomized Selection un-
der Compositional Changes

Experiment 2 tests the different estimators when, in addition to a X-specific trend and non-

randomized selection, there are compositional changes in the distribution of the covariates

between the pre and post-treatment period. In addition, in this design the treatment effects

are allowed to vary for different values of X. Section 2.4 highlighted that such setting is a real

threat to identification. Indeed, including time-varying covariates causes bias in the TWFE if

either the variation in X between time periods is not the same between and treated and control

or the effect of the covariates varies over time. As a consequence, time-varying covariates

cannot be used to satisfy the conditional parallel trend assumption, since when there are X-

specific trend, the effect of the covariate that determines the trend is time-varying, causing bias.

Likewise, allowing for heterogeneous effects may invalidate its estimates as well, as discussed

in section 2.4. In the experiment the four DPGs are denoted in the following way:
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DPG.A (PS and OR models correct)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝛿(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝(𝑍) =
exp ( 𝑓𝑝𝑠 (𝑍))

(1 + exp ( 𝑓𝑝𝑠 (𝑍)))

𝜆(𝑍) =
exp ( 𝑓𝑝𝑠 (𝑍))

(1 + exp ( 𝑓𝑝𝑠 (𝑍)))

𝐷 = 1{𝑝(𝑍) ≥ 𝑈𝑑}

𝑇 = 1{𝜆(𝑍) ≥ 𝑈𝑡 }

DPG.B (PS model incorrect, OR correct)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝜖0(𝑑)

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑍) + 𝜐(𝑍, 𝐷) + 𝛿(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝(𝑋) =
exp ( 𝑓𝑝𝑠 (𝑋))

(1 + exp ( 𝑓𝑝𝑠 (𝑋)))

𝜆(𝑋) =
exp ( 𝑓𝑝𝑠 (𝑋))

(1 + exp ( 𝑓𝑝𝑠 (𝑋)))

𝐷 = 1{𝑝(𝑋) ≥ 𝑈𝑑}

𝑇 = 1{𝜆(𝑋) ≥ 𝑈𝑡 }

DPG.C (PS model correct, OR incorrect)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝛿(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝(𝑍) =
exp ( 𝑓𝑝𝑠 (𝑍))

(1 + exp ( 𝑓𝑝𝑠 (𝑍)))

𝜆(𝑍) =
exp ( 𝑓𝑝𝑠 (𝑍))

(1 + exp ( 𝑓𝑝𝑠 (𝑍)))

𝐷 = 1{𝑝(𝑍) ≥ 𝑈𝑑}

𝑇 = 1{𝜆(𝑍) ≥ 𝑈𝑡 }

DPG.D (PS and OR models incorrect)

𝑌0
0 = 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝜖0

𝑌 𝑑
1 = 2 · 𝑓𝑟𝑒𝑔 (𝑋) + 𝜐(𝑋, 𝐷) + 𝛿(𝑍, 𝐷) + 𝜖1(𝑑)

𝑝(𝑋) =
exp ( 𝑓𝑝𝑠 (𝑋))

(1 + exp ( 𝑓𝑝𝑠 (𝑋)))

𝜆(𝑋) =
exp ( 𝑓𝑝𝑠 (𝑋))

(1 + exp ( 𝑓𝑝𝑠 (𝑋)))

𝐷 = 1{𝑝(𝑋) ≥ 𝑈𝑑}

𝑇 = 1{𝜆(𝑋) ≥ 𝑈𝑡 }
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In this design, the DPGs were subject to two main changes. The first is the creation of a selection

parameter through time, which replicates the mechanism of the propensity score in designating

treated individuals among the population, but it acts in a different dimension, namely time. This

is achieved, instead of defining 𝜆 as a constant parameter, by denoting 𝜆(𝑊) as a function of the

generic variable𝑊 . Because of the desirable properties of 𝑓𝑝𝑠 (𝑊) in terms of causing a realistic

but sizeable differences in the distribution of covariates (Kang and Schafer, 2007), the same

function and logistic transformation is applied for selecting which variables are observed in the

pre and post-treatment periods. Figure 3 shows the resulting distribution in the representative

covariates 𝑋2: treated and controls group are heterogeneous, but also within each of both

groups there is heterogeneity between 𝑇 = 0 and 𝑇 = 1. The second change is the definition of

𝛿(𝑊, 𝐷) = −10𝑊1 + 10𝑊2 − 10𝑊3 − 10𝑊4, which is the function that defines the heterogenous

effects. In the DPG, I used the demeaned quantity 𝛿(𝑊, 𝐷) = 𝛿(𝑊, 𝐷) − 𝐸𝑖 |𝐷=1 [𝛿(𝑊, 𝐷)],

where 𝐸𝑖 |𝐷=1 [𝛿(𝑊, 𝐷)] denoted the average effect among the treated units. The ATT is therefore

approximately zero, but the results accounts also for the small deviations from that value in

each repetition of the Monte Carlo simulation. The results of the simulations are displayed in

Table 8, Table 9, Table 10 and Table 11.
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Figure 3: Density plot of 𝑋2 among treated in pre- (black) and post- (blue) treatment periods

Treated

Controls

Notes: The graph considers a representative random sample from Exp.2 with DPG D. The upper plot compares
the distribution of covariate 𝑋2 among the treated, while the lower one among controls. The black vertical line
represents the mean of the distribution of 𝑋2 in the pre-treatment period among the selected treatment group
category, while the blue one is the mean of the distribution of 𝑋2 in the post-treatment period for the same
treatment group category. Note the heterogeneity in both the time and treatment group dimensions.
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Table 8: 2A Propensity score model correct, outcome regression model correct

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -26.834 27.033 10.691 0.001
Regression, eq. (14) TWFE (T·X) -15.475 15.694 6.836 0.001
Regression, eq. (15) TWFE (T·X+D·X) -6.624 6.688 0.852 0.002

Abadie (2005) IPW -7.614 11.675 78.330 0.013
Heckman et al. (1997) RA -26.338 27.313 52.334 0.011

Sant’Anna and Zhao (2020) DRDiD -0.006 0.227 0.051 0.015
Sant’Anna and Zhao (2020)* LASSO DRDiD -0.351 0.474 0.101 1.003
Sant’Anna and Zhao (2020)* RF DRDiD -4.274 6.751 27.310 3.125

author’s work, eq. (32) 3IPWRA 4.681 4.937 2.456 0.024
author’s work, eq. (32) LASSO 3IPWRA -1.244 1.706 1.363 0.566
author’s work, eq. (32) RF 3IPWRA 0.811 1.377 1.238 1.364

Sant’Anna and Zhao (2020)* 3WDRDiD 6.098 6.644 6.952 0.018

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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Table 9: 2B Propensity score model incorrect, outcome regression model correct

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -27.136 27.329 10.517 0.001
Regression, eq. (14) TWFE (T·X) -16.878 17.125 8.400 0.001
Regression, eq. (15) TWFE (T·X+D·X) -5.427 5.510 0.907 0.002

Abadie (2005) IPW -12.451 15.333 80.080 0.013
Heckman et al. (1997) RA -31.668 32.569 57.879 0.011

Sant’Anna and Zhao (2020) DRDiD 0.008 0.216 0.047 0.015
Sant’Anna and Zhao (2020)* LASSO DRDiD -0.197 0.387 0.111 1.068
Sant’Anna and Zhao (2020)* RF DRDiD -2.473 5.993 29.807 3.114

author’s work, eq. (32) 3IPWRA 5.198 5.368 1.801 0.025
author’s work, eq. (32) LASSO 3IPWRA 0.876 1.507 1.503 0.582
author’s work, eq. (32) RF 3IPWRA 2.136 2.376 1.083 1.345

Sant’Anna and Zhao (2020)* 3WDRDiD 4.867 5.281 4.205 0.018

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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Table 10: 2C Propensity score model correct, outcome regression model incorrect

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -20.013 20.545 21.604 0.001
Regression, eq. (14) TWFE (T·X) -8.938 9.891 17.948 0.001
Regression, eq. (15) TWFE (T·X+D·X) 1.779 4.977 21.607 0.001

Abadie (2005) IPW -4.714 10.086 79.510 0.014
Heckman et al. (1997) RA -14.373 16.118 53.190 0.010

Sant’Anna and Zhao (2020) DRDiD 1.028 4.372 18.061 0.016
Sant’Anna and Zhao (2020)* LASSO DRDiD 1.754 4.408 16.351 1.096
Sant’Anna and Zhao (2020)* RF DRDiD -0.127 5.219 27.222 3.115

author’s work, eq. (32) 3IPWRA 3.404 5.244 15.914 0.016
author’s work, eq. (32) LASSO 3IPWRA 0.923 3.980 14.985 0.574
author’s work, eq. (32) RF 3IPWRA 1.538 3.125 7.401 1.369

Sant’Anna and Zhao (2020)* 3WDRDiD 4.493 6.445 21.351 0.018

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses
triple matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the
average simulated bias, simulated root mean-squared errors, average estimator variance, and average
required computational time respectively. Refer to the main text for further details.
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Table 11: 2D Propensity score model incorrect, outcome regression model incorrect

Reference Estimator Bias RMSE Variance Time
Regression, eq. (11) TWFE -31.917 32.212 18.890 0.001
Regression, eq. (14) TWFE (T·X) -16.331 16.832 16.641 0.001
Regression, eq. (15) TWFE (T·X+D·X) -1.707 4.897 21.068 0.001

Abadie (2005) IPW -20.356 21.968 68.219 0.012
Heckman et al. (1997) RA -31.280 32.087 51.159 0.011

Sant’Anna and Zhao (2020) DRDiD -4.402 6.354 20.990 0.016
Sant’Anna and Zhao (2020)* LASSO DRDiD 0.387 5.082 25.679 1.141
Sant’Anna and Zhao (2020)* RF DRDiD -4.422 7.089 30.706 3.102

author’s work, eq. (32) 3IPWRA -0.385 3.913 15.167 0.025
author’s work, eq. (32) 3LASSO 3IPWRA -2.278 4.521 15.252 0.569
author’s work, eq. (32) 3RF 3IPWRA 0.390 2.893 8.219 1.355

Sant’Anna and Zhao (2020)* 3WDRDiD -0.285 4.708 22.080 0.018

Visualization of the average absolute bias (bar) and RMSE (point) for each estimator

Notes: Simulations based on sample size 𝑛 = 1000 and 500 Monte Carlo repetitions. The sign ’*’
stands for ’modified’. TWFE is the standard regression specification with naively adding a set of
covariates (eq. (11)), TWFE (T·X) is the regression specification that adds also the interaction terms
between the covariates and the time dummy (eq. (14)). IPW is the inverse probability weighting
(eq. (21)), RA is the regression adjustment approach (eq. (18)), DRDiD is the doubly robust estimator
and it is proposed in three versions: the original from the paper (eq. (30)) and two versions that employ
lasso and random forest for the propensity score and outcome regression respectively. 3IPWRA is
the weighted regression with weights specified as in and the propensity score is estimated with logit,
lasso and random forest (eq. (32)). 3WDRDiD is the modified doubly robust estimator that uses triple
matching weights (eq. (33)). Finally, ‘Bias’, ‘RMSE’, ‘Variance’ and ‘Time’, stand for the average
simulated bias, simulated root mean-squared errors, average estimator variance, and average required
computational time respectively. Refer to the main text for further details.
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The results of Experiment 2, since they are the most realistic setting, are particularly

informative. In all DPGs, the traditional TWFE specification is severely biased, as well as the

version including the time dummy and covariates interactions. However, controlling also for the

interaction between covariates and treatment group dummy provides a substantial correction,

even if still subject from the bias deriving from the heterogeneity of treatment effects. For

example, in Exp.2D, when both propensity score and outcome regression models are incorrectly

specified, this last version has a limited bias (−1.707) and RMSE (4.897). The IPW and RA,

since they do not handle time-varying covariates, show relevant bias and variance, especially in

the case of misspecified models. Contrarily, the doubly robust estimator DRDiD, despite relying

on the same assumption of the two previous estimators, demonstrates to be particular robust to

compositional changes when the underlying models are correctly computed. In Exp.2A, despite

being an optimistic scenario, DRDiD is approximately unbiased (−0.006) and has the lowest

RMSE. In the more realistic scenario of Exp.2D, its bias, despite being contained, is sizeable

(−4.402). Here indeed, other estimators work better. In addition to the lasso version of the

DRDiD, which reduced bias close to zero, the 3WDRDiD, namely the modified version of the

original DRDiD Sant’Anna and Zhao (2020) with the triple matching propensity score weights,
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achieves the lowest bias (−0.285). However, similar or even better performances are showed

by 3IPWRA and its alternative random forest version, which have an almost identical degree

of bias (−0.385 and 0.390 respectively) but are more efficient and show the lowest overall

RMSE (3.913 and 2.893 respectively). Overall, the 3IPWRA estimator yielded evidence of

being the more robust estimator in terms of bias and RMSE in case of misspecified propensity

score and outcome regression models, which is the more likely scenario in which researchers

operates. However, when using methods that do only rely exclusively on pre-treatment levels

of the covariates, such as IPW, RA and DRDiD, researchers must pay attention of not including

bad controls, which are likely cause additional bias.

A useful empirical strategy may therefore be to combine the estimation methods that showed

the lowest bias in the Monte Carlo simulation, such as the different versions of DRDiD and

3IPWRA, since they rely on different assumptions. Instead, when utilizing TWFE, the Monte

Carlo simulation has given substantial evidence of the need of controlling for the interactions

between treatment group and covariates, and, only when possible, of the time dummy and

covariates interactions.
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4 Empirical illustration: the effect of tariff reduction on
corruption behaviors

In this example, I reproduce the paper of Sequeira (2016) who analyzed the effect of tariff

reduction on corruption behaviors by using the bribe payment data between South Africa

and Mozambique. This contribution enters in a vivid debate on whether a decrease in tariff

rates disincentives corruption. On the one side, tariff rates decreases are expected to lower

the incidence of bribing behavior since they reduce the marginal advantage to evade taxes

(Allingham and Sandmo, 1972; Poterba, 1987; Fisman and Wei, 2001). On the other side, lower

tariff levels have also an income effect, increasing private agents’ resources to pay higher bribes

(Slemrod and Yitzhaki, 2002; Feinstein, 1991).

In 1996 a trade agreement between South Africa and Mozambique paced a series of tariff

reductions that took place between 2001 and 2015, with the largest of them occurring in 2008

and entailing an average nominal tariff rate of about 5 percentage points. In this context, Sequeira

(2016) collected primary data on the bribe payments between the ports in Mozambique and

South Africa from 2007 to 2013. As previously documented in Sequeira and Djankov (2014),

it was widespread that cargo owners, in exchange for tariff evasion, or simply to avoid the threat
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of being cited for real or fictitious irregularities, bribed the border officials who were in charge

of collecting all tariff payment and of providing clearance documentation. For example, prior

to 2008, approximately 80 percent of the random sample of tracked shipments were linked

with sizeable bribe payment during the clearing process (mean bribes reached USD 128 per

tonnage). As a consequence, Sequeira (2016) exploits the exogenous change in tariffs induced

by the trade agreement to examine the effect of changes in tariffs on corruption levels. Since not

all products experienced a variation in tariff rates during this period, they constitute a credible

control group for those that did and enable the use of a Difference-in-Difference design to

isolate the causal relationship between tariffs and corruption. Indeed, the author, after pooling

together the cross-section data between 2007 and 2013 for a total of 1084 observations, uses

the canonical TWFE estimator in the following specification:

𝑦𝑖𝑡 = 𝛾1(𝑇𝑎𝑟𝑖 𝑓 𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖 × 𝑃𝑂𝑆𝑇) + 𝜇𝑃𝑂𝑆𝑇

+ 𝛽1𝑇𝑎𝑟𝑖 𝑓 𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖 + 𝛽2𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑇𝑎𝑟𝑖 𝑓 𝑓𝑖 (54)

+ Γ𝑖 + 𝑝𝑖 + +𝜔𝑖 + 𝛿𝑖 + 𝜖𝑖𝑡

where 𝑦𝑖𝑡 represents the natural log of the amount of bribe paid for shipment i in period t,

conditional on paying a bribe, 𝑇𝑎𝑟𝑖 𝑓 𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ {0, 1} takes value one if the com-
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modity was subject to tariff reduction, 𝑃𝑂𝑆𝑇 ∈ {0, 1} denotes the years following 2008, and

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑇𝑎𝑟𝑖 𝑓 𝑓 is the tariff rate before the tariff reduction. The specification also accounts for

a vector of product, shipment, clearing agent, and firm-level characteristics Γ𝑖 which include the

elements summarised in Table 12. Industry, year, and clearing agent fixed effects are included

controlling for 𝑝𝑖, 𝜔𝑡 , and 𝛿𝑖 respectively. The parameter of interest is the coefficient of the

interaction between the time and treament dummy, namely 𝛾1.

Table 12: Variables included in Γ𝑖

Description
diff If the product have differentiated prices among countries
agri If the product is am agricultural good

lvalue The log shipment value per tonnage
perishable If the product is perishable
largefirm If the firm has has more than 100 employees
dayarrival The day of arrival during the week
inspection If the shipment was pre-inspected at origin
monitor If the shipment was monitored

SouthAfrica If the product comes from South Africa
terminal Terminal of cleareance
hs4group Product 4-digits HS code

The main result of Sequeira (2016) is that the tariff reduction led to a drop in the amount of

bribe paid. However, we have previously shown in Section 2.4 that the standard TWFE is

likely to be biased under a non-randomized experiment because of the possible presence of X-

specific trends, compositional changes, heterogenous effects and non-linearities. Chang (2020)
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replicated the paper comparing the results to the one obtained by his proposed estimator, the

debiased machine learning Difference-in-Difference (DMLDiD) estimator. DMLDiD, which

builds on Abadie (2005), is an IPW estimator whose score function is adapted to satisfy the

Neyman orthogonality conditions. This allows researchers to flexibly use a rich set of machine

learning methods in the first-step estimation. Table 13 summarizes the results obtained in the

two papers:

Table 13: The effect of tariff reduction on bribes

TWFE TWFE (Γ𝑖 × 𝑃𝑂𝑆𝑇) DMLDiD (Kernel) DMLDiD (lasso)
Sequeira (2016) Sequeira (2016) Chang (2020) Chang (2020)

ATT -3.748∗∗ -2.928∗∗ -6.998∗ -5.222∗
St.Err. 1.075 0.944 3.752 2.647

Notes: TWFE and TWFE(Γ𝑖 × 𝑃𝑂𝑆𝑇) are eq.1 and eq.2 in Table 9 in Sequeira (2016): the first controls
for covariates, while the second adds also the interactions between covariates and the post-treatment
dummy. DMLDiD (Kernel) and DMLDiD (lasso) are Column 3 and 5 in Table 2 in Chang (2020). Since
the estimator is an IPW method adapted to handle machine-learning first stage estimates, the first uses
Kernel in the first stage while the latter employs lasso. The coefficients capture the difference in the log
of bribes paid for products that changed tariff level, before and after the tariff change took place. Standard
errors are clustered at the level of product’s our-digit HS code.

where TWFE is the standard specification in Sequeira (2016), which is found in Equation 1 of

Table 9 of the paper, while TWFE (Γ𝑖× POST) is the specification that adds also the interactions

between the covariates Γ𝑖 and 𝑃𝑂𝑆𝑇 , which is equation 2 of the same table. DMLDiD refers in-

stead to the estimates obtained by Chang (2020) and is either estimated by using a first-stage that

employs a kernel estimation or a lasso. The semiparametric estimates therefore give evidence
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that the effect of the reduction was of higher magnitude than originally thought. However, such

estimates have weaknesses that question their validity. First, they suffer from very high standard

error which really blurs the interpretation of its results. For example, the 95 percent confidence

interval lies approximately in between 0.318 and −14.306 for the kernel DMLDiD, and the same

applies to its lasso version, even if in a smaller degree. This is consistent with the preliminary

results encountered by including DMLDiD in the Monte Carlo simulations, since the estimator

seemed to show a significantly higher variance than the others. In addition, simulations in

Section 3 showed that the IPW estimator can be severely biased under realistic setting and was

outperformed by other estimators. Finally, DMLDiD requires a substantial amount of computa-

tional time, and may not feasible with very large datasets. Motivated by these reasons, I employ

the estimators proposed in Section 2 to the current setting. Final estimates are shown in Table 14.

In such a setting, the low number of observations does not allow for traditional first-stage

estimation methods to produce accurate fitted values, favouring the use of lasso and random

forests. Indeed the sample has conspicuous observations for the group of the control in the

post-treatment period, but limited observations for the other three groups, namely the treated
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Table 14: The effect of tariff reduction on bribes

TWFE TWFE(Γ𝑖 × 𝑃𝑂𝑆𝑇) TWFE(Γ𝑖 × 𝑃𝑂𝑆𝑇+Γ𝑖 × 𝐷)
Sequeira (2016) Sequeira (2016)

Coefficient -3.748 -2.928 -3.667
St.Err. 1.075 0.944 1.071

lasso 3IPWRA lasso DRDiD Random Forest 3IPWRA

Coefficient -3.023 -2.764 -3.216
St.Err. 0.654 0.905 0.108

Notes: TWFE and TWFE(Γ𝑖 × 𝑃𝑂𝑆𝑇) are eq.1 and eq.2 in Table 9 in Sequeira (2016): the
first controls for covariates, while the second adds also the interactions between covariates and
the post-treatment dummy. Instead, TWFE(Γ𝑖 × 𝑃𝑂𝑆𝑇+Γ𝑖 × 𝐷) additionally controls for the
treatment group and covariates interactions. 3IPWRA (eq. (32)) utilizes both lasso and random
forest for first stage estimates, while the doubly robust estimator DRDiD of Sant’Anna and
Zhao (2020) is modified to allow for lasso estimates of both the propensity score and outcome
regression models. The coefficients capture the difference in the log of bribes paid for products
that changed tariff level, before and after the tariff change took place. Standard errors are
clustered at the level of product’s our-digit HS code and are computed through bootstrap for
3IPWRA and DRDiD.

in the pre and post-treatment period (120 and 56 respectively), and the controls in the pre-

treatment period (84). The lasso specification captures non-linearities by allowing for a richer

set of covariates: Γ𝑖 is expanded to include all second order terms and interactions. Contrarily

to Chang (2020), we stick to the specification in Sequeira (2016) by including all industry, time

and clearing agent fixed-effects. In this case, the interactions with Γ𝑖 are not created for compu-

tational tractability. The ATT is estimated using both lasso and random forest 3IPWRA, and the

lasso version of DRDiD, since all of them showed good performance in the Monte Carlo simu-

lations in Section 3. When operating with these three estimators, standard errors are computed
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through weighted bootstrap, similarly to Sant’Anna and Zhao (2020). To allow for clusters, the

random weights in the bootstrap procedure are associated at a cluster and not an individual level.

Among different methods and specifications, our results corroborate the hypothesis that the

tariff reduction led to a drop in the amount of bribe paid, but gives compelling evidence against

the assumption that the effect was higher in magnitude. In fact, the standard TWFE seems

to overestimate the ATT (−3.748) since all the methods that showed the best results in our

simulation converge to lower values: TWFE(Γ𝑖 × 𝑃𝑂𝑆𝑇+Γ𝑖 × 𝐷) estimates −3.667, lasso 3IP-

WRA −3.023, random forest 3IPWRA −3.216, and lasso DRDiD −2.764. The standard errors

are significally lower than those in Chang (2020), yielding stronger evidence in favour of our

estimates. Therefore, our results reveal that the tariff reduction had a significant but lower

effect on bribing behavior than originally estimated by the standard TWFE specification and by

DMLDiD as in Chang (2020). The average of our estimates is −3.167, closer to TWFE with

the correction in Sequeira (2016).
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5 Conclusion

Through analytical derivations and empirical simulations, the thesis showed that the commonly-

used standard TWFE is severely biased under recurrent settings. In the Monte Carlo simula-

tions, we assessed the performance of TWFE corrections and other semi-parametric estimators.

Despite including both time and treatment group interactions with the covariates provides a sub-

stantial correction, TWFE is outperformed by other semi-parametric methods, such as DRDiD

and 3IPWRA. The first has better performances in terms of bias and mean square error when

both the propensity score and outcome models are correctly specified. However, in the more

realistic case of when they are not, 3IPWRA outperforms DRDiD in the case of compositional

changes, even if modified versions of the latter, such as allowing for lasso first-stage estimates

or using its modified specification 3WDRDiD, yielded interesting results as well. Therefore,

a useful strategy in empirical settings may be to compare the different versions of 3IPWRA,

DRDiD, and corrected TWFE since they rely on different assumptions. Indeed if on the one

hand DRDiD is originally built to handle time-invariant controls, 3IPWRA and the proposed

versions of TWFE may be subject to bad controls if the covariates are not accurately handled.

In addition, TWFE may be less precise in case of particularly severe heterogeneity in treatment
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effects. Thus, in case those methods converge on similar results, this can yield strong evidence

in favor of a hypothesis. Having this in mind, the strategy is replicated to estimate the effect of

tariff reduction on bribes, as in Sequeira (2016). As in Chang (2020), the estimates in the thesis

found that tariff reduction led to a decrease in bribes paid, but on the other hand they assess

that the effect is close and even lower in magnitude than the one of the original paper. Further

research may encompass and analyze other possible DiD estimators, such as the ones of Nie

et al. (2021) and Zimmert (2018), which offer interesting alternatives and follow the debiased

machine learning literature of Chernozhukov et al. (2018).
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