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INTRODUCTION 

Energy efficiency in buildings is an increasingly important issue in addressing the challenges of climate change 

and sustainable energy supply. In this context, the use of renewable energy generation technologies, such as 

solar photovoltaic energy, is increasingly widespread. However, the problem of intermittent solar production 

makes it necessary to integrate electrical energy storage systems, such as battery packs, to ensure a balance 

between production and building energy consumption. 

In this thesis, a Python code was developed to assess the energy mismatch between production and 

consumption of a building, and to study the optimal choice of battery pack size to improve the building's self-

consumption and energy performance. In particular, the objective was to maximise the self-consumption of 

the energy produced by the photovoltaic system in order to reduce the dependency on the electricity grid 

and make the investment in the battery pack plus photovoltaics more profitable than a photovoltaic-only 

system. By analysing the energy consumption and solar production data (if provided) of a building, Python 

code was used to calculate the optimal battery pack size and load/unload strategy to maximise the self-

sufficiency and self-consumption of the solar energy produced. The results show that the integration of an 

appropriately sized battery pack can significantly improve the building's self-consumption and energy 

efficiency, reducing energy costs and grid dependency. 

In conclusion, this thesis demonstrates the importance of an accurate analysis of the energy mismatch 

between the production and consumption of a building, and the optimisation of the size and 

charge/discharge strategies of the battery pack to improve the building's self-consumption and energy 

efficiency. This work has implications for the design of photovoltaic systems integrated with energy storage 

systems to maximise the utilisation of renewable energy sources and reduce the environmental impact of 

traditional energy sources. 

This thesis was carried out at the Faculty of Engineering Technology of the University of Leuven (KU Leuven) 

within the ELECTA-Ghent research group, under the supervision of KU Leuven post-doctoral researcher Bert 

Herteleer and the University of Padua’s academic supervisor Prof. Nicola Trivellin. 

 

ABSTRACT 

This thesis work focuses on optimizing the Battery Energy Storage System (BESS) size for photovoltaic (PV) 

power generation in buildings. A literature review is conducted on the definition of mismatch, its calculation, 

methods of reducing it, and how to evaluate energy performance and economic profitability. A raw Python 

code is developed and tested on the SOLARISE Living Laboratory battery at the Ghent Technology Campus. 

The final code takes input data and provides results such as the size of the battery capacity that maximises 

investment profitability and the optimal size that makes the investment in the building's photovoltaic plant 

+ BESS more profitable than the investment of the PV plant alone. The final code was applied to a case study 

of an office building in Ghent, Belgium. The results show that the final code approach optimizes the energy 

performance and economic profitability of buildings with PV plant + BESS system and achieving the highest 

possible economic return from the investment while minimizing its cost requires a balance between the size 

of the optimal battery capacity and the IRR of the investment. Therefore, the developed final code provides 

a tool for designing PV systems with battery storage and analysing their economic viability, facilitating the 

transition towards more sustainable energy systems. Future research may investigate the applicability of the 

proposed method to different case studies and further optimizing the method to improve its accuracy and 

efficiency. 

 



4 
 

1. PROBLEM STATEMENT  

To properly size the battery storage system is necessary to first define what the energy mismatch is.                                      
The difference between energy demand and energy supply might result in a lack of electricity grid request in 
summer or at daytime, or a lack of energy supply in winter, cloudy days or at night, causing a mismatch 
between energy demand and energy supply. 
 
 
 
 
 
 
 
 
 
 
 
                                                          

Figure 1: mismatch [1]  
 
This mismatch should be solved to avoid energy grid dependence and therefore to reach Energy flatness.  
 
 
 
 
 
 

2. ENERGY MISMATCH EVALUATION 
 

2.1  ENERGY MISMATCH 

The aim of avoiding energy mismatch requires a deeper understanding of what a mismatch is and what 

factors contribute to its occurrence.  

The energy demand of a building is unpredictable [1]in short time intervals of hours because every building 

is different and its energy demand depends on many variables such as the occupant behaviour, the physical 

properties of the building, the function and the external variables such as outdoor temperature and location. 

In the following figure is shown a daily common energy demand profile:  

Figure 2: energy demand profile curve [1] 
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Considering a photovoltaic plant as the renewable energy sources integrated into the built environment leads 

us to face the problem that photovoltaic energy supply is weather dependant.                                                                                            

The following figure shows the average power output of a solar energy production system in hours in the 12 

months of the year.  

 

 

 

 

 

 

Figure 3: average daily PV production for each month [2] 

 

The difference between the unpredictable and weather-dependent demand and the weather-dependent 

supply results in a mismatch in short time periods of hours (next figure) as well as over the year: 

 

 

 

 

 

 

 

 

Figure 4: energy mismatch [1] 

 

  

 

2.2  ENERGY FLATNESS 

There are different states of a building in terms of how it deals with energy mismatch and in terms of its 
energy performance such as the that Zero Energy Buildings (ZEB) and the Energy Flat Buildings. 
 
Research based on the mismatch compensation factor in zero energy buildings stated that Zero Energy 
Buildings (ZEB) are the ones that minimize heating and electricity demand with on-site renewable energy 
generation. There are on-grid ZEB and off-grid ZEB, and the difference is that the on-grid has the ability to 
purchase energy from the grid when the energy produced by itself is not enough, or can sell the excess energy 
to the same grid when there is surplus [3] 
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Energy flatness is a state of a building’s energy performance. Is called “Energy-flat” a building in which the 
difference between the final energy demand, and the energy supplied to the building with an on-site energy 
generation is zero at any time. This concept has been developed in the thesis” Energy-flat housing”[4]. 
Different concepts complement and help to understand the term of energy flatness, but do not mean the 
same. 
 
The complete energy flatness accomplishes the requirement for an energy-neutral building by balancing the 
demand and supply in a yearly basis. Furthermore, this concept goes beyond energy neutrality because it 
aims to achieve energy balance in a yearly, monthly, daily and hourly basis. 
 
When aiming for Zero Energy Buildings (ZEB) the scope is not clear, as it can include either the thermal 
balance, or the electricity balance or it can allow for energy inefficient buildings to achieve the status of ZEB 
by having an oversized PV energy supply and without energy saving measures [5].  
 
The complete energy flatness happens when the final energy and the energy supply match at any time of the 
year. 
If a complete match cannot be achieved, there are two possible mismatches. Negative mismatch indicates 
the moments of shortage of energy, which means that the building will need to import energy from the 
external grid. Positive mismatch indicates a surplus of energy; the building can store the extra energy or 
export it to the shared grid. Both exporting and importing energy are not the aim of the energy flatness, 
because the building should be able to be self-energy sustainable. 

Figure 5: positive and negative mismatch [1] 

 
Energy Storage technologies have great potential for smoothing out the electricity and thermal energy, 
ensuring that the onsite energy produced matches the needed energy demand of the building. Energy 
storage is well known for its rapid response if the system is located within the building boundary, and it aims 
to balance the energy within the building.  
 
The capacity and power of the storage can be sized according to the needs of the building, making it possible 
to respond quickly, which is important to ensure energy balance at any hour of year, thus achieving Energy 
flatness. 
 
 

2.3  KEY PERFORMANCE INDICATORS (KPI’S) 
 
After understanding what a mismatch is and setting the goal of achieving energy flatness in buildings, which 
means compensating the mismatch at any time of the year, the next step consists of choosing the best way 
to evaluate the mismatch. 
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Key Performance Indicators (KPI) aim to quantify the mismatch, because the smaller the mismatch, the closer 
the building is to being energy flat. Three KPIs are analysed based on the KPI proposed by V. Höfte [4], H. 
Lund et al. [3]and Ala-Juusela et al[6].  
 
In order to define the KPIs, an analysis of the main characteristics of the mismatch was developed.  
 

• The first KPI aims to calculate the absolute energy flatness or the electricity mismatch, which is the 
difference between the final energy and the energy supply during the 8760 hours of the year. 

• The second KPI measures the peak of the mismatch in terms of positive mismatch (surplus) and 
negative mismatch (shortage) to understand the hours of the year when the difference between final 
energy and energy supply is at its peak. 

• The third KPI calculates the cumulative surplus and the energy shortage before it can be 
compensated with the storage energy system. The difference between the maximum cumulative 
positive and maximum cumulative negative mismatch represents the size of the energy storage 
system in order to balance the energy system. 

 
 
 

KPI 1 – ABSOLUTE ENERGY FLATNESS (AEF) 

An Energy-flat building is a building in which the difference between the final energy demand and the energy 
supply to the building services is zero at any time of the year. 
 

𝐴𝐸𝐹 =   ∑ | 𝐸𝑓𝑖𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑡) − 𝐸𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑦 (𝑡)|

𝑡=8760

𝑡=1

 [𝑘𝑊]                      (1) 

  
 
The energy flatness can be calculated with the previous formula, where the sum of the energy delivered 
(𝐸𝑓𝑖𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑡)) in a time step (t) in kWh, minus the sum of the energy supply (𝐸𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑦 (𝑡)) at the 

same time step (t) in kWh is equal to Zero at any time step. The (t) refers to the time steps in hours from the 
energy simulation that can be between 1 hour and 8760 hours in a year. 
 
The result of this equation does not differentiate the positive or negative mismatch but aims to show the 
absolute total mismatch during a t time. The perfect energy flat building will reach a result equal to zero at 
any time. In this equation, it is necessary to have clear boundary lines for the system and balance boundary 
because the complementary energy system plays an important role to achieve complete flatness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: energy mismatch [1] 
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KPI 2 – MAXIMUM MISMATCH PEAK (MMP) 

The second KPI shows the peak of the mismatch. To understand what the maximum peak of the mismatch 
is, it is necessary to analyse it in terms of the highest positive and negative mismatch that can occur between 
the final energy and the energy supply during a year. 
 

MMP =  max
                             0≤𝑡≤8760

| 𝐸𝑓𝑖𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑡) −  𝐸𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑦 (𝑡)| [𝑘𝑊]       (2) 

 
The formula describes a time (t) that is between hour 0 and the hour 8760, when the difference between the 
final energy and the energy supply is on its maximum peak compared to the other mismatches during the 
year. Therefore, compared to the measurement KPI 1, the unit of KPI 2 is in KW (kilowatts). Furthermore, 
with this KPI it is possible to calculate the maximum positive mismatch peak (peak of the surplus) and the 
maximum negative mismatch peak (peak of the shortage). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: maximum mismatch peak [1] 

 

 

KPI 3 – MAXIMUM CUMULATIVE ENERGY MISMATCH (MCEM) 

The energy mismatch can be positive or negative, and a zero mismatch is equal to energy flatness. When the 
periods of shortage are repetitive within the hours, there is a cumulative negative mismatch (CEM_negative). 
This is calculated by the sum of the negative mismatches of the previous time steps before there is an on-
site renewable energy production available to compensate for the shortage. 
 
The cumulative positive mismatch (CEM_positive) is calculated by the sum of all the positive mismatches of 
the previous time steps before there is a period of shortage that needs to be compensated with the 
renewable energy production. 
After the cumulative positive and negative mismatches are calculated, the difference between the maximum 
of the cumulative positive mismatch that happened at a (a) time and the maximum of the cumulative 
negative mismatch that happened at another (b) time will be the answer to KPI 3 as well as the required size 
of the energy storage system. 
 
 

MCEM =  𝐦𝐚𝐱 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞
                             𝟎≤𝒂≤𝟖𝟕𝟔𝟎

(𝐶𝐸𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑎) ) −  𝐦𝐚𝐱 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞
  𝟎≤𝒃≤𝟖𝟕𝟔𝟎

(𝐶𝐸𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑏) )    [𝑘𝑊ℎ]       (3) 

 
 
The figure below shows a graph of the mismatch where it is possible to see the positive cumulative mismatch 
and negative cumulative mismatch.  
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KPI 3 shows how large the surplus of energy (potential storage energy) could be when it is cumulated within 
the hours because it was not used by the building energy balance. The negative cumulative mismatch 
comprises  energy through the hours where there was not enough final onsite energy production to 
compensate for the energy need by the complementary energy system in the building.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: cumulative mismatch [1] 

 
The difference between the maximum cumulative positive and the maximum cumulative negative is the 
approximate size of the complementary energy storage system, without counting the energy losses through 
conversion or distribution. 
 
 

KPI 3 – Example 

In order to make the KPIs clear, an example of the analysis of the mismatch in an office building with solar 
panels and only one person working for one day is displayed in the next table[1]. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: building energy mismatch timetable [1] 

In this example the total mismatch in the 24 hours of the day is equal to zero, which means that the daily 

basis is solved, but the building itself is not energy flat, because in the hourly basis the mismatch is not solved. 
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Nonetheless, there are three hours in the day when a perfect flatness is reached, at 6, 8 and 19 hours. During 

those hours the building was energy flat because the final energy use of the building is perfectly correlated 

with the energy supply. 

 
In the graph below, one can see the mismatch period that happens during 24 hours between final energy 
and energy supply. Energy flatness is reached in a period of 24 hours because the sum of the final energy 
that happens during the 24 hours minus the sum of the energy supply during those 24 hours is the same. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                              Figure 10: building hourly energy mismatch over a day [1] 

 
 
 

𝐾𝑃𝐼 1 =  ∑ | 6,75 𝑘𝑊(24ℎ) −  6,75 𝑘𝑊(24ℎ)|

𝑡=8760

𝑡=1

         (4) 

 
 
Even though the building in energy flat during that day, in the hourly basis it is not energy flat. The maximum 
mismatch happens during the hour 14 (t = 14). During this hour the difference between final energy and 
energy supply is 0,25 kw of positive mismatch (energy surplus) that can be store in order to compensate the 
energy shortage. During the hour 22 the difference was 0.06 kW of the negative mismatch (shortage of 
energy) that needs to be supplied from the energy surplus. 
 

 
𝐾𝑃𝐼 2 =   max positive

𝑡=14
  |0,85 𝑘𝑊 (𝑡) −   0,6 𝑘𝑊 (𝑡)|  = 0,25 kW           (5) 

 
𝐾𝑃𝐼 2 =   max negative

𝑡=22
  |0 𝑘𝑊 (𝑡) −   0,06 𝑘𝑊 (𝑡)| = −0,06 𝑘𝑊           (6) 

 
 
 
KPI 3 account for the maximum of the cumulative negative and positive mismatches. Therefore, during the 
hour 8 the maximum cumulative negative mismatch takes place, which is the sum of all the shortage hours 
between hour 1 and 8, which means that a shortage of 0,25 kWh needs to be compensated by the 
complementary energy system. 
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On the other hand, the maximum cumulative positive mismatch happens in the hour 15, and is the sum of 
the positive 
mismatches between hour 13 and 15, when 0,55 kWh represent the cumulative surplus of energy that can 
help to compensate the energy shortage period. 
 

 
𝐾𝑃𝐼 3 =  0,55 𝑘𝑊ℎ − (−0,25 𝑘𝑊ℎ) = 𝟎, 𝟖 𝒌𝑾𝒉            (7)          

 
 
The difference between the maximum cumulative mismatches represents the KPI 3.  
 
In conclusion, this means that the size of the battery energy storage system should at least have a capacity 
to store 0.8 kWh to be able to charge and discharge during the maximum cumulative surplus and the 
maximum cumulative shortage and during the peaks of the mismatch, in order to achieve the Energy flatness. 
The periods when there is a positive cumulative mismatch, the battery energy storage system will be charged, 
while in the periods when the cumulative mismatch is negative, the battery energy storage system will 
discharge the stored energy. 
 
 
 
 
 

3. BATTERY SIZING 

After having defined the most accurate way to quantify the energy mismatch that could provide us with the 
minimum optimal value of the battery storage system capacity (in order to achieve Energy flatness), the 
following step consists of defining the ultimate final size of the Battery Energy Storage System (BESS). 
 
To find the final size of the energy storage system, it is necessary to consider other constraints that affect the 
battery during its work leading to inefficiency thus resulting in an underestimated size of the battery. 
 
The Storage Systems Working Group of the IEEE Standards Coordinating Committee 21 on Fuel Cells, 
Photovoltaics, Dispersed Generation, and Energy Storage (SCC21) developed a recommended practice 
method [7] for sizing both vented and valve-regulated lead-acid batteries used in terrestrial photovoltaic (PV) 
systems. This procedure aims to size a battery bank to have sufficient capacity to provide the required energy 
over the autonomy period initially defined. We will extend this recommended procedure for the sizing of 
every kind of battery. 
 
After initially choosing a trial battery capacity, the most important adjustment required for the minimum 
optimal battery capacity, provided by the maximum cumulative energy mismatch (MCEM) calculation, are as 
follows: 

 

• Discharge adjustments 

The unadjusted capacity (Cunj) should be modified to assure satisfactory battery cycle life. Battery 

manufacturers rate cells for maximum depth of discharge (MDOD), maximum daily depth of discharge 
(MDDOD) and end-of-life (EOL) capacity. The battery capacity should be adjusted in the following ways: 

a) The capacity adjusted for MDOD is obtained by dividing the unadjusted capacity by MDOD (in 
percent). 

b) The capacity adjusted for MDDOD is obtained by dividing the maximum daily ampere hours by 
MDDOD (in percent). 
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c) The capacity adjusted for life is obtained by dividing the unadjusted capacity by the end-of-life 

capacity expressed in percent of the rated capacity, commonly 80%. 

 

𝐂𝐚𝐝𝐣,𝟏 = 𝐌𝐀𝐗 {
𝐂𝐮𝐧𝐣

𝐌𝐃𝐎𝐃
;

𝐂𝐮𝐧𝐣

𝐌𝐃𝐃𝐎𝐃
; 

𝐂𝐮𝐧𝐣

𝐄𝐎𝐋
}      (𝟖) 

 

The largest of these three capacities will satisfy the depth-of-discharge and end-of-life adjustments. 

 

• Temperature adjustment 

The available capacity of a battery is affected by its operating temperature. Cell capacity ratings are generally 

standardized at 25 °C. Capacity increases at temperatures above 25 °C and decreases at temperatures below 
25 °C. Capacity is rarely adjusted for warm temperature operation, but adjustments are routinely made for 
cold weather applications. Refer to the battery manufacturer’s literature for temperature correction factors. 
The adjusted capacity determined in 5.3.3.1 should be corrected by this factor to yield capacity adjusted for 

temperature. 

 

𝐂𝐚𝐝𝐣,𝟐 = 𝐊𝐓 ∙ 𝐂𝐚𝐝𝐣,𝟏          (𝟗) 

 

•  Design margin adjustment 

It is prudent design practice to provide a capacity margin to allow for uncertainties in the load determination, 
e.g., less-than-optimum conditions and load growth. A common practice to provide this design margin is to 

add 10–25% to the capacity as determined in 5.3.3.2 

  

𝐂𝐚𝐝𝐣,𝟑 = 𝐂𝐚𝐝𝐣,𝟐(𝟏. 𝟏 ÷ 𝟏. 𝟐𝟓)        (10) 

 

 

In order to quantify the effectiveness of adding a battery energy storage system to the pre-existing 

photovoltaic plant (PV), several analyses need to be conducted in terms of building energy performance and 
economic profitability of the investment. 
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4. PERFORMANCE ANALYSIS 

The matching potential is frequently expressed using load matching indicators such as self-sufficiency and 
self-consumption. In the paper 'Graphical analysis of photovoltaic generation and load matching in buildings' 
[8], Luthander R. et al. introduced the energy matching chart which consists of a novel graphical approach to 
visualise PV load matching.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Energy mismatch chart [8] 

 
The above chart uses self-sufficiency and self-consumption to provide information regarding the matching in 
both size and time.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12:  Example of daily profile with hourly time step source  [9] 

 
 
The figure above represents an example of a daily energy photovoltaic production and the relative building 
daily energy hourly consumption. 
 
The Self-sufficiency is defined [9]the ratio between the energy locally produced and immediately used by the 
consumer (Elpc)and the total load energy (Eload): 

 

SS =
Elpc

Eload
   (11) 
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The Self-consumption, instead, is defined [9] the ratio between the energy locally produced and immediately 
used by the consumer (Elpc) and the total generation (Egen): 

 

SC =
Elpc

Egen
     (12) 

 
 

The relationship between self-consumption and self-sufficiency is therefore    
SS

SC 
= 

Egen

Eload
     (13)     . 

 
The overlapping energy Elpc between the total net electricity demand and PV generation, represents the PV 

power that each instant is directly used to fulfil the building energy requirement at that specific time. 
Perfect matching is achieved in the top right corner, where both the self-consumption and self-sufficiency is 
100%. Poor matching in time gives a result in the lower left corner, with both low self-consumption and low 
self-sufficiency. Net zero energy buildings, which produce as much electricity as they consume on an annual 
basis, will be on the diagonal red line where SC=SS and thus P/L=1 
 
 
When evaluating and interpreting metrics for PV self-consumption[10], it is important to be aware of how a 
couple of factors affect the results: 
 

• Relative sizes of PV power generation and power demand: 
 Increasing the PV generation relative to the demand will always decrease the self-consumption while 
self-sufficiency will be increased or remain unchanged.                                       
 
 
 
 
 
 
 
 
 

 

Figure 13:  Example of the difference in PV self-consumption when using 10-min (left) and hourly (right) data, source  [10] 

 

• Time resolution 

A lower resolution will always lead to an overestimation of the self-consumption since fluctuations causing 

mismatch between the generation and load profiles are evened out by averaging. 

 
 
 
 
 
 
 
 
 

Figure 14:  Example of the smoothing effect on the load (L) from averaging over 181 buildings compared to one, source  [10] 



15 
 

• Number of buildings 
load profiles can be expected to be more affected by the number of buildings.  

 
 
 
 
 
 
 
 
 
 

Figure 15:  Example of a PV system with a low (left) and a high (right) rated power supplying the same building load, source  [10] 

 

 

5. INCREASING MISMATCH 

There are two common ways to increase self-consumption and self-sufficiency [10]: they are demand side 

management (DSM) and electrochemical energy storage in batteries. 

There are several meanings of the concept of demand side management (DSM), where the common 

denominator is to improve the energy system at the side of consumption. In the paper the term is used for 

load shifting which can be used to shift the power demands of the loads in a household, for example washing 

machine and heating, ventilation, and air-conditioning (HVAC) systems, from time periods with surplus 

consumption to periods with surplus PV production. Therefore, the periods with highest interaction with the 

power distribution grid (feed in and out) can therefore be decreased. Load shifting can be achieved either 

manually, where persons switch on electric devices when the sun is shining, or automatically, which requires 

control algorithms and devices, and sometimes also weather forecasts of ambient temperature and solar 

irradiation. 

Most of the papers examine PV-battery systems, sometimes combined with DSM. The results show that it is 

possible to increase relative self-consumption by 13–24% points with a battery storage capacity of 0.5–1 kWh 

per installed kW of PV power and between 2% and 15% points with DSM, both compared to the original rate 

of self-consumption. 

 

 

 

 

 

 

 

 

 

 

Figure 16:  The Energy matching chart showing the self-consumption and self-sufficiency reported in the paper, source  [9] 
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6. ECONOMIC FEASIBILITY  
 

There are different criteria to analyse the economic feasibility of an investment. The expected net present 

value (NPV) and the economic internal rate of return (IRR) should be calculated for all projects in which 

benefits can be valued. The main difference between the NVP and IRR is that the NVP provides the economic 

return of the investment instead the IRR is much more useful to compare different kind of investments. The 

general criterion for accepting a project is to achieve a positive NPV discounted at the minimum required IRR 

or to achieve the minimum required IRR of 9% [11]. 

 

The results of the reference scenario “Solar energy storage in German “[12]show positive net present values 

(NPV) for PV systems of approx. 500–1,800 EUR/kWp and NPV for BESS of approx. 150–500 EUR/kWh 

(including cabins and installation). 

Figure 17:  Net Present Value profitability scheme source  [11] 

 

To properly understand the expected profitability of the investment, it’s needed to take into account one of 

the most important key assumptions in the cost-benefit analysis of the battery energy storage system (BESS) 

investment is the evolution of the batteries prices.  

In fact, lithium-ion cell prices are expected to continue to fall in the next few years as manufacturing capacity 

increases [11]. 

Figure 18: Lithium battery prices charts 
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7. RESUMING CHART FLOW 

 

 

 

 

 

   

 

 

 

Figure 19: Resuming chart flow 

After reconstructing, from several sources in the literature, a method for properly size the battery energy 
storage system, in order to validate the effectiveness of this whole literature-based approach (resumed into 
the figure above) it is necessary to test it on real building-like consumptions models and analyse the energy 
performances and the economical profitability with the related literature-provided tools. 
 
 
 

8. LABORATORY CASE STUDY 
 

8.1  LIVING LABORATORY FEATURES 

As part of the SOLARISE project, KU Leuven proposed to build a living laboratory at the Technology Campus 

Ghent, demonstrating a variety of solar technologies. The KU Leuven SOLARISE Living Lab is an extremely 

useful tool that allows us to test the battery pack sizing procedure and, thanks to its real photovoltaic energy 

production and load consumption profile, is able to give us realistic feedback on the feasibility of the 

procedure we are testing. 

 

Figure 20: Bird’s eye view of the Science Park and indicative placement of SOLARISE components (left), with the corresponding photograph (right). [13] 
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The overall photovoltaic power installed is 4.665 kWp and the nominal battery capacity installed is 5.76 kWh. 

Figure 21: SOLARISE Living lab simplified grid connection scheme. Source: KU Leuven Excel sheet 

 

All the data are collected over a period of a year (from 01/07/2021 until 30/06/2022) and they have 1-minute 

time interval.  

 

 

 8.2  MISMATCH EVALUATION 

Since the measured time interval is 1 minute, all data are grouped together every 60 minutes, so as to obtain 

a 1-hour time interval, according to two different criteria. The grouping criterion is based on choosing either 

the average production and consumption or the maximum value, for both load and supply, within each 60-

minute time interval. 

 

 

 

 

 

 

 

 

 

 

Figure 22: Hourly production and consumption considering their average values per each hour time slot. 
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For each criterion, the average hour mismatch, the maximum hour mismatch, the cumulative average 

mismatch and the cumulative maximum mismatch are calculated using a testing raw Python code and shown 

in the pictures below: 

Figure 23: mismatch and cumulative mismatch in both case of average and maximum hour value 

 

Figure 24: average and maximum mismatch and max positive and negative cumulative mismatch in case of average and maximum hour value 
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Figure 25: average and maximum mismatch and maximum cumulative mismatch in case of average and maximum hour value 

 

 

 

Figure 26: table of results  
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For the battery pack sizing procedure, it has been selected a li-ion battery, from ECO-LFP51.2- ECO ESS energy 

storage catalogue 2022 [14], with the following main features: a nominal voltage of 51.2 V, a capacity of 300 

Ah, physical dimensions of 482 mm * 570 mm * 270 mm and a total weight of approximately 112 Kg. The 

sizing procedure already descripted in the previous chapters has been implemented in Python as shown in 

the following figure: 
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Although it was chosen the biggest battery in terms both of voltage and capacity on the catalogue, the 

cumulative mismatch evaluation provided a too high energy value that would have required an enormous 

sized battery pack.  

In the picture below, the amount of battery needed to fulfil each type of calculated cumulative mismatch. In 

order to give more sensitivity about the size of the battery pack, the figure also shows the amount of energy 

of each cumulative mismatch expressed in terms of the equivalent hour during which the batteries must 

continuously provide an amount of energy equal to the average hourly mismatch and the maximum hourly 

mismatch. 

 

 

Figure 27: detailed table of results including the needed number of batteries 

 

 

On one hand, this large number of batteries is theoretically capable of guaranteeing full independence from 

the grid throughout the year, but on the other hand it proves to be an economically unfeasible investment, 

so a different approach to battery sizing is required than in the literature. 

The goal is now to move away from the living lab model to be able to work with a real building consumption 

profile and a real PV energy production profile, thus finding the optimal minimum size of battery capacity 

that still improves the energy performance of the building (leading to an increase in both self-sufficiency and 

self-consumption), but this time respecting the economic constraint whereby the storage system together 

with the PV plant is a more profitable investment than the PV plant alone. 
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9. BUILDING CONSUMPTION 

The consumption profile of buildings varies widely depending on whether they are residential buildings or 

office buildings. Initially, the thesis project was designed to provide a real estate company with results on the 

optimal size of the battery pack for the office buildings they planned to build. 

This reason led to the thesis’s work focusing on a five floors Belgian office building and using load profiles 

relating to this, nevertheless the developed python code is capable of working with any type of load profile 

regardless of the building type. 

After quantifying the average annual office building consumptions in Belgium, daily profiles and hourly values 

for a whole year will be obtained. 

 

 

 

9.1  BELGIUM ANNUAL OFFICE BUILDING CONSUMPTIONS 

The BPIE (leading independent centre of expertise on the energy performance of buildings-building stock) 

states that considering only buildings built after 2010 [15], the main energy consumption items of the Belgian 

office buildings are given as following: 

 

Space heating 142,76 kWh/m2/year 

Domestic hot water  14,40 kWh/m2/year 

Space cooling 20,46 kWh/m2/year 

Lighting 41,41 kWh/m2/year   

TOTAL 219,03 kWh/m2/year   

 

 

The analysis of building consumption presupposes the classification of consumption among the numerous 

end uses of energy. 

A deeper sight through all the items that makes up the final energy consumption of the Belgian office 

buildings is provided in the report “Benchmark di consumo energetico degli edifici per uffici in Italia”[16]. 

This survey it has been compiled in May 2019 by ENEA, Agenzia nazionale per le nuove tecnologie, l'energia 

e lo sviluppo economico sostenibile, the Italian energy research and development agency. 

The study is based on the actual consumption of 123 energy diagnoses of office buildings located throughout 

the country with a total annual consumption of approximately 40,000 toe. The data used was extracted by 

ENEA from the Audit 102 Portal (http://www.efficienzaenergetica.enea.it/per-le-imprese/diagnosi-

energetiche/portale-audit102), which collects the results of energy diagnoses submitted by large companies. 

 

http://www.efficienzaenergetica.enea.it/per-le-imprese/diagnosi-energetiche/portale-audit102
http://www.efficienzaenergetica.enea.it/per-le-imprese/diagnosi-energetiche/portale-audit102
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The energy consumption distribution of the facilities always presents within a building can be carried out into 

General Services and Auxiliary Services[16]: 

General services include: 

• Lighting system 

• Air conditioning system 

• Lifting facilities (lifts, hoists, escalators)  

• Domestic hot water system 

Auxiliary services, on the other hand, include: 

• IT infrastructure, i.e. PCs, printers and other equipment functional to office activities 

• Other electrical utilities ancillary to office activities (coffee machines and other equipment in break 

rooms, etc.) 

• Other additional services, i.e. mechanical ventilation, canteens, garage, outdoor lighting 

• Server farm, often consist of thousands of computers which require a large amount of power to run 

and to keep cool. 

 

The percentage consumption distribution for the three main utilities for office buildings without server farms 

is : 

• Air conditioning: 57% 

• Lighting: 17% 

• FEM utilities (including IT infrastructures and other utilities such as food service floors, electric 

boilers, etc.): 25% 

• Other consumptions: 1% 

Domestic hot water is mostly included in air conditioning (if supplied by thermal utilities) or in the so-called 

FEM utilities if supplied by electric boilers. 

 

 

 

 

 

 

 

 

 

 

Figure 28: Percentage consumption distribution for the three main utilities for office buildings without server farms [16] 
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Adding the FEM utilities consumption and the other consumptions to the already known electricity building 

load (according to the previous chart), it is possible to conclude that the average yearly office building 

consumptions per square meter in Belgium are:  

 

 

Figure 29: Final percentage consumption distribution 

    

 

Air conditioning system 59,2% 
Space heating 142,76 kWh/m2/year  51,6% 

Space cooling 20,46 kWh/m2/year  7,6% 

  Lighting 41,41 kWh/m2/year  14,8% 

FEM 25% 
Domestic hot water 14,40 kWh/m2/year  5,2% 

Other FEM 54,85 kWh/m2/year  19,8% 

  Other consumptions 2,77 kWh/m2/year  0,9% 

  TOTAL 277 kWh/m2/year   
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Knowing the average yearly office building consumptions per square meter in Belgium, the next step is to 

find the average floor area of an office building in order to estimates its consumptions. 

Most commercial buildings in Belgium are reported to have 2-3 floors [17]. The following are given as stats 

for commercial buildings: 

 

 

 

 

 

 

 

Figure 30: Number of floors. Source: Statistics Belgium [17] 

 

The average floor area for the commercial buildings taken into account is [17]: 

 

 

 

 

 

 

 

Figure 31: Floor area. Source: Statistics Belgium [17] 

 

Given the company's desire to build a building complex consisting of two office buildings, considering also 

that an office building in Belgium almost always has 2-3 floors and that each floor has, in most cases, an area 

greater than 104 m2, it is possible to synthesize the consumption of the two buildings by assuming a total of 

5 floors. The first building will have a total of 2 floors, while the second building will have 3 floors. Using the 

360-degree visualization tool that the company provides on their official website to virtually visit their type 

of office, it is possible to conclude that for a 105 m2 office floor there are about 5 employee workstations, 

about 10 PCs, 1 common TV or projector, 1 coffee machine, 1 printer, and a common meeting table. 

Considering the previously found average annual consumption of office buildings of 277 kWh/m2/year, it can 

be concluded that each floor (with an area of 105 m2) will consume 29 085 kWh/year, for a total consumption 

of the building complex of 145 450 kWh/year. 

Having defined the total annual consumption for the Belgian office building, it is now necessary to assess the 

hourly consumption behaviour over the course of the year, thus the consumption profile of the office 

building. 
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9.2  OFFICE BUILDING CONSUMPTION PROFILE 

The review "Towards data-driven energy communities: a review of open-source datasets, models and 

tools"[18] provides a detailed overview of these open-source datasets, models and tools and the many ways 

they can be used to optimally design and manage real-world energy communities. Specifically, the table 

below provides open-source models that can be used to create electricity demand, i.e., load profiles for 

residential and commercial building users. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 32: Open-source datasets, models and tools [18] 

In the current case study, the Office Load MATLAB Application tool is used to generate synthetic load profiles 

for office buildings. 

The paper “MATLAB Applications to Generate Synthetic Electricity Load Profiles of Office Buildings and 

Detached Houses” [19] presents an overview of the Office Load MATLAB application functionalities, code 

design, assumptions and limitations, and examples of their potential use in power system education and 

research. More in detail, the paper presents in the table below the model parameters, their values, and the 

relative correspondence of the variables. 

 

 

 

 

 

 

 

 

 

Figure 33: Office load application model parameters [19] 
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Using the collected information regarding the number of company employees in their existing office, the 

number of floors and the area of each floor, it is possible to generate the consumption profile of the Belgian 

office building during a year with a time resolution of 1 hour, taking care to respect the annual building 

consumption constraint previously defined.  

This is because the total annual consumption of the office building in output from the Office Load MATLAB 

application is referenced to the city of Stockholm, Sweden, thus with irradiance and temperatures that may 

vary from those in Belgium and thus may affect its consumption. This aspect will lead to rescale the data in 

output from the application to have an annual consumption equal to what we had previously calculated. 

 

Figure34: Office Load MATLAB application screen interface 

The output results can be saved to the MATLAB workspace and then is it possible to download them as an 

Excel file.  

The Python code it is written so that the only key input without which the program cannot run is the Excel 

datasheet of the hourly consumption of a building.  

Figure35: Main Code data request of building load Excel file  

This is because the code it is designed in such a way as to allow its use for any type of building consumption, 

including residential one, without limiting its use only to office buildings consumption profiles thus allowing 

any user to enter their own specific load profile. If the aim of the code had been limited to just the current 

case study, thus to the consumption of the office buildings, it would have been possible to modify the code 
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by allowing it to automatically work with the MATLAB application during the Python script execution trough 

the MATLAB Engine API for Python. 

The MATLAB Engine API for Python works by providing a Python interface to the MATLAB engine. This engine 

is a standalone process that runs in the background and can be controlled through the API. The engine is 

initialized using the "matlab.engine" module in Python, which starts a MATLAB session in the background 

and returns a reference to the engine. Once the MATLAB engine is running, Python can communicate with it 

using various API functions. For example, the "matlab.engine.eval()" function allows Python to execute 

MATLAB commands and retrieve the results. Similarly, the "matlab.engine.workspace" function provides a 

way to access MATLAB variables from Python. The MATLAB Engine API for Python also provides support for 

passing data between Python and MATLAB. For example, Python data can be converted to MATLAB arrays 

using the "matlab.double()" function, and MATLAB arrays can be converted to Python arrays using the 

"numpy.array()" function. Overall, the MATLAB Engine API for Python provides a powerful and flexible way 

to combine the capabilities of MATLAB and Python in a single application. 

After entering the building consumption profile, it is necessary to evaluate the production profile to provide 

results about the minimum optimal battery that makes the investment profitable and energy performance 

analysis. 

 

 

10  SYNTHETIC MODEL OF PHOTOVOLTAIC PRODUCTION 

In order to evaluate the production profile, it is necessary to enter some basic fundamental information 

about the PV plant: latitude, longitude, tilt angle, azimuth angle and the size of the PV array. 

Figure 36: Main Code data request of latitude  

Figure 37: Main Code data request of longitude  

Figure 38: Main Code data request of tilt angle  

Figure 39: Main Code data request of azimuth angle  

Figure 40: Main Code data request of PV plant size  
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After entering these data, the code will automatically call a Python function that returns as output a 

synthetic-estimated AC hourly energy production during a year throughout the NREL’s PV models 

implemented by pvlib named ‘PVWatts’[20]. 

Before explaining in detail how the photovoltaic production model works, it is necessary to make a 

clarification concerning all the input data needed to model the energy production. 

 

 

10.1  ARRAY SIZE ESTIMATION 

The first four input are essential and must be entered by the user if a production profile is not initially entered. 

The last data concerning the array size can be omitted and, in this case, the code will automatically call 

another function that, following the step provided by Aurora Solar, is able to estimate the size of the PV plant 

basing on the office building energy consumptions previously mentioned and an additional entered input 

data of the annual average sun hours per day. 

The PV size estimation steps are the following: 

1. The code takes as input the total annual consumption [Wh].  

2. The current result is obtained dividing  the total annual consumption by 365 days [Wh/day]. 

3. The current result is obtained dividing the privious result by the annual daily sun hours per day of the 

considered location [Wp] 

4. The final estimated PV size is obtained diving the previous result by a typical derate factor of 0.8, 

according to the National Renewable Energy Laboratory’s PVWatts calculator [Wp].  

This estimated array size will be entered as input of the model if no PV size value is given by the user.  

Concerning the current case study, the estimated array size, basing on the annual office building consumption 

of 145 450 kWh, is 107.9 kWp. For this calculation it has been entered the input value of 4.6 as the annual 

average sun hour per day, according to the average of the data provided by World Weather Online[21].  

 

 

 

 

 

 

 

 

 

Figure 41: monthly average amount of sun hours in Ghent, Belgium [21] 

For a better production modelling is obviously recommended to run again the code entering as PV size data 

an array size as close as possible to the estimated one but obtained considering a commercial power panel 

size. 
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10.2  PVWatt MODEL 

Several research[22] referenced PV_LIB[23] as a very useful tool for synthetic models of photovoltaic energy 

systems. 

The PV_LIB Toolbox, originally ported from the PVLIB MATLAB toolbox developed at Sandia National 

Laboratories, provides a set of well-documented functions for simulating the performance of photovoltaic 

energy systems. Currently there are two distinct versions (pvlib-python and PVILB for Matlab) that differ in 

both structure and content.  

In 2019, pvlib python became an Affiliated Project with NumFOCUS, a non-profit organization in the United 

States that aim to promote sustainable high-level programming languages and open code development 

through several educational programs such as the so called ‘PyData’. 

The educational program ‘Pydata2021: Solar PV Modeling’ provides a well detailed procedure to model a 

photovoltaic plant using the pvlib python tool, considering step by step all the factors that affect the 

photovoltaic plant production: 

 

Figure 42: Sandia modeling steps[24] 

 

 

The Tutorial 3 of the ‘Pydata2021: Solar PV Modeling’ [25]shows how to use pvlib to model an array’s output 

power given the POA irradiance and the cell temperature. This is possible due to pvlib's implementation of 

the NREL model called "PVWatts".  

The PVWatts model requires only two array parameters that are the array size (nameplate capacity) and the 

array’s efficiency change with cell temperature. 

The cell temperature response parameter, often called the module’s temperature coefficient, determines 

the efficiency loss for a temperature increase. Typical temperature coefficients range from -0.5%/°C to -

0.2%/°C[25].  
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After importing pvlib python libraries, the first most important modelling step consist of reading the Typical 

Meteorological Year (TMY) datasets, that are intended to represent the weather for a typical year at a given 

location (Ghent, Belgium, latitude=51.034, longitude=3.695).  

TMY datasets provide hourly solar irradiance, air temperature, wind speed, and other weather 

measurements for a hypothetical year (built, in this case, from yearly data that range from 2005 up to 2020) 

that represents a “median year” for solar resource. 
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In order to model the effective irradiance incident on the plane of the array (POA), that is dependent upon 

several factors including the sun position, the array Orientation (fixed or tracking) and the irradiance 

components (direct and diffuse), will be used the convenient wrapper function 

“pvlib.irradiance.get_total_irradiance”. 

 

The TMY irradiance effectively hitting the plane of the array is shown in the figure below: 

Figure 43: TMY plane of array irradiance 
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Since the panels temperature affects the panels production, the pvlib python thermal model from the Sandia 

Array Performance Model (SAPM) has been used to estimate the cell temperature starting from ambient 

conditions. The SAPM thermal model takes only POA irradiance, ambient temperature, and wind speed as 

weather inputs, but it also requires a set of parameters that characterize the thermal properties of the 

module of interest. 

 

 

Testing the PV model, the PV size of 110 kWp, made up by 37 panels each one with a power of 300 Wp, was 

arbitrarily chosen due to the consideration that 300 Wp is the most common and cheapest panel power size 

on the market. 

As mentioned, it is assumed 110 kWp as the size of the array and a common module temperature coefficient 

equal to -0.4%/°C (arbitrarily set as default in the model), the DC production of the array has been estimated 

and its behaviour compared considering both ambient and cell temperature: 

 

 

Figure 44: DC power production compared to POA irradiance considering influence of both ambient and cell temperature. 
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The PVWatts model use a simplified inverter model pvlib.inverter.pvwatts(pdc, pdc0) to return the AC output 

given DC output (pdc) and the DC limit (pdc0), which is the AC rated power over the nominal inverter 

efficiency. 

 

 

The model gives us as output the synthetic AC hourly energy production during a year (the yearly production 

is about 117 MWh) of the 110 kWp estimated array size: 

Figure 45: AC power generated by the PV plant.  
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After having understood the importance of the building hourly consumption Excel file as an essential input 

data for the code to work and how this allows us to obtain the estimated hourly production of the PV plant, 

it is now necessary to understand the actual operation of the main core of the Python code once the above-

mentioned building production and consumption data are received as input. 

 

 

11. MAIN CODE 

The working principle of the code (APPENDIX 1) is simple and intuitive. When the code is launched, it is 

necessary only to enter some required data as input, and afterwards the code will be able to make its 

evaluations and provide results without the user having to interact with the terminal by intervening in any 

way on the already started code. 

The first real request from the code, even before inserting the excel file of the building's consumption, 

concerns the user's ability to choose whether to insert only the essential data truly necessary for calculating 

the results or even modify other minor data (such as the annual degradation of the photovoltaic panel, the 

annual operation and maintenance costs, etc...) in case the user is aware of these more specific information 

and intends to improve the accuracy of the final result. 

Figure 46: Main Code choice request of entering just main or all the input data 

Whatever the user's choice, it is always possible to either press the Enter key to confirm the entered value 

or to skip the input request if nothing is entered. In this last case, the code will use the input data already set 

as default. These default data are referred to the city of Ghent, Belgium, as it represents the initial target of 

the thesis project for which the code was developed. 

By pressing the Esc key, on the other hand, the user can decide to disable the input requests. This led to exit 

the code and generating the error screen shown below: 

This choice option is achieved through the following “get_input” function:  
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After entering the Excel file of consumption and other input data, the code calls an external function called 

"Simple_PVWatts_array_power" (APPENDIX 2) that returns as output the DataFrame (a two-dimensional 

tabular data structure with labelled rows and columns, which is provided by a software library written for 

the Python programming language called Pandas) of the hourly output of the PV system over a year, the 

DataFrame of the hourly building consumption over a year, the total amount of energy produced over a year, 

the total amount of energy consumed over a year, and the size of the PV plant used for the calculations. The 

latter output could have been chosen by the user as the initial input or estimated by the function mentioned 

earlier. 

This "Simple_PVWatts_array_power" Python function, among other minor manipulation data tasks, is mainly 

responsible for generating the synthetic profile of PV production using the "PVWatts" model extensively 

described earlier. The output DataFrame of production and consumption will be entered as inputs in the 

“bestbattery” function, as they are essential for the evaluation of the State of Charge (SOC) of the battery 

and the economic analysis conducted on it. The “bestbattery” function takes several data as inputs, including 

the size of the battery storage system, and provides as output the DataFrame of the hourly SOC of the battery 

over a year and some economic indicators such as the Net Present Value (NPV), the Internal Rate of Return 

(IRR) and the Pay Back Time (PBT). 

More In detail, there are four outcomes: the IRR of the investment including both the PV plant and the battery 

energy storage system (BESS), the IRR of the only PV plant investment, an array of together NPV/IRR/PBT of 

the only PV plant investment and NPV/IRR/PBT of the BESS+PV investment ( ([NPV_onlyPV, IRR_onlyPV, 

PBT_onlyPV] , [NPV_BESS+PV, IRR_BESS+PV, PBT_BESS+PV]) ) and the DataFrame of the battery SOC. 

Next, the code searches for the battery size that maximizes the internal rate of return (IRR) value of the PV + 

Battery Energy Storage System (BESS) investment and, moreover, the code uses a binary search to find the 

minimum battery capacity needed to achieve the IRR that makes the investment of PV + BESS either at least 

equally or more profitable than the PV plant alone. The code then returns results for the optimal battery size 

and the battery size that maximizes the IRR. 

The last analysis of the code is related to the evaluation of the energy performance of the PV + battery 

system, providing, with the help of a graph, the self-sufficiency and self-consumption values of the building 

with integrated PV plant before and after the addition of the battery storage system. The battery size chosen 

for the performance analysis is the minimum battery capacity needed to achieve the IRR that makes the 

investment at least equally or more profitable than the PV plant alone. 

Another flexibility feature of the code includes the possibility for the user to choose the size of a test battery 

and perform the economic and energy performance analyses on it.  

The choice of test battery can be made by entering the selected size as a value in the initial input data 

requests as shown in the figure below: 

Figure 47: Main Code choice request to run the code with a test battery capacity  

In this case, the results and the energy performance chart will refer to the test battery size instead of the 

minimum capacity that makes the investment profitable. If no test battery value is entered, the graph and 

the self-consumption and self-sufficiency values will be referenced as default to the minimum capacity that 

makes the investment profitable. All data obtained as results during code simulation are saved in a user-

downloadable Excel file. 
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11.1  “BESTBATTERY” FUNCTION 

The first part of the python function "bestbattery" concerns the construction of an algorithm capable of 

evaluating the SOC for each time step of the production and consumption DataFrames, thus capable of 

reconstructing the hourly profile of the SOC over a year. 

Specifically, the first part of the code focuses on creating lists and initializing some variables, such as the 

initial energy stored in the battery (Eb_tot0) and the total battery capacity (Eb_tot) expressed in Wh. Eb_tot0 

is defined multiplying Eb_tot with the initial SOC of the battery (SOC0).  

 

The SOC0, the minimum SOC (SOC_min) and the maximum SOC (SOC_max) can be modified entering their 

value in the initial input data requests, otherwise the code will accept as default SOC0=90%, SOC_min=20% 

and SOC_max=100%. 

Immediately after the definition of the variables, the code is responsible for evaluating the SOC of the battery 

for each time interval using the following algorithm. 

 

 

The involvement of the battery storage system is intended so that the energy mismatch between production 

and consumption of the building could be managed with the aim of ensuring a better self-consumption and 

self-sufficiency. Due to this reason, for each hourly energy mismatch (ehm) item within the list of all hourly 

energy mismatches during the year (Em), the code evaluates the current battery charge (Eb) by taking into 
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account its initial charge (referring to its previous value obtained by considering the SOC value of the previous 

time step) and add to it the mismatch value of the current time step (represented by ehm). 

The value of ehm can be either positive or negative depending on whether, of course, the output of the PV 

system is respectively greater or smaller than the energy consumption of the building and, for this reason, 

the current charge of the battery can be greater than zero or less than zero. However, the fact that ehm is 

less than zero does not necessarily determine the fact that Eb is less than zero. 

In the case where ehm is greater than zero, Eb is obviously positive but the battery charge may remain below 

the maximum SOC or there is a risk that it will exceed it. 

 

If the maximum SOC is not exceeded (actual Eb/Eb_tot < SOC_max), then the battery will be assigned the 

current charge (in this case Eb_new =Eb), while the new SOC will be assigned the value of the current SOC.  

 

Eg represents the gain of energy from the grid. Eg can be positive, in the case where the positive mismatch 

is so large that the battery is charged up to SOC_max and there is still a surplus of energy that is fed into the 

grid; or it can be negative, in the case where the negative mismatch is so large that the battery is discharged 

up to SOC_min and there is still a deficit of energy that needs to be taken from the grid.  

When, therefore, Eb and ehm are both positive and the maximum SOC is not exceeded then Eg will be zero 

since all the positive mismatch energy will be used to charge the battery. The check_batt_en_supplied 

provides a double confirmation regarding the energy exchanged to the grid by representing the amount of 

energy actually absorbed or given up by the battery and is calculated by simply subtracting the actual battery 

charge value to the previous time step battery charge value. In this way the sum of ehm,Eb,Eg and 

check_batt_en_supplied is always equal to zero. 

In the case where Eb and ehm are both positive but the maximum SOC is exceeded (actual Eb/Eb_tot > 

SOC_max) the battery will be assigned the maximum charge (in this case Eb_new =Eb_tot*SOC_max), while 

the new SOC will be assigned the value of the maximum SOC. 
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The x_ehm item represents the amount of energy mismatch used to charge the battery up to the maximum 

SOC, and its value is obtained by simply subtracting the current capacity of the battery from its maximum 

capacity. Consequently, the energy surplus fed into the grid (Eg) will be obtained by subtracting x_ehm from 

the current mismatch value ehm. The check_batt_en_supplied value could be defined by simply assigning it 

the value of x_ehm but for convenience and invariance in the result it was calculated in the same way as 

described above. 

In the case where ehm is negative, Eb could be positive and, in this case, the battery charge may remain 

within the range between the minimum SOC and the maximum SOC, or it may fall below the minimum SOC. 

If ehm and Eb are both negative the current SOC will necessarily be less than the minimum SOC 

 

 

In the case where ehm is negative but Eb is positive and the current SOC value is not less than the minimum 

SOC (actual Eb/Eb_tot > SOC_min), then every battery characteristic data will be calculated as in the case 

shown earlier where ehm is positive and the maximum SOC is not exceeded. 

On the other hand, when ehm is negative but Eb is positive and the current SOC value goes below than the 

minimum SOC, all the battery characteristic data will be calculated as done in the case previously shown 

where ehm is positive and the maximum SOC is exceeded. 

The reason it was not necessary to define a third case relating to the condition where both ehm and Eb are 

less than zero is due to the fact that since the battery charge of the previous time stamp cannot fall below 

the minimum value defined by the SOC_minimum (because of the way the code was constructed), if we add 

ehm < 0 to this minimum charge such that Eb <0 then the condition (actual Eb/Eb_tot > SOC_min) will never 

be verified. This happens obviously because Eb is negative and therefore the entire Eb/Eb_tot ratio is while 

SOC>0.  This result causes the study of battery charging to fall into the previously discussed case where ehm 

is negative but Eb is positive and the current value of SOC is less than the minimum SOC. This algorithm leads 

to the creation of the DataFrame of the battery SOC for each hour of the year. 

Before it was finally used, the code was subjected to a validation test by comparing its behaviour with that 

related to the actual SOC profile of the SOLARISE Living Lab battery at the Ghent Technology Campus. 

The two main indicators used to assess the error between the actual measured value of the SOLARISE Living 

Lab battery SOC and the value of the battery SOC estimated by this algorithm are the Mean Absolute Error 

(MAE) and the Mean Absolute Percentage Error (MAPE). These error measurements were made using the 

functions of scikit-learn [26](a free software machine learning library for the Python programming language). 

 

In statistics, Mean Absolute Error (MAE) is a measure of errors calculated as the sum of absolute errors 

divided by the sample size and therefore returns results in the same scale as the measured data: 
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𝑀𝐴𝐸 =
𝛴𝑖=1

𝑛 |𝑥𝑖 − 𝑦𝑖|

𝑛
     (14) 

The Mean Absolute Percentage Error (MAPE) is a measure of errors calculated as the sum of absolute errors 

each dived by the true value and the entire sum of the relative errors is divided by the sample size as in the 

MAE. For this reason, it returns results as percentage error of the true value.  

𝑀𝐴𝑃𝐸 =
1

𝑛
𝛴𝑖=1

𝑛 |
𝑥𝑖 − 𝑦𝑖

𝑥𝑖
|     (15) 

 

In both equations the true value is represented by 𝑥𝑖 , the predicted value is 𝑦𝑖  and 𝑛 represent the total 

number of data points. 

The error was evaluated for each week of the year and each for different arbitrary minimum SOC values of 

20%, 30%, 40% and 50%. as shown in the figures below: 

 

Figure 48: SOC_min= 20.0 %, total MAE: 22.22, total MAPE: 34.62 % 

 

 

 

Figure 49: SOC_min= 30.0 %, total MAE: 18.45, total MAPE: 30 %  
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Figure 50: SOC_min= 40.0 %, total MAE: 14.27, total MAPE: 23.46 % 

 

 

 

Figure 51: SOC_min= 50.0 %, total MAE: 10.39, total MAPE: 17.5% 

 

Although the size of the images does not allow the error values for each individual week to be identified very 

clearly, it is still possible to note their qualitative trends. Regarding their overall behavior we can see that, in 

the case of SOC_min=20%, the total MAPE stands at 22.22 percentage points of SOC. In the first weeks related 

to the summer months (the calendar starts from 01/07 and ends on 31/06 of the following year) the absolute 

error is in the range of 1.5 percentage points of SOC while in the summer months it rises around 50 points 

with peaks of 71. MAPE, on the other hand, in the case of SOC_min=20% overall keeps during the year a 

relative error in the range of 0.1% to 10%. 

By increasing the value of the minimum SOC from 20% to 50%, it is possible to see a reduction in the values 

of both MAE and MAPE especially in winter weeks whose values were quite high, thus allowing an overall 

flattening of the error throughout the year. 

Comparing the actual measured SOC profile (blue line) with the estimated one (orange line) by examining a 

week in which the MAE and MAPE values are very low , for example the week 6, it can be seen that by moving 

from the case with a SOC_min=20% up to SOC_max=50%  the curves, already almost overlapping with 

SOC_min=20%, still maintain the same profile with SOC_min=50%.  
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That is because the real profile of the SOC and the estimated one are already practically identical and cannot 

improve further since in both cases, they are already equal to: MAE=1.1 and MAPE=0%. 

 

Figure 52: Week 6th, SOC_min= 20.0 %, MAE: 1.1, MAPE: 0% 

 

 

Figure 53: Week 6th, SOC_min= 50.0 %, MAE: 1.1, MAPE: 0%  

 

On the other hand, comparing the actual SOC profile with the estimated profile by examining a week in which 

the MAE and MAPE values are higher instead, for example the week 27, it can be seen that going from the 

case with SOC_min=20% to SOC_max=50% the curves have in both situations a substantially identical profile 

trend but the estimated profile is shifted lower than the actual profile in terms of battery SOC.  

It is possible to see, in the figures below, how increasing the minimum SOC from 20% to 50% has the effect 

of bringing the estimated SOC curve closer to the actual measured curve, thus reducing the MAE from 31.1 

to 1.1 and the MAPE from 0.6% to 0%.  

The errors, therefore, do not show any computational error made by the SOC measurement code, but these 

are due exclusively to a different position of the profiles in the SOC scale. 
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Figure 54: Week 27th, SOC_min= 20.0 %, MAE: 31.1, MAPE: 0.6% 

 

 

 

Figure 55: Week 27th, SOC_min= 50.0 %, MAE: 1.1, MAPE: 0% 

 

 

The difference in the shift in the SOC scale between the actual measured battery SOC profile and the 

estimated one, especially during some weeks in the winter period, is due to the fact that the software used 

to manage the SOLARISE Living Lab battery performs an active control capable of dynamically changing over 

time the SOC_min and SOC_max values of the battery. This is done autonomously according to some 

established criteria with the aim of improving self-consumption and self-sufficiency.  

This software SOC management feature of the SOLARISE Living Lab battery allows us to consider as minor 

the errors due to the shifting of the two SOC profiles in the SOC scale during the winter months and validate 

the effectiveness of the code operation in measuring the state of the battery charge. 

Having measured the SOC of the battery for all hours of the year and having calculated for each of those 

hours the relative amount of energy to be exchanged with the grid and having created a list of those elements 

(Eg), the "bestbattery" function will now perform the economic analysis. 

The first step is to estimate the annual expense of the bill for purchasing from the grid all the energy needed 

to meet the building's energy needs if there is no photovoltaic plant. Assuming the building is equipped with 

a photovoltaic plant, it is necessary to calculate the sum of all positive energy mismatches during the year 

and similarly estimate the sum of all negative energy mismatches during the year.  
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By multiplying the sum of the positive and negative mismatches with respectively the selling price of energy 

when it is fed into the grid by the photovoltaic plant and the purchase price of energy when it is absorbed by 

the grid, it is possible to estimate the annual amount of revenues and losses in economic terms related to 

the photovoltaic plant alone. 

The difference between the annual amount of income and loss in economic terms defines the annual savings, 

which may be positive or negative. Before explaining how the cash flow list is made from these savings and 

what factors affects its creation, it is first necessary to specify that the selling and buying prices on which the 

following economic analyses are built were taken directly from the VREG, the independent authority of the 

Flemish energy market. 

According to the data provided in their dashboards, the selling price of energy is assumed to be equal to that 

of January 2023, thus equal to 0.15 €/kWh[27]. 

Figure 56: selling price dashboard[27] 

 

The purchase price of energy, on the other hand, is the one applicable to a company with a daily consumption 

of 30 000 kWh since it is the only choice that can be made as it represents the smallest of the options made 

available to a company. The chosen purchase price is referred to January 2023 and it is 0.51 €/kWh[27]. 

Figure 57: selling price dashboard[27] 
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Returning to the creation of the cash flow list concerning the PV plant only investment, this is essentially 

obtained by considering constant savings for each year, thus repeating the value of annual savings as many 

times as the number of years of the PV panel's lifespan. However, In order for this cash flow to be as realistic 

as possible, it is necessary to consider other factors that may affect income or losses annually and thus the 

savings themselves. 

Considering an annual PV panel degradation value of 0.5 % [28]and assuming that the PV production 

decreases by the same amount, the annual revenues will decrease by the same amount and so will the 

savings: 

 

Also considering the addition of annual operation and maintenance costs [29] of 9,4 €/kWp/year and adding 

the initial investment as first item with the negative sign (needed operation for the properly work of the 

economical functions) the cash flow list looks as follows: 

 

The latest change to the cash flow list takes into account the replacement of the inverter in the 15th year of 

operation of the photovoltaic plant. Generally, the replacement cost is assumed to be 12% [29] [30] of the 

total initial investment of the plant.  

Having created the cash flow list, consisting of the first item related to the initial investment identified with 

a negative sign and next by the savings for each year, it is now possible to perform an economic analysis of 

the investment using the previously mentioned NPV, IRR and PBT indicators. 

The Net Present Value is the result of calculations that find the current value of a future stream of payments, 

using the proper discount rate. In general, projects with a positive NPV are worth undertaking while those 

with a negative NPV are not. The calculation for the NPV of the project is as follows: 

𝑁𝑃𝑉 = −𝐼 + 𝛴𝑡=0
𝑛

𝐶

(1 + 𝑖)𝑡
     (16) 

Where 𝐼 is the initial investment, 𝐶 is the cash flow, 𝑡 is the number of time period and 𝑖 is the discount rate. 

 

The Internal Rate of Return is a metric used in financial analysis to estimate the profitability of potential 

investments. IRR is a discount rate that makes the net present value of all cash flows equal to zero in a 

discounted cash flow analysis. 

−𝐼 + 𝛴𝑡=0
𝑛

𝐶

(1 + 𝐼𝑅𝑅)𝑡
= 0     (17) 
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The term Pay Back Time, instead, refers to the amount of time it takes to recover the cost of an investment. 

𝑃𝐵𝑇 =
𝐼

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤
     (18) 

 

The first two financial analyses related to NPV and IRR are done through the already implemented functions 

importable from the python library “numpy.financial”. The discount rate chosen for the NPV calculation is 

assumed to be 5% [31]. 

The Pay Back Time, on the other hand, was calculated through the following function: 

 

 

 

Regarding the economic analysis related to the investment of the photovoltaic plant plus the battery storage 

system, the steps for creating the cash flow list and the actual economic evaluation using the financial 

instruments of NPV, IRR and PBT are basically the same as those used for the study of the economic 

profitability of the photovoltaic plant alone.  

The only differences concern firstly the evaluation of annual revenues and losses, obtained, this time, by not 

considering the positive and negative mismatch but only the positive and negative amount of energy 

exchanged with the grid (Eg), and secondly the possibility to face at 10th and 20th year of plant operation, the 

cost of battery pack replacement. The latter was assumed to be 10% of the total investment cost (seen from 

IRENA chart[29]). 
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11.2  BATTERY OPTIMIZATION 

The main purpose of the code is to find the best size of battery energy storage system that has an IRR capable 

of ensuring that the investment is more profitable than the one related to the photovoltaic plant alone. 

Specifically, the code focuses on both finding the minimum battery size that can make the IRR at least equal 

to or greater than the IRR of the PV plant-only investment and finding the battery size at which corresponds 

the maximum IRR. In either case, manually searching for such results carried out by trial and error would be 

time-consuming and, for this reason, it is necessary to use optimization algorithms that can optimize and 

speed up the calculation. 

For what concerns finding the battery capacity capable of maximizing the IRR, the SciPy library[32] (a 

scientific computing library for Python that provides additional functionality for scientific computing, 

including optimization, linear algebra, signal processing, and statistics) provides several optimization 

algorithms that can be used to find the maximum or minimum of a function, such as the “minimize” and 

“fmin”. 

The “minimize” function provides a general interface for solving unconstrained or constrained optimization 

problems and supports several optimization methods, including BFGS, Nelder-Mead, and Powell while the 

“fmin” function is a derivative-free optimization method and finds the minimum of a scalar function using a 

downhill simplex algorithm. 

Both “fmin” and “minimize” can be used to minimize a function. However, “minimize” is more versatile and 

can handle a wider range of optimization problems than “fmin”. The “minimize” function also provides 

additional features such as support for bounds, constraints, and callback functions. On the other hand, “fmin” 

is a derivative-free optimization algorithm that works well for low-dimensional problems but does not 

support bounds or constraints and can be slower than gradient-based methods for some problems. 

In general, “fmin” may be sufficient when dealing with simple optimization problem that does not involve 

constraints or bounds and is low-dimensional. However, for more complex optimization problems or high-

dimensional problems, “minimize “is usually the better choice. 

In the specific context of finding the battery capacity that maximizes the IRR, either “fmin” or “minimize” 

could have been used since the problem is relatively computationally simple but, in this case, given the need 

to define a lower limit for the battery size so that it is never zero, the choice of the optimization algorithm to 

be used for this analysis falls on the "minimize" function. 

Since the "bestbattery" function takes multiple data inputs and provides multiple output results, it is 

necessary to manipulate the function in such a way that it is able to accept as input the unknown value of 

our interest, in our case the battery size, and return as output only one result, which is the IRR of the 

investment related to the photovoltaic plant plus the battery pack. 

This is achieved by constructing a function called “objective_func_IRR_bpv(x)” as shown in the figure: 

 

 

After having defined the objective function, it is now possible to use the “minimize” function on it, in order 

to find the value of the battery capacity that maximizes the IRR. 
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It is possible to notice that the “objective_func_IRR_bpv(x)” function is used as an argument to the 

“minimize” function with a negative sign, since we want to maximize the IRR. 

 

The use of the for loop is due to the need to cyclically repeat the optimization using different capacity values 

as multiple starting points within a predetermined range and check which result corresponds to the 

maximum IRR throughout the inner “if” condition. 

More in detail, for each optimization named “res”, “res.fun” is the value of the objective function (in this 

case, the negative IRR) at the optimal point, and “res.x[0]” is the value of the battery capacity at the optimal 

point. 

After having initialized “max_irr” to zero, in order to ensure that any result with a larger IRR will be greater 

than “max_irr”, it has been also initialized the “best_capacity_kWh” to None with the aim to ensure that it is 

assigned the battery capacity that corresponds to the maximum IRR. The line ”if -res.fun > max_irr“ checks if 

the current result has a larger IRR than the current maximum. If it does, the “max_irr” is updated to be the 

IRR of the current result (“-res.fun”) and “best_capacity_kWh” to be the corresponding battery capacity 

(“res.x[0]”). After the loop, “max_irr” contains the maximum IRR found among all the starting points, and 

“best_capacity_kWh” contains the corresponding battery capacity.  

The choice of using multiple starting points is due to the need to be sure that the minimum of the "minimize" 

function is actually reached and therefore that the IRR value obtained is actually the maximum value. 

In fact, when optimisation algorithms are used, it is often difficult to be sure that the minimum has been 

reached with absolute certainty. However, there are several ways to increase confidence in the results such 

as, for example, checking for convergence by examining the final value of the objective function and the 

number of iterations required for convergence, analysing the sensitivity of results by varying the input 

parameters and observing the resulting change in the objective function (If the results are sensitive to small 

changes in the input parameters, this may indicate that the optimization problem is ill-conditioned or that 

the algorithm has not converged to a minimum) and use multiple starting points. 

Since the code was designed to make it usable for the widest category of users (who, for that reason, do not 

necessarily possess the skills to evaluate by themselves the accuracy of the results and, if necessary, repeat 

the calculation by changing some data), the interaction with the code was minimized by providing results 

only by entering some initial input data.  

The goal of simplifying the user-code interaction leads to the need to find a solution that independently 

ensures that the result is the desired one. The strategy of using multiple starting points is the only one that 

allows to ensure that the global maximum has been found with no user involvement. 
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For what concerns finding the minimum battery size that can make the IRR at least equal to or greater than 

the IRR of the PV plant-only investment, it was used an algorithm approach called binary search. 

A binary search is a search algorithm that is used to find the position of a target value in a sorted list or array. 

The algorithm works by repeatedly dividing the search interval in half, based on whether the target value is 

less than or greater than the middle value of the interval. This process is repeated until the target value is 

found or the search interval is empty. 

In the code shown below, binary search is used to find the minimum battery capacity needed to achieve the 

Internal Rate of Return (IRR) that makes the investment of PV + BESS either at least equally or more profitable 

than the PV plant alone.  

The function “find_min_battery_capacity” takes as input a battery capacity range, two functions that 

calculate the IRR of the PV+BESS system and the PV system alone, and a tolerance value that specifies the 

desired precision of the solution. The battery capacity range is divided into two halves, and the IRR of the PV 

and BESS investment and the IRR of the PV alone investment are calculated for the midpoint of the range. 

Based on the comparison of these IRR values and the maximum capacity that maximizes the IRR of the PV 

and BESS investment, the if statements in the code determines the direction in which to move the upper and 

lower bounds of the battery capacity range.  

This process is repeated until the desired level of precision is achieved and, finally, the function returns the 

upper bound of the range as the minimum battery capacity needed to achieve the desired IRR. 

 

 

 

Using a binary search allows the algorithm to quickly converge to the minimum battery capacity needed to 

achieve the desired IRR, because it repeatedly halves the battery capacity range and evaluates the IRR at the 

midpoint. This approach is much faster than other methods such as the linear search. 

A linear search, in fact, involves iterating over all possible battery capacity values in the given range and 

evaluating the IRR function at each of these values. This means that the algorithm would have been compared 

the IRR of the PV+BESS system and the PV system alone at each battery capacity value and return the 

minimum battery capacity that satisfies the IRR condition.  
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Although is simple to implement and conceptually straightforward, the linear search can be very slow for 

large ranges or fine tolerances, as it requires evaluating the IRR function at a large number of points. This can 

make it impractical for real-world applications with large ranges of battery capacity and high precision 

requirements. 

In summary, the linear search is conceptually simple but it can be slow and computationally expensive for 

large ranges or fine tolerances. A binary search is used in this case because is a more efficient and practical 

approach for finding the minimum battery capacity needed to achieve a desired IRR in a sorted range of 

possible battery capacities. 

 

11.3  PERFORMANCE ANALYSIS 

The last analysis concerns the evaluation of the energy performance of the PV + BESS system and is carried 

out by the Python function called “perf_analisys” (APPENDIX 3). This function takes as inputs the DataFrames 

of the hourly PV plant production, the hourly building consumption and the hourly battery SOC.  

The initial part of the function performs a data manipulation similar to what is done for the same data in the 

"bestbattery" function. In this case, however, the sum of the positive and negative hourly mismatch is not 

done on the year time interval but is calculated on a daily basis. The same thing is done for the condition in 

which the battery pack is added to the photovoltaic plant. In this case, in fact, the sum of only the positive 

and negative amount of energy exchanged with the grid (Eg) is done on 24-hour time intervals. 

To study self-sufficiency and self-consumption, it is necessary to calculate the "Elpc" area related to the 

amount of energy that is instantaneously produced by the photovoltaic plant and consumed by the building. 

In the case of the photovoltaic plant alone, the "Elpc" area is calculated by subtracting the positive mismatch 

portion of energy from the entire daily production.  

 

By the same principle, in the case of photovoltaic plant+BESS, the "Elpc" area is expected to be larger and 

obtained by subtracting the portion of positive Eg energy fed into the grid from the total daily production. 

 

 

By definition, "Elpc" should be the same whether it is calculated by subtracting a positive energy mismatch 

from total production or by subtracting a negative energy mismatch from total consumption. This is actually 

true only theoretically because in calculation practice the data after a mathematical operation are affected 

by algorithmic error due to approximation. For this reason, although the error between the two 

measurements is almost always small, MAPE measurement was still provided for "Elpc" areas calculated 
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according to the two possible ways in order to be able to inform the user of a possible low accuracy of the 

building energy performance data. The result is then printed on the screen. Generally, a MAPE over 50 % 

defines the measurement as not accurate compared with the reference data [33]. The “perf_analisys” 

function returns as results the value of the self-sufficiency and the self-consumption with and without the 

integration of the battery energy storage system and the relative chart. 

 

12.  WORKING EXAMPLE 

The following images represent an example of the code operation and show the results under the assumption 

of considering as input data those set as default for the city of Ghent, Belgium. 
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Getting more specific about all the input data required by the code, the user is prompted to enter the name 

of a LOAD file in .xlsx format. The default value for this input is 'datiloadmodelUpest.xlsx'. The file contains 

hourly data of the electrical load demand of the residential building. Next, the user is prompted to enter the 

latitude and longitude of the building location. The default values are 51.034 and 3.695, respectively. These 

values are used to calculate the solar irradiance on the PV panels. 

The tilt and azimuth angles of the PV panels are also important inputs for the analysis. The default value for 

the tilt angle is 40 degrees while the default azimuth angle is 180 degrees (PVGIS’s optimum angle values), 

which corresponds to the panels facing south in the northern hemisphere. When 0 is entered as input data 

for one or both of the tilt and azimuth values, a function is called to determine an estimation of the input 

data that received the zero-input value. The optimal tilt angle is approximated with the value of the latitude 

data (a common rule of thumb for fixed arrays also cited by NREL’s PVWatts Calculator) while the optimal 

azimuth value is found by estimating the azimuth angle between 0° and 360°, which, with the optimal tilt 

angle, maximizes the total annual amount of irradiance received by the panel. 

 

The latitude of a location can be a good approximation for the tilt angle of a solar panel. This is because solar 

panels are most efficient when they are pointed directly at the Sun, and the angle of the panel affects the 

amount of sunlight it receives. By tilting a solar panel at an angle equal to the latitude of the location, the 

panel can be pointed more directly at the Sun during peak sunlight hours, which can help to maximize energy 

production. Additionally, the latitude provides a simple and easily accessible way to approximate the tilt 

angle, making it easy for people to determine the optimal tilt angle without needing to perform complex 

calculations. While the latitude is not necessarily the optimal tilt angle in every location, it provides a good 

starting point for further optimization by adjusting the tilt angle based on other factors such as the time of 

year, weather conditions, and the specific orientation of the solar panel. 

The PV size is another crucial input, which is set to 0 Wp by default. If nothing is entered (in the working 

example it is chosen 110 kWp), this zero-value led to the estimation of the PV size by calling a function. The 

following required input data is the annual average sun hour per day of the considered location. The Global 

Solar Atlas provides a peak sun hours map. It can be noticed that both maps’ legends are given in units of 

kWh/m2.  

 

 

 

 

 

 

Figure 58: global map of average daily peak sun hours 
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Recalling that 1 peak sun hour is equal to 1 hour of sunlight at 1 kW/m2, meaning these values are numerically 

identical. So, although neither map says “peak sun hours” anywhere on it, they are in fact both maps of 

average peak sun hours. From this map it is possible to approximate the global average daily sunshine hours 

on Earth is about 5.4 hours per day. However, it is important to note that this value is only a rough estimation 

and that the actual amount of daily sunshine hours can vary greatly depending on geographic location, 

altitude, weather conditions and seasons. In some regions of the world, such as the equator, daily sunshine 

hours may exceed 12 hours per day, while in other regions, such as polar areas, they may be less than 4 hours 

per day.  

The trial battery capacity is also an input, with a default value of 0 kWh. The electricity selling and purchasing 

prices are essential parameters for the economic analysis. The default value for the selling price is 0.15 

€/kWh, and the default purchasing price is 0.51 €/kWh. The user can enter different values based on their 

local prices. The installation cost of the PV panels is another important input, with a default value of 732.44 

€/kWp. This value is based on the IRENA Renewable power generation costs 2021 report. The OeM cost is 

set to 9.4 €/kWp/y for Europe. The lifespan of the PV plant is set to 25 years by default. The nominal discount 

rate is set to 0.05, and the expected inflation rate is set to 0.00. The real discount rate is calculated based on 

these values. The BESS cost is an important input, with a default value of 758.39 €/kWh[29]. The inverter 

costs for PV and BESS are also inputs, with default values of 12% of the “pv_installation_cost” and 10% of the 

“pv_installation_cost+BESS_cost_input”, respectively. The annual module degradation rate is set to 0.005, 

and the years of the first and second replacement of batteries are set to 10 and 20 years, respectively. The 

year of replacement of inverters is set to 15 years. 

Finally, the maximum and minimum state of charge of the battery and the initial state of charge are also 

inputs, with default values of 1, 0.2, and 0.9, respectively. 

 

 

13.  INPUT DATA INFLUENCE ANALYSIS 

The optimal battery capacity size that ensures the economic profitability of the investment of the 

photovoltaic plant plus battery pack can vary greatly depending on the data entered by the user. 

In particular, two different analyses were conducted focusing on what are the data mainly affecting the 

variations in the optimal battery capacity as they are most susceptible to sudden changes in their value over 

time. The first analysis concerns the influence on the optimal battery size due to the change in the investment 

cost of both the photovoltaic plant and the battery pack. The second analysis, on the other hand, concerns 

the influence on the optimal capacity related to the change in the selling price and purchase price of energy 

from the grid (these values are selected within the range provided by the VREG dashboards). 

Focusing on the first analysis, the four tests performed are described below with their corresponding graphs: 

The first test related to the first analysis is obtained by varying the investment cost of the battery pack in the 

range of 100 €/kWh to 1000 €/kWh while holding the investment cost of the photovoltaic plant constant at 

the default value: 

Figure 59: Excel sheet of Main Code data result obtained by varying BESS investment cost  
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Figure 60: Excel chart obtained by varying BESS investment cost while keeping constant PV plant investment cost 

 

 

The second test related to the first analysis is obtained this time by holding the investment cost of the battery 

pack constant at the default value while varying the investment cost of the photovoltaic plant in the range 

of 100 €/kWh to 1000 €/kWh: 

 

Figure 61: Excel sheet of Main Code data result obtained by varying BESS investment cost  

 

 

 

 

 

 

 

 

 

 

 

Figure 62: Excel chart obtained by varying PV plant investment cost while keeping constant BESS investment cost 
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The third test related to the first analysis is obtained this time by varying the investment cost of both the PV 

plant and the battery pack in a range between 100 €/kWh to 1000 €/kWh in a mutual opposite way: 

Figure 63: Excel sheet of Main Code data result obtained by varying both PV and BESS investment cost in a mutual opposite way 

 

  

 

 

 

 

 

 

 

Figure 64: Excel chart obtained by varying both PV and BESS investment cost in a mutual opposite way  

The fourth test related to the first analysis is obtained this time by varying the investment cost of both the 

photovoltaic plant and the battery pack in the range of 100 €/kWh to 1000 €/kWh using the same value for 

both: 

 Figure 65: Excel sheet of Main Code data result obtained by varying both PV and BESS investment cost with the same value 

 

  

 

 

 

 

 

 

 

Figure 66: obtained by varying both PV and BESS investment cost with the same value 
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These tests related to the first analysis show that an increase in the investment cost of the battery pack is 

linked to a decrease in the size of the optimal battery. In addition, an increase in the investment cost of the 

photovoltaic plant is also linked to a decrease in the IRR (decreases the economic return). 

 

Focusing now on the second analysis, other four tests are performed and described below with the 

corresponding graphs.  

The first test related to the second analysis is obtained by varying the energy purchase price in a range from 

0.23 €/kWh to 0.86 €/kWh while keeping the energy selling price constant at the default value: 

Figure 67: Excel sheet of Main Code data result obtained by varying purchase price  

 

 

  

  

 

 

 

 

 

 

Figure 68: Excel chart obtained by varying purchase price while keeping constant selling price  

 

The second test related to the second analysis is obtained, this time, by varying the energy selling price in a 

range from 0.05 €/kWh to 0.51 €/kWh while keeping the energy purchase price constant at the default value: 

 

Figure 69: Excel sheet of Main Code data result obtained by varying selling price  
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Figure 70: Excel chart obtained by varying selling price while keeping constant purchase price  

 

 

The third test related to the second analysis is obtained, this time, by varying both the selling price and the 

purchase price of energy in their intervals of interest both in an increasing way: 

Figure 71: Excel sheet of Main Code data result obtained by varying both selling and purchasing price in an increasing way  

 

 

 

  

  

 

 

 

 

 

Figure 72: Excel chart obtained by varying both selling and purchasing price in an increasing way 
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The fourth test related to the second analysis is obtained by varying both the selling price and purchase price 

of energy in their intervals of interest, but this time in opposite ways to each other: 

Figure 73: Excel sheet of Main Code data result obtained by varying both selling and purchasing price in a mutual opposite way 

 

 

 

  

   

 

 

 

 

 

Figure 74: Excel chart obtained by varying both selling and purchasing price in a mutual opposite way  
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opposite goes for the energy price. This is far from illogical since if it costs more to buy the energy than to 

sell it then it makes sense to produce it with a PV plant. If, however, the PV plant's investment cost is really 

high and selling energy to the grid at a low price does not give a valid economic return it is better to use a 

high battery capacity to store and consume that energy. This is the more possible the lower the investment 

cost is and by doing so there would be an increase in energy performance by improving self-consumption 

and self-sufficiency. By no longer buying this energy from the grid at a high price a high IRR of the investment 

is guaranteed. 

 

  

CONCLUSIONS 

The output results of the final code show how it provides a useful tool that can optimize the energy 

performance and economic viability of BESS in the construction of photovoltaic plants. The results of the 

analysis conducted by varying the sale and purchase prices, as well as the investment costs of BESS and PV, 

lead to the conclusion that achieving the highest possible economic return from the investment while 

minimizing its cost requires a balance between the size of the optimal battery capacity and the IRR of the 

investment. Increasing the optimal battery size leads to improved energy performance, but it must still 

remain within the limits of a more profitable investment than PV plant alone. To achieve this balance, it is 

necessary to have a high investment cost of PV plant and a low investment cost of BESS with a wide economic 

gap between them. Additionally, if the investment costs of the PV plant is high, it is better to use a high 

battery capacity to store and consume energy, resulting in increased energy performance and in the highest 

possible IRR of the investment. Overall, the findings emphasize the importance of carefully considering the 

trade-offs between investment costs, battery size, and IRR in achieving the highest possible economic return 

while improving energy performance. 
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