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Abstract

In this thesis, di�erent mathematical models which describe the cell growth in bacterial
cells, are studied. In particular the e�ect of metabolic load is explored.
Beyond the modeling of the cell system, the identi�cation of the most suitable growth
rate law represents a key point in the whole analysis.
Despite several growth rate functions are proposed in the literature, most of them are ap-
plied to a speci�c case, namely to a cell in its unperturbed con�guration (i.e., no metabolic
load is added), which is a particular case.
Since the results are strongly in�uenced by the growth rate, �rst the already developed
(from the current literature) growth functions were tested using mathematical simula-
tions, in particular highlighting the possible disagreements with the biological knowledge,
which allow to reject some of them.
Furthermore, some alternative functions from personal intuitions based on biological evi-
dence were proposed and tested as well.
The �nal goal is to identify a growth rate function that can be applied to models with
di�erent levels of complexity, leading to coherent results.
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Chapter 1

Introduction

1.1 Context and Motivation

In the last years, the study of the biological systems have caught more importance: a
deeper understanding of the inner mechanisms of cells, tissues, organs and human body
can bring signi�cant contributions in the development of new drugs, therapies, other than
biomedical devices in a more general sense.
In this thesis, the system of a single cell of Escherichia Coli will be modeled and its growth
will be analyzed; in particular the e�ects of a metabolic load on it will be examined. In
other words, the cell will be seen as input-output system, where the load is the input and
the growth rate the output.

Figure 1.1: Cell as input-output system.

Furthermore, it is also possible to extend the case of study, considering a population of
cell and analyzing the relations between them or how they in�uence each other.
In general, the comprehension of how the cell (or the population) behaves in di�erent
con�gurations and conditions (in other words the design of a realistic model that best
approximates the true system) plays a fundamental role in many disciplines. Additionally,
it can be used to estimate in advance the results of the laboratory experiments.
Here the discipline of systems biology plays a fundamental role, in particular for the
derivation of the mathematical models, which is the preliminary step before to proceed
with the analysis of the load e�ects on the cell growth.
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8 CHAPTER 1. INTRODUCTION

1.2 Systems Biology and its importance

Systems Biology has been de�ned as an alternative approach in the research �eld of
biology, biochemistry, immunology, biotechnology and biomedical engineering.

Systems biology is based on the understanding that
the whole is greater than the sum of the part.

� Dr. Nitin Baliga

Instead of studying the singular components, this discipline is focused on the analysis of
the whole system. It can be applied at di�erent levels: organism, tissue or cell. In this
particular case, it will be used for the modeling of a single cell system.
It has been introduced for facing the complexity of the biological systems: indeed it was
not worth to study each component singularly and then to sum all the contributions,
because the relations between the parts can not be su�ciently highlighted. Therefore
the understanding of the inner networks has been preferred to the analysis of the single
elements.
Additionally, systems biology integrates several scienti�c �elds as engineering; according
to that, several concepts and approaches play a fundamental rule for the comprehension
and analysis, such as systems theory and mathematical modeling. Furthermore the co-
operation between these two disciplines provides new methods for facing the challenges
in both areas. Moreover, the possibility to model the biological systems allows to study
their dynamics in a simulated environment, that permits to avoid (at least in a �rst mo-
ment) all the problems and/or challenges in the experimental design. At the same time,
this type of approach may consent to eliminate some hypotheses or theses, reducing the
number of experiments to perform. Thus, this should lead also to the reduction of the
research costs.

1.3 Challenges

The challenges handled in this thesis were basically two: to model the cell system and to
de�ne a growth rate function.
The �rst challenge will be faced considering a pool of chemical reactions that describe the
processes that occur in the cell; these have been derived from the available literature on
the cell biology. Since it is not feasible to examine the totality of the possible reactions
that take place in the system, only the most signi�cant for the declared aim will be
taken into account. In other words, during the modeling process, some variables will
be considered constant or some reactions will be approximated, in order to reduce the
number of components that characterize the system.
The second one has been revealed as the most challenging. Most of the articles in the
literature consider the growth rate as a constant so just few examples of the growth rate
of the bacterial cell can be found and, additionally, no data sets are available, making
an eventual process of estimation and/or �tting unfeasible. Therefore, from the available
articles, the proposed growth rate functions will be examined and tested with the designed
models. Additionally, other functions will be derived based on biological knowledge.
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1.4 Personal contribution

Even though it has been proved (by some laboratory experiments) that the integration of
a burden in the cell modi�es the growth rate, the current literature does not characterize
it with a suitable model.
Indeed, as explained previously, the studies on cell modeling do not consider a variable
growth rate or, in the best case, they evaluate it in the unperturbed case, namely when
there is no metabolic load added. This is a clear limitation and the goal of this thesis is
to provide an original model that can be e�ciently used to predict the cell behavior (in
terms of growth rate) in the loaded case.
Firstly, mathematical models will be derived in order to represent the cell system with a
su�cient level of description; afterwards several growth rate functions will be tested and
the obtained results will be compared with the biological evidences in order to validate
or reject the chosen function. Finally, the most suitable growth rate function for the
characterization of the cell growth will be identi�ed.
It is interesting to highlight the future potentialities of this approach. In fact, once a
detailed model of the system has been derived, the load in input can be used to control
the growth of the cell, namely it can be seen as control input. In this way, a dangerous
bacterium may be killed modifying the amount of proteins to be synthesized inside it.
Future studies and developments could be dedicated to implementing and designing a
suitable controller. Afterwards, involving further research �elds, such as synthetic biology,
this controller may be physically assembled.
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Chapter 2

Systems Biology of Cell Growth

2.1 Modeling in Systems Biology

In this �rst section, the bases for the modeling of biological and biochemical systems will
be established.
First, it will be speci�ed how to derive the set of di�erential equations starting from
the biochemical reactions, and then two possible analyses of this pool of ODEs will be
presented. Afterwards, the biological scenario will be introduced, in order to provide an
overview of all the components of the cell, before to proceed with the actual modeling
process.

2.1.1 From Kinetics equations to ODE

The biological systems can be modeled in di�erent ways, depending on the level of de-
scription and resolution wanted.
However, the shared principle behind all the possible approaches is that the model is
used for analysing and making predictions on already existing systems. Starting from the
chemical reactions which occur in it, the aim is to derive a set of di�erential equations.
In this thesis, the chemical reactions have been modelled using the Reaction Rate Equa-
tions method. According to this method, the system is considered as a set of species Si
that interact with each other and in particular it takes into account the concentration xi:

xi = [Si] =
nSi

Ω
(2.1)

where nSi
is the number of molecules of the species Si and Ω is the given volume.

Furthermore, the application of this method is based on a strong assumption: all the
reactions occur in a well-stirred volume, which means that the rate of interaction between
two species is uniform and it does not have any spatial in�uence.
The �nal aim is, as already declared, to describe the system with a set of di�erential
equations

ẋ = f(x, θ) (2.2)

where x ∈ Rn is the vector that contains all the species of the system, θ ∈ Rp is the vector
of the parameters and f : Rn × Rp −→ Rn rules the change in the concentrations.

11



12 CHAPTER 2. SYSTEMS BIOLOGY OF CELL GROWTH

Figure 2.1: Di�erent methods of modeling biomolecular systems [6].

In order to describe the process of derivation of the di�erential equations, a basic biomolec-
ular reaction is proposed as example, namely:

A + B
kf−−⇀↽−−
kr

AB (2.3)

The reaction 2.3 can be interpreted as follows: every time the forward reaction occurs, the
number of molecules of A (nA) and B (nB) must be decreased by one, while the number
of molecules of AB (nAB) must be increased by one. The reasoning is the same with the
reverse reaction ( nAB must be decreased while nA and nB must be increased by one).
However, just one reaction at a time can occur and it is regulated by the likelihood. In
particular, the likelihood of the forward reaction (in a time interval dt) is:

af (q)dt = (kf/Ω)nAnBdt (2.4)

where q is the con�guration of the system and kf is the parameter that depends on the
reaction (rate of association). For the reverse reaction, the likelihood is:

ar(q) = krnAB (2.5)

where kr still depends on the reaction (dissociation rate).
Now the equation that expresses the variation of nAB can be written considering also the
contribution of the likelihoods:

nAB(t+ dt) = nAB(t) + af (q − ξf )dt− ar(q)dt (2.6)

The number of molecules after a time interval dt is the amount at the previous instant
nAB plus the contribution of the forward reaction (ξf represents the change in the con-
�guration) and minus the contribution of the reverse reaction. Both the contributions of
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the likelihood can be roughly seen as the probabilities that the reaction takes place.
To convert 2.6 into an equation that involves the concentrations, it is enough to divide
each term for the given volume Ω and to substitute the expression of the likelihoods with
2.4 and 2.5:

[AB](t+ dt) = [AB](t) + (kf/Ω
2)nAnBdt− krnAB/Ωdt (2.7)

Furthemore, since nA/Ω = [A], nB/Ω = [B] and nAB/Ω = [AB]:

[AB](t+ dt)− [AB](t) = (kf [A][B]− kr[AB])dt (2.8)

If dt −→ 0:
d

dt
[AB] = kf [A][B]− kr[AB] (2.9)

which is the di�erential equation that regulates the changes in concentration of the species
AB.
In a quite similar way, the equations of A and B can be derived:

d

dt
[A] = kr[AB]− kf [A][B] and

d

dt
[B] = kr[AB]− kf [A][B] (2.10)

For sake of simplicity, in the next chapter the concentrations of the species will not be
indicated with the squared brackets (i.e [AB] −→ AB).

2.1.2 Rapid Equilibrium versus Steady State assumption

Once the di�erential equations have been derived, the dynamics can be investigated.
For a generic system, the study of the equilibrium points is usual performed. The con-
�guration that the system reaches at the equilibrium is called Steady State and it can be
obtained setting all the di�erential equations to zero:

df(x, θ)

dt
= 0 (2.11)

However, a di�erent analysis can be executed with biological system, which takes into
account the velocity of the reactions and it is called Rapid Equilibrium [12].
Consider a generic enzymatic reaction:

E + S
a−−⇀↽−−
d

C
k−−→ E + P (2.12)

where E is the enzyme, S is the substrate, C the complex and P the �nal product.
Furthermore, a and d are the association and dissociation constant respectively, while k
is the catalytic rate constant.
The corresponding set of di�erential equation (without consider any degradation) is:

Ṡ = −aES + dC (2.13)

Ė = −aES + dC + kC (2.14)

Ċ = aES − (d+ k)C (2.15)

Ṗ = kC (2.16)

Nevertheless, it can be assumed that the �rst reaction in 2.12, namely the formation of
the complex C is faster than the synthesis of the �nal product P and consequently it



14 CHAPTER 2. SYSTEMS BIOLOGY OF CELL GROWTH

reaches �rst the equilibrium.
Setting equation 2.13 equal to zero, one obtains:

ES

C
= Kd where Kd =

d

a
is called dissociation constant (2.17)

In addition, the total amount1 of the enzyme ETOT = E + C is usually constant at the
equilibrium, thus it can be substituted into the equation at the equilibrium 2.17:

(ETOT − C)S

C
= Kd −→ C =

S

Kd + S
ETOT (2.18)

Going back to the starting enzymatic reaction, now the amount of product P at the Rapid
Equilibrium can be computed as follows:

P = kC = kETOT S

Kd + S
= Pmax

S

Kd + S
(2.19)

which is called Michaelis-Menten kinetics and it describes the evolution of the �nal prod-
uct P as function of the substrate S (Figure 2.2).

Figure 2.2: Michaelis-Menten kinetics

It may be interesting to compare this result to the Steady State one. From equation 2.14:

Ė = −aES + dC + kC = −a(ETOT − C)S + dC + kC = 0 (2.20)

and then:

C =
ETOT

1 + d+k
aS

=
ETOT

1 + Km

S

where Km =
d+ k

a
is called half saturation constant

(2.21)

1The total amount of a species STOTi is de�ned as summation of the species itself Si and the complexes
that are directly derived from it.
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Hence, the product P at the Steady State is:

P = kC = kETOT S

Km + S
= Pmax

S

Km + S
(2.22)

which is instead called Briggs-Haldane kinetics.
In conclusion, the Rapid Equilibrium study is based on the assumption k << d, which
means that the association and dissociation of the substrate are faster than the product
formation. Instead, the Steady State does not consider any relation between the rates of
the reaction. Due to this considerations it is possible to assert that the Michaelis-Menten
is a special case of Briggs-Haldane.
It is worth to recall that the set of ODEs (from 2.13 to 2.16) does not take into account
any degradation of the components. However, if it would be consider, the equation of
P (2.19) at Rapid Equilibrium would not change, since it is based on the velocity of the
reactions. Instead, the computation of the equilibria at the Steady State would lead to a
di�erent formulation compared to 2.22.

2.1.3 Biological Scenario

Now the bases for the modeling of the biochemical systems have been established.
Before to proceed, the biological scenario must be introduced, namely the chemical reac-
tions and the components involved.
In this dissertation, the growth of a single cell of Escherichia Coli has been analysed.
As already speci�ed in Paragraph 2.1.1, the cell system is modelled starting from a pool
of chemical reactions. These can be divided into four main categories: transcription,
translation, degradation and synthesis, which are represented in Figure 2.3.

Transcription: Its standard form is:

D + RNAP
p+−−⇀↽−−
p−

CTR
ω−−→ D + m + RNAP (2.23)

During this phase, the DNA (D) is converted into mRNA (m). More speci�cally,
this happens with the support of the RNA polymerase (RNAP ), which is able to
"open" the double helix of the DNA. This initial process forms an open complex
(CTR). Afterwards, the RNAP can proceed with the formation of the mRNA
sequence, which contains also a region called Ribosome Binding Site (RBS ), needed
for the next process.
In the following, the reaction of the transcription will be approximated2 as:

D
ω−−→ D + m (2.24)

Translation: Its standard form is:

m + R
a−−⇀↽−−
d

c
β−−→ m + R + P (2.25)

It follows the Transcription. Once the mRNA is produced, the ribosome R binds
it in the RBS region, forming the complex c. Then actual translation process can
begin (reaction 2.25). The �nal product is the protein P .

2Under the assumption that RNAP is constant (further details in Appendix B.).
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Degradation: All the components are subjected to decay. This is pointed out by the
reaction of degradation, which is:

A
ψA−−→ 0 (2.26)

where A is a generic component and ψA is the rate of death that depends on the
component. In the following, it will be explained that µA is the actual summation
between the spontaneous decay of A and the growth rate of the cell (its importance
will be discussed in the next paragraph).

Synthesis: The last reaction to be considered is the (generic) synthesis. Its general
form contains two reactants A and B and a �nal product C (usually one reactant
is a protein, while the other is a RNA):

A + B
ε−−→ C (2.27)

where ε is the rate of association between the reactants. This reaction will be mainly
used for the process of ribosomes formation.

Figure 2.3: Sketches of chemical reactions

In particular, the transcription and translation together lead to the protein synthesis,
which is the main biochemical process that takes place in the cell. Indeed proteins are
responsible for many aspects of the cellular life, including cell shape and inner organi-
zation, product manufacture and waste cleanup, and routine maintenance; furthermore
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they receive signals from outside the cell and mobilize intracellular response ([14]). Even
though di�erent proteins3 are assigned to di�erent tasks, all of them share one component:
the ribosome R. From this statement, it is straightforward to understand the importance
of the ribosomes; they are constituted by some of the 52 ribosomal proteins contained in
the cell (R-Proteins, P ) and three ribosomal RNAs (rRNA r,[10],[13]), namely:

P + r
σp−−→ R (2.28)

Additionally, since the cell system is very complex and it contains many di�erent species,
some have been gathered together based on their components and/or their �nal products.

Ribosomal species : It is a general compartment (Figure 2.4) that groups together all
the species that involve ribosomes R. In particular, in the following there will
assume the existence of only three species.

Basal species B: It gathers together all the species that are fundamental for the survival
of the cell (i.e., they produce proteins that are needed for the basic cell life).

R-Protein species P : It is known from the literature that the bacterial cell contains
52 types of R-Proteins ([13]), which are proteins that participate to the ribosomes
synthesis. Since it is not worth to consider them singularly4, they have been gathered
into the more general R-Protein species.

Load species L: The load species produces a protein that requires a not negligible
amount of energy and consequently in�uences the system. Usually the green �uores-
cent protein (GFP) is used in the laboratory experiments, since it can be quanti�ed
using the spectrophotometer 5.

Figure 2.4: Compartment of ribosomal species

3Di�erent proteins come from di�erent mRNAs.
4If every type of R-Protein would be considered, there would need 52 equations just for describing

the R-Proteins dynamics.
5Roughly, the sample is crossed by a beam and the device measures the intensity of the exiting light

radius as function of the wavelength. In biochemical experiments, the spectrum allows to quantify the
level of expression of the proteins.
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2.1.4 Biological Feedbacks

The importance of the ribosomes has been already introduced in the previous paragraph.
Therefore, the cell tends to control their production in order to guarantee the right amount
in order to ful�ll the metabolic requirement.
It is known from the literature that there exists an inner feedback that rules the synthesis
of the ribosomes and its aim is to prevent to accumulation of them in the cell. It may
sound counter intuitive, since the more available ribosomes, the more synthesized pro-
teins, the more ful�lled tasks.
However, the reason why the cell seeks to limit the concentration of ribosomes lies in
the needed energy. Indeed, as all the cellular processes, the ribosomes synthesis require
energy (i.e. ATP), it is not worth to produce more ribosomes than the needed amount.
Because of the components involved in the synthesis (2.28), the feedback should concern
at least one between R-Protein and rRNA.
One of the ribosome feedback model ([8]) proposed in the literature states that the cell is
able to prevent the accumulation by using a feedback regulation on rRNA. In particular,
this is an auto-regulatory process through a negative feedback loop ([9]). Nevertheless,
other authors ([11]) have asserted that it may exist a mechanism that regulates the parallel
production of R-Proteins and rRNAs. This should guarantee to have similar concentra-
tions for both the two reactants, since the lacking amount of one component plays the
role of limiting factor in the ribosomes synthesis, as it can be easily observed in 2.28. In
other words, it does not make sense to produce a huge amount of rRNA if the R-Proteins
are missing and vice versa.
Furthermore, in Nomura et al. ([10]), it has been demonstrated that certain R-Proteins
work as inhibitors of protein synthesis from their own mRNAs.

Figure 2.5: Sketch of the inhibitory feedback

A rough scheme of this feedback mechanism is shown in Figure 2.5. As already speci�ed
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in the previous paragraph, for sake of simplicity all the di�erent species of R-Proteins are
gathered together in an unique species P , same for the rRNAs which have been grouped
together into the generic component r.
Moreover, the regulation of the ribosomes synthesis can be seen as the result of the compe-
tition between rRNA and mRNA. Indeed the set of reactions that regulates the inhibition
is the following:

P + mp
αp−−→ P : mp (2.29)

P : mp
γ−−→ P (2.30)

P
µ−−→ 0 (2.31)

In particular, the reaction 2.29 must compete against 2.28.
However it is reasonable to expect that the a�nity of R-Protein with rRNA is higher
([11]) than with mRNA, otherwise the inhibition would be stronger than the synthesis,
which is a contradiction.

In this �rst part of the chapter, the bases for the modeling process have been analyzed.
Particular emphasis has been attributed to the biological scenario, which must be de�ned
in advance, in order to better understand the following steps.

2.2 Modeling Growth, Load and their relation

In this second part, the problem of de�ning the cell growth will be introduced.
In particular, the importance of the cell growth will be discussed as �rst. Afterwards,
it will be proved that it is ruled by a parameter, called Growth Rate. However, this
parameter will not be considered constant. Consequently, the last part will concern the
literature related to the growth rate function.

2.2.1 Importance of the Growth

The bacterium Escherichia Coli6 reproduces by the cell division and this process is called
Binary Fission.
This starts from the replication of the unique circular DNA, which is the responsible for
the genetic pool of the cell. Because of that, the replication of DNA is a fundamental
process since it must ensure that the new cell will contain all the proteins needed for the
life. Even though the whole process of duplication of the cell will not be debated in this
thesis, it is interesting to analyze the needed time and the conditions of the cell growth,
other than the e�ects on the system.
For example, it is known that the binary �ssion process of cell of Escherichia Coli, at 37°C,
takes 40 minutes but it can be reduced to 20 minutes ([1],[7]) in particular conditions of
nutrients. The needed time for the duplication of a single cell is called Doubling Time τ .
The binary �ssion has an important in�uence on the cell system. Indeed, it is worth to
recall that this process implies that the genetic material of the cell is divided into two
equal parts, one remains at the mother cell, while the other is transferred to the new born.
Consequently, the loss of some genetic material due to the duplication must be taken into

6The cell of Escherichia Coli contains just one circular DNA.
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account in the modeling. Since it concerns a single cell, and not the entire population,
the components can be assumed as simply consumed7. Therefore, this can be assumed to
be equal to a degradation reaction (Paragraph 2.1.3), namely:

A
λ−−→ 0 (2.32)

which indicates that the generic component A of the cell is simply dissipated. The rate
λ, which is called Growth Rate8, indicates the velocity of the growth and it is related to
time t needed for the growth, and in particular to the parameter τ , as it will show in the
following.
The growth phase of a cellular population is ruled by the equation:

x(t) = x0e
tλ (2.33)

where x is the number of cells in the temporal instant t and x0 is the initial condition of
the population. By the de�nition of doubling time, equation 2.33 can be rewritten as:

2x0 = x0e
τλ (2.34)

and consequently:

λ =
ln 2

τ
(2.35)

Even though 2.35 has been derived from an equation that expresses the dynamics of a
population of cell, it can be easily adapted to the single cell case. Indeed, all the elements
in the cell grow linearly with the cell itself, so it is su�cient to consider x as amount of a
certain component instead of as number of cells.
Finally, it is important to not confuse the growth rate λ with the spontaneous decay, even
though they are represented by the degradation reaction 2.26, where ψA can be either the
growth rate or the spontaneous decay rate. Indeed, while the �rst is related to the growth
of the cell, the second descends from the assumption that all the components can not
last forever, but they are subject to a natural decline. Consequently, the pool of chemical
reactions will contain two di�erent degradation reaction for each component. Thus, they
can be summed up in a unique reaction:

A
µA−−→ 0 (2.36)

where µA is called Degradation Rate and it is the summation between the growth and the
spontaneous decay rate.

In most of the experiments and articles from the literature, the growth rate has been
considered constant, namely all the calculations have been made based on the assump-
tion that the cell (or the population) is always in its maximal growth condition.
Instead, the aim of this dissertation is to perturb the system using a metabolic load, in
order to appreciate the e�ect on the growth. Because of that, the growth rate can not
be assumed constant anymore, but it will be studied as function that depends on certain
components of the cell.

7The fact that they will be transferred to a new born cell is not considered, since the system is a single
cell.

8This parameter is here applied to the single cell model, but it is used also for expressing the velocity
of growth of a cellular population.
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2.2.2 Literature on Modeling

In the previous paragraph, the importance of the growth rate has been debated. As al-
ready stated, this parameter is not constant, so it is fundamental to understand which
components (of the cell) the growth rate depends on.
There are several articles and contributions from the literature which assert that the
growth function depends on the ribosomal content. However, as discussed in Paragraph
2.1.3, the ribosomal compartment is wide and it includes di�erent species. Nevertheless,
some contradictions or inaccuracies compared to the biological evidence can be found,
especially because most of the authors have focused their own research on cells without
considering the in�uence of a metabolic burden.

In Allen G.Marr [1], the proposed model for the cell growth is a linear function de-
pendent (Figure 2.6) on the total number of ribosomes RTOT 9.

Figure 2.6: The graphs shows the concentration of the ribosomes as function of the speci�c
growth rate. The symbols � are values computed from a speci�c data set, while the solid
line is the analytical solution of a given equation [1] .

In this work, the metabolic load has not been considered. The critical aspect of this
article comes from the assumption that the growth rate depends on RTOT . In fact, this
implies that the metabolic burden will not impact the growth rate of the cell. In other
words, the addition of the load will simply re-arrange the inner proportions of the com-
partment RTOT . Hence, it should be possible to observe the same growth in both the two
con�gurations (with and without load).
However, this is not consistent with the biological evidences. Even though some biological
experiments show that adding and/or increasing the concentration of the load does not
lead to an instant alteration in the growth rate, it is not reasonable to expect that the
rate will be maintained invariant compared to the unloaded case.

9The total number of ribosomes of the cell is the summation between free ribosomes R and the
ribosomal complexes ci, which are obtained by the bond of mRNA with the ribosome, where i stands for
the species.
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In Chenhao Wu et al. [3], the linearity of the growth rate has been maintained (Fig-
ure 2.7), but it now depends on the di�erence between total active (NR) and inactive
number (N inact

R ) of ribosomes and on the total protein mass (Mp):

λMp = ε · (NR −N inact
R ) (2.37)

Again, the metabolic load has not been considered. Despite the proposed formulation
does not clearly show critical points, it is not possible to draw any conclusion. Indeed,
even though the addition of a metabolic load will in�uence both NR and N inact

R (preferably
increasing NR and decreasing N inact

R ) and consequently modify the growth rate, its new
value can not be predicted, since the formulation 2.37 does not consider the eventual
addition of the burden.

Figure 2.7: Approximate linear relation between the growth rate, the RNA/protein ratio
and active ribosomes/protein mass ratio [3]

Di�erently, in R.Levin et al. [4], the proposed formulation of the growth rate is a �rst
order Hill function dependent on RTOT :

λ = (λMAX − λMIN)
RTOT

(RTOT +K)
+ λMIN (2.38)

where λMAX is the maximum growth rate, λMIN is the death rate andK is the Hill (shape)
parameter. The existence of minimum and maximum values for the growth suggests that
it should exist the equivalent for RTOT . In other words, this model states that the cell
can not grow if RTOT < RTOT

min . Furthermore, it has been assumed that there exists also
a threshold for the maximum amount of ribosomal content that can be produced by the
cell, namely RTOT

max . Again, this model seems to have the same issue as the �rst discussed
one ([1]), namely the dependence on RTOT is not suitable.
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In Atkinson et al. [5], the proposal is a linear growth rate that depends on the ribo-
some complexes ribosomes bound with mRNA):

λ =
γ(a)

M

∑
x

cx (2.39)

where γ(a) is the rate of translation of all the proteins dependent on the the available
energy and M is the total proteome content of the cell.

In Del Vecchio and Murray [6], the growth rate function is not clearly de�ned. Instead,
the authors have provided the ratios of free ribosomes, which is 30% over the total number
of ribosomes RTOT ≈ 34µM (in the exponential phase). Accordingly to this information,
the growth rate has been analytically drawn by �tting a Hill function on the points ob-
tained from the available information.

Figure 2.8: Derived growth rate function [6]

In this second part of the chapter, the importance of modeling the cell growth has been
highlighted. In particular, several articles from the literature have been roughly analyzed,
in order to understand which growth rate functions have been already proposed.
In the following, di�erent models of the cell system will be designed. Their inner dy-
namics, and in particular their growth, will be analyzed, by using di�erent growth rate
functions; some of them will be derived from the exposed articles, others will be inspired
by the biological evidences and the articles.
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Chapter 3

Mathematical Modeling and Analysis

In this chapter, the analysis of the cell growth will be discussed, considering also the load
e�ect on the system. In particular, various growth rate functions will be tested with three
models (which describe the cell system), with di�erent levels of complexity.
First, an overview of all the models and the growth functions will be presented; then every
model will be analyzed individually.

3.1 General Hypotheses and Assumptions

In the following, three models with increasing level of complexity will be presented.
Starting from the structure of simplest model, some chemical reactions have been added,
in order to obtain a model the more comparable as possible to the real biological system.

Figure 3.1: Comparison between the rough structures of the three models

The �rst model M1 considers just three species, namely the basal B, the ribosomal R and
the load L species.
The basal species is referred to the components and the products (mRNAs, complexes
and proteins) that come from the biochemical reactions that are fundamental for the sur-
vival of the bacterial cell. The R compartment simply consists on the free ribosomes.
Finally, the load species groups together the mRNA, the complex and the protein that
are involved in the chemical reaction of the metabolic burden.
In model M2, the complexity is increased by adding the R-Protein P species. This com-
pound gathers together the components (mRNAs and the complexes), other than the �nal
products (proteins) that contribute to the synthesis of R-Proteins, which are needed for
the synthesis of the ribosomes.

25
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Finally, the third model M3 presents the same species of M2, but it is assumed that there
exists a loop that involves the compound P. In the following, this will be identify as a
negative feedback mechanism.

The three models here presented share some general hypotheses and assumptions.
As it has been already discussed in Paragraph 2.1.1, the modeling process starts from the
biochemical reactions that occur in the bacterial cell system. However, these reactions
involve many reactants, products and parameters. Thus, the following hypothesis and
assumptions aim to simplify the models.

Assumption A: It is worth to remind that the transcription process in the protein
synthesis involves also RNA polymerase (see Paragraph 2.1.3). For every model,
the hypothesis of RNAP constant has been assumed (see Appendix B for more
details) in order to simplify the transcription reactions (and consequently reduce
the number of di�erential equations).

Hypothesis B: As already discussed in Paragraph 2.2.1, all the components in the cell
are subject to spontaneous decay, which is not the same for everyone. However,
since it has the same order of magnitude, the spontaneous decay will be considered
equal for proteins, ribosomes and ribosomal complexes (regardless of the species),
in order to reduce the number of parameters in the models. It will be indicated with
δ.
The same reasoning can be applied on mRNA and rRNA (again independently of
the species): their spontaneous decay will be considered equals and indicated with
γ.

Assumption C: The last assumption regards the degradation rate of the mRNA and
rRNA. As declared in Paragraph 2.2.1, the degradation rate is de�ned as summation
between the spontaneous decay and the growth rate. From the literature, it is known
that the spontaneous decay γ is faster than the growth rate λ of the cell. This leads
to the following approximation:

µmRNA,rRNA = γ + λ ≈ γ (3.1)

which proves that the degradation of a mRNA and rRNA molecule just depends on
its decay and not on the growth rate of the cell and consequently it can be assumed
constant over time.

For each model, di�erent growth rate functions have been tested.

Linear Growth Rate: At �rst, a linear growth rate function has been proposed. It
has been obtained from the �tting of the data collected in [1] (these data have been
collected in a single cell without the addition of a metabolic load to be synthesized).
In the cited paper, the hypothesized independent variable is the total amount of
ribosomes in the cell RTOT . Even though this choice does not show issues in the
unperturbed case, it would lead to some incoherent results if the metabolic load
would be added.
Indeed, accordingly to Nikolados et al. [2], the burden impacts the system and in
particular it must cause a decrease in the growth rate. Nevertheless, the addition
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of metabolic load would not in�uence the total number of ribosomes at all if RTOT

is set as independent variable.1.
Despite the discussed issue, the data have been used anyway due to unavailability
of other sets of data but the independent variable has been changed.
Two di�erent formulations of growth rate function have been proposed.

Linear cb: The �rst formulation considers cb, namely the complex of the basal
species, as independent variable. This choice has been made considering the
meaning of the term basal. Indeed it is referred to all the biochemical reactions
that are fundamental for the life of the cell, so it seems reasonable to get the
growth rate depend on it.

Linear Ractive: The second alternative sets Ractive, namely the summation of all
the complexes 2, as independent variable. This has been formulated starting
from the evidences showed in Atkinson et al. [5].

In both cases, the new independent variable is assumed to replace RTOT .

Hill Growth Rate: Alternatively, a Hill growth rate function has been considered. As
in the linear case, two formulations have been examined. Both depend on cb.

HillDV cb: This growth rate functions has been formulated starting from the as-
sumptions presented in Del Vecchio and Murray [6] (as in most of the articles,
they did not consider an eventual addition of load). The authors asserted that,
in the maximal growth conditions, the total amount of ribosomes is �xed and
it is shared between the free ribosomes and basal species. Since a clear for-
mulation of the function has not been reported, an approximated version has
been derived. It has been found out that only the Hill function respects the
given indications.

Hill cb: For sake of completeness, a further Hill function has been proposed. It
has been obtained from the �tting of the data in [1].

The comparison between all the discussed growth rate functions is reported in Figure 3.2.
In the panel A the �tted linear growth rate function is reported, while the panel B shows
the di�erences between the two Hill formulations. In particular, it has been highlighted
the value 34 µM in the x -axis and it represents the maximal amount of ribosomes in the
cell hypothesized by Del Vecchio and Murray [6].

It is not worth to analyze every growth rate function with all the models.
Indeed, the �nal aim is to identify the best growth rate function that produces coherent
results, independently of the complexity of the model. According to that, it does not

1The total number of the ribosomes is the summation between the free ribosomes R and the other
complexes ci (i.e., in M1 : RTOT = R+ cb+ c`). Remind that the complex ci is obtained by the bound of
mRNA and R. Before adding the load, c` = 0. Afterwards, in order to be synthesized, the burden requires
a certain amount of free ribosomes. This can be obtained from the compound of the free ribosomes (if it
is not empty) or it can be stolen from the other complexes. This means that, while c` is increasing, the
other components are decreasing. In conclusion, this proves that the addition of the load recombines the
amount of the individual components of RTOT , but not RTOT itself.

2In M1 : Ractive = cb + c`; in M2 and M3 : Ractive = cb + cp + c`.
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Figure 3.2: Comparison between the growth rate functions

make sense to test a function with more complex structures if it has already led to some
issues.
First, every growth rate functions will be tested with the �rst model M1. Successively,
the functions that have produced suitable results will be analyzed with the second model
M2 (for sake of completeness, also one of the functions that has presented some issues will
be tested as well, in order to con�rm its inadequacy). Lastly, the most complex model
M3 will be examined considering just one growth rate function, which is resulted to be
the best one so far.
The performed tests are resumed in the Table 3.1.

Growth Rate Function λ Variable Model 1 Model 2 Model 3

Linear cb X

Linear Ractive X X X

HillDV cb X X

Hill cb X

Table 3.1: Performed tests

3.2 Model M1

The �rst proposed model is shown in Figure 3.3.
The structure involves three di�erent types of ribosomal species: the free ribosomes R,
the basal cb and c` complexes. Together, they form the total amount of ribosomes of the
cell RTOT .
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Starting from the DNA, the transcription produces themRNA with RBS (Ribosome Bind-
ing Site). This can bind the ribosome with rate ai (where i indicates the species, namely
i = {b, `}). However, this link can be broken with dissociation rate di.
In the building phase of the model, an hypothesis has been made: ci can release the free
ribosome with rate γ.
Furthermore, the translation process creates the protein with rate βi from the ribosomal
complex ci, but also returns the mRNA and the free ribosome used for the bound (this
justi�es the arrow with rate di +βi from the complex to the mRNA and the one with rate
γ + βi from the complex to the ribosome).
In Figure 3.3, also the degradations (γ for mRNA and µ for ribosomes, ribosomal com-
plexes and protein) are considered.
It is worth to specify that an approximation has been made. The process of formation of
the ribosomes R should involve both rRNA and R-Protein, while in this case it is similar
to a transcriptional process, namely R has been derived directly from the DNA with rate
βr.

Figure 3.3: First Model. The yellow and blue expression cassettes represent the basal and
load species respectively. The green cassette stands for the free ribosomes.
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Thus, this model is characterized by the following set of chemical reactions:

Db
ωb−−→ Db + mb

D`
ω`−−→ D` + m`

Dr
βr−−→ Dr + R

mb + R
ab−−⇀↽−−
db

cb
βb−−→ mb + R + B

m` + R
a`−−⇀↽−−
d`

c`
β`−−→ m` + R + L

mb,m`
γ−−→ 0

cb, cl
γ−−→ R

R, cb, c`,B,L
µ−−→ 0

and mass conservation laws:

RTOT = R + cb + c` (3.2)

mTOT
b = mb + cb (3.3)

mTOT
` = m` + c` (3.4)

(3.5)

As already explained, the reactions can be translated into a system of di�erential equa-
tions, as it follows:

ṁb = ωbDb − abmbR + dbcb + βbcb − γmb (3.6)

ṁ` = ω`D` − a`m`R + d`c` + β`c` − γm` (3.7)

ċb = abmbR− dbcb − βbcb − γcb − µcb (3.8)

ċ` = a`m`R− d`c` − β`c` − γc` − µc` (3.9)

Ṙ = βrDr −
∑
j

ajmjR +
∑
j

djcj +
∑
j

βjcj + γ
∑
j

cj − µR

with j = b, ` (3.10)

Ḃ = βbcb − µB (3.11)

L̇ = β`c` − µL (3.12)

ṘTOT = βrDr − µRTOT (3.13)

ṁTOT
b = ωbDb − γmTOT

b − µcb (3.14)

ṁTOT
` = ω`D` − γmTOT

` − µc` (3.15)

A further approximation can be made. Considering the relation between γ and µ (γ >> µ)
and knowing that mTOT

i ≥ ci (easily derived from equations 3.3 and 3.4), then equations
3.14 and 3.15 become:

ṁTOT
b ≈ ωbDb − γmTOT

b (3.16)

ṁTOT
` ≈ ω`D` − γmTOT

` (3.17)

In the following analysis, the approximated version will be considered.
The set of di�erential equation can be studied in Steady State condition. In particular,
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while equations 3.16 and 3.17 have a closed form solution, namely:

mTOT
b =

ωbDb

γ
(3.18)

mTOT
` =

ω`D`

γ
(3.19)

the others must be solved numerically. The numerical solutions have been computed using
the method fsolve from Matlab.

3.2.1 Parameters' Value based on Maximal Growth Conditions

Before to proceed with the analysis of the system, some parameters must be estimated,
since their value is not available in the literature.
As an interesting starting point one could examine the conditions that lead to the maximal
growth of the cell.
In order to establish those conditions, the model without the metabolic load must be
considered.
However, since the literature does not provide an unique formulation for the maximal
growth, the estimations depend on the chosen assumptions. In this case, the point of
view of Del Vecchio and Murray [6] has been pursued.
As claimed by them, the partition of the ribosomes is the following:

cb =
2

3
RTOT
max (3.20)

R =
1

3
RTOT
max (3.21)

where RTOT
max ≈ 34µM is the total number of ribosomes in the maximal growth condition

and µmax = λmax + δ ≈ 2.05h−1.
Consider now the di�erential equations of RTOT (3.13) and mTOT

b (3.14) at the steady
state.
From 3.13, the value of βrDr can be derived simply by the substitution of RTOT and µ
with RTOT

max and µmax respectively, namely their value at the maximal growth:

βrDr = µmaxR
TOT
max (3.22)

To obtain ωbDb, the equation of the manifold related to the basal species (see Appendix
C for the derivation of the manifold) must be combined with 3.14:{

cb = R
R+Kb

mTOT
b

0 = ωbDb − γmTOT
b − µcb

(3.23)

Replacing cb and R with 3.20 and 3.21 respectively and substituting mTOT
b in the second

equation, the value of ωbDb in the maximal growth condition has been obtained:

ωbDb =
2

3
RTOT
max (γ − µmax) +

2

3
γKb ≈

2

3
RTOT
max (γ +Kb) (3.24)
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where the approximation is possible since γ >> µmax.
Under the assumption that Kb is very small 3 a further approximation is possible, namely:

ωbDb ≈
2

3
RTOT
max (γ +Kb) ≈

2

3
RTOT
max γ (3.25)

3.2.2 Analysis of RTOT variation

Ahead of studying the load e�ect, a prior analysis on the distribution of the total amount
of ribosomes RTOT among the di�erent ribosomal species (R, cb and c`) has been per-
formed.
The concentration of RTOT is limited in the cell. Because of that, the species must com-
pete for obtaining the needed ribosomes for their reactions. Thus, the aim of this study
is to understand which parameters regulate the competition for the ribosomes between
di�erent species.
The dynamics of the components is described by equations 3.8, 3.9 and 3.10 and their
value at the Steady State can be computed simply setting the di�erential equations equal
to zero. These do not have a closed form solution and then they must be solve numerically.
However, under the assumption that the reactions of association and dissociation of com-
plexes are fast processes (compared for example to the �nal synthesis of the proteins),
a further analysis has been proposed, namely the study of the Rapid Equilibrium (more
details in Paragraph 2.1.2).
According to that, it is possible to derive the manifolds of cb and c` (as explained in
Appendix C):

cb =
R

R +Kb

mTOT
b c` =

R

R +K`

mTOT
` (3.26)

while the value of R can be computed by using the mass conservation laws of RTOT and
the manifolds:

RTOT = R + cb + c` −→ RTOT = R +
R

R +Kb

mTOT
b +

R

R +K`

mTOT
` (3.27)

As it can be easily noticed, this formulation leads to results which are not a�ected by
the chosen growth rate function. Instead, it is just subject to the total amount of mRNA
content (mTOT

i ) and the strength of the ribosome-mRNA bound, which corresponds to
the dissociation constant Ki = di/ai.
Equations 3.26 and 3.27 must be solved numerically 4. A closed form solution of these
equations (which are Hill functions) is possible only if the manifolds are approximated
with a piecewise linear function (further details in Appendix D):

ci =
R

R +Ki

mTOT
i −→ ci ≈

{
mTOT

i

Ki
R , R ≤ Ki

mTOT
i , R > Ki

(3.28)

3Remind thatKb is de�ned as the ratio between ab and db. This assumption means that the association
rate between the ribosome and the mRNA is stronger than the dissociation.
This is reasonable because the basal species is committed to the fundamental processes of the cell, namely
the proteins produce from the basal complex are necessary for the cell's life. In this term, assuming a
strong bound between the ribosome and the basal mRNA sounds plausible.

4Remember that RTOT is the independent variable in this analysis.
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In Figure 3.4, the evolution of di�erent components is plotted as function of RTOT . The
continuous lines represent the real evolution, obtained from the numerical solutions of
the equations 3.26 and 3.27. The dashed lines indicate their approximation, based on the
general competition analysis (Appendix D).

Figure 3.4: Competition between ribosomal species with Kb << K` and m
TOT
b = mTOT

` .
The yellow, blue and green dashed lines represent the approximate evolution of cb, c` and
R respectively. R̃TOT

1 and R̃TOT
2 are the breaking points.

The approximate functions is used to predict the behavior of the ribosomal components.
Indeed, the study of the breaking points gives information regarding the rise of the com-
plexes and, in particular, when they start to approach their maximal value. From the
approximate system in 3.28, it is straightforward that the �rst complex to reach its max-
imum has the smallest K. Thus the order of rising is just regulated by the dissociation
constants. This is coherent also from a biological point of view. At the beginning, the
amount of available ribosomes is limited. When the species start to compete, only the
one with the strongest association rate (which implies the smallest K) can rise, while the
others do not have enough strength to bind the needed ribosomes. Furthermore, they are
not even able to steal the ribosomes from the already synthesized complex. Thus, when
the complex has reached its maximal value, which means that it does not need other
ribosomes, the species with the second smallest dissociation constant can start to grow.
Moreover, the computations in Appendix D shows that the breaking points R̃TOT

1 and
R̃TOT

2 depend from both the dissociation constants and the total amount of mRNA. This
is reasonable because, as already explained, one species can start to grow when the pre-
vious (i.e., species with a lower dissociation constant) has reached its maximal value 5,
which is mTOT .

5This statement can be easily proved computing the value of 3.28 for R −→∞.
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Figure 3.5: Ratio between ribosomal species and RTOT

Furthermore, the ratios between the ribosomal complexes and the total amount of ribo-
somes are shown in Figure 3.5. This clearly shows that only one species can grow at a
time.
To sum up, it has been proved that the competition between the ribosomal species is
regulated by the dissociation constants and the total amount of mRNAs.

3.2.3 Analysis of Load e�ect

Afterwards, it is interesting to extend the analysis in order to better understand the load
e�ects on the system 6, in particular on the cell growth, starting from the dynamics de-
scribed by equations from 3.6 to 3.15.

In this study, the equilibria have been studied as function of the burden. This is char-
acterized by three parameters, which are: the dissociation constant K`, the transcription
rate ω` and the translation rate β`. From a biochemical point of view, the easiest to
adjust is ω`

7. Thus, the assumed choice is to vary the transcriptional rate, while the
other parameters are kept invariant.
In particular, the evolution of cb, c`, R and RTOT have been considered. Despite the
mRNAs and the proteins are changing as well, they do not in�uence the growth of the
cell directly (indeed, considering all the cited growth rate functions, they depend uniquely
on the ribosomal components). Due to that, the study of the evolution of these elements
is not fundamental for the aim of the analysis.
Moreover, di�erently from the previous case, now the degradation µ is involved in the
system. In fact, even though the evolution of the complexes can be still derived from the

6Further details regarding the Matlab implementation are available in Appendix G
7The transcription rate can be regulated by modifying the promoter of the load.
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manifolds equations 3.26, the di�erential equation of RTOT 3.2 at the equilibrium is:

RTOT =
βrDr

µ
(3.29)

This means that the results are strongly in�uenced by the chosen type of growth rate.

Following the order in Table 3.1, all the growth rate functions have been tested and
the simulations are collected together in Figure 3.6.
The �rst growth rate that has been analyzed is the Linear function dependent on cb,
shown in Panel A. Even though the obtained growth rate seems to respect the biological
evidences (i.e., the increase of the load should not immediately lead to a reduction of the
growth rate), some issues can be found in the graph of the evolution of the equilibrium
points. Indeed, the augmentation of the transcription rate of the burden can not cause an
increment in the total amount of the ribosomes RTOT . This fact is also inconsistent with
the plotted growth rate: the drop of the growth can not justify the rise of the ribosomes.
Afterwards, the Linear growth function dependent on Ractive has been considered. The
result is shown in Panel B. Di�erently from the previous case, now RTOT is initially de-
creasing while µ is rising. After a starting transitory, the growth rate remains constant.
This is coherent with the behavior of the ribosomal complexes, since Ractive = cb + c`.
Later, some other tests have been executed. Instead of a linear, a Hill growth rate func-
tion has been examined.
First, the Hill formulation from Del Vecchio [6] has been considered (HillDV ) and shown
in Panel C. Here, the same issue as with linear function dependent on cb can be observed.
Again, while µ is decreasing, RTOT is rising.
Additionally, it is worth to notice that the growth rate has a starting value of ≈ 2h−1,
while in all the other cases it starts from lower values. The explanation comes from the
computation of the maximal growth conditions. Indeed, as speci�ed in Paragraph 3.2.1,
the values of cb,max, Rmax and RTOT

max have been derived from [6] in absence of the load
(ω` = 0), and consequently they ensure the maximal growth rate only with this type of
growth rate and only at the beginning of the analysis, namely when the burden has not
been applied yet.
Lastly, the Hill growth rate obtained from the �tting of data (from [1]) has been examined
(Panel D). Since the only di�erence with the previous proposal is the parameters that
characterize the Hill, the results are similar, so that the observed issues.
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3.3 Model M2

An extension of the �rst model has been formulated and it is shown in Figure 3.7.
The main di�erence with M1 regards the process of formation of the free ribosomes R.

While in the previous formulation it was approximated by the reaction Dr
βr−−→ Dr + R,

now a more realistic reaction have been examined, in order to improve the conformity
between the model and the actual system, and it involves rRNA and R-Protein. Conse-
quently, this modi�cation necessarily leads to the addition of a new ribosomal component,
namely the R-Protein species.
All the other assumptions regarding the transcription and translation phases, the asso-
ciation and dissociation processes and the degradation are invariant with respect to the
�rst proposed model.

Figure 3.7: Second Model. The yellow, red and blue expression cassettes represent the
basal, the R-Protein and load species respectively. The green cassette stands for the free
ribosomes. The red square highlights the added components, in respect of the �rst model.

Therefore, the set of chemical reaction has been modi�ed. New reactions have been added
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in order to replace Dr
βr−−→ Dr + R:

Dr
βr−−→ Dr + r

Dp
ωp−−→ Dp + mp

mp + R
ap−−⇀↽−−
dp

cp
βp−−→ mp + R + P

r + P
σp−−→ R

mp, r
γ−−→ 0

cp
γ−−→ R

P
µ−−→ 0

Now βr is the rate of formation of rRNA and σp is the rate of synthesis of ribosomes.
While the mass conservation law 3.2 must be augmented, others must be added to the
previous set of laws:

RTOT = R + cb + cp + c` (3.30)

mTOT
p = mp + cp (3.31)

rTOT = r +RTOT (3.32)

P TOT = P +RTOT (3.33)

Starting from the system of ODEs already formulated for the �rst model, new di�erential
equations must be added and the equations 3.10 and 3.2 must be modi�ed:

ṁp = ωpDp − apmpR + dpcp + βpcp − γmp (3.34)

ċp = apmpR− dpcp − βpcp − γcp − µcp (3.35)

Ṙ = βrDr + σprP −
∑
j

ajmjR +
∑
j

djcj +
∑
j

βjcj

+
∑
j

γcj + µR with j = b, p, ` (3.36)

ṙ = βrDr − σprP − γr (3.37)

Ṗ = βpcp − σprP − µP (3.38)

ṘTOT = σprP − µRTOT (3.39)

ṁTOT
p ≈ ωpDp − γmTOT

p (3.40)

˙rTOT = βrDr − γr − µRTOT (3.41)
˙P TOT = βpcp − µP TOT (3.42)

where the equation 3.40 has been derived considering the relation between γ and µ dis-
cussed previously.
As in the �rst case, it is possible to derive the closed solution of equation 3.40 (the closed
form solutions of mTOT

b and mTOT
` are invariant):

mTOT
p =

ωpDp

γ
(3.43)

The other di�erential equations should be solved using fsolve numerical method from
Matlab. However, thanks to a further approximation, it is possible to derive the closed
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form solution of r starting from equation 3.41. The detailed process is described in
Appendix F and it leads to:

r =
βrDr

γ
(3.44)

3.3.1 Choice of Parameters' Value

Di�erently from the �rst case, the de�nition of the parameters in condition of maximal
growth presents some issues.
The main di�culty comes from the unavailability of data from experiments which have
discriminated between basal and R-Protein species.
This can be explained due to the complexity of the experiments. Indeed, measuring
the total amount of ribosomes inside a cell is not straightforward itself; being able to
distinguish between di�erent types of species is even harder.
Additionally, information regarding the amount of rRNA and R-Protein are reported as
relative quantities ([7]).
These evidences make the model not a priori identi�able and consequently the de�nition
of the parameters in the maximal growth conditions is not possible.
Consequently, the assumed choice is to use the already estimated parameters, namely the
transcription rate ωb for the basal species and the rate βr of the process of ribosomes
formation, also in this model.
However, the values of ωp, σp and βp are still missing and needed for the analysis of the
load e�ect.
Regarding ωp, it seems reasonable that the transcription rates of basal and R-Protein
species have the same order of magnitude. Indeed both their products are fundamental:
while the basal proteins are needed for the survival of the cell, the R-Proteins are essential
in the process of formation of ribosomes, which are required for every synthesis, even
the basal one. This may justify the made hypothesis on the order of magnitude of the
transcription rates of basal and R-Protein species. According to that and for sake of
simplicity, they are assumed to be equivalent.
Concerning the synthesis rate σp between the rRNA and R-Protein, it has ideally the
same meaning as βr in the �rst model. Hence, it is wise to set σp equal to βr.
Lastly, the translation rate βp has been assumed with the same order of magnitude of the
generation rate βr of the free ribosomes in the �rst model.
In congruence with all the stated assumptions, it is trivial to expect that these parameters
do not lead to an e�ective condition of maximal growth, independently on the growth rate
function.

3.3.2 Analysis of RTOT variation

As previously, the �rst analysis that has been made regards the ribosomal competition,
namely the distribution of RTOT among the four ribosomal species cb, cp, c` and R.
Again, it does not depend on the chosen growth rate function but uniquely on the mani-
folds:

cb =
R

R +Kb

mTOT
b cp =

R

R +Kp

mTOT
p c` =

R

R +K`

mTOT
` (3.45)
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and the mass conservation law of RTOT :

RTOT = R + cb + cp + c` (3.46)

where cb, cp and c` must be substituted with their manifolds. Again, it is possible to
approximate the equations 3.45 with piecewise linear functions with the same reasoning
performed in M1.
The Figure 3.8 shows the evolution of the competition as function of RTOT . The continu-
ous lines represent the real evolution, obtained from the numerical solutions of equations
3.45 and 3.46. The dashed lines indicate their approximation, based on the general com-
petition analysis explained in Appendix D.

Figure 3.8: Competition between ribosomal species with Kb << Kp << K` and m
TOT
b =

mTOT
p = mTOT

` . The yellow, blue, red and green dashed lines represent the approximate

evolution of cb, cp c` and R respectively. R̃TOT
1 , R̃TOT

2 and R̃TOT
3 are the breaking points

The considerations made for model M1 persist.
The competition is strongly regulated by the dissociation constants and the total amount
of mRNA. In particular, the �rst rule the order of growth of the complexes, while both
manage the values of the breaking points. These are fundamental for understanding when
a complex reaches its maximal value and consequently another species can start to rise.
Since this model considers one ribosomal species more than M1, the analysis in Appendix
D referred to the general competition must be augmented to the three species case. This
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leads to three breaking points (instead of two), which are:

R̃TOT
1 =

(
1 +

mTOT
b

Kb

+
mTOT
p

Kp

+
mTOT
`

K`

)
Kb (3.47)

R̃TOT
2 =

(
1 +

mTOT
p

Kp

+
mTOT
`

K`

)
Kp +mTOT

b (3.48)

R̃TOT
3 =

(
1 +

mTOT
`

K`

)
K` +mTOT

b +mTOT
p (3.49)

Once more, a graph that displays the ratios between the species and the total amount
of ribosomes is proposed (Figure 3.9) and it leads to the same observation made for M1,
namely only one species at time can grow.

Figure 3.9: Ratio between ribosomal species and RTOT

3.3.3 Analysis of Load e�ect

In the way that it was studied for the �rst model, now the analysis of the load e�ect is
proposed.
Again, it is strongly in�uenced by the growth rate function that has been chosen. Since
the previous study have revealed that the Hill and the Linear functions dependent on
cb are not suitable for the description of the cell growth, this model has not been tested
considering all the proposed functions of growth rate. Indeed, two functions have been
analyzed: the Linear function dependent on Ractive has been investigated as best option
so far, while the Hill function dependent on cb has been analyzed in order to prove its
�nal inaccuracy.
Once more, the parameter that has been varied during the simulation is the transcription
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rate of the load ω`, for the same reasons as before (i.e., the feasibility of laboratory ex-
periments).
Both the simulations are collected in Figure 3.10.
First, the Hill function based on Del Vecchio and Murray ([6]) assumptions (HillDV ) has
been tested and the results are shown in Panel A. As it has been veri�ed with M1, in-
creasing the metabolic load makes RTOT grow. This is not consistent with the biological
evidences and limitations 8 since it would imply that the total amount of ribosomes can
grow endless, just by the rise of the burden.
Thus, since this growth rate function has been already demonstrated to produce incon-
sistent results with M1 and M2, another further test with a more complex model (M3 )
is not necessary. Hence, it can be already asserted that the Hill function, independently
of its parameters, is not suitable for the description of the cell growth.

Later, the analysis considering a Linear growth rate depending on Ractive has been per-
formed (Panel B). Di�erently from the previous test, now RTOT does not increase with
the growth of the load. At �rst glance, a possible issue could be noticed: the growth
rate is slightly rising while RTOT is slowly decreasing and this might be counter intuitive.
However, this is simply a transitory of the system for certain values of the load and it can
be explained as follows.
The complex c` needs ribosomes to be assembled. This amount can come directly from
the set of free ribosomes in the cell or it can be stolen from the other complexes. For
weak metabolic loads, the requirements of ribosomes is not substantial and then it can be
almost entirely provided by the compartment R; at the same time, the complex cp is used
to synthesize new ribosomes. Thus, in this starting con�guration of the system: R and
cp are decreasing (cp can only partially replace the used R, since in turn it requires ribo-
somes), cb can be considered unchanged and c` is growing. Consequently, R

TOT (which is
the summation of all the ribosomal components) must slightly decrease, since the growth
of c` can not exceed the drop of cp and R

9. However, at the same time Ractive (which is
the summation of cb, cp and c`) must increase because the growth of c` is faster than the
drop of cp and cb is considered unvaried.
Afterwards, suppose to strengthen the metabolic burden: a decrease of the growth rate
is now expected.
As shown in Panel B, the growth rate can still rise until the load (namely the transcrip-
tion rate ω`) reaches a threshold value ω∗

` . This value leads the system to a particular
con�guration of the equilibrium points, where cp = 0 and thus no more ribosomes can be
synthesized. Therefore the cell can not form any other complexes and this fact necessarily
leads to the death of the cell itself.

8A bacterial cell can not contain an unlimited number of ribosomes.
9R is the "fundamental unit" in the system since it is needed for the formation of every complex. It

is not reasonable to suppose that the system could grow while the ribosomes are decreasing.
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Figure 3.10: Comparison between simulations with di�erent growth rate functions.A used
the Linear function dependent on Ractive. B used the HillDV function dependent on cb.
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3.4 Model M3

The last developed model is the most complex and it still involves the process of formation
of the free ribosomes but it also considers one negative feedback (known from literature
and better described in the Paragraph related to the biological feedbacks 2.1.4). Roughly,
the aim of this feedback is to avoid the endless growth of the free ribosomes, limiting the
formation of the R-Protein mRNA. According to that, it is reasonable to expect that the
feedback assumes a remarkable importance when the metabolic load is null or weak, while
it becomes irrelevant when the load is strengthened (because the request of ribosomes is
increased and then they tend to bind the mRNA instead of be accumulated).

Figure 3.11: Third Model. The yellow, red and blue expression cassettes represent the
basal, the R-Protein and load species respectively. The green cassette stands for the free
ribosomes. The red arrow highlights the added feedback.

According to this improvement, some chemical reactions must be added:

P + mp
αp−−→ P : mp

P : mp
γ−−→ P

P : mp
µ−−→ 0
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All the mass conservation laws remain unchanged except for mTOT
p (3.31), that becomes:

mTOT
p = mp + cp + P : mp (3.50)

The system of di�erential equations must also be modi�ed. Starting from the one formu-
lated for the second model, the ODEs 3.34, 3.38, 3.40 have been adjusted:

ṁp = ωpDp − apmpR + dpcp + βpcp − αpmpP − γmp (3.51)

Ṗ = βpcp − σprP + γP : mp − αpmpP − µP (3.52)

ṁTOT
p = ωpDp − γmp − γP : mp − γcp − µcp − µP : mp (3.53)

and the following must be added:

˙P : mp = αpmpP − γP : mp − µP : mp (3.54)

Again, in 3.53 the approximation is possible considering the relation between γ and µ and
leads to:

ṁTOT
p ≈ ωpDp − γmTOT

p (3.55)

Concerning the study of the equations in Steady State, nothing changes compared to the
second model.

3.4.1 Choice of Parameters' Value

As with model M2, the estimation of the parameters in the maximal growth conditions
is not possible. Once more, the lack of experimental data that measure the number
of ribosomes per species (the addition of the feedback does not in�uence or reduce the
number of the ribosomal species) and the cell growth prevents to de�ne the value of these
parameters. For this reason, all the assumptions made with the second model have been
preserved and the parameters ωp, σp and βp are assumed unvaried with respect to M2.
The only parameter that must be set is the association rate αp between the R-Protein
and its mRNA, which can be interpreted as strength of the feedback e�ect.
The rate αp must be lower or equal than σp (synthesis rate of ribosomes) because otherwise
the process of formation of free ribosomes would be overcome by the process of inhibition
of themselves, which is inconsistent with the aim of the feedback. Thus, this parameter
can assume values in the following interval10:

0 ≤ αp ≤ σp (3.56)

Since it is not possible to derive its precise value from the literature nor from data, it has
been set as 0.005 · σp11.
In order to improve this estimate, further analysis should be performed. For example, a
sensitivity analysis can be executed for quantifying the contribution of the feedback on
the system. Nevertheless, the best solution is to design some laboratory experiments in
absence of metabolic load that can measure the actual value of this parameter.

10The rates can not be negative.
11The feedback should have a limited in�uence and strength compared to the synthesis of ribosomes.
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3.4.2 Analysis of Load e�ect

Di�erently from the previous two cases (M1 and M2 ), the analysis of the distribution of
RTOT among the ribosomal species is no more available. This is a direct consequence of
the new formulation of the mass conservation law of mTOT

p (3.50), that has been made
necessary after the addition of the feedback. Indeed it involves the quantities mp and cp,
but also P : mp and this does not allow to derive the manifolds as explained in Appendix
C.
In particular, equation C.8 must be replaced by:

mTOT
p =

R

Kp

mp +mp + P : mp (3.57)

which leads to:

cp =
R

R +Kp

(mTOT
p − P : mp) and mp =

Kp

R +Kp

(mTOT
p − P : mp) (3.58)

and these equations depend not only on R, but also on P : mp
12. Thus, an eventual study

of the evolution of 3.58 should involve also the di�erential equation of P : mp (3.54), which
in turn should consider the one of P (3.52). Consequently, the analysis on the ribosomal
competition is no more feasible.
Therefore, the analysis of the load e�ect is here presented.
As already introduced before, the only growth rate that has been tested with this model
is Linear and it depends on Ractive (Panel A of Figure 3.12). The plotted results are
coherent with the biological evidences and considerations similar to the case of M2 can
be made.
Rather, it may be interesting to observe the behavior of the components directly involved
in the feedback, namely mp, P : mp and P (Panel B of Figure 3.12). Before to proceed
with the analysis, it is worth to state that the complex P : mp is directly related to the
e�ciency of the feedback: the higher the concentration of P : mp, the stronger the feed-
back. This statement can be derived directly from the chemical reactions that describe
the feedback. Indeed, the concentration of P : mp depends on the amount of mRNA that
is inhibited.
First of all, it can be noticed that the feedback is e�ciently working just for certain values
of the load and this is highlighted by the relation between mp and P : mp.
The condition P : mp > mp

13 means that the feedback is currently inhibiting the pro-
duction of R. In fact, the eventual free mRNA that could be used for increasing the
quantity of R-Protein (and consequently synthesizing more ribosomes) is instead bound
and progressively degraded by P itself 14.
Instead, P : mp < mp indicates that the e�ect of the feedback is low. Indeed, the amount
of R-Protein in the cell is used for synthesizing new ribosomes, according to the chemical
reaction:

P + r
σp−−→ R (3.59)

12The quantity mTOT
p is constant as shown in 3.43, which remains valid also for M3.

13mp stands for the concentration of freemRNA, means the quantity ofmRNA not bound with ribosome
yet.

14This can be easily proved by noticing that the complex P : mp that is directly related to the feedback
has higher concentration than mp.
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instead of forming the complex P : mp, according to the chemical reaction:

P + mp
αp−−→ P : mp (3.60)

In other words, since P is used for the formation of both P : mp and R, in case of limited
amount, it must be shared between the two components, which compete against each
other for it. Since the bond with the ribosomes is stronger than with the complex P : mp,
the formation of R prevails to the detriment of the feedback action.
These considerations are also coherent with the graph of the P protein. The activation
phase of the feedback coincides with an abundance of the protein (i.e., the ribosomes
can be accumulated due to the high availability of the resources); the disabled feedback
matches with the lack of the protein (i.e., the accumulation of ribosomes can not occur).
Even though the fact that the feedback is active with lower values of the metabolic burden
could sound counter intuitive, it can be explained considering the metabolic requirement
of the cell. For small load values, it is not as signi�cant as for stronger loads. This
implies that in the �rst case, an accumulation of R can occur, causing the activation of
the feedback, while in the latter one the amount of R is totally spent to accomplish the
ribosomal needs of the cell.

3.4.3 Final Remarks

The performed analyses aimed to identify the best model for the cell growth. The cell
system have been described by using three di�erent models in order of complexity and
some growth rate functions have been tested. Starting from the basic model, four di�er-
ent functions have been explored. This study has revealed that not all the growth rate
functions proposed by the literature are suitable. In particular, the Linear growth rate
dependent on Ractive has been turned out to be the most adequate. According to that, it
has been tested with the second model and, for sake of completeness, one of the rejected
functions has been analysed as well, in order to con�rm its de�ciency. The analysis has
supported the previous guess. Finally, the most complex model has been investigated
with the chosen growth rate function. Also in this case, it has produces coherent results
with the biological evidences. Therefore, it has been possible to a�rm that the Linear
growth rate function dependent on Ractive is the most suitable for the description of the
cell growth, independently on the complexity of the model.
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Figure 3.12: Analysis of M3 with a Linear growth rate dependent on Ractive. A shows the
evolution of the equilibrium points and the growth rate. B displays the feedback e�ect
on P : mp, mp and P .



Chapter 4

Discussion and Results

In this chapter, the results obtained by the study of the equilibrium points are resumed
in order to justify once more the chosen growth rate function. Afterwards, the study of
the dynamics of the model M3 will be discussed, in comparison with the only article from
the literature that has analyzed the e�ects of the load on the cell system.

4.1 Best Choice considering the Load

In the previous chapter, three di�erent models in order of complexity have been intro-
duced and tested considering various growth rate functions.
The growth of the �rst model M1 has been analyzed taking into account four various
functions: Linear dependent on cb, Linear dependent on Ractive, Hill from Del Vecchio
and Murray assumption [6] (HillDV ) and �nally Hill from the �tting of the data in [1].
By varying the strength of the metabolic load, the evolution of the equilibrium points
(in particular referred to cb, c`, R and RTOT ) and the growth rate have been examined
(Figure 3.6).
At �rst sight, it can be noticed that the evolution of RTOT is similar in three cases (Panel
A, C and D). In these simulations, the stronger the load, the higher the amount of total
ribosomes in the cell. This evidence has been used as reason to discard the growth rate
functions that have led to this result. Indeed, it is not reasonable nor feasible to have
a (potentially) endless concentration of ribosomes in the cell. In other words, the rein-
forcement of the load can not cause the increment of the ribosomal component. In fact,
if this would be the case, the cell would have the possibility to grow endless and this not
biological plausible.
Instead, the Linear function dependent on Ractive (Panel B) has shown the opposite result,
namely for stronger loads, the concentration of the ribosomes decreases. This outcome is
coherent with the cell system. Indeed, since the load is an external component that had
been added to the system and it needs resources (i.e., ribosomes) to be synthesized, it
must limit the activity of the cell, namely it must negatively in�uence its growth. Conse-
quently, an increment of the ribosomal amount is not consistent with the growth decline.
Hence, this allows to state that the supposed best growth rate function is Linear depen-
dent on Ractive.
However, this conclusion must be veri�ed also with the other two models, since the �nal
aim is to �nd the best option independently on the complexity of the structure.

49
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The simulation with model M2 is shown in Figure 3.10, Panel B. The results con�rm
the previous statement. Again, the selected growth rate model has produced coherent
outcomes: the stronger the load, the slower the growth.
Finally, it has been tested with the third model M3 (Figure 3.12, Panel 3). Once more,
it has been con�rmed as best option over the four di�erent types of growth rate proposed
at the beginning. This can be justi�ed as in the case of M1 and M2.
Thus, this leads to the �nal statement that the best function for modeling the growth
of a single bacterial cell, independently on the complexity of the model structure, is the
Linear growth rate dependent on Ractive, where Ractive is the summation between all the
ribosomal complexes or alternatively the di�erence between the total number of ribosomes
and the free ribosomes.

4.2 Dynamics of the system

As stated in the previous paragraph, the best choice for the modeling of the cell growth
is the Linear growth rate dependent on Ractive.
The articles presented in Paragraph 2.2.2 do not allow to make a comparison with the
achieved results, since all of them have not considered the addition of the metabolic load.
However, Nikolados et al. [2] have studied how the resources of the cell are re-assigned
after an inducible gene (i.e., the gene responsible for the synthesis of the load) has been
added.

Figure 4.1: Simulation of an inducible gene [2].

In Figure 4.1, the performed simulation is reported. The authors have divided the ri-
bosomal content into �ve categories: the ribosomes (which corresponds to the R-protein
species in M2 and M3 ), the house-keeping (species responsible for the basic functions of
the cell), the uptake enzyme (which is responsible for the nutrients transport inside the
cell), the metabolic enzyme (that is responsible for the translation of the nutrients into
energy) and the heterologous protein (namely the metabolic load).
This classi�cation is similar to the one performed and explained in the paragraph of bi-
ological scenario (Paragraph 2.1.3): di�erent species have been gathered based on their
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purposes. Rather than �ve, the model M3 presents four species: the free ribosomes, the
basal, the R-Protein and the load species.
The starting con�guration of the system (i.e., the distribution of the resources among
all the di�erent categories or species and the ratio between free and bound ribosomes) is
shown Panel A. In this initial con�guration, the load gene has not been inserted yet and
the cell is in equilibrium.
Afterwards, the burden has been added: the evolution of its expression and the distribu-
tion among all the species have been studied as function of the rate of the gene induction
(Panel B).
It is interesting to compare this simulation with the one performed for model M3. For
a better visualization, the evolution of the load shown in Figure 3.12, Panel A, is here
reported singularly.

Figure 4.2: Evolution of the load in M3.

It can be easily seen that the model result is close to the one proposed in the article [2]:
the load expression has a peak for a certain value of the transcription rate and then it
starts to decrease. Unfortunately, it is not possible to compare the behavior of the other
species since the performed classi�cation is not the same in the two cases. This reveals a
sort of conformity between the results of the designed model and the outcomes presented
in the article.
A further analysis can be proposed, namely the study of the dynamics of the system (i.e.,
its evolution over time), based on model M3. The dynamics1 of the system are shown
in Figure 4.3 and they have been computed using Matlab toolboxes SymBiology Model
Builder and SimBiology Model Analyzer (further details in Appendix G). In the upper

1Initial conditions: R = 23.6µM , cb = 10.2µM , cp = 10.2µM , P = 0, r = 0.697µM , all the other

components were set equal to 0. The transcription rate of the load was set equal to 1.29 × 106 µMh , the
value of the other parameters are reported in Appendix A.
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graph, the dynamics of the ribosomal components (R, cb, cp and c`) are plotted.

Figure 4.3: Dynamics of model M3.

Since the starting value of cb and cp depends uniquely on their initial condition (c0b = c0p)
and their evolution is similar (the load will steal the ribosomes equally from cb and cp),
their curves are overlapped. Furthermore, at the beginning, the only null component is c0`
and thus λ0 6= 0 2. It is straightforward to notice that the increment of the load coincides
with the drop of all the other ribosomal complexes. Additionally, the �rst component to
be a�ected by the presence of the load is the compartment of the free ribosomes R , which
decreases before all the others. Afterwards, when the compartment is empty, cb and cp
are consumed.
The explanation lies in the amount of needed ribosomes. As already described, the syn-
thesis of the load requires ribosomes. When the related compartment is used up, they
must be stolen from somewhere else, namely from the other ribosomal complexes. This
justi�es the drop (and its order) of the free ribosomes and the complexes. Once the peak
of the load expression is reached, it can be maintained by the system for a short interval
of time. Later, it will start decreasing due to the unavailability of other ribosomes, its
spontaneous decay, the e�ect of the growth rate and the translation of the complex into
protein.
It is interesting to analyze the relation between the dynamics and the growth rate.
The maximum growth rate is achieved before the peak of the load expression and it
has been maintained until the start of the drop of c`. This is expected, since the
growth rate is a linear function dependent on Ractive (black curve). Recalling that
Ractive = RTOT −R = cb + cp + c`, R

active
max is obtained when R = 0.

The dynamics of the cell growth is coherent with the biological evidences, which can be
interpreted as another proof that the chosen function is suitable for modeling the cell

2λ depends linearly on Ractive. Since c0b 6= 0, c0p 6= 0 and c0` = 0, then Ractive,0 = c0b + c0p 6= 0.
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growth. Indeed it has been experimentally tested that the addition of a strong load does
not lead the cell immediately to the death but instead it grows for a while and then sta-
bilizes. After, the drop of the growth rate is veri�ed, potentially causing the death of the
whole system.

Finally, it has been possible to check the goodness of the chosen function also consid-
ering the dynamics over time of the cell system. This strengthens the statement that
the Linear growth rate function is the best option for the description of the cell growth
process.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, the cell growth has been analyzed.
First, the system has been modeled, according with the chemical reactions that occur in
it. Due to the complexity of the system itself, some approximations and hypotheses have
been proposed, in order to simplify the description. Consequently, three models have been
developed, in increasing order of complexity; at the same time, di�erent functions that
aim to characterize the cell growth have been presented. Starting from the least complex
model, the growth have been studied, testing all the functions. Later, just the function
that has produced some coherent results has been tested with the second and the third
model.
Finally, it has been possible to state that the best growth rate function is the Linear
dependent on Ractive.

5.2 Future Prospective adding new feedback

Possible improvements to this work can be performed, especially regarding the models.
Their complexity can be increased, reaching a better level of description. In particular,
new feedbacks can be added. It is reasonable to present these improvements starting from
M3, since it is the best model so far (i.e., the model that is close to the actual system).
The third model presents a biological feedback that aims to avoid the accumulation of the
free ribosomes inside the cell. However, this regulates just the synthesis of the R-Protein
and not of the rRNA, which is the other reactant that composes the ribosomes. The
explanation behind this choice lies in the chemical reactions that have been identi�ed for
describing the cell system. Indeed, the production of rRNA has been modeled as a simple

reaction Dr
βr−−→ Dr + r, namely the rRNA is obtained directly from the DNA, which is

not possible to in�uence negatively.
Therefore, once a better description of the process of derivation of rRNA will be achieved,
it will be also feasible to implement a new regulatory feedback on the production of the
ribosomes that accounts both the components (R-Protein and rRNA).
Nevertheless, this model does not consider the needed amount of amino acids. Indeed,
even though the translation was modeled as in Paragraph 2.1.3, namely it just requires
the mRNA and the ribosome, this process is an approximation and the real one involves
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more components. In fact, it would need also amino acids and the tRNA, which is the
RNA responsible for the transport of the amino acids in the site of the translation. Con-
sequently, once this improvement will be performed (namely some chemical reactions and
components must be added to the system in order to model also the presence of another
type of RNA and the amino acids), other feedback loop can be added. In particular, this
can be inspired by the paper [11], where it has been already assumed that there should
be a �ux of amino acids in the cell and it should in�uence the growth rate.
In general, all the future improvements must start from the augmentation of the chemical
reactions and/or species, which allows to reach a better description of the cell system.
However, the main limitation of all this dissertation is the unavailability of experimental
data. Future work may also regard the design of some experiments in order to validate
the model M3 (it is reasonable to test just the most complete model) and the results
obtained with the identi�ed best growth rate function.
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Appendix A

Summary Tables

Two summary tables are here reported, in order to simplify the reading of the models.

Parameter Description Model

mb Basal mRNA 1,2,3
mp R-Protein mRNA 2,3
m` Load mRNA 1,2,3
cb Basal complex 1,2,3
cp R-Protein complex 2,3
c` Load complex 1,2,3
B Basal protein 1,2,3
P R-Protein protein 2,3
L Load protein 1,2,3
R Free Ribosomes 1,2,3

RTOT Total Ribosomes 1,2,3
r Free rRNA 2,3

rTOT Total rRNA 2,3
P TOT Total R-Protein content 2,3
mTOT
b Total basal mRNA content 1,2,3

mTOT
p Total R-Protein mRNA content 2,3

mTOT
` Total load mRNA content 1,2,3

P : mp Complex between R-Protein and its mRNA 3
λ Growth rate 1,2,3
γ Spontaneous decay of mRNA and rRNA 1,2,3
δ Spontaneous decay of proteins, ribosomes and complexes 1,2,3
µ Sum of growth rate and spontaneous decay 1,2,3

Table A.1: Table of variables
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Parameter Description Value Ref. Model

γ Decay of mRNA and rRNA 100 h−1 [6] 1,2,3

δ
Decay of proteins,

complexes and ribosomes 0.05 h−1 [16] 1,2,3
ab Association rate of cb 2.94 (µMh)−1 E 1,2,3
db Dissociation rate of cb 1 h−1 E 1,2,3
ap Association rate of cp 0.294 (µMh)−1 E 2,3
dp Dissociation rate of cp 1 h−1 E 2,3
a` Association rate of c` 29.4 (µMh)−1 D 1,2,3
d` Dissociation rate of c` 1 h−1 D 1,2,3
βb Translation rate of B 69.7 h−1 A 1,2,3
βp Translation rate of P 69.7 h−1 B 2,3
β` Translation rate of L 69.7 h−1 D 1,2,3
ωb Transcription rate of mb 2266.7 h−1 A 1,2,3
ωp Transcription rate of mp 2266.7 h−1 B 2,3
ω` Transcription rate of m` 2266.7 h−1 D 1,2,3
σp Association rate between r and P 69.7 (µMh)−1 B 2,3
αp Association rate between mp and P 0.3485 (µMh)−1 C 3
βr Transcription rate of r 69.7 h−1 A 1,2,3
Db Basal DNA 1 µM [15] 1,2,3
Dp R-Protein DNA 1 µM [15] 2,3
D` Load DNA 1 µM [15] 1,2,3
Dr Load rRNA 1 µM [15] 1,2,3

Table A.2: Table of parameters

A: It has been computed as shown in Paragraph 3.2.1.

B: It has been computed as shown in Paragraph 3.3.1.

C: It has been computed as shown in Paragraph 3.4.1.

D: It has been assumed that the added load has transcription and translation rates
similar to the other species. Furthermore, the dissociation constant is assumed to
be smallest, in order to let it steal the ribosomes from the other species and observe
some e�ects on the system.

E: Considering the dissociation constants in [6], the dissociation rates have been assumed
equal independently of the species and the association rates have been set di�erently.
Taking into account the importance of each species (Paragraph 2.1.3), the following
relation between basal and R-Protein constant has been established: Kb << Kp.
Moreover, the constants has been calculated in relation of RTOT

max = 34µM (i.e.,
Kb = 0.01×RTOT

max ).



Appendix B

Negligibility of RNAP

A generic chemical reaction that describes the transcription can be written as follows:

D + RNAP
p+−−⇀↽−−
p−

CTR
ω−−→ D + m + RNAP (B.1)

where D is the DNA, p+ and p− are the association and dissociation rate respectively
between DNA and RNA, CTR is pre-mRNA molecule, ω is the transcription rate, m is
the mRNA.
The relative mass law kinetics are (the degradation is not considered):

Ḋ = p−CTR− p+D ·RNAP + ωCTR (B.2)

ṁ = ωCTR (B.3)
˙CTR = −p−CTR + p+D ·RNAP − ωCTR (B.4)

˙RNAP = 0 (B.5)

where B.5 is equal to zero under the hypothesis of RNAP constant.
Studying the di�erential equations at the steady state, CTR is:

CTRss =
RNAP

K
D with K =

p−

p+
(B.6)

that depends uniquely on D.
This consideration can lead to a possible reformulation of the chemical reaction:

D
ω
′

−−→ D + m (B.7)

Now, the relation between ω and ω
′
must be found.

By the substitution of B.6 in B.3, the dynamics of mRNA becomes:

ṁ = ω
RNAP

K
D (B.8)

while the mass action law derived from B.7 is:

ṁ = ω
′
D (B.9)
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Now it can be easily seen that the relation between the transcription rates is:

ω
′
= ω

RNAP

K
(B.10)

From this point on, the RNAP will be considered as constant, leading to the reformulation
of all transcription chemical reactions as in B.7.
For sake of simplicity, the new transcription rate ω

′
will be indicated with the symbol ω

as well.



Appendix C

Manifolds formal derivation

The manifold derivation is based on the di�erence between fast and slow dynamics ob-
served in the di�erential equations, namely on the Rapid Equilibrium assumption.
Here the mathematical calculations are computed for a generic species i. Clearly, the
same procedure can be applied for every species.
Considering the �rst model (the derivation of the manifold is identical for all the models),
the fast dynamics are:

ṁi = ωiDi − aimiR + dici + βici − γmi (C.1)

ċi = aimiR− dici − βici − γci − µci (C.2)

while the slow dynamics consists on the total amount of mRNA:

˙mTOT
i = ωiDi − γmTOT

i − µci (C.3)

It is possible to rewrite ai as
di
Ki
:

ṁi = ωiDi − dimi
R

Ki

+ dici + βici − γmi (C.4)

ċi = dimi
R

Ki

− dici − βici − γci − µci (C.5)

Now �xing di = 1
ε
in C.1:

ṁi =
1

ε
(−mi

R

Ki

+ ci) + ωiDi + βici − γmi (C.6)

For the condition of fast dynamics ε −→ 0, means that the dissociation rate tends to zero.
Consequently, the obtained manifold is:

−mi
R

Ki

+ ci = 0 −→ ci =
R

Ki

mi (C.7)

Remind that mTOT
i = ci +mi, then:

mTOT
i =

R

Ki

mi +mi (C.8)
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and �nally:

ci =
R

R +Ki

mTOT
i and mi =

Ki

R +Ki

mTOT
i (C.9)

which shows that the evolution of ci and mi uniquely depends on the total amount of
mRNA (mTOT

i ) and the strength of the bound mRNA-ribosome (Ki).
Since it can be proved that mTOT

i depends on the transcription rate ωi, the only factor
that does not in�uence these quantities is the translation rate βi.



Appendix D

General competition

The general competition between ribosomal species can be seen as an input-output system
as shown in Figure D.1.

Figure D.1: Input-Output system of general competition

The outputs are of course the ribosomal complexes ci. Since their evolution depends on
the manifold, the system is characterized by the dissociation constant Ki, while the inputs
are the total amount of mRNA and ribosomes RTOT available.
Recalling that:

ci =
R

R +Ki

mTOT
i =

R
Ki

1 + R
Ki

mTOT
i (D.1)

an approximated version can be proposed, in order to simplify the analytical computations
(problems related to this estimation will be analyzed in the following Appendix):

ci ≈

{
mTOT

i

Ki
R , R ≤ Ki

mTOT
i , R > Ki

(D.2)

Without loss of generality, let consider the simple case of just two competitive species
with K1 < K2.
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Then the approximated ribosomal complexes are:

c1 ≈

{
mTOT

1

K1
R , R ≤ K1

mTOT
1 , R > K1

and c2 ≈

{
mTOT

2

K2
R , R ≤ K2

mTOT
2 , R > K2

(D.3)

Since RTOT = R + c1 + c2:

RTOT (R) =


(

1 +
mTOT

1

K1
+

mTOT
2

K2

)
R , 0 ≤ R ≤ K1(

1 +
mTOT

2

K2

)
R +mTOT

1 , K1 < R ≤ K2

R +mTOT
1 +mTOT

2 , R > K2

(D.4)

Now it is possible to reverse the equations to obtain R as function of RTOT :

R(RTOT ) =



1(
1+

mTOT
1
K1

+
mTOT

2
K2

)RTOT , 0 ≤ RTOT ≤ R̃TOT
1

RTOT−mTOT
1(

1+
mTOT

2
K2

) , ˜RTOT < RTOT ≤ R̃TOT
2

RTOT −mTOT
1 −mTOT

2 , RTOT > R̃TOT
2

(D.5)

where accordingly to the conditions in the D.4 system:

R̃TOT
1 =

(
1 +

mTOT
1

K1

+
mTOT

2

K2

)
K1 and R̃TOT

2 =
(

1 +
mTOT

2

K2

)
K2 +mTOT

1 (D.6)

Thus it is straightforward to rewrite the complexes c1 and c2 as function of RTOT :

c1(R
TOT ) =


mTOT

1

K1

1(
1+

mTOT
1
K1

+
mTOT

2
K2

)RTOT , 0 ≤ RTOT ≤ R̃TOT
1

mTOT
1 , RTOT > R̃TOT

1

(D.7)

and

c2(R
TOT ) =



mTOT
2

K2

1(
1+

mTOT
1
K1

+
mTOT

2
K2

)RTOT , 0 ≤ RTOT ≤ R̃TOT
1

mTOT
2

K2

RTOT−mTOT
1(

1+
mTOT

2
K2

) , ˜RTOT
1 < RTOT ≤ R̃TOT

2

mTOT
2 , RTOT > R̃TOT

2

(D.8)

From D.7 and D.8 the graph of the expected competition between species can be derived.

In Figure D.2, it is clearly shown that the breaking points are the thresholds R̃TOT
1 and

R̃TOT
2 , which consequently means that the competition depends on mTOT and K (as it

was declared at the beginning).
At the same time, mTOT depends on the transcription rate ω:

ṁTOT ≈ ωD − γmTOT = 0 −→ mTOT
ss ≈ ωD

γ
(D.9)

In conclusion, it is trivial to extend the reasoning to n competitive ribosomal species.
The complex with the lowest K will have just one breaking point as in the analyzed case;
the complex with the highest K will have n breaking points and its evolution will be
strongly in�uenced by all the other complexes.



67

Figure D.2: Expected graph of general competition between two species.
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Appendix E

Approximation-simulation di�erences

In Appendix D an approximation has been made, namely:

ci =
R
Ki

1 + R
Ki

mTOT
i ≈

{
mTOT

i

Ki
R , R ≤ Ki

mTOT
i , R > Ki

(E.1)

Without loss of generality, assume mTOT
i = 1 and Ki = 1; then the di�erence between

the approximation and the real Michaelis Menten has been investigated.

Consider a generic approximation z(x):

z(x) =

{
x
α

0 < x ≤ α

1 x > α
(E.2)

that has to be compared with the real function y(x):

y(x) =
x

1 + x
(E.3)

Thus the �nal aim to �nd α such that |w(x, α)| = |y(x)− z(x, α)| is minimizes for all x,
i.e.:

min
α

max
x
|w(x, α)| (E.4)

The optimal choice of α corresponds to the case w(x̄, α∗) = −w(α∗, α∗).
x̄ is the point where w reaches the maximum positive value:

dw

dx
= 0 −→ 1

1 + x
− x

(1 + x)2
− 1

α
= 0 −→ x̄ =

√
α− 1 (E.5)

Consequently:

w(x̄, α) =
x̄√
α
− x̄

α
= x̄

(√α− 1

α

)
(E.6)

and then by the substitution of x̄ from E.5:

w(x̄, α∗) =
(
√
α− 1)2

α∗ (E.7)
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At the same time:

−w(α∗, α∗) = 1− α∗

1 + α∗ =
1

1 + α∗ (E.8)

The intersection between E.7 and E.8 can not be found analytically.
Using Matlab, the optimal choice results to be:

α∗ ≈ 3.5 (E.9)

and �nally the best approximation for the Michaelis Menten must be:

ŷ(x) =

{
x
3.5

0 < x ≤ 3.5

1 x > 3.5
(E.10)



Appendix F

Relation between growth rate and load

The analysis on general competition addressed in Appendix D sets the basis for the
study of the growth of the cell, since it shows how the ribosomal complexes compete for
ribosomes.
In particular, it has been proved that the linear growth rate dependent on Ractive is the
best choice considering the load.
According to this formulation, the growth rate has the form:

µ = ϕRactive where ϕ is the angular coe�cient (F.1)

Recalling that
Ractive = cb + cp + c` = RTOT −R (F.2)

it is not straightforward to understand why the increase of the metabolic load (mTOT
` )

should anyway lead to the drop of the growth rate µ.

First of all, it is worth to prove that the amount of free rRNA is not dependent on
any species of the system at the steady state, and consequently it is constant.
Consider the equation 3.41. It can be rewritten as follows:

ṙTOT = βrDr − γ(rTOT −RTOT )− µRTOT (F.3)

by using the mass conservation law of rTOT .
Additionally, an approximation is possible (again taking into account the relation between
γ and µ):

ṙTOT = βrDr +RTOT (γ − µ)− γrTOT ≈ βrDr + γRTOT − γrTOT (F.4)

The value of rTOT at the steady state is then:

rTOTss ≈ RTOT
ss +

βrDr

γ
(F.5)

but recalling that the mass conservation law sets rTOT = RTOT +r, it can be immediately
deduced that:

rss =
βrDr

γ
(F.6)

which just depends on the value of the parameters.

The following analysis is limited to a speci�c region RTOT < R̃TOT
1

1.

1R̃TOT1 has been already calculated in Appendix D.3.
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In this zone, all the complexes are growing linearly with an angular coe�cient that de-
pends on the association constant Ki and the total amount of mRNA mTOT

i :

ci(R
TOT ) = χiR

TOT where χi =
mTOT
i

Ki

1

1 +
∑

i
mTOT

i

Ki

i = b, p, ` (F.7)

Consequently, F.2 can be rewritten as function of χi (i = b, p, `):

Ractive = (χb + χp + χ`)R
TOT = χRR

TOT (F.8)

where

χR =

∑
i
mTOT

i

Ki

1 +
∑

i
mTOT

i

Ki

i = b, p, ` (F.9)

Since mTOT
i >> Ki, then χR ≈ 1, which means that in this region the concentration of

free ribosomes is low. This is reasonable, since all the complexes are growing and the
needs of ribosomes is high, namely almost all the free ribosomes are coupled to mRNA.

The equations 3.42 and 3.39 can also be rewritten as it follows:

Ṗ TOT = βpχpR
TOT − ϕχRRTOTP TOT (F.10)

ṘTOT = σpr(P
TOT −RTOT )− ϕχR(RTOT )2 (F.11)

At the equilibrium

P TOT =
βpχp
ϕχR

(F.12)

P TOT = RTOT
(

1 +
ϕχR
σpr

RTOT
)

(F.13)

which is constant, independent of RTOT .
Coupling together these equations, an expression function of Ractive = χRR

TOT (as in F.8)
is found:

βp
ϕ
χp = Ractive

(
1 +

ϕ

σpr
Ractive

)
(F.14)

In F.14, only χp and R
active are free to evolve.

In particular, while the second term is independent of the load mTOT
` , χp is in�uenced by

it according to F.9. More precisely, if mTOT
` grows, χp decreases.

Furthermore, in line with F.14, Ractive decreases as well, but for equation F.1, the growth
rate must drop.
Finally, this proves the initial statement.

Unfortunately, this proof is just limited to values of RTOT lower than R̃TOT
1 .

Moreover, this region is very narrow since the equation of R̃TOT
1 is 2:

R̃TOT
1 =

(
1 +

mTOT
b

Kb

+
mTOT
p

Kp

+
mTOT
`

K`

)
Kb (F.15)

2Under the assumption that the relation between the dissociation constants is Kb < Kp,K`
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where Kb represents an important factor of reduction.
For a better analysis, one should observe the relation between Ractive and the load in every
possible region (in a system with three ribosomal species there are four regions).

Additionally, another possible issue can be found in this proof.
In F.10, µ has been substituted with ϕRactive = ϕχRR

TOT but this is an approximation.
Indeed µ = δ + λ where λ is the true growth rate. The performed substitution is based
on the assumption that δ << λ.
However, this could not be true, especially in the small considered region.

Finally, the proposed analysis has been made just for the second model. Nevertheless, it
is possible to extend it also to the third case, with harder calculations.
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Appendix G

Matlab code

G.1 fsolve implementation

The study of the equilibrium points have been performed by using the method fsolve by
Matlab, which solves systems of nonlinear equations.
The problem must be speci�ed as:

F (x) = 0 (G.1)

where F (x) is a function that returns a vector value. Here the implementation of the
method considering the ODE system of M2 will show1.
First, F must be de�ned as follows2:

function F = equilibria(x,omega,beta_Dr,beta_p,sigma_p,K,p)
% params:
% omega = [omega_Db, omega_Dl, omega_Dp] transcription rates
% K = [Kb, Kl, Kp] dissociation constants
% beta_Dr − transcription rate of rRNA
% beta_p − translation rate of R−Protein
% sigma_p − synthesis rate of ribosomes
% p − parameters of the growth rate function (gr)

% x = [cb cl cp R r P Rtot]

gamma_mRNA = 100;

% constant quantities
mb_tot = omega(1) / gamma_mRNA;
ml_tot = omega(2) / gamma_mRNA;
mp_tot = omega(3) / gamma_mRNA;

% eqns of complexes
F(1) = (x(4)/(x(4)+K(1)))*mb_tot − x(1); % eqn of c_b
F(2) = (x(4)/(x(4)+K(2)))*ml_tot − x(2); % eqn of c_l
F(3) = (x(4)/(x(4)+K(3)))*mp_tot − x(3); % eqn of c_p
% eqn of R_tot
F(4) = sigma_p*x(5)*x(6) − gr(x(1),p)*(x(1)+x(2)+x(3)+x(4));

1For the analysis of M1 and M3, the only changes must be referred to the following function F .
2The function gr must be de�ned outside the function F and it computes the growth rate.
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F(5) = beta_Dr − sigma_p*x(5)*x(6)−gamma_mRNA*x(5); % eqn of r
F(6) = beta_p*x(3) − sigma_p*x(5)*x(6) − gr(x(1),p)*x(6); % eqn of P

end

where F (i) is the i-th di�erential equation that has been set equal to 0 (i.e., at the
equilibrium). Since the easiest implementation of the method requires to de�ne F and
x0, the starting point is:

x0 = [R_tot_max*0.3; 0; R_tot_max*0.3; R_tot_max*0.3; R_tot_max; R_tot_max];

It is worth to recall that the analysis of the equilibria has been made for di�erent values of
the transcription rate of the load. This implies that the method fsolve must be involved
in a for cycle, where ω` is modi�ed at every loop.

n = 100; % number of samples
omega_Dl_vector = linspace(0,max_threshold,n);
results = zeros(6,n);
% starting point where x = [cb cl cp R r P Rtot]
x0 = [R_tot_max*0.3; 0; R_tot_max*0.3; R_tot_max*0.3; R_tot_max; R_tot_max];

for i=1:n
omega = [omega_Db omega_Dl_vector(i) omega_Dp];
fun = @(x)equilibria(x,omega,beta_Dr,beta_p,sigma_p,K,p);
sol = fsolve(fun,x0);
results(:,i) = sol.';
x0 = sol;

end

In order to avoid numerical problems, the iteration on the starting point x0 has been
revealed as the best solution. Indeed, �xing a unique point can lead the method to
�nd an equilibrium far away from the previous one (the ODE system can have several
equilibrium points for the same parameters values).

G.2 SimBiology Toolbox

Matlab has many Toolboxes which aim at helping the analysis. For what concerns systems
biology, the SimBiology Builder Toolbox can be used as powerful tool for the design of
the cell network, since it makes it extremely easy.
It is simply based on the mechanism of drag-and-drop di�erent elements (based on their
function) on a white board and afterwards connect them in order to establish the relations
between the various components of the cell, creating a graph (Figure G.1).
In particular as important feature, it allows to de�ne the units of measurement of the
di�erent components, computing an additional check on them for making sure to obtain
a coherent result. It also derives the system of di�erential equations directly from the
graph.
The connection between two components must be speci�ed, namely the reaction that
involves them must be declared in the Property Editor �eld. Speci�cally, the Kinetic Law
must be chosen between the default options. However, the degradation is not present in
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the default list provided by SimBiology. Despite that, it is possible to de�ne a new kinetic
law inMatlab that will be imported in the toolbox with the method sbioabstractkineticlaw.
It requires to insert the name of the new kinetic law and the equation that rules it. Then
it must be speci�ed the elements in the equation that are variables or parameters. Finally,
the built rule must be added in the library of the toolbox.

% Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('growth_rate', '(p*(cb+cp+cl) +
gamma_protein)*element');
% Assign the parameter and species variables in the expression.
set (abstkineticlawObj, 'SpeciesVariables', {'cb','cp','cl','element'});
set (abstkineticlawObj, 'ParameterVariables', {'gamma_protein','p'});
% Add the new kinetic law definition to the user−defined library.
sbioaddtolibrary(abstkineticlawObj);

Figure G.1: Graph made with SimBiology Builder Toolbox of model M2. The yellow, red
and blue elements represent the basal, R-Protein and load species. The green components
stand for the ribosomes compound (both rRNA and free ribosomes). The pink, grey
and blue dots represent the transcription process, the degradation with rate γ and the
degradation with rate µ respectively. The dark yellow dots represent the reaction that
involves the two connected components.

Once the model of the cell system has been de�ned with SimBiology Model Builder, it
can be analyzed with another tool, called SimBiology Model Analyzer.
It has several features that can be explored, but the most suitable for this thesis is the
simulation of the model, that allows to study the dynamics of the system, varying pa-
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rameters or initial conditions. For the choosing this type of simulation: Program −→
Simulate Model. Afterwards, if several models have been designed and saved in the same
project, select the desired one in the �eld Model. It is also possible to set the duration of
the simulation by modifying the Stop Time.
Additionally, it is possible to change parameters values during the simulation, or its initial
conditions. Before running it, drag-and-drop the desired components from the Browser
(Model) to Explorer section. If one wants to visualize all the simulations performed and
save the data from every run, tick Keep results from each run. Now the simulation can
be run, simply using the green button Run.
Finally, all the simulations can be imported in the Workspace as mat�le. From the Sim-
Biology Model Analyzer, section Browser (Project), select the running program, LastRun,
and then right-click on results and select Export Data to MATLAB Workspace: the data
will be saved and ready to be analyzed.


