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Université Paris Diderot

Prof. Paolo Dai Pra

Laureando:
1130557

Jacopo Borga
23 Febbraio 2018







4



Introduction

Existence of phase transition for the level-set percolation for the discrete
Gaussian free field on Zd (DGFF) is a problem that received much attention
in the past year, in particular it was studied in the 80’s by J. Bricmont, J.L.
Lebowitz and C. Maes (see [3]). They showed that in three dimension the
DGFF has a nontrivial percolation behavior: sites on which ϕx ≥ h percolate
if and only if h < h∗ with 0 ≤ h∗ <∞. Moreover, they generalized the lower
bound for h∗ in any dimension d ≥ 3, i.e. h∗(d) ≥ 0, but they were not able
to extend the proof of existence of a non trivial transition for any d ≥ 4.
Recently P.-F. Rodriguez and A.-S. Sznitman (see [11]) proved that h∗(d)
is finite for all d ≥ 3 as a corollary of a more general result concerning
the stretched exponential decay of the connectivity function when h > h∗∗,
where h∗∗ is a second critical parameter that satisfied h∗∗ ≥ h∗. In this
thesis we tried to get acquainted with some of the techniques developed
in the domain, notably to control the large excursions of these fields and
to understand the entropic repulsion phenomena, and to comprehend the
results on level set percolation in dimension three and larger. In particular,
the main goal is to present the two works of Bricmont, Lebowitz and Maes
and of Rodriguez and Sznitman. Finally, in the last two chapters we also
present a new and original (but incomplete) generalization of the proof (due
to J. Bricmont, J.L. Lebowitz and C. Maes ) of the existence of a non trivial
phase transition to any d ≥ 3.
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Introduzione

L’esistenza di una transione di fase per gli insiemi di livello del Gaussian
Free Field discreto in Zd (DGFF) è un problema che ha ricevuto molta at-
tenzione negli anni passati, in particolar modo è stato studiato intorno agli
anni ’80 da J. Bricmont, J.L. Lebowitz and C. Maes (vedi [3]). In questo
articolo dimostrarono che il DGFF in dimensione 3 presenta una transizione
di fase non triviale: i siti nei quali ϕx ≥ h percolano se e solo se h < h∗
per 0 ≤ h∗ < ∞. Inoltre generalizzarono il bound inferiore per h∗ in ogni
dimensione d ≥ 3, cioè h∗(d) ≥ 0, ma non furono in grado di estendere la
dimostrazione per l’esistenza di una transizione di fase non triviale ad ogni
d ≥ 4. Recentemente P.-F. Rodriguez e A.-S. Sznitman (vedi [11]) hanno
dimostrato che h∗(d) è finito per ogni dimonsione d ≥ 3 come corollario di
un risultato più generale riguardante il semi-decadimento esponenziale della
funzione di connettività quando h ≥ h∗∗, dove h∗∗ è un secondo parametro
che soddisfa h∗∗ ≥ h∗. In questa tesi l’autore ha cercato di prendere famil-
iarità con alcune tecniche sviluppate in questo dominio, in particolar modo
a controllare le grandi escursioni di questi campi, capire il fenomeno di re-
pulsione entropica e comprendere i risultati riguardanti la percolazione per
insiemi di livello in dimensione tre o maggiore. In particolare l’obbiettivo
principale è quello di presentare i due lavori di Bricmont, Lebowitz e Maes e
di Rodriguez e Sznitman. Infine, negli ultimi due capitoli, presenteremo una
nuova ed originale (ma incompleta) generalizzazione della dimostrazione (di
Bricmont, Lebowitz e Maes) dell’ esistenza di una transizione di fase ad ogni
d ≥ 3.

Ringraziamenti

Vorrei ringraziare innanzitutto il Prof. Giambattista Giacomin per avermi
permesso di realizzare questo lavoro nel periodo trascorso a Parigi, ma so-
prattutto per avermi trasmesso tutta la sua passione per la Matematica.
Un altro grandissimo ringraziamento va al Prof. Paolo Dai Pra per avermi
seguito e sostenuto in tutti questi anni di studi.



Contents

Notation 9

1 The DGFF 11
1.1 The costruction of the model . . . . . . . . . . . . . . . . . . 11
1.2 Some heuristic interpretations . . . . . . . . . . . . . . . . . . 12
1.3 The random walk rappresentation for the massless model . . 13

1.3.1 Harmonic functions and the Discrete Green Identities 13
1.3.2 The random walk representation . . . . . . . . . . . . 16

1.4 The infinite volume extension . . . . . . . . . . . . . . . . . . 18
1.5 The Gibbs-Markov property. . . . . . . . . . . . . . . . . . . 20

2 Some useful general tools 25
2.1 Extended version for non-negative increasing functions of the

Markov’s inequality . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 BTIS-inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Some useful tools for the DGFF 31
3.1 Maximum for the Lattice Gaussian Free Field . . . . . . . . . 31
3.2 Asymptotics for the Green function . . . . . . . . . . . . . . . 33
3.3 Potential theory . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Recurrent and transient sets: The Wiener’s Test . . . . . . . 34
3.5 Notation for the DGFF . . . . . . . . . . . . . . . . . . . . . 34
3.6 Density and uniqueness for the infinite cluster . . . . . . . . . 35

4 The two main results 39
4.1 Purpose of the thesis . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 The proof of J. Bricmont, J.L. Lebowitz and C. Maes . . . . 39

4.2.1 Definitions and notation . . . . . . . . . . . . . . . . . 40
4.2.2 The technical lemmas . . . . . . . . . . . . . . . . . . 41
4.2.3 Conclusion of the proof of the Theorem . . . . . . . . 43

4.3 The proof of P.-F. Rodriguez and A.-S. Sznitman . . . . . . . 43
4.3.1 Renormalization scheme . . . . . . . . . . . . . . . . . 44
4.3.2 Crossing events . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 The structure of the proof . . . . . . . . . . . . . . . . 47

7



8 CONTENTS

4.3.4 The main Theorem . . . . . . . . . . . . . . . . . . . . 51

5 A generalization of the BLM proof 59
5.1 Finite energy property for the DGFF . . . . . . . . . . . . . . 59
5.2 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 The technical lemmas . . . . . . . . . . . . . . . . . . . . . . 61
5.4 The conclusion of the proof . . . . . . . . . . . . . . . . . . . 66

6 Open problems 67

Bibliography 69



Notation

We introduce some notation to be used in the sequel. First of all we ex-
plain our convection regarding constant: we denote by c, c′, . . . positive con-
stants (different constants could have the same name). Numbered constants
c0, c1, . . . are defined at the place they first occur within the text and remain
fixed from then on until the end of the section. In chapters 1, 3, 4, constants
will implicitly depend on the dimension d. Throughout the entire paper, de-
pendence of constants on additional parameters will appear in notation. On
Zd, we respectively denote by | · | and | · |∞ the Euclidean and `∞-norms. We
denote by i ∼ j the couple of vertices i and j such that |i − j| = 1. More-
over, for any x ∈ Zd and r ≥ 0, we let B(x, r) = {y ∈ Zd; |y− x|∞ ≤ r} and
S(x, r) = {y ∈ Zd; |y− x|∞ = r} stand for the `∞-ball and the `∞-sphere of
radius r centered at x. Given K and U subsets of Zd, Kc = Zd\K stands for
the complement of K in Zd, |K| for the cardinality of K, K ⊂⊂ Zd means
that |K| < ∞, and d(K,U) = inf{|x − y|∞;x ∈ K, y ∈ U} denotes the
`∞-distance between K and U . If K = {x}, we simply write d(x, U). More-
over, we define the inner boundary of K to be the set ∂iK = {x ∈ K;∃y ∈
Kc, |x − y| = 1}, and the outer boundary of K as ∂K = ∂i(Kc). We also
introduce the diameter of any subset K ⊂ Zd, diam(K), as its `∞−diameter,
i.e. diam(K)= sup{|x− y|∞;x, y ∈ K}. Throughout the paper, vectors are
taken to be row vectors, and a small t indicates transposition. The inner
product between x and y in Rd is usually denoted by x · y and sometimes
we will write for a vector (ti)i∈Λ, Λ ⊂ Zd, simply tΛ.

For the symmetric simple random walk X = (Xk)k∈N on Zd, which at
each time step jumps to any one of its 2d nearest-neighbours with probability
1
2d , we denote by Pi the distribution of the walk starting at i ∈ Zd, and with
Ei the corresponding expectation. That is, we have Pi(X0 = i) = 1, and
Pi(Xn+1 = k|Xn = j) = 1/2d · 1{k∼j} =: P (j, k), for all k, j ∈ Zd. Given

U ⊂ Zd, we further denote the entrance time in U by τU = inf{n ≥ 0 : Xn ∈
U} and the hitting time in U by τ̃U = inf{n ≥ 1 : Xn ∈ U}.

Given two functions f, g : Zd → R, we write f(x) ∼ g(x), as |x| → ∞, if
they are asymptotic, i.e. if lim|x|→∞ f(x)/g(x) = 1
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Chapter 1

The DGFF

In this chapter we introduce the model studied in this paper, that is, the
Lattice Gaussian Free Field or Discrete Gaussian Free Field (DGFF), also
known as Harmonic Crystal.

1.1 The costruction of the model

We begin by defining the configuration space in finite and infinite volume as

ΩΛ := RΛ and Ω := RZd ,

where Λ ⊂⊂ Zd. The measurable structure on ΩΛ (risp. Ω) is the σ-algebra
FΛ (risp. F) generated by the cylinder sets, that is, the sets of the form
{ω ∈ ΩΛ : ωi ∈ Ai for every i ∈ I}, with I a finite subset of Λ (risp. Zd)
and Ai an open subset of R.

Given a configuration ω ∈ Ω we call the random variables ϕi(ω) = ωi, i ∈
Zd, the spin or height at i. We consider the Hamiltonian (i.e. the energy
associated to a given configuration ω ∈ ΩΛ) defined by1

HΛ,β,m(ω) :=
β

4d

∑
{i,j}∈EbΛ

(ϕi(ω)− ϕj(ω))2 +
m2

2

∑
i∈Λ

ϕi(ω)2, ω ∈ ΩΛ,

(1.1)
where β ≥ 0 is the inverse temperature, m ≥ 0 is the mass2 and EbΛ =
{{i, j} ∩ Λ 6= ∅ : i ∼ j}. Once we have a Hamiltonian and a configuration
η ∈ Ω, we define the corresponding Gibbs distribution for the DGFF in Λ
with boundary condition η, at inverse temperature β ≥ 0 and mass m ≥ 0,

1The constants β/4d and m2/2 will be very convinient later on.
2The terminology ”mass” is inherited from quantum field theory, where the corre-

sponding quadratic term in the Lagrangian indeed give rise to the mass of the associated
particles.
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12 CHAPTER 1. THE DGFF

as the probability measure µηΛ,β,m on (Ω,F) defined by

µηΛ,β,m(dω) :=
exp (−HηΛ,β,m(ω))

ZηΛ,β,m
ληΛ(dω), (1.2)

where3

ληΛ(dω) :=
∏
i∈Λ

dωi
∏
i∈ΛC

δηi(dωi), (1.3)

and ZηΛ,β,m is a renormalization constant called partition function, that is of
course (after some easy computation to show that is finite)

ZηΛ,β,m =

∫
exp (−βHηΛ,β,m(ω))ληΛ(dω) <∞. (1.4)

Remark 1.1.1. We immediately observe that the scaling property of the
Gibbs measure imply that one of the parameter, β or m, plays an ir-
relevant role when studying the DGFF. Indeed, the change of variables
ω′i = β1/2ωi, i ∈ Λ, leads to

ZηΛ,β,m = β−|Λ|/2Zη
′

Λ,1,m, (1.5)

where m′ = β−1/2m and η′ = β1/2η, and, similarly,

µηΛ,β,m(·) = µη
′

Λ,1,m′(·). (1.6)

This shows that there is no loss of generality in assuming that β = 1. In
particular our interest is on the massless model, that is when m = 0.

1.2 Some heuristic interpretations

We now give some heuristic interpretations of the DGFF.

First of all note that from the definition of the energy in (1.1) only spins
located at nearest-neighbours vertices of Zd interact. A second important
remark is to note that from definition (1.2) we know that our measure gives
higher weight to the configurations that have low energy. So to have a low
energy we want both terms in (1.1) to be small, in particular

• for the first term to be small we need that all (ϕi − ϕj)2 (that could
be viewed as a sort of gradient) are small, and so that every vertex
has a value similar to the neighbour vertices, namely the interaction
favours agreement of neighbouring spins;

3Obviously dωi denotes the Lebesgue measure. Note that the term
∏
i∈ΛC δηi(dωi)

fixes the boundary condition equal to η.
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• for the second term to be small we need that all (ϕi)
2 are small, and

so that all vertex has a value close to zero, that is, the spins favour
localization near zero.

One possible interpretation of this model is as follows. In d = 1, the
spin at vertex i ∈ Λ, ωi ∈ R, we can interpret as the height of a random line
above the x-axis. The behaviour of the model in large volumes is therefore
intimately related to the fluctuations of the line away from the x−axis.
Similarly, in d = 2, ωi can be interpreted as the height of a surface above
the (x, y)−plane (see for an example the figure in the first page).

The model comes from the Quantum Field Theory. It is the basic model
on top of which more interesting field theories are constructed. Indeed a lot
of other model are constructed as pertubation of the DGFF, so it is a sort
of building block.

Recently, the reason to study this model is that the continuum GFF is
a sort of rescaling of the DGFF as the mesh of the lattice goes to zero. The
GFF plays a very important role in relation of critical properties of critical
systems, especially in dimension 2 (for example, we recall the remarkable
works due to the two Fields medal Wendelin Werner and Stanislav Smirnov).

Finally, the DGFF could also be interpreted as a model which describes
the small fluctuations of the positions of atoms of a crystal. That’s why the
DGFF is also called the Harmonic Crystal.

1.3 The random walk rappresentation for the mass-
less model

When we look at the density distribution in (1.2) we immediately note an
affinity with the Gaussian distribution. The goal of this section is to rewrite
the measure µηΛ,1,0(dω) =: µηΛ(dω) in the canonical form

1

(2π)|Λ|/2
√

detGΛ
exp

{
− (x− u) ·G−1

Λ (x− u)
}
, (1.7)

where u = (ui)i∈Λ,with ui = EηΛ[ϕi], is the |Λ|-dimensional mean vector and
GΛ(i, j) = CovηΛ(ϕi, ϕj) is the|Λ| × |Λ| covariance matrix.

Before locking at this representation we need some preliminary notions
on harmonic functions.

1.3.1 Harmonic functions and the Discrete Green Identities

Given a collection f = (fi)i∈Zd of real numbers, we define, for each pair
{i, j} ∈ EZd , the discrete gradient

(∇f)ij := fj − fi, (1.8)
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and, for all i ∈ Zd, the discrete Laplacian

1

2d
(∆f)i :=

[ 1

2d

∑
j∼i

fj

]
− fi =

1

2d

∑
j∼i

(∇f)ij =
1

2d

d∑
j=1

(∇2f)i,i+ej , (1.9)

where (∇2f)i,i+ej = (fi+ej − fi) + (fi−ej − fi) = fi+ej − 2fi + fi−ej . The
last term resembles the usual definition of the Laplacian of a function on
Rd, but the first expression is a more natural way to think of the Laplacian,
the difference between the mean value of f over the neighbours of i and the
value off at i.

We have the following discrete analogues of the classical Green identities.

Lemma 1.3.1 (Discrete Green Identities). Let Λ ⊂⊂ Zd. Then, for all
collections of real numbers f = (fi)i∈Zd , g = (gi)i∈Zd ,∑

{i,j}∈EbΛ

(∇f)ij(∇g)ij = −
∑
i∈Λ

gi(∆f)i +
∑

i∈Λ,j /∈Λ,i∼j

gj(∇f)ij , (1.10)

and ∑
i∈Λ

{
fi(∆g)i − gi(∆f)i

}
=

∑
i∈Λ,j /∈Λ,i∼j

{
fi(∆g)ij − gj(∆f)ij

}
. (1.11)

Proof. See, for example, [7], Lemma 8.7.

We can write the action of the Laplacian on f = (fi)i∈Zd , as:

(∆f)i =
∑
j∼i

(∇f)ij =
∑
j∈Zd
∇ijfj , (1.12)

where

∇ij =


−2d if i = j,

1 if i ∼ j,
0 otherwise.

(1.13)

Moreover we introduce the restriction of ∆ to Λ, defined by

∆Λ = (∆i,j)i,j∈Λ. (1.14)

Note that f ·∆Λg =
∑

i∈Λ fi(∆Λg)i =
∑

i,j∈Λ fi∆ijgj = g·∆Λf and (∆Λf) =∑
j∈Λ ∆ijfj .

Returning to the density of the DGFF and remembering that Λ ⊂⊂ Zd,
f = (fi)i∈Zd , fi = ηi for all i /∈ Λ, we have, applying (1.10) with f = g∑
{i,j}∈EbΛ

(fj − fi)2 =
∑

{i,j}∈EbΛ

(∇f)2
ij = −

∑
i∈Λ

fi(∆f)i +
∑

i∈Λ,j /∈Λ,i∼j

fj(∇f)ij

= −
∑
i∈Λ

fi(∆Λf)i − 2
∑

i∈Λ,j /∈Λ,i∼j

fifj +BΛ,

= f ·∆Λf − 2
∑

i∈Λ,j /∈Λ,i∼j

fifj +BΛ,

(1.15)
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where in the last inequality we used that (∆f)i = (∆Λf)i +
∑

j /∈Λ fj , for all

i ∈ Λ and fj(∇f)ij = f2
j −fifj = η2

j −fifj for all i ∈ Λ, j /∈ Λ, i ∼ j, and BΛ

is a boundary term. One can then introduce u = (ui)i∈Zd , to be determined
later, depending on η and Λ, and playing the role of the mean of f .

Our aim is to rewrite (1.15) in the form −(f − u) · ∆Λ(f − u), up to
boundary terms. We can, in particular, include in BΛ any expression that
depends only on the values of u. We have

(f − u) ·∆Λ(f − u) = f ·∆Λf − 2f ·∆Λu+ u ·∆Λu

= f ·∆Λf − 2
∑
i∈Λ

fi(∆Λu)i +BΛ

= f ·∆Λf − 2
∑
i∈Λ

fi(∆u)i + 2
∑
i∈Λ

∑
j /∈Λ,j∼i

fiuj +BΛ.

(1.16)

Comparing the two expressions for f ·∆Λf in (1.16) and (1.15), we deduce
that∑
{i,j}∈EbΛ

(fj−fi)2 = −(f−u)·∆Λ(f−u)−2
∑
i∈Λ

fi(∆u)i+2
∑
i∈Λ,
j /∈Λ
j∼i

fi(uj−fj)+BΛ.

(1.17)
A look at the second term in this last display indicates exactly the restric-
tions one should impose on u in order for −(f − u) · ∆Λ(f − u) to be the
one and only contribution to the Hamiltonian (up to boundary terms). To
cancel the non-trivial terms that depend on the values of f inside Λ, we
need to ensure that:

• u is harmonic in Λ, that is

(∆u)i = 0, for all i ∈ Λ; (1.18)

• u coincides with f (hence with η) outside Λ, that is

ui = ηi, for all i /∈ Λ. (1.19)

We have thus proved

Lemma 1.3.2. Assume that u = (ui)i∈Zd solves the Dirichlet problem in Λ
with boundary condition η :{

(∆u)i = 0, i ∈ Λ,
ui = ηi, i /∈ Λ.

(1.20)

then ∑
{i,j}∈EbΛ

(fj − fi)2 = −(f − u) ·∆Λ(f − u) +BΛ. (1.21)
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Existence of a solution to the Dirichlet problem will be proved later.
Uniqueness can be verified easily.

Let us consider the massless Hamiltonian HηΛ,1,0 =: HηΛ, expressed in
terms of the variables ϕ = (ϕi)i∈Zd , which are assumed to satisfy ϕi = ηi
for all i /∈ Λ. We apply Lemma 1.3.2 with f = ϕ, assuming for the moment
that one can find a solution u to the Dirichlet problem (in Λ, with boundary
condition η). Since it does not alter the Gibbs distribution, the constant BΛ

in (1.21) can always be subtracted from the Hamiltonian. We get

HηΛ =
1

2
(ϕ− u) · (− 1

2d
∆Λ)(ϕ− u). (1.22)

Our next tasks are, first, to invert the matrix − 1
2d∆Λ, in order to obtain an

explicit expression for the covariance matrix, and, second, to find an explicit
expression for the solution u to the Dirichlet problem.

1.3.2 The random walk representation

We begin by writing

− 1

2d
∆Λ = IΛ − PΛ, (1.23)

where IΛ = (δij)i,j∈Λ and PΛ = (P (i, j))i,j∈Λ with elements

P (i, j) =

{
1
2d if i ∼ j,
0 otherwise.

(1.24)

We immediately recognise that the numbers (P (i, j))i,j∈Zd are the transi-
tion probabilities of the symmetric simple random walk X = (Xk)k∈N on
Zd, which at each time step jumps to any one of its 2d nearest-neighbours
with probability 1

2d , as explained in the introduction. We denote by Pi the
distribution of the walk starting at i ∈ Zd. That is, we have Pi(X0 = i) = 1,
and Pi(Xn+1 = k|Xn = j) = P (j, k) for all k, j ∈ Zd.

The next lemma shows that the matrix IΛ−PΛ is invertible, and provides
a probabilistic interpretation for its inverse:

Lemma 1.3.3. The matrix IΛ − PΛ is invertible. Moreover, its inverse
GΛ = (IΛ − PΛ)−1 is given by GΛ = (GΛ(i, j))j∈Λ, the Green function in Λ
of the simple random walk on Zd, defined by

GΛ(i, j) := Ei

[ τΛc−1∑
n=0

1{Xn=j}

]
. (1.25)

The Green function GΛ(i, j) represents the average number of visits at
j made by a walk started at i, before it leaves Λ.
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Proof. First of all, observe that (below, Pn denotes the nth power of a
matrix P )

(IΛ − PΛ)(IΛ + PΛ + P 2
Λ + · · ·+ PnΛ ) = (IΛ − Pn+1

Λ ). (1.26)

Rewriting

P kΛ(i, j) =
∑

i1,...,ik−1∈Λ

PΛ(i, i1)PΛ(i1, i2) · · · · · PΛ(ik−1, j) =

= Pi
(
Xk = j, τΛC > k

)
≤ Pi

(
τΛC > k

)
,

(1.27)

and using the classical bound on the probability that the walk exits a finite
region in a finite time Pi

(
τΛC > k

)
≤ e−ck, we can take the limit n→∞ in

(1.26) obtaining

(IΛ − PΛ)
(∑
k≥0

P kΛ

)
= IΛ, (1.28)

that is,

GΛ = (IΛ − PΛ)−1 =
∑
k≥0

P kΛ, (1.29)

since by symmetry we have also that (GΛ)(IΛ − PΛ) = IΛ. Finally

∑
k≥0

P kΛ(i, j) =
∑
k≥0

Pi
(
Xk = j, τΛC > k

)
= Ei

[ τΛc−1∑
n=0

1{Xn=j}

]
, (1.30)

gives the desired expression for GΛ(i, j).

Let us now prove the existence of a solution to the Dirichlet problem,
also expressed in terms of the simple random walk. Let XτΛc denote the
position of the walk at the time of first exit from Λ.

Lemma 1.3.4. The solution to the Dirichlet problem in (1.20) is given by
the function u = (ui)i∈Zd defined by

ui = Ei

[
ηXτΛc

]
, for all i ∈ Zd. (1.31)

Proof. When j /∈ Λ, Pj(τΛc = 0) = 1 and, thus, uj = Ej

[
ηXτΛc

]
=

Ej
[
ηX0

]
= ηj . When i ∈ Λ, by conditioning on the first step of the walk

and using the Markov’s property,

ui = Ei

[
ηXτΛc

]
=
∑
j∼i

Ei

[
ηXτΛc |X1 = j

]
Pi
(
X1 = j

)
=

1

2d

∑
j∼i

uj , (1.32)

which implies (∆u)i = 0.



18 CHAPTER 1. THE DGFF

We finally have the desired representation.

Theorem 1.3.5. Under µηΛ, ϕ = (ϕi)i∈Λ is Gaussian, with mean u =
(ui)i∈Λ defined by

ui = Ei

[
ηXτΛc

]
, for all i ∈ Λ, (1.33)

and positive definite covariance matrix GΛ = (GΛ(i, j)),j∈Λ, given by the
Green function

GΛ(i, j) := Ei

[ τΛc−1∑
n=0

1{Xn=j}

]
. (1.34)

.

The reader should note the remarkable fact that the distribution of ϕ =
(ϕi)i∈Λ under µηΛ depends on the boundary condition η only through its
mean; the covariance matrix is only sensitive to the choice of Λ.

1.4 The infinite volume extension

In this section, we will present the problem of existence of infinite-volume
Gibbs measures for the massless DGFF.

In order to do that we need to introduce the notion of Gibbs state and
we will do that in the particular case of the DGFF measure4.

Definition 1.4.1. Let f : Ω = RZd → R be a function. We say that f is
local if exists A ⊂⊂ Zd such that f(ω) = f(ω′) as soon as ωi = ω′i for all
i ∈ A. The smallest such set A is called the support of f and it is denoted
by supp(f).

Definition 1.4.2. A state is a map f → 〈f〉 acting on a local function
f : Ω→ R satisfying the following three properties:

1. 〈1〉 = 1;

2. if f ≥ 0 then 〈f〉 ≥ 0;

3. for all λ ∈ R, 〈f + λg〉 = 〈f〉+ λ〈g〉.

Definition 1.4.3. Let (Λ)n≥1be a sequence of finite set such that increase to
Zd, then the sequence µηΛn is said to converge to the state 〈·〉, if EηΛn [f ]→ 〈f〉
for all f local functions. Then the state 〈·〉 is called a Gibbs state.

4The notion of Gibbs state could be developed in a very more general framework but we
prefer to chose a simpler presentation of this notion since the dissertation of this argument
is not the goal of this paper.
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Remark 1.4.4. This notion is really natural from a mathematical point of
view. The reason is that as soon as you have a functional with the properties
of Definition 1.4.2 you can prove that there exists an underlying probability
measure µ such that 〈f〉 =

∫
fdµ and then the notion of convergence given

in Definition 1.4.3 it is just the notion of weak convergence of the sequence
µηΛn to µ.

Definition 1.4.5. We characterize the space of infinite-volume Gibbs mea-
sures by

G = {µ ∈M1(Ω)
∣∣µ(A|FΛc)(ω) = µωΛ(A) for all Λ ⊂⊂ Zd and all A ∈ F},

where we denote by M1(Ω) the set of probability measures on Ω.

Of course in the particular case of the DGFF, since we are dealing with
sequences of Gaussian measures, any limit point of µηΛn is in any case a Gaus-
sian measure and this convergence takes place if and only if both covariance
and mean converge (to finite limits). We note, by a standard monotone
argument and remembering that the random walk on Zd is transient if and
only if d ≥ 3, that

lim
n→∞

GΛn(i, j) = Ei

[∑
n≥0

1{Xn=j}

]
=

{
< +∞ if d ≥ 3,
= +∞ if d = 1 or d = 2.

(1.35)

This has the following consequence:

Theorem 1.4.6. When d = 1 or d = 2, the massless Gaussian Free Field
has no infinite-volume Gibbs measures.

When d ≥ 3, transience of the symmetric simple random walk implies
that the limit in (1.35) is finite. This will allow us to construct infinite-
volume Gibbs measures. We say that η = (ηi)i∈Zd is harmonic (in Zd) if
(∆η)i = 0 for all i ∈ Zd.

Theorem 1.4.7. In dimensions d ≥ 3, the massless Gaussian Free Field
possesses infinitely many infinite-volume Gibbs measures. More precisely,
given any harmonic function η on Zd, there exists a Gaussian Gibbs measure
µη with mean η and covariance matrix given by the Green function

G(i, j) = Ei

[∑
n≥0

1{Xn=j}

]
. (1.36)

The proof of the last theorem is the topic of the next section.
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1.5 The Gibbs-Markov property.

From now till the end we tacitly suppose that d ≥ 3. In this section we want
to show that every Gaussian Gibbs measure µη, given by Theorem 1.4.7,
satisfies the Gibbs-Markov property, that is, for all Λ ⊂⊂ Zd, and for all
A ∈ F ,

µη
(
A|FΛc

)
(ω) = µωΛ(A), for µη-almost all ω. (1.37)

For that, we will verify that the field ϕ = (ϕi)i∈Zd with mean Eη[ϕi] = ηi
and covariance

Covη(ϕiϕj) = G(i, j), (1.38)

when conditioned on FΛc , remains Gaussian (Lemma 1.5.2 below) and that,
for all tΛ,

Eη[eitΛ·ϕΛ |FΛc ](ω) = eitΛ·aΛ(ω)− 1
2
tΛ·GΛtΛ , (1.39)

where ai(ω) = Ei[ωXτΛc ] is the solution of the Dirichlet problem in Λ with
boundary condition ω.

Remark 1.5.1. We want to remark the difference between the probability
measure P (with the associated expectation E) and P (with the associated
expectation E): the first acts on the random field ϕ as just defined, the
second acts on the simple random walk on Zd as defined in the initial section
about notation.

Lemma 1.5.2. Let ϕ be the Gaussian field construct below. Let, for all
i ∈ Λ,

ai(ω) := Eη[ϕi|FΛc ](ω). (1.40)

Then, µη-a.s., ai(ω) = Ei[ωXτΛc ]. In particular, each ai(ω) is a finite linear
combination of the variables ϕj and (ai)i∈Zd is a Gaussian field.

Proof. When i ∈ Λ, we use the following characterization of the conditional
expectation: up to equivalence, Eη[ϕi|FΛc ] is the unique FΛc−measurable
random variable ψ for which

Eη[(ϕi − ψ)ϕj ] = 0, for all j ∈ Λc. (1.41)

We verify that this condition is indeed satisfied when ψ = Ei[ωXτΛc ]. By
(1.38),

Eη
[(
ϕi − Ei[ϕXτΛc ]

)
ϕj

]
= Eη[ϕiϕj ]− Eη

[
Ei[ϕXτΛc ]ϕj

]
=

= G(i, j) + ηiηj − Eη
[
Ei[ϕXτΛc ]ϕj

]
.

Using again (1.38),

Eη
[
Ei[ϕXτΛc ]ϕj

]
=
∑
k∈∂Λ

Eη[ϕkϕj ]Pi(XτΛc = k) = Ei

[
Eη[ϕXτΛcϕj ]

]
= Ei

[
G(XτΛc , j)

]
+ Ei

[
Eη[ϕXτΛc ]Eη[ϕj ]

]
.

(1.42)
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On the one hand, since i ∈ Λ and j ∈ Λc, any trajectory of the random walk
that contributes to G(i, j) must intersect ∂Λ at least once, so the Markov
property gives

G(i, j) = Ei

[∑
h≥0

1{Xh=j}

]
=
∑
k∈∂Λ

Pi(XτΛc = k)G(k, j) = Ei
[
G(XτΛc , j)

]
.

(1.43)
On the other hand, since ϕ has mean η and η is solution of the Dirichlet
problem in Λ with boundary condition η, we have

Ei

[
Eη[ϕXτΛc ]Eη[ϕj ]

]
= Ei

[
ηXτΛc ηj

]
= Ei[ηXτΛc ]ηj = ηiηj . (1.44)

This shows that ai(ω) = Ei[ωXτΛc ]. In particular, the latter is a linear com-
bination of the ωjs :

ai(ω) =
∑
k∈∂Λ

ωkP (XτΛc = k), (1.45)

which implies that also (ai)i∈Zd is a Gaussian field.

Corollary 1.5.3. Under µη, the random vector (ϕi − ai)i∈Λ is independent
of FΛc .

Proof. We know that the variables ϕi − ai, i ∈ Λ, and ϕj , j ∈ Λc form a
Gaussian field. Therefore, a classical result implies that (ϕi − ai)i∈Λ, which
is centered, is independent of FΛc if and only if each pair ϕi − ai (i ∈ Λ)
and ϕj (j ∈ Λc) is uncorrelated. But this follows from (1.41).

Let aΛ = (ai)i∈Λ. By Corollary 1.5.3 and since aΛ is FΛc-measurable,

Eη[eitΛ·ϕΛ |FΛc ] = eitΛ·aΛEη[eitΛ·(ϕΛ−aΛ)|FΛc ] = eitΛ·aΛEη[eitΛ·(ϕΛ−aΛ)].
(1.46)

We know that the variables ϕi−ai, i ∈ Λ, form a Gaussian vector under µη.
Since it is centered, we need only to compute its covariance. For i, j ∈ Λ,
write

(ϕi − ai)(ϕj − aj) = ϕiϕj − (ϕi − ai)aj − (ϕj − aj)ai − aiaj . (1.47)

Using Corollary 1.5.3 again, we see that Eη[(ϕi − ai)aj ] = 0 and Eη[(ϕj −
aj)ai] = 0 (since ai and aj are FΛc-measurable). Therefore

Covη
(
(ϕi − ai), (ϕj − aj)

)
= Eη[ϕiϕj ]− Eη[aiaj ] = G(i, j) + ηiηj − Eη[aiaj ].

(1.48)
Proceeding as in (1.42)

Eη[aiaj ] = Ei,j

[
G
(
XτΛc , X

′
τ ′Λc

)]
+ Ei,j

[
Eη
[
ϕXτΛc

]
Eη
[
ϕX′

τ ′
Λc

]]
, (1.49)
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where X and X ′ are two independent symmetric random walks, starting
respectively at i and j, Pi,j denotes their joint distribution, and τ ′Λc is the
first exit time of X ′ from Λ. As was done earlier,

Ei,j

[
Eη
[
ϕXτΛc

]
Eη
[
ϕX′

τ ′
Λc

]]
= Ei,j

[
ηXτΛc ηX′τ ′

Λc

]
= Ei

[
ηXτΛc

]
Ej
[
ηXτΛc

]
= ηiηj .

(1.50)
Let us then define the modified Green function

KΛ(i, j) := Ei

[ ∑
n≥τΛc

1{Xn=j}

]
= G(i, j)−GΛ(i, j). (1.51)

Observe that KΛ(i, j) = KΛ(j, i) since G and GΛ are both symmetric; more-
over, KΛ(i, j) = G(i, j) if i ∈ Λc. We can thus write

Ei,j

[
G
(
XτΛc , X

′
τ ′Λc

)]
=
∑
k,l∈∂Λ

Pi
(
XτΛc = k

)
Pj
(
XτΛc = l

)
G(k, l)

=
∑
l∈∂Λ

Pj
(
XτΛc = l

)
KΛ(i, l)

=
∑
l∈∂Λ

Pj
(
XτΛc = l

)
KΛ(l, i)

=
∑
l∈∂Λ

Pj
(
XτΛc = l

)
G(l, i)

= KΛ(j, i) = G(i, j)−GΛ(i, j).

(1.52)

We have thus shown Covη
(
(ϕi − ai), (ϕj − aj)

)
= GΛ(i, j), which implies

that

Eη
[
eitΛ·ϕΛ |FΛc

]
= eitΛ·aΛe−

1
2
tΛ·GΛtΛ . (1.53)

This shows that, under µη(·|FΛc), ϕΛ is Gaussian with distribution given by
µηΛ(·). We have therefore (1.39).

Remark 1.5.4. All the computations done in this section can be generalized
conditioning on the σ-algebra FΛ, for ∅ 6= Λ ⊂⊂ Zd. In this case we obtain
the following version of Lemma 1.5.2

Lemma 1.5.5. Let ϕ be the Gaussian field construct at the beginning of this
section. Let, for all i ∈ Λc,

ui(ω) := Eη[ϕi|FΛ](ω). (1.54)

Then, µη-a.s., ui(ω) = Ei[ωXτΛ , τΛ < ∞]. In particular, each ui(ω) is a
finite linear combination of the variables ϕj, (ui)i∈Zd is a Gaussian field,
and (ϕi − ui)i∈Λc is independent from FΛ.
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We now define, for U ⊂ Zd, the probability measure µηU (·) on RZd of the
Gaussian field with mean EηU [ϕi] = ηi and covariance equal to the Green
function GU (·, ·) killed outside U, that is

CovηU [ϕi, ϕj ] = GU (i, j) :=
∑
n≥0

Px
(
Xn = y, n < TU

)
(1.55)

where TU := inf{n ≥ 0, Xn /∈ U} is the exit time from U. We have the
following

Lemma 1.5.6. Let ∅ 6= K ⊂⊂ Zd, U = Λc. Every Gaussian Gibbs measure
µη, given by Theorem 1.4.7, satisfies the ”exterior Gibbs-Markov property”,
that is, for all Λ ⊂⊂ Zd, and for all A ∈ F ,

µη
(
A|FΛ

)
(ω) = µωU (A), for µη-almost all ω. (1.56)

Proof. See [11], Lemma 1.2 and Remark 1.3
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Chapter 2

Some useful general tools

In this and in the following chapter we present some important general tools
that we are going to use in the sequel. In this first chapter we present some
useful general probability tools.

2.1 Extended version for non-negative increasing
functions of the Markov’s inequality

We state an easy but important generalization of the classical Markov’s
inequality.

Theorem 2.1.1. Let X be any random variable, and f a non-negative in-
creasing function. Then, supposing that E[f(X)] <∞,

P(X ≥ ε) ≤ E[f(X)]f(ε). (2.1)

Proof. Since X ≥ ε if and only if f(X) ≥ f(ε) then the basic Markov
inequality gives the result.

2.2 BTIS-inequality

The BTIS-inequality, is a result bounding the probability of a deviation of
the uniform norm of a centred Gaussian stochastic process above its ex-
pected value. The inequality has been described (in [1]) as “the single most
important tool in the study of Gaussian processes.” We now present this
important tool.

Consider a Gaussian random variable X ∼ N(0, σ2). The following two
important bounds hold for every u > 0 and become sharp very quickly as x
grows:(

σ√
2πu

− σ3

√
2πu3

)
e−

1
2
u2/σ2 ≤ P(X > u) ≤ (

σ√
2πu

)e−
1
2
u2/σ2

. (2.2)

25
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In particular the upper bound follows from the observation that

P(X > u) =

∫
u

+∞ 1√
2πσ2

e−
x2

2σ2 dx ≤

≤
∫
u

+∞ 1√
2πσ2

x

u
e−

x2

2σ2 dx =
( σ√

2πu

)
e−

1
2
u2/σ2

.

(2.3)

For the lower bound, make the substitution x 7→ u+ y/u to note that

P(X > u) =

∫
u

−∞ 1√
2πσ2

e−
x2

2σ2 dx =
1√

2πσ2

∫
0

+∞ e−
u+y/u

2σ2

u
dy

=
e−

u2

2σ2

u
√

2πσ2

∫
0

+∞
e−(y2/u2+2y)/2σ2

dy

≥ e−
u2

2σ2

u
√

2πσ2

∫
0

+∞
e−(y/σ2)

(
1− y2

2u2σ2

)
dy =

e−
u2

2σ2

u
√

2πσ2

(
σ2 − σ4

u2

)
,

(2.4)

where the inequality is given by the fact that e−z ≥ 1− z for all z ≥ 0. One
immediate consequence of (2.2) is that

lim
u→∞

u−2 lnP(X > u) = − 1

2σ2
. (2.5)

Now we state a classical result related to (2.5), but for the supremum of
a general centered Gaussian process (Xt)t∈T . Assume that (Xt)t∈T is a.s.
bounded, then

lim
u→∞

u−2 lnP
(

sup
t∈T

Xt > u
)

= − 1

2σ2
T

, (2.6)

where

σ2
T := sup

t∈T
E[X2

t ]. (2.7)

An immediate consequence of (2.6) is that for all ε > 0 and u large enough,

P
(

sup
t∈T

Xt > u
)
≤ eεu2−u2/2σ2

T . (2.8)

Since ε > 0 is arbitrary, comparing (2.8) with (2.2), we reach the rather
surprising conclusion that the supremum of a centered, bounded Gaussian
process behaves much like a single Gaussian variable with a suitable chosen
variance.

Now we want to see from where (2.8) comes. In fact, (2.8) and its conse-
quences are all special cases of a ”nonasymptotic” result due independently,
and with very different proofs, to Borell (B) and Tsirelson, Ibraginov and
Sudakov (TIS).
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Theorem 2.2.1 (BTIS-inequality). Let (Xt)t∈T be a centered Gaussian pro-
cess, a.s. bounded on T. Write ‖X‖ = ‖X‖T = supt∈T Xt. Then

E[‖X‖] <∞,

and for all u > 0,

P
(
‖X‖ − E[‖X‖] > u

)
≤ e−u2/2σ2

T . (2.9)

Before looking at the proof, we take a moment to look at an immediate
and trivial consequence of (2.9), that is, for all u > E(‖X‖),

P(‖X‖ > u) ≤ e−(u−E[‖X‖])2/2σ2
T , (2.10)

so that (2.6) and (2.8) follows from the BTIS-inequality.
We now turn to the proof of the BTIS-inequality. There are essentially

three quite different ways to tackle this proof:

• The Borell’s original proof [2] relied on isoperimetric inequalities;

• The proof of Tsirelson, Ibragimov, Sudakov [15] relied on Ito’s formula;

• The proof reported in the collection of exercises [5] (although it root
is much older).

We choose, as in [1], the third and more direct route. The first step in this
route involves the following two lemmas.

Lemma 2.2.2. Let X and Y be independent k-dimesional vectors of cen-
tered, unit-variance, independent, Gaussian variables. If f, g : Rk → R are
bounded C2 function then

Cov(f(X), g(X)) =

∫ 1

0
E
[
∇f(X) · ∇g(αX +

√
1− α2Y )

]
dα, (2.11)

where ∇f(X) :=
(
∂
∂xi
f(x)

)
i=1,...,k

.

Proof. It suffices to prove the lemma with f(x) = ei(t·x) and g(x) = ei(s·x)

with s, t, x ∈ Rk. Standard approximation arguments (which is where the
requirement that f is C2 appears) will do the rest. Write

ϕ(t) := E[ei(t·x)] = exp{it · 0− 1

2
tItt} = e|t|

2/2, (2.12)

since X is a k-dimesional vectors of centered, unit-variance, independent,
Gaussian variables. It is then trivial that

Cov(f(X), g(X)) = E[ei(t·X)ei(s·Y )]− E[ei(t·X)]E[ei(s·Y )]

= E[ei((t+s)·X)]− E[ei(t·X)]E[ei(s·X)] = ϕ(t+ s)− ϕ(t)ϕ(s),

(2.13)
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where the second line follows from the fact that X and Y are independent
with the same distribution. On the other hand, computing the integral in
(2.11), using ∂

∂xi
f(x) = itie

i(t·x), gives∫ 1

0
E
[
∇f(X) · ∇g(αX +

√
1− α2Y )

]
dα

=

∫ 1

0
E
[ d∑
j=1

itje
i(t·x)isje

i(s·(αX+
√

1−α2Y ))
]
dα

= −
∫ 1

0

d∑
j=1

sjtjE
[
ei((t+αs)·x)

]
E
[
ei(s·(

√
1−α2Y ))

]
dα

= −
∫ 1

0
(s · t)e(|t|2+2α|t||s|+|s|2)/2dα

= −ϕ(s)ϕ(t)(1− es·t) = ϕ(s+ t)− ϕ(s)ϕ(t),

(2.14)

which is all that we need.

Lemma 2.2.3. Let X be a k-dimensional vector of centered, unit-variance,
independent, Gaussian variables. If h : Rk → R is C2 with Lipschitz con-
stant 1 and if E[h(X)] = 0, then for all t > 0,

E
[
eth(X)

]
≤ et2/2. (2.15)

Proof. Let Y be an independent copy of X and α a uniform random variable
on [0, 1]. Define the pair (X,Zα) via

(X,Zα) := (X,αX +
√

1− α2Y ) (2.16)

Take h as in the statement of the lemma, t ≥ 0 fixed and define g = eth.
Applying (2.11) and using ∇eth = teth∇h, gives

E
[
h(X)eth(X)

]
= E

[
h(X)g(X)

]
=

∫ 1

0
E
[
∇g(X) · ∇h(Zα)

]
dα

= t

∫ 1

0
E
[
∇h(X) · ∇h(Zα)eth(X)

]
dα

≤ tE
[
eth(X)

]
,

(2.17)

where we used the Cauchy-Schwarz inequality and the Lipschitz property of
h. Let u be the function defined by

eu(t) = E
[
eth(X)

]
, (2.18)

then derivating in the both sides

E
[
h(X)eth(X)

]
= u′(t)eu(t), (2.19)
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so that from the preceding inequality, u′(t) ≤ t. Since u(0) = 0 it follows
that u(t) ≤ t2/2 and we are done.

The following lemma gives the crucial step toward proving the BTIS
inequality.

Lemma 2.2.4. Let X be a k-dimensional vector of centered, unit-variance,
independent, Gaussian variables. If h : Rk → R has Lipschitz constant σ,
then for all u > 0,

P
(
h(X)− E[h(X)] > u

)
≤ e−

1
2
u2/σ2

. (2.20)

Proof. By considering h̃(x) = h(x)/σ it suffices to prove the result for σ = 1.
Assume for the moment that h ∈ C2. Then, for every t, u > 0,

P
(
h(X)− E[h(X)] > u

)
≤
∫
h(X)−E[h(X)]>u

et(h(X)−E[h(X)]−u)dP (x)

≤ e−tuE
[
et(h(x)−E[h(X)])

]
≤ e

1
2
t2−tu,

(2.21)

the last inequality following from (2.15). Taking the optimal choice of t = u
gives (2.20) for h ∈ C2.

To remove the C2 assumption, take a sequence of C2 approximations to
f each one of which has Lipschitz coefficient no grater than σ (we recall that
if a function f has Lipschitz constant σ the regularized function Φε(f)(x)
has Lipschitz constant smaller than σ) and apply Fatou’s inequality. This
complete the proof.

We now have all we need to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. There will be two stages to the proof. Firstly, we
shall establish Theorem 2.2.1 for finite T. We than lift the result from finite
to general T.

Thus, let T be finite, so that we can write it as {1, 2, . . . , k}. In this case
we can replace sup by max, which has Lipshitz constant 1. Let C the k× k
covariance matrix of X on the finite set T, with components ci,j = E[XiXj ]
so that

σ2
T = max

1≤i≤k
cii = max

1≤i≤k
E[X2

i ]. (2.22)

Let W a vector of independent, standard Gaussian variables, and A such

that AtA = C. Thus X
d
=AW and maxiXi

d
= maxi(AW )i, where

d
= indicates

equivalence in distribution. Consider the function h(x) = maxi(Ax)i, which
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is trivially C2. Then

|max
i

(Ax)i −max
i

(Ay)i| = |max
i

(eiAx)−max
i

(eiAy)|

≤ max
i
|eiA(x− y)|

≤ max
i
|eiA| · |x− y|,

(2.23)

where, as usual, ei is the vector with 1 in position i and zeros elsewhere.
The first inequality above is elementary, and the second is Cauchy–Schwarz.
But

|eiA|2 = etiA
tAei = etiCei = cii, (2.24)

so that
|max

i
(Ax)i −max

i
(Ay)i| ≤ σT |x− y|. (2.25)

In view of the equivalence in law of maxiXi and maxi(AW )i and Lemma
2.2.4, this establishes the theorem for finite T .

We now turn to lifting the result from finite to general T. For each n > 0,
let Tn be a finite subset of T such that Tn ⊂ Tn+1 and Tn increases to a
dense subset of T. By separability,

sup
t∈Tn

Xt
a.s.−−→ sup

t∈T
Xt, (2.26)

and since the convergence is monotone, we also have that

P
(

sup
t∈Tn

Xt > u
)
→ P

(
sup
t∈T

Xt > u
)

and E
[

sup
t∈Tn

Xt

]
→ E

[
sup
t∈T

Xt

]
.

(2.27)
Since σ2

Tn
→ σ2

T < ∞ (again monotonically), we would be enough to prove
general version of the BTIS-inequality from the finite-T version if only we
knew that the term, E[supt∈T Xt], were definitely finite, as claimed in the
statement of the theorem. Thus if we show that the assumed a.s. finiteness
of ‖X‖ implies also the finiteness of its mean, we shall have a complete proof
to both parts of the theorem.

We proceed by contradiction. Thus, assume E[‖X‖] = ∞, and chose
u0 > 0 such that

e−u
2
0/σ

2
T ≤ 1

4
and P

[
sup
t∈T

Xt < u0

]
≥ 3

4
. (2.28)

Now chose n ≥ 1 such that E[‖X‖Tn ] > 2u0, which is possible since E[‖X‖Tn ]→
E[‖X‖T ] =∞. The BTIS-inequality on the finite space Tn then gives

1

2
≥ 2e−u

2
0/σ

2
T ≥ 2e−u

2
0/σ

2
Tn ≥ P

(∣∣ ‖X‖Tn − E
[
‖X‖Tn

]∣∣ > u0

)
≥ P

(
E
[
‖X‖Tn

]
− ‖X‖T > u0

)
≥ P

(
‖X‖T < u0

)
≥ 3

4
.

(2.29)

This provides the required contradiction, and so we are done.



Chapter 3

Some useful tools for the
DGFF

From now till the end of this paper our object of study is the Discrete Gaus-
sian Free Field (DGFF) on Zd, with the canonical law P on Ω = RZd such
that under P, the canonical field ϕ = (ϕx)x∈Zd is a centered Gaussian field
with covariance E[ϕxϕy] = G(x, y), for all x, y ∈ Zd, where G(·, ·) denotes
the Green function of simple random walk on Zd as defined in (1.36). Again,
we will use the same notation for the probabilities P and P as explained in
Remark 1.5.1.

3.1 Maximum for the Lattice Gaussian Free Field

We now state a very useful bound for the expectation of the maximum of
the DGFF in a fixed bounded subset of Zd.

Proposition 3.1.1. Let ∅ 6= K ⊂⊂ Zd then there exists a constant c > 0
such that

E
[

max
K

ϕ
]
≤ c
√

log |K|. (3.1)

Proof. In order to bound E[maxK ϕ], we write, using Fubini’s theorem in
the third relation,

E
[

max
K

ϕ
]
≤ E

[
max
K

ϕ+
]

= E
[ ∫ +∞

0
1{y≤maxK ϕ+}dy

]
=

∫ +∞

0
E
[
1{y≤maxK ϕ+}

]
dy

=

∫ +∞

0
P
(
y ≤ max

K
ϕ+
)
dy

≤ A+

∫ +∞

A
P
(

max
K

ϕ+ > y
)
dy,

(3.2)

31
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for arbitrary A ≥ 0. Now using the following claim (that we will prove at
the end)

P
(

max
K

ϕ+ > y
)
≤ |K|e−u2/2G(0) (3.3)

and inserying it into (3.2) yields, for arbitrary A > 0,

E
[

max
K

ϕ
]
≤ A+

∫ +∞

A
|K|e−u2/2G(0)dy ≤ A+ c|K| · e−A2/2G(0). (3.4)

We select A such that e−A
2/2G(0) = |K|−1 (i.e. A = (2G(0) log |K|)1/2), by

which means (3.4) readily implies that

E
[

max
K

ϕ
]
≤ c
√

log |K|, for all ∅ 6= K ⊂⊂ Zd. (3.5)

We now prove the claim (3.3). Recalling that E[ϕ2
x] = G(x, x) = G(0)

for all x ∈ Zd, using (in the third relation) the translation invariance of the
probability P, we can easily obtain the following bound

P
(

max
K

ϕ+ > y
)

= P
[ ⋃
x∈K
{ϕ+

x > y}
]
≤
∑
x∈K

P[ϕ+
x > y] = |K|P[ϕ0 > y].

(3.6)
Introducing an auxiliary variable ψ ∼ N(0, 1) and recalling that the parti-
tion function FN(µ,σ2)(x) = FN(0,1)(

x−µ
σ ), we have

|K|P(ϕ0 > y) = |K| P
(
ψ > G(0)1/2y

)
. (3.7)

Using the extended version for non-negative increasing functions of the
Markov’s inequality (see section 2.1) with f(a) = eλa, we have

P(ψ > a) ≤ P(|ψ| > a) ≤ min
λ>0

e−λaE[eλψ] = min
λ>0

e−λa+λ2/2 = e−a
2/2 (3.8)

since the minimum is attained at λ = a. Applying (3.8) to the last term of
(3.7) we obtain

|K|P(ψ > G(0)1/2y) ≤ |K| e−u2/2G(0). (3.9)

Summarizing (3.6),(3.7) and (3.9) we finally obtain

P
(

max
K

ϕ+ > y
)
≤ |K| e−u2/2G(0). (3.10)
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3.2 Asymptotics for the Green function

We state here one important and very well known result regarding the be-
haviour of the Green function defined in (1.36).

First of all we recall that, due to translation invariance, G(x, y) = G(x−
y, 0) =: G(x− y).

Lemma 3.2.1. If d ≥ 3, as |x| → ∞, there exists a constant c(d) > 0 such
that

G(x) ∼ c(d)|x|2−d. (3.11)

Proof. See [9], Theorem 1.5.4.

3.3 Potential theory

In this section we will introduce some very useful aspects of potential theory.
The main reference for this topic is Chapter 2 §2 of [9].

Given K ⊂⊂ Zd, we define the escape probability eK : K → [0, 1] by

eK(x) = Px[τ̃K =∞], x ∈ K. (3.12)

We also define the capacity of K as

cap(K) =
∑
x∈K

eK(x). (3.13)

It immediately follows from the two definitions above that the capacity is a
monotone and subadditive set function (see [9], Prop 2.2.1 for a proof), in
particular

cap(K) ≤ cap(K ′), for all K ⊂ K ′ ⊂⊂ Zd; (3.14)

cap(K) + cap(K ′) ≥ cap(K ∪K ′) + cap(K ∩K ′), for all K,K ′ ⊂⊂ Zd.
(3.15)

Further the probability to enter in K may be expressed in terms of eK(x)
(see [13], Theorem 25.1, for a derivation) as

Px(τK <∞) =
∑
y∈K

G(x, y) · eK(y), (3.16)

where G(·, ·) denotes the Green function defined in (1.36). Moreover, the
following bounds on Px(τK <∞), x ∈ Zd holds (c.f (1.9) of [14])∑

y∈K G(x, y)

supz∈K

(∑
y∈K G(z, y)

) ≤ Px(τK <∞) ≤
∑

y∈K G(x, y)

infz∈K

(∑
y∈K G(z, y)

) .
(3.17)
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Finally from (3.16) and (3.17), togheter with classical bounds on the Green
function (see Lemma (3.2.1)) for |x| → ∞, we obtain

sup
z∈K

(∑
y∈K

G(z, y)
)
≥ |K|

cap(K)
≥ inf

z∈K

(∑
y∈K

G(z, y)
)
. (3.18)

A trivial consequence of the last inequalities, together with classical bounds
on the Green function (c.f. Lemma 3.2.1), is the following useful bound for
the capacity of a box:

cap
(
B(0, L)

)
≤ cLd−2, for all L ≥ 1. (3.19)

3.4 Recurrent and transient sets: The Wiener’s
Test

We say that a set A ⊂ Zd is recurrent if P0(Xk ∈ A for infinitely many k) =
1, transient otherwise. We now state a very important criterion to determine
whether a subset A ⊂ Zd is either recurrent or transient for a symmetric
simple random walk on Zd.

Theorem 3.4.1 (Wiener’s Test). Suppose A ⊂ Zd, (d ≥ 3) and let

An = {z ∈ A; 2n ≤ |z|∞ < 2n+1}. (3.20)

Then A is a recurrent set if and only if

T [A] =

∞∑
n=0

cap(An)

2n(d−2)
=∞. (3.21)

Proof. See [9], Theorem 2.2.5.

We finally remark (See [9], p.57) that the function

fA(x) := Px(τA <∞), (3.22)

is harmonic for x ∈ Ac and fA(x) = 1, for all x ∈ A. Moreover, if A is finite
then

lim
|x|→∞

fA(x) = 0. (3.23)

3.5 Notation for the DGFF

We now turn to the Gaussian free field on Zd using the notation defined at
the beginning of this section.

Given any subset K ⊂ Zd, we frequently write ϕK to denote the family
(ϕx)x∈K . For arbitrary a ∈ R and K ⊂⊂ Zd, we also use the shorthand
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{ϕ|K > a} for the event {min{ϕx;x ∈ K} > a} and similarly {ϕ|K < a}
instead of {max{ϕx;x ∈ K} < a}. Next, we introduce certain crossing
events for the Gaussian free field. To this end, we first consider the space
Ω̃ = {0, 1}Zd endowed with its canonical σ-algebra and define, for arbitrary
disjoint subsets K,K ′ ⊂ Zd, the event (subset of Ω̃)

{K ←→ K ′} = {there exists an open path (i.e. along which the

configuration has value 1) conneting K and K ′}.
(3.24)

For any level h ∈ R, we introduced the (random) subset of Zd

E≥hϕ = {x ∈ Zd;ϕx ≥ h}, (3.25)

and we write φh for the measurable map from Ω = RZd into Ω̃ = {0, 1}Zd

which send
ω ∈ Ω 7−→ (1{ϕx(ω)≥h})x∈Zd ∈ Ω̃, (3.26)

and define
{K ≥h←→ K ′} = (φh)−1({K ←→ K ′}) (3.27)

(a measurable subset of RZd endowed with its canonical σ-algebra F), which
is the event that K and K ′ are connected by a (nearest-neighbour) path in

E≥hϕ . Note that {K ≥h←→ K ′} is an increasing event upon introducing on RZd

the natural partial order (i.e. f ≤ f ′ when fx ≤ f ′x for all x ∈ Zd).

3.6 Density and uniqueness for the infinite cluster

In this section we want to investigate the properties of the infinite cluster.
In particular we will state two very important results due to C.M. Newman
and L.S. Schulman (see [10]) and R.M. Burton and M. Keane (see [4]), that
can be summarized in the folliwing statement:

”If an infinite cluster exists, then it is unique and have positive density
with probability one”.

All the results stated in this section hold for site percolation models
in the d-dimensional cubic lattice with nearest-neighbor bonds and so, for
this section, our notation is not refered to the notation for the DGFF. The
models we consider may be defined by a lattice of (site percolation) random
variables, {Xk; k ∈ Zd}, where each Xk either takes the value 1 (correspond-
ing to site k occupied) or the value 0 (corresponding to site k not occupied).
Such a model may equivalent be defined by the joint distribution P of {Xk}
which is a probability measure on the configuration space,

Ω = {0, 1}Zd = {ω = (ωk : k ∈ Zd) : each ωk = 0 or 1}
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(with the standard definition of measurable sets); we assume (without loss
of generality) that (Ω, P) is the underlying space with Xk(ω) = ωk.

For any j ∈ Zd we consider the shift operator Tj which acts either on
configuration ω ∈ Ω, or on events (i.e., measurable sets) W ⊂ Ω, or on
measures P on Ω, or else on random variables X on Ω according to the
following rules:

(Tjω)k = ωk−j , TjW = {Tjω : ω ∈W},
(TjP)(W ) = P(T−jW ), (TjX)(ω) = X(T−jω).

(3.28)

For each k ∈ Zd and η = 0 or 1 we consider the measure Pηk on Ωk =

{0, 1}Zd\{k}, defined so that for U ⊂ Ωk,

Pηk(U) =
P(U × {ωk = η})

P({ωk = η})
, (3.29)

Pηk is the conditional distribution of {Xj ; j 6= k} conditioned on Xk = η.
Finally, throughout this section, we assume the following two hypotheses on
P, or equivalently on {Xk} :

1. P is translation invariant; i.e., for any j ∈ Zd, TjP = P.

2. P has the finite energy property; i.e., for any k ∈ Zd, P0
k and P1

k are
equivalent measures; i.e., if U ⊂ Ωk, η = 0 or 1, and Pηk(U) 6= 0 then

P1−η
k (U) 6= 0.

Remark 3.6.1. In the original article of C.M. Newman and L.S. Schulman, it
is required a third hypothesis, that is, P is translation ergodic; i.e., if j 6= 0
and W is an event such that TjW = W, then P(W ) = 0 or 1. Thanks to the
ergodic decomposition theorem we can omit this third hypothesis, as done
in the article of R.M. Burton and M. Keane.

Similarly to the definition given in (3.24) for the DGFF, we say that i is
connected to j if {i←→ j}. Moreover, we define C(j), the cluster belonging
to j, as C(j) = {i : i is connected to j}; note that C(j) 6= ∅ if j is not
occupied. A set C ⊂ Zd is called cluster if C = C(j) for some j and is
called infinite cluster if in addition |C| =∞. The percolation probability is
ρ = P(|C(K)| =∞) (which is independent of j). We define for any F ⊂ Zd
its lower density, D(F ) and upper density D(F ) as

D(F ) = lim inf
n→∞

|F ∩ Vn|
nd

, D(F ) = lim sup
n→∞

|F ∩ Vn|
nd

(3.30)

where
Vn =

{
x ∈ Zd; −n/2 ≤ xi < n/2, i ∈ {1, . . . , d}

}
(3.31)

is the cubic box of size lenght n in Zd. F is said to have a density D(F ) if
D(F ) = D(F ). We denote by H the set of all cluster C and define

H0 = {C ∈ H; |C| =∞}, N0 = |H0|, (3.32)
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F0 = {j ∈ Zd; j ∈ C for some C ∈ H0}, (3.33)

H0 is the set of infinite clusters, N0 the number of infinite clusters, and F0

the union of infinite clusters.
We are know ready to state the two main result of this section.

Theorem 3.6.2 (Newman and Schulman). Exactly one of the following
three event has probability 1:

1. N0 = 0;

2. N0 = 1;

3. N0 =∞.

If N0 6= 0 (P-a.s.), then ρ > 0 and D(F0) = ρ (P-a.s.).

Theorem 3.6.3 (Burton and Keane). P(N0 =∞) = 0.
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Chapter 4

The two main results

4.1 Purpose of the thesis

We are interested in the event that the origin lies in an infinite cluster of E≥hϕ ,

which we denote by {0 ≥h←→ ∞} (we also denote by Ch(0) = {i : i
≥h←→ 0},

the cluster containing the origin), and ask for which values of h this event
occurs with positive probability. Since

η(h) := P
(
0
≥h←→∞

)
(4.1)

is decreasing in h, it is sensible to define the critical point for level-set
percolation as

h∗(d) = inf{h ∈ R; η(h) = 0} ∈ [−∞,∞] (4.2)

(with the convection inf ∅ =∞). A non-trivial phase transition is then said
to occur if h∗ is finite. In the next two sections we will present the proofs
of the following two results:

• h∗(d) ≥ 0 for all d ≥ 3 and h∗(3) < ∞, proved by J. Bricmont, J.L.
Lebowitz and C. Maes (BLM), see [3];

• h∗(d) <∞ for all d ≥ 3 proved by P.-F. Rodriguez and A.-S. Sznitman
(RS), see [11].

Finally in chapter 5 we present a new and original (but incomplete) gener-
alization of the BLM proof of the existence of a phase transition for d = 3
to any d ≥ 3, that gives the same result due to Sznitman-Rodriguez with
completely different arguments.

4.2 The proof of J. Bricmont, J.L. Lebowitz and
C. Maes

In all this section we fix d = 3. See remark 4.2.4 to understand where the
proof fails for d ≥ 4.

39
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4.2.1 Definitions and notation

We start this section by introducing some definition and notation. Let V
and Λ be cubes centered around the origin, that is sets of the type [−α, α]d,
for some α ∈ N. In particular we suppose that |V | � |Λ|. Remember that
Ch(0) denote the (random) cluster containing the origin and define the event

ChV =
{
ϕ ∈ Ω: Ch(0) ∩ ∂iV 6= ∅

}
. (4.3)

Let SV be the following collection of subsets of V

SV =
{
K ⊆ V : 0 ∈ K, K is connected, K ∩ ∂iV 6= ∅

}
. (4.4)

Define for a paricular K ∈ SV the event

EhK =
{
ϕ ∈ Ω : ϕx ≥ h,∀x ∈ K and ϕx < h,∀x ∈ ∂VK

}
, (4.5)

where ∂VK = ∂K ∩ V.
Note that the family SV is a collection of the possible shapes for the

infinite cluster Ch(0) inside V (see Figure 4.1).

Figure 4.1: In this example we fix a level h > 0 and we paint in black the
sites over the level h. Moreover we highlight the sets V , Λ, K ∈ SV and
∂VK. Note that Ch(0) ∩ V ⊇ K.
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4.2.2 The technical lemmas

We are now ready to state the four technical lemmas that we need to prove
our statement.

Lemma 4.2.1. Let ChV be the event defined in (4.3). Then

1. ChV is the disjoint union of the events EhK , i.e.,

ChV =
⊔

K∈SV

EhK . (4.6)

and if K,K ′ ∈ SV and K 6= K ′, then EhK ∩ EhK′ = ∅.

2. P(ChV ) ≥ η(h) for all V and P(EhK) > 0 for all K ∈ SV , all finite V.

Proof. We start proving that ChV =
⊔
K∈SV E

h
K . If Ch(0) intersects the inner

boundary of V, that is Ch(0)∩ ∂iV 6= ∅, then the intersection of Ch(0) with
V contains a set K ∈ SV and EhK occours (see Figure 4.1). Note that it is
not always true that there exist a set K ∈ SV such that Ch(0) ∩ V = K
since Ch(0) ∩ V could not be connected. On the other side, if EhK occours
for some K ∈ SV then K is a subset of Ch(0) and ChV occours. The events
EhK are disjoint by definition. Part (2) is obvious.

Lemma 4.2.2. The function x 7→ E[ϕx|EhK ] is a harmonic function outside
K = K ∪ ∂K.

Proof. For all K ⊂⊂ Zd, applying Lemma 1.5.5 we have, for all x ∈ Zd \K,

E[ϕx|FK ](w) = Ex[ωXτ
K
, τK <∞], P-a.s. , (4.7)

where FK = σ(ϕx; x ∈ K). Obviously EhK ∈ FK and in particular we have

E[ϕx|EhK ] = E[Ex[ϕXτK ]|EhK ]. (4.8)

Using the Markov property and the fact that, if x ∈ K
c

and y ∼ x then
y /∈ K, we have

1

2d

∑
y∼x

Ey[ϕXτK ] =
∑
y∼x

∑
k∈∂K

1

2d
Py(XτK = k)ϕk

=
∑
k∈∂K

ϕk
∑
y∼x

Px(X1 = y)Py(XτK = k)

=
∑
k∈∂K

ϕkPx(XτK = k) = Ex[ϕXτK ].

(4.9)

This implies that the function x 7→ E[ϕx|EhK ] is a harmonic function outside
K = K ∪ ∂K.
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Lemma 4.2.3. For some 0 < u ≤ 1 and for all Λ, we can take V = V (Λ)
large enough so that

1

|Λ|
∑
x∈Λ

fK(x) ≥ u, for all K ∈ SV and for all x ∈ Λ, (4.10)

where fK(x) is defined in (3.22).

Proof. In this proof we use the same notation used for the Winer’s test
(see 3.4.1). The proof of this test implies that, as a set A grows (in the
sense of inclusion) such that T [A] → ∞, then the function fA(x) → 1.
Therefore, since the set Λ is a fixed and bounded region in Z3, it is sufficient
to show that T [K] can be made arbitrary large for all K ∈ SV and V large
enough. One has thus to verify condition (3.21) for an arbitrary infinite
connected set A in d = 3. We will do this in two steps: first we reduce
the volume of A and then we show that no set A is worse than a straight
line. By the monotonicity property (3.14), T [A] ≥ T [a] where a ⊂ A is
obtained by keeping (in a nonunique but arbitrary fashion) for each i =
0, 1, 2 . . . only one point in the intersection of A with the i-th shell= {y :
y is on the boundary of the cube of size 2i}. The volume |an| = 2n, and by
(3.18)

Cap(an) ≥ 2n/Mn, (4.11)

where
Mn = max

x∈an

( ∑
y∈an

G(x, y)
)
. (4.12)

Fix x ∈ an. Then order x ∈ an, y 6= x, according to their distance from x.
The k−th point in that order is at a distance at least k from x. Thus, using
Lemma (3.2.1), we get

Mn ≤ c ·
2n∑
k=1

1

k
≤ c′ · n. (4.13)

Combining the inequalities (4.11)-(4.13) we thus get that T [A] ≥ c ·
∑

1/n,
hence the desired divergence.

Remark 4.2.4. We underline that in the last proof there is the key point
where the reasoning fails for d ≥ 4. The main reason the result is restricted
to d = 3 is that they use, in the previous lemma, the fact that T [A] =∞ for
any infinite, connected set A. This fails in d = 4, as can be seen explicitly
by considering the set A equal to a lattice axis.

Lemma 4.2.5. For h <∞ large enough there is a constant c > 0 such that
for all Vn large enough

E[ϕx|EK ] ≥ c, for all x ∈ ∂K, all K ∈ SVn . (4.14)
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Proof. This lemma is proved in [3], Lemma 3, p. 1264. We are not able to
follow the last part of the proof where the Ruelle’s superstability estimate
is applied.

4.2.3 Conclusion of the proof of the Theorem

Lemma (4.2.2) says that E
[
ϕx|EhK

]
is a harmonic function in Zd\K. Lemma

(4.2.5) says that this function is larger than a strictly positive constant c for
all x ∈ K, for h large enough, and zero at infinity. Hence, by the principle
of domination for harmonic functions

E
[
ϕx|EhK

]
≥ c · fK(x), for all x ∈ Zd. (4.15)

For d = 3 we can apply Lemma 4.2.3 and combine it with (4.15): there is
a constant µ̃ > 0 such that for all Λ, we can choose V = V (Λ) large enough
such that

1

|Λ|
∑
x∈Λ

E[ϕx|EhK ] ≥ ũ, for all K ∈ SV . (4.16)

By Lemma 4.2.1, denoting SΛ :=
∑

x∈Λ ϕx,

E
[
(SΛ)2

]
≥ E

[
(SΛ)21ChV

]
=
∑
K∈SV

E
[
(SΛ)21EK

]
=
∑
K∈SV

E
[
(SΛ)2|EK

]
P[EK ]

(4.17)
and by the Schwartz inequality,

≥
∑
K∈SV

E
[
SΛ|EK

]2P[EK ] ≥
∑
K∈SV

ũ2|Λ|2P[EK ], (4.18)

where we used (4.16) for the last inequality. Now, by Lemma 4.2.1 again,

= ũ2|Λ|2P[ChV ] ≥ ũ2|Λ|2η(h). (4.19)

Since this chain of inequalities holds for all Λ and E
[(

(1/|Λ|)SΛ

)2] → 0,,

for Λ→ Z3, we obtain that η(h) = 0. This completes the proof.

4.3 The proof of P.-F. Rodriguez and A.-S. Sznit-
man

The RS proof is based on two key ingredients:

• The ”Renormalization scheme” (see section 4.3.1);

• A ”recursive bounds” for the probabilities of some specifics events (see
Proposition 4.3.7).
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Before analysing the two key ingredients we state two technical results
for the conditional distribution of the DGFF.

Lemma 1.5.6 yelds a choice of regular conditional distributions for (ϕx)x∈Zd
conditioned on the variables (ϕx)x∈Λ. Namely, P-almost surely,

P((ϕx)x∈Zd ∈ · |FΛ) = P̃((ϕ̃x + ux)x∈Zd ∈ · ), (4.20)

where ux = Ex[ωXτΛ , τΛ < ∞], x ∈ Zd, P̃ does not act on (ux)x∈Zd , and

(ϕ̃x)x∈Zd is a centered Gaussian field under P̃, with ϕ̃x = 0, µ̃−almost surely
for x ∈ Λ.

The explicit form of the conditional distribution in (4.20) readily yields
the following result, which can be viewed as a consequence of the FKG-
inequality for the free field (see for example [8], Appendix B.1.).

Lemma 4.3.1. Let α ∈ R, ∅ 6= K ⊂⊂ Zd, and assume A ∈ F (the canonical

σ-algebra on RZd) is an increasing event. Then

P[A|ϕK = α] ≤ P[A|ϕ|K ≥ α], (4.21)

where the left-hand side is defined by the version of the conditional expecta-
tion in (4.20).

Intuitively, augmenting the field can only favour the occurence of A, an
increasing event.

Proof. See [11], Lemma 1.4.

4.3.1 Renormalization scheme

The main goal of this section is to present the renormalization scheme. This
technique is one of the main ingredients of the proof of theorem 4.3.4 and it
is similar to the one developed by Sznitman and Sidoravicius in the context
of random interlacements, see [14] and [12]. This scheme will be used to
derive recursive estimates for the probability of certain crossing events and
the resulting bounds constitute the main tool for the proof. We begin by
defining on the lattice Zd a sequence of length scales

Ln = ln0L0, for n ≥ 0, (4.22)

where L0 ≥ 1 and l0 ≥ 100 are both assumed to be integers and will be
specified below. Hence, L0 represents the finest scale and L1 < L2 < . . .
correspond to increasingly coarse scales. We further introduce renormalized
lattices

Ln = LnZd ⊂ Zd, n ≥ 0, (4.23)

and note that Lk ⊇ Ln for all 0 ≤ k ≤ n. To each x ∈ Ln, we attach the
boxes

Bn,x := Bx(Ln), for n ≥ 0, x ∈ Ln, (4.24)
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where we define Bx(L) = x+ ([0, L)∩Z)d, the box of side length L attached
to x, for any x ∈ Zd and L ≥ 1 (not to be confused with B(x, L)), c.f.
Figure 4.2 below (note that Bn,x is closed just on the left-hand side in every
direction). Moreover, we let

B̃n,x =
⋃

y∈Ln:d(Bn,y ,Bn,x)≤1

Bn,y, n ≥ 0, x ∈ Ln, (4.25)

so that {Bn,x;x ∈ Ln} defines a partition of Zd into boxes of side length

Ln for all n ≥ 0, and B̃n,x;x ∈ Ln, is simply the union of Bn,x and its
∗-neighbouring boxes at level n. Furthermore, for n ≥ 1 and x ∈ Ln, Bn,x
is the disjoint union of the ld0 boxes {Bn−1,y; y ∈ Bn,x ∩Ln−1} at level n− 1
it contains. We also introduce the indexing sets

In = {n} × Ln, n ≥ 0, (4.26)

and given (n, x) ∈ In, n ≥ 1, we consider the sets of labels

H1(n, x) = {(n− 1, y) ∈ In−1;Bn−1,y ⊂ Bn,x and Bn−1,y ∩ ∂iBn,x 6= ∅},
H2(n, x) = {(n− 1, y) ∈ In−1;Bn−1,y ∩ {z ∈ Zd; d(z,Bn,x) = bLn/2c} 6= ∅}.

(4.27)

Note that for any two indices (n − 1, yi) ∈ Hi(n, x), i = 1, 2, we have
B̃n−1,y1 ∩ B̃n−1,y2 = ∅ and B̃n−1,y1 ∪ B̃n−1,y2 ⊂ B̃n,x. Finally, given x ∈
Ln, n ≥ 0, we introduce Λn,x, a family of subsets T of

⋃
0≤k≤n Ik (soon to

be thought as a binary trees) defined as

Λn,x =

{
T ⊂

n⋃
k=0

Ik; T ∩ In = (n, x) and every (k, y) ∈ T ∩ Ik, 0 < k ≤ n,

has two “descendants” (k − 1, yi(k, y)) ∈ Hi(k, y), i = 1, 2,

such that

T ∩ Ik−1 =
⋃

(k,y)∈T ∩Ik

{(k − 1, y1(k, y)), (k − 1, y2(k, y))}
}
.

(4.28)

Hence, any T ∈ Λn,x can naturally be identified as a binary tree having root
(n, x) ∈ In and depth n. Since |H1(n, x)| = c1l0

d−1 and |H2(n, x)| = c2l0
d−1,

the following bound on the cardinality of Λn,x is easily obtained,

|Λn,x| ≤ (cl0
d−1)2(cl0

d−1)22 · · · (cl0d−1)2n = (cl0
2(d−1))2(2n−1) ≤ (c0l0

2(d−1))2n ,
(4.29)

where c0 ≥ 1 is a suitable constant.
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Figure 4.2: Renormalization scheme with n = 2, L0 = 1, l0 = 10.

4.3.2 Crossing events

We now consider the lattice Gaussian free field ϕ = (ϕx)x∈Zd defined in
chapter 1 and introduce the crossing events

Ahn,x = {Bn,x
≥h←→ ∂iB̃n,x}, for n ≥ 0, x ∈ Ln. (4.30)

Three properties of the events Ahn,x will play a crucial role in what follows.

Denoting by σ(ϕy; y ∈ B̃n,x) the σ-algebra on RZd generated by the random

variables ϕy, y ∈ B̃n,x, we have

Ahn,x ∈ σ(ϕy; y ∈ B̃n,x), (4.31a)

Ahn,x is increasing (in ϕ) (see the discussion below (3.27)), (4.31b)

Ahn,x ⊇ Ah
′
n,x, for all h, h′ ∈ R with h ≤ h′. (4.31c)

Indeed, the property (4.31c) that Ahn,x decreases with h follows since E≥h ⊆
E≥h

′
for all h ≤ h′ by definition, c.f. (3.25).
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4.3.3 The structure of the proof

In this section we give all the P.-F. Rodriguez and A.-S. Sznitman’s ideas
to show that

h∗(d) <∞, for all d ≥ 3. (4.32)

To prove (4.32) it enough to construct an explicit level h with 0 < h <∞
such that

P
(
B(0, L)

≥h←→ S(0, L)
)

decays in L, as L→∞. (4.33)

Actually, the proof of P.-F. Rodriguez and A.-S. Sznitman will even show

that P[B(0, L)
≥h←→ S(0, L)] has stretched exponential decay which implies a

(seemingly) stronger result. A second critical parameter is defined

h∗∗(d) = inf{h ∈ R; for some α > 0, lim
L→∞

LαP[B(0, L)
≥h←→ S(0, L)] = 0},

(4.34)
and the following stronger statement is proved:

h∗∗(d) <∞, for all d ≥ 3. (4.35)

For the sake of clarity we investigate later the relevance of this second crit-
ical parameter (see Remark 4.3.3) and we now directly prove that h∗(d) <
∞, for all d ≥ 3.

As stated before, it is enough to prove (4.33) and to understand why this
implies that h∗(d) < ∞, for all d ≥ 3. To this second end we note that for
every h ∈ R, given L ≥ 2L0, there exists n ≥ 0 such that 2Ln ≤ L ≤ 2Ln+1

and

η(h) = P
(
0
≥h←→∞

) (1)

≤ P
(
B(0, L)

≥h←→ S(0, 2L)
) (2)

≤
(2)

≤ P
( ⋃
x∈Ln:Bn,x∩S(0,L)6=∅

{Bn,x
≥h←→ ∂iB̃n,x}

)
.

(4.36)

We now comment on the two inequality, helping out with some picture
extracted from a simulation of the renormalization scheme that we realized
during the master thesis.

1. Consider a realization of the event {0 ≥h←→ ∞}, i.e. a path in E≥hϕ
connecting 0 to ∞, then this path must also connect the box B(0, L)
to the sphere S(0, 2L), c.f. Figure 4.3 (Step 1) below;

2. consider a realization of the event {B(0, L)
≥h←→ S(0, 2L)}, i.e. a path

in E≥hϕ connecting B(0, L) to S(0, 2L), then this path must also cross
the box Bn,x for some x ∈ Ln : Bn,x∩S(0, L) 6= ∅ and so must connect

the box Bn,x to the boundary ∂iB̃n,x of its Ln−neighbourhoods, c.f.
Figure 4.3 (Step 2) below.
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Figure 4.3: In this simulation we fix L = 882, n = 2, L0 = 1, l0 = 10.
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Since the number of sets contributing to the union on the right-hand
side of (4.36) is bounded by cld−1

0 we obtain

η(h) ≤ cld−1
0 P

(
Bn,x

≥h←→ ∂iB̃n,x

)
= cld−1

0 P
(
Ahn,x

)
, (4.37)

where the second term is well-defined (i.e independent of x ∈ Ln) by transla-
tion invariance. Now we provide a lemma which separates the combinatorial
complexity of the number of crossings in Ahn,x from probabilistic estimates,
using Λn,x as introduced in (4.28).

Lemma 4.3.2. (n ≥ 0, (n, x) ∈ In, h ∈ R)

P
(
Ahn,x

)
≤ |Λn,x| sup

T ∈Λn,x

P
(
AhT

)
, where AhT =

⋂
(0,y)∈T ∩I0

Ah0,y. (4.38)

Proof. We use induction on n to show that

Ahn,x ⊆
⋃

T ∈Λn,x

AhT , (4.39)

for all (n, x) ∈ In, from which (4.38) immediately follows. When n = 0,
(4.39) is trivial. Assume it holds for all (n−1, y) ∈ In−1. For any (n, x) ∈ In,
a path in E≥hϕ starting in Bn,x and ending in ∂iB̃n,x must first cross the box
Bn−1,y1 for some (n−1, y1) ∈ H1(n, x), and subsequently B(n−1,y2) for some

(n− 1, y2) ∈ H2(n, x) before reaching ∂iB̃n,x, c.f. Figure 4.3 (Step 3) below.
Thus,

Ahn,x ⊆
⋃

(n− 1,yi) ∈ Hi(n, x)

i = 1, 2

Ahn−1,y1
∩Ahn−1,y2

.

Upon applying the induction hypothesis to Ahn−1,y1
and Ahn−1,y2

separately,
the claim (4.39) follows.

Before proceeding, we remark that the event AhT , with h ∈ R and T ∈
Λn,x for some (n, x) ∈ In, n ≥ 0, defined in (4.38) depends on 2n boxes
of side 3L0 each, c.f. Figure 4.3 (Step 4) below, the first 2n−1 contained in
H1(n, x) and the remaining 2n−1 contained in H2(n, x). Moreover, it follows
from (4.31c) that for any two levels h, h′ ∈ R,

AhT ⊇ Ah
′
T , whenever h ≤ h′, (4.40)

thus, upon introducing

pn(h) = sup
T ∈Λn,x

P
(
AhT
)
, for (n, x) ∈ In, n ≥ 0, (4.41)
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which is well-defined (i.e independent of x ∈ Ln) by translation invariance,
we obtain

pn(h) ≥ pn(h′), whenever h ≤ h′. (4.42)

Returning to (4.37), using (4.38) and (4.41), we obtain

η(h)
(4.38)

≤ cld−1
0 |Λn,x| sup

T ∈Λn,x

P[AhT ]
(4.41)
= cld−1

0 |Λn,x|pn(h). (4.43)

It remains to explicitly construct an increasing but bounded sequence
(hn)n≥0, with finite limit h∞, such that pn(hn) decreases faster than

(c0l0
2(d−1))−2n , since |Λn,x|

(4.29)

≤ (c0l0
2(d−1))2n . This result appears in Theo-

rem 4.3.4 where we show that such a sequence (hn)n≥0 exists and pn(hn) ≤
(2c0l0

2(d−1))−2n . With this result at hand we can conclude the proof. We
set h = h∞ and using (4.42), we obtain

η(h)
(4.42)

≤ cld−1
0 |Λn,x|pn(hn) ≤ c0l

d−1
0 2−2n . (4.44)

We finally set ρ = log 2/ log l0, whence 2n = l0
nρ = (Ln/L0)ρ. Then, by

adjusting c, c′, (4.44) readily implies

η(h) ≤ c · e−c′Lρ , for all L ≥ 1, (4.45)

for suitable c, c′ > 0 and 0 < ρ < 1. It follows that h ≥ h∗ which completes
the proof.

Remark 4.3.3. Note that (4.45) also implies that h ≥ h∗∗ and so h∗∗(d) <∞,
for all d ≥ 3. An important open question is whether h∗ equals h∗∗ or not.

In case the two differ, the decay of P
(
0
≥h←→ S(0, L)

)
as L→∞, for h > h∗,

exhibits a sharp transition. Indeed, first note that by definition of h∗, for all

h > h∗, P
(
0
≥h←→ S(0, L)

)
→ 0, as L→∞. If h∗∗ > h∗, then by definition of

h∗∗,

for h ∈ (h∗, h∗∗) and any α > 0, lim sup
n→∞

Ld−1+αP
(
0
≥h←→ S(0, L)

)
=∞.

(4.46)

Hence P
(
0
≥h←→ S(0, L)

)
decays to zero with L, but with an at most poly-

nomial decay for h ∈ (h∗, h∗∗). However, for h > h∗∗, P
(
0
≥h←→ S(0, L)

)
has a stretched exponential decay in L, since P

(
0
≥h←→ x

)
≤ P

(
B(0, L)

≥h←→

S(0, 2L)
) (4.45)

≤ c(h)e−c
′′(h)|x|p whenever 2L ≤ |x|∞ < 2(L+ 1). Recently A.

Drewitz and P.-F. Rodriguez (see [6]) show that

h∗(d) ∼ h∗∗(d), as d→∞ (4.47)

(we write f(x) ∼ g(x) as x → a if limx→a f(x)/g(x) = 1). It is at present
an unresolved question whether both critical parameters are actually equal
(in any dimension).
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4.3.4 The main Theorem

We now state the aforementioned key result to complete the proof. Most of
the smarter ideas are presented in Proposition 4.3.5 where Rodriguez and
Sznitman are able to control the interactions between some crossing events.

Theorem 4.3.4. There exist an increasing but bounded sequence (hn)n≥0,
with finite limit h∞, such that

pn(hn) ≤ (2c0l0
2(d−1))−2n , for all n ≥ 0. (4.48)

First of all we derive a ”recursive bounds” for the probabilities pn(hn),
c.f. (4.41) below, along a suitable increasing sequence (hn)n≥0.

Proposition 4.3.5 (L0 ≥ 1, l0 ≥ 100). There exist positive constants c1

and c2 such that, defining

M(n,L0) = c2

(
log(2n(3L0)d)

)1/2
, (4.49)

then,given any positive sequence (βn)n≥0 satisfying

βn ≥ (log 2)1/2 +M(n,L0), for all n ≥ 0, (4.50)

and any increasing, real-valued sequence (hn)n≥0 satisfying

hn+1 ≥ hn + c1βn(2l
−(d−2)
0 )n+1, for all n ≥ 0, (4.51)

one has
pn+1(hn+1) ≤ pn(hn)2 + 3e−(βn−M(n,L0))2

. (4.52)

Remark 4.3.6. Note that the key-parameter βn controls the size of the in-
terval hn+1 − hn in a suitable way that the factor e−(βn−M(n,L0))2

in (4.52)
can be small enough.

Before proceeding with the proof of the proposition, we recall again that
the event AhT , with h ∈ R and T ∈ Λn,x for some (n, x) ∈ In, n ≥ 0, defined
in (4.38) depends on 2n boxes of side 3L0 each, c.f. Figure 4.3 (Step 4),
the first 2n−1 contained in H1(n, x) and the remaining 2n−1 contained in
H2(n, x). In particular if we define the union of these boxes as

KT =
⋃

(0,y)∈T ∩I0

B̃0,y, (4.53)

immediately follows from the definition of AhT that

AhT ∈ σ(ϕy ; y ∈ KT ). (4.54)

We are now ready to prove the proposition.
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Proof. We let n ≥ 0, consider some m = (n + 1, x) ∈ In+1 and some tree
T ∈ Λm. We decompose

T = {m} ∩ Tn,y1(m) ∩ Tn,y2(m), (4.55)

where (n, yi(m)), i = 1, 2 are the two descendants of m in T and

Tn,yi(m) = {(k, z) ∈ T : B̃k,z ⊆ B̃n,yi(m)}, for i = 1, 2, (4.56)

that is T(n,yi(m)) is the (sub-)tree consisting of all descendants of (n, yi(m))
in T (in particular it is the left (i=1) or the right (i=2) (sub-)tree in Figure
4.3). Thus the union in (4.55) is over disjoint sets. Note in particular that
Tn,yi(m) ∈ Λn,yi(m). By construction (see Figure 4.3), the subsets KTn,yi(m)(
⊂ B̃n,yi(m)

)
, for i = 1, 2, satisfy KTn,y1(m)

∪ KTn,y2(m)
= ∅. For sake of

clarity, and since m and T will be fixed throughout the proof, we abbreviate

Tn,yi(m) = Ti and KTn,yi(m)
= Ki, for i = 1, 2. (4.57)

In order to estimate the probability of the event AhT = AhT1 ∩ A
h
T2 , h ∈ R,

we introduce a parameter α > 0 (that will control the size of the interval
hn+1 − hn to dominate the interactions) and write

P
(
AhT
)

= P
(
AhT1 ∩A

h
T2 ∩

{
max
K1

ϕ ≤ α
})

+ P
(
AhT1 ∩A

h
T2 ∩

{
max
K1

ϕ > α
})

= E
[
1AhT1

· 1{maxK1
ϕ≤α} · E

[
1AhT2

|ϕK1

]]
+ P

(
AhT1 ∩A

h
T2 ∩

{
max
K1

ϕ > α
})

≤ E
[
1AhT1

· 1{maxK1
ϕ≤α} · P

[
AhT2 |ϕK1

]]
+ P

(
max
K1

ϕ > α
)
,

(4.58)

where maxK1 ϕ = max{ϕx; x ∈ K1} and the second line follows because
AhT1 ∩

{
maxK1 ϕ ≤ α

}
is measurable with respect to σ(ϕK1), c.f. (4.54).

We now split the proof in two steps to provide the following two bounds:
Bound 1: On the event

{
maxK1 ϕ ≤ α

}
, there exist a parameter γ(α) such

that
P
[
AhT2 |ϕ|K1

]
≤ P

(
Ah−γT2

)(
P(ϕ|K1

≥ −α)
)−1

. (4.59)

Proof of Bound 1. Using (4.20) and (4.54) applied to AhT2 , and with a slight
abuse of notation, we find

P[AhT2 |ϕK1 ] = P̃[AhT2
(
(ϕ̃x + ux)x∈K2

)
], P-almost surely, (4.60)

where ux = Ex[ϕXτK1
, τK1 < ∞]. On the event

{
maxK1 ϕ ≤ α

}
, we have,

for all x ∈ K2,

ux =
∑
y∈K1

ϕyPx
(
XτK1

= y, τK1 <∞
)
≤ α · Px(τK1 <∞) =: mx(α) (4.61)
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which is deterministic and linear in α. Moreover, we can bound mx(α) as
follows. By virtute of (3.16), Px(τK1 < ∞) ≤ cap(K1) · supy∈K1

g(x, y) for
all x ∈ K2. Since K1 consists of 2n disjoint boxes of side length 3L0, c.f.
(4.57) and (4.53), its capacity can be bounded, using (3.15) and (3.19), as
cap(K1) ≤ c2nLd−2

0 . By Lemma 3.2.1 and (4.22) and the observation that
|x− y| ≥ c′Ln+1 whenever x ∈ K1 and y ∈ K2, it follows that

mx(α) ≤ c1(2G(0))−1/2 · α · 2nl−(n+1)(d−2)
0 =:

γ

2
, for x ∈ K2, (4.62)

which defines the constant c1 from (4.51), and the factor (2G(0))−1/2 is kept
for later convenience.

Returning to the conditional probability P
[
AhT2 |ϕK1

]
, we first observe

that, on the event
{

maxK1 ϕ ≤ α
}
, and for any x ∈ K2, the inequality

ϕ̃x + ux ≥ h implies

ϕ̃x −mx(α) ≥ h− ux −mx(α)
(4.61)

≥ h− 2mx(α)
(4.62)

≥ h− γ. (4.63)

Hence, on the event
{

maxK1 ϕ ≤ α
}
,

P
[
AhT2 |ϕK1

] (4.60)
= P̃

[
AhT2

(
(ϕ̃x + ux)x∈K2

)
]

≤ P̃
[
AhT2

(
(ϕ̃x +mx(α))x∈K2

)]
= P

[
Ah−γT2 |ϕK1 = −α

]
,

(4.64)

where the last equality follows by (4.20), nothing that, on the event {ϕ|K1
=

−α}, we have ux = mx(−α) = −mx(α) for all x ∈ K2, c.f. (4.61). Applying
Lemma 4.3.1 to the right-hand side of (4.64), we immediately obtain that,
on the event

{
maxK1 ϕ ≤ α

}
,

P
[
AhT2 |ϕK1

]
≤ P

(
Ah−γT2 |ϕ|K1

≥ −α
)
≤ P

(
Ah−γT2

)(
P(ϕ|K1

≥ −α)
)−1

. (4.65)

Bound 2:

P
(

max
K1

ϕ > α
)
≤ min

{
1

2
, e

−
(

α√
2G(0)

−M(n,L0)
)2
}
. (4.66)

Proof of Bound 2. By virtue of the BTIS-inequality (see section 2.2), for
arbitrary ∅ 6= K ⊂⊂ Zd, we have

P
(

max
K

ϕ > α
)
≤ exp

{
− (α− E[maxK ϕ])2

2G(0)

}
, if α > E

[
max
K

ϕ
]
,

(4.67)
and by Proposition 3.1.1 we know that

E
[

max
K

ϕ
]
≤ c
√

log |K|. (4.68)
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In the relevant case K = K1 with |K1| = 2n(3L0)d, we thus obtain

E
[

max
K1

ϕ
]
≤ c2(2G(0) log(2n(3L0)d))1/2 (4.49)

=
√

2G(0) ·M(n,L0) (4.69)

where the first inequality defines the constant c2 from (4.49). We now require

α/
√

2G(0) ≥
√

log 2 +M(n,L0) (4.70)

where the factor log 2 is kept for later convenience, thus (4.67) applies and
yields

P
(

max
K1

ϕ > α
)
≤ min

{
1

2
, e

−
(

α√
2G(0)

−M(n,L0)
)2
}
, (4.71)

since
α−E[maxK1

ϕ]√
2G(0)

≥ α√
2G(0)

−M(n,L0) ≥
√

log 2.

We now insert (4.59) into (4.58), noting that, since ϕ has the same law as
−ϕ, we have P(ϕ|K1

≥ −α) = 1−P(minK1 ϕ < −α) = 1−P(maxK1 ϕ > α),
to get

P
(
AhT
)
≤ P

(
AhT1

)
· P
(
Ah−γT2

)
·
(

1− P
(

max
K1

ϕ > α
))−1

+ P
(

max
K1

ϕ > α
)
.

(4.72)
Using that (1−x)−1 ≤ 1+2x for all 0 ≤ x ≤ 1/2 (with x = P(maxK1 ϕ > α)),
we finally obtain, for all α satisfying (4.70) and h′ ≥ h,

P
(
Ah
′
T
)
≤ P

(
AhT
)
≤ P

(
AhT1

)
· P
(
Ah−γT2

)
+ 3 · P

(
max
K1

ϕ > α
)

(4.66)

≤ P
(
AhT1

)
· P
(
Ah−γT2

)
+ 3e−

(
β−M(n,L0)

)2

,

(4.73)

where we have set β = α/
√

2G(0). The claim (4.52) now readily follows
upon tacking suprema over all T ∈ Λn+1,x on both side of (4.73), letting
βn := β, hn := h − γ ∈ R (h was arbitrary), hn+1 = h′, so that requiring
hn+1 = h′ ≥ hn + γ, by virtute of (4.62), is nothing but (4.51). Noting that
(4.70) for βn = β, we precisely recover (4.50). This concludes the proof of
Proposition 4.3.5.

We now propagate the estimate (4.52) inductively. To this end, we first
define, for all n ≥ 0,

βn = (log 2)1/2 +M(n,L0) + 2(n+1)/2
(
n1/2 +K

1/2
0

)
, (4.74)

where K0 > 0 is a certain parameter to be specified below (it will allow us
to start the induction). Note in particular that condition (4.50) holds for
this choice of (βn)n≥0. In the next proposition, we inductively derive bounds
for pn(hn), n ≥ 0, given any sequence (hn)n≥0 satisfying the assumptions of
Proposition 4.49, provided the induction can be initiated.



4.3. THE PROOF OF P.-F. RODRIGUEZ AND A.-S. SZNITMAN 55

Proposition 4.3.7. Assume h0 ∈ R and K0 ≥ 3(1− e−1)−1 =: B are such
that

p0(h0) ≤ e−K0 , (4.75)

and let the sequence (hn)n≥0 satisfy (4.51) with (βn)n≥0 as defined in (4.74).
Then,

pn(hn) ≤ e−(K0−B)2n , for all n ≥ 0. (4.76)

The strategy of the proof is to define a sequence (Kn)n≥0 such that
Kn ≥ K0 − B for all n ≥ 0 and pn(hn) ≤ e−Kn2n for all n ≥ 0. This allows
us to immediately conclude the proof.

Proof. We define a sequence (Kn)n≥0 inductively by

Kn+1 = Kn− log
(
1+eKn(32−(n+1)

e−2−(n+1)(βn−M(n,L0))2
)
)
, for all n ≥ 0

(4.77)

with βn give by (4.74). Note that the factor 32−(n+1)
e−2−(n+1)(βn−M(n,L0))2

is the 2n+1−th root of the remainder term on the right-hand side of (4.52)
(i.e. 3e−(βn−M(n,L0))2

). Note also that Kn ≤ K0 for all n ≥ 0 since Kn is
decreasing. Moreover, we have

• Kn ≥ K0 −B for all n ≥ 0.

This is clear for n=0.

When n ≥ 1, first note that by the definition of Kn, for all n ≥ 1,

Kn = K0 −
n−1∑
m=0

log
(

1 + eKm(32−(m+1)
e−2−(m+1)(βm−M(m,L0))2

)
)
.

(4.78)

Moreover

(βm −M(m,L0))2 = ((log 2)1/2 + 2(m+1)/2(m1/2 +K
1/2
0 ))2

≥ log 2 + 2m+1(m1/2 +K
1/2
0 )2 ≥ 2m+1(m+K0),

(4.79)

for all m ≥ 0, which, inserted into (4.78), yields

Kn ≥ K0 −
∞∑
m=0

log
(

1 + eKm(32−(m+1)
e−2−(m+1)(2m+1(m+K0)))

)
= K0 −

∞∑
m=0

log
(

1 + eKm(32−(m+1)
e−m−K0)

)
≥ K0 − 3

∞∑
m=0

e−m = K0 − 3(1− e−1)−1 = K0 −B,

(4.80)
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where we have used Kn ≤ K0 and log(1 + x) ≤ x for all x ≥ 0 in the
last inequality.

• pn(hn) ≤ e−Kn2n for all n ≥ 0.

We show the result by induction on n.

The inequality holds for n = 0 by assumption (4.75).

Assume now it holds for some n. By condition (4.52), we find

pn+1(hn+1) ≤ pn(hn)2 + 3e−(βn−M(n,L0))2

≤ (e−Kn2n)2 + 3e−(βn−M(n,L0))2

≤
[
e−Kn

(
1 + eKn32−(n+1)

e−2−(n+1)(βn−M(n,L0)2)]2n+1

= e−Kn+12n+1
.

(4.81)

This concludes the proof of the proposition.

We will now prove the main theorem (Theorem 4.3.4) of this section
using Proposition 4.3.7.

Proof (of Theorem 4.3.4). We select K0 appearing in Proposition 4.3.7 as
follow:

K0 = log(2c0l
2(d−1)
0 ) +B (see (4.29) for the definition of c0). (4.82)

Moreover we will solely consider sequences (hn)n≥0 with

h0 > 0, hn+1 − hn = c1βn(2l
−(d−2)
0 )n+1, for all n ≥ 0, (4.83)

so that condition (4.51) is satisfied. We recall that βn is given by (4.74),
which now reads

βn = (log 2)1/2+c2(log(2n(3L0)d))1/2+2(n+1)/2(n1/2+(log(2c0l
2(d−1)
0 )+B)1/2)

(4.84)
where we have substituted M(n,L0) from (4.49) and K0 from (4.82). Note
that L0, l0 and h0 are the only parameters which remain to be selected.
We observe that the sequence defined in (4.83) has a finite limit h∞ =
limn→∞ hn for every choice of L0, l0 and h0. Indeed, βn as given by (4.84)
satisfies βn ≤ c(L0, l0)2n+1 for all n ≥ 0, hence

h∞ = h0 + c1

∞∑
n=0

βn(2l
−(d−2)
0 )n+1 ≤ h0 + c′(L0, l0)

∞∑
n=0

(4l
−(d−2)
0 )n+1 <∞,

(4.85)
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since we assumed l0 ≥ 100. We set

L0 = 10, l0 = 100, (4.86)

and now show with Proposition 4.3.7 that there exists h0 > 0 sufficiently
large such that

pn(hn) ≤ (2c0l0
2(d−1))−2n , for all n ≥ 0. (4.87)

To this end, we note that p0(h0) defined in (4.41)

p0(h0) = P
(
B0,x=0

≥h0←−→ ∂iB̃0,x=0

)
≤ P

(
max
B̃0,x=0

ϕ ≥ h0

)
≤ exp

{
−

(
h0 − E

[
max

B̃0,x=0
ϕ
])2

2G(0)

}
,

(4.88)

where the last inequality holds when h0 > c (e.g using Proposition 3.1.1 to
bound E

[
max

B̃0,x=0
ϕ
]
) thanks to BTIS-inequality (see (2.10)). In particu-

lar, since K0 in (4.82) is completely determined by the choices (4.86), we see
that p0(h0) ≤ e−K0 for all h0 ≥ c, i.e. condition (4.75) holds for sufficiently
large h0. by Proposition 4.3.7, setting h0 = c, we obtain

pn(hn)
(4.76)

≤ e−(K0−B)2n (4.82)
= (2c0l

2(d−1)
0 )−2n for all n ≥ 0. (4.89)

This result concludes the proof.
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Chapter 5

A generalization of the BLM
proof

In both two article [3] and [11] it is remarked that the BLM proof can’t be
easily gereralized to all d ≥ 3 since, in d ≥ 4, a infinite connected set may
not be recurrent for the simple random walk on Zd. In this chapter we try
to prove that this is not an issue, since, an infinite cluster over a level h,
if it exists than it has positive density by Newman and Schulman theorem,
and in particular, using the well-known Wiener’s test, it is recurrent for the
simple random walk on Zd.

5.1 Finite energy property for the DGFF

The first step is to prove that Theorem 3.6.2 holds for the level-sets percola-
tion for the DGFF. We consider the measurable map φh from Ω = RZd into
Ω̃ = {0, 1}Zd as defined in (3.26) and the associated pushforward measure

Ph := φh∗(P) on Ω̃ = {0, 1}Zd . We need to show that

1. Ph is translation invariant;

2. Ph has the finite energy property;

The first property is a trivial consequence of the translation-invariance prop-
erty of P. For the second property (that is claimed without proof in [11],
Remark 1.6) we give a proof in the following lemma.

Lemma 5.1.1. The probability measure Ph for the DGFF has the finite
energy property.

Proof. We need to check that for all x ∈ Zd and η = 0 or 1, if Ũ ⊂ Ω̃x and
Ph(Ũ × {1{ϕx≥h} = η}) 6= 0 then Ph(Ũ × {1{ϕx≥h} = 1 − η}) 6= 0. From
the translation invariance of the DGFF, it is sufficient to show that for all

59
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Ũ ⊂ Ω̃x, setting U := (φh)−1(Ũ), holds:

P(U × {ϕ0 ≥ h}) 6= 0 if and only if P(U × {ϕ0 < h}) 6= 0. (5.1)

Suppose that P(U×{ϕ0 ≥ h}) > 0. Since the measure P is tight (for example
for the Ulam’s theorem), then there exist L > 0 such that

P
({

U ∩
{
ϕx ∈ [h− L, h+ L]; |x| = 1

}}
×
{
ϕ0 ∈ [h, h+ L]

})
> 0. (5.2)

Denoting UL1 :=
{
ϕx ∈ [h − L, h + L]; |x| = 1

}
∈ F{x∈Zd;|x|=1} =: F1 and

using the local Markov property of the DGFF, we obtain

P
({
U ∩ UL1

}
×
{
ϕ0 ∈ [h, h+ L]

})
= E

[
E
[
1{U∩UL1 }×{ϕ0∈[h,h+L]}|F1

]]
= E

[
1UL1
· E
[
1U |F1

]
· E
[
1{ϕ0∈[h,h+L]}|F1

]]
.

(5.3)

Under UL1 , there exists a constant εL > 0 such that

E
[
1{ϕ0∈[h,h+L]}|F1

]
≤ εL · E

[
1{ϕ0∈[h−L,h)}|F1

]
, a.s. . (5.4)

Indeed, using standard results for conditional Gaussian vectors, E[ϕ0|F1] is
a linear combination of the random variables ϕx for x ∈ Zd such that |x| = 1,
denoted by Y :=

∑
x∈Zd;|x|=1 λxϕx, and more generally, denoting by qµ,σ2(x)

the density of a Gaussian random variable with mean µ and variance σ2, we
have

E
[
1{ϕ0∈[h,h+L]}|F1

]
=

∫
R
1[h,h+L](x)qY,σ2(x)dx, (5.5)

where σ2 = E[(ϕ0 − Y )2]. Finally, noting that under UL1 , Y ∈ [2d(h −
L), 2d(h− L)], the bound in (5.4) follows from (5.5).

Summing up and repeating the same computation as in (5.3), we obtain

0 < P
({
U ∩ UL1

}
×
{
ϕ0 ∈ [h, h+ L]

})
≤ εL · P

({
U ∩ UL1

}
×
{
ϕ0 ∈ [h− L, h)

})
≤ εL · P

(
U × {ϕ0 < h}

)
.

(5.6)

Since the other implication is similar, this concludes the proof.

Now, setting ρh := P
(
|Ch(0)| = ∞

)
and noting that ρh > 0 for all

h < h∗(d), we have the following result

Proposition 5.1.2. For all h < h∗(d), conditioning on the event {0 ≥h←→
∞},

D
(
Ch(0)

)
= ρh, a.s. . (5.7)

In particular, conditioning on the event {0 ≥h←→ ∞}, D
(
Ch(0)

)
> 0 almost

surely.

We are now ready to give our new proof of the existence of a phase
transition for the level-set percolation for the DGFF on Zd, for all d ≥ 3.
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5.2 The setup

We start this section by introducing some definition and notation. Let
Vn, n ∈ N be a collection of boxes as defined in equation (3.31). We denote
by Λ := Vm, for some m ∈ N, a smaller box such that |Vn| � |Λ|. Remember
that Ch(0) denote the (random) cluster containing the origin and define the
events

ChVn =
{
ϕ ∈ Ω: Ch(0) ∩ ∂iVn 6= ∅

}
, for all h ∈ R and n ∈ N. (5.8)

Let ShVn be the following collection of subsets of Vn, for all n ∈ N,

ShVn =
{
K ⊆ Vn : 0 ∈ K, K is connected and K ∩ ∂iVn 6= ∅; and

ρh

2
<
|K ∩ Vm|
md

< 2ρh, ∀m ∈ N s.t. n/2 ≤ m ≤ n
}
.

(5.9)

Note that the family ShVn is a collection of the possible shapes for the con-

nected component of the infinite cluster Ch(0) inside Vn (see Figure 5.1).
Define for a paricular K ∈ ShVn the event

EhK =
{
ϕ ∈ Ω : ϕx ≥ h,∀x ∈ K and ϕx < h,∀x ∈ ∂VnK

}
, (5.10)

where ∂VnK = ∂K ∩ Vn.
Since in many of the following lemmas the parameter h ∈ R will be

fixed, we will omit the appendix h on the sets, families and events previously
defined, unless absolutely necessary. Moreover, from now till the end, we

suppose by contradiction that, for any level h, the event {0 ≥h←→∞} occours
with positive probability, i.e., h∗(d) =∞.

5.3 The technical lemmas

Before state and prove the four technical lemmas, we note that (from Propo-
sition 5.1.2) we have

lim
n→∞

|C(0)(ϕ) ∩ Vn|
nd

= ρ, for a.a. ϕ ∈ {0 ≥h←→∞}. (5.11)

Since (Ω,F ,P) is a finite measure space, from the Egorov’s theorem we know

that for all δ > 0, there exists a measurable subset Ωδ ∈ F , Ωδ ⊂ {0
≥h←→∞},

such that

P({0 ≥h←→∞} \ Ωδ) <δ and the limit (5.11) is uniform on Ωδ, i.e.,

lim
n→∞

sup
ϕ∈Ωδ

∣∣∣ |C(0)(ϕ) ∩ Vn|
nd

− ρ
∣∣∣ = 0.

(5.12)
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Figure 5.1: In this example we fix a level h ∈ R and we paint in black the
sites over the level h. Moreover we highlight the sets Vn, Λ, C(0)∩Vn, and
∂VnK. Note that K = C

(
C(0)(ϕ), Vn

)
.

In particular, there exists n0 = n0(δ) ∈ N such that for all n ≥ n0 we
have

ρ

2
<
|C(0)(ϕ) ∩ Vn|

nd
< 2ρ, for all ϕ ∈ Ωδ. (5.13)

We claim that the bound (5.13) holds also for the connected component in
C(0)(ϕ) ∩ Vn containing 0, denoted by C

(
C(0)(ϕ), Vn

)
. The proof of this

claim still open for the moment.

Remark 5.3.1. We are considering the connected component C
(
C(0)(ϕ), Vn

)
instead of the whole set C(0)(ϕ) ∩ Vn in order to obtain a disjoint union in
the left hand side of equation (5.14).

We can now state the first technical lemma.

Lemma 5.3.2. Let CVn be the event defined in (5.8). Then for all n ≥ 2n0,

1. CVn ∩ Ωδ is contained in the disjoint union of the events EK , i.e.,

CVn ∩ Ωδ ⊆
⊔

K∈SVn

EK , (5.14)

and if K,K ′ ∈ SVn and K 6= K ′, then EK ∩ EK′ = ∅.

2. P(CVn ∩ Ωδ) ≥ P
(
{0 ≥h←→∞} ∩ Ωδ

)
and P(EK) > 0 for all K ∈ SVn .
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Proof. Fix n ≥ 2n0. We start by proving that CVn ∩ Ωδ ⊆
⊔
K∈SVn

EhK . If

ϕ ∈ CVn ∩ Ωδ then C(0)(ϕ) intersects the inner boundary of Vn, that is
Ch(0) ∩ ∂iVn 6= ∅. Setting K := C

(
C(0)(ϕ), Vn

)
then K ∈ SVn since

• K ⊆ Vn, 0 ∈ K, K is connected and K ∩ ∂iVn 6= ∅;

• From the claim below relation (5.13) and the fact that n ≥ 2n0 we
have

ρ

2
<
|K ∩ Vm|
md

< 2ρ, for all m ∈ N s.t. n/2 ≤ m ≤ n. (5.15)

In particular EK occurs. The events EK are disjoint by definition. Part (2)
is obvious.

We now show the key point of our proof, namely, the fact that a set with
positive density is recurrent for a symmetric random walk in Zd.

Lemma 5.3.3. For some 0 < u ≤ 1 and for all Λ, we can take Vn = Vn(Λ)
large enough so that

1

|Λ|
∑
x∈Λ

fK(x) ≥ u, for all K ∈ SVn and for all x ∈ Λ, (5.16)

where fK(x) is defined in (3.22).

Proof. First of all we show that a set A ⊆ Zd satisfying

ρ

2
<
|A ∩ Vm|
md

< 2ρ, for all m ∈ N, (5.17)

is recurrent. In order to prove this result we applay Theorem 3.4.1 and we
show that T [A] = +∞, where T[A] is defined in (3.21).

From (5.17) we have, for all l ≥ 1,∣∣Al∣∣ (3.20)
=

∣∣A ∩ {y ∈ Zd; 2l < |y|∞ ≤ 2l+1}
∣∣ =

∣∣A ∩ V2l+2

∣∣− ∣∣A ∩ V2l+1

∣∣
>
ρ

2
(2l+2)

d − 2ρ(2l+1)
d

= ρ · 2(l+1)d(2d−1 − 2) > ρ · 2ld,
(5.18)

Similarly, using the other bound in (5.17), we can find the following estimate∣∣Al∣∣ < ρ2(l+1)d(2d+1 − 2−1) ≤ c · 2ld, for all l ≥ 1. (5.19)

Now using estimate (3.18) and (5.18) we obtain

cap(Al) ≥
ρ · 2ld

Ml
, for all l ≥ 1, (5.20)
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where Ml = supz∈Al

(∑
y∈Al G(z, y)

)
. Note that, using the classical bounds

on the Green function (see Theorem 3.2.1), we obtain

Ml ≤ sup
z∈Al

( ∑
y∈Al

c′

(|y − z|∞ + 1)d−2

)
, for all l ≥ 1. (5.21)

and taking, for each l ≥ 1, a box VL(l) such that |VL(l)| ≥ |Al|, we have

sup
z∈Al

( ∑
y∈Al

c′

(|y − z|∞ + 1)d−2

)
≤

∑
y∈VL(l)

c′

(|y|∞ + 1)d−2
, for all l ≥ 1,

(5.22)
since, fixed an element z ∈ Al, we can easily construct an injective corre-
spondence Γl between Al and VL(l) such that at each element y ∈ Al, assign
an element Γl(y) ∈ VL(l), with the property that |y − z|∞ ≥ |Γl(y)|∞.

By (5.19) there exists an odd number L(l) and a constant c̃ > 0 such
that L(l) ≤ c̃ · 2l and |VL(l)| ≥ |Al|. In particular, noting that∣∣{y ∈ VL; |y|∞ = n}

∣∣ = |V2n+1| − |V2n−1|
= (2n+ 1)d − (2n− 1)d ≤ c · nd−1, for all n ≥ 1,

(5.23)

and using the bound (5.21) and (5.22), we obtain

Ml ≤ c′ + c′′
c̃·2l∑
n=1

nd−1

(n+ 1)d−2
≤ c′ + c′′

c̃·2l∑
n=1

n ≤ c · 22l, for all l ≥ 1. (5.24)

Finally from (5.20) and (5.24) we conclude

cap(Al) ≥ c · 2l(d−2), for all l ≥ 1, (5.25)

and so

T [A] ≥
∞∑
l=1

c =∞. (5.26)

Now from the proof of the Wiener’s test (see Theorem 3.4.1) we know that,
for all Λ and 0 < u < 1, exists N = N(u,Λ) > 0 such that if a set A ⊂ Zd
satisfies T [A] > N, then fA(x) > u, for all x ∈ Λ.

Finally fixing u, for all Λ, from the divergence of (5.26), we can imme-
diately conclude that there exists Vn(Λ) large enough such that

T [K] > N, for all K ∈ SVn , (5.27)

and so
fK(x) > u, for all K ∈ SVn and for all x ∈ Λ. (5.28)

In particular

fK(x) > u, for all K ∈ SVn and for all x ∈ Λ. (5.29)
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The following lemma gives us an important lower bound for the function
E[ϕx|EK ] for all x ∈ ∂K.

Lemma 5.3.4. For h <∞ large enough there is a constant c > 0 such that
for all Vn large enough

E[ϕx|EK ] ≥ c, for all x ∈ ∂K, all K ∈ SVn . (5.30)

Proof. This lemma is proved in [3], Lemma 3, p. 1264. We are not able to
follow the last part of the proof where the Ruelle’s superstability estimate
is applied.

The following lemma generalizes the previous lower bound for the func-
tion E[ϕx|EK ], for all x ∈ Zd. The proof of this lemma is based on the result
stated in Lemma 1.5.2.

Lemma 5.3.5. For h < ∞ large enough there exists a positive constant
c > 0 such that for all Vn large enough

E[ϕx|EK ] ≥ c · fK(x) for all x ∈ Zd, all K ∈ SVn , (5.31)

where K = K ∪ ∂K.

Proof. For all K ⊂⊂ Zd, applying Lemma 1.5.5 we have, for all x ∈ Zd \K,

E[ϕx|FK ](w) = Ex[ωXτ
K
, τK <∞], P-a.s. , (5.32)

where FK = σ(ϕx; x ∈ K). Obviously, for all K ∈ SVn , EK ∈ FK and in
particular we have

E[ϕx|EK ] = E[Ex[ϕXτ
K
, τK <∞]|EK ], for all x ∈ Zd \K, (5.33)

Fixed h <∞ large enough, for all Vn large enough, applying Lemma 5.3.4,
we obtain,

E[ϕx|EK ] = E[Ex[ϕXτ
K
, τK <∞]|EK ]

= E[
∑
k∈∂K

Px(XτK
= k, τK <∞)ϕk|EK ]

=
∑
k∈∂K

E[ϕk|EK ]Px(XτK
= k, τK <∞)

≥ c · fK(x), for all x ∈ Zd \K,

(5.34)

and in particular, we can conclude that for all Vn large enough,

E[ϕx|EK ] ≥ c · fK(x) for all x ∈ Zd, all K ∈ SVn . (5.35)
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5.4 The conclusion of the proof

We are now ready to conclude the proof.

Proof. Lemma 5.3.5 says that for h̄ <∞ large enough there exists a positive
constant c > 0 such that for all Vn large enough

E[ϕx|EK ] ≥ c · fK(x) for all x ∈ Zd, all K ∈ SVn . (5.36)

Combining Lemma 5.3.3 with (5.36): there is a costant ũ > 0 such that for
all Λ, we can choose Vn = Vn(Λ) large enough such that

1

|Λ|
∑
x∈Λ

E[ϕx|EK ] ≥ ũ, for all K ∈ SVn . (5.37)

By Lemma 5.3.2, denoting SΛ :=
∑

x∈Λ ϕx and Un :=
⊔
K∈SVn

EK , we have

E
[
(SΛ)2

]
≥ E

[
(SΛ)21Un

]
=

∑
K∈SVn

E
[
(SΛ)21EK

]
=

∑
K∈SVn

E
[
(SΛ)2|EK

]
P[EK ]

(5.38)
and by the Cauchy-Schwartz inequality

≥
∑

K∈SVn

E
[
SΛ|EK

]2P[EK ] ≥
∑

K∈SVn

ũ2|Λ|2P[EK ], (5.39)

where we used (5.37) for the last inequality. Now, by Lemma 5.3.2 again, in

particular using that CVn ∩ Ωδ ⊆
⊔
K∈SVn

EhK and P(CVn ∩ Ωδ) ≥ P
(
{0 ≥h←→

∞} ∩ Ωδ

)
, we obtain

≥ ũ2|Λ|2P(CVn ∩ Ωδ) ≥ ũ2|Λ|2P
(
{0 ≥h←→∞} ∩ Ωδ

)
. (5.40)

Since this chain of inequalities holds for all Λ and E
[(

(1/|Λ|)SΛ

)2]→ 0, for

Λ ↑ Zd, we obtain that P
(
{0 ≥h←→∞}∩Ωδ

)
= 0. Finally taking the limit for

δ → 0, we get P
(
{0 ≥h←→∞}

)
= 0, for all h > h̄.

This completes the proof.



Chapter 6

Open problems

We summarize in this final chapter the two open problems that appear in
our new proof. We tried to be as independent as possible from the previous
chapter with the notation in order to be accessible to lay readers.

Let (ϕx)x∈Zd be a Discrete Gaussian Free Field on Zd and Vn be a box
of size n ∈ N centered in the origin 0.

Problem 1.We claim that the connected component containing 0 in
the cluster C(0)(ϕ) inside Vn, denoted by C

(
C(0)(ϕ), Vn

)
, satisfies for some

ρ > 0,
ρ

2
<
|C
(
C(0)(ϕ), Vn

)
|

nd
< 2ρ,

for all configurations ϕ contained in an arbitrary large subset of the config-
urations such that the origin 0 lies in the infinite cluster over level h. See
the claim below equation (5.13) for a more precise statement.

We belive that using an ”ergodic argument” the result could be prove.
Problem 2. This is the main problem in our proof. We would like to

use a result stated in [3, Lemma 3, p. 1264] but we are not able to follow the
last part of the proof where the Ruelle’s superstability estimate is applied.
The result is intuitive but it seems to be extremely technical to prove. We
give a statement: for a box Vn we define

SVn =
{
K ⊆ Vn : 0 ∈ K, K is connected, K ∩ ∂iVn 6= ∅

}
.

Lemma. For h < ∞ large enough there is a constant c > 0 such that for
all boxes Vn large enough

E
[
ϕx

∣∣∣ϕx ≥ h,∀x ∈ K and ϕx < h,∀x ∈ ∂VnK
]
≥ c, for all x ∈ ∂K,

all K ∈ SVn ,

where ∂VnK = ∂K ∩ Vn.

Intuitively the result states that the field on the external boundary of a
cluster over level h is in mean strictly positive if h is big enough.
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[10] C.M. Newman and L.S. Schulman. Infinite clusters in percolation mod-
els. J. Stat. Phys., 26: pp. 613-628 (1981).

69



70 BIBLIOGRAPHY

[11] P.-F. Rodriguez and A.-S. Sznitman. Phase transition and level-set per-
colation for the Gaussian free field. Commun. Math. Phys. 320(2): pp.
571–601 (2013).

[12] V. Sidoravicius and A.S. Sznitman. Connectivity bounds for the vacant
set of random interlacements. Ann. Inst. Henri Poincaré, Probabilités et
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