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I N T R O D U C T I O N

The neon-sodium cycle is involved in the synthesis of Ne, Na, and Mg
elements in stars and can take place in various astronomical sites such as hy-
drogen burning shells of red giant stars and asymptotic giant branch stars,
in novae and in the core of massive stars. The 20Ne(p,γ)21Na is the first
reaction of the cycle, and, having the slowest reaction rate, it controls the
speed of the whole process. In particular, it was shown that a better as-
sessment of this reaction might be crucial in explaining the anticorrelation
between oxygen and sodium abundances exhibit by globular clusters. At
astrophysical temperatures, the 20Ne(p,γ)21Na reaction rate is dominated
by the high energy tail of a sub-threshold state at ER = −6.7 keV, a direct
capture component and a narrow resonance at ER = 366 keV.

Measuring nuclear reactions at energies of astrophysical interest is often
quite challenging because the cross sections are extremely low (less than
10−9 b). The Laboratory for Underground Nuclear Astrophysics (LUNA),
situated at Laboratori Nazionali del Gran Sasso (LNGS), offers a unique
opportunity to study this process thanks to the unprecedentedly low levels
of background achieved in this location. Here proton capture on 20Ne will be
studied on a windowless gas target using two HPGe detectors. The detectors
are shielded against environmental radioactivity by a copper and lead lining.
The project focuses especially on the contribution from the ER = 366 keV
narrow resonance and the direct capture component below 400 keV.

This thesis illustrates the work made at the LUNA facility for the initial
construction and characterization of the setup. Preliminary characterizations
of both the environmental and beam induced background are presented.
The beam calorimetry technique used to measure the proton beam current
is exposed along with the methods used for its calibration.

The following analysis will then focus on Monte Carlo simulations made
in order to optimize the geometry of the setup. A tuning of the positions
of the detectors and the shielding is made using the available experimental
data. The efficiency profile is then characterized for the two HPGe detectors.
Finally, simulations of the resonant capture component of the reaction are
provided. This allows us to determine the expected counting rate of the
apparatus and probe the sensitivity to effects such as beam energy straggling
inside the gas target.
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1 A S T R O P H Y S I C A L M OT I VAT I O N

The energy is radiated by the stars mainly by means of the thermonuclear
reactions happening inside the core [1]. A star originates when the interstel-
lar gases, predominantly hydrogen and helium, condenses. Gravitational
energy quickly makes the gas heat up and contract up until the thermal en-
ergy inside the core is high enough to ignite the burning of hydrogen by
means of nuclear power. The energy released by these reactions is respon-
sible for maintaining hydrostatic equilibrium up until the fuel in the core is
exhausted and the burning of heavier and heavier elements starts.

In the next section, the formalism that describes this kind of reaction is
exposed. By far the most important quantity to extract for astrophysics is
the thermonuclear reaction rate that is given in input to the stellar evolution
models and defines the sites and moments for a particular reaction to take
place. Later on, we will expose the main scenarios where our process of
interest, 20Ne(p,γ)21Na, takes place as well as the current state of the art
measurements for the reaction.

1.1 thermonuclear reaction basics

Considering a nuclear reaction between two massive particles 0 + 1 →
2+ 3, we can define the reaction rate [2] as the number of reactions for unit
volume and time

r01 ≡
NR

Vt
= N0N1vσ(v), (1)

where N0 ≡ Nt/V and N1 ≡ Nb/V are the number densities of interacting
particles, v their relative velocity, and σ(v) the cross section of the reaction.
In the stellar plasma, at thermodynamic equilibrium, the relative velocity of
the interacting nuclei is not constant and therefore we should talk about the
probability distribution P(v)dv for a particle of having velocity between v
and v+ dv with the proper normalization,∫∞

0

P(v)dv = 1. (2)

This leads us to the generalization of the reaction rate for a distribution of
relative velocities:

r01 = N0N1

∫∞
0

vP(v)σ(v)dv ≡ N0N1〈σv〉01, (3)
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4 astrophysical motivation

where 〈σv〉01 is the reaction rate per particle pair. The definition above can
be further generalized to

r01 =
N0N1〈σv〉01
1+ δ01

, (4)

where the Kronecker δ01 accounts for equal initial species in the reaction. In
non-degenerate plasma at thermodynamic equilibrium the relative velocity
of the two nuclei is given by the Maxwell-Boltzmann distribution

P(v)dv =

(
µ

2πkBT

)3/2
e−µv

2/(2kBT)4πv2dv (5)

where µ = m0m1/(m0+m1) is the reduced mass of the interacting particles,
kB the Boltzmann constant, and T the temperature of the star. Assuming
E = µv2/2 we may write Eq. 5 as

P(E)dE =
2√
π

1

(kBT)3/2

√
Ee−E/kbTdE, (6)

using this result the reaction rate per particle pair becomes:

〈σv〉 =
∫∞
0

√
2E

µ
σ(E)P(E)dE

=

(
8

πµ

)1/2
1

(kbT)3/2

∫∞
0

Eσ(E)e−E/kBTdE.

(7)

This equation fully characterizes the reaction rate at a given T , and therefore
must be evaluated as a star evolve and its temperature changes.

Inside the stellar plasma, the energy of the nuclei is much lower than the
Coulomb barrier between them and reactions usually happen through quan-
tum tunneling. The cross section for this type of reaction drops exponentially
at low energies and can be parameterized as

σ =
1

E
S(E)exp

(
−
2π
 h

√
µ

2E
Z0Z1e

2

)
=
1

E
S(E)e−2πη, (8)

Where Z0 and Z1 are the atomic charges of the target and the projectile, e
the fundamental charge, η is the Sommerfield parameter, e−2πη (Gamow fac-
tor) accounts for the s-wave Coulomb barrier transmission probability and
S(E) is a smoothly varying function of the energy known as S-factor, which
depends on nuclear effects.

Using the above definition the eq. 7 becomes

〈σv〉 =
(
8

πµ

)1/2
1

(kbT)3/2

∫∞
0

S(E)e−2πηe−E/kBTdE, (9)

The terms e−2πη and e−E/KBT defines a region known as Gamow peak,
shown in Fig. 1, in this region the integrand of Eq. 9 has its maximal contri-
bution to the reaction rate.
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Figure 1: Gamow peak for the 20Ne(p,γ)21Na at two different temperatures. T =
0.3 GK refers to typical temperatures of interest for the nucleosynthesis in
classical novae, T = 0.06GK is associated with hot hydrogen burning in
massive stars.

1.1.1 Radiative capture reactions

Reactions induced by charged particles of the type A(x,γ)B, as our reac-
tion of interest 20Ne(p,γ)21Na, can proceed either through direct capture or
resonant capture (Fig. 2). The direct process is characterized by the immediate
transition to a bound state with the emission of a photon, in this case, the
reaction cross section is proportional to a single matrix element,

σγ ∝ |〈B|Hγ |A+ x〉|2, (10)

where Hγ is an electromagnetic operator describing the transition. The cross
section of reactions going through direct capture can occur at all projectile
energy and have typically a smooth energy dependence (i. e. Eq. 8).

Resonant radiative capture is a type of process that can happen when the
sum of the projectile energy in the center of mass ER and the Q-value of
the reaction is equivalent to the energy Ex of an excited state the resulting
compound nucleus,

Ex = ER +Q. (11)

When this happens the reaction cross section happens to be proportional to
two factors, the contribution from the formation of the compound nucleus
in the excited state and the one from the de-excitation into a final state of
energy Ef,

σγ ∝ |〈Ef|Hγ |ER〉|2|〈ER|Hx |A+ x〉|2, (12)

the proportionality to this matrix elements are typically expressed using the
partial width terms Γa and Γb, which accounts for the compound forma-
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Figure 2: Energy level diagrams illustrating the Direct Capture (DC) and resonant
reaction mechanisms.

tion and decay. When this type of process occurs the reaction cross section
changes sharply. For this kind of reactions the cross section can be described
by the Breit-Wigner formula:

σ(E)BW = πλ2
2J+ 1

(2j1 + 1)(2j2 + 1)
(1+ δ01)

ΓaΓb
(E− ER)2 + (Γ/2)2

, (13)

where:

• λ = 2π h/
√
2µE is the de Broglie wavelength of the projectile in the

center of mass system.

• j1 and j2 are the spins of the interacting particles and J is the spin of
the excited state populated in the compound nucleus.

• (1+ δ01) takes into account the possibility of target and the projectile
being the same particle.

• Γ = Γa + Γb + . . . is the total width, accounting for all the open decay
channels.

• ER is the resonance energy in the center of mass frame.

If we are in the condition Γ � ER the resonance is defined as narrow. In this
situation we can approximate Eq. 7 considering that the factor Ee−E/kBT

changes very little inside the resonance region, therefore can be taken out-
side the integral with E = ER:

〈σv〉 =
(
8

πµ

)1/2
1

(kbT)3/2
ERe

−ER/kBT

∫∞
0

σ(E)BWdE. (14)

The integration of the Breit-Wigner, assuming a negligible dependence in
energy of the partial widths, yields∫∞

0

σ(E)BWdE = 2π2λ2ωγ, (15)
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24251/2+
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γ

Figure 3: Level scheme of 21Na with the entrance channel of 20Ne+p. The behavior
of the S-factor is also shown, in particular the contributions from the level
at EX = 2425 keV (subthreshold resonance) and Eres = 2798 keV (narrow
resonance). Only the example transition to the ground state is shown here.

where
ωγ =

2J+ 1

(2j1 + 1)(2j2 + 1)
(1+ δ01)

ΓaΓb
Γ

(16)

is the resonance strength and expresses the integrated resonance. As said the
former calculations are valid in the context of a narrow resonance, this is not
always the case.

If the resonance is relatively broad (Γ/ER > 0.1) we need to take into
account the energy dependence of the widths and Eq. 14 has to be modified
making the substitution:

σBW(E) = σ(ER)
ER
E

Γa(E)

Γa(ER)

Γb(E)

Γb(ER)

(12Γ(ER))
2

(E− ER)2 + (12Γ(E))
2

, (17)

where σ(ER) is the cross section evaluated at the resonance energy.

If we consider now states where ER = EX−Q is negative the phenomenon
of subthreshold resonance (Fig. 3) might also take place, this is directly related
to the fact that any state has a finite lifetime and thus a finite width Γ ≈ h/τ.
This mechanism of interaction affects the low energy tail of the S-factor and,
consequently, the thermonuclear reaction rate at relatively low temperatures.
We will see that this is the case for the 20Ne(p,γ), as 21Na has an excited
state just below the Q-value of the reaction (ER = −6.4 keV), with a corre-
sponding γ width of Γγ = 0.17± 0.05 eV [3].
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Figure 4: Hydrogen burning cycles beyond the pp-chain. The 20Ne(p,γ)21Na reac-
tion, part of the NeNa cycle, is highlighted in red. Original image taken
from [4].

1.2 nucleosynthesis in the stars

Hydrogen burning in the stars happens mainly via the proton-proton
chain and the CNO cycle. The pp-chain mechanism is dominant at lower
temperatures whereas in stars more massive than 1.2 M� the CNO cycle
dominates as a source of energy.

The CNO cycle (pictured in Fig. 4 along with the other reaction involved
in hydrogen burning) requires the presence of some isotopes of carbon, oxy-
gen and nitrogen that acts as a catalyst meaning that the heavier elements
are not consumed, while one helium is produced in this process through a
series of proton capture reactions and β-decays involving 4 hydrogens. De-
pending on the temperature regime different branches of the CNO cycle are
activated [5], for example at low temperature (T ∼ 40 MK) only the CN cycle
is active whereas at higher temperatures the NO cycle is active as well.

In massive stars and higher temperature environments the so-called hot
CNO cycle can proceed through many pathways and other reactions can
take place, including the NeNa and MgAl cycles.

1.2.1 AGB stars and Globular Cluster features

The Asymptotic Giant Branch (AGB) phase of stellar evolution begins fol-
lowing the helium burning of low to intermediate mass stars, AGB stars
consist of a degenerate carbon-oxygen core, an He intershell, an H shell, and
an expanded convective envelope (see Fig. 5).

During this phase, CNO cycling in the H shell provides the energy, while
recurrently being interrupted by the activation of the helium burning at the
bottom of the inner shell (thermal pulses). When this happens convection
is established in the region in between the two shells and the hydrogen
burning stops. During thermal pulses the convective envelope can penetrate
inside the hydrogen, bringing the synthesized materials to the surface in a
phenomenon know as Third Dredge Up (TDU). For this reason, AGB stars are
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Figure 5: The structure of AGB stars. Taken from [6].

widely regarded as responsible for the pollution of the interstellar medium
with p-capture nucleosynthesis material [7].

In the more massive AGB stars (M > 4 M�), depending on the metal-
licity, the base of the hydrogen burning region can become hot enough
(T > 60 MK) to activate efficient CNO cycling or, for the most massive
AGB stars the aforementioned NeNa and MgAl cycles (Hot Bottom Burning,
HBB) [8]. The reactions involved in this cycles (see Fig. 4) have become in-
creasingly important as they are believed to be the main actors involved in
explaining the observed anticorrelation between O-Na and Al-Mg observed
by stars of Galactic globular clusters (review in [9]).

Globular Clusters (GC) are tightly packed, gravitationally bound, collection
of stars in spherical distributions. The canonical approach to these objects
is to describe them as formed at the same time in chemically homogeneous
conditions and in the same region of space.

On contrast, it was later discovered that the abundances for the lighter
elements within GC stars change a lot, later on high-resolution spectroscopy
revealed the O-Na and Mg-Al anticorrelations present in GC stars on the
Red Giant Branch (Fig. 6) [11]. These evidences lead to the conclusion that
the abundance variations could not be attributed to processes internal to the
stars since the energies in play are too low and the convective envelopes too
thin. The main idea is that this stars formed from hot H-burning enriched
material from within the GC (self enrichment), several candidates might play a
role in this process but currently AGB stars undergoing hot bottom burning
are one of the main candidates.
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Figure 6: Anticorrelation between sodium and oxygen relative abundances for clus-
ter of intermediate metallicity. Taken from [10].
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Figure 7: Artist’s rendition of a white dwarf accreting hydrogen from their compan-
ion star.

In order to better address this problem, it is then necessary to have a better
understanding of the reaction rates involved in this type of processes.

1.2.2 Classical novae

At the end of the life of low and intermediate mass stars (M < 14 M�)
they experience several thermal instabilities following their AGB or super-
AGB phase. At the end of this process they lose their envelopes and what
remains, typically their degenerate CO core or ONe for more massive ones,
is usually referred to as a White Dwarf (WD).

When a WD is gravitationally bounded in a close binary system with an
H-rich main sequence star, they may start to accrete material on their surface
(Fig. 7). At one point, when enough material is accumulated, thermonuclear
reaction ignites leading eventually to a Novae explosion [12].

Depending on the initial WD mass and the accretion rate either a type Ia
supernovae explosion or a classical novae may take place. Type Ia supernovae
explosion happens if the mass of the white dwarf reaches the Chandrasekhar
limit (1.4 M�), in this case the whole white dwarf is destroyed. In contrast in
classical novae only the outer white dwarfs envelope is ignited and expelled,
and this phenomenon may eventually start over again.

During this explosive events temperature at the bottom of the H-rich enve-
lope may reach temperatures as high as 400 MK igniting the hot CNO cycle
and the nucleosynthesis via proton capture involving heavier elements [13]
and therefore enriching the expelled material with the product of the reac-
tion involved.

1.3 the neon-sodium cycle

The Neon-Sodium cycle contributes to the hydrogen burning, allowing the
conversion of 4 protons into helium inside the stars. This is accomplished
by means of a series of proton captures and beta decays, the sequence of
reaction involved is:

20Ne(p,γ)21Na(β+,ν)21Ne(p,γ)22Na(β+,ν)22Ne(p,γ)23Na(p,α)20Ne. (18)
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These processes are not very strong sources of energy for the stars, however,
are crucial in the synthesis of elements between 20Ne and 24Mg, in particular
the 22Ne(p,γ)23Na reaction is responsible for and increase of elemental Na
by a factor 10 [14].

This cycle might take place inside the hydrogen burning shell of red giant
stars, Asymptotic Giant Branch (AGB) stars, novae, and in the core of mas-
sive stars. Evidence of this has been found in various astrophysical sites [15,
16].

Moreover, as briefly mentioned in 1.2.1, one recent problem in astrophysics
is explaining the Oxygen-Sodium (O-Na) anticorrelation observed in Glob-
ular Clusters (GC). The current AGB stellar models seem unable to explain
this feature exhibit by observations, at least using the available nuclear data
[17]. In fact, after a better assessment of the contribution from the 22Ne(p,γ)23Na
[18], it was recently shown that clearer estimations of 20Ne(p,γ)21Na and
23Na(p,α)20Ne, i. e. and the entrance and exit channel of the Ne-Na cycle,
which are now the least understood, could lead to further improvements in
the understanding of the 23Na abundance problem in GC [19].

The 20Ne(p,γ)21Na is predicted to be the reaction with the slowest rate of
Ne-Na cycle [20], and therefore the one that controls the speed at which the
cycle proceeds.

1.4 20Ne(p , γ)21Na reaction

Proton capture on 20Ne nuclei may occur in the aforementioned stellar
environment if the temperature exceeds T = 0.05 GK [14]. A level scheme of
the reaction (Q-Value = 2431.68 keV) is shown in Fig. 8a.

At temperature below 0.1 GK the reaction rate of the 20Ne(p,γ)21Na is
dominated by the tail of a subthreshold resonance (Fig. 8b), the behavior of
the S-factor at low energies can be well extrapolated knowing the (formal)
reduced proton width for the 2425 keV level from (d,n) transfer reactions
(see i. e. [2] pp.122).

At higher temperatures T = 0.1− 1 GK the main contribution is from the
direct capture process with various branchings. There is also a narrow reso-
nance (ER = 366 keV), corresponding to the excited state at EX = 2797.5 keV
of the 21Na, in the energy region covered by the LUNA-400 accelerator. Until
very recently the strength of this low energy resonance was only measured
by Rolfs et al. in 1975 [22]. A new result from the TUNL group appeared
in recent times, it is reported in the PhD thesis by Cooper [23], who gave a
different result for this value.

Assessing the contribution of this resonance to the reaction rate will be
one of the main goals of the experiment.
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Figure 8: At the top a level scheme of the 20Ne(p,γ)21Na, at the bottom the percent-
age contribution to the reaction rate from different processes at different
temperature (Taken from [21]) .
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1.4.1 20Ne(p,γ)21Na: state of the art

The 20Ne(p,γ)21Na reaction has already been studied experimentally by
different groups [21–25] with both direct and indirect approaches.

Rolfs et al. (1975)

Rolfs et al. used a setup consisting of an extended windowless gas target
with natural neon gas and two Ge(Li) detectors placed at 0◦ and 90◦ and
shielded with lead. They reported cross section down to proton energy of
320 keV, measuring the contribution of transition to the ground state and
to the 2424.9 keV and 331.9 keV excited states of 21Na. They studied both
the non resonant cross section and the ER = 366 keV resonance reporting a
strength ωγ = (0.11± 0.02) meV [22].

Mukhamedzhanov et al. (2006)

In 2006 an indirect measurement was conducted by Mukhamedzhanov et
al. using the 20Ne(3He,d)21Na transfer reaction [24]. This experiment led to
the extrapolation of the asymptotic normalization coefficient that was used
to determine the proton partial width for the subthreshold resonance state
and the DC contribution to the S-factor. Both these results was found to
agree fairly well with the one given by Rolfs et al. .

Lyons et al. (2018)

Lyons et al. studied the reaction at the KN accelerator of the Notre Dame
University. They used a neon implanted target on tantalum backing and
studied the reaction over a wide range of energies (Ep = 0.5− 2 MeV), in-
terpreting the results in the R-matrix formalism. The resulting S-factor from
this work is shown Fig.9, with the contribution from the direct capture to
the ground state, the 332 keV state, and the 2425 keV subthreshold reso-
nance. Their results were pretty much in agreement with the ones by Rolfs
et al., but they found an overall ∼ 20% reduction in the total reaction rate
[21].

More recent measurements

Recently the reaction was also studied at TUNL and described in Cooper’s
PhD thesis [23]. Even these experiments were carried out using implanted
targets on tantalum backings, the ER = 366 keV was measured again and
a different value of ωγ = (0.0722± 0.0068) meV for the resonance strength
was given. Cooper determined also different branching ratios for transitions
to the excited states of 21Na, in particular, the transition R → 332 keV (mea-
sured by Rolfs to have a branching ratio of 11±4%) was not seen (see Tab. 1).
This led to an update of the reaction rates. The origin of the discrepancy
with the result given by Rolfs et al. was also further addressed in [23].
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Figure 9: The astrophysical S-factor for the three transitions of interest as measured
by Lyons et al. (in blue), with the results from [22] in black, and the
R-matrix fit in red. Taken from [21]

Cooper Rolfs et al.

B.r. res→ 2425 61.5± 7.3% 56± 4%
B.r. res→ 332 1.6± 1.1 % 11± 4 %
B.r. res→ gs 35.9± 5.3 % 33± 4 %
ωγ 0.0722± 0.0068 meV 0.11± 0.02 meV

Table 1: Comparison between branching ratios and resonance strengths for the
366 keV resonance given by Rols et al. and Cooper

The last set of measurements found in later literature are very recent re-
sults reported in a PhD thesis by Karpesky [25] who studied the 20Ne(p,γ)21Na
using the DRAGON facility at TRIUMF. The reaction was studied on inverse
kinematic using a 20Ne beam delivered to a windowless gas target and γ-
rays were measured with a BGO scintillators array.

Karpesky measured a total of four reaction energies ranging from center-
of-mass energies of 265.5 keV (within the astrophysical range of interest for
ONe novae) to 519.6 keV, reporting the S-factor for the different transition of
interest.

The discrepancies present in the literature, in particular the new ωγ and
branchings reported by Cooper in his thesis, leads to the necessity of new
measurements. In this case, the LUNA-400 accelerator is perfectly suited for
the task of studying this reaction in the energy range of interest.





2 T H E L U N A E X P E R I M E N T

Attempting direct measurements of radiative capture reactions at low en-
ergies can be extremely difficult. The first problem, as we have seen, is that
the cross section drops exponentially below the Coulomb barrier, therefore
measuring such a weak signal often requires a high intensity beam.

Another problem to take into account is the background, at the γ-ray ener-
gies of interest the main contributions are from the environmental radioactiv-
ity (mainly below 2.6 MeV) and cosmic radiation (dominant above 2.6 MeV).
Environmental radioactivity is due to radioisotopes like the decay chain of
uranium and thorium and the 40K and can typically be attenuated shield-
ing the setup, whereas cosmic radiation, typically in the form of muons,
can deposit energy in the detector volume or interact with the surrounding
materials producing radio-isotopes or neutrons, one way to overcome this
problem is to go underground, where the muon flux is drastically reduced.

In this chapter the main components of the LUNA experiment are ex-
posed, the experimental setup that will be used in the measurement of the
20Ne(p,γ)21Na is described and some initial considerations about its charac-
terization are made based on the experimental data taken in February 2020

before the sanitary crisis and former measurements made with the same
setup, including an evaluation of the environmental and beam-induced back-
ground, the final background reduction expected and a preliminary calibra-
tion of the calorimetric system used to measure the beam intensity. This
initial characterization of the setup will be important for the development of
the simulations, discussed in the last section of the thesis.

2.1 the underground luna facility

The Laboratory for Underground Nuclear Astrophysics (LUNA) is located
in the Gran Sasso National Laboratories [26].

The main advantage of this peculiar location for the LUNA experiment
is the substantial suppression of the background induced by cosmic rays.
These high-energy charged particles, mainly protons (∼90%) and α particles
(∼10%), coming from space interacts with nuclei in the upper atmosphere.
When this happens they create a shower of particles (Fig. 10). Muons, cre-
ated by the decay of charged pions, are the most penetrating component of
the cosmic rays induced background, they lose energy inside the particles
and γ-rays detectors and generate spallation neutron and radioactive nuclei
in the surrounding materials.

Deep underground the setup is shielded by 1400 m of dolomite rock
(3800 m of equivalent water), this allows the complete shielding of the ha-
dronic component of cosmic rays as well as the suppression of the muonic
component by about 6 orders of magnitude and 3 for neutrons compared to

17
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Figure 10: The interaction of cosmic rays in the upper atmosphere produce a
shower of particle.
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Figure 11: Comparison between γ-ray spectra taken with an HPGe detector at a sur-
face laboratory and underground at LNGS, including proper shielding
as discussed in section 2.1. Taken from [27].

earth surface [27]. For these reasons, the underground facility serves as an
exceptional location to measure the tiny cross sections of interest (from pico
to femto barn).

Figure 11 serves as a comparison between the γ-ray spectra obtained by
High-Purity Germanium (HPGe) detector placed both underground and at
the surface. The high energy component of the spectra is completely negli-
gible in this condition, whereas the component of the spectra below 2.6 MeV
is mainly due to environmental radioactivity. This part of the spectrum is
occupied by the effects of long-lived radioisotopes, in particular the decay
chains of 238U and 232Th and the 40K.

The effect of radioactive nuclides can be mitigated using passive shielding,
usually made of high Z materials like lead or copper. In this case, particu-
lar attention is made in selecting low-background lead brick and refined
electrolytic copper to cope bremsstrahlung generated by β emitters, like the
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Figure 12: The LUNA 400kV accelerator tank.

decay product of 210Pb, 210Bi . The compromise found in the LUNA setup
is a 25 cm lead shield (specifically chosen to have 210Pb < 25Bq/kg), thicker
than what possible on overground laboratories where the muon background
causes activation in the shielding.

Another problem to cope with is the presence of radioactive radon gas in
the air, this is typically dealt with enclosing the detector in an anti-radon
box, kept airtight and flushed with nitrogen gas.

With these measures in place, the background of the LUNA detector was
extensively studied either with Bismuth Germanate (BGO) scintillators, High
Purity Germanium (HPGe) and silicon detectors and found to be unprece-
dentedly low [28, 29].

Typical background spectra for a shielded setup at LUNA are shown in
Fig. 17 and discussed in section 2.4.2, the count rate obtainable for the most
prominent lines is of only a few counts per hour.

2.2 the 400 kv accelerator

Given that the cross sections involved in nuclear astrophysics are typically
very low and the energy dependence is very steep (see eq. 8) the two most
important features needed for an accelerator in nuclear astrophysics are high
beam intensity and long time stability of the terminal high voltage (HV).

A 400 kV electrostatic accelerator, manufactured by High Voltage Engi-
neering [30], is currently installed at the LUNA facility (Fig. 12). It is of
Cockcroft-Walton design, enclosed in a pressurized chamber filled with a
mixture of N2 and CO2 in order to avoid sparks between the various compo-
nents. A radio-frequency ion source installed inside the chamber is capable
of providing proton or alpha beams with an intensity as high as 500 µA on
target. Using a 45 degrees magnet and a vertical steerer the ions are selected
and focused, they can be delivered on one of the two beam lines, one for a
solid target and one for a windowless gas target (see section 2.3).

The system in place has been calibrated with an accuracy of 0.3 keV and
is capable of providing beam with an energy spread of about 100 eV and
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long term stability of 5 eV/h for periods up to 4 weeks of continuous opera-
tion [30].

2.3 the gas target system

The measure of the 20Ne(p,γ)21Na reaction will take place using a gas tar-
get of the windowless type. The use of this type of targets is often unavoid-
able in nuclear astrophysics: solid targets should be formed typically using
gaseous elements or from chemical compounds of these isotopes which de-
grade rapidly over time and usually suffer from uncertain stoichiometry.

Gas targets, on the other hand, offer a number of advantages over a solid
target setup, most importantly the target stability over time is excellent, hav-
ing the ability to sustain high intensity ion beams over a longer period of
time. Another advantage of the gas targets is that typically they have a
stronger isotopical purity and suffer less of beam induced background from
contaminants. The downside is that the detection efficiency for each inter-
action point in the target chamber needs to be properly characterized and
accounted for and this can make the analysis more difficult, as discussed in
section 3.3.1.

The windowless solution, achieved through a differential pumping sys-
tem [18], is typically preferred in the high current low beam energy regime
of nuclear astrophysics. A window between the high vacuum of the beam
line and the gas target chamber might introduce significant energy loss and
straggling at these energies and would inevitably suffer from quick degrada-
tion if thin enough to mitigate this two problems.

In Fig. 13 a scheme of the LUNA gas target system is shown. In this
setup, the gas is continuously pumped away through a three-stage pumping
system. The pressure inside the chamber is typically on the order of a few
mbar and drops of roughly three orders of magnitude thanks to two high-
speed pumps Roots pump (2050 m3/h, 500 m3/h) in series and a first long,
high impedance, water-cooled aperture (AP1 in Fig. 13). Following another
aperture (AP2) the subsequent pumping stages can eliminate the remaining
gas using three turbomolecular pumps. The system is connected to the beam
line following another pumping stage (through AP3), typical pressure in the
last two sections are 10−6 − 10−7 mbar.

Since the gas is lost over time, it needs to be continuously refilled inside
the chamber using gas inlet valves controlled through a gauge system that
measures the pressure inside the chamber.

For expensive gases, like isotopically enriched ones, the system is equipped
with a recirculation system, in this case the exhaust of the 500 m3/h Roots
pump are sent through a purifier that removes nitrogen and oxygen contam-
inations and stored in a buffer volume (see [31] for details).

The reaction chamber employed will be the same one implemented in
previous cross section studies on the 22Ne(p,γ)23Na reaction [18, 32, 33] and
studied with the same type of gas. For this reason, the present work will
heavily rely on the characterization done on that experiment.

At the end of the chamber, the beam is stopped and its intensity is mea-
sured using a beam calorimeter (Fig. 14). This is the typical approach used
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Figure 13: A scheme of the differential pumping system, taken from [18].
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Figure 14: The calorimeter system installed at the end of the target chamber in
February 2020. The hot side is on the top in the picture, the two copper
tubing on the sides are connected to pressure gauges.

in gas target setups, as the production of secondary electrons by the interac-
tions of the beam with the gas is an issue and the charge cannot be simply
collected and integrated at beam stop.

Here a constant gradient of temperature is maintained using a control sys-
tem. A resistor dissipates power via the joule effect on the hot side, which
is exposed to the gas target, a chiller is employed on the outer side of the
calorimeter to maintain a gradient of temperature. Once the accelerator is
running and the hot side is exposed to the beam, less work is dissipated on
the resistance to maintain a constant temperature gradient, this is directly
proportional to the beam intensity. In order to operate this system, a calibra-
tion is mandatory and can be done evacuating the chamber and measuring
the beam intensity in vacuum where the production of secondary electrons
is negligible and charge can be properly integrated (see section 2.4.4).

2.4 experimental setup

This section describes the conceptual design of the setup that will be used
in the measurement as well as some consideration regarding its characteri-
zation made during the initial building phase of the apparatus in February
2020. Unfortunately, the 20Ne campaign was suspended the following month
because of the sanitary crisis. Considering the situation, the hope of this is
work is now to give a proper description of the setup. The following chapter
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will then be devoted to the study of Monte Carlo (MC) simulations of the
setup and the development of a proper measure strategy.

2.4.1 Setup design

Because the reaction has a Q-value relatively low all the γ rays emitted by
the 21Na are expected in a region of the spectra dominated by environmental
radioactivity. The campaign is expected to study, as first goal, the resonance
at ER= 366 keV. To achieve this goal, the γ-rays from the transitions Res. →
2425, Res.→ 332 and Res.→ g.s. will be measured.

The expected γ-rays emitted from the reaction are emitted with energies

Eγ = Q+
mp

mp +mt
Ep −∆Erec +∆EDop, (19)

where Ep the projectile energy in the lab system and mp and mt are the
masses of the projectile and the target.
∆Erec is the correction for the recoil energy of the compound nucleus of

mass mB:

∆Erec =
E2γ

2mBc2
, (20)

negligible for the 2.8 Mev γ-ray. The last term in Eq. 19 is the correction for
the Doppler shift for nucleus moving with velocity v:

∆EDop =
v

c
Eγ cos θ, (21)

where θ is the angle between the beam line and the γ-ray detector. It is
worth to note that, since the projectile might interact at any position inside
the target chamber, both Ep and ∆EDop depends on the interaction position:
the projectile loses energy as it travel through the gas and it might interact
at different relative angles with respect to the detector.

For the reasons mentioned above the best solution are High Purity Ger-
manium (HPGe) detectors because of their excellent resolution, low intrinsic
background, and not-so-low efficiency with low energy γ-rays. Nonetheless
the efficiency is still not very high for this kind of detectors and, given the
energy range of the γ-rays expected, a setup properly shielded from the
environmental radioactivity is required.

The campaign is planning to install the setup already used in the success-
ful measurement of the 22Ne(p,γ)23Na (shown in Fig. 15) [18]. In this con-
figuration two HPGe detectors are placed at different axial positions outside
the reaction chamber.

During this measurement two lead collimators were placed in a 90◦ and
55◦ arrangement with respect to the detectors in order to mitigate possible
angular distribution effect in the emitted γ-ray. This solution will not be
followed in the construction of new setup, giving the two detectors a wider
line of sight, as discussed in section 3.1.

The entire configuration is then shielded using ∼25 cm of low radioactivity
lead. Each detector will also be surrounded by a few centimeters of oxygen-
free copper in order to shield the HPGe against the bremsstrahlung photons
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Figure 15: Drawing of the experimental setup used in the study of 22Ne(p,γ)23Na.
The same configuration will be used in the study of the 20Ne(p,γ)21Na.
Taken from [34].
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Figure 16: Status of the setup construction in February 2020, with the shielding
partially built below the target chamber.

produced by the beta decay of 210Bi, a radioactive isotope usually present in
lead, daughter of 210Pb.

The setup will be also enclosed in a Plexiglas anti-radon box, this container
will be flooded with nitrogen gas to avoid the accumulation of radioactive
radon gas inside the lead castle.

During the preliminary work of February 2020 the lower detector (GePD
in the following), a Camberra low background HPGe detector with 130%
relative efficiency powered by a SILENA 7716 high voltage power supply,
was installed and the lead castle built up to the level of the chamber. Fig. 16

shows a photo of the status of the setup.
This configuration was used to take a few preliminary spectra of back-

ground, thoroughly.

2.4.2 Environmental background

The described setup configuration, already extensively characterized in [34],
is expected to reduce the environmental background by about three orders
of magnitude. In Fig. 17 a spectrum of the background obtained during this
intermediate phase of the construction is shown. All the visible lines are
given by the known transitions from the aforementioned radioisotopes.

This spectrum is compared with a previous one taken in October 2015

(same final detector configuration) with the setup fully shielded. Given this
comparison, a reduction of at least another order of magnitude is expected
for the final setup with counting rates in the regions of interest of about
10−3-10−4 counts/s. The measured count rates in the region of interest of
the experiment are reported in Tab. 2.

2.4.3 Beam-induced background

A particular attention will be devoted to the effect of beam induced back-
ground. In example, the chamber will be filled during the measurement
with neon gas isotopically enriched in 20Ne, up to 99.99%, in order to sup-
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Transition Eγ Present setup (half shielding) Setup 2015

(keV) (counts/s) (counts/s)

332→ gs 332 2.66(2) 0.0098(4)
res→ 2425 373 1.99(2) 0.0062(3)
2425→ gs 2425 0.026(2) 0.000 03(2)
res→ 332 2466 0.018(3) 0.000 02(2)
res→ gs 2797 0.0002(2) -

Table 2: Environmental background counting rates in the regions of interest of the
transitions for the 366 keV resonance in the 20Ne(p,γ)21Na reaction.

Figure 17: Laboratory background run taken with the HPGe detector positioned
below the chamber. Blue spectrum is the laboratory background taken
in February 2020 (setup not completely shielded) while the red one
is the laboratory background taken in October 2015 (setup completely
shielded).

press any resonant reaction from proton capture on 22Ne (10% abundance in
natural neon gas). Other common sources of beam-induced background in-
cludes low Z elements like deuterium, boron, carbon, oxygen, and fluorine.
These contaminants can also be found on the surfaces exposed to the beam,
in particular on the copper collimator and the calorimeter.

One of the main contaminants found in the spectra is fluorine. The reac-
tion 19F(p,αγ)16O has a high cross section below 400 keV and a resonance
can be found at Ep = 340 keV. In fig. 18 a spectrum acquired during the char-
acterization of the setup is shown. Here the calorimeter was installed for an
initial test with the beam at Ep = 341 keV just above the fluorine resonance
with the chamber evacuated. Signs of fluorine are clearly present around
5-6 MeV. Similar degrees of contamination were also found in another run
where the beam was focused on the collimator of the target chamber.

Another source of contamination visible in the spectra is due to the re-
action 12C(p,γ)13N that originates from the hydrocarbon absorbed into the
surfaces exposed to the beam.
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Figure 18: Beam-Induced background obtained during a preliminary test with
beam at the energy of 19F(p,αγ)16O resonance, compared to the back-
ground spectra obtained with half shielding built.

One way to reduce this type of contamination is cleaning very well the
surfaces where the beam interacts. Otherwise, the reactions involved in
this effect are very well known and can be mitigated (i. e. acquiring blank
spectra).

2.4.4 Calorimeter calibration

Inside the reaction chamber the beam stops on a copper calorimeter at-
tached to the end flange. As discussed in section 2.3 this device is used to
measure the beam intensity in a context where is not possible to integrate
the beam current directly.

This device is composed of a hot side exposed to the beam and kept at
constant temperature of 70◦ by resistors and cold side kept at −3◦ by the
cooling liquid provided by a chiller. Several PT100 sensors are used to mea-
sure the temperature of the hot side, these values are logged and used as
feedback to give current to the resistors that dissipate energy on the hot side.
Given W0, the power dissipated with no current, the beam intensity can be
calculated as

I =
W0 −W

Ep −∆E
(22)

where W is the power delivered by the resistors in presence of a beam, Ep
the beam energy entering the chamber, and ∆E the energy lost through the
gas.

The power measured by the calorimeter must be calibrated. This was done
evacuating the chamber and measuring simultaneously the beam current
using the calorimeter and the chamber as a Faraday cup. With simultaneous
measurement of both the calorimetric power and the electrical power using
the integrated current, a calibration line can be drawn.

During the last week of February 2020 a fast calibration has been per-
formed after cleaning the target chamber. During the measurements, the
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Figure 19: Calorimeter calibration February. 2020. Comparison of calibration taken
in the previous campaign, October 2013.

calorimeter and the target chamber are electrically insulated from the up-
stream part by a 10 mm thick Teflon disk. These two pieces are connected
together to form a Faraday cup. Several runs have been performed vary-
ing the proton energy from 50 keV to 380 keV. A current integrator unit,
attached to NIM counter, was used to measure the total charge reaching the
calorimeter and the chamber.

The calorimetric measurement of the power delivered by the beam is given
by

Wcal =W0 −Wbeam (23)

where W0 is the average value of the zero power acquired before and after
each run to check its stability, while Wbeam is the power delivered when the
beam is on. The calorimetric electric power is calculated for each run as:

Wel =
EbeamItarget

qe
(24)

The resulting calibration is shown in Fig. 19 and compared to older mea-
surements.

The calorimeter calibration function obtained shows the trend of Wel as a
function of Wcal:

Wel = mWcal + q (25)

where
m = 0.98± 0.02, q = 0.1± 0.6W (26)

.
A linear function fit all the data proving that the calibration remains con-

stant in time. The residual plot shows that, for almost all data points, the
deviation from the fitting function is less than 3% (average discrepancy of
1.8%).
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The slope of the calibration function, being closer but less than unity, is
mainly a consequence of parasitic currents in the system. Furthermore an
important contribution comes from the different heat flow between the beam
current heating, that is more localized, and the heating generated by the
resistors, that is more spread out. The slope of the function showed in Fig. 19

for the calibration of the 2020 calorimeter is actually closer to unity than the
showed calibration for the 2013 campaign thanks to an improved design of
the calorimeter discussed in [31], providing more uniform heating at beam
stop.





3 A N A LY S I S

In this chapter, the study of the setup and its preliminary characterization
using Monte Carlo simulations are reported. The experimental configura-
tion expected for the study of the reaction is tuned in the Monte Carlo using
both the experimental data from the 2015 campaign and the few 2020 mea-
surements available. A study of the 366 keV resonance is then performed.
This allows us to choose the best condition for the measurement, constrain
the expected count rate and other effects such as beam energy straggling
inside the gas target.

3.1 detection efficiency calibration

In an extended gas target, the beam can interact at any position along
the beam axis. As a consequence of this fact, the photons can be emitted
at different positions along the beam line, thus at different distances from
the detectors. For instance, our configuration is shown in Fig. 20. Here we
will define z as the beam line axis. The entrance of the chamber (end of
the collimator) refers to position z = 0. The reaction can take place at any
point along the beam line. By changing the distance from the detectors also
the subtended angle of the emitted photon with respect to the beam line is
modified.

The photons emitted at different angles are firstly affected by different
amounts of Doppler shift. For example, the correction from Eq. 21 for a
2.8 MeV photon varies from +3.7 keV at 20

◦ to −3.7 keV at 160
◦, this cor-

rection is negligible for photons emitted at 90
◦, above one of the two detec-

tors. Another crucial aspect is that the detection efficiency depends on the
solid angle covered by the detector, and, as a consequence, from the position
where the reaction takes place.

The absolute full-energy peak efficiency is by definition the ratio between the
measured peak area and the total number of gamma emitted by a radioactive
source over the whole solid angle:

η(E) =
N(E)

A · t · Br
, (27)

where N(E) is the peak area, A the source activity, t the time of measure,
and Br the branching ratio of the transition. This quantity depends on the
position of the emission inside the target chamber and the gamma energy. It
needs to be measured over the widest possible range of energies and posi-
tions inside the target chamber.

31
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Figure 20: The reaction can take place at any position along the beam line, chang-
ing, depending of the position, the distance from the detectors (and
therefore the detection efficiency) and the angles θ, that influences the
Doppler shift of the emitted photons.

3.1.1 Preliminary source calibration at LNGS

In February 2020 it was possible to take a preliminary measurement of
the efficiency of the setup. For this purpose a movable holder fixed at the
back flange of the chamber allows to place point-like sources at different
distances from the entrance collimator (Fig. 21). The holder consists of a PVC
frame designed to fix in place the disk containing the radioactive sample at
a determined position along the beam and in such a way to keep its shadow
negligible. A rectangular rod takes the holder in place and is fixed with a
flange at the back of the chamber.

Typically this configuration allows the calibration of the detectors in the
low energy range using several radioactive sources like 60Co,137Cs, and 88Y.
During the preliminary phase of the experiment it was only possible to take
the efficiency measurement for the lower detector using a 60Co placed at
several different positions inside the chamber along the beam line.

The efficiency profile for the two peaks (Eγ = 1173.23 keV, 1332.49 keV)
of the 60Co source is obtained for the installed lower detector. This result
is used to better constraint the geometry inside the GEANT code. Regard-
ing the upper detector (referred to as GeDD in the following), analogous
measurements, obtained during 22Ne(p,γ) LUNA campaign (same final ex-
pected configuration), where employed to design the simulations.

3.1.2 Monte Carlo simulation

The experimental setup has been implemented in GEANT-3 [35] in order
to simulate the detection efficiency of the chosen geometry and later on the
reaction, in particular the resonant capture.

This older version of GEANT, written in FORTRAN, was chosen instead
of the newer version because the custom code is already thoroughly tested
and validated in several past LUNA campaigns [31, 36, 37] and various ef-
fects present for the gas target setup, such as beam energy straggling, are



3.1 detection efficiency calibration 33

(a) Source holder (b) Holder mounted on the end flange

Figure 21: The movable holder for the calibration sources shown on the left, on the
right mounted on the end flange of the chamber.

implemented, along with the code necessary to simulate reactions given a
set of parameters (e. g. direct capture, resonance width).

The geometry of the chamber, the collimator, the surrounding materials,
and the detector was measured and implemented inside the code (in Fig. 22

a side view from GEANT is shown).
A preliminary tuning of the geometry was necessary. In order to do this,

a 60Co source is simulated inside the chamber at fixed positions along the
beam line. Then the spectra obtained with the Monte Carlo are normalized
and compared to the experimental ones (see Fig. 23). The efficiency for a
photo-peak for each simulated run is obtained as the ratio between the area
of the peak in the MC spectrum and the total number of events simulated in
the run, ηMC = N/Ntot. This estimate was made for the two detectors and
compared to experimental efficiency profiles, the one acquired in February
was used for the lower detector. Since the upper HPGe is not mounted
yet, the efficiency profile was tuned using data from a calibration run of
the detector taken on one of the previous LUNA campaigns with the same
experimental configuration [32].

The main feature to adjust to reproduce a good agreement of the experi-
mental and Monte Carlo data are:

• The distances of the detectors from the beam axis.

• The dead layers thickness of the detectors (effectively acting on the
active volumes).

• Distances between Pb shielding and the steel reaction chamber.

• Distances between the detectors’ casings and the steel reaction cham-
ber.
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Figure 22: Side view of the setup geometry simulated with the GEANT-3 code, with
the sketch of the chamber on the left for reference. The lower detector
geometry is correctly implemented despite not showing up correctly in
the graphical visualization reported here.
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These parameters were adjusted, inside reasonable ranges, considering also
the past experience of the LUNA collaboration working with the two HPGe
taken into account.

The final result of this calibration is shown in Fig. 24. For the lower detec-
tor (GePD) the discrepancies between Monte Carlo and experimental data is
less than 2%.

In order to give the best possible description of the upper detector (GeDD),
it was compared to data from the experimental 22Ne phase of the LUNA
experiment. The final implemented geometry needed significant tuning with
respect to the one taken from technical sheets from the manufacture. In
fact, over time, the active region was significantly reduced from nominal
values as a result of past maintenance undergone by the detector. Finally, the
agreement with the past calibrations at maximum efficiency is ∼8%. Since it
was not possible to have more recent experimental data, this agreement is
good enough for our purposes and can be improved once the detector will
be put in place.

In order to have a complete description of the efficiency η(E, z) as a func-
tion the distance from the collimator z and the energy E for both detec-
tors, several monoenergetical sources are simulated inside the ranges 1 cm6
z 625 cm and 200 keV6 E 63200 keV. The data obtained from this Monte
Carlo run at fixed positions have been fitted with second order polynomials
in the double logarithmic plane:

η(E, z) = exp
(
a(z) + b(z) ln(E) + c(z) ln2(E)

)
. (28)

An example of the calibration fit is shown in Fig. 25.
The parameters a(z), b(z) and c(z) are then fitted with third and fourth

degree polynomial in order to obtain a full parametrization of the efficiency.
The results are shown in Fig. 26.

3.2 energy loss and straggling

Passing through matter, charged ions lose energy primarily by means of
inelastic collision with the absorber nuclei. At each collision the ion loses
a small fraction of its energy. The process is then statistical in nature and
makes sense to introduce the energy loss per unit path length. This rate is
referred to as linear stopping power:

εlin(E) = −
dE

dx
, (29)

where dE is the energy lost in penetrating a distance dx in the absorber.
It is usually more useful to refer to mass stopping power ε(E), defined as

energy loss per unit areal density ρ,

ε(E) = −
dE

dρ
= −

1

N

dE

dx
, (30)

where N is the number density (atoms per cm3) of the target material. The
theoretical calculation of the stopping power is not an easy task. The Bethe-
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Figure 24: Efficiency profile for the 1333 keV photopeak of 60Co, comparison be-
tween the MC and the experimental setup.
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Figure 25: Example efficiency calibration of the lower detector (GePD) for the
Monte Carlo. Here monoenergetical sources are simulated at distance
from the collimator z = 13 cm, between 200 keV and 3 MeV. The fitted
function Eq. 28 has parameters a = −4.250± 0.001, b = −0.564± 0.001,
c = −0.032± 0.001.

Block formula describes reasonably well the energy loss for high projectile
energies (> 0.6 MeV/u):

−
dE

dx
=
4π4z2

mev2
NB (31)

where

B = Z

[
ln
(
2mev

2

I

)
− ln

(
1−

v2

c2

)
−
v2

c2

]
, (32)

that describes the theoretical electronic stopping power for a projectile of
charge z and velocity v, passing through a medium of atomic number Z. I is
the empirically determined ionization potential and me is the electron rest
mass. The B function in Eq. 31 varies smoothly with respect to the energy
and the stopping power is approximately inversely proportional to E (since
E ∝ 1/v2).

If the projectile has energy approximately lower than 30 keV/u the nuclear
component of the stopping power has to be taken into account. In this con-
dition Eq. 31 no longer holds and the energy loss must often be determined
with experimental measurements.

It is then also usual to define the effective stopping power that takes into
account solid or gaseous target where the nucleus of interest takes part in a
chemical compound:

εeff = εa +
∑
i

Ni
Na

εi (33)

where Na is the active nucleus of interest, Ni refers to the inactive nuclei in
the compound each of them with effective stopping power εi, for example
using natural neon 21Ne and 22Ne needs to be accounted.

A monoenergetic ion beam when passing through a medium will not only
lose energy as described but also increase its spread. This effect, known
as energy straggling, is caused by statistical fluctuation in the number of in-
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(a) Parameter a(z)

(b) Parameter b(z)

(c) Parameter c(z)

Figure 26: Coefficients of the efficiency parametrization (Eq. 28) fitted as a function
of the distance from the chamber collimator (GePD is the lower detector
and GeDD the upper detector).
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Figure 27: Representation of the effect of the energy straggling on an initially nar-
row beam of charged particles. Taken from [38]

teractions of the projectile inside the target (Fig. 27). A useful relation to
characterize the straggling was derived by Bohr [39]. The width of the en-
ergy spread, well described by a Gaussian p.d.f, is approximated for non-
relativistic heavy charged particles having standard deviation

σstragg =
√
4πe4Z2pZtNd, (34)

where Zp and Zt are the atomic numbers of the projectile and target and d
is the crossed distance inside the target. This formula yields for a proton
beam inside a gas target of 22Ne at 2 mbar a σstragg of about 1.1 keV.

If a resonant reaction is considered, beam energy straggling affects the
position in which the resonance takes place. A narrow resonance would be
populated in a very well defined position inside the target if no straggling
is present. By taking into account this effect, the resonance is populated in a
larger slide inside the target.

The effects of energy loss and beam energy straggling are parametrized
using the software SRIM (Stopping and Range of Ions in Solids) [40]. These
effects are then implemented inside the GEANT-3 code.

Studying the resonance, the parametrization extrapolated using SRIM is

σstragg = 0.366 ·∆E0.554, (35)

where ∆E = Ebeam − Eres,LAB. This formula obtained empirically can be com-
pared with Eq. 34 using the relation

∆E =

(
1

N

dE

dx

)
Ebeam

Nd, (36)
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Figure 28: Comparison between the straggling parametrization obtained with
SRIM (in blue), the one obtained with Eq. 34 (in red) and the correction
to Bohr approximation given by SIMNRA [41].

that yields the formula (cf. Iliadis [2] pp.323)

σstragg = 4.08× 10−10
√
ZpZ

2
t

ε
∆E = 0.408

√
∆E (keV). (37)

Fig. 28 shows a comparison between the two parametrizations of the strag-
gling obtained as well as the correction to Bohr’s approximation as reported
in the user manual [42] of the software SIMNRA [41]. This last approxi-
mation varies significantly from the other two estimates. Section 3.5 will
explore the possibility of independently measure the straggling using the
two HPGe included in the setup.

3.3 yield from a resonant reaction

As discussed on section 1.1.1, the resonance strength ωγ is the main quan-
tity that allows us to calculate the reaction rate in the presence of a narrow
resonance (Eqs. 14,15).

The measured quantity in a nuclear physics experiment is the reaction yield:

Y ≡ number of reactions
number of incident particles

, (38)

This quantity is given experimentally by

Y =
N

NbηBW
, (39)
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where N is the total number of detected particles or photons, η the detection
efficiency, B the branching ratio, W the angular correlation for a specific tran-
sition and Nb is the total number of incident projectiles (i. e. Q/e, the total
integrated current divided by the elementary charge for a proton beam).

Consider now a thin slice of target material dx, the infinitesimal yield from
this slice is

dY = σNdx, (40)

the total yield is obtained integrating over all target slices

Y(E0) =

∫
σ(x)N(x)dx =

∫
σ(E)N(x)

dx

dE
dE, (41)

using the definition of stopping power (Eq. 30) the yield becomes

Y(E0) =

∫E0
E0−∆E

σ(E)

ε(E)
dE (42)

where ∆E is the total energy lost inside the target.

If a resonance is present between E0 and E0 −∆E and gives a significant
contribution to the total yield the cross section of the Briet-Wigner (Eq. 13)
can be substituted into Eq. 42:

Y(E0) =
λ2

2π

mp +mt
mt

ωγ

εr

[
arctan

(
E0 − Er
Γ/2

)
− arctan

(
E0 − Er −∆E

Γ/2

)]
.

(43)

If the resonance width is small compared to the target thickness (Γ � ∆E)
the maximum yield becomes

Ymax =
λ2

2

mp +mt
mt

ωγ

εr
, (44)

This equation can be compared to Eq. 39 in order to obtain the resonance
strength in the thick target approximation.

In a more realistic approximation, the effects of beam energy resolution
and energy straggling needs to be taken into account in the determination
of the yield. A complete treatment including these effects (given by [43])
leads to the more general expression

Y(E0) =

∫E0
E0−∆E

dE ′
∫∞
Ei=0

dEi

∫Ei
E=0

σ(E)

ε(E)
g(E0,Ei)f(Ei,E,E ′)dE (45)

where g(E0,Ei) describes the beam energy distribution and f(Ei,E,E ′) is the
probability distribution related to energy straggling.

3.3.1 Yield correction for the LUNA gas target

The physical displacement of the detectors in relation to the gas target also
plays an important role in the particular setup considered in this thesis, as
already discussed in [44].
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Figure 29: The effect of beam energy straggling on experimental yield for a res-
onance of the 22Ne(p,γ)23Na, obtained with the same setup as in this
thesis, taken from [44].

Resonances are typically extracted for thick target reversing Eq. 44 as

ωγ =
2Ymaxεr

λ2
mt

mp +mt
, (46)

while the thick target condition is typically satisfied for the considered
resonance as ∆E � Γ = Γp + Γγ. The physical spread of the beam and the
uneven target density found for windowless gas target system, shown in
Fig. 15, contributes significantly. In this context, the resonance scan never
reach a plateau and it is possible to obtain the experimental yield profile (i. e.
the product between the yield as described above and the efficiency Y × η)
integrating

Y(Ep) =

∫ x̃=x̃max

x̃=0
dx̃

∫E=0
E=Ep

σBW(E)fbeam(E,Emean
slowed(x̃))n(x̃)η(x̃)dE (47)

where fbeam(E,Emean
slowed(x̃)) is the energy distribution of the slowed beam

(almost Gaussian) as simulated with SRIM:

fbeam(E,Emean
slowed) = exp

[
−

(E− Emean
slowed)

2

2σ2stragg(E
mean
slowed) + 2σ

2
beam

]
. (48)

This approach, discussed in [44], led to the derivation of a correction on
the resonance strength obtained using Eq. 46 (see Fig. 29).

In the case of the simulation implemented for the study of the 20Ne(p,γ)21Na,
the effects of beam energy straggling are implemented into the simulation.
The events are generated inside the chamber with the corrected distribution.
With this approach it is possible to extract the resonance strength comparing
Eq. 39 and Eq. 44. The efficiency is derived from the simulation performed
in the same experimental condition, using η = Ncount/N, where Ncount is the
area of the peak andN the total number of events simulated at the resonance.
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Figure 30: Decay scheme for ElabR = 384.5 keV resonance, with branching rates for
the transitions taken from [22].

3.4 366 kev resonance

As already seen in chapter 1, the 20Ne(p,γ)21Na has a narrow resonance
in the energy range of the LUNA-400 accelerator. This resonance is located
at ECMR = 366 keV, or equivalently ElabR = 384.5 keV, and energetically avail-
able in the high temperature environments of oxygen-neon novae (0.1-0.45
GK) [45]. It corresponds to the 2798 keV excited state of 21Na. This state has
an angular momentum Jπ = 1/2− and therefore it primary decay branches
emits their gamma rays isotropically. In Fig. 30 a decay scheme of the reso-
nance is shown with the branchings as given by [22].

3.4.1 Optimal energy and pressure

For the study of the ER= 366 keV resonance, MC simulations where per-
formed at both different pressures, P = 0.5, 1, 1.5, 2, 2.5 mbar, and different
beam energies, Ebeam= 384.6, 386, 388, 390, 392, 394, 396, 398, 400 keV. For
each energy and pressure 107 events were generated at the resonance. The
code generates the event distribution along the beam line based on the initial
beam energy and target pressure. The information on energy loss and strag-
gling are implemented based on TRIM [40] simulations at different energies
and target densities. Based on Ziegler’s data the initial beam energy Ebeam

necessary to populate the resonance (Eres,LAB = 384.5 keV) inside the target
chamber at distance z from the collimator is well approximated by

Ebeam(z) = b(p)z+ a(p), (49)

with

a(p) = 384.4520− 0.715 052 6 · p(mbar),

b(p) = 0.007 151+ 0.263 37 · p(mbar).
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Figure 31: Distribution of the simulated events inside the chamber for Ebeam =392

keV at different gas pressures, z = 0 is the end of the entrance collimator.

The energy straggling was also extrapolated via SRIM yielding the formula

σstragg = 0.366 ·∆E0.554, (50)

where ∆E = Ebeam − Eres,LAB.
The branchings implemented are the one given by Rolfs et al. [22] (Fig. 30).

The γ-rays from the primary branches are emitted isotropically.
For the sake of simplicity, the target density inside the gas target is as-

sumed to be constant and negligible before the collimator. Studies of the
density profile have been conducted for this experimental setup [34] both
with and without the beam (beam heating effect). These corrections might be
applied during a later analysis.

Based on the examined ranges the condition Ebeam = 392 keV and P = 2

mbar was chosen as a best-case to evaluate the expected efficiencies and
count rates as in this condition the resonance is well contained inside the
target chamber (see Fig. 31).

3.4.2 Count rate estimation

Fixed the experimental conditions for the Monte Carlo the simulation are
run generating spectra for the 2 detectors given Nevents = 10

7 (an example is
shown in Fig. 32).

Considering the counts seen in the full energy peak for the different tran-
sitions, the total number of the simulated events and the yield formulas, the
count rate can be estimated as:

Aγ/t =
N(Eγ)

NEvents

I

e

λ2

2

mp +mt
mt

ωγ

ε
, (51)
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Figure 32: Example Monte Carlo spectrum for the direct capture with the relevant
transitions.

where N(Eγ) is the number of counts in the peak at energy Eγ, NEvents is the
total number of generated events, I is the beam current in Ampere, e is the
elementary charge in C, and ε is the energy loss in units of keV · cm2/atoms.
For Ebeam =392 keV and P = 2 mbar the energy loss is ε = 10.791× 10−15
eV · cm2/atoms. The 366 keV resonance strength is assumed to be the one
given by Rolfs, ωγ = 0.11± 0.02 meV. The λ2/2 is the De Broglie wavelength,
calculated as in [2]:

λ2

2
=

(
mp +mt
mt

)2
4.125× 10−18

mpEr
lab(eV)

= 1.175× 10−23cm2. (52)

Assuming a beam current of ∼ 200 µA, it is possible to estimate the expected
count rate for the different transitions. The results are reported in Tab. 3.

Transition Eγ GePD time to 1% GeDD time to 1%
(keV) (counts/s) (h) (counts/s) (h)

332→ gs 332 0.4 6.9 0.2 15

res→ 2425 373 1.9 1.5 0.8 3.4
2425→ gs 2425 0.7 4.2 0.3 9.9
res→ 332 2466 0.13 21.3 0.06 49.33
res→ gs 2797 0.4 7.1 0.2 18.1

Table 3: Expected count rate and measure time expected to obtain 10 000 counts in
the peak area (1% precision) for the different energies, at Ebeam=392 keV, P
= 2 mbar, assuming ∼ 200 µA current, neglecting the possible backgrounds.

This example shows that:

• All the transitions seems to be measurable within reasonable beam
time at the LUNA facility.
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Figure 33: The efficiency profile of the two detectors along the beam line inside
the gas target, compared to typical beam energy spread inside the target
chamber. Here, only the resonant capture is populated at fixed energy,
and the spread of the beam is determined by the beam energy straggling
inside the gas target. As a consequence, the detectors see the photon
from the reaction not from a fixed point but distributed over the beam
line and this determines a loss in the detected yield.

• The counting rates expected are all higher than the expected back-
ground in their respective region of interest. See Fig.17 (full-shielding
red spectrum) and Tab. 2.

All this consideration are meant to give mainly qualitative results, es-
pecially given that recent results report updated resonance strength and
branchings for the resonance [23]. These claims will be eventually verified
during the analysis of the future measurements.

3.5 energy straggling measurement

As we have seen in section 3.2, the beam energy straggling at the resonance
can be estimated using the formula from Bohr (Eq. 34) or parameterizing
this effect inside the gas target using TRIM simulations (see Eq. 50). Using
the particular experimental configuration that will be mounted, it is also
possible to extract this value of straggling from the measurements since the
two detectors see the reaction from different positions and, as a consequence,
the ratio between the counting rates of the detectors is sensible to the energy
straggling. In Fig. 33 an example configuration is shown with typical beam
spread at the resonance energy along with the detection efficiency profile of
the two detector along the beam line in the gas target.
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Figure 34: Yield for the res→ 2425 transition as a function of the straggling for the
lower detector (Ebeam=392 keV, P = 2 mbar). The green bar identifies the
range of straggling extracted from a measure of the ratio between the
yields of the two detectors (Fig. 35), as explained on section 3.5.

Using the detection efficiency parametrization η(E, z) obtained in section 3.1.2
it is possible to analytically determine the counts expected from N events
simulated at the resonance as

Ncounts(Eγ,σstragg) = B.r.×
∫zfin
zin

η(Eγ, z)
N

σstragg
√
2π

exp

(
−
(z− z0)

2

2σ2stragg

)
dz

(53)
where z0 is the point where the resonance is populated.

If the γ-ray is part of a cascade, eventual summing-in/summing-out ef-
fects should also be taken into consideration (i. e. an additional factor inside
the integral, (1− ηT ,2(z)W(θ)) where ηT ,2(z) is the total detection efficiency
for the second γ and W(θ) its angular distribution). Varying σstragg typically
determine a loss of count with respect to the case where no straggling is
taken into consideration.

From Eq. 53 it is possible to give an analytical parametrization of the
counts expected changing σstragg and comparing it to the simulation, ob-
tained by varying the straggling without changing the point in which the
resonance is populated. Depending on each transition a correction (∼ 5%)
is applied to the numerical integration of Eq. 53 in order to correct for
summing-in/summing-out effects. The correction is applied comparing the
numerical integration to the corresponding Monte Carlo data.

In Fig. 34 the effect of varying the straggling is shown for a given transition
at fixed beam energy. The shown yield is determined both analytically and
with the simulations. As discussed in the previous paragraph, to match the
data determined with Eq. 53 the correction is applied. As expected, if the
resonance is populated in front of the detector, a loss of counts is determined
with respect to the situation with no straggling.
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Figure 35: Ratio between the yield of the two detectors as a function of σstragg, for
two different transitions (Ebeam=392 keV, P = 2 mbar). The gray band
represents the uncertainty obtainable in the estimate if the ratio of the
two transitions are measured within 1% precision.

The ratio between the yields of the two detectors is then parametrized
changing the energy straggling and compared in Fig. 35: for reference the
gray band represents the uncertainty on the ratio obtained in case of 1%
precision on the yields.

This roughly gives about half a centimeter precision in the determination
of σstragg, which translates to ∼ 2% uncertainty on the measure of the reso-
nance strength ωγ. This is evaluated in the following way:

• The ratio of Fig. 35 is taken at the reference value for the straggling
expected from Eq. 50 (2.05 cm at Ebeam=392 keV) at the considered
conditions.

• This value of the ratio determines two points in the gray bands that
translate into a range for the straggling (i. e. [−19% - 14%] from the
initial position for the 373 keV γ-ray).

• For this range of σstragg corresponds an interval of yields (see Fig. 34)
that determines two values of ωγ (see Eq. 46).

The final resonance strength varies in the interval [−1.3% - 1.5%] for the
373 keV transition and in [−1.6% - 1.7%] for the 2425 keV transition.

The resonance is also populated at two other positions, corresponding to
Ebeam = 390, 394 keV, in order to further test the effect on the ratios. The
results can be seen in Fig. 36,37. Between the two cases, populating the
resonance midway the two detectors (Ebeam = 390 keV) is by far the best
option, as at 394 keV the resonance is populated far too distant from the
GeDD and the statistics collected by the GeDD would be too small.
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(a) Configuration

(b) Ratio

Figure 36: Ratios between the yields of the two detector for the configuration ob-
tained setting Ebeam = 390 keV.
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(a) Configuration

(b) Ratio

Figure 37: Ratios between the yields of the two detector for the configuration ob-
tained setting Ebeam = 394 keV. At low values of spread in straggling
the ratio estimated numerically differs significantly from the MC. This
is due to the uncertainty on the parametrization of the efficiency of the
GEDD, at large distance from the maximum efficiency.
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3.6 final remarks

In the end, the simulations allowed to optimize the conditions for the fu-
ture data taking. The main achievements of this study for the measurement
of the reaction 22Ne(p,γ)23Na are briefly resumed:

• As a first step (Section 3.1.2), the geometry of the setup and the detec-
tors were implemented in the GEANT-3 code and later fixed using the
data available from a 60Co source.

• A full parametrization of the efficiency inside the chamber was ob-
tained for both detectors to be later used in the numerical computation
of the effects in the gas target.

• Optimal conditions for data taking were determined. It was found
that overall Ebeam = 392 keV and P = 2 mbar are a good compromise
to populate the reaction completely inside the chamber (Section 3.1.2).

• The expected count rate was determined using these conditions (Sec-
tion 3.4.2). This result will be later used to better plan the data taking
during the experiment.

• The effect of beam energy straggling inside the target chamber was
studied using Monte Carlo simulation and numerical computation (Sec-
tion 3.5). The effect on the yield of the two detectors was preliminary
determined. The main result from this section was that the yields are
not so sensible to small fluctuations in σstragg. This quantity can then
be determined either analytically or by exploiting the ratio between the
count rates from the two detectors.





4 C O N C L U S I O N

The 20Ne(p,γ)21Na reaction was introduced in the context of nuclear as-
trophysics. In the first chapter the current literature for the reaction at low
energies is reviewed, in particular in the recent years (2019), new direct mea-
surements [23, 25] at low energies exposed significant discrepancies with the
result of Rolfs et al. [22] (1975) especially for the strength and the branchings
of the 366 keV resonance. These results, if confirmed, may lead to a decrease
in the reaction rate in the range of temperatures of interest for oxygen-neon
classical novae ([0.1 - 0.3] GK). The LUNA-400 accelerator is perfectly suited
for the measurement of both the resonance and the direct capture component
of the 20Ne(p,γ)21Na in conditions of unprecedentedly low background.

The experimental setup that will be used in the study of this reaction was
presented in the second section along with the main challenges related to the
measurement. The expected environmental background was reported and
some possible sources of contamination from the beam induced background
addressed.

Given the shutdown of the experimental activities imposed by the 2020

pandemic, the next part of the analysis focused more heavily on Monte Carlo.
The code was validated using calibration spectra from the current setup and
data from one of the previous campaigns. The final efficiency profile ob-
tained differs by less than 2% with the data taken for the current setup. The
second detector, not yet mounted, was positioned and calibrated in the MC
using the old measurements. The final agreement is poorer (∼8%) but can be
improved once the detector will be mounted. A full parametrization of the
efficiency η(E, z) was then obtained simulating monoenergetical source.

The resonant capture was simulated at different beam energies and pres-
sures inside the chamber. The expected counting rates were evaluated for
the best conditions and compared to the expected background levels.

In the end, the method was proposed to independently measure the beam
energy straggling inside the gas target. This possibility is explored using sim-
ulation and numerical calculations obtained using the efficiency parametriza-
tion obtained previously. This solution seems definitely promising since
does not require any separate measure and the straggling uncertainty does
not affect the yield nor the resonance strength that much (only a few per-
cent). However, this method relies on a very precise determination of the
efficiency for the real setup.

The LUNA collaboration is expected to resume the setup construction in
Autumn 2020 followed by data taking later down the line.
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