UNIVERSITA DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’ INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

A CODE COMPLETION SYSTEM
FOR THE CATROBAT VISUAL
PROGRAMMING LANGUAGE

Student Advisor

Marta Todeschini Prof. Carlo Fantozzi

February 26, 2018

ACADEMIC YEAR 2017/2018

i

Abstract

Code completion systems are increasingly popular in the computer program-
ming world. This thesis describes the design of a code completion system
within the visual programming language Catrobat, with the aim of making
programming more accessible to younger and less experienced users. This
system was subsequently implemented into an application developed for An-
droid devices, Pocket Code.

v

Abstract

I sistemi di completamento di codice sono sempre pitt diffusi nel mondo
dell’informatica. Questa tesi descrive il progetto di un sistema di comple-
tamento di codice per il linguaggio visuale di programmazione Catrobat, con
lo scopo di rendere la programmazione piu accessibile anche a utenti giovani
e meno esperti. Questo sistema é& stato successivamente implementato in
un’applicazione sviluppata per dispositivi Android, Pocket Code.

vi

Contents

Introduction

1.1 Computer programming for education

1.2 Visual Programming Language
1.2.1 Scratch.
1.2.2 Squeak-Etoys

1.3 Mobile applications and other tools
1.3.1 Pocket Code
1.3.2 Kodable
1.3.3 Tynker
1.3.4 Hopscotch

1.4 Code completion

1.5 Aimof thisthesis

Pocket Code

2.1 What Pocket Codeis

2.2 Thestructure Lo
221 HomePage,
2.2.2 Structure of the application
2.2.3 Categories of blocks

2.3 Basic components: bricks and scripts
2.3.1 Seript . ..o
232 Brick

Dataset and analysis

3.1 Getting the dataset
3.1.1 Developed applications
3.1.2 Size and permission
3.1.3 Download: crawler
3.1.4 Decompression and storage
3.1.5 Data, number applications, size

3.2 Analysis

13
13
14
14
17
18
27
27
27

CONTENTS

viii
3.2.1 Structure of xmlfile 39
3.2.2 Analysisof xmlfile 40
3.2.3 Validation of the dataset 44
4 Statistical automatic suggestions 47
4.1 Keyconcepts 47
4.2 Core of the code completion system’s structure 50
4.2.1 The "tree-structure" of the code completion system . . 50
4.2.2 'The tree’s traversal 51
4.3 Bricks-based systemo 53
4.4 Scripts-based system 54
4.5 Execution of bricks- and scripts-based systems 56
4.5.1 Merging of the two systems 56
4.5.2 Validation of systems: the most likely block 57
4.5.3 Validation of systems: the three most likely blocks . . . 57
4.6 Trigram-based system 58
4.6.1 Language Models with N-grams 58
4.6.2 Building the tree-structure 60
4.6.3 Smoothing for n-grams 60
5 Integration into Pocket Code 65
5.1 Structure of Pocket Code’s source code 65
5.1.1 Content 66
51.2 UL .. oo 66
5.2 3-gram suggestion system integration 67
52.1 MyNode 68
522 Level 68
5.2.3 ReadFromTreeTxt 68
5.2.4 ConverterFromClassTold 68
5.2.5 NGramSuggestion 69
5.3 Howitworks 69
6 Conclusions and future work 71
6.1 Futurework 72
Appendices 75

A Table with the various blocks analysed 75

List of Tables

4.1 Results over 50000 tests. 58
4.2 Results over 100000 tests. 61
A.1 Table of all blocks (part 1). 76
A.1 Table of all blocks (part 1). 87
A.2 Table of all blocks (part 2). 88
A2 Table of all blocks (part 2) 97

LIST OF TABLES

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

Scratch
Logo of Squeak-Etoys
Logo of Kodable
Lesson 1 in Kodable
Example of Tynker
Example of Hopscotch

Pocket Code: home page
New project
Pocket Code
Pocket Code: upload pages
Pocket Code: structure of developed application
Pocket Code: background section
Pocket Code: categories
Pocket Code: bricks in each category (part 1)
Pocket Code: bricks in each category (part 2)
Pocket Code: new categories

Pocket Code web site: program’s general informations
Pocket Code web site: program’s general statistics
Pocket Code web site: program’scode
Pocket Code web site: program’s basic info
Pocket Code html source code: program’s dimension
Program 45045’s decompressed folder
Program 45045’s xml file: header
Program 45045’s xml file: example script
Fragment of list of all programs with blocks and frequencies
Fragment of list of all programs with blocks in order as they
APPEAT. e e e e
Fragment of list of all scripts within programs with the corre-
sponding bricks.o Lo Lo

patl

3.12
3.13
3.14
3.15

4.1

4.2

4.3
4.4
4.5

5.1
5.2
9.3

LIST OF FIGURES

Fragment of lists of descriptions and names of programs 44
Program Code’s web site: random programs 45
Normalisation of the list of blocks for each program. 45
Fragment of programs’Clustering. 46

Toy example to explain tree-structure construction without

end nodes. 52
Toy example to explain tree-structure construction with end

nodes. 53
Bricks system structure.o 54
Scripts system structure. oo 55
N-gram system structure. 63
Suggestion’s category in the categories’ list. 67
Suggestion’s category: style.xml. 68

List of suggested blocks. 70

Chapter 1

Introduction

The science that lives behind the concept of Information Technology has
many names, such as "Informatics" , "Computer Science" and "Computing
Science" .

Historically the birth of Informatics is associated to an article written by the
British scientist Alan Turing in 1936. In this article, he talked about the
concept of a hypothetical computer, underlying the presence of some impor-
tant tools that we can still find in real computers.

Informatics concepts are at the root of the digital world. just think of the
Google business model based on "Page Rank”, to cryptographic algorithms
that are used in the field of e-commerce, smartphones, a key everyday tool,
Twitter, Facebook and other social networks and many others.

Nowadays there is a common need to include the study of of this topic in
schools. IT is considered a multidisciplinary subject, it is essential in many
disciplines such as physics, mechanics and even the humanities. It is often
considered the key to innovation.

Computer programming is the part of the computer science that refers to
the process of developing and implementing various sets of instructions to
enable a computer to perform a certain task, solve problems, and provide
human interactivity. These instructions (source codes which are written in
a programming language) are considered computer programs and help the
computer to operate smoothly.

Coding is becoming increasingly a key competence which will have to be ac-
quired by all young students and increasingly by workers in a wide range of
industries and professions.

It has therefore become increasingly important to be very familiar with com-
puter science: this subject has been included in the official school program
in secondary school or even in primary school. Before the children begin to
interface with this discipline, the better they can learn the concepts that are

2 CHAPTER 1. INTRODUCTION

at the base.

1.1 Computer programming for education

The strength of teaching computer science is its power to stimulate students’
creativity. Nowadays this discipline does not find obstacles in its diffusion,
given that today every person has a personal computer. Anyone without dis-
tinctions based on sex, age and nationality, has the potential to start writing
a program and making it available to many other people.

Children are those who have great imagination and creativity: although
they may not have experience or knowledge of computer science concepts,
they can express their ideas and creativity by developing their own applica-
tions with the help of some tools.

Thanks to their young age, it is easier for them to quickly learn new concepts
and think about new features or ideas that could be implemented.

For children and people without any knowledge of programming lan-
guages, the need arises of devising tools to make the learning process easier
and more understandable: wvisual programming languages are useful in this
sense.

1.2 Visual Programming Language

In many countries [11, 12| programming was adopted as an official subject
in primary primary education. Here visual programming languages are used
to teach children how to program in a simple and fun way.

A visual programming language (VPL) [15, 16] is a programming language
where the user simply manipulates the elements of the program in a graphi-
cal way, rather than specifying them through text statements.

Each component of the program is a sort of box or block that can contain
some instructions, expressions or definitions of variables. These boxes are
treated as entities and are linked by arrows or lines representing relations

|13, 16].

This feature of VPLs makes them very suitable for educational planning
for children in secondary or even primary schools: this is due to the fact that

1.2. VISUAL PROGRAMMING LANGUAGE 3

VPLs do not require the knowledge of programming syntax and provide an
environment without errors in the compile phase [12].

Using VPLs, children are more motivated because they can immediately see
the results of the program they have developed [14] thanks to this high mo-
tivation, the rate of drop out of learning through these tools is kept low and
children continue to study and they have fun at same time.

In a VPL the user simply has to manipulate cells or blocks from a list
containing all the blocks of the program; sometimes she/he must complete
or write the text formula in the object she/he is manipulating. This formula
can include constants, references to other cells, or references to the cell value
at an earlier time [17].

There are many examples of VPLs in different computing domains such as
Scratch, Squeak-Etoys and LabVIEW (Laboratory Virtual Instrument Engi-
neering Workbench, a system design platform and development environment
for a National Instruments visual programming language).

1.2.1 Scratch

Scratch [18, 19] is a visual and block-based programming language designed
to be used by children. It was first publicly launched in May 2007. Then
Scratch 2 was released on May 9, 2013. With its introduction, custom blocks
could be defined within the projects according to user needs . As of 2017,
Scratch 2 is available online and as an application for Windows, MacOS,
Linux (Adobe Air Required). There is also an unofficial version for Android
as an apk file. The Scratch 2.0 offline editor can be downloaded for Windows,
Mac and Linux directly from the Scratch website. However, the unofficial
mobile version must be downloaded from Scratch forums.

Scratch 3 is under development and an alpha version is scheduled for the first
quarter of 2018.

Figure 1.1 shows what the Scratch editor looks like. The editor is divided
into three sections:

1. Left section: here the user can immediately have a visual feedback of
the project she/he has developed up to that moment.

2. Central section: here are all the "blocks" available to the user, di-
vided into categories (Motion, Looks, Sound, Pen, Data, Event, Con-
trol, Sensing, Operations and More blocks).

4 CHAPTER 1. INTRODUCTION

GEPRIE © Fiev Editv Tips About &t RO

1 [Untitled Scripts | Costumes | Sounds
- | ~e

[Motion Events

[sound [l sensing
Pen Operators
Jl Data 1l More Blocks

Sprites

nnnnnnnn

Figure 1.1: Scratch

3. Right section: to add a block into her/his program, the user drags the
selected block within this part. Here there is the complete and ordered
sequence of blocks of the program.

Scratch is designed to be highly interactive. The user just clicks on a
stack of blocks and immediately starts executing her/his code. He can even
make changes to a stack as it is running, so it is easy to experiment with new
ideas incrementally and iteratively.

1.2.2 Squeak-Etoys

Home of Squeak Etoys

Figure 1.2: Logo of Squeak-Etoys

Etoys is a powerful learning tool to teach children powerful ideas about
compilation. It provides an authoring environment that is rich in multimedia

1.3. MOBILE APPLICATIONS AND OTHER TOOLS 5

content, and a visual programming system. It can also be used on almost all
personal computers.

Through this tool, users (who are typically children) can draw their drafts
and then write some "scripts" which tell such drawings what to do.

On the website http://www.squeakland.org/resources/ users can find a
lot of information about Etoys, some tutorials and a section called Discuss
where users can share their problems or ask some questions.

1.3 Mobile applications and other tools

With the rapid development of technology, an increasing number of users use
every day a mobile device such as a smartphone or a tablet.

These devices are considered essential today in our daily actions: we use
the smartphone not only to make calls, send messages or surf the Web, but
for many other activities such as taking notes, scheduling appointments and
things to do, make payments, read books and other tasks.

For this reason and thanks to the portability of these devices, many mobile
applications have been developed also in the field of education.

In the Play Store for Android or in the App Store for iPhone, we can find
many applications of this type. In particular, for the purpose of this thesis,
I will show a short list of applications developed for the purpose of teaching
children and non-experts how to program.

1.3.1 Pocket Code

Pocket Code [4] is a mobile visual programming framework for smartphones
and tablets. Pocket Code allows children and non-IT experts to develop their
own programs or games in a quick and very intuitive way. They can create,
remix and share their own games, applications, interactive music videos and
many kind of other apps, directly on their smartphone or tablet.

The programs are developed and built by dragging some "elements" onto
the screen used for the development of the program: Pocket Code provides
a visual programming environment in "LEGO" style where users can drag
blocks and add them to their programs.

Each block is associated with a code declaration, such as a conditional sen-
tence, a declaration for defining variables, for checking certain conditions,
and so on.

http://www.squeakland.org/resources/

6 CHAPTER 1. INTRODUCTION

Blocks are grouped into categories and each category is associated with a
different color in order to make their purpose clearer.

The user can add images and sounds to the program. She/he can also have
immediate feedback on the program that has developed so far, by tapping
the "play" button and testing the program itself.

There are also some tutorials to help the user in the development phase of
her/his first program.

1.3.2 Kodable

Function _

Smeeborg Junction

1 .
“ R “ ::;‘o.

e uzzy . P
I * " Voerien et o—
-

Figure 1.3: Logo of Kodable

Kodable [20] is an application that can be used by teachers and parents
to teach children the basis of computer science.
It presents the key contents of this subject in a funny and clear way.
It is organized in seventy lessons with both on-screen and off-screen com-
ponents. Each lessons includes student materials, instruction guidance and
vocabulary robotics.
In the web site https://www.kodable.com you can find the detailed programs
year-per-year that teachers have to follow during the lessons.

As shown in Figure 1.4, for each lessons the teacher can find a summary of
the lesson with the objectives that students have to reach, the instructions
about what the teacher should do during the lesson, a sort of guide for prac-
tical activities and some examples of exercises to check and evaluate student
preparation.

From the students’ point of view, Kodable makes learning how to learn
how to program fun. They just have to drag and drop commands to program
their fuzzy character. In this way, they learn the concepts of problem solving,
computational thinking, sequence, conditions, cycles, functions and debug-
ging. These are skills necessary for learning any programming language.

https://www.kodable.com

1.3. MOBILE APPLICATIONS AND OTHER TOOLS 7

Sequence 1: Introduction

Lesson Summary K-51" Grade

Direct Instruction

#
. Objectives

Printable Materials

) K-5t" Grade Vocabulary Words

Sign up to view this lesson

Independent Practice

0 © @

Check for Understanding / Informal Assessment

Figure 1.4: Lesson 1 in Kodable

1.3.3 Tynker

Tynker [21] is an online platform that allows children to learn to program
intuitively.

It can be used as an educational tool that allows students to gradually learn
how to create their own app or program robots and drones.

The key concept of Tynker is that learning to write code must seem fun and
not so difficult for children: in this way, they can learn the basic concepts of
computer science faster. Tynker follows the concept of "block programming"
or "visual programming", so children do not need to have previous knowledge
of programming languages.

Children can learn more efficiently and more effectively if they do something
that is fun for them. They can also learn even faster if the tool they use
follows their learning pace. This is Tynker’s goal: the lessons are games,
which are designed to handle forms of interactive learning, coding exercises
and puzzles. Children learn to use the code as they are guided through inter-
active game-based courses to create projects and share their creations with
friends and family.

There are no age limits for target users for Tynker. Even children un-
der the age of seven can participate in Tynker: there is a tablet app for them.

Both children and teachers can register on this platform. For teach-
ers, Tynker provides a set of tools to manage the lesson and track student
progress.

As shown in Figure 1.5, Tynker’s interface is similar to Scratch. But while
Scratch was designed to program, Tynker was built to teach programming.
The app features initial lesson plans, class management tools and an on-line

8 CHAPTER 1. INTRODUCTION

repeat until = Power Cell when ® touched

repeat until » Power Cell

if + Alien then
if & Alien then

Jump
else Jump
else
if =~ Double Bombs then

Long Jump
else

if : Stacked Aliens then

Super Jump

Figure 1.5: Example of Tynker

showcase of programs created by students. The lessons are self-learning and
simple for students to follow without assistance.

Every day, children have fun with the challenges of the learning path in
their student bulletin board. When the kids complete the missions, they
get XP, earn interesting trophies and unlock new characters to use in their
projects. This is the dome to keep children’s interest, attention and involve-
ment high.

Tynker also provides a sort of "Parental Dashboard", in which parents
and /or teachers can track the progress of children and students, manage the
subscription and share children’s creations.

1.3.4 Hopscotch

Hopscotch [22] looks a lot like Scratch and Tynker and uses similar controls
to drag blocks into a workspace, but it only works on the iPad. The controls
and characters are not as extensive as Scratch and Tynker, but Hopscotch is
a great tool to start helping students with no programming experience learn
the basics of programming, logical thinking and problem solving.

1.4. CODE COMPLETION 9

54

X 412 Y: 384

move

rotate [When | press play v

change x by

repeat times

leave a trail

change y by

set line color to

move distance
rotate degrees

leave a trail

end

set line color to

move distance
rotate degrees

set line width

set line color

clear

repeat

Figure 1.6: Example of Hopscotch

Figure 1.6 shows how the typical Hopscotch screen is. On the left side of
the screen, there is a list of all the possible blocks that the user can choose
to use. They are grouped into categories (movement or movement, line or
drawing, control, looks, operators or variables and custom) and each cate-
gory is associated with a different color. On the right side, the sequence of
blocks chosen by the user for the development of her /his application is shown.

Children have complete freedom to do any type of application they want.
The way they can do this is very intuitive and simple. They can also share
the project and get immediate feedback on their programs or games.

1.4 Code completion

Code completion is a feature built into some programming environments to
make the programming phase easier and faster.

A simple example is the IntelliJ IDEA integrated development environment
(IDE) for the development of computer software. While the user is writing

10 CHAPTER 1. INTRODUCTION

her/his code, some popup windows appear on the screen to suggest a list of
possible methods that can be called or what type of variable to use at that
precise point in the code, given the lines of code written up to that moment

This is useful not only to speed up the programming phase, but also to reduce
typing errors and other common errors.

This feature can also be beneficial for applications such as Pocket Code,
Kodable and the other applications I reviewed. The reason is that in general,
users of such applications are children, who do not have a profound knowledge
of programming languages. By integrating a code completion feature, we can
help them develop their applications.

There can be essentially two types of code completion systems:

1. Statistical code completion systems [26]: they are built from a statisti-
cal analysis of many applications or code files. They can suggest what
the user can write nezt given all the instructions, variables, classes and
methods used previously. The weak point of these systems is due to
their very nature. In fact, they are trained on a certain dataset: from
this dataset they extract statistics which they then use to give the sug-
gestion to the user. But if the dataset on which they were trained does
not contain the particular sequence adopted by the user, then they are
not effective: they will give a "null" response, since they have never
"seen" that particular input, and they are not able to give a suggestion.

2. Contextual code completion systems [27]: they are statistical code
completion systems that also take into account the grammar of the
programming language, the code category and the context (i.e., the
definition of the class, the definition of the function and the tabs and
spaces).

1.5 Aim of this thesis

As the development of educational applications like Kodable, Hopscotch and
Tynker is gaining momentum, I decided to focus on a specific application,
Pocket Code, and to add some features to make the application easier to use.
I wanted to design an efficient code completion system that could help the
user during the development of her/his project (i.e., an application or a
game).

In Chapter 2 I will explain in greater detail what Pocket Code is and its
main components.

1.5. AIM OF THIS THESIS 11

After the analysis, in Chapter 3, I will explain how I implemented some
suggestion-systems for Pocket Code: during the development of the applica-
tion, these systems can help the user by suggesting which block to use next,
given the sequence of blocks that have been used up to that point.

In Chapter 4 I will describe in detail the three code completion systems I
have implemented. All three share the same underlying data structure, but
differ in the characteristics of the sequence of blocks they receive in input. I
also realized a sort of fusion of these systems, to see if it would be more effec-
tive and efficient to combine the suggestions of one or two different systems.
In Chapter 5 I will show how I implemented the integration of this system
into the application.

Finally, in Chapter 6 I will draw conclusions and sketch possible future de-
velopments.

12

CHAPTER 1.

INTRODUCTION

Chapter 2

Pocket Code

2.1 What Pocket Code is

Catrobat [5, 6] is a free and open source visual programming language that
allows young or inexperienced users to develop their own animations and
games using their Android phones or tablets. The version of Catrobat de-
veloped for Android smartphones is called Catroid and is available on the
Google Play Store as “Pocket Code”. An interpreter for Catrobat and a mo-
bile IDE are combined in the Pocket Code app.

Wolfgang Slany [1-3| is the head and founder of the Catrobat project
and since 2010 has been developing Pocket Code. He is a full professor of
computer science and head of the Institute for Software Technology at the
University of Technology of Graz. His research topics include software qual-
ity, agile development and project management, computer science education,
visual programming, interaction design and mobile development systems.

Catrobat wants to free the creativity of its users by encouraging them to
create their own apps and content.

The Catrobat programs are written in a visual Lego-style, where indi-
vidual commands are joined together by arranging them visually with the
fingers.

One of the feature of Catrobat is that apps can be written solely using
smartphone or tablet. The user does not need to use the keyboard or mouse,
as for example in Scratch. Catrobat focuses on small devices where users
interact through multi-touch sensitive screens.

13

14 CHAPTER 2. POCKET CODE

As I wrote, Catrobat is an open source visual programming language: the
system includes a community website where users can upload and share their
projects with others. Every user must be registered to the Catrobat comu-
nity (https://share.catrob.at/pocketcode/login). After this step, she/he
can upload her/his project: her/his work is now open source and under a
free software license. All (even non-registered users) can download and edit
every projects found on the website: they can reorganize the code of the ap-
plication, add new features and change the current behaviour of the project.
This is called "remixing" and was a core idea behind the Scratch on line
community.

2.2 The structure

2.2.1 Home Page
This (Figure 2.1) is how the home page of Pocket Code appears.

N O P4 84%0 1629

Continue
firstApplication

Programs

Explore

Figure 2.1: Pocket Code: home page

The first field is named Continue. It allows the user to continue developing
the last application she/he was working on. The status of the last applica-

https://share.catrob.at/pocketcode/login

2.2. THE STRUCTURE 15

tion is saved and the user can add new features (that is, she/he can add
one or more blocks), remove blocks, modify the parameters and everything
she/he wants to change. After pressing this button, a new activity appears
(see Figure 2.5) where she/he can find the list containing the blocks used in
her/his work up to then.

The second field is New. After pressing this button,, the user can create
a new application or a new game. As you can see from Figure 2.2a and Fig-
ure 2.2b, she/he can decide the name of the new project, whether it will be a
new project or whether it will follow the tutorial project and the orientation
of the project (landscape or portrait). Once these decisions have been made,
the activity mentioned above appears (see Figure 2.5).

© W.4 59% m 09:04

Orientation

PROGRAM NAME

® Create empty Program

Create example Program

Cancel

(a) Creation (b) Orientation

Figure 2.2: New project

The third field is Program. This button allows the user to see the struc-
ture and the blocks of the current application being developed. The Program
button shows the list of blocks used by the user in her/his work based on
what is written in Section 2.2.2.

The fourth field is Help. By tapping this button, the user goes directly
to the page you can see in figure Figure 2.3a and which you can find at this

16 CHAPTER 2. POCKET CODE

web site: https://share.catrob.at/pocketcode/help. Here the user can find
a video gives an overview of what Pocket Code is and what users can do
through it, some tricks to create a game, ten basic steps to make the user
more familiar with the application, some tutorials and platforms where users
can discuss together sharing ideas about developed applications or problems
they have found.

STEP BY STEP
< (o] (m} o < O G‘
(a) Help page (b) Explore page

Figure 2.3: Pocket Code

The fifth field is Explore. By tapping on it, the user is sent directly to
the home page of the website of Pocket Code at https://share.catrob.at/
pocketcode/. Here the user can "explore" the Pocket Code web world, seeing
all the applications that have been developed and where she/he can find some
useful links and some information on legalities and community statistics (see
Figure 2.3b).

The last field is Upload. When the user finishes developing her/his ap-
plication, she/he must upload all her/his work by tapping on this button.
IThis pop-up window appears (see Figure 2.4) where, after logging in or reg-
istering, she/he can upload her/his work in the website of Catrobat. Once
she/he has done this, the application or developed game becomes "open" and
everyone can download or remix it.

https://share.catrob.at/pocketcode/help
https://share.catrob.at/pocketcode/
https://share.catrob.at/pocketcode/

2.2. THE STRUCTURE 17

firstApplication

OR

f Sign In with Facebook DESCRIPTION

Figure 2.4: Pocket Code: upload pages

2.2.2 Structure of the application

The activity in Figure 2.5 shows the user the structure of the application
that is developing so far. It is divided into two sections:

1. Background: once the user taps on this button, she/he can decide which
type of object to add to her/his application (see Figure 2.6). It can be
a script (see Section 2.3 to understand the key concepts of brick and of
script), an image that the user wants to use as background or a sound.

2. Objects: the user can add some images taken from her/his gallery of
her/his own device or she/he can draw the image she/he would like
to use. The user must assign a name to this new object. Then, by
tapping on the element, she/he can assign some script, a background
or some sounds to the object: this item is treated as the background
object above. We can say that the item background is the default object
and then the user can customize her /his application by adding custom
elements in the Objects section.

18 CHAPTER 2. POCKET CODE

© ¥.4 59% m 09:04

UND

|:| Background

OBJECTS

Figure 2.5: Pocket Code: structure of developed application

2.2.3 Categories of blocks

In Section 2.1 I said that the language used by Pocket Code is written in
a visual Lego-style. The blocks which can be used by the user to built and
create her/his application are divided into eight categories (see Figure 2.2.3).

Each block represents a declaration of a variable or any type of statement
that can typically be found in a source code. However, the user ignores this:
the user is not asked to have any knowledge of the programming languages
and how they are structured and the rules that follow. The user simply has
to choose which block to use and drag it to the box that contains the blocks
of her /his program. The colors of the blocks and the words or the instruction
written on them help the user during the development phase of the program.
When some blocks require it, the user must specify or complete some fields
written on them.

In the version of Pocket Code that I analysed there were, as I said before,
eight categories: Events (dark orange), Control (light orange), Motion (blue),
Sound (violet), Looks (light green), Pen (dark green), Data (red) and My
Bricks (bright green).

2.2. THE STRUCTURE 19

&

E Scripts

@ Backgrounds

@f' Sounds

Figure 2.6: Pocket Code: background section

List of categories

Each category groups the blocks from a semantic point of view.

EVENT. Each block belonging to this category represents what could
happen as a consequence of any type of event. An event can be generated
when the user taps something on the screen, when the program starts, when
there is some message received, when an internal variable of the program
takes on a certain value, and many other, as you can see in Figure 2.8a.

o When program started: it runs the script when the program starts.
o When screen is touched: it runs a script when the screen is touched.
o IWhen tapped: it runs a script when the related object is touched.

o When I receive: it runs a script when it receives specified broadcast
message.

e Broadcast and wait: it sends a message to all sprites and waits.
e Broadcast: it sends a message to all objects.

o When physical collision with (object): it runs a script when if physical
collision with another physical object occurs.

20 CHAPTER 2. POCKET CODE

Motion

My Bricks

Figure 2.7: Pocket Code: categories

o When (1<2) becomes true: it runs a script when the given condition
or value becomes true.

e When background changes to (background): it runs a script when back-
drop switches to a certain background.

CONTROL. From Figure 2.8b you can see that each block in this category
implies the need to carry out some kind of control during the execution of
the application. These inspections cover the action of waiting some time, of
checking if some variables assume certain values, of repeating the execution
for a certain number of times and many other.

e Wait (1) second: it waits a specified number of seconds, then continues
with next brick.

e Note: the user can add a comment to her/his Pocket Code program.
e Forever: it runs the bricks infinitely.

o If (1<2) is true then ... else ...: if the condition is true, it runs the
bricks inside the if-area. If not, it runs the bricks inside the else-area.

o If (1<2) is true then: if the condition is true, it runs the bricks inside
the if-area.

2.2. THE STRUCTURE 21

o Wait until (1<2) is true: it waits until condition is true, then runs the
blocks below.

e Repeat (10) times: it runs the enclosed bricks a specified number of
times.

o Repeat until (1<2) is true: it repeats blocks that follow until condition
is true. It checks to see if condition is false; if so, it runs blocks inside
and checks condition again. If condition is true, goes on to the blocks
that follow.

e Continue scene (scene): it jumps to the next scene as soon as the script
is triggered and continue this scene.

e Start scene: it starts with the chosen scene from the beginning as soon
as the script is triggered.

e Create clone of (Oblect): it creates a clone (temporary duplicate) of
the specified sprite. The user has to make sure she/he has chosen the
sprite she/he wants to clone from the menu in the block.

o Delete this clone: it deletes the current clone.

o When I start as a clone: it tells a clone what to do once it is created.
The attached script is triggered as soon as the clone is created.

e Stop script/s (Stop this script / Stop all scripts / Stop other scripts of
this object): it stops scripts within the object.

MOTION. As you can see from Figure 2.8c, the blocks in the Motion
category can be used to reorganize images or other objects on the screen:
the user can specify the value for the variables z and/or y (twith respect to
the Cartesian coordinate system, where x = 0 and y = 0 are equivalent to the
coordinates of the center of the screen), she/he can rotate the image/object
to the right or left by a certain amount of degrees and many other things.

o Place at X:(100) Y: (200): it place the sprite to the specified X and Y
position.

e Set X to (100): it sets the sprite’s X coordinate.
e Set Y to (200): it sets the sprite’s Y coordinate.

e Change X by: it changes the sprite’s X coordinate values by the given
increment.

22

@

CHAPTER 2. POCKET CODE

When program starts PlaceatX: 100 Y: 200

O W4 40%a 1633

SetXto 100 Start sound and wait

SetYto 200
Stop all sounds

Change Xby 10
Setvolumeto 60.0 %

Change Yby 10
Change volume by -10.0

Speak Hello!

love 10 steps
Speak Hello! and wait

um left 15 degrees

umright 15 degrees

o
(u]

(b) Control (c¢) Motion (d) Sound

Figure 2.8: Pocket Code: bricks in each category (part 1)

Change Y by: it changes the sprite’s Y coordinate values by the given
increment

Go to (Touch position / Random position / object): the object goes
either to the touch position, to a random position (any X/Y position
on the screen) or to another chosen object.

Movwe (10) steps: Move the sprite a certain number of steps (e.g.: 10).

Turn left (15) degrees: it turns the sprite to the left (counter clockwise)
by the specified degrees.

Turn right (15) degrees: it turns the sprite to the right (clockwise) by
the specified degrees.

Point in direction (90) degrees: it sets the direction of the current sprite
(in degrees).

Point towards it sets the direction of the current sprite regarding
another object.

Glide (1) second: it glides within a certain time to the specified X,Y
position.

Set rotation style: it sets the way the sprite can rotate (left-right only,
all-around, don’t rotate).

Go to: it brings the sprite to the given layer so it covers all other sprites
with overlapping positions.

2.2. THE STRUCTURE 23

Vibrate for (1) second: the user lets her/his device vibrate for a certain
number of seconds.

Set motion type to: the object is influenced by gravity, collisions, etc.,
e.g. a ping-pong ball collides with other dynamic and fixed sprites.

Set velocity to X: 0.0 Y:0.0 steps/second: it sets the object’s velocity
along both X and Y axes.

Rotate left (15) degrees/second: it sets the object’s counter-clockwise
rotational speed in degrees/second.

Rotate right (15) degrees/second: it sets the object’s clockwise rota-
tional speed in degrees/second.

Set gravity for all objects to X: 0.0 Y: -10.0 steps/secondz: it changes
the physics world’s gravity which affects all dynamic physics objects.
Both positive and negative values are allowed for gravity on both X
and Y axes.

Set mass to 1.0 kilogram: it determines a object’s mass. Accepted
values are 0 and above. Note that increasing an object’s mass will not
increase the speed with which it will "fall" due to gravity.

Set bounce factor to (80.0) %: it determines how much of an object’s
energy /velocity is lost (or gained) upon collision with another physics
object. Both colliding objects’ Bounce Factors are used to calculate
how "violently" the objects bounce off of each other. Accepted values
are 0 and above, factors greater than 1 are also supported. If both
colliding objects have a Bounce Factor of 0 they do not bounce at all
upon collision.

Set friction to 20.0 %: it determines how fast/easily one physics object
can glide along another. Accepted values are between 0 and 1, values
greater than 1 are accepted as well. The higher the objects’ friction
values, the slower they will glide.

SOUND. Figure 2.8d shows the first blocks that belong to Sound category:
by dragging them inside in its application, the user can play or stop any type
of sound (musical media stored in her/his own device or the sound of her /his
registered voice), she/he can make the application say something by specify
what it should say, she/he can change the sound volume and she/he has also
other options to choose from.

24

CHAPTER 2. POCKET CODE

Start sound (Sound): it plays a sound and continues with the next
brick immediately. The user can record a sound or choose one from the
media library.

Start sound and wait: it plays a sound and waits until the sound is
finished before continuing to the next block.

Stops all sounds: it stops all playing sounds.

Set volume to (60) %: it sets the volume for sound replay to a certain
value.

Change volume by (-10.0): it changes the volume for sound replay by
a certain value.

Speak (Hello!): it speaks the phrase with the voice of the phone.

Speak and wait: it speaks the phrase with the voice of the phone and
waits until the sound is finished before continuing to the next block.

Ask (text) and store recorded answer in (variable): it asks a question
and recorded your answer. The answer is stored in a variable and can
be used.

LOOKS. Blocks belonging to this category (Figure 2.9a) allow the user
to change the appearance of her/his game or application, changing the size
or the position of objects on the screen or changing their colors and other
their properties.

Set to look (look): the user can switch appearance to change the look
of a object.

Next look: it switches the sprite to its next look (the user can change
the order of the different looks of one object).

Previous look: it switches the sprite to its previous look (the user can
change the order of the different looks of one object).

Set size to (60) %: it sets the size of the current sprite.

Change size by (10): it change the size of the current sprite about the
specified amount.

Hide: it makes the sprite invisible.

2.2. THE STRUCTURE 25

e Show: it makes the sprite visible on the screen.

o Set transparency to (50) %: it sets the sprite’s transparency to a spe-
cific value.

e Change transparency by (25): it changes the sprite’s transparency by
the specified amount.

e Set brightness to (50) %: it sets the sprite’s brightness to a specific
value.

e Change brightness by (25): it changes the sprite’s brightness by the
specified amount.

e Set color to (0.0): it sets the colour of the sprite to the given colour.

e Change color by (25.0): it changes the colour of the sprite by the given
amount.

o Turn camera (on / off): it turns the devices camera on/off.

e Use camera (back / front): the user can choose between the front or
the back camera that should be used.

e Turn flash-light (on/off): it turns the flash of the device either on or
off.

e Set background: it switches to the specified background.

e Set background and wait: it switch to the specified background and
wait for its scripts to finish.

PEN. In the current version of Pocket Code on my device, I have found
only one block which belong to this category (Figure 2.9b).

e (lear: it clears all pen marks and stamps from the Stage.

There are other blocks which are not yet present in the version of Pocket
Code that I analysed, but that we can find in some new applications and
games (for example in the applications that I have used as "validation set"
in Section 4)

e Pen down: it puts down sprite’s pen, so the sprite will draw as it moves.

26 CHAPTER 2. POCKET CODE

" Setvariable
New

Next background
to 1.0
Previous background
Change variable
Setsizeto 60 % L.
by 1.0
Show variable
atX: 100 y: 200

Hide variable
New.

Ask 'What'syour name?' Add 1.0 tolist
‘and store written answer in

Delete item from list
New.

Settransparencyto 50 %
G atposition 1

Insert 1.0 into list

(a) Looks (b) Pen (c) Data (d) My Bricks

Figure 2.9: Pocket Code: bricks in each category (part 2)

Pen up: it pulls up sprite’s pen, so it won’t draw as it moves.

Set pen size to (4): it sets pen’s thickness.

Set pen color to Red (0.0) Green (0.0) Blue (255.0): it sets pen’s color,
based on choice from RGB values.

Stamp: it stamps the sprite’s image onto the Stage.

DATA. Using the blocks in this category (see Figure 2.9¢), the user can
manage variables and resources involved in the application she/he is devel-

oping.

e Set variable (variable) to (1.0): the user can set the variable to a certain
value.

e Change variable (variable) by (1.0): the user can change the variable
by a certain value.

e Show variable (variable) at X: (100) Y: (200): it shows the value of
the variable at a specific X and Y coordinate.

e Hide variable (variable): it hides the variable so it is not visible on the
stage.

e Add (1.0) to list (list): the user can add a item with the given value to
the list.

2.3. BASIC COMPONENTS: BRICKS AND SCRIPTS 27

e Delete item from list (list) at position (1): the user can delete the item
at chosen position.

o [nsert (1.0) into list (list) at position (1): the user can insert a new
item at the chosen position.

o Replace item in list (list) at position (1) with (1.0): the user can re-
place the item at the chosen position with the new value.

MY BRICKS. In this category I have not found any block, perhaps because
this category is a new feature and the code related to its blocks has not yet
been loaded (see Figure 2.9d).

2.3 Basic components: bricks and scripts

All the blocks presented in Section 2.2.3 are divided into two groups: blocks
called script and the others called brick.

2.3.1 Script

A script is a block which has a round shape from the visual point of view.
From the semantic point of view, it has the task of grouping together some
blocks that must be executed in sequence to realize a specific action to be
performed following some event.

For example, the block "When program started” is considered a script : it
groups all the bricks that need to be executed at the beginning of the pro-
gram.

In this sense, we can use scripts to divide the applications developed by the
usersby creating block sub-sequences: each application can be seen as a pro-
gram consisting of a certain number of scripts.

Because scripts can not communicate directly, a broadcast transmission mech-
anism is used for communication between scripts.

2.3.2 Brick

From the visual point of view, a brick has a square shape.
A brick represents the atomic part of each script within the application. Each

28 CHAPTER 2. POCKET CODE

block that does not belong to the set of script blocks is a brick: so it can
have many different characteristics depending on the category it belongs to.

In the analysis of the applications, I found 148 different blocks, each iden-
tified by an unique integer number.
In Section 2.2.3 I showed a list of only 86 blocks: this depends on the different
versions of the application available and installed on the physical smartphone
or tablet and the on the version of the code data that we can find in the
repository for the source code of Pocket Code. For example, I did not anal-
yse the blocks belonging to the Arduino or Lego NXT categories. Now I will
analyse them for a complete understanding of Pocket Code (see Figure 2.10).

Phiro

Arduino

Raspberry Pi

AR.Drone

Jumping Sumo

Figure 2.10: Pocket Code: new categories

LEGONXT.

e Turn NXT Motor (A / B / C / B+C) by (180°): it activates the
selected motor(s) and stops the motor(s) again after it spun for the
entered angle. It is possible to select each output-port separately or
use the two output-ports B and C at the same time. The direction
the motor(s) will spin is controlled by positive/negative values of the
entered angle.

e Stop NXT Motor (A / B / C / B+C / All): it stops the movement
of the selected motor(s). It is possible to select each output-port sepa-

2.3.

BASIC COMPONENTS: BRICKS AND SCRIPTS 29

rately or use the two output-ports B and C or all output-ports at the
same time.

Set NXT Motor (A / B / C / B+C) to (100)% speed: it activates
the selected motor(s) and spins the motor(s) with the entered speed
until a stop-command is issued to the motor(s). It is possible to select
each output-port separately or use the two output-ports B and C at
the same time. The direction the motor(s) will spin is controlled by
positive /negative values of the entered speed.

Play NXT tone for (1.0)seconds with a frequency of (2) x 100Hz: it
plays a tone on the NXT brick for the entered duration in the entered
frequency. The NXT brick supports frequencies between 200Hz and
14000Hz.

LEGOEV3S.

Set EV3 Motor (A /B / C /D /B+C)to (100)% speed: it activates
the selected motor(s) and spins the motor(s) with the entered speed
until a stop-command is issued to the motor(s). It is possible to select
each output-port separately or use the two output-ports B and C at
the same time. The direction the motor(s) will spin is controlled by
positive /negative values of the entered speed.

Stop EV3 Motor (A /B / C /D /B+C / All): it stops the movement
of the selected motor(s). It is possible to select each output-port sepa-
rately or use the two output-ports B and C or all output-ports at the
same time.

Turn EV3 Motor (A /B / C /D / B+C) by (180°): it activates the
selected motor(s) and stops the motor(s) again after it spun for the
entered angle. It is possible to select each output-port separately or
use the two output-ports B and C at the same time. The direction
the motor(s) will spin is controlled by positive/negative values of the
entered angle.

Play EV3 tone for (1.0)seconds with a frequency of (2) x 100Hz with
(100)% Volume setting: it plays a tone on the EV3 brick for the entered
duration in the entered frequency. The EV3 brick supports frequencies
between 200Hz and 10000Hz. The volume of the sound can be entered
in percent.

30 CHAPTER 2. POCKET CODE

The wiki web site of Catrobat states that the informations about bricks
of categories Phiro, Arduino, Raspberry Pi and Cast will be available soon.
Here I report only a list of possible blocks for each category.

PHIRO.

e PhiroMotorMoveForwardBrick

e PhiroMotorMoveBackwardBrick
e PhiroMotorStopBrick

e PhiroPlayToneBrick

e PhiroRGBLightBrick

e PhirolfLogicBeginBrick

o SetVariableBrick

o new SetVariableBrick

ARDUINO.
o ArduinoSendDigital ValueBrick

o ArduinoSendP WM ValueBrick

RASPBERRY P1.

o WhenRaspiPinChangedBrick
e RaspiSendDigital ValueBrick
e RaspiPuwmBrick

e RaspilfLogicBeginBrick

CAST.

o WhenGamepadButtonBrick

2.3. BASIC COMPONENTS: BRICKS AND SCRIPTS 31

AR.DRONE. For this category there are no available informations.

JUMPING SUMO.

Move Jumping Sumo forward (1) seconds with (80) % power: it moves
the drone forward with the entered time and power. The percentage
of the power with the value 100 is the maximum driving speed of the
drone and the percentage downwards to the value 0 calculates the slower
speed.

Move Jumping Sumo backward (1) seconds with (80) % power: it moves
the drone backward with the entered time and power. The percentage
of the power with the value 100 is the maximum driving speed of the
drone and the percentage downwards to the value 0 calculates the slower
speed.

Animations Jumping Sumo (Spin): the drone supports many different
funny animations, such as "Spin", "Slowshake", "Spinjump"

Sound (Normal) Volume (50) %: different sounds can be selected, like
"Normal", "Robot", "Insect" and "Monster". If the sound is activated,
the drone continues every other brick with this chosen sound and vol-
ume.

No Jumping Sumo sound: it turns off the sound.

Jump Jumping Sumo long: the drone jumps forward and lands after a
distance about one meter on the ground. In the upside down position,
the drone can kick a ball.

Jump Jumping Sumo high: the drone jumps up about eighty centimeter
and lands on the ground. In the upside down position, the drone can
kick a ball.

Rotate Jumping Sumo left (90°): it turns the drone to the left with the
entered degree measure.

Rotate Jumping Sumo right (90°): it turns the drone to the left with
the entered degree measure.

Turn Jumping Sumo: it turns the drone around its own axis and stays
in the upside down position. In this position, the drone can also do
all other bricks. If the drone is in the upside down position, this brick
turns the drone to the normal driving position.

32 CHAPTER 2. POCKET CODE

o Taking picture Jumping Sumo: taking a picture with the drone camera
and stores it to the internal storage on your own device. This brick
creates a new folder "JumpingSumo" in the general photo directory
and stores all further pictures from the drone there.

In total I found the documentation for 120 blocks.
For each block, I identified some features in the source code, which are listed

in the Tables A.1 and A.2. in the appendix.

Chapter 3

Dataset and analysis

In this chapter I will talk about two basic phases: the collection of the dataset
and then the analysis of it.

The purpose of this phase is to extract as much information as possible
from the source code of the programs developed through Pocket Code. The
information I got from the analysis concern:

e types of blocks used in the programs
e ordered sequences of blocks that make up each program
e ordered sub-sequences of blocks that make up each script

e check of the heterogeneity of the dataset.

Much attention was paid to the execution of these steps: the more de-
tailed data I extracted, the more accurate the phase of implementation of
the code completion system would have been.

3.1 Getting the dataset

3.1.1 Developed applications

My dataset consists of the source code of all applications that have been
implemented through Pocket Code until 23 August 2017.

In Chapter 2 (Figure 2.4) I explained how the user can upload his ap-
plication. Now I will explain how the program is displayed on the website

33

34 CHAPTER 3. DATASET AND ANALYSIS

https://share.catrob.at/pocketcode/.

This web page is divided into six basic sections.

Featured

In this section there is a banner where some applications are showed in se-
quence.

Newest programs

Here the user can find the latest applications that have been developed or
remixed.

Recommended programs

Here the user can find some sort of recommendation: more like (including
"Thumbs up", "Laugh", "Love" and "Woow!") receives a program, higher
up in this list .

Most downloaded

Applications that have been downloaded a higher number of times belong to
this section.

Most viewed

Applications showed here are the programs that were most visited on the
Pocket Code website.

Random programs

Here the user can find some randomly extracted programs, perhaps to have a
suggestion on different types of applications available or that can potentially
be developed through Pocket Code.

https://share.catrob.at/pocketcode/

3.1. GETTING THE DATASET 35

As an example, I chose a random program at this URL: https://share.
catrob.at/pocketcode/program/45045 [date: 2 January 2018| to show how an
application appears on the web site.

FLY A BIRDY Cookies Games

T DESCRIPTION

, watch your bird fly trough the clouds

fI'i Show Remix Graph

& Link
OB0B o ..o

Figure 3.1: Pocket Code web site: program’s general informations

As you can see in Figure 3.4 the user can find the name of the program, a
brief description of what this application does, three buttons (one to down-
load it as an application, one to download it as a program and the third to
see the remixes of the program), the name of the author and the possibility
to express some reactions about the program.

Each program developed by every user is identified by an integer number.
This unique number is also used in the corresponding application URL on
the Pocket Code website.

In the web address of each application the user can find further informa-
tion about the application. In Figure 3.2 the user can find some numerical
values about the program, such as the total number of bricks, the total num-
ber of scripts and the number of blocks for each brick category.

From the section showed in Figure 3.3, the user is able to immediately iden-
tify and understand the code structure thanks to a schema. The program is
represented in the same way as it appears to the user during the development
phase: the user sees the block structure of the bricks grouped by the scripts.

The last informations we can get from the web site about the developed
programs are showed in Figure 3.4. In this box it is written the "age" of the
program, its dimension and the number of downloads, views and remixes.

https://share.catrob.at/pocketcode/program/45045
https://share.catrob.at/pocketcode/program/45045

36 CHAPTER 3. DATASET AND ANALYSIS

Total number of SCENES:
Total number of SCRIPTS:
Total number of BRICKS:
Total number of OBJECTS:
Total number of LOOKS:
Total number of SOUNDS:
Total number of GLOBALS:
Total number of LOCALS:

N

CONOGLAE OO -

EVENT BRICKS: CONTROL BRICKS: MOTION BRICKS: SOUND BRICKS:
Total: 6 Total: 11 Total: 9 Total: 1
Different: 2 Different: 5 Different: 2 Different: 1

LOOKS BRICKS: PEN BRICKS: DATA BRICKS:
Total: 1 Total: 1 Total: 0
Different: 1 Different: 1 Different: 0

Figure 3.2: Pocket Code web site: program’s general statistics

3.1.2 Size and permission

Before continuing with the download phase, I made an estimate of the size of
the entire dataset to accept that it was contained and that it could be stored
in my PC. To do this, I analysed the source code of each program’s web page:
from the html code files, see Figure 3.5, I collected all the tags that indicate
the file size of the compressed program and sum all these values.

I wrote a program in Python to get all these values by browsing the web.
The total size of the dataset I got was 88594.19 MB: it turned out to be a
manageable size.

3.1.3 Download: crawler

To download the source code of each program, I implemented a sort of crawler
in Java.

The structure of the URL lends itself well to an automatic analysis. The
string that represents the URL of the -th application is updated step by
step by changing the value of ¢« Then a connection is created using the
Jsoup library. After this step, the index ¢ index is incremented by one unit
and the process is restarted.

Since some URL do no exist (that is, not all i-th programs are still available
on the Web site), the connection is established only after having verified the
existence of that web address. If the website is not available, the connection
is not requested, the 7 index is incremented and the process can continue.
Once connected to a URL, the crawler simulates a click on the "Download
as program" button and the application starts the download phase.

3.1. GETTING THE DATASET 37

BACKGROUND

OBJECTS

Object: Background
Looks: 1

Sounds: 0
Scripts: 1

Object: Clouds1
Looks: 1
Sounds:

Scripts:

Object: Clouds2
Looks:

Sounds:

Scripts:

Object:
Looks:
| Sounds:
Scripts:

Figure 3.3: Pocket Code web site: program’s code

G 2 days ago

0.99 MB e 1 downloads @ 1 views @ 0 remixes

Figure 3.4: Pocket Code web site: program’s basic info

3.1.4 Decompression and storage

After having obtained all the programs, they were decompressed to be sub-
sequently analysed.

3.1.5 Data, number applications, size

The dataset acquisition process started on 23 August 2017 and all the pro-
grams available until that day have been downloaded.

The total number of programs downloaded is 31572, while the index that
was used to set the work of the crawler was taken between 3299 and 36522. I

38 CHAPTER 3. DATASET AND ANALYSIS

<div>
<div class="img-size icon'></div>
0.99 MB
</div>

Figure 3.5: Pocket Code html source code: program’s dimension

started the download process from the value 3299 for the index and not from
0 for two reasons:

1. Before the identifier of 819-th there are no available programs

2. From 820 to 3298 source files zml have a structure that is completely
different from other programs, perhaps due to an update of the Pocket

Code version.

The dataset size is the one that has been estimated in Section 3.1.2.

3.2 Analysis

Applications have been divided into subsets to improve efficiency and improve

crawler performance.
The unpacked folder of each downloaded program contains data organized in

other sub-folders.
I consider our example program again as I did in Section 3.1.1 for clarity. As
you can see from Figure 3.6, in the folder you can find:

code.xml
permissions.txt
v Scene 1
E automatic_screenshot.png
v images
. 6c3debc88784876bf4772fe0c47abf2f_Background.png
¥ 54b27d925e7{f7b0195274be1dd1fdec_Bird wings down.png
7 500edb9492d6a7a5fd9db73dff81506e_Background.png
¥ b0359aechdd1afccledcbbad4d03e227 Bird wings up.png
v sounds
_ 47d46612ebf6507b6290492e6f73a50d_Tweetl.m4da
_ 69ab7d679193083ba453a002dd2d6c95_Tweet2.m4a

Figure 3.6: Program 45045’s decompressed folder

3.2. ANALYSIS 39

1. code.txt: it is the most important file, it contains the entire structure
consisting of scripts and bricks. This is the file that I analysed to
extract informations and statistics on bricks and scripts.

2. permission.txt: it is usually an empty file.

3. other sub-folders, which contain the images and sounds used in the
corresponding bricks.

Now we focus on the analysis of code.txt.

3.2.1 Structure of xml file

This file is well structured and lends itself well to an automated analysis.
The first part (Figure 3.7) is the header and it contains all the general infor-

version="1.0" encoding="UTF-8" standalone="yes"?>
>
>
/>
>0</
>Pocket Code</
>0.9.33</
>0.995</
/>
>watch your bird fly through the clouds</
>Bush Spira B2 10 tablet</ >
>false</ >
>false</ >
>http://developer. catrobat.org/ccbysa_vi</
>Android</ >
>23.0</ >
>http://developer.catrobat.org/agpl_v3</
>fly a birdy</ >
></ >
>true</
>1848</
>STRETCH</ >
>1200</ >
>Art</ >
>/pocketcode/program/45045</ur1>
>Cookies Games</ >

<
<
<
<
<
<
<
<
<
<
<
<|
<|
<
<|
<
<
<
<
<
<
<
<

>

Figure 3.7: Program 45045’s zml file: header

mation of which I have discussed in the previous sections such as the name
of the programs, their description, the number of remixes, the version of the
Catrobat language used and others.

The second part of this file is more interesting from the analysis point of
view. It contains the list of each script used in the application, and for each
script shows the name and characteristics of the bricks that belong to this
script.

For example in Figure 3.8 you can read all the information on the script called

40 CHAPTER 3. DATASET AND ANALYSIS

>
type="StartScript">
>
type="RepeatUntilBrick">
>false</ >
>
category="REPEAT_UNTIL_CONDITION">
>
>NUMBER</ >
>1</ >
>
>
>NUMBER</
>2</ >
>
>0PERATOR</ >

>SMALLER_THAN</
>
>

>
type="LoopEndBrick">
>false</ >
>
type="ClearBackgroundBrick">
>false</ >

>false</
>false</

Figure 3.8: Program 45045’s xml file: example script

"StartScript". It contains three bricks: "RepeateUntilBrick", "LoopEnd-
Brick" and "ClearBackgroundBrick". For each brick, there are some ad-
ditional tags that depend on the brick: for example, the tags enter values for
the conditional statement written on the block (as seen in the brick " Repea-
teUntilBrick").

3.2.2 Analysis of xml file

I analysed all the zml file to extract as much information as possible. To
do this, I wrote some programs in Python using the Integrated Development
Environment (IDE) Pycharm [7|. Each program implemented has the func-
tion of analysing a specific aspect of the xml files.

3.2. ANALYSIS 41

Bricks identification

Once all the zml files for each application were obtained, Python was used
to more thoroughly analyse the source code.

First of all, I wrote a program that counted the total number of occurrences
of each script and every brick in the dataset.

At the beginning of the program, I defined a variable for each type of block:
they are of type int and represent a counter. The name of each variable
corresponds to the type of block to which it refers and all the values of the
variables are initialized to zero.

Then the program is executed. The input shows the path where the dataset
folders are stored. For each folder and for each xml file inside, the parser
looks at the "object” tag, then the "scriptList” and "brickList” tags in the
corresponding section .

Whenever you find a brick or script, call the countElement function on that
object and increment the corresponding counter. If the parser does not find
a variable with the same name as the block found in the xzml file, then it
creates a new variable with that name and assigns a value of one.

To make the analysis and comparison processes faster, I have identified
each block with an integer.
Doing so, I discovered that the number of all possible blocks is 148. This
number was also found looking at the source code of the Pocket Code’s repos-
itory: I found classes written in Java for all the 148 blocks even if not all
were still available for users. So they do not appear in the xml code, but
they were in the source code.

List of all blocks

The second step of my analysis was to characterise each program by provid-
ing the list of blocks from which it was composed.

The first file I got was like the snippet of code you see in Figure 3.9.
For each program identified by an integer number (20001, 20002, ..., 20012
in the figure), there are the corresponding scripts and/or bricks inside it.
Each block is identified by the corresponding integer number.

This identifier is associated with a number in square brackets that counts the
number of occurrences of that block type in that specific program.
Bricks and scripts are presented in ascending order according to their id.

42 CHAPTER 3. DATASET AND ANALYSIS

20001: 261[31,27I[31,48[31,50[11,59[51,61[1]1,99[4]1,110[11,116[11],
20002: 261[31,27I[31,48[31,50[11,59[51,61[11,99[41,110[11,116[11,
20003: 26[31,27I[31,48[31,50[11,59[51,61[1]1,99[4]1,110[11,116[11],
20004: 13[11,26[1]1,48[11,59[31,89[11,95[11,99[2],110[3],116[11],
20005: 261[1],48([1],50[1],62([1],81[1],87[11,99[1],

20006: 61[1],74I[1]1,75I[1]1,99[1],100[1],110[2],116I[11,

20007: 261([31,271[31,48[31,50[11,59[51,61[11,99[41,110[11,116[11,
20008: 3[11,26[21,48[2],501[2]1,59[1]1,61[1],62[11,99[2]1,110[1]1,116[31,
20009: 75[21,97[11,99[1]1,109([11,116111,

20010: 20[11,72[11,99[1]1,101[11,1101[11,

20011: 61[11,75I[11,941[1]1,99[1],110[1],1161[11],

20012: 18[1],50[1],99I1],

Figure 3.9: Fragment of list of all programs with blocks and frequencies

Then I created another hash map to associate the program with the bricks
and scripts contained within it.
The process followed by this parser is divided into two phases.

1. A parser has been written in Python as before, but this time the parser
collects the list of scripts and bricks found instead of just counting
them. It writes the output of the calculations to a tzt file.

2. Then a parser written in Java analyses the file returned from the previ-
ous step and builds an Hash Map: the keys are all the integer numbers
that identify each program and the value are Array List containing
integers representing scripts and bricks of that specific program.

After these two steps, I got four ¢zt files. Each line represents the applica-
tion, identified by the corresponding id, and the list of integer numbers that
corresponds to the bricks and scripts used. The order in which the blocks
appear in the program has also been maintained in the lists in these hash
tables.

You can see a piece of one of the output files in Figure 3.10.

33453=[99, 61, 3, 116, 61, 61, 25, 8, 17, 113, 97]

33454=[99, 87, 59, 96, 110, 5, 145, 110, 96, 110, 96, 99, 87, 59, 145, 96, 5]
33455=[99, 75, 116, 61, 8, 17, 8, 110, 100]

33456=[99, 59, 96, 110, 96, 110, 27, 30]

33457=[99, 3, 117, 50]

33458=[145, 81, 145, 81, 99, 87, 59, 116, 5, 99, 87, 59, 116, 5]

33459=[99, 96, 110, 67, 81, 110, 81, 110, 47]

33460=[99, 86, 26, 50, 49, 110, 35, 48]

Figure 3.10: Fragment of list of all programs with blocks in order as they
appear.

3.2. ANALYSIS 43

After this, the applications that do not contain any bricks or scripts (the
corresponding Array List are equal in size to zero) were discarded because
not relevant for the statistics.

List of scripts

From the analysis of the xml files and from the understanding of the struc-
ture of the program developed through Pocket Code, I noticed that much
importance was given to the aggregation of bricks in a script.

With this in mind, a different type of analysis has been developed. Instead
of finding a list of scripts and bricks for each applications, the list of bricks
for each script was found.

This means that each script was identified by an integer number and the
bricks associated with it were placed in a list of arrays.

The results of this analysis are showed in Figure 3.11.

99, [81 89 89 1, 30002

99, [87 26 59 110 94 81 27 81 110 30 110 48], 30002
116, [61 81 110 30 1, 30002

99, [87 26 59 110 94 81 27 81 110 30 110 48 1, 30002
116, [61 81 110 30 1, 30002

99, [87 26 59 110 94 81 27 81 110 30 110 48 1, 30002
116, [61 81 110 30 1, 30002

, 99, [87 26 59 110 94 81 27 81 110 30 110 48 1, 30002
9, 116, [61 81 110 30], 30002

2
3
4
5
6
7
8
9
1

Figure 3.11: Fragment of list of all scripts within programs with the corre-
sponding bricks.

For each script, identified by an id, I keep track of the application ID I
was considering and the corresponding list of brick arrays.
This type of analysis was very useful, because I discovered that scripts com-
posed by the same bricks were used several times within the same application
and also in different applications.

Types of programs

I analysed other information that the user can find on the web page of the de-
veloped programs. These were not numerical or statistical information, such
as the number and type of bricks or scripts. Instead, they are fields that can
be customized by the user, such as "title", "description" and "tags" that are
entered by him during the loading phase of his program on the Pocket Code

44 CHAPTER 3. DATASET AND ANALYSIS

root: /Users/Marta/Desktop/tesi/temp/25021
programName :SpaceInvaders by Egger
description :SchoolProject

root: /Users/Marta/Desktop/tesi/temp/25022
programName :dglg

root: /Users/Marta/Desktop/tesi/temp/25023
programName :njm
description :noueny# 310 nona

root: /Users/Marta/Desktop/tesi/temp/25024
programName :Froger
description :unfinished-2

root: /Users/Marta/Desktop/tesi/temp/25025
programName :plane is hero

root: /Users/Marta/Desktop/tesi/temp/25026

programName :Cookie clicker Beta 1.0.

description : Beta 1.0.
News

- New menu

- Max 33 cookies

— Shop menu

Figure 3.12: Fragment of lists of descriptions and names of programs

website.

I wrote in Python a program that extracts these three informations from the
xml of each program and I tried to cluster them in order to obtain a sort of
semantic analysis of the applications in the dataset.

The result (a fragment is showed in Figure 3.12) was that there were too
many variations for the same concept and often the content type of the pro-
gram did not match what was indicated in the title or in the description.
So I looked for another way to create a sort of clustering of the dataset.

3.2.3 Validation of the dataset

The reason why I would like to make a sort of clustering of the programs in
the dataset concerns the validation of the data I downloaded.

Just looking at the Pocket Code website home page (Figure 3.13) there
are seven variations of the application "Flappy bird", where a bird is con-
trolled by the user and must fly avoiding some obstacles that he can find
during his flight.

Moreover, the Pocket Code tutorial teaches the user how to build a program
for a compass: this means that almost every user, as his first program, would
have built this kind of application.

3.2. ANALYSIS 45

RANDOM PROGRAMS

ENETT |

Speech Cod.. Clicker Vogel Superhero C.. worlds hardi.. mis datos pajaros2 2048

Q@ irorthage @ imorhago @omontea. @ yerago @morcthnon. @7Tyerago @ Tmontsa. (@ morethanon. (@ 1yearago
= —
Ha= y
X/ 0 %)
3 S X

nem.apk PizzaClicker Tutorial acci.. Dangerousc.. makeitfly super-ball v.. Flappy Swag.. unity don't Fall do.
@ 7rmonthsago @ morethanon.. (@) 1yearago Q@6 montisago @ 1yearago @ morethanon.. @ morethanon.. (@ 1yearago @ more thanon

EEERE e S

»

Yuennn Box chris Relaxingmu.. AutoWallAw.. Minecraftpc figurasssss flappydog play

Q@cmontisage @ 1yearago @ 9monthsage @ 2monthsago @ moethanon. @ 1yearago (@ 7monthsago (@ 2monthsago (@ 1yearago

‘HERDE -0

Two player p.. prototyp Song By Spe.. Sample nevada juancarlosfé cookie clicki.. Test1 70189

@srontssge @smonthssge @1yerrago @1yerrago @T0montsa. @morethanon. @ 4daysago (@ 9monthsago (@ morethanon

&

Figure 3.13: Program Code’s web site: random programs

To do a clustering process, I first normalized the dataset applications.
Since I have identified 148 types of scripts and bricks, I rewrote each ap-
plication as an array of 148 elements. The index i of each array position
corresponds to the id of a block and the value associated to the i-th position
indicates the number of occurrences of that block in the zml file (a fragment
of the result of this analysis is showed in Figure 3.14).

0000040000000000000000000023002000024400000000002000
000000000000 00P000000000000D0O0O0O0O0000020200000000020400
0000003000000 0P00C0000RPRPORLODOO0OODROOODOOLOOO0O00D20EPN
2000020010
0000000200001000000000000000000000000000000000020000
000000000000 200000000000000000000D0O0ROO0OO0O00D20EPN
2000040000000000000000000040001000024400000000004200
0000000400000000000000000000000000030000000000020000
2000000000000 0000000000000000RPOOODOOLOOO0O00D20EP0
2000000000000 000000010000022000000010000000000002200
0000000100000 0000000000000D00000000020000000000010000
00000RRORO1O0OPRPOROOOOOOOOOD0O0O0O0OROO0OD0OOOO0O0O00ODOERE
2000000000000 000000000000000000011100000000000000010
0000000001000 000000000000000000000000000000000010000
000000100000100000000000000000000000000000¢0®0

Figure 3.14: Normalisation of the list of blocks for each program.

Then I used the scikit library and the k-means algorithm to find clusters
from all these normalized arrays representing the various programs.
The number of clusters to use in the k-means algorithm was decided based
on the number of applications considered and was fixed after considering the
size of the clusters returned in output by the algorithm. For each cluster I
found, I randomly chose some programs to check if they were really similar

46 CHAPTER 3. DATASET AND ANALYSIS

or if they were variations of the same type of program.

In Figure 3.15 there is a fragment of the first ten clusters found in programs
from id 20000 to 24999 using 1000 labels. For each cluster I indicated the
number of elements of that cluster.

0=[24347, 24701, 24970, 20076, 20240, 20310, 20315, 20355, 20377, 20451, 20459, 20464, 20483, 20599,
20636, 20637, 20652, 20688, 20804, 20847, 20963, 20992, 21084, 21139, 21179, 21285, 21356, 21391,
21437, 21457, 21473, 21518, 21519, 22221, 22268, 22365, 22409, 22432, 22447, 22480, 22536, 22549,
22643, 22765, 22791, 23067, 23230, 23370, 23535, 23631, 23735, 24268] 52

1=[23726, 23611] 2

2=[21828, 24897, 20171, 21046, 21056] 5

3=[23285, 20137, 20269, 20272, 20941, 21000, 21277, 22169, 22195, 22239, 22250, 22819] 12

4=[24502, 24598, 24641, 24672, 24988, 20214, 20664, 20714, 20994, 21097, 21357, 21434, 21555, 21586,
21705, 22174, 22340, 22461, 22470, 22484, 22589, 22605, 22812, 22816, 22845, 22961, 23174, 23208,
23292, 23352, 23356, 23881, 23910, 23911, 24011, 24012, 24264, 24419] 38

5=[21423, 21422] 2

6=[23016] 1

7=[23000] 1

8=[22441, 21282, 21734, 21779] 4

9=[24448] 1

Figure 3.15: Fragment of programs’ Clustering.

Out of a total of 31572 programs, 1428 are Flappy Bird variants, 136 tris,
113 minecraft, 109 galaxy war and then other clusters with far fewer elements.

From these analysis steps I get 31572 programs that represent a valid
dataset to build the code completion system, as I have found many clusters
that are composed of few elements. In the next chapter I will show how I
implemented this system.

Chapter 4

Statistical automatic suggestions

In this chapter I will present the statistical systems I implemented for code
completion in the Catroid visual language.

All these systems are written in Java to facilitate integration into the Pocket
Code codebase.

The implemented systems share the main core of the code completion
system’s structure.

4.1 Key concepts

First of all it is important to underline the general considerations on the use
of the statistics obtained in Chapter 2.

All the data collected during the analysis phase have been organised in a tree
structure (see Section 4.2.1) to make data representation and exploration eas-
ier and faster.

For the construction of the brick based system (Section 4.3) the file contain-
ing the block sequences contained in each application was used, while for the
script system based the file containing the brick sequences for each script was
used.

The fundamental aspect on which the tree-structure is based is the frequency
of blocks, that is, the number of times a given block is found in a sequence
of bricks and scripts within a given application. The position of the block
considered in the sequence is important and the system tracks it: for this
reason, each sequence of blocks is represented as a path, a traversal, of the
related tree. As long as a sequence has the same blocks as another sequence
in the same positions, they share the same path in the tree. As soon as they
show a different block in the same position, the paths diverges.

47

48 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

The main difference between the system based on bricks and the one
based on scripts is the concept that each of them has of what a sequence is.
For the system based on bricks, a sequence is the entire list of ids of each
block contained in the application, while the second system considers the list
of bricks for each script in the application as a sequence. This means that
the tree obtained from the first system will have a depth greater than then
the second and will be more sensitive to the position of the blocks within
the application. On the other hand, the first system will be more precise in
the suggestion to give to the user, since the "history" of all the blocks used
before is kept in memory.

As you can see, these two systems have some pros and cons. I imple-
mented both and then I compared their performance, trying to extract their
positive aspects from both systems and merge them together to implement
a better system.

The performance of the systems was evaluated as follows:

1. T downloaded the source code of other applications considering those
with id that went from 36700 to 42000, that I did not use to train the
systems.

2. I randomly chose a piece of the block sequence used by the user for
that specific program.

3. 1 gave this piece of input sequence to the systems and got a suggested

block.

4. T compared the suggestion provided by the systems with the right block
used soon after in that specific program.

5. If the suggestion was the same as the block that actually was the next
one in the program sequence, this meant that the system had been a
success. Otherwise it had failed.

After all, the performance of these systems was not so good. That’s why
I implemented two other systems based on 3-gram. One was implemented
only by considering sequences of three blocks contained within the complete
list of blocks used by the user in the programs. In the other, a smoothing
function has been added to take into account the possibility of "null answer"
of the system.

4.1. KEY CONCEPTS 49

These two other systems were evaluated as the previous systems.

In this chapter I will talk about the design and the implementation of the
different systems, while in the next chapter I will talk about the integration
of the best performing system in Pocket Code.

The systems are presented in this chapter according to the chronological or-
der in which they were designed and implemented.

1. Brick based system: at the beginning I thought that keeping the order
in which the blocks appeared within the programs was fundamental.
The system is very precise from this point of view, but appears weak
when a minimum variation is made along the sequence of blocks. This
system will be described in the Section 4.3.

2. Script based system: this system is more stable than the previous one
because it considers sub-sequences of blocks of a program, those con-
tained in each script. Its weak point concerns the accuracy of the
suggestion, as it does not take into account the complete chronology of
the program. I will talk about this system in the the Section 4.4

3. m-gram based system: this system takes into account only a limited and
pre-established number of blocks previously used by the user. I chose
to use n = 3 and then to consider only the last two blocks present in
the program created by the user. This system has the advantage of not
needing much memory and is less inclined to give a null suggestion to
the user. This system will be described in the Section 4.5.

To evaluate the performance of these systems, I initially considered the
single block that the systems returned as output. Nowadays, however, many
suggestion systems provide a list of possible aid to the user: examples can
be in mobile devices when writing a message or in a text editor program like
Intellij in which the user is suggested a possible list of methods to be applied
to the object that is considered. So I decided to also consider the first three
blocks returned by the systems to see if any of these was the correct one. As
a number of blocks I chose three because it is the typical number of sugges-
tions that are presented in a mobile device, given the limitation imposed by
the size of the screen.

20 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

4.2 Core of the code completion system’s struc-
ture

The core of the overall structure is composed of two elements: a "tree-
structure" that has the function of organizing all the data obtained through
the previous analysis phase and the way in which this tree is crossed.

4.2.1 The "tree-structure" of the code completion sys-
tem

As I wrote in Chapter 1 the aim of this thesis is to help the user who is devel-
oping her/his own program through Pocket Code suggesting him what could
be the most likely block that she/he would choose later in the realisation of
the program.

With this in mind, I needed to construct a structure that kept track of all
the possible block sequences that the user could have chosen to suggest the
most likely sequence given the orderly sequence of blocks she/he had used
up to that point.

The tree structure lends itself to be very useful to perform this task: a node
of that tree can be associated to each block within a specific position in a
given program.

Each nodes contains some useful and necessary information to the system,
such as the name of the block and some kind of value that takes account
of the "probability" of having that block in that program at that specific
position.

Therefore the process of suggesting the most likely block can be reformu-
lated. The system must traverse the tree structure based on the blocks used
by the user. When it arrives to the node which correspond to the last block
used by the user, she/he must suggest the block corresponding to the most
probable child of the corresponding node in the tree.

Tree’s nodes

Each node of the tree is an instance of the MyNode.java class.
The n node has the following attributes:

e int nodeld: it is an integer used to identify n.

4.2. CORE OF THE CODE COMPLETION SYSTEM’S STRUCTURE51

e int brickld: is the iblock identifier associated with n. For example, a
node that matches the "When program starts" block (see Table A.1
and Table A.2) has brickId = 99.

e int occurence: it indicates the number of occurrences of the block as-
sociated to n. The calculation of this value is an important and crucial
aspect for the efficiency of the systems and it depends on whether the
systems we are using are based on bricks or scripts. I will explain later
in Section 4.3 and Section 4.4 how I calculated this value.

o IntArrayList children: it is an array list of integer numbers. Each
integer represents the nodeld of each child of n.

e int parent: it is an integer number representing the nodeld of n parent
in the tree-structure.

e int level: it is an integer number that indicates in which tree’s level the
node is contained.

Tree’s levels

Each level of the tree is an instance of the Level.java class.
The level [has the following attributes:

e ObjectArrayList<MyNode> list: it is an array list of MyNodes elements
belonging to I.

e int size: it is an integer number that indicates the number of elements
belonging to I.

I implemented three different tree-structures: the first was filled by the lists
of all blocks for each application (see Section 4.3), the second by the lists of
all blocks for each script (see Section 4.4) and the third was constructed so
that it can be used by the n-gram based system (see Section 4.5).

4.2.2 The tree’s traversal

Even if the input given to the two systems is different, they follow the same
strategy to cross the tree-structure.

The blocks used by the users are converted to the associated integer number,
so all the numbers are saved as an IntArrayList userDigit, which here I will
call al for simplicity.

52 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

If the size of al is equal to zero, this means that the user is about to add
her /his first block to the program. The system then checks the first level of
the tree and gives in output the block corresponding to the node that has
the highest number of occurrences in that level.

Otherwise, the system starts crossing the tree. I will explain how the
algorithm works by considering a generic position £ in al .
So the system takes the k-th element of al and looks for a node in the &
level of the tree with the same value in the int brickId parameter.
If it finds a node with this feature (I call it n* for simplicity), then it looks
at the value for the children attribute of n* It checks if any of them (we
already know by construction that all these nodes belong to the k-+1 level)
corresponds to a node with the int brickId attribute equal to the(k+1)-th
element of al. If so, then this process is repeated considering that node that
has just been found.
If this does not happen or if the system does not find a n* node, then it is
not able to suggest any help to the user.

Actually, the systems I implemented can be considered three and not only

two: the one based on the bricks, the one based on the scripts and the one
that merges the brick and /or script solution to limit the probability of having
a "nothing" answer "to be returned to the user. The differences between the
systems depend on the way the tree-structure has been filled.
In the next Section 4.3 and Section 4.4 I will explain how the two systems
implemented individually and independently were constructed. To clarify the
explanation, I take as an example these four array lists (Figure 4.1) : each
one represents the id of a program with all block ids within the application.
The scripts are the iwhole number written in bold, the others are the bricks
and are attached to the related script.

30 = [99, {85}, 99, {1}];
31 =[35, {85}];

32 = [99, {2}, 99] ;

33 =[99, {85, 71}] ;

Figure 4.1: Toy example to explain tree-structure construction without end
nodes.

4.3. BRICKS-BASED SYSTEM 93

30 = [99, {85}, 99, {1}, -2] :
31 = [35, {85}, -2] ;

32 = [99, {2}, 99, -2] ;

33 = 99, {85, 71}, -2] ;

Figure 4.2: Toy example to explain tree-structure construction with end
nodes.

At the end of each array list I added a fake number to indicate that the
list of brick is finished: in this the way systems could also suggest the user
not to add any other block to her/his program. So the arrays now become
as showed in Figure 4.2.

4.3 Bricks-based system

This system builds the tree-structure with the sequences composed of block
IDs for each application. Suppose I want to build the tree with these (Fig-
ure 4.2) lists of brick. Then I start from the first array: I create level 0
and I add to it a new node n_ first. Then I set its attributes: nodeld=0,
brickld=99, occurrence=1, children=new IntArrayList, parent=-1 (because
it has no parent) and level=0. Then I go on with the other elements 85, 99,
1 and -2. Every time I add a node which is not in level 0, I have to update
the attribute "children" of its father (adding the nodeld of the node I added)
and I have to set the new node’s attribute "parent" with its father’s nodeld.
Now I consider the second application: I take the first element and check if
it is already present in the structure (I did this check also previously, but I
didn’t mentioned them to make the explanation not too complicate). That
integer number is not present, so I repeat the same procedure as before.
Now I consider the third array list. In the structure at level 0 I already have
a node (which I call n_ found) whose brickld is 95: so I update the value of
"occurrence" setting it equal to two. Then I go ahead with the next value
temp in the array list: first I check if one of n_ found’s child has temp as
"brickId" value: in this case I can not find a node with these characteristics,
so I have to create a new one. Then I continue following the same procedure
as before.

In the end I created this tree-structure:

o4 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

nodeld: 0 nodeld:5
brickld: 99 brickld: 35
occurrence: 3 occurrence:
children: [1,8] children: [6]
parent: -2 parent: -2
level: 0 level: 0
brckia. 85 rodekds brckia- 85
o .11 oogurance: 1 85) St
parent: o children: [9] parent: 5
.1 parent: 0 .
level: 1 level: 1 level: 1
nodeld:7
. brickld: -2
nodeld:2 nodeld: 11 nodeld: 9 .
brickld:99 brickld: 71 brickld: 99 -2 ggﬁ;”ﬁe-
occurrence: 1 occurrence: 1 99 occurrence: 1 a‘rer:f' 6
children: [3] children: [12] children: [10] RS
parent: 1 parent: 1 parent: 8 vel
level: 2 level: 2 level: 2
nodeld:3 nodeld: 10
brickld:1 brickld: -2
occurrence: 1 occurrence: 1
children: [4] 1 _2 _2 children: [|
parent: 2 parent: 9
level: 3 nodeld: 12 level: 3
brickld: -2
occurrence: 1
children: []
nodeld:4 Iparel.nt: "
brickld: -2 evel: 3
occurrence: 1
children: [] —2
parent: 3
level: 4

Figure 4.3: Bricks system structure.

4.4 Scripts-based system

The system based on the scripts is filled by the sequences obtained by combin-
ing the id of each script and the sequence of bricks within the corresponding
script.

Now let’s build the tree-structure for the toy example in Figure 4.2.

I started from the first application: it consists of two scripts. I considered the
first script and I added the node corresponding to the id of the scripts to the
tree, so I added one new node for each brick. Then I focused on the second
script and I repeated the same procedure I followed in the construction of
the system based on bricks.

Although I used some toy examples to explain how the tree structure is
constructed, I can immediately underline some considerations on the results
I have just obtained.

The tree-structure of the brick-based system has more levels than the one
obtained from the other system: this is due to the fact that the first system

4.4. SCRIPTS-BASED SYSTEM 95

nodeld: 0

brickld: 99
occurrence: 5
children: [1,3,8,10]
parent: -2
level: 0

nodeld:5
brickld: 35
occurrence: 1
children: [6]
parent: -2
level: 0

nodeld:8

nodeld:3

nodeld: 1 brickld:1 brickld: 2 nodeld:6
brickld: 85 ocourrence: 1 occurrence: 1 _2 brickld: 85
uﬁ_(l:grrem[:ze:fﬂ children: [4]' children: [9] occurrence: 1
children: [2, X parent: 0 children: [7]
parent: 0 E?/r:m 0 level: 1 nodeld: 10 parent: 5[]
level: 1 : brickld: -2 level: 1
occurrence: 1
children: |
parent: 0
level: 1
nodeld:2 nodeld:11 nodeld: 4 nodeld: 9 nodeld:7
brickld: -2 brickld:71 brickld: -2 brickld: -2 brickld: -2
occurrence: 1 occurrence: 1 occurrence: 1 occurrence: 1 occurrence:
children: | children: [12] children: | children: | children: |
parent: 1 arent: 1 parent: 3 parent: 8 arent: 6
level: 2 |peve|; 2 level: 2 level: 2 |peve|; 2

-2

nodeld: 12
brickld: -2
occurrence: 1
children:]
parent: 11
level: 3

Figure 4.4: Scripts system structure.

keeps track of the entire sequence of blocks used in the application, while
the system based on scripts divides the long sequence of id in shorter lists of
integer numbers.

Another important difference between the two systems is the number of
tree nodes. In this example it is not so immediate to understand, but in
general in the tree-structure obtained from the system based on scripts, the
total number of nodes is lower then the other system. The reason is again
related to the compression performed by the second system of the length of
the block sequences to be tracked.

I can point out another feature that will be examined in detail later: the
system based on bricks is sensitive to the position of each block in the list of
total elements used by the user. This means that two applications that differ
only in one block or that have only two blocks inverted, will cover a different
path in the tree-structure. Instead, the system based on scripts will almost

o6 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

always consider sequences of blocks shorter than the bricks system, therefore
if will suffer less from this problem.

On the other hand, the system based on bricks could give a more accu-
rate suggestion: this is due to the fact that it is more "contextualised" in

the developing of the programs, because it keeps track of a longer sequence
of blocks.

As you can see, there are some advantages and disadvantages of these
systems. For this reason, I implemented a sort of fusion of these two taking
the positive aspects of both.

Before explaining how this fusion was made, let’s examine how the two sys-
tems work separately.

4.5 Execution of bricks- and scripts-based sys-
tems

I wrote a Java program that uses the dataset obtained in the analysis phase
to fill the two tree-structures. So I downloaded new data from Pocket Code’s
web site following the same procedure explained in Section 3.1.

To make the explanation clearer, I call training set the first corpus of data
and wvalidation set the second.

The validation set was used to verify the performances of the script-based
system, the brick-based system, and possible merging of the two systems.

4.5.1 Merging of the two systems

First of all we need to specify what we mean by merging the two systems.
From the data concerning the evaluation of the systems taken individually,
it has been seen that the brick-based system was more effective than the one
based on the scripts. The success rates were still low, so I wanted to make
the two systems work together. If the first system (the one based on the
brick) was not able to give any suggestion, then the system based on the
scripts would have been used: this is what in the Table 4.1 is called "BRICK,
ELSE SCRIPT".

As shown in Table 4.1, in the first line I obtained that system based on
bricks gives a correct suggestion 28.328% of the time. But if the brick-system

4.5. EXECUTION OF BRICKS- AND SCRIPTS-BASED SYSTEMS 57

fails and I consider the script-system, then I can give the correct suggestion
43.328% of the time.

4.5.2 Validation of systems: the most likely block

To simulate the user’s development process of the program, I randomly col-
lected data from this set and then I checked if the systems were able to
suggest the correct block. I will call the simulated list of blocks user digit

First I randomly chose an integer number inside the set of all programs
identifiers (first int). So I randomly chose a script id within the sequence
of scripts contained in the selected program (second_int). Then I randomly
chose another integer number in the range from 0 to the size of the brick
sequence decremented by 1 within that specific script (third _int).

The way I built the sequence of blocks given as input was different in the
two systems.
For the bricks-based system, I kept track of all the blocks used by the user:
so the user digit was calculated as the concatenation of all the IDs of the
selected application block up to (third_int).
The system based on scripts tracks only the bricks within each script: so the
user_digit was calculated taking the blocks within the (second_int) script
up to (third_int).

Then I tested if the suggestions calculated by the two systems were cor-
rect: I let the systems cross the respective trees in order to find the most
likely block. Then I made a comparison between the id of the suggested
blocks and the right one. The results are shown in Table 4.1.

4.5.3 Validation of systems: the three most likely blocks

Instead of looking at the first suggestion that the systems can give, I can
consider the first three suggestions, which I call in the table 3BB (three-best-
bricks) and 3BS (three-best-scripts). In the table you can find the scores I
got using the two systems individually and then merging them together.
The best score I get is when the systems give the user the first three best
suggestions of the brick-systems and, if no one is correct, it gives the first
three best suggestions coming from the other system. Doing so, 56.882% of
the time I give the correct suggestion to the user.

o8 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

System used Score (percentage)
BRICK 28.328%
SCRIPT 27.732%
3B BRICKS 32.006%
3B SCRIPTS 48.798%
BRICK, ELSE SCRIPT 43.328%
3B BRICKS, ELSE SCRIPT 46.732%
3B BRICKS, ELSE 3B SCRIPTS 56.882%

Table 4.1: Results over 50000 tests.

4.6 Trigram-based system

Given the fact that the system based on scripts and the one based on bricks
don’t perform very well if taken individually, I tried to find better solutions.
So I implemented a system based on another kind of models: I chose Lan-
guage Models and in particular the n-grams with n=3.

4.6.1 Language Models with N-grams

First we define V as a finite set of words which belong to a specific language
[25].

A sentence in the language is a sequence of words {zy,z,,...,z,}, where n>1
and z,€V for i€{1,2,...,n-1}.

Then we define V} as the set of all sentences with the vocabulary V: this is
an infinite set, because sentences can be of any length.

Now we can define what a Language Model is. A Language Model consists
of a finite set V, and a function p(z,,z,,...,x,) such that:

1. For any (x1,29,...,0,) € VI, p (11, x9,...,2,)2 0

2. Z p(a:lwr?a"‘?mn) =1

Hence p(x;,zs,...,x,) is a probability distribution over the sentences in V7.
Language Models are very useful in a broad range of applications, the most

4.6. TRIGRAM-BASED SYSTEM 29

obvious perhaps being speech recognition and machine translation. In many
applications it is very useful to have a good “prior” distribution p(x;,zs,. . . ,z,)
over which sentences are or aren’t probable in a language.

To estimate the probability p, we usually use Markov Models.

Markov Model

Consider a sequence of random variables, X;,X,... X,,.

Each random variable can take any value in a finite set V. For now we will
assume that the length of the sequence, n, is some fixed number.

Our aim is to to model the probability of any sequence x,zs,...,x,, where
nzland x;€V for i€{1,2,... ,n}, that is, to model the joint probability P (X,
= x1,Xy = 29,... . X, = 1,).

The Markov Model makes some assumptions.

1. First-order Markov assumption: it says that the identity of the i-th
word in the sequence depends only on the identity of the previous
word, x;,_;. More formally, we have assumed that the value of X is
conditionally independent of X{,X5,...,X;_1, given the value for X,_;.

2. Second-order Markov assumption: it says that each word depends on
the previous two words in the sequence.

The second assumption form the basis of Trigram Language Models.

Trigram Language Model

As I wrote in Section 4.6.1 we model each sentence as a sequence of n random
variables, X, X,... . X,,.

A Trigram Language Model consists of a finite set V, and a parameter q(w /
u, v) for each trigram u,v,w.

The value for g(w |/ u, v) can be interpreted as the probability of seeing the
word w immediately after the bigram (u, v). For any sentence z1, z,,...,z,
where z;€V for i€{1,2,....,n-1} , and the probability of the sentence under
the Trigram Language Model is p(x1,xa,...,2,) = q(z; | Ti_0,Ti_1) -

60 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

4.6.2 Building the tree-structure

To build the tree-structure, I consider again the toy example in Figure 4.2 as
I did for the brick-based tree and for the script-based tree systems.

The tree-structure in Figure 4.5 is the one obtained from this trigram-based
system.

I considered all the sub-sequences of three consecutive blocks in each
sequence of bricks and scripts for each application. As you can see, the tree
has depth equal to three. Whenever the system has to suggest the next block
to the user, the system follows a sequence of three steps:

1. First, it considers the last two blocks used by the user.
2. It traverses the tree.

3. When it reaches the node corresponding to the last block adopted by
the user, it suggests the most probable node, which is the node of its
children with the maximum value for the field occurrence.

I used the same training and validation sets as for the previous systems
based on bricks and scripts to train and to evaluate this new system.
Instead of focusing only on the most probable block, I considered again the
three most probable blocks.

The results of the tests are shown in Table 4.2.

In order to improve the performance of the system, I tried to include in
the trigram system a sort of smoothing to limit the negative effect of null
response from the system.

4.6.3 Smoothing for n-grams

The key idea is to rely on lower-order statistical estimates to “smooth” the
estimates based on trigrams.

The name smoothing [23| comes from the fact that these techniques tend to
make distributions more uniform by adjusting low probabilities such as zero
probabilities upward and high probabilities downward.

Furthermore, they attempt to improve the accuracy of the Model as a whole.

4.6. TRIGRAM-BASED SYSTEM

System used

Score (percentage)

BRICK 28.227%
SCRIPT 28.167%
3B BRICKS 31.823%
3B SCRIPTS 49.185%
BRICK, ELSE SCRIPT 42.963%
3B BRICKS, ELSE SCRIPT 46.558%
3B BRICKS, ELSE 3B SCRIPTS 56.132%
TRIGRAM 30.550%
3B TRIGRAM 54.162%
3B BRICK, ELSE 3B TRIGRAM 53.873%
3B BRICKS, ELSE 3B SCRIPTS, | 67.178 %
ELSE 3B TRIGRAM

3B BIGRAM 38.761%
3B TRIGRAM, ELSE 3B BIGRAM 54.326%
SMOOTHING 51.197%

Table 4.2: Results over 100000 tests.

61

62 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

Jelinek Mercer Smoothing

This kind of smoothing interpolates the Trigram Model with a Bigram Model.
In Bigram Models, we make the approximation that the probability of a word
depends only on the identity of the immediately preceding word.

Then this method interpolates linearly a Trigram Model and a Bigram Model
as follows:

Pinterp(W; | Tiza) = A Py (i | 2m2) + (1-A) parp (v | 2421).

I built also the tree structure for the Bigram Model in order to use this
kind of smoothing.
I followed the same strategies adopted during the building process of the
other tree-structures. I considered the three-most-probable blocks suggested
from both systems and the I used the J-M smoothing algorithm to get the
score for each block.

In Table 4.2 you can find the results of the tests for the system based on
trigram and for the one based on trigram plus the J-M smoothing algorithm.

In Chapter 5 I will explain how I integrated the best suggestion system
into the Pocket Code application.

63

TRIGRAM-BASED SYSTEM

4.6.

2 :IeA9)

1 :juased

[l :uasppiyo

| :90U81IN220
2- 1Ppfoug
Gl ‘plspou

NI

[RHEYET]

€| ‘juased
[S1] :uaapiiyo
| :90Ua1IN220
66 :PPOUg
vl ‘plepou

0 :[eA9)

2- ‘juased
[i71] :ua1ppiuo
| :@2Ua4iN200
2 :pitolq
€1 :plepou

2 Iens)
6 ualed

[:ueapyiyo

| :92U81IN220
¢- ‘PPouq
0l ‘p1epou

NI

2 :len9) 2 :1eA9)

/1 ‘juased Juated

[l :usappyo [l :uaipiyo

| :90UB1IN220 | :90Ud1INd20
¢- ‘Ppouq L :PPoLq
81 ‘plepou S ‘pIepou

NI

[RHEVE]]
g ualed

[01] :ueipiiyo
| 192U81IN220
G8 PPoUg

6 plepou

0 :[eA9)

2- weased

[6] :uaupjiyo

| :90UB1IN220
G€ ppoug

8 :plopou

[RHEVET]

¢ uated
[81] :uaipiiyo
| :90U81IN200
L2 :pPpouq
/| ‘plopou

RV
€ juated

[g] :uaupiiyo

| :90Ua1IN200
66 ‘POHg

¥ :plopou

[WHELE]
2- Wased
/1 ‘p] :uaipliyo
2 :90Ua1IN200

G8 :pIfoUq
g:plepou

[e1] :uaipiiyo
| :®0Ua4ind2200

2 :len9)
L1 juased
[:usappyo
| :90Ua1IN220
66 :PPOUg
¢l ‘plepou

[RHEYE]
0 :juased

2:Ppioug

L1 :pIepou

2 :len9)
9 juased

[l :uaippiyo

| :90Ua1IN220
2- ppiouq

/ plopou

NI

[

0 :[eA9)
2- weased

[L1 ‘9 ‘1] :uaipiiyo
 190UBLIN000

66 PPPHg

0 :plepou

[IHEVET]
0 ‘juased
[2] :usappyo
| :90U81IN220
Ioug
9:pjepou

2 :len9)
| ;juased

[l :uaippiyo

| :90Ua1IN220
LZ :ppioug
9l ‘plepou

2 IeAs)
| ;juased

[:usapjiyo

| :92U81IN220
66 :PPoUg
2:plepou

[RHEYE]

0 :juased
[91 ‘2] :usappyo
¢ :90usalind20
G8 :pPIfoUq

1 :plepou

N-gram system structure.

Figure 4.5

64 CHAPTER 4. STATISTICAL AUTOMATIC SUGGESTIONS

Chapter 5

Integration into Pocket Code

Of all the code completion systems explained and implemented in Chapter 4,
I chose to integrate into Pocket Code the system based on 3-grams essentially.
There are essentially two reasons behind my choice:

1. It is the one that, taken individually, most often gives the correct sug-
gestion to the user.

2. The file in which the corresponding tree structure is stored is not as
large and can be easily stored in a mobile device.

In this chapter I will quickly explain how the Pocket Code source classes
are organized and then how I integrated the suggestion system into the app.

5.1 Structure of Pocket Code’s source code

The entire source code of Pocket Code is available at the URL https://
github.com/Catrobat/Catroid.

In this section I will briefly show the classes on which I worked for the inte-
gration of the code completion system.

The classes in the Catroid/catroid/src/main/java/org/ catrobat/catroid/

folder are structured in some sub-folders: bluetooth, camera, cast, common,
content, devices, drone, exceptions, facedetection, formulaeditor, io, merge,
nfc, physics, pocketmusic, scratchconverter, sensing, soundrecorder, stage,
transfers, ui, utils and web.

The sub-folders which I analysed and modified are content and wus.

65

https://github.com/Catrobat/Catroid
https://github.com/Catrobat/Catroid

66 CHAPTER 5. INTEGRATION INTO POCKET CODE

5.1.1 Content

This folder contains all the classes used to manage the functionality of the
blocks. Here you can find a class for each kind of block, a class for each
category of blocks and some classes used to give some functionality to the
blocks enabling some actions on them.

In particular, in the Sprite.java Java class you can get all the blocks used by
the user in his program.

There are also all the classes that explain the basic characteristics of a brick
and of a script: the Brick and ScriptBrick interfaces, all the classes that im-
plement these interfaces and all the extensions of these classes. A thorough
analysis of this folder can be useful to get a more precise understanding of
the key concepts on bricks and scripts.

5.1.2 UI

As the name suggests, this folder contains the classes which describe the
Pocket Code user interface, which is how the app is displayed to the user.
In particular there is a sub-folder, fragment, which describes the details of
each individual fragment of the app. The Java class CategoryBricksFrag-
ment.java is used to show the blocks for each category and show them to the
user to allow them to decide which block to use for their program. It arranges
all the blocks in a list when the user tap on the button of the corresponding
category.

The are many other classes that describe how the fragment of each category
should appear to the user.

There is another important sub-folder, adapter, which has the function of
allowing the user to correctly drag the selected blocks and insert them into
his program. It organises all the blocks selected by the user in the block list
of the program and it allows the user to select the position in which to insert
the block.

So the user can decide to remove some blocks or change their position.

The sub-folder dialogs manages all the pop-up messages shown to the user
to interact with him and to give him a feedback of the operations he is doing
while creating the project.

5.2. 3-GRAM SUGGESTION SYSTEM INTEGRATION 67

5.2 3-gram suggestion system integration

In order to integrate the code completion system in the app, I decided to add
a new category of blocks which I called Suggestion.
First of all, T added a new TextView in the list of categories that appears
when the user wants to add a new block to his application.

This TextView is places on the top of the categories’ list and is coloured
by grey (see Figure 5.1). To define this new TextView, I followed the sequent

Figure 5.1: Suggestion’s category in the categories’ list.

steps.

1. In the folder src/res/layout I added the xml file brick category suggestion.zml
in order to define a new linear layout in which there was a TextView
for the category Suggestion.

2. The style of the TextView was declared in the src/res/values folder,
where T added some code’s lines to the file styles.zml (as you can see
in Figure 5.2).

3. In the src/res/drawable folder I added the corresponding files .png
to define the colour of the TextView for this category.

68 CHAPTER 5. INTEGRATION INTO POCKET CODE

<style name= >
<item name= >@drawable/brick_selection_background_suggestion</item >

<item name= >@drawable/main_menu_button_arrow_suggestion</item >
</style >

Figure 5.2: Suggestion’s category: style.xml.

In the folder ui I created a new sub-folder which I called suggestion. Here
I put all the Java classes for the code completion system: MyNode.java,
Level.java, ReadFromTreeTxt.java, ConverterFromClassTold.java, NGram-
Suggestion.java and SystemComparrison.java.

5.2.1 MyNode

An instance of this class represents a node of the underlying tree-structure.
Each node is uniquely identified by an integer number. It has other at-
tributes, as the id of the block associated to it, the number of occurrences,
the id of the father node and the list of children nodes’ identifiers.

5.2.2 Level

This class has the function to represent each level of the tree-structure. It
contains the list of all nodes at that specific level. It has also some specific
methods, as the search for a brick or a script given the id of the node or the
id of the block.

5.2.3 ReadFromTreeTxt

This class is fundamental for the code completion system, because an in-
stance of this class has to read the .txt file containing the tree-structure.
Its key function is to create the structure to be crossed to give the suggestion
to the user.

5.2.4 ConverterFromClassTold

I implemented this class to have a faster correlation and translation from
the class instance associated to a block and the corresponding id used to

5.3. HOW IT WORKS 69

identify that specific class. Given the list of blocks’ instances, a Convert-
erFromClassTold c¢ gives in output a list of integer representing the id of
corresponding bricks and scripts.

5.2.5 NGramSuggestion

This is the focus of the system. It creates an instance of the class ReadFrom-
File to navigate through the tree-structure and return the list of possible
suggestions to the user.

Tree-structure file

The file containing the data of the tree-structure is tree.txt and it is stored
in the /assets/ folder.

5.3 How it works

During the development phase of his program, the user can ask the system
to help him in choosing the next block to use.

The user simply needs to tap the "Suggestion" button and he will receive
the suggestion from the system.

As I explain in Chapter 4, the system based on the n-gram takes the last two
blocks applied by the user to help him. If there are not blocks or if there
is only one block, the system suggests the three most probable nodes in the
first level of the tree structure respectively or considers only that block used
as input.

In Figure 5.3 is shown how the list appears to the user.

The system can also suggest the user to stop and not add any other blocks.
In this case it appears a toast, that is a message that appears on the screen
and disappears after a time-out, which indicates to the user that he can stop.
If the system can not find any suggestions, a toast will appear telling the user
that the system can not help him.

70

CHAPTER 5. INTEGRATION INTO POCKET CODE

When program starts

Set background

New...

Figure 5.3: List of suggested blocks.

Chapter 6

Conclusions and future work

The aim of my work was the creation of a code completion system for the
Catrobat visual programming language.

Catrobat is adopted in Pocket Code, a popular open-source application for
Android devices designed to teach the principles of coding to children and
non-experts. In Catrobat — hence, in Pocket Code — users select some
coloured blocks and drag them into the application they are developing. Each
block is associated with a program statement and has a specific function. Ap-
plications developed with Pocket Code can be published in the Pocket Code
website.

During my work, I downloaded the source code of all the Pocket Code
applications published up to August 23 2017, I analysed it, and I used statis-
tics gathered from the code to design a block suggestion system that presents
the user with the most probable blocks she/he would be using in the future
development of the application given the blocks she/he has already used.
The blocks used in Catrobat are divided into bricks and scripts: I designed
different code completion systems based on both bricks and scripts, then I
benchmarked them to choose the most effective one.

A first system I developed is based on sequences of all blocks adopted by the
user.

A second system considers the sequences of bricks used in each script.

A third system is based on 3-grams of blocks. In my tests, I also considered
some combinations of such systems, in order to measure how the effectiveness
of the completion system as a whole could be improved.

All the systems were trained on the whole set of downloaded applica-

tions. Performance measurements were performed on applications developed
after August 23 2017, that is, on applications that had not been used in the

71

72 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

training phase. The performance metric was the number of times the correct
block was presented among the top 3 suggestions of a given system. The
most effective system turned out to be the one based on 3-grams: this sys-
tem presents a good trade-off between performance and storage space needed
by the data structure used by the code completion system. Out of a total of
100,000 tests performed, this system is 54.162% effective.

Finally, I integrated the most effective system into the Pocket Code code-
base.

6.1 Future work

In my opinion, many features can be added into Pocket Code to improve the
code completion system.

For instance, we could consider other statistical algorithms or other smooth-
ing systems different from those considered in this work.

The user could also be asked to add additional information when she/he
starts a new application project. In addition to the name of the program,
a brief description, et cetera, the user could specify the category of her/his
program choosing it from a finite set of possibilities. Such additional infor-
mation could be used in the training phase of the system to improve the
overall performance and to make the system more effective.

Moreover, once the code completion system knows the specific aim of the
user, it can suggest her/him not only the most probable block or blocks:
it can suggest some pre-defined sets of blocks implementing frequently-used
features. This could be definitely helpful for the user.

It is also conceivable to integrate into Pocket Code a system which interacts
with the user by asking, from time to time, questions related to the design
process: the answers could be used by the system to provide more targeted
suggestions.

Appendices

73

Appendix A

Table with the various blocks
analysed

75

76 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd gToU 2Y) UL SANULIUOY))

SYOOTT | UddI3 Y31 | Ie[NSURIII ~ Aq 10700 d3uey)) PugNAgIooHesuey) | (T
SYOOTT | UddI3 JYSI | IR[NSURIII ~ Aq ssoujy3Liq o3ury)) Youg NAgssouysLgasuey)) 6
SYOOTT | UodI3 Y31 | Ie[NSURIIOI RIOWRD WINT, YorgrIoure)) Q
odue
JUOAY | -10 IIep | Ie[ngue)oal JTem pue JsRIPROIG YOLIGITRAA ISROPROIY)
odue
JUoAH | -10 IIep punox 9ATO0OI NOA USYA\ YOLIG IOATOD 1SROPROIY 9
oSue
JUOAY | -10 IIep | Ie[nauejool ISROPROI Yorgiseoproig G
~m
punog 19[0TA | IR[NSUR)IDI | JomSUR UoNOds 010)s pue Sy Yorrguooadgysy i
ur Joms
SYOOT | WoaI8 JYJI[| IRNSURIIOI | -UR UIJILIM OI0)S PuUR ISY YOLIGSY ¢
ourmnpry onyq [e9) | remsueioor | o) urd NWANJ oumpIy 19§ | YorgonyeA N A Jpuegournpry Z
oumpry onyq [eo} | remnsue)oor | 03 uld [RYPSIP OUMPIY 309G | IPLIFON[RA [RUSI([PUSSOUINPIY 1
rYR(] pol | IreMmsue)ool 1SI] 0 PPV YOI ISITIOS) O], W PPY 0
AdOD dOTOD HdVHS
“HLVD MDOTd MDO0Td MOOTd HINVN MDOTd dHSTTVASIA HINVN SSVTID VAV[ar

(1 9red) s3po[q [[e jo 9[qRL, T’V AqRL

P~
P~

(abnd gToU 2Y) UL SANULIUO)))

SYOOTT | UodI3 Y31 | Ie[NIURIOI SIS WInT, Pugyse[| Gg
oSue
[o13u0)) | -10 YSI[| IRMSUROAI QUO[D SIY} 9)[(] SPLIGOUO[DSIY TR | FT
- uoms
rYR(] po1 | remsdue)oalr | -od je JSI[WOIJ WA 9)[(] YOLIISITIOSNJOWIOIPR | €7
UOTI0TA] on[q | renduejool JUOIJ 0} OF) YOLIGIUOLJOT WO | T
ydidguotsiopn | 1
osue
[o13u0)) | -10 YSI[| IRMSUROAI "~ JO 2uo[d 93edI) Yougeuor) | 0g
SYOOT | U218 YII[| Ie[nIur}DI sy0ee oryders 1es[) yorgloogiorydeines) | 61
RIR(] | UO0I3 IRD | IR[NSUR)OOI Ieal)) yPugpunoisyorgIes) | |1
SYOOTT | UddI3 Y31 | Ie[NIURIOI RIOWRD 9S() YoLgRIOWR)IS00) | LT
UOT)OTN on[q | remsue)oor ~ £q A e8uey) PUgNAgAdSuRy) | 9T
UOT)OTN on[q | remsue)ool ~ Aq Y e#8uey) PugNAgxesuey) | G
punog J9[0IA | IR[NSUR)ISI ~ Aq eswnjoa d3uey)) PUGNAgownoAsuey) | I
rIR(] pol | Iemnsue)ooal ~ Aq e[qelrea a8ury)) Yorgo[qrLreAdSuRy) | €]
SYOOTT | UodI3 JYSI| | Ie[NSURIDOI ~ Aq ALouaredsuery osuey)) | PugNAgAouaredsuelodury) | 71
SYOOTT | UodI3 JYSI | Ie[NSURIDOI ~ Aq oz1s 98uey)) PUGNAgozigosury) | 1T

(abnd snowaid 2y) woif sanuuo;))

78 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abind gToU 2Y) UL SANULIUO)))

odue
[o1yU0)) | 10 JYSI[| Ie[NSURIDSI JT puy YPUIGPUHOISOTUOY I | L€
PUGUISIGIISoTUWYLJ] | 9¢
UOI}0IN on[q | Iremsue)oar 90UNO(‘98pd Uo J[YOLIgeounogasSpHuOI[| ¢¢
osue
[o13U0)) | 10 JYSI[| Ie[NSURIDSI J1 puy YPUIGPUHOISOTI | F€
osue
[ouo)) | -10 US| | IRNSUR)IDI os[H YOLIGOS[HOIS0 I | €€
osue
[ouo)) | -10 US| | IRNSUR)ISI TUUOS[U uey) ena) St JT YougquisegoIso il | ¢&
rIR(] pol | Iemsue)ool o[qRLIRA OPIH OUIIXOTOPIH | 1€
SYOO] | WeaIS JUSI| | IeNSUR)II OpPIH MOUGOPIH | 0¢
UOTIOTA] oN[q | IeMsur)OOI 01 05) YUGOLoD | 68
UOTIOTA oN[q | IeMsur)ODI Joe(05 yougypegsdoigNon) | |7
UOT)OTN on[q | remsue)ooar A X 0} 9pID) YOUGOLEPIY) | AT
osue
[o1yU0)) | 10 JYSI[| IR[NSURIDSI TOADIOY YOLIGISAIO | 97

(abd snowa.d 2y) woif sanuuoy))

(@)
~

(abnd 1xoU 2Y) WL SINULUO)))
UOTIOIN on[(q | Iensur}OAI OAOIN MorIgsdoiSNOAOIN | 6F
osue
[o1uo)) | -10 US| | IRNSUR)IDI door jo puy yougssopugdooT | 8%
osue
[ouo)) | -10 US| | IRNSUR)ISI dooy jo puy ypugpuygdooT | ¥
ZHOOTX Adouonboiq spuooos
e A 0307 MO[[PA | Iemgue)oor | uonrIn(ouo}l XN A®[J MOLIGOUOT AR JIXNOSOT | 9OF
e A 0807 MO[[PA | Te[mIur)ool - Aq 10j0w T XN WINT, | YPOLIGE[SUYWINT I0JOINIXNOST | GF
e A 0807 MO[[PA | Ie[m3ur)ool 1090w XN doig Wo11gdolSIOJONIXNOSOT | TF
eAM 0807 MO[[PA | remBue)oar | peads oy 0} 1030w T XN 108 MOLIGOAOINIOIOINIXNOSOT | €F
eAM 0807 MO[[PA | Temgur)ool snye)s (THT €A 108 YOLIGPOTIOSEAOSOT | TF
-
own[oA zZHOOTX Aouenborq
e A 0307 MO[[PA | Ie[NSUR)OOI | SPUODDS 10J oU0} €A Ae[] OLIGOUOT AR JEAGOSOT | TF
e A 080 MO[[PA | Te[m3ur)ool 1090w ¢ Ar doig No11gdolGIOJONEAHOST | OF
rYR(] MO[[PA | TemSBuRdDL | poads 95 01 100U A 198 YOLIGOAOINI0IOINEAHOSOT | 6¢
rIR(] po1 | remsue)oar | uoryisod je ST OjUT YIOSU] MOLIGISTTIOS OJU[WOIIIOSUT | Q€

(abnd snowaid 2y) woif sanuuo;))

80 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abind ToU 2Y) UL SANULIUO)))

UOTION onq | remnsur)ool SOOISOp UOI}DRIIP UL JUIO] YOLIGUOTORI(TUIIUIO] | 9
punog 19[01A | IR[NSUR)IDI punos 11e3q YougpunogAR(| 19
punog 19[0IA | IR[NSUR)IDI jTem puR PUNos 3Ie)g YOLIGIRA PUYPUNOGAR[| ()9
UOT)OIN on[q | remsue)ool A X Ye ooed ougiyeorid | 66
Coenig

SYOOT | WeaI8 JUSBI | JIRNSURIDDI | U0Ir) POy JYSI[oIy 108 POUGWSITIOHYOIYJ | 85
Spuoo9s uoljel

punog J9[0IA | IR[NBURIDDI | -} (] OUOY JISNW OIYJ AR[] YorgouoJ Ae|JoIyJ | LG

oIy J oN[(q [e9} | Ie[NIURIII 1090wt oxryg doig yorgdolSIojoNoIyd | 9G
% poods

oI J ON[q [80} | IRNSUR)ODI | PILMIO} IOJOUW OIYJ OAOJN | MOLIFPICMIOIOAOINIOJONOIYJ | GG
%~ poods

oI J ON[q [0} | IR[NSUR)ODI | PIRMIDR(IOJOU OIIYJ QAOJN YOLIGPIRMNOROAOINIOJONOIYJ | TS

U9 | UO9I3 IIRD | IR[NSURIDOI dn uog pugdnued | €6

UoJ | U003 MIep | IR[NSUR)OI UMOp U9 Yougumoquod | 7S

osue

[ouo)) | -10 US| | IRNSUR)IDI 910N MOUIgOIoN | TG

SYOOTT | UeaI3 JYSI| | IR[NSURIDOI NOOTIXON YOUIGIHOOTIXON | 06

(abd snowa.d 2y) woif sanuuoy))

—
o0

abnd 123U Y] UL SINUIUO
3 U 1uoy

SYOOT] | WeaId JUSI| | IeNSUR)II ~ YOO[01 Y2}IMG YOLIgpUnoIsyoegog | GL

SYOOTT | WeaI3 JyII[| IeN3uR)IOI Jrem pue YOO[0} PUMG | OLIFIRA\PUYPUNOISHORIG | F,
osue

[o1uo) | -10 YII[| IRMSURIIOI 9UeOS ANUIIUO)) NOLIUOT)ISURIT2UOS | ¢,
osue

[o1uo0)) | -10 US| | IRNSUR)ISI SN EISR(EITY YOLIgIIeIGeuadg | 7L

SYOOTT | UodI3 JYSI| | Ie[NSURIDOI spuooos 10} Aeg yougoerqqngroqies | 12

SYOOT] | WeaId US| | IeNSUR)ISI Aeg yougoerqqngAes | (.

Ty uon

ryR(] po1 | remsue)oar | -isod je ST ur wegl sor[doy Yougasriiesnuruajeoeidoy | 69
odue

[o1uo0)) | -10 US| | IRNSUR)ISI onIy st qrun jeadayy yougunieadoy |]9
odue

[o1u0)) | -10 US| | IRNSUR)IDI yeadoy yougieadoy | L9

1 Ateqdsey | weeId o) | remnsSuejoor | 03 uld 1 Aueqdsey 109G YorgoneA [eysiqpuagidsey | 99

jdrngidnrmejuridsey | G9

SYOOT] | WeaIS JUSI| | IeNSur)ISI JOO[Snotaa1d Yougyoor snomard | §9

UOTIOTA on[q | Iemsauer)ool SpIeMO) JUIO] Yougoriuod | €9

(abnd snowaid 2y) woif sanuuo;))

82 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd gTaU 2Y) UL SINULIUOY))

puooos /s
UOT)OIN on[q | remsue)oar | -dogs X Y 03 AIDO[RA 309G YOLIGAIDOPALS | 06
ryR(] pal | Irensue)oal ~0) 9[qeLIRA 19§ YOLIGI[RLIRAISS | 68
SYOOTT | UddI3 JYSI | Ie[NSURIIOI 9, 01 Adusredsuer) 310G YougAousredsuriyieg | 8K
SYOOTT | UodI3 JYSI| | Ie[NSURIDI 04 01 9ZIS 108 YOLIgOoT,021§19S | L8
UOTIOTA on[q | Iemsauer)ool 9[A)S UOIIRIOI 310G YoLgo[A)quoriejoy1as | 98
UOT)OTN onjq | rensur)ool 09 od Ay wonjour 304 yorrgodA 1,300(qOso1sAyJ10S | ¢S]
U0 | UooIS YIep | Ie[nsuwviooal 0y oz1s uad 109 YOLIGOZIGUOJI0S | TR
Song
U9 | UOdIS YIep | IR[NSUR)ISI | UADIY) PoY 0} 10[0d uad 3og YPLUIGIO0) U IS | €]
UOTIOTA on[q | Iemsuer)ool WRISO[Y 0} SSeUl 10§ SOLIGSSRINIOS | 78
SYOOT | WoaI8 JII[| IeNSUR)IOI JTem pue YOO[0} [OUMG YOLIGH00TIOS | T8
puooes/sdoys ~ i x X
UOT)OTN on[q | rensue)ool | 03 s39(qo [[e 10J AjAeIS 309G YougAyarIineg | (O
UOTIOTA on[q | Iemsuer)ool 9%, 0} uoIOLY 198 SPLIGUOTDLIIG | 6
SYOOT | WoaI8 JYII[| IRNSURIIOI 0] 10709 198 YOLIGIO0)I9S | 8L
SYOO] | WeaIS JUSI| | IeNSUR)II 04 0} SSeuIYSLIq 190G YOLIgSSouySLIgIog | LA
UOTIOTA oN[q | IeMmsur)OoI 04 0} 1070R] 90UNO] 19G YOLIgeOunog19S | 9,

(abd snowa.d 2y) woif sanuuoy))

™
o0

(abnd 1xoU 2Y) WL SINULUO)))

UOT)OTN onjq | rensur)ool SO0IGop JYSLI WInf, Yougiysryuang, | 9071
UOTIOTA] oN[q | ITeM3urIOSI | PUODIS/S90IZ0p 1 o[91BI0Y yougpoadgyorTung, | GOT
UOT)OTN onjq | reynsur)ool S9OIS0p JO[Wanf, sprgyorTuang, | 0T
SYOOTT | UedI3 JYSI| | Ie[NSURIDDI Spu02ds I0J MUIYJ, YougeqqngIoqNuIy T, | €01
SYOOTT | Ue2I3 JYSI| | Ie[NSURIDDI ~uIy [, ypugeqqnguIy T, | 701
osue
[ouo)) | -10 US| | IRNSUR)IDI doag yougaydungdolg | 10T
punog 19[0TA | IRINSURIDAI spunos [re doig Yougspunogydols | 00T
1dungie)s | 66
U9 | UodI3 IIep | IR[NIURIOI dure)g ypougdureig | g6
punog 19[01A | IR[NSUR}DAI ~ yeradg yougyeads | L6
punog Jol0IA | Ie[n3ur)oal jrem pue yeadg yougireppuyyeads | 96
rYR(T pol | IeMmsue)oor | X X IR 9[RLIRA MOUS YPOLIIXoTMOUS | G6
SYOOTT | UodI3 JYSI | Ie[NSURIIOI Moyg Pugmoys | §6
UOTIOTA on[q | remsauer)ool © 03 A 198 YOLIGAPS | €6
UOTIOTA on[q | Iremsauer)ool ~ 03 X 108 YPLIGXPS | 76
punog Jo701A | Ie[nSur)dal 04 0} QWINJOA 19§ YOLIGOTPWNOAS | 16

(abnd snowaid 2y) woif sanuuo;))

84 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abind gToU 2Y) UL SANULIUO)))

osue

[o1yU0)) | 10 JYSI[| Ie[NSURIDSI pojeAntoe st oIy J I YPLIGUISoOISOTIOIYJ | |TT

HALOGUMOUPTIOTUSYAN | LTT

ydioguayp | 911

LIDGINTOYM | GTT

1ALDGUONIPUOHUSY A | FTT

dLogpeuo[YUY | €11

odue N

JUOAG] | -10 YIep punoi | 03 seSueyd PUNOISIOR(UWOYAN IdLIDGSoSURYH)PUNOISYORUOYA | GTT
oSue

[o1U0)) | -10 US| | IRNSUR)IDI ONI} ST [IJUN JTeAN YPUgIuNIeA | TTT
osue

[o13U0)) | 10 JYSI[| Ie[NSURIDSI ITRAA PugIeM | 011

UOTION onq | rensur)ool ~ I0J 9)RIqIA YouguoneiqrA | 601
U913

sypLg AN WSLIq | ITemaur)ool YOLIFIOS N FOLIFIoS) | |0T

UOT)OTN oN[(q | ITeNSURIIOI | PUODIS/S90I30p N[SLI 9)RI0Y yougpoodgiySryyuing, | L0T

(abd snowa.d 2y) woif sanuuoy))

85

(abnd 1xoU 2Y) WL SINULUO)))

onjq | rensur)ool omod UM SOLIGOAOINPUOL(] | TCT
U90I8 JYSI[| IRNIURIDAI o YOLIGoOTOISegOUoI(] | OET
osue
-10 UII[| ITe[ngue)dal o PLIGIOIFUO)IISRLOUOI(] | 65T
on[q | remsue)oal - YOLIGOISRGOUOL(] | RZT
jduoguoyngpedomwrenyuoypy | LZ1
osue odAy prooer JHAN
[oyuo)) | 10 JUSI | IRNSURIDSI | SB 0} Fe) DN IXU 19§ YoLIg eI OINIOS | 92T
Gl
Vel
ecl
osue
JUOAY | -10 YIRp punor poddey woypn YPOLIGUOYA | TT
SYOO] | WeaIS JUSI| | IeNSUR)II RIOUIRD WINT, 121
H % 0%
1J Areqdsey onyq reoy | remsuejoor | urd WA Id Atreqdseyieg pugumJudsey | 071
osue uoy)
[o1yuo)) | -10 S | remsueioor | onay st urd 1 Arreqdsey g youguisagotsoriridsey | 611

(abnd snowaid 2y) woif sanuuo;))

86 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd 1xoU 2Y) UL SINULUO)))

odue 0} segued
[o1uo)) | -10 US| punox | uid 1g Awupqdsey uweyp | yougpeSuey)HurJidseyuoyay | ZHT
U913
sypug AN SLIq punor prguonuyo1dungIosn | 1§
UOI}0IN on[q | remsue)oal A X X9 YOLIgIxa1,398 | OF 1
odue
JUSAY | =10 3Iep punolr OAN TOYM PUHINTOYM | 66T
SYOOT] | WeaId JUSI | IRNSURIDSI | IDQUINU [[IIM JOO[0} YIIIMG YOLIGXIPUIAGN00TIRS | RET
Jrem pue
SYOOT | WeaI8 JSJI[| IeNSURIDOI | IOQUINU M JOO[0} YOHMG | JTRA\ PUYIPLIGXOPUTA00TIOS | LET
odue
[o1uo0) | -10 US| punox | podde} uojing pouwres usy A\ JPuguoyngpedowreyuoy A\ | 9¢T
odue
[o13u0)) | 10 US| punox OTLI) SOWI0J9(UOYAN\ YPLIGUOIPUOD)USIYAN | GET
oSue
[o1u0)) | -10 US| punox 9UO[D ® S 1IR)S NOK UM\ YOLIGPOUOIDHUIYM | FET
eAH 0807 MOT[PA | Ie[n3ue)dal Aq 10%0W ¢AH WINT, | YPLIGI[SUYUINTIOJONEAHOST | €67
osue
-10 Y31 | Te[ndue)ool o yougrouurdgouoi(| geT

(abd snowa.d 2y) woif sanuuoy))

87

(1 4aed) sYpO[q [[B JO OIqRL, (T'V O[qRl

SYOO] | WeaIS JUSI| | IRNSUR)IOI IdquINu 0) PUNOISIORQ 19§ | YOLIGXOPUIAGPUNOISYORLIS | LT
jem pue PLIFICMN
SYOOT | WoaI8 JYJI[| IRMSURIOOI | IOQUNU O) PUNOISYOR(] 109G puyxepuAgpunoisyordgiag | 9f1
jdrggseopeory | Gy 1
odue
JUOAF | -10 YIRp punor POYPONOY ST WOAIIS WY A YPLIGUMOUPNOT,UOYAN | FFT
osue
JUOAR | -I0 Iep punox syre)s wrerdord uay A\ OLIGPOIRISUIYAN | €FT

(abnd snowaid 2y) woif sanuuo;))

88 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

n

(abnd jToU 2Y) UL SANULIUOY))

LO9VS PLIgL[qRITRA 198) u | ¥oHq PugerqeLrAdSuRY) | €]

99.¢ YOLIgR[NULIO] [mu yPouq | PpugNAgiousredsuelyasuey) | 7

9896 PLIGRMULIO] u | ¥ouq PUGNAGoZISBuRY) | 1

G981 PLIGRMULIO] [u | ¥ouq PugNAgIooesuey) | 01

08T P RMULIO] [mu | 3pLq PUGNAGssowysugasuey) | 6

76€T odATesedprig [mu | 3pLq pugepwe) |8

F1¥01 yorigaseoprorg 98rSSOT\)SROPROIL MoLIq MPLIgITeAN ISBOPROIg .
08RSSOT\ SR

0 odA [osegypLig | -peorg /ypugiduog | gduos YOLIG IOATIIDYISeIPROIY 9

e44%al odA [esegyporig 98rSSOT\)SROPROIL MoLIq yorrgaseoprorg G

86T PLIELIqRITRA 1S) [u | prq Puguooedgysy | ¥

768¢ PLIEDIqRIIRA 108) [u | g PULBY | €

199 PLGRMULIO] [| PG | PPUGIMEBANMJPUSSOUMpPILY | g

76 PLGRMULIO] U | ¥OHq | PLGOMBATRHSIJPUSSOUmpPIY | T

0,23 PUIGISITIO8) [u | ¥ouq PUGISITIOSNOLWIPPY | 0

JLHSVIVA NI
HONHYHENDDO SSVTIO HHHIVA VAV [HOVAYHLNI SSVID VAV [HdAL HNVN TINX al

(g yred) spo[q [[e Jo 9[qRY, g’V AqRL

89

(abnd gToU 2Y) UL SINULIUOY))

01007 odATesegyrig [nu | puq PUGIPTH | 0€
eary odATesegyrig [nu | puq PUGOLOD | 68
¢10G LI RMULIO] [mu | 3pLq PUGPegsdaIgNoD | 8¢
65008 LI RULIO] [mu | 3pLq PUGOTAPID | LT
19268 odA esegyporig ypouguisegdoor] YoLIq YOLIFIOAIO] | 9F
LIVE odATesegrig [mu | 3puq PUgUsed | 6¢
TGeT odATesedpLig [mu | 3puq PUGOUODSILPRPA | ¥
GOTT APUGISITIS) [mu | prq PUGISITISNJOWNPPA | €T
6ESTT odA 1 esegyplig [mu | puq PHGIOLIOTPWO) | TT
T9€¥ 1drmos [mu | duos yduguotsion | 1g
€LLT odAesedpuig | ooudIof AU | ¥oLIq PHGOUO[D | 0

118 odATeseyrig [mu | puq Pugpegyoydernes) | 61
229 odA osegyorig [mu oLIq Yougpunoisypegies) | 8]
1711 odA oseggyporig [mu oLIq yorgeouwe)asooy)) | LT

00€9T LI RMULIO] [u | pq PUGNAGAdBuey) | 91

LGTTT LI RMULIO] [mu | 3pLq PUGNAGXSURY) | 6T
L9€ LI RMULIO] [mu | 3pLq PUGNAGIUN[OASURY) | FT

(abnd snowaid 2y) woif sanuuo;))

90 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd jToU 2Y) UL SANULIUOY))

G6 MPLIgR[NULIO] [mu YOLIQ | YOLIGL[SUYWINT I0JOINIXNOST | GF

01 odATesedPug | IOUNSITPIIIDPSWNIUD | HOLIq PrIgdolGIojoNIXNOST | FF

L6T LI RMULIO] [[nu | ¥ouq YPLIGIAOINIOIOINIXNOST | €F

ré odA esegyporig I9U)SITPOIII[SUNIN[U() PLIq YOLIGPOI9SEAHOST | CF

T LI RIULIO] [u | puq PUGIUOT ARJEAHOSOT | TF

ey odA [esegyporig TOUD)STTPOYII[OSUIU() MoLIq No11gdolGI0JONEAHOST | OF

87 LG RMULIO] [u | puq YPLITIAOINIOIOINEAHOSIT | 6€

01¢ AOUGISITI8) MU | PG | YIUGISITINSOYUTUN OS] |]€
PUGPU PRI 199] ¥ Pomo]

68€.LE odATesegypug | 1V /ApugsunseN | 3PLq PUGPUHISOTWYLIT | L€

08€.€ PLGUIIIGITS0] PugsunsoN | ¥Lq PUGUISIGITSOTUWYLJT | 9¢

1686 odA T eseyprig [| puq PUGouNoga8pyuQ)L | €
PUGPU PRI 109] Y Pomo]

LOZ69T odAesegypug | IV /3pugsunseN | 3PLq PUGPUHOISOTT | T€
PUGPUT PRI 101] Y Pomo]

V12691 odATesegypug | IV [3pugsunseN | 3PLq LGOS0 | €€

002691 LI RMULIO] PugsunsoN | Yuq PUUISOEOSoL | g€

i PUGI[RLIRA 9S[) [u | puq PUGIXOTAPIH | 1€

(abd snowa.d 2y) woif sanuuoy))

—
D

(abnd 32U 2Y) UL SANULIUOY))

¥¢L0G odATeseOlIg | I9UIISITPIIOROSUWINIUQ | ¥IlIq PpugpunogAerd | 19
V81¢€ odATeseOlIg | IOUISITPIOROSUWNIUQ | ¥IlIq PUGIRMPUYPUNOSARI] | 09
69€cLT AL BMULIO] [mu | 3pLq PUHIVORI | 65
L1¢ AL BMULIO] [mu | 3pLq PUGWSITGOHONYJ | 8G
Ve IPLIGBMULIO] [maw | 3pLq PugauopAe[Jonyd | LS
6273 odA T psegyporiyg TOUR)SITPOYIS[OQUIU() YoLIq WorgdolSIojoNoIyd | 9G
661 SOLIGR[NULIO [nu | ¥Ouq | MOLIGPILMIOJOAOINIOIONOIYJ | GG
16 SOLIGR[NULIO [NU | YOUq PPLIGPIRMNORGOIAONIOIONOIJ | TG
79€ odA T eseyrrg [mu | ¥ouq pugdnued | €¢
I18 odA T eseyrrg [ma | 3pLq PpLguaoqued | ¢S
G0GLT APLIRMULIO] PUNSTPPIDHUQ | Y PUNMION | 14
69486 odATesedprig [ma | 3pLq PUNOOTION | 04
19¢9 AL BMULIO] [mu | 3pLq PLGSAIGNOAOI | 6F
L1988 Pugpugdoo] PHIpuypeed | g pugssopugdoo] | 8y
PLPUHPEI IOV PoMO]
€8€TT odATesed g | -V /aprgsunsoN | 3priq pugpugdooT | Ly
43 AL BMULIO] [mu - 3pLq PUGIUOT AR[JIXNOFIT | 9F

(abnd snowaid 2y) woif sanuuo;))

92 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd jToU 2Y) UL SANULIUOY))

VITT LI RMULION [mu Lq PLIHEIUNOHIS | 9L
vcLel LI O0TIOS [mu Lq Pugpunoisegles | GL
GLT PUGPUNOITHIRG IS [mu PUG | PUGIRNPUYPUNOISPRAIG | TL
TOUR)ST TOUOIGMAN]
686G adA Tesegypug | -uQp "SO[RI([OUSIGMAN ouq YOLIGUOIISURITDUDS | ¢,
TOUR)ST TOUOIGMAN]
LT10GT odA Tpsegypurg | -up "SO[RI([OUSIGMIN Youq YOLIgIIeIGeu0g | 7L
9L8¢ | FPUHRqqNYg IO UIY], [mu Lq Pugarqqngoqies | 1L
948 PR UYL [mu Lq Pugarqqng4es | 0L
€LCT AL ISTTIOS) [mu Lq PLgIsITsNUIWORIANY | 69
GCEE APLITBNULIO Fpugurdogdoor] L] Pugunyesdey | 89
TEVRT APLITRNULIO Fpugurdagdoor] L] Pugreaday | L9
4! AL BMULIO [nu IR FrgonreAesigpuogidsey] | 99
i% 1drog [mu | 3duos yduogidnrmojuridsey | ¢9
I8TT odA T esegyrig [mu RIS APLIHoOTSNOIASI] | §9
667¢ odATesedPIIg | 90U ML Lq PLUoruod | €9
VCEs HILIHRNULIO] [mu }Lq prguonoaIupuiod | ¢9

(abd snowa.d 2y) woif sanuuoy))

93

(abnd 1xoU 2Y) WL SAINULUOY))

G0L% PLIGRINULIO] [ou | uq PLIGOTPWN[OAIRS | 16
9L19 PLgenuIIo] [u | 3praq PLGLDOPAIS | 06
695608 LI RLTRA 195) [u | 3praq PLIGOIRIIBAIG | 68
€GRET YPLIgenurioq [[nu P1Iq YougAouoredsuei] g | 8K
CT81ET PLIGRINULIO [nu | 3prLaq PLIGOTPZISIS | L8
6,01 odL asegprig ou | ¥uq PLIgefiguoneIoy1og | 98
cI8L odATesegrrg o[qeeuol) | ¥OLIq PUGdATI0lqOsOISAYIS | 68
c0S YPLIRINULIO nu | 3praq PLUGIZISUIIS | T8
999 PLIRINULIO [u | rq PLIGIOODUIIS | €8
cLS PLIRINULIO [u | rq PugsseNeg | g8

I9Ud)

-STTMON 19 PaSuRy)
08L6GT odA T esegprg ISITRIRHOOTUQ | LI PUgHooTIeg | 18
9121 YPLIRINULIO o | 3praq PUGAARIDINS | 08
29T YPLIRINULIO nu | 3praq PLIGUOMOIIIS | 6L
918¢ PLgenuIo [u | rq PLGI[0)IG | 8L
79.LG PLIRINULIO [nu | prq PrgssouysugIeg | LL

(abnd snowaid 2y) woif sanuuo;))

94 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd 1xoU 2Y) WL sINULUO)))

899 odA T eseyrig BUNSITNDUQ | L] Prrges | 80T
125 PLIGRINULIO [u | puq Ppugpoadgysrgumy, | L0T
770G PLIGRINULIO [u | puq PUgESuIg, | 901
zalL PLIGRMULIO [ou | suq prgpesdgyoTumy, | GOT
g9 PLIGRMULIO [u | 3puq PugeTuny, | 0T
96€ PLIGRNULIO [ou | suq PLgaqqNG IO, | €0T
791 LI RMULIO] BUNSITIDUQ | LI PRGN UL, | 50T
G9LT odA esegyorig [mu | 3puq Pugidingdolg | 101
878G odA T asegprig [nu | puq Prgspunogydols | 001
0£63ET 1drodg [u | 3duos 1IOGHRIS | 66
(&&é odA T asegprig [nu | puq pugduelg | 86
69101 PLIRINULIO u | 3pLaq Pugyeads | L6
928 PLIRINULIO ou | 3pLaq PugIrenpuyeads | 96
0 YPLIGAqRLIBA 195) [u | puq PLUIXQLM0YS | 66
9LETVT odA T esegyrig [mu | pLq Pugmoys | v6
€608T PLIGRINULIO [u | puq PUGARPS | €6
cOLVT PLIGRINULIO [u | puq PLUGXPS | 66

(abd snowa.d 2y) woif sanuuoy))

95

(abnd 1xoU 2Y) WL SAINULUOY))

0 Ie[NSURIDI yoLIq orge[dwiuIsogorsoi] | €¢1
191 odA T psegyporiyg Ie[n3ur}0I yoLIq YOLIUOYAM | CGT
4 IRNSUR)DDI | YOI YOLIGOOPIA | 1ET
) YOLIGRNULION IRNSUR)DDI | YOLIQ pugumJidsey | 071
) YOLIgUISOIIS0TI[Ie[NSUeRINAI | NOLIq Youguisegotsorpyridsey | 611
¢ YOLIgUISOIISOTI] Ie[NSURINAI | NOLIq YouguisegorsorIroayJ | 811
118G 1drog remgueoor | 4duos JALIDGUMOJUONOTUSYA | ATT
220011 1drog remngueoor | 4duos JdLoQuay A\ | 9TT
13 jdrog remngueoor | 4duos 1dLIDGOINUSYAN | GTT
0SHST 1drIog Iemngdue)oar | 3duos jdrroguonpuo)uay M\ | 11
LILZ 1drog remngueodr | 4duos 1dLIDGPOUOI YUY AN | €TT
Iouo)
-SITTMON 101 POSURY)ISIT
91¢R adA Tesegypug | eyeoou()/pugidung | duos fduongsesuey)punoidpegueyp | g1
6561 APLITRNULIO [ma | 3pLq AUHHUNICA | TTT
VLYV LT APLITRNULIO [3pLq PLIeM | 0TT
0€Te APLITRNULIO [mu - 3pLq ForguonelqrA | 601

(abnd snowaid 2y) woif sanuuo;))

96 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

(abnd 1xoU 2Y) WL sINULUO)))

0 on[q ey IeMSuROI | IOLI YOLIGIXOTI0S | OFT
0 odA T psegyorig Iengsue)oar | YoLq SPUIGIINUIYAN | 68T
0 SOLIGRINULIO IeNSuUR)ODI | YOLIQ YPPLIGXOPUIAGN00TIOS | RET
0 OLIGRINULIO] IRNSUR)ODI | YOLIQ | IIRAPUYPLIXOPUIAGN00TIOS | LET
0 odA T psegyprig Ie[N3uRIIDI YoLIq youguoyngpedomwrenuaypAy | 9€1
0 OLIGR[NULIO] Iemgue)odl | oL YOLIGUONIPUO)USYAN | GET
0 odA esegyorig Ie[nsue}ddl | oL YPLIGPIUOIDUSYAN | FET
0 SOLIGR[NULIO] Iemgue)odl | ¥oLIq eer
0 odA T esegypoLg IRNSUR)ODI | IOLIq ze1
0 SOLIGR[NULIO IRMSUR)OI | IOLIq 1€1
0 odA T esegypLg IeMSUR)OI | IOLIq 0€T
0 odA T esegypug IRNSUROOI | IOLIq 6C1
0 odA osegyporig Ie[NSURIOI YoLIq QZT
0 1dung Iengsue)oar | ydLos jdunguoyngpedowrenuaypy | LGT
0 SOLIGRNULIO] IeNSuROI | IOLI YPLIGgSRIOINILS | 92T
0 Iengue)oar | YoLIq Yorrgordwi§pui o180 I | CgT
0 Ie[ngueIddl | ¥OLIq orgordwiGes[HoISO I | ¥¢1

(abd snowa.d 2y) woif sanuuoy))

97

(¢ 1red) sxporq [[e Jo 9qRL, GV 9[qeL

0| YougxopuAgyooios Ien3due)odl | YOLIq YOLIGXOPUAG PUNOISY RIS | LFT
PLIXepu] LI
0 Agpunoisyoegog IRNSUR)DSI | YL | -PUY XopulAgpunoisyoedias | of|
QG997 1drog remngueoor | 4duos jdroggseopeorg | Gi 1
0 adA T psegporig Ien3due)odl | YOLIq YPLIGUMOUPNOTUSY M | T
0 adA T psegorig Ien3due)oal | YOLIq YOLIGPOIIRISUOT AN | EFT
0 adA T psegporig Iendue)odl | YOLIq YougpasueyHurJrdseyqquoyp\ | gi 1
0 odA T psegprig IeN3uR)ODI | YOLIq Youguonuyaidungras) | TF1

(abnd snowaid 2y) woif sanuuo;))

98 APPENDIX A. TABLE WITH THE VARIOUS BLOCKS ANALYSED

Bibliography

[1] WOLFGANG SLANY (2012). A Mobile Visual Programming System for
Android Smartphones and Tablets. Institute for Software Technology Graz
University of Technology Inffeldgasse 16b, 8010 Graz, Austria.

[2] WOLFGANG SLANY (2014). Tinkering with Pocket Code, a Scratch-like
programming app for your smartphone. Constructionism 2014, Wien,
Austria.

[3] WOLFGANG SLANY (2014). Pocket Code: A Scratch-like Integrated De-
velopment Environment for your Phone. SPLASH ’14 Companion, Oct
20-24 2014, Portland, OR, USA.

[4] https://share.catrob.at/pocketcode/: the official website of Pocket
Code.

[5] https://edu.catrob.at/: resources and experiences around education
combined with Pocket Code.

[6] https://wiki.catrob.at/: a Catrobat Mediawiki with a list of useful
topics about Catrobat. [last modified on 2 November 2017, at 16:18]

[7] https://www.jetbrains.com/pycharm/: website of PyCharm.

[8] DIGITAL LITERACY OR COMPUTER SCIENCE: WHERE DO INFORMA-
TION TECHNOLOGY RELATED PRIMARY EDUCATION MODELS FOCUS
ON? S. Pasterk , A. Bollin, (2017), 15th International Conference on
Emerging eLearning Technologies and Applications (ICETA).

[9] COMPUTING OUR FUTURE. COMPUTER PROGRAMMING AND CODING.
PRIORITIES, SCHOOL CURRICULA AND INITIATIVES ACROSS EUROPE A.
Balanskat, and K. Engelhardt. (2015).

[10] INFORMATICS EDUCATION: EUROPE CANNOT AFFORD TO MISS THE
BOAT. , ,Report of the joint Informatics Europe and ACM Europe Work-
ing Group on Informatics Education.

99

https://share.catrob.at/pocketcode/
https://edu.catrob.at/
https://wiki.catrob.at/
https://www.jetbrains.com/pycharm/

100 BIBLIOGRAPHY

[11] TEACHING PROGRAMMING CONCEPTS TO ELEMENTARY STUDENTS
C. Williams, E. Alafghani, A. Daley Jr., K. Gregory, and M. Rydzewsksi,
2015 Frontiers in Education Conference Proceedings (FIE 2015), 2015,
pp- 706-714.

[12] SHOULD YOUR 8-YEAR-OLD LEARN CODING? C. Duncan, T. Bell,
and S. Tanimoto, ACM WiPSCE’14, 2014, pp. 60-69.

[13] VISUAL PROGRAMMING FOR SMARTPHONES , Pavel Smutny’, 2011
12th International Carpathian Control Conference (ICCC).

[14] TEXTUAL VS. VISUAL PROGRAMMING LANGUAGES IN PROGRAMMING
EDUCATION FOR PRIMARY SCHOOLCHILDREN Hidekuni Tsukamoto, Ya-
suhiro Takemura, Yasumasa Qomori, Isamu Ikeda, Hideo Nagumo, Akito
Monden, Ken-ichi Matsumoto, Frontiers in Education Conference (FIE),
2016 IEEE.

[15] FLOW EXPERIENCE RESEARCH OF SENSING-INTUITIVE DIMENSION
LEARNING STYLES BASE ON VISUAL PROGRAMMING LANGUAGE
Ching-Hung Yeh, Hung Hsiu-Yen, 2015 Third International Conference
on Robot, Vision and Signal Processing.

[16] Wikipedia contributors. "Visual programming language." Wikipedia,
The Free Encyclopedia. Wikipedia, The Free Encyclopedia, [January 17th
2018].

[17] INTEGRATING ALGORITHM ANIMATION INTO A DECLARATIVE VI-
SUAL PROGRAMMING LANGUAGE Paul Carlson, Margaret M. Burnett,
Department of Computer Science, Oregon State University, 1995 IEEE.

[18] SCRATCH: PROGRAMMING FOR AL M. Resnick, B. Silverman, Kafai,
J. Maloney, A. Monroy Hernandez, N. Rusk, E. Eastmond, K. Bren-
nan, A. Millner, E. Rosenbaum, J. Silver, Communications of the ACM,
vol. 52, p. 60, Nov. 2009. |Online|. Available: http://portal.acm.org/
citation.cfm?doid=1592761.1592779.

[19] http://scratch.mit.edu: website of Scratch.
[20] https://www.kodable.com: website of Kodable.
[21] https://www.tynker.com: website of Tynker.

[22] https://www.gethopscotch.com: website of Hopscotch.

http://portal.acm.org/citation.cfm?doid=1592761.1592779
http://portal.acm.org/citation.cfm?doid=1592761.1592779
http://scratch.mit.edu
https://www.kodable.com
https://www.tynker.com
https://www.gethopscotch.com

[23] AN EMPIRICAL STUDY OF SMOOTHING TECHNIQUES FOR LANGUAGE
MODELING Stanley F Chen, Joshua Goodman, TR-10-98, August 1998,
Computer Science Group Harvard University Cambridge Massachusetts.

[24] SPEECH AND LANGUAGE PROCESSING: AN INTRODUCTION TO NAT-
URAL LANGUAGE PROCESSING, COMPUTATIONAL LINGUISTICS, AND
SPEECH RECOGNITION Daniel Jurafsky, James H. Martin, 1st Prentice
Hall PTR Upper Saddle River, NJ, USA 2000.

[25] LANGUAGE MODELING [COURSE NOTES FOR NLP| Michael Collins,
Columbia University 2013.

[26] CODE COMPLETION WITH STATISTICAL LANGUAGE MODELS Veselin
Raychev, Martin Vechev and Eran Yahav, PLDI '14 ACM SIGPLAN
Conference on Programming Language Design and Implementation Ed-
inburgh, United Kingdom.

[27] GRAPH-BASED PATTERN-ORIENTED, CONTEXT-SENSITIVE SOURCE
CODE COMPLETION Anh Tuan Nguyen, Tung Thanh Nguyen and Hoan
Anh Nguyen, Software Engineering (ICSE), 2012 34th International Con-
ference on Software Engineering (ICSE) Zurich, Switzerland.

102 BIBLIOGRAPHY

	Introduction
	Computer programming for education
	Visual Programming Language
	Scratch
	Squeak-Etoys

	Mobile applications and other tools
	Pocket Code
	Kodable
	Tynker
	Hopscotch

	Code completion
	Aim of this thesis

	Pocket Code
	What Pocket Code is
	The structure
	Home Page
	Structure of the application
	Categories of blocks

	Basic components: bricks and scripts
	Script
	Brick

	Dataset and analysis
	Getting the dataset
	Developed applications
	Size and permission
	Download: crawler
	Decompression and storage
	Data, number applications, size

	Analysis
	Structure of xml file
	Analysis of xml file
	Validation of the dataset

	Statistical automatic suggestions
	Key concepts
	Core of the code completion system's structure
	The "tree-structure" of the code completion system
	The tree's traversal

	Bricks-based system
	Scripts-based system
	Execution of bricks- and scripts-based systems
	Merging of the two systems
	Validation of systems: the most likely block
	Validation of systems: the three most likely blocks

	Trigram-based system
	Language Models with N-grams
	Building the tree-structure
	Smoothing for n-grams

	Integration into Pocket Code
	Structure of Pocket Code's source code
	Content
	UI

	3-gram suggestion system integration
	MyNode
	Level
	ReadFromTreeTxt
	ConverterFromClassToId
	NGramSuggestion

	How it works

	Conclusions and future work
	Future work

	Appendices
	Table with the various blocks analysed

