
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

Effective Space-time Geometry for Black Holes and

Cosmology

Thesis supervisor Candidate

Prof. Sabino Matarrese Roukaya Dekhil

Thesis co-supervisor

Dr. Daniele Pranzetti

Academic Year 2018/2019



Contents

Introduction 3

1 Canonical formulation of General Relativity 7
1.1 General Relativity as a constrained system . . . . . . . . . . . . . . . . . . . . 8
1.2 Constrained Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 The gauge unfixing procedure . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 The geometry of hypersurfaces and foliations . . . . . . . . . . . . . . . . . . . 15

1.3.1 The geometry of Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Spacelike hypersurface and geometrical relations . . . . . . . . . . . . . 17
1.3.3 Globally hyperbolic space-times and foliation kinematics . . . . . . . . . 19

1.4 3+1 Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 ADM Hamiltonian formulation of GR . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Kerr-Schild metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 Tetrad formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7.1 Tetrad variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7.2 Hamiltonian analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Spherically symmetric phase space . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Loop Quantum Gravity 37
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Geometric operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 The area operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Volume operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Quantum reduced spherically symmetric geometries 45
3.1 Orthogonal gauge fixing of first order gravity . . . . . . . . . . . . . . . . . . . 46

3.1.1 Constraints and spherical symmetry implementation . . . . . . . . . . . 47
3.1.2 Constraints for the Kerr-Schild foliation . . . . . . . . . . . . . . . . . . 50
3.1.3 Extended constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Quantum reduction implemented for black holes . . . . . . . . . . . . . . . . . 52
3.2.1 Reduced spin network states . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Kerr-Schild effective Hamiltonian constraint . . . . . . . . . . . . . . . . . . . . 56

4 Classical constraint algebra 60
4.1 Constraint algebra for constrained general relativity . . . . . . . . . . . . . . . 60
4.2 Equations of motion of the phase space variables for spherical symmetric geome-

tries with a Kerr-Schild foliation . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Ashtekar-Barbero connection evolution equations . . . . . . . . . . . . . 63

1



2

4.2.2 Fluxes evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Diffeomorphism constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Effective dynamics of a black hole spacetime 70
5.1 Constant quantum parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Ashtekar-Barbero connection effective equations of motion . . . . . . . . 73
5.1.2 Fluxes equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Phase space dependent quantum parameters . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Ashtekar-Barbero connection effective evolution equations . . . . . . . . 80
5.2.2 Fluxes effective evolution equations . . . . . . . . . . . . . . . . . . . . . 85

6 Effective diffeomorphism constraint 88
6.1 Effective Hamiltonian bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Effective radial evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Fluxes equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Connection components equations of motion . . . . . . . . . . . . . . . 96

A Differential geometry and topology 102
A.1 Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2 Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B On-shell vanishing evolution equations 105
B.1 The equations of motion for the connection . . . . . . . . . . . . . . . . . . . . 105
B.2 Fluxes evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



1

Abstract

Effective space-time geometries can be derived by evolving initial data sets through a modified
Hamiltonian obtained within a canonical approach to quantum gravity. This problem can be
formulated precisely by first selecting a reduced Hilbert space of the full theory Kinematical
Hilbert space and then preforming a symmetry reduction in order to derive a symmetric sector
of the theory. This framework has been successfully applied in the cosmological case. Recently,
this setting has been extended by implementing a choice of gauge relevant for a black hole
geometry, which led to the derivation of an effective Hamiltonian by means of coherent states,
which are the best candidates to describe classical geometries. The classical data entering the
coherent states can be seen as the initial data set to be evolved with the effective Hamiltonian.
We study the algebra that the effective Hamiltonian constraint of the theory generates, as well
as the equations of motion that the reduced phase space variables satisfy. With the goal to
achieve closure of the algebra of the effective constraints, we extract a candidate expression for
the effective diffeomorphism constraint, which is also compatible with the effective evolution
equations. This is required in order to restore (a deformed version of) general covariance and to
guarantee the consistency of the effective dynamics to be solved for.
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Introduction

Since the time of "the father of observational astronomy", Galileo Galilei, the idea that humanity
occupies a privileged position at the center of the Universe has been challenged by the regularity
of the cosmos as found by observations. This very ancient idea laid out the ground for the
concept of homogeneous and isotropic Cosmology, i.e. that in the Universe there are no preferred
points or choices of direction for performing observations. Indeed, this idea of isotropy has been
proven to be very favorable also by modern experiments with increasingly high precision.
However, observations must be explained and formulated in the framework of physical theories,
that can deliver predications and able to provide explanations to them. This is one of the various
applications of the General theory of Relativity (GR) that comes into play. Indeed, under the
assumption of homogeneity and isotropy, General Relativity conveyed a very important lesson
in Cosmology, namely, that we are living in an expanding universe that started from a singular
state, i.e a state that ideally could be obtained by homogeneous shrinking of spacetime to a
point. Singularities are generic features of cosmological solutions and gravitational collapse,
which was first proven by Roger Pensrose [1].

Aside from cosmological singularities, one can reflect on more concrete situations such as black
holes singularities, where according to GR spacetime ends. The theory of black holes has
produced tremendous results and predictions of the nature of these physical objects. Perhaps
one of the most intriguing aspects that stands out among them is the striking analogy between
the mathematically rigorous laws that governs black holes and the theory of Thermodynamics.
Indeed, the most important analogy between the two theories is the law of entropy mirrored in
the law of the area increase in black hole physics. This strong similarity hints to the presence
of an underlying microscopic structure and a quantum nature for black holes.
To what extent quantum effects can reshape the predictions acquainted in the classical for-
mulation of singularities and black holes has been a long standing unresolved problem in
theoretical physics. It is strongly believed that these very quantum effects can depict the
scenarios accounting for a resolution of the singularities. If that is to be taken true, various
enigmas can be smoothly washed away from the challenge-list of theoretical physics.

In the context of black hole physics, another long-lasting mystery is that of the cosmic censorship
principle and the information loss paradox, highlighted by S. Hawking [2]. Hawking was the
first to formulate the argument that the usual rules applied in Quantum Mechanics do not apply
in the life span of a black hole, namely from its formation till evaporation. If we were to take
the semi-classical approximation deployed by Hawking to be exact the unitarity principle will
be violated, as black hole evaporation predicts that a pure quantum state will eventually evolve
to a mixed one [3]. There has been recent proposal to solve this paradox, some argue that black
hole event horizons develop into "firewalls" or "fuzzballs", while others suggest the existence
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of Planck-sized remnants of the evaporation process, and singularity resolution by quantum
gravity effects that lead to an extension of the spacetime diagram for evaporating black holes.
Beyond all speculations, a definitive fate of a classical singularity is only predicted by a detailed
full Quantum Gravity calculation. Given the intimate relation between the last stages of black
hole evaporation and Planck-scale physics, this paradox will likely be resolved by a better
understanding of a Quantum Gravity description. Admittedly, it is true that General Relativity
is a revolutionary theory on many aspects and can provide answers and prophecies for an
unaccountable physical scenarios, however, it is still not reconciled with the second dominant
theory in physics, that is the theory of Quantum Fields (QFT). If Quantum Field theory
principles are to be applied to General Relativity, then one might convey that GR is perhaps
an approximation to some more fundamental theory, from which GR emerges. The mainstream
approach to approach this fundamental problem in current physics, is the theory of Quantum
Gravity (QG).

Combining the main lesson of General Relativity, i.e. "spacetime and geometry are the
gravitational field, and are dynamical, physical entities" [4] with the main lessons of Quantum
Mechanics, i.e. "all physical systems possess quantum properties: irreducible uncertainty,
probabilistic nature of physical quantities, entanglement, etc", we know that spacetime and
geometry should exhibit a similar quantum nature. This very possibility raises conceptual
difficulties of the most profound nature, and our picture of the world remains contradictory and
incomplete.
The main apprehensive approaches to QG [4] rely on the straightforward quantization of GR.
Some models apply quantization schemes directly to the full spacetime geometry, for instance
canonical Loop Quantum Gravity [5, 6]; others follow path integral formulations of quantum
GR and their modern evolution mostly based on lattice structures (e.g. Causal Dynamical
Triangulations [7], or Group Field Theories [4, 8]). String theory [9], started off as a tentative
enhancement to graviton-based formalism to Quantum Gravity, naturally resulting from con-
sidering extended string-like (and brane-like) variables, has as well mirrored striking quantum
aspects of the gravitational field despite the absence of a more fundamental description of its
microscopic nature. All these approaches agree on the quantum nature of spacetime, but more
importantly, they inevitably hint towards a more fundamental structure constituting the very
core of gravity.
Despite this vast landscape of diverse, yet complementary, approaches to the problem of QG,
these models commonly indicate the crucial change in perspective towards the quantum nature
of spacetime [10], namely that the fundamental nature of our usual notion of continuous space-
time is actually tightly related to the notion of building blocks "atoms of space", of no direct
gravitational, spatiotemporal or geometric interpretation, and from which it has to emerge,
whence, giving rise (in a suitable approximation) to the usual notion of geometry, gravity
and fields, producing the physics we are familiar with. Black holes are often considered the
true fate of quantum gravity approaches, which should provide a microscopic derivation of
their thermodynamic properties, and solve the paradoxes arising from a semi-classical treat-
ment. This generalizes the modeling of black holes inspired by loop quantum gravity (LQG) [11].

LQG [12, 13, 14] lays a preferable ground for the non-perturbative quantization of GR. The
most studied case of quantum black holes and singularities [15, 16] are content to the investiga-
tion of the interior geometry and the event horizon of a Schwarzschild black hole describing
homogeneous geometries captured by the so-called Kantowski-Sachs type metrics. This partic-
ular geometry can be treated as a minisuperspace for which the techniques developed in the
cosmological context [17, 18, 19] of Loop Quantum Cosmology (LQC) are available and can
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be readily used. The study in this framework delivered results hinting towards a singularity
resolution of the bouncing cosmological type.

In this work we focus on a similar approach based on the full theory of LQG, the so-called
Quantum Reduced Loop Gravity (QRLG)[20] applied to spherical symmetric geometries [21]
with Kerr-Schild foliation [22, 23]. The QRLG program was mainly implemented in LQC sector
for cosmologies with homogeneous anisotropies [17]. For instance, in the case of Bianchi I
spacetime, the program of QRLG relies on treating the partially reduced phase space endowed
with the symmetry reduction at the quantum level, contrary to the mainstream approach of
LQC in implementing it at the classical level.
Indeed, performing the symmetry reduction [24] at the classical level before quantization has
the negative drawback that most of the full Hilbert space structure is lost, and this is the key
difference that QRLG hinders, i.e. by reverting the direction in which the treatment is done.
This consequently allows to work with the complete structure of the full theory, consisting of
quantum states of polymeric nature decorated by graphs and SU(2) representations.
Moreover, in the case of black holes, [20] the main results present in the literature are always
restricted to the interior region where space is homogeneous [23, 25] and not stressing the
importance of the exterior region. Hence such approaches tend to separate the two regions, and
therefore, employ different respective Hilbert spaces, giving rise to some subtleties once one
wishes to sew the two regions. Tentative investigation to extend the framework to include the
exterior, has been little, perhaps even inexistent.
However, the foundations for a systematic treatment of spherically symmetric spacetimes in [21]
set the extended treatment option to include the investigations on various sets of coordinate
systems such as horizon penetrating coordinates or coordinates restricted to the interior or
exterior of the event horizon of a black hole, since the obtained results are foliations-independent
and therefore one can also study the exterior region of a black hole.
Indeed, to present a quantum theory of gravity that is capable of describing the full space
(interior and exterior) should accommodate the ambiguities of diffeomorphisms covariance,
arising in the quantum theory, that has to reconcile with the classical theory by producing the
right classical predications in some suitable approximation. Therefore, there are two crucial
ingredients a quantum theory of gravity has to provide for a consistent description for quantum
black holes with horizon penetrating horizon, namely, expressing the effective quantum equiva-
lent for the diffeomorphisms constraint and on-shell closure of the constraint algebra to avoid
anomalies. Once this is achieved, solving the dynamics should describe the world as we know,
and more interestingly open doors to new physics.
This work tackles the problem of diffeomorphism constraint on the effective level in the QRLG
setup for spherical symmetric geometries. With the goal to achieve closure of the algebra of
the effective constraints, we present a tentative strategy to extract a candidate expression for
the effective diffeomorphism constraint, which is also compatible with the effective evolution
equations. This is required in order to restore (perhaps even a deformed version of) general
covariance and to assure the consistency of the effective dynamics to be solved for.

This work is organized as follows. We will start in chapter 1 by outlining the basic ingredients of
the canonical formulation of General Relativity, where we go through the 3+1 decomposition of
spacetime that would allow to formulate GR as a constrained theory. Then we discuss possible
reformulations of the Einstein-Hilbert action, namely the ADM- and connection formulation
respectively, where in the latter we introduce new conjugate variables based on the triad
formalism. The change of variables, accounted for by introducing the triads, enables one to
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consider a new set of canonical conjugate variables, presented by fluxes and the Ashtekar-
Barbero connection. It will lay out the ground for the LQG quantization scheme by introducing
the notion of holonomies, which will be the main subject of chapter 2. In chapter 3, we outline
the so-called gauge unfixing of first order gravity procedure and present the results it predicts for
spherical geometries and more specifically the resulting constraints for the Kerr-Schild metric.
At a second stage, we lay out the basic steps and key concepts in the QRLG quantization
technique applied to spherical geometries and then compute the resulting effective Hamiltonian
constraint specified to a black hole spacetime geometry described by a Kerr-Schild metric. In the
last two chapters, chapter 4 and 5 are devoted to the investigation of the constraint algebra. We
first explore in chapter 4 the classical constraint algebra for the spherical symmetric geometries
with Kerr-Schild foliation and the on-shell consistency of the evolution equations of motion for
the phase space variables that are trivially satisfied for the stationary case of the Kerr-Schild
metric. In chapter 5 we derive the effective quantum equations of motion for the canonical pair
concerning two scenarios, namely when the characteristic quantum parameters are taken to
be constant and dynamical, i.e. as space functions. This was the preliminary set up to start
studying the effective algebra with the aim to propose a candidate expression for the effective
diffeomorphism constraint presented in chapter 6, where for the sake of simplicity, only the
case of the constant quantum parameters will be presented. At last, we will discuss the results
obtained for our proposal of the effective diffeomorphism constraint.



Chapter 1

Canonical formulation of General
Relativity

Generally covariance are a fundamental technical tool to account for the fact that the choice of
coordinates, which is merely a way to conveniently describe a phenomenon, should be of no
physical relevance [26]. For gauge theories such as GR, with its underlying symmetry principle
of general covariance, the Hamiltonian formulation has proved itself to be particularly useful in
encoding important insights. The application of several different Hamiltonian formulations to
the theory of GR has been developed in the existing literature, see for instance [27]. Canonical
structures play a role for a general analysis of the systems of dynamical equations encountered
in this setting, for the issue of observables, for the specific types of equation as they occur in
cosmology or the physics of black holes, for a numerical investigation of solutions, and, last
but not least, for diverse set of ambiguities forming the basis of quantum gravity (QG). This
establishes the basis from which we will be able to study spherical symmetric geometries in the
framework of quantum gravity [16].

The first step in a canonical formulation of a theory is the introduction of the conjugate
momenta of the field theories. Consequently, the canonical scheme relies on a specific time
choice in order to work with the time derivative to obtain the conjugate momenta, which
should underly the manifest covariance of the theory [28]. Accordingly, canonical equations of
motion are formulated for spatial tensors rather than space-time tensors. Introducing momenta
after performing a space-time coordinate transformation would oftentimes result in a different
set of canonical variables. The resulting setting does not have a direct action of space-time
diffeomorphism on all its configurations, making the covariant feature underlying the theory a
non-trivial one. Indeed, even though the space-time symmetry is no longer manifest and not
obvious from the canonical equations, it must still be present; for all what has been done is just
reformulating the classical theory. The mathematical basis of Hamiltonian methods is encoded
in the symplectic and Poisson geometry [14].

A thorough presentation requires the prerequisites that we will sketch in the first section of
this chapter regarding constrained Hamiltonian systems and covariant theories, such as GR.
In the second section we will apply what we have learned about the canonical treatment to
the general theory of relativity. For simplicity, we will work in vacuum GR [29, 28], and derive
its Hamiltonian formulation. To this aim we will start by presenting the canonical analysis in
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metric variables in terms of ADM (Arnowitt, Deser and Misner) [30] variables using the 3+1
decomposition [31] and move on to the introduction of new variables in the framework of the
triad formulation and comment on the Cauchy problem in GR [31, 29, 22, 12, 13].

1.1 General Relativity as a constrained system

To point out the formulation of general relativity as a constrained theory, we can examine the
Einstein tensorial equation

Gab = 8πGTab , (1.1.1)

where Gab is the Einstein tensor defined as Gab = Rab − 1
2Rgab, Tab is the energy momentum

tensor, G is Newton’s gravitational constant, Rab is the Ricci tensor and R being the Ricci
scalar.
The tensorial equation (1.1.1), once split into components, comprises ten equations describing
the fundamental interaction of gravity resulting from the fact that spacetime is being curved in
the presence of mass and energy. These equations are of different types. They mainly constitute
a system of second order partial differential equations, and thus an initial-value problem. Hence,
in order to extract the underlying physics from these equations, one would have to pose the
values of fields and their first-order time derivatives. As interesting and straightforward this
might seem, there are two components of (1.1.1) that are of first order, namely the time parties
G0
a and G0

0. As a matter of fact, it turns out the set of these equations contribute as constraints
on the initial values of second-order ones. For instance the equation

G0
a = 8πGT 0

a , (1.1.2)

relates initial values of fields instead of determining how fields evolve. Another important
property, derived from the Bianchi identity ∇aGab = 0, is that the constraints are preserved
in time; their time derivative automatically vanishes if the spatial part of Einstein’s equation
is satisfied and if the constraints hold at one time. Moreover, while examining explicitly how
second order derivative can arise in the components of (1.1.1), another crucial property emerges.
To this end, let us study the Ricci tensor, that is given by

Rµν = ∂νΓνµρ − ∂µΓννρ + ΓαµρΓννα − ΓανρΓνµα , (1.1.3)

with Γνµρ being the Christoffel symbols that read

Γρµν = gρσ

2 (∂µgνσ + ∂νgµσ − ∂σgµν) . (1.1.4)

One can notice that a second order time derivative can appear only from the first two terms,
since the Christoffel symbols are first order derivative in the metric. Thus the first two terms in
(1.1.3) will contribute to the second order only for time components µ = ν = 0. Computing the
Christoffel symbols in this case and plugging it in the expression for the Ricci tensor gives

R00 = g0λ∂2
0g0λ −

1
2g

00∂2
0g00 −

1
2g

κλ∂2
0gκλ + · · · = 1

2g
ab∂2

0gab + · · · , (1.1.5)

R0a = 1
2g

0b∂2
0gab + · · · ,

Rab = −1
2g

00∂2
0gab + · · · .
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At this stage, we can spot a crucial property that occurs in cosmological models: only spatial
components gab of the metric appear with their second order time derivatives. Concerning
the other components, g00 which plays the role of the lapse function that we will discuss later
on and g0a, appear only with lower-order time derivative; pointing out the difference in the
dynamical role they play when compared to the one gab does.
Moving on to computing the Ricci scalar and the Einstein tensor’s components G00, G0a and
Gab and focusing on the components G0

a and G0
0, one can conclude that they, indeed, do not

contain any second-order time derivative. The corresponding parts of Einstein’s equation are
hence of lower order in time derivatives than the whole system. This set of equations provides
constraints on the initial values while the spatial components dictate the evolution.

Revealing the existence of constraints in (1.1.1), shows not only that initial values are not allowed
to be taken arbitrarily, but also hints towards underlying symmetries. Indeed, constraints come
in different types, first, second, etc, as we will show in the next section. In particular those that
appear as a first class set of constraints, as it is the case in general relativity, generate gauge
transformations. Classically, the gauge transformations of GR are equivalent to a change of
coordinates and therefore entailing the general covariance under this transformation. In this
context of constrained systems, the existence of gauge symmetries gives rise to singular systems
and GR is one example of a more special class of generally covariant theories in which the local
symmetries are given by coordinate transformations.

However, if we want to implement the Hamiltonian setting to this kind of constrained theories
and its respective generated gauge transformations, several subtleties emerge. We know that
the canonical setting relies on the time variable that will allow the reconstructed Hamiltonian
to dictate the evolution of the system. This certainly requires a deeper understanding of the
geometry of general relativity, and it is the origin of several characteristic and hard problems
to be addressed in numerical relativity and quantum gravity. In practice, the appearance of
constraints is an evidence of the redundancy the formulation of a theory has in terms of fields
on a space-time. Despite the fact that what is physically important is the geometry, specific,
coordinate-dependent values of fields such as the space-time metric at specific points are used
in any field theoretic structure. In fact, there might exist coordinate transformations relating
solutions that formally appear distinctive when expressed as fields, but evolve from the same
initial values. A deterministic theory, however, cannot have a scenario where different solutions
evolve starting from the same initial values. Solutions concerning the same initial values but
describing field with different values in a future region must be classified and considered as
two distinct representations of the same physical configuration. The number of distinguishable
physical solutions is hence smaller than what is naturally expected from the number of initial
values required for a set of second-order partial differential equations for a certain number of
fields. Therefore, additional restrictions on the initial conditions must exist, which are inherited
in constraints. This is the crucial reason why the constraints must enter into play: functionals
on the phase space that do not contribute with equations for time derivatives of canonical
variables but rather, non-trivial relations between them. They imply conditions to be satisfied
by suitable initial values, but also point out how different parametrization of the same physical
solution must be selected.

While the invariance under coordinate transformations is well known and present already in the
Lagrangian formulation of general relativity, the canonical set up involving constraints has several
convenient implications. Maybe the most important one is the ability to study the structure
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of space-time in terms of the algebra of constraints undertaking Poisson brackets, without
reference to coordinates. This algebraic simplicity is important, for instance, in approaches
to quantum gravity, where a continuum manifold with coordinates may not be available but
instead can be replaced by new structures. In terms of quantized constraints, one would still be
able to study the underlying quantum geometry of space-time. In fact, at the classical level, a
canonical formulation has indeed several important features, when it comes to handling and
imposing gauge choices which is accessible and more physical to consider in terms of space-time
fields rather than coordinates.
Before venturing into working out the Hamiltonian formalism for GR, let us present some
mathematical tools that will turns out to be of great use to help us reconstruct the canonical
version of GR.

1.2 Constrained Hamiltonian systems

The Hamiltonian formalism is the basis of any canonical treatment with the goal to quantize a
theory. In order to incorporate gauge symmetries various steps and consideration should be
taken into account. In this section we will discuss the case of constrained Hamiltonian systems
in the absence and presence of gauge symmetries with the aim to apply this technology to
general relativity.

Hamiltonian systems without gauge symmetry

The starting point of any Hamiltonian treatment for a given theory is the derivation of the
Legendre transform and equations of motion. To this aim, one can proceed in two different
steps, namely, defining the Hamiltonian system from scratch or in the most common way, by
starting with a Lagrangian L and Legendre transform it, since it exhibits manifest invariance.
If one considers a time independent Lagrangian

L
(
q1, . . . , qn, q̇1, . . . , q̇n

)
≡ L

(
qi, q̇i

)
, (1.2.1)

then writing down the action

S =
∫
dtL , (1.2.2)

in order apply the least action principle, namely requiring that the variation δL = 0 vanishes,
then one ends up with the familiar Euler-Lagrange equations,

d

dt

∂L

∂q̇i
= ∂L

∂qi
⇔ q̈j

∂2L

∂q̇i∂q̇j
= ∂L

∂qi
− q̇j ∂2L

∂q̇j∂qi
. (1.2.3)

Bear in mind for now, that in the case where we do not have to deal with gauge symmetries,
the accelerations q̈j are uniquely defined which is equivalent to saying that the determinant
det ∂2L

∂q̇i∂q̇j
6= 0. The canonical momenta read then

pi = ∂L

∂q̇i
. (1.2.4)

These are the basic steps into the Hamiltonian treatment of a given theory, that is consequently
established on assuming that the variabels qi and pi are independent and setting up first order
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evolution equation for them. To this aim, one can treat functions that have a variation in terms
of qi and pi only, yielding

δ
(
piq̇

i − L
)

= q̇iδpi + piδq̇
i − ∂L

∂qi
δqi − ∂L

∂q̇i
δq̇i = q̇iδpi −

∂L

∂qi
δqi , (1.2.5)

so that the Hamiltonian is defined as

H := piq̇
i
(
qj , pj

)
− L = H

(
qi, pi

)
. (1.2.6)

This Hamiltonian is uniquely defined which means that we write the q̇i in terms of qj , pj along
with the necessary condition det ∂2L

∂q̇i∂q̇j
= det ∂pi

∂q̇j
6= 0.

Applying again the least action principal, the canonical equations of motion read

ṗi = −∂H
∂qi

, q̇i = ∂H

∂pi
. (1.2.7)

The set of variables qi, · · · ,qN represents the set of coordinates for the configuration space and
similarly the set of all the qi and pi coordinatise the phase space which we will denote by Γ. In
this formulation, the physical observables are smooth functions of (qi, pi ) and the set of phase
space functions form an algebra. The symplectic structure for two functions yields the Poisson
bracket

{f, g} = ∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
. (1.2.8)

Furthermore, the canonical equations of motion can be written

q̇i =
{
qi, H

}
, ṗi = {pi, H} . (1.2.9)

The lesson to take from this Hamiltonian formulation in the absence of gauge symmetries is
that the physical degrees of freedom of the system that coordinatise phase space are distinct
points in this space, where each point corresponds to a distinct physical situation. Moreover
the Hamiltonian generates a flow on the phase space that can be viewed as physical evolution.
This will not be the case for gauge systems as we will see in the next paragraph, for the main
reason that the distinct points in phase space can correspond to the same physical situation
and hence the Hamiltonian flow is not uniquely defined for points (physical situations) in the
phase space where the necessary condition

det
(

∂2L

∂q̇i∂q̇j

)
= 0 .

ceases to be viable .

Hamiltonian systems with gauge symmetry

For our treatment we are interested in Hamiltonian formulation of gauge theories such as general
relativity. Let us start by recalling the Lagrangian equations of motion

q̈j
∂2L
∂q̇i∂q̇j

= ∂L
∂q̇i
− q̇j ∂2L

∂q̇i∂qj
. (1.2.10)
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We saw that to get access to the evolution of the phase space variables q̈ as a function of (q̇i, q̇j)
that is unique, is equivalent to requiring the non vanishing of det

(
∂2L
∂q̇i∂q̇j

)
6= 0. Since it is not

the case for gauge theories, the canonical momenta p(x) = ∂L
∂q̇(x) can not be uniquely defined,

allowing therefore to vary q̇j without affecting their canonical pair p(x). The fact that we allow
the momenta to not be independent of the velocity, implies that there is a condition relating
the momenta which can be expressed as

Vm(p(x), q(x)) = 0 m = 0, · · · , M . (1.2.11)

This relation is called a primary constraint for the dynamical variables in the Hamiltonian
formalism. Due to (1.2.11) the Hamiltonian is not uniquely determined since we can always add
any linear combination of (1.2.11). Alternatively one can define a notion of total Hamiltonian,
for which our theory cannot distinguish between the latter and the original one H, as

HT (p(x),q(r)) = H(p(x), q(x)) + cmVm(p(x), q(x)) , (1.2.12)

where the coefficients cm can be arbitrary functions of the phase space variables. These primary
constraints affect the Poisson structure of the theory as well. In fact, we obtain an extended
Poisson bracket to the cm that are in some way consistent with the symmetries of the bracket.

ḟ = {f, H + cmVm} = {f, H}+ cm {f, Vm}+ {f, cm}Vm = {f, H}+ cm {f, Vm} . (1.2.13)

To fix the notation, we follow Dirac’s notation for this treatment. A weak equality is denoted
by ≈ and means equality modulo constraints. It is important to stress out that it shall be
used only after all Poisson brackets have been evaluated. The consistency of Vm ≈ 0 with the
evolution equations implies

V̇m = {Vm, HT } = {Vm, H + cmVn} ≈ {Vm, H}+ cn{Vm, Vn} ≈ 0 . (1.2.14)

which further implies to consider four physical cases where the above equation must hold,
namely, when (1.2.14) is trivially satisfied, e.g. 0 = 0, or we are dealing with an inconsistent
theory, e.g. 1 = 0, or we could put further condition on the cm and therefore considering new
constraint χk(q,p) = 0, independent of the cm. The relevant and more interesting case turns out
to be the last one. We call χk(q,p) = 0 secondary constraints. For secondary constraints, one
uses the equations of motion, as opposed to primary constraints. These constraints will reiterate
the consistency algorithm generating therefore tertiary constraints. This iterative process will
either come to an end at a certain point or not, and in the latter case the theory is inconsistent.
Hence we end up with K new constraints and the set of all constraints is thus denoted by
{V1, · · · , VM+K} := {V1, · · · , VM ,χ1, · · · ,χK}, where we define Vj , j = 1, · · · , J = M +K..
Going back to include gauge transformations, we call a phase space function of first class if it
has vanishing Poisson bracket with all constraints, i.e.

{f,Vm} ≈ 0 . (1.2.15)

Otherwise, it is called second class. Moreover, another property was proved in Dirac’s conjecture,
stating that all first class constraints generate gauge transformations. The dynamic of the
theory are encoded in an "extended" Hamiltonian HE defined as being HT plus an arbitrary
combination of first class constraints.
The generalization to field theories is straightforward once we go over to an infinite number of
degrees of freedom, namely

• qn, n = 1,2, . . . becomes q(x), x ∈ R3 .
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• ∑
n becomes

∫
d3x .

• ∂L
∂q̇n = pn becomes δL

δq̇(x) = p(x) where L =
∫
d3xL(x) and p(x) are defined as δq̇L =∫

d3xp(x)δq̇(x).

For example the relation that holds for independent variabels of the phase space ∂qi

∂qj
= δij

becomes a functional derivative for field theories denoted by

δϕ(x)
δϕ(y) = δ(x− y) . (1.2.16)

where the familiar derivative for discrete quantities is changed with the variational symbol δ
and δ(x− y) is the Dirac delta-distribution. Furthermore, to avoid subtleties that arise when
using distributions and instead work with well-defined algebraic relationships, one can smear
fields or functionals of them. In the same manner one can pose a well defined Poisson bracket,
that yields the algebraic relation

{f, g} =
∫

dnx
(

δf

δϕ(x)
δg

δπϕ(x) −
δf

δπϕ(x)
δg

δϕ(x)

)
, (1.2.17)

for a scalar field and its momentum πϕ.

The constraint surface geometry

It is important to point out the clear splitting of the constraints into first and second class. The
first class constraints are related to the gauge transformations of the fields, whereas the second
class pairs come hand in hand with the transformation generators and gauge fixing. Admittedly,
solving the constraints is often times complicated and it might be that one is not able to
explicitly solve all them. In this case one may work with the constrained system implicitly by
using the constraints without solving them. More precisely, if one chooses to work with the
dynamical flow of phase-space functions generated by the Hamiltonian, it is then important
to verify that they stay contained in the constraint surface. This would be guaranteed in the
case where all constraints are solved explicitly but not if some of them cannot be solved. For
first class constraints, the Hamiltonian flow is tangent to the constraint surface and they do not
give rise to subtleties 1. However, what will be more important is dealing with the second-class
constraints generating a flow transversal to the constraint surface. In this case, if one does not
solve the second-class constraints, they may contribute to the Hamiltonian making the flow
move off the constraint surface. Fortunately, instead of solving all second-class constraints, one
may modify the Poisson brackets in a way to guarantee that the Hamiltonian flow generated
by the old constraints with respect to the new Poisson structure is tangent to the constraint
surface. This is possible by introducing the Dirac bracket,

{f,g}∗ = {f,g} − {f,χα}Cαβ {χβ,g} , (1.2.18)

where the ∗ denotes the Poisson bracket after solving the constraint, χi are the second class
constraints and CαβCαβ = δαβ is defined as detCαβ 6= 0 everywhere on χα = 0 with Cij being
the matrix defined in terms of the constraints, namely Cij = {Vi, Vj} such that

Cij =
(

0 0
0 Cαβ

)
(1.2.19)

1See appendix for symplectic manifolds and Hamiltonian flow.
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that can be interpreted as a subset of equal number of the original constraints to be handled as
gauge conditions for the set {χk}. The Dirac bracket is unaffected by choosing a different set of
second class constraints on the constraint surface. Indeed, with this new Poisson bracket, the
flow generated by the second-class constraints stays on the constraint surface, leaving the Poisson
structure for functions generating a flow tangent to the constraint surface unchanged, while
removing any flow off the constraint surface generated by functions of the second-class constraints.
Even if not all second-class constraints can be solved, the Dirac bracket, which is often easier to
compute, makes sure that they do not lead to spurious flows off the constraint surface. However,
while proceeding with the quantization scheme, the first class constraints preserve all properties
of the Poisson bracket which is particularly important, because those properties are translated
by commutators upon quantization. Whereas the second class constraints reflects inconsistencies
at the quantum level. Indeed, their action do not preserve the constraint surface. This is simply
because they do not Poisson-commute with some of the constraints and practically one can
choose the constraints as local coordinates of the constraint surface. However, in this case they
can not be treated as gauge generators. One way to go around this, is to work with the above
Dirac bracket.

1.2.1 The gauge unfixing procedure

The usual treatment of the GU procedure is to basically transform a second class constraint
into first class ones. In our case, we will proceed with a slightly different method. We will
consider some first class constraints, turn them into second class ones by imposing some set
of gauge fixing conditions for some of the phase space coordinates. The new set of first class
constraints we obtain after preforming GU represents a system where the original constraints
were traded with the initial gauge fixing conditions we have imposed. To be concrete, let us
outline briefly the program that will be applied in order to get the extended phase space. We
have the set of first class constraint fulfilling the relation

{Vi(~x), Vj(~y)} = 0 , (1.2.20)

and the imposed gauge conditions denoted by

χa ≈ 0 , (1.2.21)

where it is more convenient to adapt the indices (K → a) according to the phase space variables
for a field theory, namely Qa and P a. They denote the configuration and momentum fields of
our field theory and obey the symplectic structure

{P a(~x),Qb(~y)} = γδab δ(X− ~y) , (1.2.22)

where now a, b, c, · · · , stand both for internal and tangential indices and γ is a constant depending
on the theory one is working on. The set of condition (1.2.21) implies that a subset of the
configuration fields {Qa} vanishes and hence we are left with an enlarged set of constraints,
namely, {Vi, χa} that in return are second class. Applying the GU procedure to this system
boils down to writing the {χa} as first class constraints according to the condition (1.2.15),
while treating an equal number of the original constraints of {Vi}, denoted by {Ci}, as gauge
conditions for the {χa}. To this aim, we turn to computing the gauge invariant extensions of
the corresponding momenta {P aχ}. Let us write the extended momenta P̃ aχ as

P̃ aχ(~x) = P aχ(~x) +
∫
d~yCi(~y)Nia(~y,~x) + . . . , (1.2.23)
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where the dots stand for higher powers of the C ′is. In Nia is a distributional matrix and, together
with its higher power counterparts, it must be fixed by requiring the gauge invariance of P̃ aχ ,
namely {χa(~x),P̃ bχ(~y)} ≈ 0.
Combining the above conditions and employing the expression for the P̃ aχ

0 ≈ −γδab δ(~x− ~z) +
∫
d~y{χb(~z), Ci(~y)}Nia(~y,~x) .

from which we see that Nia is the inverse of the matrix

Aai = γ−1{χa(~z), Ci(~y)} . (1.2.24)

The procedure of the GU thus reduces to finding the inverse matrix (A−1)ia and replacing
Nia = (A−1)ia inside the extended momenta (1.2.23). Finally, promoting P aχ to P̃ aχ , we end
up with a theory invariant under the gauge conditions while being able to work only with the
physical degrees of freedom and the eventual gauge residual ones. After computing the extended
momenta Ã3

A ÃIr , one can derive the extended version for the constraints (3.1.2) by promoting
the momenta to their extended version, restricting the results to the gauge surface.

1.3 The geometry of hypersurfaces and foliations

In this section we will provide the necessary definitions and geometrical concepts to rewrite GR
in the 3+1 formalism. The 3+1 formalism is mainly an approach that relies on slicing the four
dimensional space time by three dimensional hypersurfaces, that in turn, have to be spacelike in
order to recover the Lorentzian signature of the induced metric. From the mathematical point
of view and as we will show later on, this procedure enables us to formulate the problem of
solving Einstein’s equations as a Cauchy problem with constraints and build its Hamiltonian
counterpart. This formalism is based on the notion of hypersurfaces and foliations. We will
briefly explore these two blocks of the theory and provide with their help the 3+1 decomposition
of Einstein equation.

In this section, we will adapt the following notation, a space-time is labeled by (M,g), where M
is a smooth manifold of dimension 4 and g is a Lorentzian metric of signature (−,+ ,+ ,+). We
denote by ∇ the affine connection associated to the metric g and name it space-time connection.
Tp(M) stands for the tangent space of a given point p ∈M while its dual, denoted by T ∗p (M), is
build up by all linear forms at p. As what concerns the indices, we adapt the following convention
usually used in the literature: all Greek indices run in {0, 1, 2, 3}, we will use letters in the
beginning of the alphabet (α, β, γ, . . . ) for free indices and letters starting from (µ(µ, ν, ρ, . . .) as
dumb indices for contraction. Lower case Latin indices starting from i(i, j, k, . . . ) are in {1,2,3},
whereas those starting form the beginning of the alphabet (a, b, c, · · · ) run in {2,3} only.

1.3.1 The geometry of Hypersurfaces

Hypersurface

A hypersurface Σ of M is the image of a 3-dimensional manifold Σ̂ by a one-to-one embedding
(homeomorphism), guaranteeing the non-intersection of Σ with itself, namely the map Φ :
Σ̂ → M . This embedding induces two important notions for the subsequent analysis, the
push-forward and the pull-back operations, Φ∗ and Φ∗ respectively.
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Figure 1.1: Embedding of the 3-dimensional manifold Φ into the 4-dimensional manifold M ,
defining the hypersurface Σ = Φ(Σ̂). The push-forward Φ∗v of a vector v tangent to some curve
C in Σ is a vector tangent to Φ(C) in M .

First fundamental form:

A very important case of pull-back operation is the one acting on the spacetime metric g, which
generates the induced metric on Σ, namely

γ := Φ∗g . (1.3.1)

γ is the 3-metric, called also first fundamental form of Σ. The pull-back and push-forward
mappings allow us to define other geometric objects such as the intrinsic and extrinsic curvatures
that we will shortly introduce.

Normal vector

Let us define the hypersurface Σ as level surface of scalar field t ∈M . Then the gradient 1-form
dt is normal to Σ such that the well defined scalar product of any vector v ∈ Tp(Σ) and dt
vanishes identically. The metric dual to this 1-form gradient is the vector ~∇t2. Once this vector
is normalized, the obtained unit vector, defining the normal vector, can be expressed as

n :=
(
±~∇t · ~∇t

)−1/2
~∇t , (1.3.2)

where the + sign stands for a time-like hypersurface and the - sign for a spacelike one.

Intrinsic curvature

In the following we restrict our attention to space-like and time-like hypersurfaces. We consider
Σ, where in this case the induced metric γ is positive definite or Lorentzian. The 3-metric γ is
not degenerate, hence indicating that there is a unique connection (or covariant derivative) D
on the manifold Σ that is torsion-free and fulfills the condition Dγ = 0. D here is the so-called
Levi-Civita associated with the metric γ. The Riemann tensor associated with this connection
represents the intrinsic curvature of (Σ,γ) . We shall denote it by Riem, and its components

2The component of ~∇t are ∇αt = gαµ∇µt = gαµ(dt)µ
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by the letter R, as Rklij . 3 The corresponding Ricci tensor is denoted R ( such that Rij = Rkikj)
and the Ricci scalar (scalar curvature) is expressed as R such that R = γijRij . The scalar
curvature is also called the Gaussian curvature of (Σ, γ). Notice that in three dimensions, the
Riemann tensor can be fully determined from the knowledge of the Ricci tensor, according to
the relation

Rijkl = δikRjl − δilRjk + γjlR
i
k − γjkRil + 1

2R(δilγjk − δikγjl) (1.3.4)

Second fundamental form

Along with the intrinsic curvature defined above, we can consider an additional type of curvature
characterizing hypersurfaces, namely the one that measures the "bending" of Σ inM quantifying,
therefore, the change in direction of the normal vector n as one moves on the hypersurface Σ.
To be more concrete, one can define the Weingarten map (also called the "shape" operator) as
the endomorphism of Tp(Σ) which identifies each vector tangent to Σ with the variation of the
normal along that vector. This variation is measured by the spacetime connection ∇ and is
endowed with the map

χ :Tp(Σ)→ Tp(Σ) (1.3.5)
v →∇vn

One can also show that the Weinberg map χ is self-adjoint and therefore its eigenvalues are
all real numbers. They are called the principal curvatures of the hypersurface Σ and the
corresponding eigenvectors define the principal directions of Σ. The property of being self-
adjoint of the Weingarten map implies that the bilinear form defined on Σ’s tangent space
by

K : Tp(Σ)× Tp(Σ)→ R (1.3.6)
(u,v)→ −u.χ(v) .

is actually symmetric.
This is denoted by the second fundamental form of the hypersurface Σ. In the following, we will
also call it the extrinsic curvature tensor of Σ. Given the expression of χ in (1.3.5), the extrinsic
curvature takes the form K = −u∇vn. Its respective trace is denoted by K := γijKij . It is
important to make the distinction between the role both the Gaussian and extrinsic curvature
play respectively. The extrinsic curvature reflects the properties of the Weinberg map and all
its implications, including the role the principal and mean curvature play in the embedding,
contrary to the intrinsic one that has no affect on how the embedding is proceeded.

1.3.2 Spacelike hypersurface and geometrical relations

Now that we have exposed some of the basic geometrical notions needed for the 3+1 treatment,
we shift our focus on the geometry on spacelike hypersurfaces and the fundamental relations

3Riem can be thought as a geometrical device that measures the noncommutativity of two successive covariant
derivatives D, as expressed by the Ricci identity but now in three dimensions:

∀v ∈ T (Σ) , (DiDj −DjDi)vk = Rklijv
l . (1.3.3)
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underlying the decomposition of all the geometrical quantities we are familiar with from GR,
i.e. Ricci scalar and tensor as well as the metric.

Orthogonal projector

The space of all spacetime vectors can be orthogonally decomposed in terms of the 1-dimensional
subspace generated by the normal vector n, in the following way

Tp(M) = Tp(Σ)⊕Vect(n) . (1.3.7)

One can associate an orthogonal projector onto Σ linked to the above decomposition and defined
as

~γ : Tp(M)→ Tp(Σ) (1.3.8)
v 7→ v + (n.v)n .

In particular the components of the projection operator ~γ with respect to a basis (eα) of Tp(M)
yield the equation

γαβ = δαβ + nαnβ . (1.3.9)

The concept of the orthogonal projector naturally allows us to identify a reverse mapping between
the tangent space of the point p on Σ and its respective tangent space on the manifold M ,
contrarily to the push-forward (Tp(Σ)→ Tp(M)) and pull-back operations (T ∗p (M)→ T ∗p (Σ))
that are one directional mapping. This mapping acting on the bilinear form in Σ, i.e γ : ~γ∗Mγ
coincide with γ and allows to build an extension to all vectors on T ∗p (M). In what follows, this
extended variable will be denoted by the same symbol for γ. We can write this extended object
in terms of the linear form n dual to the normal vector n as

γ = g + n⊕ n . (1.3.10)

Gauss-Codazzi relations

A priori, all the geometrical objects we already defined in the previous section were defined
either on the manifolds M or Σ. The role of this new reverse map for the extended induced
map can be expanded to act on all quantities we need to measure the change in the geometrical
structure we are studying. Importantly, the relations underlying the extrinsic curvature with
the tensor field ∇n, D.
For the purpose of this work, we will skip all the thorough computations to derive these
mathematical relations and present directly the action of the orthogonal projection operator on
the curvatures and their interrelations embodied in the Gauss-Codazzi equations. These relations
constitute the basis of the 3+1 formalism for general relativity. They are decompositions of the
spacetime Riemann tensor, 4Riem in terms of quantities relative to the spacelike hypersurface
Σ, namely the Riemann tensor associated with the induced metric γ, Riem and the extrinsic
curvature tensor K. These relations yield the equations:

γµαγ
ν
βγ

γ
ρ

4Rρσµν = Rγδαβ +Kγ
αKδβ −Kγ

βKαδ Gauss relation , (1.3.11)
4R+ 24Rµνn

µnν = R+K2 −KijK
ij Scalar Gauss relation . (1.3.12)
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The last equation constitutes a generalization of Gauss’s famous Theorema Egregium. It relates
the intrinsic curvature of Σ, represented by the Ricci scalar R, to its extrinsic curvature, written
as K2 −KijK

ij . The Codazzi relation reads

γγρn
σγµαγ

ν
β

4Rρσµν = DβK
γ
α −DαK

γ
β . (1.3.13)

The contracted Codazzi relation reads

γµαn
ν4Rµν = DαK −DµK

µ
α . (1.3.14)

1.3.3 Globally hyperbolic space-times and foliation kinematics

Up to now, we considered the mathematical set up to describe geometrical operations on a
single spacelike hypersurface. We want to be able to formulate a dynamical theory, such as
GR, that allows us to introduce the notion of evolution into play. To this end, we consider a
continuous set of hypersurfaces (Σt)t∈R that cover the manifold M . This is possible for a wide
class of space-times, particularly, globally hyperbolic spacetimes. Actually the latter ones cover
most of the space-times of astrophysical or cosmological interest.

Cauchy surface

A Cauchy surface is a spacelike hypersurface Σ in M such that each causal curve without end
point intersects Σ once and only once. Equivalently, Σ is a Cauchy surface if and only if its
domain of dependence is the whole spacetime M . Note that not all spacetimes admit a Cauchy
surface. For instance spacetimes with closed time-like curves do not. A spacetime (M, g) that
admits a Cauchy surface is said to be globally hyperbolic. The latter admits a decomposition
Σ× R.
Any globally hyperbolic spacetime (M, g) can be foliated by a family of spacelike hypersurfaces
(Σt)t∈R. Foliation or slicing, underlines the existence of a smooth scalar field t̂ on M , which is
regular (in the sense that its gradient never vanishes), such that each hypersurface is considered
as a level surface of this scalar field:

∀t ∈ R, Σt :=
{
p ∈M,t̂(p) = t

}
. (1.3.15)

Each hypersurface Σt is called a leaf or a slice of the foliation. We assume that all Σt’s are
spacelike and that the foliation covers M .

Figure 1.2: Spacetime M foliated by a family of spacelike hypersurfaces (Σt)t∈R.
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Lapse function and normal evolution vector

So far all we did is to present the basic mathematical notions and relation in the 3+1 decompo-
sition formalism, but we still need to specify the kinematical aspect and how these geometrical
quantities evolve. To this aim, we start by introducing the normal evolution vector defined as
the time-like vector normal to Σt such that

m := Nn . (1.3.16)

where N is defined as the lapse function, that relates the normal vector n to the 1-form dt

n := −N ~∇t (1.3.17)
N := (− ~∇t · ~∇t)−1/2 = (−〈dt, ~∇t〉)−1/2 . (1.3.18)

Since n is a unit vector, the scalar square of m is simply m ·m = −N2. Moreover

〈dt,m〉 = N 〈dt,n〉 = N2 (−〈dt,~∇t〉)︸ ︷︷ ︸
N−2

= 1 , (1.3.19)

=∇mt = mµ∇µt = 1 ,

highlights the fact that normal vectorm is most "suitable" to the scalar field t, contrarily to the
normal vector n. Geometrically, this fact can be pictured as the case where the hypersurface
Σt+δt can be obtained from the neighboring hypersurface Σt by the small displacement δtm of
each point of Σt. Indeed let us consider some point p in Σt and move it by the infinitesimal
vector δtm to the point p′ = p+ δtm. From the very definition of the gradient 1-form dt, the
scalar field t at p′ takes the value

t(p′) = t(p+ δtm) = t(p) + 〈t,δtm〉 = t(p) + δt 〈dt,m〉︸ ︷︷ ︸
=1

= t(p) + δt . (1.3.20)

This last equation proves that p′ ∈ Σt+δt. Hence the vector δtm carries the hypersurface Σt into
the neighboring one Σt+δt. One equivalently says that the hypersurfaces (Σt) are Lie dragged
by the vector m. This justifies the name normal evolution vector given to m.
An immediate consequence of the Lie dragging of the hypersurfaces Σt by the vector m is that
the Lie derivative along m of any vector tangent to Σt is also a vector tangent to Σt:

∀v ∈ T (Σt) , Lmv ∈ T (Σt) (1.3.21)

This is obvious from the geometric definition of the Lie derivative. The reader who is not
familiar with the concept of Lie derivative may consult Appendix A. This dragging induced by
the Lie derivative can be applied to derive the evolution of the 3-metric and the orthogonal
projector.

Evolution of the 3-metric and orthogonal projector

To be more concrete, the evolution of the induced metric γ of the hypersurface Σt is obtained
by computing the Lie derivative along the evolution vector m and yields the equation

Lmγ = −2NK . (1.3.22)
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As a consequence, one can express the extrinsic curvature as K = −1
2Lnγ. More interestingly,

the evolution of the orthogonal projector reads

Lm~γ = 0 , (1.3.23)

which implies that the Lie derivative of any tensor field T along m tangent to Σt is also a
tensor field tangent to it.

Last step in the projection of the spacetime Riemann tensor

The Gauss-Codazzi equations represent the projection of the spacetime Riemann tensor
that includes only fields tangent to Σt and their derivatives in the direction parallel to it
(γ,K, Riem and DK). However, it is exactly due to this type of decomposition that they are
only defined on a single hypersurface. One way around this is to project the Riemann tensor
twice onto Σt and twice along the normal which will result in a derivative in the direction
normal to the hypersurface. The resulting equation depends on the spacetime Ricci tensor
instead and reads

γµαγ
ν
β

4Rµν = − 1
N
LmKαβ −

1
N
DαDβN +Rαβ +KKαβ − 2KαµK

µ
β . (1.3.24)

The scalar curvature reads 4R

R = R+K2 +KijK
ij − 2

N
LmK −

2
N
DiD

iN . (1.3.25)

1.4 3+1 Einstein equations

Using (1.3.25) and (1.1.1), we can finally write Einstein’s equation in the form 3+1 splitting,
namely by projecting it onto the hypersurface Σt and along its normal. This amounts to applying
the projector operator to (1.1.1). There are, however, three different possible projections to
preform: a full projection onto Σt, a full projection perpendicular to Σt and a mixed projection
(once onto Σt and once along n). The resulting equations of these three operations build up a
system of constraints that reads

R+K2 −KijK
ij = 0 Hamiltonian constraint

Djk
j
i −DiK = 0 Momentum constraint

LmKij = −DiDjN +N
{
Rij +KKij − 2KikK

k
j

}
(1.4.1)

In this decomposed representation, the Einstein equations are summarized in the system of
constraints (1.4.1).

Foliation adapted-coordinates

The system of equations we obtained in (1.4.1) is of tensorial type and in order to be able to
manipulate it we need to examine its respective components and write them as a system of
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differential equations. To this aim, one should work in a adapted coordinate system. Therefore
on each hypersurface Σt we define the spacial coordinate

(
xi
)

=
(
x1, x2, x3) and we choose the

set of vectors

∂t := ∂

∂t
(1.4.2)

∂i := ∂

∂xi
, i ∈ {1,2,3} . (1.4.3)

as a natural basis (∂α)=(∂t,∂i) of Tp(M) associated with the chosen coordinates (xα) =(
t, x1, x2, x3). The time vector ∂t has the same property as the vector m in the sense that, it

Figure 1.3: The coordinate set(xi) on Σt: each constant line of the spacial coordinate xi crosses
the foliation and gives rise to the natural basis ∂α.

Lie drags the hypersurface. However they differ by the the shift vector defined as:

∂t := m+ β . (1.4.4)

It is useful to rewrite it as

∂t := Nn+ β , (1.4.5)
∂t.∂t = −N2 + β.β . (1.4.6)

In this set of coordinate and basis, the metric can be computed and it takes the form

gαβ =
(
g00 g0j
gi0 gij

)
=
(
−N2 + βkβ

k βj
βi γij

)
(1.4.7)

The line element is then

gµνdx
µdxν = −N2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
(1.4.8)

The components of the inverse metric are also given by

gαβ =
(
g00 g0j

gi0 gij

)
=
(
− 1
N2

βj

N2
β2

N2 γij − βiβj

N2

)
(1.4.9)

The set of relations between the metric g and the induced one γ yields

g := det (gαβ) ,

γ := det (γαβ) ,
√
−g = N

√
γ .

(1.4.10)
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Finally, Einstein’s equations expressed as a system of partial differential equations in these
adapted coordinate basis can be written in this basis as(

∂

∂t
− Lβ

)
γij = −2NKij , (1.4.11)(

∂

∂t
− Lβ

)
Kij = −DiDjN +N

{
Rij +KKij − 2KikK

k
j

}
, (1.4.12)

R+K2 −KijK
ij = 0 , (1.4.13)

DjK
j
i −DiK = 0 . (1.4.14)

1.5 ADM Hamiltonian formulation of GR

In order to derive the Hamiltonian of the Einstein Hilbert action, we start by rewriting it in the
3+1 form that provides us with a natural set up to introduce the notion of time evolution and
hence specify the role of time derivative needed to obtain the conjugate variables. Let us start
by the standard GR action

S =
∫
V

4R
√
−gd4x , (1.5.1)

where V is a part of the spacetime manifold M delimited by two hypersurfaces Σt1 and Σt2 of
the foliation (Σt)t∈R. We already encountered the decomposition of the Ricci scalar in (1.3.11)
and thanks to the set of relations (1.4.10) we can write

S =
∫
V

[
N
(
R+K2 +KijK

ij
)
− 2LmK − 2DiD

iN
]√

γd4x . (1.5.2)

We also can make use of the expression of the extrinsic curvature in terms of Lm that reads

LmK = mµ∇µK = Nnµ∇µK = N

∇µ (Knµ)−K∇µnµ︸ ︷︷ ︸
=−K

 (1.5.3)

= N
[
∇µ (Knµ) +K2

]
, (1.5.4)

plugging it in (1.5.2) and discarding divergence terms we finally obtain

S =
∫ t2

t1

{∫
Σt
N
(
R+KijK

ij −K2
)√

γd3x

}
dt . (1.5.5)

This is the 3+1 form of the Hilbert action. This action is a functional of the configurations
variables (γij , N, βi) and their time derivatives. Expressing the extrinsic curvature thanks to
the system of equations (1.4.1), we can write Kij as

Kij = 1
2N

(
γikDjβ

k + γjkDiβ
k − γ̇ij

)
. (1.5.6)

The Lagrangian density reads

L(γ, γ̇) = N
√
γ
(
R+KijK

ij −K2
)

= N
√
γ
[
R+

(
γikγjl − γijγkl

)
KijKkl

]
. (1.5.7)

The next step is to compute the conjugate momenta of the configuration variables according to

πij := ∂L

∂γ̇ij
, (1.5.8)
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where we get

πij = N
√
γ
[(
γikγjl − γijγkl

)
Kkl +

(
γkiγlj − γklγij

)
Kkl

]
×
(
− 1

2N

)
(1.5.9)

= √γ
(
Kγij −Kij

)
.

Now, the Hamiltonian density is derived by preforming the Legendre transform, namely

H = πij γ̇ij − L , (1.5.10)

and the corresponding Hamiltonian is hence

H =
∫

Σt
Hd3x (1.5.11)

= −
∫

Σt

(
NC0 − 2βiCi

)√
γd3x , (1.5.12)

where, for simplicity, we have introduced the notation

C0 := R+K2 −KijK
ij , (1.5.13)

Ci := DjK
j
i −DiK , (1.5.14)

that represent the left-hand side of the constraint equations derived in (1.4.1). Notice that
the Hamiltonian H is a functional of the canonical phase space variables (γij , N, βi) and their
conjugate momenta (πij , πN , πβi ) with

πN := ∂L

∂Ṅ
= 0 and πβi := ∂L

∂β̇i
= 0 . (1.5.15)

and the inverse extrinsic curvature reads

Kij = Kij [γ, π] = 1
√
γ

(1
2γklπ

klγij − γikγjlπkl
)
. (1.5.16)

Hamiltonian equations of motion are derived using the action principle and yield

δH

δπij
= γ̇ij , (1.5.17)

δH

δγij
= −π̇ij , (1.5.18)

δH

δN
= −π̇N = 0 , (1.5.19)

δH

δβi
= −π̇βi = 0 . (1.5.20)

Note that the lapse function and shift vector play no dynamical role in the theory and the
true dynamical variabels are γij and πij . They turn out to be Lagrange multipliers and this
represents consequently the Hamiltonian constraint and the momentum constraint respectively,
encountered previously.
Note that the ten components of the spacetime metric are replaced by the six components of
the induced metric γij in addition to the three components of the shift vector β.
In the following, we will change the notation to be in accordance with the exiting literature for
the ADM action of GR. We will adapt the following modification [12]

γij → qab ,
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β → Na ,

Ci → Ha ,

C0 → H .

Expressing the Hamiltonian and momentum constraints following this notation and in terms of
the metric and its conjugate momentum πab yields

Ci := ∇(3)
a

(
q−1/2πab

)
, (1.5.21)

C0 :=
(
q1/2

[
R(3) − q−1πcdπ

cd + 1
2q
−1π2

])
. (1.5.22)

Writing explicitly the ADM action in this notation, it reads

S
[
qab, π

ab, Na, N
]

=
∫
dt

∫
Σ
dx3

[
πabq̇ab

+ 2Nb∇(3)
a

(
q−1/2πab

)
+N

(
q1/2

[
R(3) − q−1πcdπ

cd + 1
2q
−1π2

]) ]
.

(1.5.23)

Variation with respect to the lapse and shift produce the four following constraints

−Hb(qab,πab) = 2∇(3)
a(q
−1/2πab) = 0 Vector constraint

−H(qab,πab) =
(
q(1/2)

[
R(3) − q−1πcdπ

cd + 1
2q
−1π2

])
= 0 Scalar constraint

(1.5.24)

Hence, one can rewrite the Hamiltonian (1.5.23) as a linear combination of the first class
constraints Hµ := (Ha, H), in this case it reads

S[qab,πab, Na, N ] =
∫
dt

∫
Σt
dx3

(
πab ˙qab −NbH

b(qab, πab)−NH(qab,πab)
)
. (1.5.25)

This action is quite interesting. Its respective Hamiltonian is indeed peculiar, since it is
proportional to the Lagrange multipliers and hence on-shell it vanishes which means that there
is no dynamics and hence no physical evolution in t. However, this is the powerful aspect of the
diffeomorphism invariance of GR that tells us that time is nothing but a mere parameter.

1.6 Kerr-Schild metric

Kerr-Schild metric properties

The prescription of physically realistic initial data for spherical symmetric geometries is a crucial
ingredient in the construction of quantum black hole geometry, previous work in [32] succeed in
describing the interior of a Schwarzschild black hole and provided promising results depicting
the quantum gravity predictions for black hole singularities.
The ADM formalism outlined above provides us with the necessary tools to describe the
Hamiltonian evolution of initial data set in general relativity. Our goal is to apply spherical
symmetry in this geometrical set up to simulate black holes in quantum gravity. To this aim
we consider the intrinsic metric on the set of (Σt) that can be glued together to build up the
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spacetime metric given by (1.4.8). We are interested in a Cauchy hypersurface that has the
topology Σt = R× S2 with a spherical symmetric spacetime. As we have seen in the previous
sections, once a foliation is chosen, two independent functions are sufficient to describe an
arbitrary metric in spherical symmetry. The most generic spacetime- and intrinsic metric in
this case yield

ds2 = −N2dt2 + Λ2 (dr +N rdt)2 +R2
(
dθ2 + sin2 θdϕ2

)
, (1.6.1)

dσ2 = Λ2dt2 +R2
(
dθ2 + sin2 θdϕ2

)
, (1.6.2)

where N,N r, R,Λ are functions or r and t. Note that −∞ < t and r < ∞. The functions
Λ(t, r) and R(t, r) are assumed to be positive functions that constitute the set of canonical
variables together with their conjugate momenta. We can finally apply the previous set up for
spherical geometries simulating black hole in GR to a specific foliation namely the Kerr-Schild
one. In fact, the initial data in Kerr-Schild form, which for the Schwarzschild case correspond
to ingoing Eddington-Finklestein coordinates, also extend from spatial infinity to the singularity
and penetrate the horizon. Classically it encodes the outside geometry of a spinning object.
The metric takes the form

gab = ηab + kakb , (1.6.3)

where ηab is the Minkowski metric and ka is a null vector. The metric poses some intriguing
properties and consequences once the Einstein equations in vacuum are imposed. This rather
special characteristics are satisfied by the null vector ka. The first property can be deduced
once Rab = 0, where in this case ka gives a shear-free congruence of null geodesics. Moreover,
the null vector ka is a geodesic and one can write it in an affine parametrized expression, in
terms of new null vector `a

`a =
√
Hka , (1.6.4)

whence, the metric takes the form

gab = ηab +H`a`b (1.6.5)

where H is a smooth function on R4. Raising indices yields

`a = gab`b = ηab`b , (1.6.6)
gab`a`b = ηab`a`b = − (`t)2 + `i`i = 0 (1.6.7)

Note that all Kerr-Schild metrics admit a Killing field which is also a Killing field of the flat
metric ηab. This killing vector field has the nice property of being translational Killing vector
field, which makes the full metric gab stationary. To write down explicitly the expression for the
metric we work with

H = 2Mr3

r4 + a2z2 (1.6.8)

(1.6.9)

where a is the black hole’s spin, m its mass. In fact it can be checked that, the null vector `a is
a principal null direction of the Weyl tensor. It turns out that both the Schwarzschild and Kerr
spacetimes are of type D, i.e. the Weyl tensor has another principal null direction na given by
the usual ingoing null vector

na = ∇at+∇ar . (1.6.10)
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Choosing inertial coordinates (t,xi) adapted to the Minkowski metric we can write

gabdx
adxb =

(
−1 + 2H`2t

)
dt2 + 4H`t`idtdxi + (δij + 2H`i`j) dxidxj . (1.6.11)

A priori once we take the Schwarzschild limit (with spin zero a→ 0) and in the limit r → 0 one
can derive a solution for the system (1.6.8) and the Kerr-Schild metric yields

H = M

r
, (1.6.12)

`i = xi
r

= ∂ir , (1.6.13)

r2 = δijx1xj (1.6.14)

The metric is then given by

ds2 = −
(

1− 2m
r

)
dt2 + 4m

r
dtdr +

(
1 + 2m

r

)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
. (1.6.15)

Solving the constraints

The lapse and shift are

N = −
√

1
1 + 2m

r

, N r =
2m
r

1 + 2m
r

. (1.6.16)

Expressing the constraints (1.5.24) adapted to the spherical symmetry reads

−(3)R+ h−1πabπab −
1
2h
−1π2 = 0 , (1.6.17)

Da

(
h−1/2πar

)
= 0 (1.6.18)

In the following computations we assume stationarity and rewrite the above constraints in terms
of the ADM variables. This is equivalent to the set of equations

N2
(
Λ3 + 2RR′Λ′ − Λ

[
R′2 + 2RR′′

])
+

+ Λ2
(
N rR′ − Ṙ

) [
N r (ΛR′ + 2RΛ′

)
+ Λ

(
2RN r′ − Ṙ

)
− 2RΛ̇

]
= 0

N r [R′ (ΛN ′ +NΛ′
)
−NΛR′′

]
−NR′Λ̇ + Λ

(
−N ′Ṙ+NṘ′

)
= 0

(1.6.19)

If we consider the simplest equation, namely the second one in (1.6.19), we can solve it for R.
In fact

R′′

R′
= N ′Λ +NΛ′

NΛ , (1.6.20)

which implies that

logR′ = logN + log Λ + C1 (1.6.21)
, (1.6.22)
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and hence we obtain an expression for R′, namely

R′ = C2NΛ , (1.6.23)

where the parameters Ci, i = 1 ·n are some integration constants. Plugging (1.6.23) in (1.6.19)
yields

r(2m+ r)R′
[
r
(
2m+ r − rC2

2

)
+ 4m2R2

]
− 2mR

[
r2C2

2 + 4mR′
(
(m+ r)R′ − r(2m+ r)R′′

) ]
= 0

(1.6.24)

For C2 = ±1 this equation is integrable. The solutions in this case read

R = r . (1.6.25)

Plugging this solution back in (1.6.19) one obtains the solution for the metric function Λ

Λ = ±1/N . (1.6.26)

In the following we will work with the + convention. According to (1.6.1), with these solution
for Λ and R one recovers the Kerr-Schild metric in (1.6.15).

1.7 Tetrad formulation

The ADM action (1.5.25) describes general relativity as a constrained system, where the
dynamics of the theory are all encoded in the set of constraints (1.5.24). This canonical
formulation of GR reflects the powerful setup of constrained systems that will become more
clear once one considers Dirac’s quantization program.
In this section, we will highlight the main reasons that call to introduce new variables into
play instead of the ADM phase space parameters. One of the most straightforward reasons
to consider more suitable variabels for quantization is the attempt to apply Dirac’s approach
to quantize the action (1.5.25). This method relies on defining the physical states as the ones
annihilated by the constraints, an explicit well defined scalar product as well as a physical
interpretation of the observables [14, 13]. This program can be illustrated in three simple steps

1. Write down a presentation for the phase space variables as operators in an auxiliary
kinematical Hilbert Hkin space endowed with the commutation relation {·, ·} −→ 1

i~ [·, ·].

2. Promote the constraints Hµ to operators in Hkin.

3. Define the space of solutions of the constraints as the physical space Hphy, satisfying the
equations

Ĥµψ = 0 ∀ψ ∈ Hphys . (1.7.1)

Applying this scheme to the gravitational constrained action encounters problems already at
the level of defining the scalar product of the Hilbert space. Formally, one could write∫

dgψ[g]ψ′[g] ≡
〈
ψ|ψ′

〉
. (1.7.2)
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However, the Lebesgue measure is ill-defined here, namely in the space of metrics modulo
diffeomorphisms. This implies that we are unable to verify if the momentum and metric
operators are hermitian or not. Moreover, even if one ignores this ambiguity and assumes the
existence of a well defined scalar product, the next problem that rises is solving the constraints.
Let us consider the schematic step

Hkin
Ĥa=0−→ HDiff

Ĥ=0−→ Hphys . (1.7.3)

If we consider first the vector constraint, one can prove that

ψ
[
qab + 2∇(aNb)

]
≡ ψ [qab] . (1.7.4)

This implies that the solutions of the vector constraint are those functionals of the metric that
are left invariant under the action of diffeomorphism. This is indeed very interesting, as it
reflects at the quantum level the desired action of the classical constraints. However the space
of solutions for HDiff is again ill-defined, since it inherits from the kinematical one the absence
of a well defined measure. The ambiguity of finding space of solutions becomes more drastic
when trying to work out the Hamiltonian constraint, mainly due to the necessity to introduce
the notion of ordering the products of operators.
A way out of this paradigm is to consider new variabels that will render the application of
Dirac’s quantization program more convenient for the ADM action. To get inspired of what
kind of variables one can rely on, one can try to consider the issue of the coupling of fermions in
general relativity. In the following, we will explore this path and discover a new set of extended
variables that, as we will see later on, will play a major role in quantizing the theory.

1.7.1 Tetrad variables

Let us start with the first issue mentioned above, namely the coupling of fermions in general
relativity. In order to achieve this, the set of variables where a local action of the rotation group
(more generally Lorentz transformations) is defined, presents itself as a suitable choice. This
is naturally achieved by describing the spacetime geometry in terms of an orthonormal frame
instead of a metric where local Lorentz transformations are basically the set of transformations
relating different orthonormal frames. This consequently reveals a more algebraically simple
formulation of the theory in comparison to the ADM one.
Concretely, one can introduce an orthonormal frame field defined by four co-vectors eIa (with the
index I = 0, . . . ,3; a and other Latin indices denote spacetime indices) and write the spacetime
metric as a composite object

gab = −e0
ae

0
b + e1

ae
1
b + e2

ae
2
b + e3

ae
3
b (1.7.5)

= eIae
J
b ηIJ ,

where in the second line the internal Minkowski metric is ηIJ = diag(−1, 1, 1, 1). From this
definition, this quadrupole of 1-forms relate a general reference frame and an inertial one
by a local isomorphism. Moreover, notice that in the familiar three dimensional space there
are infinitely many frame-fields connected by local rotations; in the present four dimensional
Lorentzian setting the same issue still reside, since the above equation is invariant under Lorentz
transformations. Since both e and ẽ are solutions with eI → ẽI = ΛIJeJa which we will write in
matrix notation as

ea → ẽa = Λea , (1.7.6)
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where ΛIJ satisfies the relation

ηIJ = ΛI JΛJM . (1.7.7)

Indeed, this is a new symmetry. It is an additional gauge symmetry of general relativity once
we write it in terms of these variables. Concretely, let us considerλI (with internal index) an
object that transforms covariantly under a Lorentz transformation ΛIJ , namely

λI → λ̃I = Λλ ,

then its covariant (exterior) derivative dω is the covariant exterior derivative

dωλ
I = dλI + ωIJ ∧ λJ ,

transforms covariantly as well, since ωABa transforms inhomogeneously under internal Lorentz
transformations, i.e.

ω → ω̃ = ΛωΛ−1 + ΛdΛ−1 .

Indeed, as in any gauge theory, derivatives of covariant fields come with the introduction of a
connection ωIJ = −ωJI , a one-form called the Lorentz connection in this case with values in
the Lorentz algebra, hence defining the covariant derivative. Hence, it is clear that the Lorentz
connection ωIJ is an additional filed that is necessary to have in order to work in the tetrad
formulation and define derivatives within a framework where frames can be locally transformed
by a local Lorentz transformation. The covariant differentiation is thus evaluated as follows

Dµv
I(x) = ∂µv

I(x) + ωIµJ(x)vJ(x) . (1.7.8)

Analogously to the Levi-Civita connection that is metric compatible, we require that the spin
connection to be tetrad compatible, meaning that Dµe

I
ν = 0. This consequently implies the

symmetric and antisymmetric combinations

∂(µe
I
ν) + ωI(µJe

J
ν) = Γρ(νµ)e

I
ρ, ∂[µe

I
ν] + ωI[µJe

J
ν] = Γρ[νµ]e

I
ρ ≡ 0 . (1.7.9)

From the above equations, we can derive the relation between the spin and Levi-Civita connection

ωIµJ = eIν∇µeνJ , (1.7.10)

as well as the so called Cartan first structure equation

dωeI = deI + ωIJ ∧ eJ =
(
∂µe

I
ν + ωIµJe

J
ν

)
dxµ ∧ dxν = 0 , (1.7.11)

We define the curvature and its components respectively as

F IJ = dωIJ + ωIK ∧ ωKJ (1.7.12)
F IJµν = ∂µω

IJ
ν − ∂νωIJµ + ωIKµω

KJ
ν − ωJKµωKIν . (1.7.13)

Using the relation (1.7.10), the Riemann tensor obtained from the tetrad eIµ reads

F IJµν (ω(e)) ≡ eIρeJσRµνρσ(e) . (1.7.14)

notice that the curvature F transforms covariantly under a local Lorentz transformation
(F → ΛFΛ−1). This relation highlights the fact that general relativity is a gauge theory with
the Lorentz group as a local gauge group and the Riemann tensor plays the role of the field’s
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strength.
The corresponding Einstein-Hilbert action, written in this formulation can be expressed as

S[eIJa ,ωABa ] = 1
2κ

∫
εIJKLe

I ∧ eJ ∧ FKL(ω) , (1.7.15)

where,the Levi-Civita symbol εABCD is a totally anti-symmetric internal tensor such that
ε0123 = 1 is invariant under the simultaneous action of the Lorentz group on its four entries.
The action is, in this way, invariant under the Lorentz gauge transformations (1.7.7) and
(1.7.6), that define the (internal) Lorentz gauge transformations of the basic fields present in
the action. Nevertheless, the gauge transformations (1.7.7) and (1.7.6) need not be listed in
addition to (1.7.15); the field equations coming from the action know about these symmetries.
This is especially explicit in the Hamiltonian formulation where gauge symmetries are in direct
correspondence with constraints which, in turn, are the generators of gauge transformations, as
discussed in the first section of this chapter. These constraints, namely generators of gauge
transformations, constitute a part of the field equations. In addition to internal Lorentz
transformations, the action (1.7.15) is also invariant under diffeomorphisms, underlying the
general covariance aspect of the theory. At the technical level, this is reflected from the fact
that the action (1.7.15) is the integral of a 4-form (a completely anti-symmetric tensor with
4 contravariant indices). Notice that under coordinate transformation xµ → yµ the fields
transform as tensors

eIµdx
µ = eJµ

∂xµ

∂yα
dyα , (1.7.16)

ωIJµ dxµ = ωIKµ
∂xµ

∂yα
dyα , (1.7.17)

while the integral remains unchanged as the 4-form transforms respectively by multiplication
by the Jacobian |∂xµ∂yα |.
Once more, such symmetry will be dictated to us by the equations of motion coming from the
action if not explicitly taken into account. The equations of motion stemming from (1.7.15) are
obtained from

δeS = 0 δωS = 0 , (1.7.18)

where the equations of motion read

εABCDe
J ∧ FKL(ω) = 0 , (1.7.19)

dω(eI ∧ eJ) = 0 . (1.7.20)

Notice their algebraic simplicity. If the tetrad field is invertible meaning that a non degenerate
metric can be constructed, then the above equations are equivalent to Einstein’s equation.
However, the field equations, as well as the action (1.7.15) continue to make sense for degenerate
tetrads. For example the no-geometry state e = 0 (diffeomorphism invariant vacuum) solves the
equations and makes perfect sense in terms of the new variables.

1.7.2 Hamiltonian analysis

General covariance is the distinctive feature of general relativity and we have recalled how this
is explicitly encoded in the action principles for gravity. The major difficulty of quantum gravity
is to generalize what we have learnt about quantum field theory and apply it to understand
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the generally covariant physics of gravity. The notion of measurement is naturally related to
the concept of localization of physical events. However, in GR, localizing spacetime events
is possible only in a relational fashion where some degrees of freedom are related to others,
labeling therefore, a generally covariant observable. Hence, in GR the concept of localization is
always realized in a relational fashion using the notion of test observers. Test observers are
crucial in the spacetime description of general relativity; the observables that follow from them
are always non local in spacetime. An illustrating example is the definition of a black hole event
horizon which separates those observers that can in principle escape out to infinity from those
that cannot: test photons are used to define the horizon in a coordinate independent fashion.
Indeed, all observables are non-local in this theory. Along these lines, the idea of extended
variables might be best suited for the definition of a quantum theory of gravity. Even when the
motivations are sometimes different non local objects are also central in other approaches such
as strings, branes, twistor theory or causal sets. An advantage of the new variables in (1.7.15)
is that they allow for the introduction of natural quantities associated to extended subsets
(submanifolds) of the spacetime. These quantities are the fluxes of e ∧ e and the holonomies of
the Lorentz connection ω. The fluxes are

E(α,S) =
∫
S
αIJe

I ∧ eJ , (1.7.21)

where αIJ is a smearing field and S is a two-dimensional surface. The holonomy assigns an
element Λ(l,ω) of the Lorentz group to any one dimensional path in spacetime, by the rule

Λ(l,ω) = P exp(−
∫
l
ω) , (1.7.22)

where P exp denotes the path ordered exponential. None of these extended variables are
diffeomorphism invariant; however, they transform in a very simple way under coordinate
transformations: the action of a diffeomorphism on them amounts to the deformation of the
surface S and the ` by the action of the diffeomorphism on spacetime points. This behavior
makes these extended variables suitable for the construction of covariant non local operators
for the quantum theory. The above non-local variables are the basic building blocks in the
attempts of giving a meaning to the path integral definition of quantum gravity based on action
(1.7.15). Such research direction is known as the spin foam approach.

Hamiltonian formalism

To derive the Hamiltonian formulation for tetrad representation, one follows the procedure that
relies on the 3+1 decomposition of spacetime [31] and the adapted coordinate (t,x). Thus we
can introduce the lapse function and shift vector as in the previous section. We work in the
ADM formulation of the metric. In this set up, it is straightforward to see that the tetrad for a
given metric reads

eI0 = eIµτ
µ = NnI +NaeIa, δije

i
ae
j
b = gab, i = 1,2,3 . (1.7.23)

where the triad eia represents the spatial counterpart of the tetrad. As usual, the next step is to
identify the conjugate momentum and perform the Legendre transform. For simplicity, it is
practical to work in the "time" gauge. The idea is to demand the co-vector e0, representing
the time axis of the frame field, to be perpendicular to the time slices Σt or equivalently to be
aligned with the unit normal nµ (n). Thus, it is defined as

eIµn
µ = δI0 , (1.7.24)
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Figure 1.4: Time gauge: restricting the Lorentz gauge symmetry group to the SO(3) subgroup.
This is defined by the condition that the time e0 component of the tetrad has to be normal to
the time slice Σt.

e0
µ = (N, 0) −→ eI0 =

(
N,Naeia

)
. (1.7.25)

This restricts the Lorentz gauge group to the rotation subgroup that leaves the time normal
vector to the hypersurface invariant, namely SU(2) ⊂ SL(2,C). Notice that such partial gauge
fixing is very natural in the Hamiltonian formulation of the 3+1 decomposition of the equation
(1.1.1), since it naturally provides the slicing of spacetime in terms of space-like hypersurfaces.
In this sense, time-gauge amounts to adjusting the time axis in our frame field to the one that
is singled out by the foliation. We furthermore define the densitized triad

Eai = eeai = 1
2εijkε

abcejbe
k
c , (1.7.26)

and the Ashtekar-Barbero connection

Aia = γω0i
a + 1

2ε
i
jkω

jk
a . (1.7.27)

As a matter of fact, the densitized triad and the above defined connection turn out to be
conjugate variables. Now we can write the action in terms of this new set of variables as

S (A,E,N,Na) = 1
γ

∫
dt
∫

Σ
d3x

[
ȦiaE

a
i −Ai0DaE

a
i −NH −NaHa

]
. (1.7.28)

As expected, the invariance under local Lorentz transformations gives rise to new gauge symmetry
in the action and hence additional constraints. We can identify the constraints as

Gj ≡ DaE
a
i = ∂aE

a
j + εjk`A

j
aE

a`

Ha = 1
γ
F jabE

b
j −

1 + γ2

γ
Ki
aGi

H =
[
F jab −

(
γ2 + 1

)
εjmnK

m
a K

n
b

] εjk`EakEb`
detE + 1 + γ2

γ
Gi∂a

Eai
detE

(1.7.29)

The action (1.7.28) is equivalent to (1.5.2) with the difference in the canonical conjugate variables
being (A,E). Lapse and shift are still Lagrange multipliers, and consistently we still refer to
H(A,E) and Ha(A,E) as the Hamiltonian and space-diffeomorphism constraints. Furthermore,
the algebra is still first class. The new formulation in terms of tetrads has brought up an extra
constraint, the Gauss constraint (Gj), that is responsible for generating gauge transformations.
Indeed, one can show that Ebj and Aia transform respectively as an SU(2) vector and as an
SU(2) connection under this transformation. It is true that we started with SO(3) local gauge
transformation of the covariant action (1.5.2) and a long the way it got swapped to an SU(2)
one. The change of variabels we preformed and the partial gauge fixing (the time gauge) is the
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reason behind this change in the gauge symmetry group since we are working with an SU(2)
connection (Ashtekar-Barbero connection) and not the Lorentz one as previously done. In fact
the Ashtekar-Barbero configuration variable transforms as an SU(2) gauge connection under
the SU(2) residual gauge symmetry after requiring the time-gauge. It should be seen as an
auxiliary variable with the aim to recast first order constraints. The symplectic structure in
this formulation yields {

Aia(x), Ebj (y)
}

= γδbaδ
i
jδ

3(x, y) . (1.7.30)

where the new internal index i corresponds to the adjoint representation of SU(2).
It will be later on useful to deal with the smeared version of these canonical variabels in the
quantization procedure. The densitized triad is a 2-form and thus, it is natural to smear it on a
surface, namely

Ei(S) ≡
∫
S
naE

a
i d2σ , (1.7.31)

with na = εabc
∂xb

∂σ1
∂xc

∂σ2
is the normal to the surface. With this smearing we identify the quantity

Ei(S) as the flux of E across a surface S. The connection is a 1-form, so we can smear it on a
one dimensional path. If we consider a path γ and a corresponding parametrization

xa(s) : [0,1]→ Σ , (1.7.32)

we can associate to a given connection Aia an element of SU(2) such that Aa ≡ Aiaτi, with τi
being the generators of SU(2). We can therefore integrate Aa along the path γ given as a line
element, namely

Aia −→
∫
γ
A ≡

∫ 1

0
dsAia(x(s))dxa(s)

ds τi . (1.7.33)

We introduce the notion of holonomya of A along γ as

hγ = P exp
(∫

γ
A

)
. (1.7.34)

with the path-ordered product P and the
parametrization s ∈ [0,1].

hγ =
∞∑
n=0

∫∫∫
sn>0

A (γ (s1)) · · ·A (γ (sn)) ds1 · · · dsn

(1.7.35)
aThe reader is referred to read the appendix for more properties

of the holonomies.
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1.8 Spherically symmetric phase space

For the treatment of the canonical quantization program [21], we will consider the convenient
formulation in terms of the Ashtekar-Barbero connection Aia and the densitized triad Eai instead
of qab and πab. In the context of spherically symmetric geometries, we consider the Cauchy
surface with the topology Σt = R× S2. Its characteristic most generic spacetime and intrinsic
metric are given by (1.6.1) and we present the derivation of its associated flux and connection,
namely the set of components {Eai ,Aia}. To explicitly compute the latter, we use the expression
of the metric in terms of the tetrad components; gαβ = eIαeIβ , from which one can write down
the metric components:

gtt = −N2 + Λ2 (N r)2 = −
(
e0
t

)2
+
(
e3
t

)2
, (1.8.1)

gtr = Λ2N r = −e0
t e

0
r + e3

t e
3
r ,

grr = Λ2 = −
(
e0
r

)2
+
(
e3
r

)2
,

gθθ = R2 = e1
θe1θ + e2

θe2θ ,

gϕϕ = R2(sin θ)2 = e1
θe1ϕ + e2

ϕe2ϕ ,

gθϕ = 0 = e1
θe1ϕ + e2

θe2ϕ ,

from which one obtains

e0 = Ndt
e3 = ΛN rdt+ Λdr ,
e1 = R cos α̃dθ −R sin θ sin α̃dϕ ,
e2 = R sin α̃dθ +R sin θ cos α̃dϕ .

(1.8.2)

where one leaves a rotation freedom in the angle α̃ for the components e1 and e2.
In the time gauge e0

a = na, the densitized triad reads4

E = Eai τ
i∂a , (1.8.3)

Eai = 1
2ε

abcεijke
j
be
k
c . (1.8.4)

To compute the Ashtekar-Barbero connection, we make use the torsion-free condition deI =
−ωIJ ∧ eJ . The Ashtekar-Barbero connection given by

Ai = Γi + γKi , Γi = −1
2ε

i
jkω

jk , Ki = ω0i , (1.8.5)

takes the form A = Aiaτidx
a.

The spherically symmetric Ashtekar-Barbero connection and triad are then expressed as

E = Er(t, r) sin θτ3∂r +
[
E1(t, r)τ1 + E2(t, r)τ2

]
sin θ∂θ +

[
E1(t, r)τ2 − E2(t, r)τ1

]
∂ϕ ,

(1.8.6)
A = Ar(t, r)τ3dr + [A1(t, r)τ1 +A2(t, r)τ2] dθ + sin θ [A1(t, r)τ2 −A2(t, r)τ1] dϕ+ cos θτ3dϕ .

(1.8.7)
4τi denotes the anti-hermitian basis satisfying the commutation relation [τi, τj ] = εkijτk and (τi)2 = − 1

4 I for
all i’s and Tr (τiτj) = − 1

2δij .
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For the Kerr-Schild metric given by (1.6.15), the components of the flux and connection read

Er(t,r) = R2, E1(t,r) = ΛR cos α̃, E2(t,r) = ΛR sin α̃ , (1.8.8)

Ar(t,r) = −γ (Λ′N r + ΛN r′ − Λ̇)
N

, (1.8.9)

A1(t,r) = R′

Λ

[
γ

(
N r − Ṙ

R′

)
cos α̃− sin α̃

]
, (1.8.10)

A2(t,r) = R′

Λ

[
γ

(
N r − Ṙ

R′

)
sin α̃+ cos α̃

]
. (1.8.11)

The Poisson brackets takes the form:{
Ar(t,r),Er(t,r′)

}
= 2Gδ(r − r′) , (1.8.12){

A1(t,r),E1(t,r′)
}

= Gδ(r − r′) , (1.8.13){
A2(t,r),E2(t,r′)

}
= Gδ(r − r′) . (1.8.14)



Chapter 2

Loop Quantum Gravity

Gravity is a fundamental interaction that is conceptually different from all the other known
forces. The theory of general relativity tells us that the degrees of freedom of the gravitational
field are at the core of the spacetime geometry and the lesson that it teaches us is that spacetime
is fully dynamical [27]. Indeed, GR describes geometry as the gravitational field on top of
which its own degrees of freedom and those of matter fields live. This is made clear from
the framework of the initial value formulation [29, 27, 28] of GR encountered in the previous
sections. Given a suitable set of initial conditions on a 3-dimensional manifold , Einstein’s
equations dictate the dynamics that generates the reconstruction of the spacetime geometry
with all the fields propagating on it. In classical physics, general relativity is not only an
outstanding description of the very nature of the gravitational interaction. Its fundamental
principle of general covariance provides the basic framework to the most important lesson it
delivers, namely, there is no well defined notion of absolute space and it only makes sense to
describe physical entities in relation to other physical ones.
Having said this, GR is still unable to provide answers to a number of important physical
situations. In particular classical general relativity predicts the existence of singularities in
physically realistic situations such as the case of black hole physics and cosmology. Once one
tries to present a valid consistent description of the gravitational degrees of freedom near these
singularities, the theory breaks down. These are one of the reasons why a theory of quantum
gravity is needed, for which Loop Quantum Gravity (LQG) presents itself as a candidate model
to underlie the ambiguous relation between the principles of general relativity and quantum
mechanics [4, 7, 12].
LQG is a background independent approach to quantum gravity with the challenge to define
quantum field theory in the absence of any pre-defined notion of distance, namely a quantum
field theory without a metric. In this section, we will rely on the tetrad formalism and the
resulting smeared algebra of hγ [A] and Ei(S), the so called holonomy-flux algebra and sketch
the main aspects of LQG framework [13].

2.1 Kinematics

We have seen that GR can be written as a totally constrained theory and the tetrad formulation
of it allowed us to view it as an SU(2) gauge theory, which is manifest by the presence of
the Gauss constraint and the Ashtekar-Barbero auxiliary connection. The set of constraints

37
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encountered read

Gi = 0 Gauss law (2.1.1)
Ha = 0 Spatial diffeomorphism invariance (2.1.2)
H = 0 Hamiltonian constraint (2.1.3)

The usual procedure for canonical quantization of a gauge theory relies on the role played by
the metric that enables the definition of a measure for the kinematical Hilbert space. However,
general relativity as we have seen when we tried to implement Dirac’s quantization program in
section (1.7), do not have a background metric at disposal to define the integration measure.
The challenge then is to define such a measure on the space of connections without relying on a
background metric, which is naturally provided by the cylindrical functions.
A graph γ is defined to be the collection of paths e ⊂ Σt meeting at most at their end points.
Given such a graph γ ⊂ Σt with Ne being the number of edges that it contains, an element
ψγ,f ∈ Cylγ is labeled by a smooth function f and a graph γ. This smooth function f is defined
as

f : SU(2)Ne → C , (2.1.4)

and it is given by a functional of the connection defined as

ψγ,f [A] := f
(
he1 [A], he2 [A], · · ·heNe [A]

)
, (2.1.5)

where ei for i = 1, · · ·Ne are the edges of the corresponding graph. Taking the union of all these
functionals constitute the notion of cylindrical functions of generalized connections denoted
Cyl, such that

Cyl = ∪γCylγ . (2.1.6)

This represents the algebra of the physical observables upon which we will define the kinematical
Hilbert space Hkin. This space of functionals once endowed with a proper scalar product can be

Figure 2.1: Collection of paths γ = {e1 · · · eNe}

turned into an Hilbert space. Now the switching step from the connection to the holonomy will
turn out to be very convenient since the holonomy is an element of SU(2), and the integration
over SU(2) is well-defined. Indeed, there is a unique gauge-invariant and normalized measure
dh, called the de Haar measure. Whence, for Ne copies of the de Haar measure, we define on
Cylγ the scalar product〈

ψ(γ,f)|ψ(γ,f ′)
〉
≡
∫ ∏

e

dhe f
(
he1 [A], . . . , heNe [A]

)
f ′
(
he1 [A], . . . , heNe [A]

)
. (2.1.7)

This scalar product turns Cylγ into a Hilbert space Hγ . The full kinematical Hilbert space is
provided by the direct sum Hkin = ⊕

γ⊂Σt
Hγ , where Hkin is the kinematical Hilbert space over

all gauge connections A on Σt, thanks to the Ashtekar and Lewandowski,

Hkin = L2 [A, dµAL] , (2.1.8)
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with dµAL introduced as the Ashtekar-Lewandowski measure and defined as

µAL (ψγ,f ) =
∫ ∏

e⊂γ
dhef

(
he1 , he2 , · · ·heNe

)
, (2.1.9)

with the scalar product being

< ψγ,f , ψγ′,g >: = µAL
(
ψγ,fψγ′,g

)
=

=
∫ ∏

e⊂Γγγ′
dhef

(
he1 , · · ·heNe

)
g
(
he1 , · · ·heNe

) . (2.1.10)

Let us turn now to find a suitable representation for the flux-holonomy algebra. We start by
introducing an orthogonal basis on the space using Peter-Weyl theorem1 This implies that any
function ψ(γ,f)[A] ∈ Hγ can be decomposed in the following way

ψ(Γ,f)[A] =
∑

je,me,ne

f̂ j1,...,jnm1,...,mn,n1,...,nnD
(j1)
m1n1 (he1 [A]) . . . D(jn)

mnnn (hen [A]) . (2.1.12)

In return, this allows us to move the second step in finding a Schroedinger representation for the
functions. What we have accomplished with this construction is the definition of a well-behaved
kinematical Hilbert space for general relativity. It carries a representation of the canonical
Poisson algebra, and as a bonus, this representation is unique. Following Dirac, we now have a
well-posed problem of reduction by the constraints

Hkin
Ĝi=0−→ H0

kin
Ĥa=0−→ HDiff

Ĥ=0−→ Hphys . (2.1.13)

We now proceed to finding the solutions of the quantum Gauss constraint, which are basically
the state that are gauge invariant under SU(2). Due to the properties of the holonomy, we have
in a generic irrep j the gauge transformation

D(j) (he) −→ D(j) (h′e) = D(j)
(
gs(e)heg

−1
t(e)

)
= D(j)

(
gs(e)

)
D(j) (he)D(j)

(
g−1
t(e)

)
. (2.1.14)

This illustrates that gauge transformations operate on the source and targets of the links,
namely on the nodes of a graph. Imposing gauge-invariance then means requiring the cylindrical
function to be invariant under action of the group at the nodes, which can be easily implemented
via group averaging. This amounts to inserting on each edge a projector selecting the gauge
invariant part of ⊗e V

(je), namely defined as

P =
∫

dg
∏
e∈n

D(je)(g) , (2.1.15)

where ∏
e

D(je)
mene (he) ∈

⊗
e

V (je) . (2.1.16)

1Peter-Weyl theorem states that a basis on the Hilbert space of functions equipped with de Haar measure on
a compact group G is given by the matrix elements of the unitary irreducible representation of the group. For
the interesting case of SU(2), this is given by

f(g) =
∑
j

f̂ jmnD
(j)
mn(g) j = 0, 1

2 , 1, . . .
m = −j, . . . , j (2.1.11)

with D(j)
mn(g) are the Wigner matrices.
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Let us denote iα a ket in the basis of P , with α = 1, . . . ,dimV (0), V 0 being the "singlet" space,
and i∗α the dual, i.e. the bra such that P = ∑dimV (0)

α=1 iαi
∗
α. We call these invariant object

"intertwiners". A suitable method to build them amounts to add first two irreps only, then the
third, and so on, that lead to a virtual decomposition of links. For the case of n=4 and n=5,
we get something that is similar to Figure 2.2. This leads us to the notion of spin network

Figure 2.2: Picturing intertwiners for the case of n = 4 and n = 5: the process of adding first
two irreps only, then the third and so on generates a decomposition over virtual links. The
virtual spins ki stand for the intertwiners.

states. These states are labeled with a graph γ, with an irreducible representation D(j)(h)
of spin-j of the holonomy h along each link, and with an element i of the intertwiner space
Hn ≡ Inv

[⊗
e∈n V

(je)
]
and are defined as

ψ(γ,je,in) [he] =
⊗
e

D(je) (he)⊗
n
in . (2.1.17)

Imposing the gauge invariance in this manner allow us to present the solutions for the Gauss
constraints, namely Ĝiψ = 0 where the spin network basis form a complete basis of the Hilbert
space of solutions H0

kin of it. H0
kin decomposes as a direct sum over spaces on a fixed graph

that subsequently decomposes as sum over intertwiner spaces, namely

H0
kin = ⊕

Γ⊂Σ
H0

Γ , (2.1.18)

H0
Γ = L2

[
SU(2)L/SU(2)N , dµHaar

]
= ⊕jl (⊗nHn) . (2.1.19)

These equations are of the same nature of equations that simulate a Fock-decomposition of a
Hilbert space.

2.2 Dynamics

The next step is to implement the spatial diffeomorphism quantum constraint. There are
a couple of subtleties that we have to deal with during this procedure. Let us remind the
reader that we are dealing at this stage with graphs that possess certain symmetries. In fact,
each graph we work with is left unchanged under some diffeomorphism acting trivially on it.
One can actually distinguish two cases: the diffeomorphisms that exchange the links among
themselves without changing γ denoted by GSγ , and those that preserve each link, and merely
interchange the points inside the link denoted by TDiffγ . Moreover, requiring invariance
under diffeomorphism comes hand in hand with the problem of non-compactness of the group.
Similarly to the Gauss law treated above and due to the notion of linear functional on H0

kin,
namely η(φ̂ψ) = η(ψ), ∀ψ ∈ H0

kin, with η ∈ H0∗
kin (the space of linear functionals), we can
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define a projector PDiff on HDiff in a way that we sum over all diffeomorphism except those
that correspond to the trivial ones in TDiffγ . Hence the expression for the projector yield〈

ψ|ψ′
〉
Diff ≡

〈
ψ |PDiff |ψ′

〉
=

∑
φ∈Diff/TDiffγ

〈
φ̂ψ|ψ′

〉
. (2.2.1)

This step amounts to ordering the spin network states into equivalence classes of graphs under
diffeomorphisms which we will call knots.

Figure 2.3: Left: Diffeomorphism acting via the embedding, leaving knots within the graph
invariant. Right: examples of knots

Hamiltonian constraint

We proceed to the last step in the quantization procedure, namely the treatment of the
Hamiltonian constraint. We start by rewriting it in terms of flux and holonomy. A way to do
this is by using Thiemann’s trick using the properties of the geometrical operator of the volume,
and other established entities in section 2.3, which allows to write the classical Hamiltonian

H(N) =
∫

d3xNεijk
Eai E

b
j√

det(E)

(
F kab − 2

(
1 + γ2

)
Ki

[aK
j
b]

)
(2.2.2)

= HE(N)− 2
(
1 + γ2

)
T (N) .

in terms of the flux and connection

HE(N) =
∫

d3xNεabcδijF
i
ab

{
Ajc, V

}
, (2.2.3)

T (N) =
∫

d3x
N

γ3 ε
abcεik

{
Aia,

{
HE(1), V

}}{
Ajb,

{
HE(1), V

}}{{
Akc , V

}}
. (2.2.4)

Exploiting the relation between the holonomy and the connection and consider a cellular
decomposition CI of Σ. We can write

HE = lim
ε→0

∑
I

εNI 3εabc Tr (Fab {Ac, V }) (2.2.5)

= lim
ε→0

∑
I

NIε
abc Tr

((
hαab − h

−1
αab

)
h−1
ec {hec , V }

)
. (2.2.6)
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We can specify the cellular decomposition in terms of a triangulation, namely a collection of
tetrahedral cells. This can be promoted to a well defined operator

ĤE = lim
ε→0

∑
I

NIε
abc Tr

((
ĥαab − ĥ

−1
αab

)
ĥ−1
ec

[
ĥec , V̂

])
. (2.2.7)

This operator inherits the property of the volume operator of acting only on the nodes of the
spin network. From the holonomies, it acts on the spin network by creating new links carrying
spin 1

2 around the node.

Figure 2.4: Action of the Hamiltonian operator.

2.3 Geometric operators

The main physical predication of the above outlined quantum gravity model, relies on the
crucial role that some geometric operators play. In this paragraph, we will sketch their main
properties. But before that, we need to specify the operator version of the fluxes and connection
(E,A) in order to specify the properties of the these geometric operators. Since the flux induces
naturally a 2-form with values in the SU(2) Lie algebra, we expect its operator to become an
operator valued distribution. This naturally suggests that the smearing should look like

Ê[S, α] =
∫
S
dσ1dσ2 ∂x

a

∂σ1
∂xb

∂σ2α
iÊai εabc

= −i~κγ
∫
S
dσ1dσ2 ∂x

a

∂σ1
∂xb

∂σ2α
i δ

δAic
εabc ,

(2.3.1)

where α is the smearing function. Notice that this expression presents a natural generalization
of the notion of electric flux in the electromagnetism theory which sheds more light on its
geometric implications. Furthermore, one can see that

δ

δAic
he[A] = δ

δAic

(
P exp

∫
dsẋd(s)Akdτk

)
=
∫
dsẋc(s)δ(3)(x(s)− x)he1 [A]τihe2 [A] ,

(2.3.2)
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where he1 [A] and he2 [A] are the holonomies associated with the point on which the triad acts.
Hence we get

Ê[S, α]he[A] = −i8π`2pγ
∫
dσ1dσ2dσ3 ∂x

a

∂σ1
∂xb

∂σ2
∂xc

∂s
εabcδ

(3)(x(σ), x(s))αihe1 [A]τihe2 [A] .
(2.3.3)

Integrating the above expression one ends up with a very simple equation that dictates the
action of the flux operator on the holonomy The flux operator is a self-adjoint operator and an

SU(2) gauge covariant. It also enjoys the property of encoding all the quantum Riemannian
geometrical information of the space slice Σt and therefore it is naturally convenient to construct
geometrical operators based on it.

2.3.1 The area operator

A surface S is characterized by its normal na and the densitized triad such that

A(S) =
∫
S
dσ1dσ2

√
Eai E

binanb . (2.3.4)

Recall that the densitized triad acts as a functional derivative (2.3.1). For a surface intersected
only once by the holonomy path. We introduce a decomposition of S in N two-dimensional
cells, and write the integral as the limit of a Riemann sum,

A(S) = lim
N→∞

AN (S) (2.3.5)

= lim
N→∞

N∑
I=1

√
Ei(SI)Ei(SI) , (2.3.6)

where Ei(SI) is the flux going through the I’th cell. Promoting it to an operator amounts to
defining the area operator in the following way

Â(S) = lim
N→∞

ÂN (S) , (2.3.7)
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The operator Êi now acts on a generic spin network state, labeling a generic graph γ. Therefore
once the decomposition is sufficiently fine so that each SI is punctured once and only once and
hence taking a further refinement has no effect. The limit now amounts to simply sum the
contributions of the finite number of punctures p of S created by the links of the graph which
reads

Â(S) = lim
N→∞

N∑
I=1

√
Êi(SI)Êi(SI)ψ(Γ,f) =

∑
p∈S∪γ

~
√
γ2jp(jp + 1)ψγ . (2.3.8)

This expression presents the spectrum of the area operator. It is important to notice that
this spectrum is completely known and quantized, meaning that the area can be assigned
only discrete values, with minimal excitation being proportional to the squared Planck length
`2P = ~G. Moreover the operator acts diagonally on spin networks. Therefore, spin network
states are eigenstates of the area operator.

2.3.2 Volume operator

Similarly to the area operator, we proceed by considering a partition of the region into cubic
cells. This would allow to write the definition of the volume in terms of the flux and it reads

V (R) = lim
ε→0

∑
I

√√√√ 1
48εijk

∑
αβγ

Ei(SαI )Ej(SβI )Ek(SγI ) , (2.3.9)

where the surface of the cubic cells ∂CI was divided into surfaces Sα in a way that ∪αSαI . The
size of the cell ε is sent to zero in the continuum limit and the cell shrinks to point x. Similarly
to the area operator, one can notice that there is a convenient subdivision. This is achieved
when the nodes of a graph γ can fall only in the interior of a cell and this cell contains at
most one node. Moreover, notice the presence of the epsilon tensor implying that the three
fluxes must be different and that the volume does not act on links. Hence the volume operator
acts only on the nodes of the graph. In fact its matrix elements vanishes between different
intertwiner spaces.
Since every intertwiner space is finite dimensional, the spectrum of the volume operator is
discrete with minimal excitations proportional to the Planck length cube `3P .



Chapter 3

Quantum reduced spherically
symmetric geometries

The last step in our program to model quantum black holes [21] is the gauge fixing of the
redundant degrees of freedom and finally proceed with the quantization scheme. However, it
is crucial to specify which step comes ahead of the other, for all we are sure about is these
two steps do not commute. The model we are adapting to sketch the quantum theory to
describe spherical symmetric geometries is the so called Quantum Reduced Loop Gravity
(QRLG) [33]. The basic idea behind the method of QRLG [21] is to implement the choice
of symmetry compatible to the coordinate system at the quantum level rather than at the
classical one. To have a better idea of this framework, it is handful to briefly go through
its application in the context of homogeneous anisotropic cosmologies [19]. For Bianchi I
spacetime, one can always choose a coordinate space in which the metric is diagonal and time de-
pendent, making it a subspace of the full ADM phase space of homogeneous diagonal metrics [24].

To obtain a block diagonal metric, one usually proceeds with partial gauge fixing techniques,
introducing second class constraints that has to be dealt with, and selecting a partially reduced
phase space. A subspace of the latter is where coordinate independent metrics are singled out by
symmetry. In this context, based on the classical picture of minisuperspaces and the procedure
employed on them is to first derive the partially reduced phase space and then confine the study
to its symmetric sector.
The QRLG approach to cosmology was devoted to access this sector at the quantum level as
opposed to Loop Quantum Cosmology (LQC), in which the symmetry reduction is performed
classically and one is then left with finite-dimensional systems. In fact, preforming the symmetry
reduction beforehand of the quantization, one ends up with a Hilbert space where most of
the full structure is lost. On the other hand, the advantage that the QRLG approach [21]
present is to prevent this from occurring by reverting the process of symmetry reduction and
quantization to derive a symmetric sector of LQG. To this end, one proceeds as follows: one
selects first a Hilbert space with a diagonal metric from the full one and then performs the
symmetry reduction, selecting homogeneous coherent states. This procedure provides us with
the possibility to work with the complete structure of the full theory, consisting of quantum
states of polymeric nature labeled by graphs and SU(2) representations, as it will become clear
later on. Moreover, it shows that the minisuperspace effective quantization of LQC [33] [18]
can be reproduced at the level of the expectation values of quantum operators acting on the
partially gauge fixed Hilbert space.
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In this chapter, we will outline how this program is applied to spherical symmetric geometries.
One starts by selecting the partially gauge fixed Hilbert space, namely by implementing the
gauge fixing condition at the quantum level. This step amounts to having a triad with entries
only in Er3 , Eθ1 , Eθ2 , E

φ
1 , E

φ
2 and a corresponding diagonal metric with non-vanishing components

in rr, θθ, θφ and φφ. In the second step, the designated constraints in the full theory are
projected to represent the classical gauge unfixed [34] constraints. The sequel step is then to
define states belonging to this kinematical Hilbert space where the classical notion of symmetry
can be inherited with help of spherically symmetric coherent states. Finally, one can introduce
the notion of effective constraints by preforming the expectation value of the quantum reduced
constraints on the symmetry reduced states [21].

In this chapter, we intend to go through the various step in the orthogonal gauge unfixing
program for spherical symmetric geometries, to end up with an extended version of the set of
constraints [34] (1.7.29). Once this is preformed, we present in a schematic manner the program
of QRLG for the case of spherically symmetric geometries.

3.1 Orthogonal gauge fixing of first order gravity

In this section present the first order connection formulation of 4D general relativity in the
"orthogonal" gauge. Working in the canonical formulation of general relativity amounts to
dealing with a constrained system, as shown in chapter 1, where the phase space is parametrized
by the symmetric 3-metric tensor and its conjugate momentum. This amounts 6 + 6 = 12 local
degrees of freedom, of which only four are physical. The extra redundant degrees of freedom
are gauge degrees of freedom resulting from the four diffeomorphism constraints that arise in
the canonical formulation of the Einstein-Hilbert action. In fact, an extra gauge redundancy is
introduced in the first order Ashtekar connection formulation outlined in section 1.5, where the
phase space configuration variables become a gauge connection and its conjugate momentum is
a densitized triad giving rise to a total of 18 degrees of freedom. The additional 6 components
are taken care of by 3 extra first class constraints associated to the local rotational invariance
of the triad, yielding thus a total of 4 physical degrees of freedom.

These gauge symmetries are the reason underlying the difficulty to find explicit general so-
lutions of general relativity and the reason why physical applications are usually limited to
symmetry reduced cases. However, when one steps into the quantum theory, these difficulties
are further amplified by the presence of ordering ambiguities in the quantization procedure and
its non-anomaly free constraint algebra. Hence, also in the quantum theory one would like to
implement a symmetry reduction scheme for physical applications.
The symmetry reduction strategy depends on an important choice, namely the one concerning
the order in which the symmetry reduction is preformed and the quantization procedures.
Indeed, the two steps in general do not commute and the relation between the quantum theories
and its outcome of the two alternative choices (first reduction and then quantization or the
other way around) is often difficult to assess. The classical symmetry reduction path is usually
the simplest one as it is conceptually more straightforward and it makes the quantization
process fairly attainable. This is oftentimes the route chosen in canonical quantum gravity in
the quantization programs applied to cosmology and black hole physics. However this choice
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cannot easily be used o obtain predictions, due to the ambiguities this procedure bring along the
way: for instance in the cosmological case where one encounters the issue of defining a precise
relation between Loop Quantum Cosmology and the full theory, as well as in in the black hole
case, concerning the role of the Immirzi parameter in the recovery of the Bekenstein–Hawking
entropy-area law.

In this chapter we will describe an alternative program, which interpolates between the two
steps of reduction first or quantization first, namely, Quantum Reduced Loop Gravity (QRLG).
Originally applied in a cosmological setting, it was also extended to the spherically symmetric
sector of GR in the first order connection formulation, in order to apply it to the quantization
of a Schwarzschild black hole geometry with LQG techniques. In this chapter, we will outline
the first part of the analysis and show how to recast the classical phase space in a “orthogonal”
gauge, that is compatible with a spherical symmetry reduction, mainly by completing the
Dirac analysis. It turns out that the appearance of second class constraints in the theory is a
consequence of the partial gauge fixing of the phase space canonical coordinates. The Dirac
treatment of the system is successfully completed by utilizing the gauge unfixing procedure.
The procedure of gauge unfixing is equivalent to the inversion of the Dirac matrix and provides
the tool to work directly with the reduced phase space and the ordinary Poisson bracket. This
treatment has the advantage of making calculations concerning the Hamiltonian constraint
operator more easy to handle. However, since in the QRLG program we will not have to
rely on point holonomies, there will be more degrees of freedom encapsulated by the reduced
kinematical Hilbert space, allowing our construction to be closer to the full theory one and
yielding additional quantum corrections at the effective level of the dynamics. Let us stress
that, while our main motivation is to apply the results obtained here to the LQG quantization
of a black hole, the classical treatment is interesting on its own, since it represents a successful
study of a second class Hamiltonian system according to the Dirac program, allowing therefore
to recast full 4D GR in the first order formulation in a partial gauge.

3.1.1 Constraints and spherical symmetry implementation

We are interested in spherical symmetric geometries in order to consider the physics underlying
black holes. To this aim, the first step to proceed is to impose gauge conditions that best model
such geometries. The starting point is to implement these gauge conditions in the (1.7.28) that
is adapted to a reduction to spherical symmetry. We consider as usual a spacetime that admits
a foliation by smooth 3D hypersurfaces Σt and work in the time gauge. Let us recall the action
in this formulation

S = 1
16πG

∫
dt

∫
Σt
d3x

(2
γ
Eai LtAia −NH −NaVa − ΛiGi

)
, (3.1.1)

The action (3.1.1) defines the phase space coordinates in terms of an SU(2) connection configu-
ration variable A and its conjugate momentum E, and it describes a pure constraint theory as
outlined in chapter 1. As we previously discussed in section 1.7, let us recall the constraints of
GR in this formulation:

Gi = ∂aE
a
i + εkijA

j
aE

a
k , Gauss constraint

Ha = F iabE
b
i , Vector constraint

H =
γEai E

b
j

2
√

det(E)

(
εijk F

k
ab − 2(1 + γ2)Ki

[aK
j
b]

)
, Hamiltonian constraint

(3.1.2)



48

The canonical Poisson brackets (PB) induced by the above action (3.1.1) are

{Aia(~x), Ej(~y)} = 8Gγδbaδijδ(~x− ~y) ,
δ(~x− ~y) = δ(rx − ry)δ(θx − θy)δ(φx − φy) .

(3.1.3)

where the algebra of the constraints determined by (3.1.2) turns out to be first class. The
next step is to parametrize a neighborhood of a point in a given constant time slice Σt. We
therefore introduce a set of local spherical coordinates (r, θ, φ), that grants a natural way to
work with radial geodesics and that can always be locally defined. For the subsequent steps, we
do not need to specify the finite interval for the angular coordinates and we assume the radial
coordinate to take values in the finite range r ∈ [0, r]. Moreover, we make the further restricting
requirement that the radial evolution vector has vanishing shift. This additional condition
makes the simplification that ra, the unit spacelike radial vector, is proportional to δar. Given
the above setup, the spatial index a takes values a = r, θ, φ, and the integration element in
(3.1.1) becomes d3x = drdθdφ. The SU(2) internal index i takes the values i = 1, 2, 3. Now,
in order to fix the system in the desired gauge adapted to the foliation of Σt, we choose an
"orthogonal" gauge defined by Ea3 being aligned with the unit spacelike radial vector ra, which
is equivalent to demanding, after decomposing along radial and tangential indices,

ErI = 0, I = 1,2
EA3 = 0, A = θ, φ .

(3.1.4)

where capital letters I, J,K· label internal indices 1, 2 and capital letters A,B,C label tangential
coordinates θ, φ. The set of equations in (3.1.4) can be considered as a set of four gauge conditions
for our original theory (3.1.1) that provides a natural diagonal structure. This can be better
interpreted once reprocessed in a matricial form with internal indices 3, I labeling rows and
space indices labeling columns. Hence we can write (3.1.4) in the following formE

r
3 0 0

0 Eθ1 Eφ1
0 Eθ2 Eφ2


It is then evident the similarity with the radial gauge choice structure of the spatial metric hab,
where hab is a block diagonal 3x3 matrix of the form

hrr 0 0
0 hθθ hφθ
0 hφθ hφφ


With the underlined imposition of the gauge conditions , we use the expression "orthogonal"
gauge to denote the block-diagonal in the sense explained above. In order to look at the PB
algebra between the gauge conditions (3.1.4) and the constraints (3.1.2), it is more convenient
to work with the diffeomorphism constraint instead of the the vector constraint Va generating
spatial diffeomorphism on Σt, and taking the expression1

Ha = Va −AiaGi , (3.1.5)

In order to proceed with the computation of the PB between the constraints and the gauge
conditions, we adapt the following notation; we denote by Na a smearing vector field having a

1From now on we work in units 8πG = 1. Furthermore, indices in the same positions are not summed over,
unless otherwise specified and we assume vanishing boundary conditions for the smearing functions.
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non-vanishing component only along the a-th direction, (Na)b = ηaδab. Hence, the smearing
~H[ ~Na] selects only the a-th component ofHb. For example, N θ ≡ (0, ηθ, 0) and ~H[ ~N θ] ≡

∫
ηθHθ.

We also denote by ~Λi a vector in the internal space with the non vanishing component only
along the i-th internal direction, (Λi)j = λiδij . Hence, ~G[~Λ~i] picks up only the i-th component
of Gj2 With these conventions, ~H[ ~N ] is the smeared diffeomorphisms constraint, yielding the
equation

~H[ ~N ] =
∫
d3xNaHa . (3.1.6)

Note that the condition hrr = 1 implies, in terms of fluxes, Er = εIJ3 EθIEJ . We also assume
vanishing boundary conditions for the above introduced smearing functions.
The PB brackets to be considered read

{Eai , ~H[ ~N ]} = γL ~NE
a
i = γ(N b∂bE

a
i Ei∂aN

a + ∂bN
bEai ) , (3.1.7)

{Aia, ~H[ ~N ]} = γL ~NA
i
a = γ(N b∂bA

i
a +Aib∂aN) , (3.1.8)

With these conventions one obtains on the gauge surface selected by (3.1.4), (3.1.7)

{ErI , ~H[ ~NA] ≈ −γEBI ∂BηAδAr = 0 , (3.1.9)
{ErI , ~H[ ~N r]} ≈ −γEAI ∂Aηr , (3.1.10)
{EA3 , ~H[ ~NB]} ≈ −γEr3∂rηBδAB, (3.1.11)
{EA3 , ~H[ ~N r]} ≈ −γEr3∂rηrδAr = 0 , (3.1.12)

where the symbol ≈ denotes projection of the phase space onto the gauge surface (3.1.4). It is
well known the role that the Gauss constraint plays in the theory. In fact, it represents the
constraint that generates the internal rotations orthogonal to the third internal direction and
therefore it is not surprising that it is first class with ErI as well as EA3 . On the other hand, we
can see that ErI and EA3 are second class with GI , namely

{ErI , ~G[~ΛJ ]} ≈ −γλJεJIEr3 , (3.1.13)
{EA3 , ~G[~ΛJ ]} ≈ γλJεJIEAI . (3.1.14)

Notice also that while EA3 is second class only with HA , ErI is second class only with Hr . The
Dirac treatment of a second class Hamiltonian system was described in section 1.2. It is clear
that, in order to preserve the number of physical degrees of freedom of the phase space, the
second class constraints must be twice as many as the gauge conditions. In our case this implies
that, since (3.1.4) are four conditions, four and only four out of the original seven constraints Gi,
Ha and H are second class with them. Consequently, we are left with three residual first class
constraints. They do not necessarily match the three constraints from the initial set, since they
can be written as a linear combinations with the others. Once this splitting is done, one must
invert the Dirac matrix that will enables us to implement the second class constraints through
the Dirac brackets as in expressed in Eq (1.2.18). However, working out a representation of the
Dirac brackets can be tedious, bringing along serious further complications at the quantization
level. One way to avoid these ambiguities is to impose these second class constraints in the
framework of the gauge unfixing procedure (GU). This alternative route provides a natural tool
to directly manipulate the reduced phase space variables, while still using the ordinary Poisson

2In this notation, we can make the following example: Λ1 ≡ (λ1,0,0) and ~G[~Λ1] ≡
∫
λ1G1.
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brackets. Moreover, it provides a straightforward way to compute the gauge invariant residual
first class constraints.
Applying the program outlined in section 1.2.1 to the case of interest of spherically symmetric
geometries, one ends up with a new set of extended constraints ready to be manipulated once
the quantization machinery is at play. In this setting, the GU consists of finding an extension
of the phase space invariant under the flow of the gauge conditions. In the case of (3.1.4), this
amounts to finding extensions of AIr and A3

A. To avoid confusion, these extensions are denoted
with a tilde: ÃIr and Ã3

A. They are obtained by adding to AIr and A3
A terms proportional to the

original constraints

3.1.2 Constraints for the Kerr-Schild foliation

Since we are mainly interested in the Kerr-Schild metric, we can extract the extended constraints
that will be useful for the subsequent work. A preliminary step is reproduce the constraints (not
in the extended form yet) in the spherically reduced form. The Gauss and radial diffeomorphism
in this case are computed to be

G3 = sin θ
(
∂rE

r + 2A1E
2 − 2A2E

1
)

= 0 , (3.1.15)

Hr = F IrAE
A
I −A3

rG3 (3.1.16)

= 2 sin θ
((
A′1 −A2Ar

)
E1 +

(
A′2 +A1Ar

)
E2
)

= 0 . (3.1.17)

Whereas the Hamiltonian constraint reads

κH = − 1
γ2

(
HE +HL

)
, (3.1.18)

= − 1
γ2

[
εijk E

a
i E

b
jF

k
ab√

det(E)
+
(
1 + γ2

)√
det(E)R

]
. (3.1.19)

The Euclidean Hamiltonian in the above expression yields the equation

HE =
εijk E

a
i E

b
jF

k
ab√

det(E)
(3.1.20)

= sin θ√(
(E1)2 + (E2)2

)
Er

[
4ErAr

(
E1A1 + E2A2

)
+ 4Er

(
E1A′2 − E2A′1

)

+ 2
((
E1
)2

+
(
E2
)2
)((

A2
1 +A2

2

)
− 1

) ]
,

and we have for the Lorentzian part

HL =
(
1 + γ2

)√
det(E)R (3.1.21)

= −
(
1 + γ2)

2
√
Er
[
(E1(r))2 + (E2(r))2

]3/2
×
[
− 4 sin θ

[(
E2(r)

)2
+
(
E1(r)

)2
]2

+ sin θ
[(
E1(r)

)2
+
(
E2(r)

)2
]((

Er
′(r)

)2
+ 4Er(r)Er′′(r)

)
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− 4 sin θEr(r)Er′(r)
[
E1(r)E1′(r) + E2(r)E2′(r)

] ]

= − sin θ
(
1 + γ2

) [
2Λ(r)

(
(R′(r))2

Λ2(r) − 1
)

+ 4R(r)
Λ(r)

(
R′′(r)− Λ′(r)R′(r)

Λ(r)

)]
.

3.1.3 Extended constraints

At this point one can derive the extended version of the above considered constraints. Let us
define the reduced radial diffeomorphism constraint as the constraint not containing the (3,r)
component in the momenta. It then reads

Hr =
(
∂rA

I
A

)
EAI −A3

r∂rE
r
3 , (3.1.22)

and the extended radial constraint reads

H̃r [N r] ≈ Hr [N r] +
∫
d~x (∂AN r)

[
εIJEAI ∂BE

B
J

Er3
+ δIJEAI E

B
J IB

(Er3)2

]
, (3.1.23)

IA ≡
∫ r

0
dr′
[
DA + Er3∂AA

3
r

]
r′
. (3.1.24)

The Hamiltonian constraint splits into its Lorentzian and Euclidean parts. In the quantum
theory, the Lorentzian part is traditionally treated by rewriting it in terms of commutators
of the Euclidean part with the volume operator. The reduced Euclidean Hamiltonian can be
written in the form

HE ≈
γ√

det(E)

(
Er3E

A
I ε

I
J∂rA

J
A + EAI E

B
J A

I
[AA

J
B] + Er3E

A
I A

3
rA

I
A

)
. (3.1.25)

The extended version then yields

H̃E ≈ HE + γ√
det(E){

EAI E
B
J

[
−δIJ IAIB

(Er3)2 + εIJ∂A

(IB
Er3

)]

− Er3EAI

εIJ
(
∂BE

B
J

)
IA

(Er3)2 + ∂A

(
εIJEBJ IB

(Er3)2 − δIJ∂BE
B
J

Er3

)} ,

(3.1.26)

where for simplicity we defined

γA =
∫ r

r
dr′
[
∂B
Er3

(
NE

[A
I E

B]
J ε

IJ√
det(E)

)

+ EAI ∂B

(Er3)2

(
NεIJEBJ E

r
3√

det(E)

)
− NEAI√

det(E)

(
EBJ δ

IJA3
B

Er3
+AIr + εIJ

Er3
GJ

)

− NEAI E
B
J δ

IJ√
det(E) (Er3)2

∫ r′

0
dr′′HB

(
r′′
) ]

r′

γI = −∂A
Er3

(
NδIJEAJ E

r
3√

det(E)

)
− NεIJEAJ A

3
A√

det(E)
.

(3.1.27)
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This analysis presents the basis for the quantum description of black holes that we will soon
encounter. More precisely, the orthogonal gauge fixing outlined above will allow us to deal with
the spherically symmetry reduction of a 3D spatial geometry.
The strategy is to generalize techniques introduced for cosmological applications within the
framework of Quantum Reduced Loop Gravity to impose the gauge fixing conditions in terms
of expectation values on kinematical quantum states of the full theory. We can then use these
reduced spin networks to construct coherent states for a Kerr-Schild quantum geometry, thus
activating the spherical symmetry reduction at the quantum level. The quantum dynamics will
be encoded in the operatorial version of the extended Euclidean Hamiltonian constraint (and
its Lorentzian contribution as well). Time evolution of the Kerr-Schild geometry initial data
according to the resulting modified semi-classical Hamiltonian is expected to give rise to an
effective quantum corrected metric.

3.2 Quantum reduction implemented for black holes

One can now proceed with the symmetry reduction at the quantum level. This is performed by
starting with the full kinematical Hilbert space HK of the full theory and then implementing
the reduction on HK .
In this section we point out the main steps to construct a reduced kinematical Hilbert space
that reflects at the quantum level the radial partial gauge fixing for spherical geometries. The
strategy is the following; we start by the full theory Hilbert space, which for simplicity will
be denoted in the following as HK . We then demand a weak version of the condition (3.1.4)
restricting therefore the non-gauge-invariant spin network basis states contained in HR. The
geometrical set up for this scheme relies on the choice of the spatial manifold triangulation
convenient to describe the topology we are interested in. This can be naturally depicted by
choosing cuboidal triangulations for the spherically symmetric geometry. At each vertex we
have three directions, one corresponding to the radial direction and the other two to the angular
directions on the 2-spheres foliating the spatial manifold.
Later on, we will have to deal with the specific choice of subclass of graphs of spin networks
basis to complete the precess of reduced quantization.

3.2.1 Reduced spin network states

Figure 3.1: Tangent and internal directions

Let us consider our choice of the flux’s smearing surface. We consider fluxes to two-dimensional
surface Sa whose normal vectors are aligned with the tangent vectors (r, θ, ϕ). We work in two
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su(2) orthonormal basis, namely {x, y, z} and {1, 2, 3} such that the elements 3 and z coincide.
Now, we take the direction r to be aligned with the internal direction 3 while the directions θ
and ϕ are aligned with x and y. This set up basically amounts to imposing the following gauge
fixing

E3
(
Sθ
)

= 0 = E3 (Sϕ) , (3.2.1)

E1 (Sr) = 0 = E2 (Sr) , (3.2.2)

where

Ei (Sa) =
∫
Eai nadσ1dσ2 . (3.2.3)

At the quantum level, this gauge fixing translates to choosing the edges le aligned with the
three directions {r, θ, ϕ} such that l̇ae ∝ δae and the holonomies in this configuration read

ge = Pe
∫
`e
τiA

i
a

˙̀a
e(s)ds . (3.2.4)

The 2-sphere is equipped at a each value of component r with a grid of plaquettes carrying
edges labeled by the tangential coordinates θ and ϕ, with εr, εθ, and εϕ denote the coordinate

Figure 3.2: Tangent and internal directions

lengths in the tangential directions.
The projector operator acting on HK = ⊕γHKγ proceed in two steps. It will first act on restricted
γ to Γ and then by projecting HKΓ to its reduced subspace HRΓ . The kinematical Hilbert space
is then

HR = ⊕ΓHRr . (3.2.5)

The second step is to implement an SU(2) gauge fixing acting on the basis of HRr . The basis
that label each link in the reduced Hilbert space in a given tangential direction can be written
as

xDjx
mxnx

(gθ) =
〈
mx, ~ux

∣∣Djx (gθ)
∣∣nx, ~ux〉 = 〈gθ|x, jx, m̃x, ñx〉 ,

yD
jy
myny

(gϕ) =
〈
my, ~uy

∣∣Djy (gϕ)
∣∣ny, ~uy〉 = 〈gϕ|y, jy, m̃y, ñy〉 ,

Djz
mznz

(gr) =
〈
mz, jz

∣∣Djz (gr)
∣∣ jz, nz〉 = 〈gr|r, jr, m̃z, ñz〉 .

(3.2.6)

that can also be expressed as
IDjI

mInI
(g) = DjI−1

mIm
(uI)DjI

mn(g)DjI
nnI

(uI) , (3.2.7)
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once we introduce the orthogonal unit vector ~uI ( with I ∈ {x, y} ) on the (1,2)− plane

|nI , ~uI〉 = DjI (~uI) |jI , nI〉 =
∑
m

|jI ,m〉DjI
mnI

(uI) . (3.2.8)

The gauge fixing in (3.2.1) amount to choosing the parametrization

ux = R

(
α,
π

2 , 0
)

= eατ3e
π
2 τ2 ,

uy = R

(
α+ π

2 ,
π

2 ,−
π

2

)
= e(α+π

2 )τ3e
π
2 τ2e−

π
2 τ3 .

(3.2.9)

Notice that the angle α is independent of the α̃ entering the classical construction. Now,
implementing the residual U(1) gauge invariance amounts to integrating over the α in the
reduced states. Meanwhile we keep α̃, around which our semi-classical states are peaked,
fixed. It is important to stress that unlike the reduced states usually built for cosmological
applications, in (3.2.6) the off-diagonal terms are also taken into consideration. Those are the
states peaked on maximum-minimum magnetic numbers and not just maximum-maximum or
minimum-minimum. They play an important role in the case of black hole, since the symmetry
reduced Ashtekar-Barbero connection contains general off-diagonal terms. It follows then, that
the computation of the expectation value of the fluxes components is a straightforward task.

Quantum Gauss constraint

The projection of the kernel of the full theory Gauss constraint is done through the operation

P †ĜiP . (3.2.10)

When we were studying the kinematical Hilbert space of the full theory, we encountered that
the kernel of Ĝi is given by the well-known gauge-invariant spin network states obtained by
contraction with the SU(2) intertwiners at the nodes of the graphs. In this case, the gauge fixed
operation (3.2.10) represents a map between the kernel of Ĝi to the kernel of RĜ3, representing
the classical phase space reduction. The states annihilated by RĜ3 are now α invariant, where
α is parameter of rotation around the internal 3-axis that has been aligned to the r-axis by the
projector P.

Quantum vector constraint

The quantum vector constraint is imposed in the full theory by group averaging the spin network
states over spatial diffeomorphisms as we have studied in section 2. In fact, solving the finite
version of the vector constraint is basically the quest of finding all ψ that satisfy

U [φ]ψ = ψ . (3.2.11)

This equation, however, has no nontrivial solutions in HK . Nonetheless, it can be solved for
ψ ∈ Cyl∗. In principle one should try to find the kernel of ˆ̃Hr. But this goal is too ambitious at
the moment. Although, we know H̃r =R H̃r classically and in the case where the shift vector
N r depends only on the radial direction. Therefore, we may assume that the kernels of the
corresponding quantized operators coincide. We expect that averaging the kinematical states
constructed here over the group of radial diffeomorphisms will provide the required solutions to
Eq. (3.2.11).
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Semiclassical states

To derive an effective Hamiltonian for the reduced version of the constraints, one can rely on the
semi-classical states. The construction of these states in HR is based on the heat kernel of the
Laplace operator for each edge l of the corresponding graph operating on the delta function of
its respective SU(2) group element g`. Coherent semi-classical states are then obtained through
analytic continuation carried from g ∈ SU(2) to G ∈ SL(2,C), namely

ψλG (g`) = Kλ (g`, G) , (3.2.12)

where

G = g exp
(
i
λ

κγ
Ei
(
S`
)
τ i
)
, (3.2.13)

plays the role of the complexifier. The semi classical states for the three tangential directions
read

ψλG (gr) =
∞∑
jz=0

∑
mz ,nz

(2jz + 1) e−
λ
2 jz(jz+1)Djz

mznz

(
g−1
r

)
Djz
nzmz

(
eεrArτ3e

i
λδ2
r

κγ
Er sin θτ3

)

=
∞∑
jz=0

∑
mz

(2jz + 1) e−
λ
2 jz(jz+1)eλmz

δ2
rE

r sin θ
κγ Djz

nzmz

(
eεrArτ3

)
Djz
mznz

(
g−1
r

)
,

ψλG (gθ) =
∞∑
jx=0

∑
mx,nx

(2jx + 1) e−
λ
2 jx(jx+1)xDjx

mxnx

(
g−1
θ

)x
Djx
nxmx

(
eεθ(A1τ1+A2τ2)e

i
λδ2
θ

πγ
(E1τ1+E2τ2) sin θ

)

=
∞∑
jx=0

∑
mx,nx

(2jx + 1) e−
λ
2 jx(jx+1)eλmx

δ2
θ
Ex

κγ
x
Djx
nxmx

(
eεθ(A1τ1+A2τ2)

)x
Djx
mxnx

(
g−1
θ

)
,

ψλG (gϕ) =
∞∑
jy=0

∑
my ,ny

(2jy + 1) e−
λ
2 jy(jy+1)yD

jy
myny

(
g−1
ϕ

)y
D
jy
nymy

(
eεϕ((A1τ2−A2τ1) sin θ)ei

λδ2
ϕ

κγ (E1τ2−E2τ1)
)

=
∞∑
jz=0

∑
mz ,nz

(2jy + 1) e−
λ
2 jy(jy+1)eλmy

δ2
ϕE

y

κγ yD
jy
nymy

(
eεϕ((A1τ2−A2τ1) sin θ)

)y
D
jy
myny

(
g−1
ϕ

)
,

(3.2.14)

where δ2
x = εrεϕ, δ

2
y = εrεθ, δ

2
z = εθεϕ. Notice that for jx, jy, jz � 1, the coefficients appearing in

the coherent states become Gaussian weights, peaking around the geometry around the classical
data. The normalized reduced semi-classical states are then

ψ̃λG (g`) = ψλG (g`)∣∣ψλG (g`)
∣∣ . (3.2.15)

Reduced Hamiltonian operator

The Hamiltonian constraint in (2.2.7) has a well defined action on a graph-dependent triangula-
tion of the spacelike hypersurfaces. One can implement this construction to the cubulation we
are adapting to define HR, by borrowing techniques developed in the cosmological sector [33].
Since the classical Hamiltonian operator in (2.2.7) inherits the action of the volume operator on
nodes, one should first describe the action on a three valent nodes and define the recoupling
theory. The reduced 3-valent vertex state, denoted by

∣∣∣vR3 (j)
〉
, is obtained from the gauge
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invariant spin network version of (3.2.9), after projecting them on 4H. Keeping in mind that the
Haar measure is confined to the U(1) rotation around the z-axis, one finally derives the reduced
holonomies. Now, let us consider a region containing the 3-valent node v. It is straightforward
to derive the action of the reduced volume operator regularized on the cube dual to v by using
the properties of the reduced fluxes, manifesting a diagonal action on the reduced 3-valent
vertex states that render the computation for the Hamiltonian constraint simpler. The action
of the holonomy operator on the reduced Hilbert space is prescribed by the recoupling rules for
our states, derived in [21].
The reduced Hamiltonian we intend to present is an operator constructed out of the reduced
fluxes and holonomies and its action is restricted to the reduced states. Using the recoupling
rules and the action of the reduced volume operator, the computations greatly simplify thanks
to the gauge we imposed and one can derive the action of the RH on the reduced states.
Taking into account that the quantization procedure acting on the full expression of the spheri-
cally symmetric Hamiltonian constraint, including the additional terms resulting from the phase
space extension of the gauge unfixing procedure, one obtains an effective Hamiltonian constraint
by computing the expectation value of these contributing parts3. Taking the continuum limit
εr, εθ, εϕ → 0, one obtains an effective Hamiltonian constraint for a spherically symmetric
spacetime including quantum corrections. The effective Hamiltonian for the general case of
spherically has been derived in [21].

3.3 Kerr-Schild effective Hamiltonian constraint

The computation of the effective Hamiltonian for the Kerr-Schild foliation is based on the
technology outlined above, applied to the gauge unfixed extended constraint in Eq(3.1.18). The
effective Hamiltonian in the α = 0 gauge is then the sum of the Euclidean and Lorentzian
constraints, where the Euclidean reads

HE = 4
√
Er

{
εθ

[
cos


√
A2

1(r) +A2
2(r)

2 sin θεφ

 sin


√
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1(r + εr) +A2
2(r + εr)

2 sin θεφ


×

(
sin
[
Ar(r)+Ar(r+εr)

2 εr
]
A1(r + εr) + cos

[
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2 εr
]
A2(r + εr)

)
√
A2

1(r + εr) +A2
2(r + εr)

− sin
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√
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1(r) +A2
2(r)
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
√
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2 sin θεφ


×

(
sin
[
Ar(r+εr)−Ar(r)

2 εr
]
A1(r) + cos

[
Ar(r+εr)−Ar(r)
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]
A2(r)

)
√
A2

1(r) +A2
2(r)

]

+ εφ sin θ
[

cos


√
A2

1(r) +A2
2(r)

2 εθ

 sin


√
A2

1(r + εr) +A2
2(r + εr)

2 εθ


×

(
sin
[
Ar(r)+Ar(r+εr)

2 εr
]
A1(r + εr) + cos

[
Ar(r+εr)+Ar(r)

2 εr
]
A2(r + εr)

)
√
A2

1(r + εr) +A2
2(r + εr)

3The quantization of the Lorentzian piece follows from using its expression in terms of the densitized scalar
curvature expressed as a function of the fluxes and their derivatives.
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− sin


√
A2

1(r) +A2
2(r)

2 εθ

 cos
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√
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+ 2εr
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√
Er

sin
[√

A2
1(r) +A2

2(r)εθ
]

sin


√
A2

1(r) +A2
2(r)

2 (sin θ + sin(θ + εθ)) εφ


+ 2εrεφ

εθ

E1
√
Er

(sin(θ + 2εθ)− 2 sin(θ + εθ) + sin θ) , (3.3.1)

and the Lorentzian term reads

HL = −
(
1 + γ2)

2
√
Er(r) (E1(r))2

×
[
4εrεϕ
εθ

(
E1(r)

)3
(sin (θ + 2εθ)− 2 sin (θ + εθ) + sin θ)

+ εθεϕ
εr

sin θE1(r)
(
(Er (r + εr)− Er(r))2 + 4Er(r) (Er (r + 2εr)− 2Er (r + εr) + Er(r))

)
− 4εθεϕ

εr
sin θEr(r) (Er (r + εr)− Er(r))

(
E1 (r + εr)− E1(r)

)
] .

Hence, the total effective Hamiltonian reads

−2κγ2H = 4
√
Er

{
εθ
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58

− 2γ2 εrεφ
εθ

E1
√
Er

(sin(θ + 2εθ)− 2 sin(θ + εθ) + sin θ)

− (1 + γ2) sin θ
2(E1(r))2

√
Er(r)

εθεφ
εr

×
{
E1(r)

[
(Er(r + εr)− Er(r))2 + 4Er(r) (Er(r + 2εr)− 2Er(r + εr) + Er(r))

]
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E1(r + εr)− E1(r)

)}
. (3.3.2)

The above expression for the Hamiltonian (3.3.2) can be further simplified, namely by summing
over the angular plaquettes. To this end, it is useful to introduce a set of parameters that
will set up the coordinate lengths of the plaquettes on the 2-sphere as εθ = π

Nθ
, εϕ = 2π

Nϕ
,

where Nφ and Nθ are two integers such that NφNθ is the total number of the plaquettes on the
2-sphere. In the limit in which these numbers are large, one can see

∫ π

0
dθ =

Nθ∑
nθ=0

εθ = π , (3.3.3)

∫ 2π

0
dφ =

Nφ∑
nφ=0

εφ = 2π , (3.3.4)

∫ 2π

0
dφ

∫ π

0
dθ sin θ = lim

Nθ,Nφ→∞

Nφ∑
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Nθ∑
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εφεθ sin
(
πnθ
Nθ

)
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Nθ→∞

2π2

Nθ
cot

(
π

2Nθ

)
= 4π .

(3.3.5)

Hence, in this limit and keeping in mind that the Hamiltonian is independent of the angle ϕ,
one can write the sum over a given 2-sphere plaquettes of the effective Hamiltonian constraint
as follows

lim
εθ,εφ→∞

∑
p∈S2

H = lim
εθ,εφ→∞

1
εφεθ

∑
nφnθ

εφεθH (3.3.6)
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1
εφεθ
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0
dφ

∫ π

0
dθH
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NθNφ

π

∫ π

0
dθH .

The sum over angular plaquettes yields the total effective Hamiltonian constraint
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∑
p∈S2

H

= lim
Nθ,Nφ→∞

{
4π
εφ

√
Er(r)

{[(
H0

[(√
A2

1(r + εr) +A2
2(r + εr) +

√
A1(r)2 +A2(r)2

)
εφ

]

+H0

[(√
A2

1(r + εr) +A2
2(r + εr)−

√
A1(r)2 +A2(r)2

)
εφ

])

×

sin
[
Ar(r)+Ar(r+εr)

2 εr
]
A1(r + εr) + cos

[
Ar(r)+Ar(r+εr)

2 εr
]
A2(r + εr)√

A2
1(r + εr) +A2

2(r + εr)

+



59

−
[(
H0

[(√
A2

1(r + εr) +A2
2(r + εr) +

√
A2

1(r) +A2
2(r)

)
εφ

]

−H0

[(√
A2

1(r + εr) +A2
2(r + εr)−

√
A2

1(r) +A2
2(r)

)
εφ

])

×

(
sin
[
Ar(r+εr)−Ar(r)

2 εr
]
A1(r) + cos

[
Ar(r+εr)−Ar(r)

2 εr
]
A2(r)

)
√
A2

1(r) +A2
2(r)

]}

+ 16π
εθ

√
Er(r)

{
cos


√
A2

1(r) +A2
2(r)

2 εθ

 sin


√
A2

1(r + εr) +A2
2(r + εr)

2 εθ


×

sin
[
Ar(r)+Ar(r+εr)

2 εr
]
A1(r + εr) + cos

[
Ar(r+εr)+Ar(r)

2 εr
]
A2(r + εr)√

A2
1(r + εr) +A2

2(r + εr)

− sin


√
A2

1(r) +A2
2(r)

2 εθ

 cos


√
A2

1(r + εr) +A2
2(r + εr)

2 εθ


×

(
sin
[
Ar(r+εr)−Ar(r)

2 εr
]
A1(r) + cos

[
Ar(r+εr)−Ar(r)

2 εr
]
A2(r)

)
√
A2

1(r) +A2
2(r)

}

16γ2E1(r)εr sin2 ( εθ
2
)

cos (εθ)
ε2θ

+
2πE1(r)εrH0

(√
A2

1(r) +A2
2(r)εφ

)
sin
(
εθ

√
A2

1(r) +A2
2(r)

)
εθεφ

− 4π
εr

(1 + γ2)
(E1(r))2

√
Er(r)

×
{
E1(r)

[
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. (3.3.7)



Chapter 4

Classical constraint algebra

In chapter 1 we emphasized the major role the constraints play in the quantization program of
a theory à la Dirac and the crucial, and maybe even the only criteria, of the off-shell closure of
their algebra for a quantum gravity model to be consistent [10, 28, 13].
Covariance is a central property and a fundamental concept in general relativity. Even if one
proceeds with a canonical formulation of the theory [10, 14, 28], one can encounter a formal
absence of covariance although the theory itself is still manifestly covariant, and is actually
inherited in the Poisson or Dirac algebra of the constraint’s action on the phase space variables,
since at the end of the day all what was done is to write the physics in a different representation.
This aspect doesn’t hold anymore when stepping into the quantum representation of general
relativity. Besides the ambiguities that emerge during the procedure of defining a proper
Hamiltonian and diffeomorphism constraints, the closure of the quantum constraint’s algebra
is perhaps the crucial consistency requirement that must be met by any candidate theory of
quantum gravity. In the context of RLQG [21], with the implemented spherical symmetry case,
passing this test is necessary to prove its powerful treatment for the case of a quantum black
hole and describing its microscopic degrees of freedom as well as recovering the classical limit.
In this chapter we will study the closure of the constraint algebra in the classical gauge unfixed
case. We will rely on the results mentioned in chapter 3. More importunately, we focus on
the on-shell closure of the equations of motion satisfied by the phase space variables

(
Aia, E

b
j

)
,

leaving the off-shell closure investigation for future work. Concretely, we will present a possible
formulation of the Hamiltonian evolution equation in terms of the constraints of the theory
[35]. In a second step, we will study the Poisson algebra structure that sheds more light on
the Hamiltonian and diffeomorphism constraints, that would set out the path we will follow in
the next chapter to derive a candidate expression for the effective diffeomorphism constraint
(Kerr-Schild foliation is considered) and its respective evolution equations.

4.1 Constraint algebra for constrained general relativity

The ADM action (1.5.2) allows us to study the phase space of general relativity parametrized
by the canonical pair (qab, πab) carrying the symplectic structure{

πab(t, x), qcd
(
t, x′

)}
= δa(cδ

b
d)δ
(
x− x′

)
, (4.1.1)
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where we define the Poisson bracket of two functions A and B

{A(y), B(z)} =
∫

d3x
δA(y)
δqab(x)

δB(z)
δπab(x) −

δB(z)
δqab(x)

δA(y)
δπab(x) . (4.1.2)

The constraints derived in (1.7.29) satisfy the following commutation relation

{Ha(x), Hb(y)} = Ha(y)∂bδ(x− y)−Hb(x)∂′aδ(x− y) ,
{Ha(x), H(y)} = H(x)∂aδ(x− y)
, {H(x), H(y)} = Ha(y)∂aδ(x− y)−Ha(y)∂′aδ(x− y) .

(4.1.3)

An interesting property the above constraints have is that they are first class. In fact, the
right hand side vanishes on the constraints surface whence the Poison flow generated by them
preserves the constraints hypersurface. As discussed in section (1.2), first class constraints
generate gauge transformations on the constraints surface, which is made manifest once the
respective Poisson brackets are evaluated:{

H( ~N), qab
}

= LNqab,
{
H( ~N), πab

}
= LNπ

ab , (4.1.4)

where it is useful to introduce the smeared version of the constraints1

H( ~N) =
∫

Σt
Ha(x)Na(x)d3x, H(N) =

∫
Σt
H(x)N(x)d3x . (4.1.5)

The gauge transformations generated by the vector constraint are the ones accounted for the
space-diffeomorphism. The Hamiltonian constraint commutator, however, satisfy

{H(N), qab} = LnNqab , (4.1.6){
H(N), πab

}
= L~nNπab + 1

2q
abNH − 2N√qqc[aqb]dRcd . (4.1.7)

The first bracket stands for time diffeomorphism on the induced metric. Whereas the second
bracket contains two additional terms that vanish on shell, i.e. for H = 0 and Rcd = 0.
In the subsequent, we will consider more general configuration treatment for the constraint
algebra that is not a Lie algebra, the so called Dirac or Bargmann-Komar algebra. This algebra
is peculiar mainly due the "structure constants" that appear outside the constraint’s surface.
Actually, considering the commutator of the smeared version of the Hamiltonian constraint:

{H [N1] , H [N2]} = H
(
gab (N1∂bN2 −N2∂bN1)

)
, (4.1.8)

one can spot the presence of the metric gab that is a dynamical variable. The mere fact of
introducing a foliated spacetime to work in the canonical formalism preserved the role played
by the diffeomorphism symmetry, but it gave rise to a new symmetry that is responsible for its
deformations by acting on the foliation and changing them. We will present some computations
that will turn out to be helpful once we move on to the treatment of spherical symmetric
geometries with a Kerr-Schild foliation. Let us start by considering a smeared diffeomorphism,

H( ~N) =
∫

d3xN lHl , (4.1.9)

where we anticipate the following action of the Lie derivative

L ~Nqab = (∇aN c) qcb + (∇bN c) qac −N c∇cqab︸ ︷︷ ︸
=0

= 2∇(aNb) . (4.1.10)

1To avoid confusion between the Hamiltonian and diffeomorphism constraints, we refer to the defined smeared
version in Eq.(4.1.5)
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The Poisson bracket then can be computed{
qab(y), H( ~N)

}
=
∫

d3xN l δHl(x)
δπab(y) = 2∇(aNb) = L ~Nqab . (4.1.11)

This is a key relation for the treatment of the effective diffeomorphism constraint and the
on-shell closure of the constraints. It generates infinitesimal spatial diffeomorphism. An other
relation that is useful is the Poisson bracket with the Hamiltonian constraint that generates the
diffeomorphism in time.
Swapping the canonical pair (qab, πab) with the connection and densitized triad

(
Aia, E

b
j

)
to

inherit their role as phase space variables, we encountered the appearance of the Gauss constraint
that generates the local SU(2) gauge transformations inheriting the properties of Yang Mills
gauge theories. Let us then study the smeared version of the Gauss, namely

G(α) =
∫

Σt
dx3αiGi

(
Aia, E

a
i

)
=
∫

Σ
dx3αiDaE

a
i , (4.1.12)

then a direct computation gives

δGA
i
a =

{
Aia, G(α)

}
= −Daα

i , (4.1.13)

δGE
a
i = {Eai , G(α)} = [E,α]i . (4.1.14)

They also characterize the algebra’s structure

{G(α), G(β)} = G([α, β]) , α = αiτi ∈ su(2), β = βiτi ∈ su(2) . (4.1.15)

Hamilton’s equations yield

Ȧia =
{
Aia, H (α,Na, N)

}
=
{
Aia, S(N)

}
+
{
Aia, G(α)

}
+
{
Aia, V (Na)

}
, (4.1.16)

Ėai = {Eai , H (α,Na, N)} = {Eai , S(N)}+ {Eai , G(α)}+ {Eai , V (Na)} . (4.1.17)

4.2 Equations of motion of the phase space variables for spher-
ical symmetric geometries with a Kerr-Schild foliation

It is more convenient to proceed with our program for the on-shell consistency check for the
evolution equations in the Ashtekar-connection formalism. This is relevant for two main reason,
namely, to show explicitly that admittedly for the stationarity property provided by the Kerr-
Schild metric the evolution equations are trivially satisfied on-shell and thus we end up with
time independent quantities. Moreover, the derived classical equations of motion for the flux
and connection should be consistent with the effective version of them, i.e. when the effective
equations of motion of the phase space variabels are expanded in to first order in the quantum
parameters should reproduce the classical ones.
This is essential for the subsequent chapter, when we intend to derive a candidate expression for
the effective diffeomorphism constraint to solve with help of the effective equations of motion of
(Ei, Ai) to be solved for the Kerr-Schild foliation. In this section we will present the derivation
of the equations of motions for the phase space variables and as for the on-shell consistency
check, we refer to the appendix for the calculations. For spherical symmetric geometries, we
know that the symplectic structure satisfied by the phase space variables in the α = 0 gauge is
given by (1.8.12) with minor difference

{
A2(t,r),E2(t,r′)

}
= 0.
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For simplicity, we will use the following notation for the Hamiltonian constraint

H = − 1
2κγ2

(
HE +HL

)
(4.2.1)

= − 1
2κγ2

N(r) sin θ√
(E1)2 + (E2)2

√
Er

(
HE + (1 + γ2)

2 ((E1)2 + (E2)2)
√
Er
HL
)
.

In order to compute the equations of motion for the phase space variables, it is useful to write
down explicitly the smeared constraints, namely

HE = sin θ
2G

∫
dr

N(r)
E1
√
Er

[
4ErE1 (ArA1 +A′2

)
+ 2(E1)2

(
A2

1 +A2
2 − 1

) ]
(4.2.2)

≡ sin θ
2G

∫
dr

N(r)
(E1)

√
Er
HE [N ] .

HL = (1 + γ2) sin θ
2G

∫
dr

N(r)
2
√
Er(E1)3

[
4(E1)2 − (E1)2

(
(Er′)2 + 4ErEr′′

)
+ 4ErEr′E1′E1

]
.

≡ (1 + γ2) sin θ
2G

∫
dr

N(r)
2
√
Er(E1)3

HL (4.2.3)

Hr = 1
G

∫
drN r(r)

(
A′1 −

1
2ArE

r′
)
. (4.2.4)

The connection and flux can be expressed in terms of the ADM variables and they read

Er(r) = R2, E1(r) = ΛR, E2(r) = 0 ,

Ar(r) = −γΛ′N r + ΛN r′

N
= − γ

N
∂r(N rΛ) ,

A1(t,r) = −γN
rR′

N
,

A2(t,r) = R′

Λ .

(4.2.5)

Proving the closure of the constraints and more importantly the vanishing of the equations of
motion on-shell boils down to computing the dynamical evolution of the flux and connection
and expressing them in terms of the constraints. The previous setup allows us to write down the
evolution in terms of evolution along the normal direction and orthogonal one. However we saw
that these tow directional derivatives are equivalent to the gauge transformation of constrained
GR, namely the and time an space diffeomorphism. Hence, in order for the equations of motion
to be satisfied on-shell, the Poisson bracket of the phase space variable, say (Ai) has to vanish
identically with the one computed with respect to the Hamiltonian {A1,H[N ]}. This property
is also inherited from the non-vanishing shift we are considering in the stationary case of the
Kerr-Schild metric. Since the computation of the Poisson brackets does not imply the angular
dependence, we will drop the sin θ and κ terms for simplicity.

4.2.1 Ashtekar-Barbero connection evolution equations

The equation of motion for the different components of the connection are given by the classical
Poisson bracket of the Hamiltonian and the connection

Ȧi = {Ai,H} = {Ai,H[N ]}+ {Ai,G[α]}+ {Ai,Hr[N r]} , (4.2.6)
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where i ∈ {1,r}. We will start studying the equation of motion of A1(r) and Ar(r), where we
investigate the Euclidean and Lorentzian part of the Hamiltonian constraint separately and
then the bracket with the diffeomorphisms. The Poisson bracket of A1 with the Euclidean
Hamiltonian can be computed in the following way

ȦE1 =
{
A1,H

E [N ]
}

=
∫
dρ
δA1(r)
δA1(ρ)

δHE(r′)
δE1(ρ) −

δA1(r)
δE1(ρ)

δHE(r′)
δA1(ρ)

= G

∫
dρδ(r − ρ)δH

E [N(r′)]
δE1(ρ)

= 1
2

∫
dr
δHE [N(r′)]
δE1(r)

= 1
2
N(r)
E1
√
Er

{
−HE

E1 + 4Er
[
ArA1 +A′2

]
+ 4E1

(
A2

1 +A2
2 − 1

)}

= N√
Er

[
A2

1 +A2
2 − 1

]
.

(4.2.7)

The commutator with the Lorentzian part gives:

ȦL1 =
{
A1,H

L[N ]
}

=
∫
dρ
δA1(r)
δA1(ρ)

δHL(r′)
δE1(ρ) −

δA1(r)
δE1(ρ)

δHL(r′)
δA1(ρ)

= G

∫
dρδ(r − ρ)δH

L[N(r′)]
δE1(ρ)

= 1
4

∫
dr
δHL[N(r′)]
δE1(r)

=
∫
dr

{
N(r)δ(r − r′)
4(E1)3

√
Er

[
16(E1)3 − 2E1

(
(E′r)2 + 4ErEr′′

)
+ 4Er′ErE1′

− 4∂r(ErEr′E1)− 3HL
E1

]}
−
∫
dr4(ErEr′E1δ(r − r′))∂r

(
N(r)

2(E1)3
√
Er

)

=
(
N(r′)

[
− (E1)2√

(E1)2Er
− (Er′)2

4 (E1)2√Er
− ErEr′′

(E1)2√Er

+ 2Er′E1′Er

(E1)3√Er
+ ∂r

(
ErEr′

√
Er

(E1)2

)]
+ ErEr′

(E1)2√Er
N ′(r′)

)
.

(4.2.8)

Computing the partial derivative yields

∂r

(
ErEr′

√
Er

(E1)2

)
= Er′′

√
Er

(E1)2 − 2E
1′Er′

√
Er

(E1)3 + (Er′)2

2 (E1)2√Er
. (4.2.9)

Plugging it back into (4.2.8), and writing explicitly the prefactor for the Lorentzian term, we
finally obtain

ȦL1 =
(
1 + γ2)

4 (E1)2√Er

{
N

((
Er′
)2 − 4

(
E1
)2
)

+ 4N
′

N
ErEr′︸ ︷︷ ︸

:=c1

}
. (4.2.10)
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Putting everything together, the commutator with the Hamiltonian constraint for the connection
reads

ȦH1 =
(
1 + γ2)

4 (E1)2√Er

{
N

((
Er′
)2 − 4

(
E1
)2
)

+ 4N
′

N
ErEr′

}

+ N√
Er

[(
A2

1 +A2
2 − 1

)]
.

(4.2.11)

The commutator with the smeared diffeomorphism gives

Ȧr1 = N r∂rA1 . (4.2.12)

Collecting all the contributions from (4.2.11) and (4.2.12) the equation of motion for A1 is then

Ȧ1 = − 1
2γ2 Ȧ

H
1 + Ȧr1 = 0 . (4.2.13)

The Poisson bracket of Ar with the Euclidean Hamiltonian is

ȦEr =
∫
dρ
δAr(r)
δAr(ρ)

δHE [N(r′)]
δEr(ρ) − δAr(r)

δEr(ρ)
δHE [N(r′)]
δAr(ρ) (4.2.14)

= 2G
∫
dρδ(r − ρ)δH

E

δEr

= 2G
2G

∫
dr

N(r)
E1
√
Er

[
−H

E

2Er + 4E1 (ArA1 +A′2
)]
δ(r − r′)

= − 2N√
ErE1

{
E1 (ArA1 +A′2

)
− (E1)2

Er

(
A2

1 +A2
2 − 1

)}
.

Moving to the Lorentzian part of the Hamiltonian constraint, one should expect terms including
only the lapse N and additional ones including the first and second derivatives N ′ and N ′′,
generated by the variation with respect to of Er′ and Er′′, namely

ȦLr =
∫
dρ
δAr(r)
δAr(ρ)

δHL[N(r′)]
δEr(ρ) − δAr(r)

δEr(ρ)
δHL[N(r′)]
δAr(ρ)

= 2G
∫
dρδ(r − ρ)δH

L

δEr

= (1 + γ2)
{
N

{
E1

(Er)
3
2
− (Er′)2

4E1 (Er)3/2 − ∂r
(

Er′

E1
√
Er

)
+ Er′

E1
√
Er

+ 2∂2
r

(√
Er

E1

)
− E1′Er′

(E1)2√Er

+ 2∂r
(

E1′

(E1)2
√
Er

)}
−
(

Er′

E1
√
Er

)
N ′ + 2

√
Er

E2 N ′′ + 4N ′∂r
√
Er

E1 + 2
(

E1′

(E1)2
√
Er

)
N ′
}

=
(
1 + γ2

){
N

[
E1

(Er)3/2 −
(E′)2

4E1 (Er)3/2 + Er′

E1
√
Er
− E1′Er′

(E1)2√Er

]

N ′
(

Er′

E1
√
Er
− 2E

1′√Er

(E1)2

)
+ 2
√
Er

E2 N ′′
}

= (1 + γ2)N
(2(E1)3

√
Er

(
− H

L

2Er + 4Er′E1′E1 − 4Er′′(E1)2
)
− (1 + γ2)N ′(r)

2(E1)3
√
Er

(
4ErE1′E1 + 2Er(E1)2

)
+ N ′′

2(E1)3
√
Er

(
4Er(E1)2

)
.

(4.2.15)
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The term coming form the diffeomorphism constraint can be computed in a similar way using
the Poisson bracket. One obtains :

Ȧrr = 2
γ
∂r(N rAr) . (4.2.16)

The total evolution equation read from (4.2.16), (4.2.15) and (4.2.14)

Ȧr = Ȧrr −
1

2γ2

(
ȦLr + ȦEr

)
= 0 . (4.2.17)

4.2.2 Fluxes evolution equations

The equation of motion for the different components of the flux are given by

Ėi =
{
Ei,H

}
=
{
Ei,H[N ]

}
+
{
Ei,G[α]

}
+
{
Ei,Hr[N r]

}
. (4.2.18)

Let’s start with Er. The classical Poisson bracket gives

ĖrL =
{
Er(r),HE [N(r′)]

}
=
∫
dρ2

{
δEr(r)
δAr(ρ)

δHL[N(r′)]
δAr(ρ) − δEr(r)

δEr(ρ)
δHL[N(r′)]
δAr(ρ)

}
= 0 .

(4.2.19)

Whereas the only contribution comes from the Euclidean part, namely

ĖrH = −2G
∫
dρδ(r − ρ)δH

E [N(r′)]
δAr(ρ)

= 2G
2G

∫
dr
δHE [N(r′)]
δAr(r)

= −4N(r)
√
ErA1 .

(4.2.20)

Notice that the Lorentzian contribution in the Hamiltonian constraint do not contain any
dependence on the Ashtekar-Barbero connection and therefore there is no contribution coming
from it in the evolution equations. The commutator with the smeared diffeomorphism reads

Ėrr = −2GδH
r[N r(r′)]
δAr

= −2G
2G

∫
dr
δHr[N r(r′)]
δAr(r)

= 2
γ
N r(r) (∂rEr(r)) .

(4.2.21)

Hence, the full equation of motion reads

Ėr = − 1
2γ2

(
−4N

√
ErA1

)
+ 2
γ
N r(∂rEr) = 0 . (4.2.22)

For the E1 component

Ė1
H = −GδH

E

δA1
= −2N√

Er

(
ArE

r + E1A1
)
. (4.2.23)
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For the diffeomorphism PB, one ends up with the equation

Ė1
r = −GδH

r

δA1
= 2
γ
∂r(N rE1) . (4.2.24)

Hence, the total equation of motion reads

Ė1 = 2
γ
∂r(N rE1)− 1

2γ2

[−2N√
Er

(
ArE

r + E1A1
)]

= 0 . (4.2.25)

The on-shell consistency proof of the above computed equations can be found in the accom-
panying appendix, as well as the commutators involving the diffeomorphism constraint. The
evolution equations are trivially satisfied, admittedly due to the stationarity imposed by the
Kerr-Schild metric.

4.3 Diffeomorphism constraint

We want to check if the commutator (4.1.8) is reproduced at the effective unfixed reduced level
of the theory. To this aim, one computes the commutator of the Hamiltonian constraints with
its self. Therefore, one can split the computation in the following manner

{H [N1] ,H [N2]} =
{
HL [N1] +HE [N2] , HL [N2] +HE [N1]

}
=
{
HL [N1] , HL [N2]

}
+ 2

{
HE [N1] , HL [N2]

}
+
{
HE [N1] , HE [N2]

}
=
{
HE [N1] , HE [N2]

}
+
{
HE [N1] , HL [N2]

}
.

(4.3.1)

The brackets
{
HE [N1] , HL [N2]

}
vanishes. The bracket between the Euclidean and Lorentzian

part vanishes identically, since the tow parties commute. We will show that the latter holds
and that the PB of the Euclidean contribution in the Hamiltonian is the one that contributes
to the algebra.
In order to make the computation easier, it is useful to manipulate the equations of motion for
the connection and fluxes in terms of the constraints.{

HE [N1] ,HE [N2]
}

(4.3.2)

= G

∫
dρ

{
2δH

E [N1 (r1)]
δAr(ρ)

δHE [N2 (r2)]
δEr(ρ) + δHE [N1 (r1)]

δA1(ρ)
δHE [N2 (r2)]

δE1(ρ) − (N1 ↔ N2)
}

= 1
4

∫
dρ2

(
ĖrE [N1]ȦEr [N2]

)
+
(
Ė1
E [N1]ȦE1 [N2]

)
− (N1 ↔ N2)

= 1
4

∫
dρ
(
−8N1

√
ErA1

)( N2

E1
√
Er

[
−H

E

2Er + 4
(
E1

2A2
∂r(A2

1)− γ

2A2
A1Hr

)
+ 4E1A′2

])
− (N1 ↔ N2) (4.3.3)

+
[

N2

E1
√
Er

{
HE

E1 + 2 Er

A2E1

(
γA1Hr − E1∂r(A2

1)
)}
− 2N2A

′
2E

r

E1
√
Er

](
− 2N1√

Er

[
ArE

+A1E
1
])

− (N1 ↔ N2)
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= 1
G

∫
dρ− 4N1N2A1∂r(A2

1)− 4N1N2
ErAr∂r(A2

1)
E1A2

− 4N1N2A1A
′
2 − 4N1N2A2E

1∂r(A2
1)

− (N1 ↔ N2)

= 1
G

∫
dρA′2N1

(
ErAr
E1 A2 −A1A2

)
− (N1 ↔ N2)

= 1
G

∫
dρA′2N1

Er

(E1)2

(
E1
[
ArA2 −

(E1)2

Er
A1A2

])
− (N1 ↔ N2)

= A′2N1
Er

(E1)2

(
E1
[
Er′A1
A2

])
− (N1 ↔ N2)

= 1
G

∫
dρA′2N1

Er

(E1)2

(
E1 [ArA2 −A′1

])
− (N1 ↔ N2)

= Hr

[
Er (N ′1N2 −N ′2N1)

(E1)2

]
+G3

[
ArE

r (N ′1N2 −N ′2N1)
(E1)2

]

=
(
Er (N ′1N2 −N ′2N1)

(E1)2

)
Hr .

Where in the last step one can perform an integration by part. Notice that all the other terms
cancel each other. Furthermore, to reintroduce the derivatives appearing in the lapses, we made
use of the constraint form of the equations of motion where there is an interplay between the
lapse function and A2. Indeed, in the α = 0 gauge, we encounter the disappearance of terms
contributing to the derivatives of the lapse function making the integration by parts hidden
and non trivial.
The commutator of the Lorentzian and Euclidean contribution can be computed in the following
way {

HL [N1] ,HE [N2]
}

= G

∫
dρ 2

{(−2N1√
Er

[
ArE

r +A1E
1
])(

(1 + γ2)Er′
[

A2√
ErE1

+ 4A′2
√
Er

Er′E1

])}

+
(
−4N1

√
ErA1

)(
−4(1 + γ2)N2A

′
2√

Er

)
= G

∫
dρ 4(1 + γ2)N1N2A1A

′
2 + (1 + γ2)E

r′A2E
rAr

ErE1 + Er′A′2
√
ErE1A1√

ErEr′E1

= G

∫
dρ 4(1 + γ2)N1N2A1A

′
2 + 4(1 + γ2)N1N2

((
Er′A2Ar
E1

)
+A1A

′
2

)
= G

∫
dρ 4(1 + γ2)N1N2A1A

′
2 + 4(1 + γ2)N1N2

(
Er′A′1
E1 +A1A

′
2

)
= G

∫
dρ 4(1 + γ2)N1N2A1A

′
2 + 4(1 + γ2)N1N2

(
−2A1A

′
2 +A1A

′
2
)

= 0 ,

(4.3.4)

where in the last step, once once one preforms an integration by part of

∫
dρ
Er′

E1
A′1 = −

∫
dρ∂r

 Er′

E1︸︷︷︸
=2A2

A1 = −
∫
dρ 2A′2A1 . (4.3.5)
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Hence, the Lorentzian and Euclidean parts of the classical Hamiltonian commute and the PB
reads {

HL [N1] ,HE [N2]
}

= 0 . (4.3.6)



Chapter 5

Effective dynamics of a black hole
spacetime

As we explored the classical theory in chapter 1 and 4 the features of the constraints and their
algebra [10], we turn in this chapter to study the effective counterpart of them. The main issue
of any theory of quantum gravity is to preserve the manifest covariance of general relativity
during the transition to the quantum theory. Revealing a diffeomorphism constraint and solving
it in quantum gravity approaches is still one the most challenging endeavors faced, along with
surviving the test of off-shell closure inhibited by the constraint algebra [4, 36].
The investigation of the quantum evolution for black holes initial data [21] has set the general
playground for the formulation of spherical symmetric geometries and the basis for this work to
study a stationary black hole with a Kerr-Schild metric. Still, even the Quantum Reduced Loop
Gravity framework inherits the same conceptual and mathematical issues from the full theory
concerning the diffeomorphism invariance. One strategy to tackle some of the above mentioned
ambiguities, is to put the off-shell closure property of the constraints to extract a candidate
expression for the effective diffeomorphism constraint and hence restore general covariance and
maintain the consistency of the effective theory at the dynamical level. The precise role of the
effective diffeomorphism constraint becomes crucial once one considers the interior and exterior
sewed together for black holes, which is the ultimate objective of a quantum gravity black hole.

In this chapter, we rely on the results derived chapter 3 and 4. More concretely, based on the
obtained effective Hamiltonian for the Kerr-Schild metric (encoding also the inhomogeneous
character of the exterior), we will derive the quantum effective evolution equations and study
some features of the effective algebra involving the diffeomorphism constraint for the case of
constant quantum parameters and in a second stage, in the case of phase space dependent
quantum parameters. The goal is to provide a candidate expression for the diffeomorphism
constraint for which the dynamics should be solved.
More precisely, the procedure to find the set of functions representing the ADM phase space
variables that satisfy the derived equations of motion depends on the number of parameters
to be solved for and the number of the differential equations. This relies on the mathematical
condition that states: if the number of differential equations should be less than the number of
the unknown variables, then the system is said to be non-solvable. In the case it exceeds or equals
the set of unknown variables, it is said to be overdetermined and solvable, respectively. In our
case, we intend to provide a set of evolutions equation (which are four equations obtained for the
fluxes and connection components) and a candidate expression for the effective diffeomorphism
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constraint that adds up to six non-local differential equations that should be solved to determine
the effective metric functions. These are namely determined by Λ and R. The distinction in
considering the quantum parameters, constants or phase space functions, becomes evident and
of physical value once the dynamics are solved.

5.1 Constant quantum parameters

In chapter 3.2 we have expressed the effective Hamiltonian in terms of the quantum parameters
ε (which is equivalent to expressing it in N’s). There are two approaches to solve the constraints
and to compute the equations of motion for the phase space variables, namely, one can consider
these quantum parameters as constants or represent them as a function of the phase space
variables. The approach to the two cases differ mathematically as well as on the level of the
physical predication described by the dynamics. Working with coherent states where quantum
numbers are constant, amounts to evaluating

εr =
√

8πγ`p
√
Er

E1

√
jxjy
jz

,

εθ =
√

8πγ`r
1√
Er

√
jzjy
jx

,

εϕ =
√

8πγ`p
1

sin θ
√
Er

√
jzjx
jy

.

(5.1.1)

at a given instant of time such that they constitute constants of motion. Their explicit expression
(eventually values) can be later on fixed (upon physical arguments) once the dynamics are
solved. If we now set j1 = j2 = j the relations above yield (5.1.1)

εr =
√

8πγ`p
Λ(r)

j√
j3

:= α

Λ ,

ε =
√

8πγ`p
R(r)

√
j3 := β

R
.

(5.1.2)

These are the two quantum parameters we will be working with in this section. They represent
the angular and longitudinal coordinate lengths of the plaquettes, that are sewn together to
build discrete geometric structure on constant time surfaces. In both cases, in the classical
limit, the computations should deliver the same result for the classical equations of motion.
Note that using properties the trigonometric functions exhibit, the expression for the effective
Euclidean Hamiltonian yields the simpler form

−κγ2H̃E := 4π2√Er(r)
ε

((
H0

[
ε

2

(√
A1(r)2 +A1(r)2 −

√
A1(r + εr)2 +A1(r + εr)2

)]

+H0

[
ε

2

(√
A1(r)2 +A1(r)2 +

√
A1(r + εr)2 +A1(r + εr)2

)])

+ 2
π

(
sin
[
ε

2

(√
A1(r)2 +A1(r)2 −

√
A1(εr + r)2 +A1(εr + r)2

)]

+ sin
[
ε

2

(√
A1(εr + r)2 +A1(εr + r)2 +

√
A1(r)2 +A1(r)2

)])



72

× sin
[
tan−1

(
A1(εr + r)
A1(εr + r)

)
+ εr

2 (Ar (εr + r) +Ar(r))
])
−

((
H0

[
ε

2

(√
A1(r)2 +A1(r)2 +

√
A1 (r + εr)2 +A1 (r + εr)2

)]

−H0

[
ε

2

(√
A1(r)2 +A1(r)2 −

√
A1(r + εr)2 +A1(r + εr)2

)])

+ 2
π

(
sin
[
ε

2

(√
A1(εr + r)2 +A1(εr + r)2 +

√
A1(r)2 +A1(r)2

)]

− sin
[
ε

2

(√
A1(r)2 +A1(r)2 −

√
A1 (εr + r)2 +A1 (εr + r)2

)]))

× sin
[
tan−1

(
A1(r)
A1(r)

)
+ εr

2 (Ar(εr + r)−Ar(r))
]

+ 4π2E1(r)εr
ε2
√
Er(r)

(
H0

[
ε
√
A1(r)2 +A1(r)2

]
sin
(
ε
√
A1(r)2 +A1(r)2

))
,

whereas the Lorentzian Hamiltonian stays intact.

In order to study the effective equations of motion for the fluxes and connection, one should
study their respective Poisson bracket with the effective Hamiltonian. However, the discrete
nature of the effective constraint call for new techniques to go through the calculations, namely
the calculus of discrete derivatives and integration.
Indeed, for the case of classical canonical equations of motion, functional derivatives and integrals
are well defined continuous operations that are preformed to thoroughly compute equations. In
the present case of the effective constraint, we are dealing with non-local equations which loses
all notions of continuity and thus the calculations rely crucially on the discrete version of the
mathematical tool we are familiar with. To this aim, it is important to take into consideration
that the evaluation of the usual functional variation of the Hamiltonian constraint appears at
two different spatial coordinate, due to the discreetness of the functional, namely once at r and
once in a neighborhood of r, r + nεr, where n is some integer. This motivates to introduce the
following notation.
Since we are dealing with functionals evaluated in points in a small enough neighborhood εr,
labeling the spatial shift for the radial variable r, we will denote it as nεr. In this notation the
phase space variables corresponding to those functional evaluated at different shifts or steps
can be written as

Ani (r + nεr) , Ein(r + nεr) . (5.1.3)

where the index i ∈ {1,2,r}1 Since the classical Hamiltonian contains terms with first and
second continuous derivatives, at the effective level, they are equivalent to terms including a
shifts in εr and 2εr.

1Bear in mind that we are working in the α = 0, i.e E2 = 0 gauge and therefore this phase space variable do
not enter into play at the effective level as well.
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5.1.1 Ashtekar-Barbero connection effective equations of motion

The effective evolution equations of the Ashtekar-Barbero connection are obtained in the usual
way, namely by computing the Poisson Bracket.

ȦHi (r) =
{
Ai(r),H̃(N [r])

}
. (5.1.4)

Following the notation in (5.1.3) the Ashtekar-Barbero connection component A1 effective
equation of motion obtained from H̃(r) yields

Ȧ0
1(r) = 2π√

Er(r)εr

{
2ε2r
ε2

(
πH0

[
ε
√
A2

1(r) +A2
2(r)

]
× sin

[
ε
√
A2

1(r) +A2
2(r)

]

+ 8γ2 sin2
[
ε

2

]
cos[ε]

)
+
(
γ2 + 1

)
E1(r)3

(
8Er(r)E1 (εr + r) (Er(r)− Er (εr + r))

+ E1(r)
[
Er(r) (4Er (2εr + r)− 6Er (εr + r)) + Er (εr + r)2 + Er(r)2

])}
.

(5.1.5)

The contribution coming from H̃(r − εr)

Ȧ1
1(r) = 8π

(
γ2 + 1

)
(Er(r)− Er (r − εr))

√
Er (r − εr)

εrE1 (r − εr)2 . (5.1.6)

The total equation of motion then reads

ȦH1 = − 1
4γ
∑
r

{
2π

εrε2E1(r)3
√
Er(r)

{
2ε2rE1(r)3

(
πH0

[
ε
√
A2

1(r) +A2
2(r)

]
sin
[
ε
√
A2

1(r) +A2
2(r)

]

+ 8γ2 sin2
[
ε

2

]
cos(ε)

)
−
(
γ2 + 1

)
ε2E1(r)

(
2Er(r)(Er(εr + r)− 2Er(2εr + r))

− Er(εr + r)2 + 3Er(r)2
)

+ 8
(
γ2 + 1

)
ε2Er(r)E1(εr + r)(Er(r)− Er(εr + r))

}}
.

(5.1.7)

The Ar component of the connection is computed in a similar fashion and for the contribution
from H̃(r) it reads

Ȧ0
r = π

Er(r)3/2

{
−
(

2εEr(r)
ε2

×
[
πH0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r + εr)2 +A2 (r + εr)2

)]

×
[

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

+ sin
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r + εr)2 +A2 (r + εr)2

)]
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×
[

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

− sin
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1 (εr + r)2 +A2 (εr + r)2

]
× sin

[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]
− 4 sin

[1
2ε
√
A1 (εr + r)2 +A2 (εr + r)2

]

× cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
sin
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ E1(r)εr
(
πH0

[
ε
√
A2

1(r) +A2
2(r)

]
sin
[
ε
√
A2

1(r) +A2
2(r)

]
+ 8γ2 sin2

[
ε

2

]
cos(ε)

))

−
(
γ2 + 1

)
E1(r)2εr

(
4Er(r)E1 (εr + r) (3Er(r)− Er (εr + r))

+ E1(r)
(
Er(r) (4Er (2εr + r)− 6Er (εr + r))− Er (εr + r)2 + 3Er(r)2

))}
, (5.1.8)

and while considering the commutator with H̃(r − εr), one obtains

Ȧ1
r(r) = 4π

(
γ2 + 1

) (
2E1(r)Er (r − εr)− E1 (r − εr) (Er(r)− 3Er (r − εr))

)
εrE1 (r − εr)2√Er (r − εr)

. (5.1.9)

Finally, from the computation involving H̃(r − 2εr) one gets

A2
r(r) = 8π

(
γ2 + 1

)
Er (r − 2εr)

εrE1 (r − 2εr)
. (5.1.10)

Putting all the contributions from the different "shifted" Hamiltonian together yield the equation
of motion

ȦHr = 1
2γ
∑
r

{
π

εrε2E1(r)2Er(r)3/2

{
− 2εrεE1(r)2Er(r)

(

× 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1(εr + r)2 +A2(εr + r)2

]
× sin

[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− 4 cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
sin
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

]
× sin

[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
]

+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ sin
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])
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+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]))

− 2ε2rE1(r)3
(
πH0

[
ε
√
A2

1(r) +A2
2(r)

]
sin
[
ε
√
A2

1(r) +A2
2(r)

]
+ 8γ2 sin2

[
ε

2

]
cos(ε)

)
+
(
γ2 + 1

)
ε2E1(r)

(
2Er(r)(Er(εr + r)− 2Er(2εr + r)) + Er(εr + r)2 + 8Er(r)5/2 + 9Er(r)2

)
− 4

(
γ2 + 1

)
ε2Er(r)E1(εr + r)(Er(r)− Er(εr + r))

}}
. (5.1.11)

5.1.2 Fluxes equations of motion

The same machinery is applied to derive the fluxes equations of motion by considering the
Poisson bracket

ĖiH(r) =
{
Ei(r),H̃(N [r])

}
. (5.1.12)

In the case of the flux E1, the contribution coming from Hamiltonian H̃(r) reads

Ė1
0 = 2π

ε
√
Er(r) (A1(r)2 +A2(r)2){

2A2(r)Er(r) cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

(
π

[
H0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r + εr)2 +A2 (r + εr)2

)]

+H0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r + εr)2 +A2 (r + εr)2

)] ]

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

(1
2ε
√
A1 (εr + r)2 +A2 (εr + r)2

))

−A1(r)
√
A2

1(r) +A2
2(r)

(
εEr(r)

×
{
πH−1

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r + εr)2 +A2 (r + εr)2

)]

×
[

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

+ sin
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ πH−1

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r + εr)2 +A2 (r + εr)2

)]
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×
[

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

− sin
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
sin
[1

2ε
√
A1 (εr + r)2 +A2 (εr + r)2

]
sin
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
]

+ 4 cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1 (εr + r)2 +A2 (εr + r)2

]

× sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]}

− 2πE1(r)εr
(
H−1

[
ε
√
A2

1(r) +A2
2(r)

]
sin
[
ε
√
A2

1(r) +A2
2(r)

]

+H0

[
ε
√
A2

1(r) +A2
2(r)

]
cos

[
ε
√
A2

1(r) +A2
2(r)

]))}
. (5.1.13)

The second equation that denotes the shift in epsilon n = −1 reads

Ė1
1(r) = π

√
Er (r − εr)

ε (A1(r)2 +A2(r)2)

{
2εA1(r)

√
A2

1(r) +A2
2(r)

{
πH−1

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r − εr)2 +A2 (r − εr)2

)]
[

sin
[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
]

+ sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (r − εr) +Ar(r))
] ]

+ πH−1

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r − εr)2 +A2 (r − εr)2

)]
[

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (r − εr) +Ar(r))
]

− sin
[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
] ]

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
sin
[1

2ε
√
A1 (r − εr)2 +A2 (r − εr)2

]
× sin

[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
]

sin
[1

2ε
√
A1 (r − εr)2 +A2 (r − εr)2

]
× sin

[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
]
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×
(
π

(
H0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r − εr)2 +A2 (r − εr)2

)]

+H0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r − εr)2 +A2 (r − εr)2

)])

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1 (r − εr)2 +A2 (r − εr)2

])}
. (5.1.14)

Notice that since the Lorentzian part of the effective Hamiltonian constraint has no connection
dependence, there is only two discrete derivatives for the fluxes. The total effective evolution
equation for the flux E1 reads

Ė1
H = − 1

4γ
∑
r

{
π

ε
√
Er(r)

{
8ε√

A2
1(r) +A2

2(r)
√
A1(r + v)2 +A2(r + εr)2

A1(r + εr)Er(r)

× cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1(r + εr)2 +A2(r + εr)2

]
× sin

[1
2εr(Ar(r) +Ar(r + εr)) + tan−1

(
A2(r + εr)
A1(r + εr)

)]√
A2

1(r) +A2
2(r)

+ 8εA1(r + εr)Er(r) sin
[1

2εr(Ar(r + εr)−Ar(r)) + tan−1
(
A2(r)
A1(r)

)]
sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
× sin

[1
2ε
√
A1(r + εr)2 +A2(r + εr)2

]√
A2

1(r) +A2
2(r)

− 8εA1(r)
√
A1(r + εr)2 +A2(r + εr)2Er(r) sin

[1
2ε
√
A2

1(r) +A2
2(r)

]
× sin

[1
2ε
√
A1(r + εr)2 +A2(r + εr)2

]
sin
[1

2εr(Ar(r) +Ar(r + εr)) + tan−1
(
A2(r + εr)
A1(r + εr)

)]
− 8εA1(r) cos

[1
2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1(r + εr)2 +A2(r + εr)2

]
Er(r)

× sin
[1

2εr(Ar(r + εr)−Ar(r)) + tan−1
(
A2(r)
A1(r)

)]√
A1(r + εr)2 +A2(r + εr)2

+ 4πεrA1(r)E1(r) sin
[
ε
√
A2

1(r) +A2
2(r)

]√
A1(r + εr)2 +A2(r + εr)2

×H−1

[
ε
√
A2

1(r) +A2
2(r)

]
+ 2πεEr(r)

×
(

sin
[1

2εr(Ar(r + εr)−Ar(r)) + tan−1
(
A2(r)
A1(r)

)]

+ sin
[1

2εr(Ar(r) +Ar(r + εr)) + tan−1
(
A2(r + εr)
A1(r + εr)

)])
(
A1(r + εr)

√
A2

1(r) +A2
2(r)−A1(r)

√
A1(r + εr)2 +A2(r + εr)2

)

×H−1

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1(r + εr)2 +A2(r + εr)2

)]
− 2πε

(
A1(r + εr)

√
A2

1(r) +A2
2(r) +A1(r)

√
A1(r + εr)2 +A2(r + εr)2

)
Er(r)
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×
(

sin
[1

2εr(Ar(r + εr)−Ar(r)) + tan−1
(
A2(r)
A1(r)

)]

− sin
[1

2εr(Ar(r) +Ar(r + εr)) + tan−1
(
A2(r + εr)
A1(r + εr)

)])

×H−1

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1(r + εr)2 +A2(r + εr)2

)]
+ 4πεrA1(r) cos

[
ε
√
A2

1(r) +A2
2(r)

]
E1(r)

√
A1(r + εr)2 +A2(r + εr)2H0

[
ε
√
A2

1(r) +A2
2(r)

]
− 4A2(r + εr)
A1(r + εr)2 +A2(r + εr)2 cos

[1
2εr(Ar(r) +Ar(r + εr)) + tan−1

(
A2(r + εr)
A1(r + εr)

)]
Er(r)

×
(

4 cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
sin
[1

2ε
√
A1(r + εr)2 +A2(r + εr)2

]

− πH0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1(r + εr)2 +A2(r + εr)2

)]

+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1(r + εr)2 +A2(r + εr)2

)])

+ 4A2(r)
A1(r)2 +A2(r)2 cos

[1
2εr(Ar(r + εr)−Ar(r)) + tan−1

(
A2(r)
A1(r)

)]
Er(r)

×
(

4 cos
[1

2ε
√
A1(r + εr)2 +A2(r + εr)2

]
sin
[1

2ε
√
A2

1(r) +A2
2(r)

]

+ π

(
H0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1(r + εr)2 +A2(r + εr)2

)]

+H0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1(r + εr)2 +A2(r + εr)2

)]))}}
. (5.1.15)

When considering the case n = 0, the radial component of the flux Er yields the expression

Ėr0(r) = 2π
ε

√
Er(r)εr

{
πH0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r + εr)2 +A2 (r + εr)2

)]

×
[

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

− cos
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r + εr)2 +A2 (r + εr)2

)]
[

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

+ cos
[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
] ]

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1 (εr + r)2 +A2 (εr + r)2

]
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× cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (εr + r)−Ar(r))
]

+ 4 sin
[1

2ε
√
A1 (εr + r)2 +A2 (εr + r)2

]

× cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[
tan−1

(
A2 (εr + r)
A1 (εr + r)

)
+ 1

2εr (Ar (εr + r) +Ar(r))
]}

.

(5.1.16)

The contribution coming form the effective Hamiltonian H̃(r − εr) yields

Ėr1(r) = 2πεr
√
Er (r − εr)
ε

{
πH0

(1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1 (r − εr)2 +A2 (r − εr)2

))

×
[

cos
[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
]

+ cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (r − εr) +Ar(r))
] ]

+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1 (r − εr)2 +A2 (r − εr)2

)]

×
[

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (r − εr) +Ar(r))
]

− cos
[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
] ]

+ 4 sin
[1

2ε
√
A2

1(r) +A2
2(r)

]
cos

[1
2ε
√
A1 (r − εr)2 +A2 (r − εr)2

]
× cos

[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr (Ar (r − εr) +Ar(r))
]

− 4 sin
[1

2ε
√
A1 (r − εr)2 +A2 (r − εr)2

]
cos

[1
2ε
√
A2

1(r) +A2
2(r)

]

× cos
[
tan−1

(
A2 (r − εr)
A1 (r − εr)

)
+ 1

2εr (Ar(r)−Ar (r − εr))
]}

. (5.1.17)

The total effective evolution equation of motion is then:

ĖrH = − 1
2γ
∑
r

{
4πεr
ε

√
Er(r) cos

[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
]

(5.1.18)

×
{

4 cos
[1

2ε
√
A2

1(r) +A2
2(r)

]
sin
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

]

− πH0

[1
2ε
(√

A2
1(r) +A2

2(r)−
√
A1(r + εr)2 +A2(r + εr)2

)]

+ πH0

[1
2ε
(√

A2
1(r) +A2

2(r) +
√
A1(r + εr)2 +A2(r + εr)2

)]}
Biggl} .

Expanding (5.1.18) and (5.1.15) to first order in the pair (εr, ε), one recovers the contribution
of the Hamiltonian constraint in the classical equations of motion, namely (4.2.20) and (4.2.23).
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5.2 Phase space dependent quantum parameters

Considering the quantum relation connecting the quantum parameters to the fluxes suggests
that it is in fact natural to employ them in their dynamical feature rather as Dirac observables,
due to (5.1.1), which is more amenable for physical predictions [32]. Therefore, in this section
we will consider the evolution equations resulting from the effective Hamiltonian in term of the
phase space dependent quantum parameters

εr = α

√
Er(r)
E1(r) , (5.2.1)

ε = β√
Er(r)

, (5.2.2)

where the constants α =
√

8πγ`pj√
j3

and
√

8πγ`p
√
j3. To this aim, we will introduce the following

notation

δ±r Ar[αn] = α
√
Er

E1

(
Ar(r)±Ar

(
r + n

α
√
Er

E1

))
, (5.2.3)

An =

√√√√A2
1

(
r + n

α
√
Er

E1

)
+A2

2

(
n
α
√
Er

E1

)
, (5.2.4)

∆± [An,An+1] =

√
A2

1(r + n
α
√
Er

E1 ) +A2
2(r + n

α
√
Er

E1 )± (5.2.5)√√√√A2
1

(
r + (n+ 1)α

√
Er

E1

)
+A2

2

(
r + (n+ 1)α

√
Er

E1

)
. (5.2.6)

where n is as usual the step’s number. For simplicity, we will also use the short notation for the
phase space variables and write them as a functional of αn = α[Er,E1] with n is the number
of functional step (shifts) affecting the flux and connection components respectively, and by
expressing them as E1[αn],A1[αn]. Moreover, we will also use ∆± to denote the difference
operation acting on other functions than An.
The bracket we intend to compute are

ȦHi = {Ai[αn,β], H̃[N ]} , (5.2.7)
ĖiH = {Ei[αn,β], H̃[N ]} . (5.2.8)

5.2.1 Ashtekar-Barbero connection effective evolution equations

Effective Euclidean contribution

As for the euclidean part of AE1 the connection

ȦE1 = 1
4γ4

∑
r

{
παN(r)√

Er(r)E1(r)
(
βA0 (∆+[A1,A2])3/2

){(2πEr(r)
(
A1(r) cos

[
δ−Ar[α1]

]

−A2(r) sin
[
δ−Ar[α1]

] )(
H0

[
β∆−[A0,A1]

2Er(r)

]
+H0

[
β
(
∆+[A0,A1]

)
2Er(r)

])
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×
(
δ−Ar[α1]E1(r) + α

√
Er(r)A′r[α1]

))

×
(
∆+[A1,A2]

)3/2
− 2πβE1(r)

(
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

])
×
(
H−1

[
β∆−[A0,A1]

2Er(r)

]
−H−1

[
β
(
∆+[A0,A1]

)
2Er(r)

]) (
A1[α1]A′1[α1] +A2[α1]A′2[α1]

) (
∆+[A1,A2]

)
+ 2πEr(r)A0

(
H0

[
β∆−[A0,A1]

2Er(r)

]
−H0

[
β
(
∆+[A0,A1]

)
2Er(r)

])

×
(

cos
[
δ+Ar[α1]

] (
2E1(r)A′2[α1] +A1[α1]

(
δ+Ar[α1]E1(r) + α

√
Er(r)A′r[α1]

))

− sin
[
δ+Ar[α1]

] (
A2[α1]

(
δ+Ar[α1]E1(r) + α

√
Er(r)A′r[α1]

)
− 2E1(r)A′1[α1]

))(
∆+[A1,A2]

)
− 2πβA0∆+[A1,A2]E1(r)

(
A2[α1] cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
×
(
H−1

[
β∆−[A0,A1]

2Er(r)

]
+H−1

[
β
(
∆+[A0,A1]

)
2Er(r)

]) (
A1[α1]A′1[α1] +A2[α1]A′2[α1]

)
− 4πA0E

1(r)Er(r)
(
A2[α1] cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
×
(
H0

[
β∆−[A0,A1]

2Er(r)

]
−H0

[
β
(
∆+[A0,A1]

)
2Er(r)

]) (
A1[α1]A′1[α1] +A2[α1]A′2[α1]

)

− 8
(
∆+[A1,A2]

)3/2
(
− Er(r) cos

β
√

∆+[A2
1,A2

2]
2Er(r)

 sin
[
βA0

2Er(r)

]

×
(
A1(r) cos

[
δ−Ar[α1]

]
−A2(r) sin

[
δ−Ar[α1]

]) [
δ−Ar[α1]

]
E1(r) + α

√
Er(r)A′r[α1]

)

+ βE1(r)
(
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

])
sin
[
βA0

2Er(r)

]
sin
[
β
√

∆+[A1,A2]
2Er(r)

]
×
(
A1[α1]A′1[α1] +A2[α1]A′2[α1]

) (
∆+[A1,A2]

)
+ Er(r)A0

(
∆+[A1,A2]

)
cos

[
βA0

2Er(r)

]
sin
[
β
√

∆+[A1,A2]
2Er(r)

]

×
{

cos
[
δ+Ar[α1]

] (
2E1(r)A′2[α1] +A1[α1]

(
δ+Ar[α1]E1(r) + α

√
Er(r)A′r[α1]

))

− sin
[
δ+Ar[α1]

] (
A2[α1]

(
δ+Ar[α1]E1(r) + α

√
Er(r)A′r[α1]

)
− 2E1(r)A′1[α1]

)}

− 2A0 cos
[
βA0

2Er(r)

]
E1(r)Er(r) sin

[
β∆+[A1,A2]

2Er(r)

] (
A1[α1]A′1[α1] +A2[α1]A′2[α1]

)
×
(
A2[α1] cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
+ β cos

[
βA0

2Er(r)

]
cos

[
β∆+[A1,A2]

2Er(r)

]
A0∆+[A1,A2]

(
A1[α1]A′1[α1] +A2[α1]A′2[α1]

)
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× E1(r)
(
A2[α1] cos

[
αδ+Ar[α1]

√
Er(r)

2E1(r)

]
+A1[α1] sin

[
αδ+Ar[α1]

√
Er(r)

2E1(r)

])}}
. (5.2.9)

Whereas the for the Ar component the commutation follows similarly and it reads

ȦEr = − 1
4γ4

∑
r

{
πN(r)
β2

{
8β2√
Er(r)

cos
[
βA0

2Er(r)

]
cos

[
βA1

2Er(r)

] (
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

])
+ 24
A1

cos
[
βA0

2Er(r)

] (
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
sin
[
βA1

2Er(r)

]√
Er(r)β

− 4παA0 sin
[
βA0
Er(r)

]
H−1

[
βA0
Er(r)

]
β − 4παA0 cos

[
βA0
Er(r)

]
H0

[
βA0
Er(r)

]
β

− 24
A0

cos
[
βA1

2Er(r)

]√
Er(r) sin

[
βA0

2Er(r)

] (
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

])
β

+ 8παEr(r) sin
[
βA0
Er(r)

]
H0

[
βA0
Er(r)

]
− 6πβ
A1

√
Er(r)

(
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
×
(
H0

[
β (A0 −A1)

2Er(r)

]
−H0

[
β (A0 +A1)

2Er(r)

])
− 6πβ
A0

√
Er(r)

(
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

])
×
(
H0

[
β (A0 −A1)

2Er(r)

]
+H0

[
β (A0 +A1)

2Er(r)

])
− 8αβ
A3/2

1 E1(r)
cos

[
βA0

2Er(r)

]
Er(r) sin

[
βA1

2Er(r)

]
×
(
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

]) (
A1[α1]A′1[α1] +A1A

′
2[α1]

)
+ 2παβ
A3/2

1 E1(r)
Er(r)

(
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
×
(
H0

[
β (A0 −A1)

2Er(r)

]
−H0

[
β (A0 +A1)

2Er(r)

])
×
(
A1[α1]A′1[α1] +A1A

′
2[α1]

)
− 4β2

A1E1(r)
√
Er(r)

cos
[
βA0

2Er(r)

]
cos

[
βA1

2Er(r)

]
×
(
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])(
2A1E

1(r)− α
√
Er(r)

(
A1[α1]A′1[α1] +A1A

′
2[α1]

))
+ πβ2

A1E1(r)
√
Er(r)

(
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
×
(
H−1

[
β (A0 +A1)

2Er(r)

](
−2A1E

1(r)− 2A0A1E
1(r) + α

√
Er(r)

(
A1[α1]A′1[α1] +A1A

′
2[α1]

))

+H−1

[
β (A0 −A1)

2Er(r)

](
−2A1E

1(r) + 2A0A1E
1(r) + α

√
Er(r)

(
A1[α1]A′1[α1] +A1A

′
2[α1]

)))

+ πβ2

A0A1E1(r)
√
Er(r)

(
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

])
×
(
H−1

[
β (A0 −A1)

2Er(r)

](
−2A1E

1(r) + 2A0A1E
1(r) + α

√
Er(r)

(
A1[α1]A′1[α1] +A1A

′
2[α1]

))
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+H−1

[
β (A0 +A1)

2Er(r)

](
2
(
A1[α1]2 +A2

1 +A0A1
)
E1(r)− α

√
Er(r)

(
A1[α1]A′1[α1] +A1A

′
2[α1]

)))

− 4αβ
A0E1(r)2 cos

[
βA1

2Er(r)

]
Er(r) sin

[
βA0

2Er(r)

]
×
(
A1(r) cos

[
δ−Ar[α1]

]
−A2(r) sin

[
δ−Ar[α1]

]) (
δ−Ar[α1]E1(r) + α

√
Er(r)A′r[α1]

)
− παβ

A0E1(r)2E
r(r)

(
A1(r) cos

[
δ−Ar[α1]

]
−A2(r) sin

[
δ−Ar[α1]

])
×
(
H0

[
β (A0 −A1)

2Er(r)

]
+H0

[
β (A0 +A1)

2Er(r)

])(
(∆Ar[α1])E1(r) + α

√
Er(r)A′r[α1]

)
+ παβ

A1E1(r)2E
r(r)

(
H0

[
β (A0 −A1)

2Er(r)

]
−H0

[
β (A0 +A1)

2Er(r)

])

×
(

sin
[
δ+Ar[α1]

] (
A1

(
(Ar(r) +Ar[α1])E1(r) + α

√
Er(r)A′r[α1]

)
− 2E1(r)A′1[α1]

)

− cos
[
δ+Ar[α1]

] (
2E1(r)A′2[α1] +A1[α1]

(
(Ar(r) +Ar[α1])E1(r) + α

√
Er(r)A′r[α1]

)))

+ 4αβ
A1E1(r)2 cos

[
βA0

2Er(r)

]
Er(r) sin

[
βA1

2Er(r)

]

×
(

cos
[
δ+Ar[α1]

] (
2E1(r)A′2[α1] +A1[α1]

(
(Ar(r) +Ar[α1])E1(r) + α

√
Er(r)A′r[α1]

))

− sin
[
δ+Ar[α1]

] (
A1

(
(Ar(r) +Ar[α1])E1(r) + α

√
Er(r)A′r[α1]

)
− 2E1(r)A′1[α1]

))

− 4β2

A0A1E1(r)
√
Er(r)

sin
[
βA0

2Er(r)

]
sin
[
βA1

2Er(r)

]
×
(
A2(r) cos

[
δ−Ar[α1]

]
+A1(r) sin

[
δ−Ar[α1]

]) (
2A1E

1(r)− α
√
Er(r)

(
A1[α1]A′1[α1] +A1A

′
2[α1]

))

+ 8β2

A1
√
Er(r)

A0 sin
[
βA0

2Er(r)

]
sin
[
βA1

2Er(r)

] (
A1 cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])}}
.

(5.2.10)

Analogously to the fluxes, expanding the effective equation for the Ashtekar-Barbero connection,
namely (5.2.10) and (5.2.9) to first order in the quantum parameters α and β to first order,
one recovers the classical equations of motion of the Euclidean contribution in the classical
Hamiltonian derived in chapter 4, namely the equations (4.2.14) and (4.2.7).

Effective Lorentzian contribution

The Lorentzian contribution reads for the A1 connection yields the equation

ȦL1 = − 1
4γ4

∑
r

{
2πN(r)

αβ2(E1(r))2E1[α2]3Er(r)Er[α2]3/2

×
{
− 16α3γ2 cos

[
β

Er(r)

]
E1[α2]3 sin2

[
β

2Er(r)

] (
E1[α2]Er′ [α2]− 2Er[α2]E1′ [α2]

)
Er(r)7/2
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+ 4α2γ2
(
−2 cos

[
β

Er(r)

]
+ cos

[ 2β
Er(r)

]
+ 1

)
E1(r)E1[α2]4Er[α2]Er(r)3

− β2
(
γ2 + 1

)
E1(r)3E1[α2]Er[α2]

(
E1[α2]

(
Er[α1]2 − 6Er[α2]Er[α1] + Er[α2]2 + 4Er(r)Er[α2]

)

+ 4E1[α1] (Er[α2]− Er[α1])Er[α2]
)
− αβ2

(
γ2 + 1

)
E1(r)2

√
Er(r)

{
(

2 (Er[α1]− 3Er[α2])Er[α2]Er′ [α1] +
(
−Er[α1]2 − 6Er[α2]Er[α1] + 3Er[α2]2 + 4Er(r)Er[α2]

)

× Er′ [α2]
)
E1[α2]2 − 2Er[α2]

((
E1′ [α2]− 2E1[α1]

)
Er[α2]2 + 4Er(r)E1′ [α2]Er[α2]

+ 2
(
Er[α1]

(
E1[α1]− 3E1′ [α2]

)
+ E1[α1]

(
Er
′ [α1]− 3Er′ [α2]

))
Er[α2]

+ Er[α1]
(
Er[α1]E1′ [α2] + 2E1[α1]Er′ [α2]

))
E1[α2] + 16E1[α1] (Er[α1]− Er[α2])Er[α2]2E1′ [α2]

}}}
.

(5.2.11)

For the case of the radial component of the connection Ar one obtains

ȦLr = − 1
4γ4

∑
r

{
− 2π
α2E1(r)2Er(r)2

{
2α2

(
γ2 + 1

)
N(r)

(
(Er(r)− Er[α1])E1′[α1]− E1[α1]Er′[α1]

)

× Er(r)3/2 + E1(r)2
(

4αβγ2Er(r)3/2
(

sin
[

2β√
Er(r)

]
− sin

[
β√
Er(r)

])
− α

(
γ2 + 1

)
Er[α1]2N(r)

+ Er(r)2
(

4N(r)β
(
−2 cos

[
β√
Er(r)

]
+ cos

[
2β√
Er(r)

]
+ 1

)
γ2 + β

(
γ2 + 1

)))

+ α
(
γ2 + 1

)
E1(r)N(r)

√
Er(r)

[
4E1[α1]Er(r)3/2 + 4αEr′[α2]Er(r)

+ α (Er[α1]− 3Er(r))Er′[α1]
]}

+ π

2Er[α1]3/2

{
8γ2β

α

(
2Er(r)

(
sin
[

α√
Er(r)

]
− sin

[
2α√
Er(r)

])

+ Er[α1]Er′(r)
E1[α1]

(
−2 cos

[
α√
Er(r)

]
+ cos

[
2α√
Er(r)

]
+ 1

))
+ 4

(
γ2 + 1

)
N(r)

αE1(r)2
√
Er(r)

√
Er[α1]

×
(

4Er(r)
√
Er[α1]E1[α1]2 + α (3Er(r)− Er[α1])Er′(r)E1[α1] + 2αEr(r)

(
Er(r)

− Er[α2]
)
E1′(r)

)
+

(
γ2 + 1

)
N(r)

αE1(r)Er(r)3/2

(
2E1[α1]Er(r)

(
5Er(r)2 + 6Er[α1]Er(r)− 3Er[α1]2

)

− α
√
Er[α1]

(
8Er′[α2]Er(r)2 +

[
− 3Er(r)2 + 6Er[α1]Er(r)− 4Er[α2]Er(r) + Er[α1]2

]
Er′(r)

))

− 16
(
γ2 + 1

)
E1(r)3 E1[α1]

√
Er(r) (Er(r)− Er[α1])

√
Er[α1]N(r)E1′(r)

}

+ πN(r)
Er[α2]3/2

{
8β
α

(
Er(r)

(
sin
[

α√
Er(r)

]
− sin

[
2α√
Er(r)

])
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+ γ2Er[α2]Er′(r)
E1[α2]

(
−2 cos

[
β√
Er(r)

]
+ cos

[
2α√
Er(r)

]
+ 1

))

+
(
γ2 + 1

)
αE1(r)Er(r)3/2

(
E1[α2]Er(r)

(
Er(r)2 − 6Er[α1]Er(r)− 4Er[α2]Er(r) + Er[α1]2

)

+ α
√
Er[α2]

[ (
3Er(r)2 − 6Er[α1]Er(r) + 4Er[α2]Er(r)− Er[α1]2

)
Er′(r)

+ 2Er(r) (Er[α1]− 3Er(r))Er′[α1]
])}

− 2
(
γ2 + 1

)
αE1(r)2

√
Er(r)

{
α
√
Er[α2]

((
E1′(r)− 2E1′[α2]

)
Er(r)2

+
(

4Er[α2]E1′(r) + 2Er[α1]
(
E1′

(
r + α

√
Er(r)

E1(r)

)
− 3E1′(r)

))
Er(r) + Er[α1]2E1′(r)

)

+ 2E1[α1]
(
E1[α2]Er(r) (Er[α1]− Er(r)) + α

√
Er[α2]

(
Er(r)

(
Er′[α1]− 3Er′(r)

)
+ Er[α1]Er′[α2]

))}

− 16
(
γ2 + 1

)
E1(r)3 E1[α1]

√
Er(r) (Er(r)− Er[α1])

√
Er[α2]E1′(r)

}
(5.2.12)

Expanding the effective equation for the Ashtekar-Barbero connection, namely (5.2.11) and
(5.2.12) to first order in the quantum parameters α and β to first order, one recovers the classical
equations of motion of the Lorentzian contribution in the classical Hamiltonian derived in
chapter 4, namely the equations (4.2.15) and (4.2.8).
Thus, the total effective of motion yields

ȦH1 = ȦL1 + ȦE1 , (5.2.13)
ȦHr = ȦLr + ȦEr . (5.2.14)

5.2.2 Fluxes effective evolution equations

The evolution equation of the flux Er reads

ErH = − 1
4γ4

∑
r

{
2παEr(r)3/2N(r)

β

{
4 sin

[
βA0

2Er(r)

]
cos

[
βA1

2Er(r)

]
cos

[
tan−1

(
A2(r)
A1(r)

)
+ δ−r Ar[α1]

]

+ 4 cos
[
βA0

2Er(r)

]
sin
[
βA1

2Er(r)

]
cos

[
tan−1

(
A2[α2]
Ar[α1]

)
+ δ+

r Ar[α1]
]

+ πH0

[
β (A0 −A1)

2Er(r)

](
cos

[
tan−1

(
A2[α1]
A2[α1]

)
+ δ+

r Ar[α1]
]
− cos

[
tan−1

(
A2[α0]
A2[α0]

)
δ−Ar[α1]

])
(5.2.15)

+ πH0

[
β (A0 +A1)

2Er(r)

](
cos

[
tan−1

(
A2[α0]
A2[α0]

)
+ δ−Ar[α1]

]
+ cos

[
tan−1

(
A2[α1]
A2[α1]

)
+ δ+Ar[α1]

])}}
.

(5.2.16)
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For the E1 component of the flux, one can find that the equation of motion reads

Ė1
H = − 1

4γ4

∑
r

{
4πEr(r)N(r)

√
Er(r)

β

{
4
{
A1(r)

(A0)3/2 cos
[
β (A0 +A1)

2Er(r)

]
sin
[
βA0

2Er(r)

]
(5.2.17)

×
(
A2(r) cos

[
δ−r Ar[α1]

]
+A1(r) sin

[
δ−r Ar[α1]

])
− βA1(r)

2 (A0)1/2Er(r)
cos

[
βA0

2Er(r)

]
cos

[
βA0 +A1

2Er(r)

]
×
(
A2(r) cos

[
δ−r Ar[α1]

]
+A1(r) sin

[
δ−r Ar[α1]

])
− β

√
Er(r)

2A0 +A1Er(r)
A1(r) sin

[
βA0

2Er(r)

]
sin
[
βA0 +A1

2Er(r)

]
×
(
A2[α1] cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
− 1
A0

cos
[
βA0 +A1

2Er(r)

]
sin
[
βA0

2Er(r)

]
sin
[
δ−r Ar[α1]

]}

+ π

{
− βA1(r)

2 (A1(r)2 +A2(r)2)Er(r)
(
A2(r) cos

[
δ−r Ar[α1]

]
+A1(r) sin

[
δ−r Ar[α1]

])
×
(
H−1

[
β (A0 −A1)

2Er(r)

]
+H−1

[
β (A0 +A1)

2Er(r)

])
+ A1(r)

(A1(r)2 +A2(r)2)3/2
(
A2(r) cos

[
δ−r Ar[α1]

]
+A1(r) sin

[
δ−r Ar[α1]

])
×
(
H0

[
β (A0 −A1)

2Er(r)

]
+H0

[
β (A0 +A1)

2Er(r)

])}

− β

2A0 +A1Er(r)
A1(r)

(
A2[α1] cos

[
δ+Ar[α1]

]
+A1[α1] sin

[
δ+Ar[α1]

])
×
(
H−1

[
β (A0 −A1)

2Er(r)

]
−H−1

[
β (A0 +A1)

2Er(r)

])
−
√
Er(r)
A0

sin
[
δ−r Ar[α1]

] (
H0

[
β (A0 −A1)

2Er(r)

]
+H0

[
β (A0 +A1)

2Er(r)

])

+
παA1(r) sin

[
βA0
Er(r)

]
H−1

[
βA0
Er(r)

]
A0

+
παA1(r) cos

[
βA0
Er(r)

]
H0
[
βA0
Er(r)

]
A0

}}
. (5.2.18)

Expanding the effective equation for the fluxes, namely (5.2.15) and (5.2.17) to first order in
the quantum parameters α and β to first order, one recovers the classical equations of motion
derived in chapter 4, namely the equations (4.2.20) and (4.2.23).

The effective evolution equations

ȦH1 = ȦL1 + ȦE1 , (5.2.19)
ȦHr = ȦLr + ȦEr , (5.2.20)

and

Ė1
H , ĖrH , (5.2.21)

are part of the set of equations that should account for the dynamics of the theory once solved.
Indeed, these effective equations obtained from computing the Poisson bracket of the phase
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space variables with the effective Hamiltonian should presumably cancel the ones obtained
from a proposed diffeomorphism constraint, as it should follow analogously from the classical
studied case in (B). This is a key step in ensuring the consistency and reliability of the present
framework. The effective radial evolution equations will be discussed in the next chapter.
Moreover, once we extract a proposal for the effective diffeomorphism constraint we will end
up with six as the total number of nonlocal differential equations to be solved for, namely
four coming from the evolution equations added up to the Hamiltonian and diffeomorphism
constraints. Once one makes a choice for the lapse function and shift vector two of the constraints
become redundant and one may conveniently choose four out of the six equations to solve for
the four phase space variables.



Chapter 6

Effective diffeomorphism constraint

In this chapter we will consider a proposal for the effective diffeomorphism constraint in the
case of constant quantum numbers, leaving the scenario of the quantum parameters expressed
as phase space functions for future work.
At the effective level, the only available constraint that we will be able to work with and extract
a candidate expression for the diffeomorphism constraint, is the effective Hamiltonian H̃. To
this end, a convenient program to write down a solvable set of equations for the candidate
effective counterpart of the diffeomorphism and the effective equations of motion, is to make
use of the constraint algebra closure. Though this should include commutators involving the
Hamiltonian constraint, which is mainly provided by

{H [N1] , H [N2]} = H
(
gab (N1∂bN2 −N2∂bN1)

)
, (6.0.1)

In our case this is translated in

{H [N1] , H [N2]} = H (grr (N1∂rN2 −N2∂rN1)) , (6.0.2)

Notice the metric component grr, that should factor out during the computations. Although at
the classical level only the Euclidean term in the Hamiltonian gives rise to the diffeomorphism
expression smeared by the structure functions, it might not hold anymore at the effective level.
This is mainly due to the fact that, the quantum corrections at that stage may dominate and
one is not able anymore to prove the vanishing of the bracket of the Lorentzian and Euclidean
terms. Therefore they shall be included in the following computations.
The strategy to extract a candidate expression for the effective diffeomorphism constraint will
put into play the derived effective equations of motion in the previous chapter. With help of
discrete calculus techniques, one can factorize the discrete version of the structure functions that
multiplies the "would-be" diffeomorphism constraint. We will present the arguments supporting
a specific choice for the expression of the diffeomorphism, highlighting the reason supporting it.
Once this is done, we will start the mechanism of consistency checking for the selected effective
diffeomorphism constraint, presenting the first one as the derivation of its respective radial
evolution equations for the phase space variables.
The obtained radial equations should in principal cancel the ones derived from the effective
Hamiltonian constraint in the previous chapter (this would be the second consistency test)
building up a system of six nonlocal differential equations to be solved for, namely four vanishing
evolution equations in addition to the candidate diffeomorphism expression and the effective
Hamiltonian constraint. Once a specific choice of lapse and shift is made, two become redundant
and one is contented with four equations out of the initial six to solve for the four phase space
variables.

88
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6.1 Effective Hamiltonian bracket

However, the ordinary continuous derivative present in the classical Hamiltonian expression
is replaced with discrete derivative. Indeed, this quantum nature inherited in the equations
is the source of some technical subtleties. More concretely, in order to arrive at the smeared
diffeomorphism in (6.0.2), integration by parts is preformed to obtain first oder derivative on
the lapses (N,M), which consequently requires terms including derivatives in the phase space
variables to serve as the basis for such smearing. To implement this strategy at the quantum
level, one should make use of the spatial shifts defined in the previous chapter to work with
new discrete derivative and integration operations. To this aim, we will first study the bracket
written in the following way{

H̃[N1(r)], H̃[N2(r′)]
}

= κγ

4κ2γ2

∑
r

{
H̃[N1(r)], H̃[N2(r′)]

}

= 1
4κγ3

∑
r

[
δH̃[N1(r)]
δA1(ρ)

δH̃[N2(r′)]
δE1(ρ) − δH̃[N1(r)]

δE1(ρ)
δH̃[N2(r′)]
δA1(ρ)

+ 2
(
δH̃[N1(r)]
δAr(ρ)

δH̃[N2(r′)]
δEr(ρ) − δH̃[N1(r)]

δE(ρ)
δH̃[N2(r′)]
δAr(ρ)

)]
,

where the effective Hamiltonian entails the contribution of similar terms, yet shifted by εr,
namely

H̃[N(r)] =
∑
n=0
H̃[N(r + nεr)] , (6.1.1)

where for the case of the (A1,Ar) equations of motion, it would involves only up to n = 2
whereas for the fluxes (E1, Er) it comprises terms up to n = 1, since the Lorentzian term
responsible for the presence of second derivatives is connection-independent.
The direct analytic computation of the above Poisson bracket is a lengthy one and it is not
straight forward to extract the correct expression of the desired constraint. The scheme we
adapted is to go through the computation in a symbolic numerical one. Before moving on to
that point, let us consider a simple manipulation in the spatial shift using the back and forward
derivation operations defined as

F+ := f(x+ ε)− f(x) = ∆+
ε [f ] ,

F− := f(x)− f(x− ε) = ∆−ε [f ] .
(6.1.2)

Hence, the classical equivalent of, for instance, the first derivative of a function N(r)

F+N(r) = N(r + ε)−N(r) (6.1.3)
= N(r)−N(r − ε) (6.1.4)
≈ N ′(r) . (6.1.5)

These are the equivalent discrete derivatives for left and right continuous ones, and it hold
F+ = F− for ε→ 0. In fact we will use both of these operations, since there is no information
loss while doing it, due to the fact that the forward operation of f at r equals the backward
operation of f at r + ε.
In an analogous way, one can obtain the finite difference to higher order derivatives and
differential operators, and this yields for the second order derivative

∆+
2ε[f ] = f(r + 2ε)− 2f(r + ε) + f(r) (6.1.6)
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≈ f ′′(r) , (6.1.7)
∆−2ε[f ] = f(r)− 2f(r − ε) + f(r − 2ε) (6.1.8)

≈ f ′′(r) , (6.1.9)

where the symbol ≈ is used to denote taking the limit ε→ 0 and dividing by ε to switch from
discrete to continuous.
The forward difference can be considered as an operator that maps the function f to ∆+

nε[f ], we
will call it the shift operator functioning in steps ε, and denote it by Dε. This operator satisfies
a particular Leibniz rule and linearity property respectively

Dε(f(r)g(r)) = (Dεf(r)) g(r + ε) + f(r) (Dεg(r)) Leibniz rule
Dε[αf + βg](r) = αDε[f ](r) + βDε[g](r) , Linearity
Dε(f · g)(r) = f(r + ε)Dεg(r) +Dεf(r)g(r) . Product rule

(6.1.10)

When it comes to integration, and more relevantly to this work integration by parts, the usual
notion of integral is formally translated into a Riemannian sum to reproduce it in the continuum
limit. Hence, to derive the analogous of the integration by part, we play with the product rule
in (6.1.10). Thus in order to preform this "summation by parts" in the subsequent computations,
we make use of the following relations in discrete calculus

Dε(f · g)(r)− f(r + ε)Dεg(r) = g(r)Dεf(r) . (6.1.11)

Summing in both sides of the above equation yields∑
r

g(r)Dεf(n) = −
∑
r

f(r + ε)Dεg(r) . (6.1.12)

We apply this technique to the case of interest, namely terms in the computations that will appear
including terms in first- and second derivatives of the lapse function multiplying functionals of
the phase space variables∑

r

N ′′(g′f) ≈ −
∑
r

N ′Dε(g′f)

≈ −
∑
r

∆−ε [N ]Dε(∆−ε [g]f)

≈ −
∑
r

∆−ε [N ]
((

∆−ε [g](r + ε)f(r + ε)−∆−ε [g](r)f(r)
))

≈ −
∑
r

∆−ε [N ]
(
∆+
ε [g]f(r + ε)−∆−ε [g]f(r)

)
,∑

r

N ′′(r)(fg) ≈ −
∑
r

N ′Dε(fg)

≈ −
∑
r

∆−nε[N ] (f(r + ε)Dε(g) + gDε(f)) .

(6.1.13)

Since the classical Hamiltonian contains terms with first and second continuous derivative, at
the effective level they are respectively equivalent to a shift εr and 2εr. To be more precise, in
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the case of the Poisson Bracket we are examining this is translated in the following expression

{
H̃[N1(r)], H̃[N2(r′)]

}
≈ 1

4κγ3

∑
r

{(
N1(r)δH̃[N1(r)]

δA1(ρ) +N1(r − εr)
δH̃[N1(r − εr)]

δA1(ρ)

)

×
(
N2(r)δH̃[N2(r)]

δE1(ρ) +N2(r − εr)
δH̃[N2(r − εr)]

δE1(ρ)

)
− (N1 ⇐⇒ N2)︸ ︷︷ ︸

PB1

+ 2
(
N1(r)δH̃[N1(r)]

δAr(ρ) +N1(r − εr)
δH̃[N1(r − εr)]

δAr(ρ)

)

×
(
N2(r)δH̃[N2(r)]

δEr(ρ) +N1(r − εr)
δH̃[N2(r − εr)]

δEr(ρ) +N1(r − 2εr)
δH̃[N1(r − 2εr)]

δEr(ρ)

)
− (N1 ⇐⇒ N2)︸ ︷︷ ︸

PBr

}
.

(6.1.14)

We discarded terms that has the same shift in the lapse functions such as N1(r)N2(r) since
they cancel each other during the computation. The indices (1,r) stand for the commutation
equations involving variation with respect (E1, A1) or (Er, Ar). The next step is to simplify
this expression and massage the tow terms PB1 and PBr with the aim to make the presence of
the structure functions explicit and thus recover an analytic relation similar to (6.0.2).

PBr = 2
{(

N1(r)δH̃[N1(r)]
δAr(ρ) +N1(r − εr)

δH̃[N1(r − εr)]
δAr(ρ)

)

×
(
N2(r)δH̃[N2(r)]

δEr(ρ) +N1(r − εr)
δH̃[N2(r − εr)]

δEr(ρ) +N1(r − 2εr)
δH̃[N1(r − 2εr)]

δEr(ρ)

)

− (N1 ⇐⇒ N2)
}

= 2
{
N1(r)N2(r − εr)

δH̃[N1(r)]
δAr(ρ)

δH̃[N2(r)]
δEr(ρ) +N1(r − εr)N2(r)δH̃[N1(r − εr)]

δAr(ρ)
δH̃[N1(r)]
δEr(ρ)

+N1(r)N2(r − 2εr)
δH̃[N1(r)]
δAr(ρ)

δH̃[N2(r − 2εr)]
δEr(ρ)

+N1(r − εr)N1(r − 2εr)
δH̃[N1(r − εr)]

δAr(ρ)
δH̃[N2(r − 2εr)]

δEr(ρ) − (N1 ⇐⇒ N2)
}

= 2
{
N1(r)N2(r − εr)

2 Ėr0Ȧ
1
r + N1(r)N2(r − 2εr)

2 Ėr0Ȧ
2
r + N1(r − εr)N2(r − εr)

2 Ėr1(r)Ȧ0
r

+ N1(r − εr)N2(r − 2εr)
2 Ėr1Ȧ

2
r

}

= 1
2

{
(N1(r − εr)N2(r)−N1(r)N2(r − εr)) Ėr0Ȧ1

r

+ (N1(r)N2(r − εr)−N1(r − εr)N2(r))︸ ︷︷ ︸
:=a1

Ėr1Ȧ
0
r

+ (N1(r − 2εr)N2(r)−N1(r)N2(r − 2εr)) Ėr0Ȧ2
r
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+
(
N1(r − 2εr)N2(r − εr)−N1(r − εr)N2(r − 2εr)

)
︸ ︷︷ ︸

:=a2

Ėr1Ȧ
2
r

}
.

The key idea to reveal the smearing structure functions in terms of lapses and their derivatives,
(namely a terms similar to (N1N

′
2 −N2N

′
1)) is to manipulate the terms (ai) to bring them to a

form similar to the forward and backward derivatives by using (6.1.10). Now, since we intend
to preform the integration by part for the a second derivative, it follows in two steps to get
rid of the second order derivative by making use of (6.1.13). In the same spirit, the discrete
derivative in 2εr would take different terms to translate its analog continuous one. For instance,
applying (6.1.6) in the case of the term a1, one can rewrite it as

a1 = N1(r − 2εr)N2(r)−N1(r)N2(r − 2εr)
= [N1(r − 2εr)− 2N1(r − εr) +N1(r)]N2(r)− [N2(r − 2εr)− 2N2(r − εr) +N2(r)]N1(r)+
+ 2 [N1(r − εr)N2(r)−N1(r)N2(r − εr)]
≈ N ′′1 (r)N2(r)−N ′′2 (r)N1(r) + 2

[
N1(r)N ′2(r)−N2(r)N1(′r)

]
,

(6.1.15)

and for the a2 term, it reads

a2 = N1(r − 2εr)N2(r − εr)−N1(r − εr)N2(r − 2εr)
= [N1(r − 2εr)− 2N1(r − εr) +N1(r)] [N2(r − εr)−N2(r)]
− [N1(r − εr)−N1(r)] [N2(r − 2εr)− 2N2(r − εr) +N2(r)]
−N1(r − 2εr)N2(r) + 2N1(r − εr)N2(r − εr)− 2N1(r − 2εr)N2(r)
− 2N1(r − εr)N2(r − εr) +N1(r)N2(r)−N1(r)N2(r)−N1(r)N2(r − εr)−N1(r)N2(r − 2εr)
≈ (N1(r)N ′2(r)−N ′1(r)N2(r)) + (N ′′1 (r)N2(r)−N1(r)N ′′2 (r)) + (N ′1(r)N ′′2 (r)−N ′′1 (r)N ′2(r)) .

(6.1.16)

The PB1 term can be written as

PB1 =
(
N1(r)δH̃[N1(r)]

δA1(ρ) +N1(r − εr)
δH̃[N1(r − εr)]

δA1(ρ)

)
(6.1.17)

×
(
N2(r)δH̃[N2(r)]

δE1(ρ) +N2(r − εr)
δH̃[N2(r − εr)]

δE1(ρ)

)
− (N1 ⇐⇒ N2)

= [N1(r)−N2(r − εr)] Ė1
1Ȧ

1
1 + [N1(r − εr)N2(r)] Ė1

1Ȧ
0
1

≈
[
N1(r)N ′2 −N2N

′
1
] (
Ė1

1Ȧ
1
1 − Ė1

1Ȧ
0
1

)
.

Hence the bracket including the radial and the −1 contributions yields{
H̃[N1(r)], H̃[N2(r′)]

}
≈ 1

4κγ3

∑
r

[
N1(r)N ′2 −N2N

′
1
] (
Ė1

1Ȧ
1
1 − Ė1

1Ȧ
0
1

)
(6.1.18)

+ 1
2

{(
N1(r)N ′2(r)−N ′1(r)N2(r)

)
Ėr0Ȧ

1
r + 2

(
N1(r)N ′2(r)−N ′1(r)N2(r)

)
Ėr0Ȧ

2
r

+
(
N1(r)N ′2(r)−N ′1(r)N2(r)

)
Ėr1Ȧ

0
r +

(
N1(r)N ′2(r)−N ′1(r)N2(r)

)
Ėr0Ȧ

2
r

+
(
N1(r)N ′′2 (r)−N ′′1 (r)N2(r)

)
Ėr0Ȧ

2
r +

(
N1(r)N ′′2 (r)−N ′′1 (r)N2(r)

)
Ėr1Ȧ

2
r

+
(
N ′1(r)N ′′2 (r)−N ′′1 (r)N ′2(r)

)
Ėr1Ȧ

2
r

}
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≈ 1
4κγ3

∑
r

{(
N1(r)N ′2(r)−N ′1(r)N2(r)

)
×
(
Ė1

0Ȧ
1
1 − Ė1

1Ȧ
0
1 + Er0

2
[
2Ȧ2

r + Ȧ1
r

]
+ Er1

2
[
2Ȧ2

r − Ȧ0
r

]
︸ ︷︷ ︸

b1

)

+
(
N1(r)N ′′2 (r)−N ′′1 (r)N2(r)

)( Ȧ2
r

2
[
−Ėr0 − Er1

]
︸ ︷︷ ︸

b2

)

+
(
N1(r)′N ′′2 (r)−N ′′1 (r)N ′2(r)

)( Ȧ2
r

2 Er1︸ ︷︷ ︸
b3

)}
(6.1.19)

The next step is to implement the summation by parts to the above expression to get rid of the
second derivative in the lapse with the goal to obtain a factorized structure constant factorizing
the "supposed-to-be" effective diffeomorphism constraint. This is achieved by employing the
calculus techniques derived in (6.1.13) to the terms multiplying b2 and b3. The Poisson bracket
(6.1.18) reads

{
H̃[N1(r)], H̃[N2(r′)]

}
= 1

4κγ3

∑
r

{(
∆−εr [N1(r)]∆+

εr [N2(r)]−∆+
εr [N1(r)]∆−εr [N1(r)]

)

×
(
b2(r + εr)− b3(r + εr)

)

+
(
N1(r)∆−εr [N2(r)]−∆−εr [N1(r)]N2(r)

)(
∆+
εrb3(r) + b1

)}
. (6.1.20)

Notice that the above Hamiltonian bracket reproduce two smeared terms with different structure
functions and thus admittedly deviate from the classical Hamiltonian bracket in (4.3.1). In
order to distinguish the candidate expression for the effective diffeomorphism constraint, one
can expand the terms ∆+

εrb3(r)+ b1 and b2(r+ εr)− b3(r+ εr) separately and check if the leading
order of the expansion actually reproduces the classical familiar expression of the diffeomorphism
constraint. An other selection criterion is: once one elects which term delivers the right classical
expression, one can investigate if it contains higher order terms in εr since it subsidize to the
power-counting of the Barbero-Immirzi parameter γ. Therefore this higher order contribution
should not ideally reproduce the classical diffeomorphism constraint, since it will generate the
right proportionality to γ for the constraint algebra to close. In view of these consideration, the
residual term can be reabsorbed. In light of these considerations, the terms b2(r+ εr)−b3(r+ εr)
stands out as an initiatory proposal for the effective diffeomorphism constraint and it reads

D̃ = − 1
4κγ3

∑
r

π(E1)2(r)
εEr(r)

{
− 16

(
γ2 + 1

)
E1 (r − εr)

Er (r − εr)
(

sin
[1

2ε
√
A1 (r)2 +A2 (r)2

]

×−4 cos
[1

2ε
√
A1 (r + εr)2 +A2 (r + εr)2

]
cos

[
tan−1

(
A2 (r)
A1 (r)

)
+ 1

2 (Ar(r − εr)−Ar (r)) εr
]

− πH0

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1 (r + εr)2 +A2 (r + εr)2

)]

×
{

cos
[
tan−1

(
A2 (r)
A1 (r)

)
+ 1

2 (Ar(r − εr)−Ar (r)) εr
]
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+ cos
[
tan−1

(
A2 (r + εr)
A1 (r + εr)

)
+ 1

2 (Ar(r − εr)−Ar (r)) εr
]}

+ πH0

[1
2ε
(√

A1(r)2 +A2(r)2 +
√
A1 (r + εr)2 +A2 (r + εr)2

)]

×
{
− cos

[
tan−1

(
A2 (r)
A1 (r)

)
+ 1

2 (Ar(r − εr)−Ar (r)) εr
]

+ cos
[
tan−1

(
A2 (r + εr)
A1 (r + εr)

)
+ 1

2 (Ar(r − εr)−Ar (r)) εr
]})

+ 8
(
γ2 + 1

)
Er(r − εr)

εE1 (r − εr)

{
sin
[1

2ε
√
A1 (r + εr)2 +A2 (r + εr)2

]

×
(

4 cos
[1

2ε
√
A1 (r + 2εr)2 +A2 (r + 2εr)2

]

× cos
[
tan−1

(
A2 (r + εr)
A1 (r + εr)

)
+ 1

2 (Ar(r + 2εr)−Ar (r + εr)) εr
]

+ 4 cos
[1

2ε
√
A1 (r + εr)2 +A2 (r + εr)2

]
sin
[1

2ε
√
A1 (r + 2εr)2 +A2 (r + 2εr)2

]

× cos
[
tan−1

(
A2 (r + 2εr)
A1 (r + 2εr)

)
+ 1

2 (Ar (r + εr) +Ar (r + 2εr)) εr
])

+ πH0

[1
2ε
(√

A1 (r + εr)2 +A2 (r + εr)2 −
√
A1 (r + 2εr)2 +A2 (r + 2εr)2

)]

×
{

cos
[
tan−1

(
A2 (r + εr)
A1 (r + εr)

)
+ 1

2 (Ar (r + 2εr)−Ar (r + εr)) εr
]

+ cos
[
tan−1

(
A2 (r + 2εr)
A1 (r + 2εr)

)
+ 1

2 (Ar (r + εr) +Ar (r + 2εr)) εr
]}

+ πH0

[1
2ε
(√

A1 (r + εr)2 +A2 (r + εr)2 +
√
A1 (r + 2εr)2 +A2 (r + 2εr)2

)]

×
{

cos
[
tan−1

(
A2 (r + εr)
A1 (r + εr)

)
+ 1

2 (Ar (r + 2εr)−Ar (r + εr)) εr
]

− cos
[
tan−1

(
A2 (r + 2εr)
A1 (r + 2εr)

)
+ 1

2 (Ar (r + εr) +Ar (r + 2εr)) εr
]}}}

. (6.1.21)

Expanding in the quantum parameters εr and ε and taking into account only the leading order,
one recovers the classical expression of the diffeomorphism constraint.

6.2 Effective radial evolution equations

The proposal for the effective diffeomorphism constraint should undergo further consistency
tests, to ensure it truly represents the right effective constraint which establishes the closure of
algebra and classical predictions. To this aim, one can study whether the vanishing of the total
evolution equations (including the Hamiltonian- and diffeomorphism brackets) of the phase
space variables is achieved. This is similar to the classical case where the radial equations of
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motion cancels out the Hamiltonian ones derived in (B). A preliminary consistency check is
to review if the extracted evolution equations from (6.1.21) actually reproduces its respective
classical expressions. As a last test, the proposal for the diffeomorphism constraint should
ensure the closure of the algebra and hence it ought to satisfy the commutation relations derived
in (4.1.3). The first step is then to derive the contribution effective equation of motion coming
form the above constraint that will add up to the ones obtained from the effective Hamiltonian.
This will eventually provide a solvable set of non-local differential equations for the fluxes and
Ashtekar-Barbero connection components.

6.2.1 Fluxes equation of motion

The effective evolution equations are computed in similar manner as in the previous ones, namely
by considering the Poisson bracket of the phase space variables and the smeared diffeomorphism
constraint, which in this case the candidate expression we derived above. Note that we are
dealing as usual with discrete computations, hence a sum over the plaquettes replacing the
integration that appears again as in the previous computations.

Ė1
D = 1

4γ2

∑
r

− 8π2 (γ2 + 1
)
E1(r)2N r(r)Er(r − εr)

ε
√
Er(r) (A1(r)2 +A2(r)2)E1(r − εr)

{

× εA1(r)
√
A1(r)2 +A2(r)2

(
4 cos

[1
2ε
√
A1(r)2 +A2(r)2

]
cos

[1
2ε
√
A1(εr + r)2 +A2(εr + r)2

]

× cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ 4 sin
[1

2ε
√
A1(r)2 +A2(r)2

]
sin
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

]
× cos

[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
]

+ πH−1

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])

+ πH−1

[1
2ε
(√

A1(r)2 +A2(r)2 +
√
A1(r + εr)2 +A2(r + εr)2

])

×
(

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
]))

+ 2A2(r) sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

×
(

4 sin
[1

2ε
√
A1(r)2 +A2(r)2

]
cos

[1
2ε
√
A1(εr + r)2 +A2(εr + r)2

]
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+ π

(
H0

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1(r + εr)2 +A2(r + εr)2

)]

+H0

[1
2ε
(√

A1(r)2 +A2(r)2 +
√
A1(r + εr)2 +A2(r + εr)2

]]))}
. (6.2.1)

As for the flux E1, it yields

ĖrD = 1
2γ2

∑
r

{
−8π2 (γ2 + 1

)
N r(r)εrE1(r)2Er(r − εr)

ε
√
Er(r)E1(r − εr)

{

× 4
(

sin
[1

2ε
√
A1(r)2 +A2(r)2

]
cos

[1
2ε
√
A1(εr + r)2 +A2(εr + r)2

]

× sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ cos
[1

2ε
√
A1(r)2 +A2(r)2

]
sin
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

]

× sin
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])

+ πH0

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− sin
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])

+ π

[1
2ε
[√

A1(r)2 +A2(r)2 +
√
A1(r + εr)2 +A2(r + εr)2

]]

×
(

sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ sin
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])}}

. (6.2.2)

6.2.2 Connection components equations of motion

The The evolution equation of the connection A1 obtained from the Poisson bracket with the
effective diffeomorphism constraint reads

ȦD1 = − 1
4γ2

∑
r

{
− 8π2 (γ2 + 1

)
N r(r)E1(r)2Er(r − εr)

ε
√
Er(r) (A1(r)2 +A2(r)2)E1(r − εr)

{

× εA1(r)
√
A1(r)2 +A2(r)2

{
4 cos

[1
2ε
√
A1(r)2 +A2(r)2

]
cos

(1
2ε
√
A1(εr + r)2 +A2(εr + r)2

)

× cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ 4 sin
[1

2ε
√
A1(r)2 +A2(r)2

]
sin
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

]
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cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
]

+ πH−1

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])

+ πH−1

[1
2ε
(√

A1(r)2 +A2(r)2 +
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])}

+ 2A2(r) sin
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

(
4 sin

[1
2ε
√
A1(r)2 +A2(r)2

]
cos

[1
2ε
√
A1(εr + r)2 +A2(εr + r)2

]

+ π

(
H0

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1(r + εr)2 +A2(r + εr)2

)]

+H0

[1
2ε
(√

A1(r)2 +A2(r)2 +
√
A1(r + εr)2 +A2(r + εr)2

)]))}
(6.2.3)

For the radial component of the connection, the evolution equation yields

ȦDr = − 1
2γ2

∑
r

{
16π2 (γ2 + 1

)
N r(r)E1(r)4Er(r − εr)

εEr(r)3E1(r − εr)

{
(6.2.4)

− 4 sin
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

]

×
(

2 cos
[1

2ε
√
A1(r)2 +A2(r)2

]
cos

[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
]

+ cos
[1

2ε
√
A1(2εr + r)2 +A2(2εr + r)2

]
cos

[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(2εr + r)−Ar(εr + r))
])

+ cos
[1

2ε
√
A1(εr + r)2 +A2(εr + r)2

](
8 sin

[1
2ε
√
A1(r)2 +A2(r)2

]

× cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− 4 sin
[1

2ε
√
A1(2εr + r)2 +A2(2εr + r)2

]

× cos
[
tan−1

(
A2(2εr + r)
A1(2εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(2εr + r))
])
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+ π

{
H0

[1
2ε
(√

A1(r)2 +A2(r)2 −
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

+ cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])}

+ 2H0

[1
2ε
(√

A1(r)2 +A2(r)2 +
√
A1(r + εr)2 +A2(r + εr)2

)]

×
(

cos
[
tan−1

(
A2(r)
A1(r)

)
+ 1

2εr(Ar(εr + r)−Ar(r))
]

− cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(r))
])

+H0

(1
2ε
(√

A1(r + εr)2 +A2(r + εr)2 −
√
A1(r + 2εr)2 +A2(r + 2εr)2

))
(

cos
[
tan−1

(
A2(2εr + r)
A1(2εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(2εr + r))
]

− cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(2εr + r)−Ar(εr + r))
])

−H0

[1
2ε
(√

A1(r + εr)2 +A2(r + εr)2 +
√
A1(r + 2εr)2 +A2(r + 2εr)2

)]

×
(

cos
[
tan−1

(
A2(εr + r)
A1(εr + r)

)
+ 1

2εr(Ar(2εr + r)−Ar(εr + r))
]

+ cos
[
tan−1

(
A2(2εr + r)
A1(2εr + r)

)
+ 1

2εr(Ar(εr + r) +Ar(2εr + r))
])}}

.

The total effective evolution equations of the connection and flux are provided once we add up
the Hamiltonian and diffeomorphism contributions, formally it is given by

effȦ1 = ȦH1 + ȦD1 , (6.2.5)
effȦr = ȦHr + ȦDr , (6.2.6)
effĖ1 = Ė1H + Ė1

D , (6.2.7)
effĖr = ĖrH + ĖrD , (6.2.8)

where the left superscript index refers to the effective equations.
These are the effective equations of motion based on our candidate expression for the effective
diffeomorphism constraint. The first consistency check regarding the classical radial equations
of motion established the classical equations, namely (4.2.12,4.2.16) and(4.2.21,4.2.24).
In order to support this proposal and ensure self-consistency of this work, one must prove that
the obtained equations of motion do vanish. Ideally, one could just add the two contribution
obtained from the Hamiltonian and diffeomorphism and see if they actually give zero. However,
due to their non-trivial and formally complicated aspect, the set of equations (6.2.5) should
inherit the same behavior as the classical one. As it is indicated in (B), the use of constraints
and the interplay between the phase space variables was sort of necessary to prove the vanishing
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of the equations of motion. At the effective level one should expect the same to happen, i.e
the use of the only effective constraint at hand (Hamiltonian constraint) and the emergence of
some effective on-shell closure relations to appear. This is still work in progress.
Moreover one has to show that the rest of the algebra employing the proposed diffeomorphism
constraint closes. Adding the candidate diffeomorphism expression in (6.1.21) after surviving
all the consistency checks, we end up with a set of five non-local differential equations to be
solved for. Their solutions will ensure the explicit description of the metric functions Λ and R,
which will generate the beginning of physical prediction and reliability of this framework.



Discussion and outlook

In this work, we studied the formulation of black holes in a quantum gravity model. We started
by describing the classical theory of the canonical treatment of general relativity. The latter is
based on decomposing spacetime à la 3+1 decomposition, mainly splitting space to globally
hyperbolic hypersurface endowed with familiar notion of time evolution that is encoded in the
directional Lie dragging operation. This was the mathematical setup to build the Hamiltonian
formulation for the Einstein-Hilbert action, where in this reformulation Einstein equations were
recast in a set of constraints that accounts for the gauge transformations of the theory. This
alternative presentation of GR can also be written in a triad formulation that, along with
the introduction of auxiliary parameters for the ADM phase space variables, prepared the
framework to go through the process of quantization. We moved on to introduce loop quantum
gravity program using the point holonomy entity and the generated flux-holonomy algebra and
sketched the construction of LQG Hilbert space.
To specify the work to black holes, we have provided the canonical coordinates of GR phase
space parametrized by the Ashtekar-Barbero SU(2) connection and its conjugate momentum
formulation some partial gauge fixing conditions from which second class constraints appeared.
The latter was taken into consideration in the framework of gauge unfixing. This procedure,
even though is still equivalent to working with the inverse matrix of Dirac, provided an easier
method based on the standard Poisson bracket between the remaining (reduced) phase space
coordinates. This has the advantage of discarding the difficulties accommodated on the quantum
Dirac bracket at the price of introducing some nonlocal extra terms in the remaining first class
constraints.
This formalism was the basis to present the foundations for a systematic investigation of
spherically symmetric geometries in the QRLG framework. More concretely, this is put into
craft by the implementation of a quantization program that identifies a symmetric sector at the
quantum level, emphasizing the reverting process of symmetry reduction and quantization, the
mainstreamed approach to quantum black holes in the existing literature. The main results
in [21] set up the basic playground for the consideration of horizon penetrating foliation to
eventually be able to provide predictions and a consistent description of the interior and exterior
regions of a quantum black hole in QG, delivering the result of an effective Hamiltonian for the
subsequent work.
The first step in this program with the aim to glue both geometries (dedicated for future
work) is to make sure that the theory is anomaly free, namely, but studying the constraint
algebra classically and in second step, to administer a candidate expression for the effective
counterpart of the diffeomorphism constraint that will enable the exposition of the gluing pro-
cedure. This was mainly done, with the goal to achieve the off-shell closure the constraint algebra.

This investigation concerning the effective dynamics for the Kerr-Schild foliation is an initial
step to attain the goal of gluing the interior and exterior of a "quantum gravity" black hole,
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which has not been done so far in quantum gravity approaches. The main results of this work
concerns the proposal for the effective diffeomorphism constraint. Even though the extracted
equations of option matches the classical ones (obtained from the commutator with the classical
constraint), the proposed expression (6.1.21) still have to surpass the challenges of the remaining
consistency checks. Indeed, showing that the total effective equations of motion in (6.2.5) vanish
for the promoted effective diffeomorphism constraint and that it also closes the algebra are the
"acid" test it has to survive.
Furthermore, in the scenario where the quantum parameters are represented as phase space
functions, a proposal for an effective diffeomorphism constraint is still work in progress and hints
towards a different approach to extract a candidate expression for the effective diffeomorphism
constraint. Ideally one can proceed as in the constant case by using discrete calculus techniques
but the functional-nature of the parameters suggests that one should consider discrete functional
derivatives as well. At the point where this is achieved, the same consistency algorithm would
be applied to the extracted would-be effective diffeomorphism constraint. As in the constant
quantum parameters, one will end up with five equations to be solved for.
The remaining consistency checks and the study of the case of phase-space quantum parameters
is still work in progress.

One should also stress that the derived effective evolution equations for the fluxes and Ashtekar-
Barbero connection are nonlocal differential equations encoding the non-homogeneity of the
metric and its discrete nature. Solving these equations is therefore highly non-trivial. There are
very few methods to solve non-local differential equations exactly and the common approach is
the numerical one that appears in the context of fluid mechanics. Therefore this framework
provides the motivation to study nonlocal equations in the context of a quantum gravity model,
which is (more generally) a powerful tool to investigate the discreetness of geometry.
The ultimate fate of the obtained nonlocal differential evolution equations for the fluxes and
Ashtekar-Barbero connection is to provide a numerical solutions encoding quantum gravity
corrections inherited in an effective metric. Once this is achieved, one can start investigating if
the derived results are able to answer the longstanding unanswered questions concerning black
holes and perhaps even the opportunity to link them to the observational sector.
Once the evolution equations are solved, one can study the dynamics the current setup predicts,
namely investigate if one obtains the classical limit and what is the impact of the quantum
fluctuations on the physical predictions. It is indeed a very prosperous field to search for answers
concerning all the puzzles black holes still face.



Appendix A

Differential geometry and topology

A.1 Lie derivative

Let M,N be manifolds and φt a one-parameter group of diffeomorphisms that is generated by
a vector field va. We define the map that "carries along" tangent vectors at p ∈M to tangent
vectors at φ(p) ∈ N , such that

(φ∗v) (f) = v(f ◦ φ) . (A.1.1)

φ∗ can be viewed as the derivative of φ at p. The Lie derivative L is defined as the operation
that compares T a1···ak

b1...bl
and φ∗−tT

a1···ak
b1···bl , for some tensor T a1···ak

b1···bl . Formally, it is
denoted by Lv and it can be expressed as

LvT a1 · · · akb . . . bl = lim
↔→0

{
φ∗−tT

a1···akb . . . bl − T a1···ak
b1···bl

t

}
. (A.1.2)

More explicitly, the Lie derivative Lv is a linear map from smooth tensor fields of type (k,l)
to smooth tensor fields of the same type. To study the action of its operation on an arbitrary
tensor field, is it useful to work in a set of coordinates on M , so that va =

(
∂
∂x1

)a
. Hence the

action the one-parameter group of diffeomorphism φ−t is x→ x+ t, while the other coordinates
are held fixed. Consequently, the components of the Lie derivative of T a1···ak

b1···bl reads

LvTµ1···µk
v1...vl =

∂Tµ1···µk
v1...vl

∂x1 . (A.1.3)

A coordinate independent formulation for the Lie derivative of a vector field wa can be derived
as follows. In an adapted coordinate system we have

Lvwµ = ∂wµ

∂x1 , (A.1.4)

wa =
∑
µ

wµ
(

∂

∂xµ

)a
. (A.1.5)

Using (A.1.3), the commutator of the two vector fields va,wa yields the equation

µ =
∑
ν

(
vν
∂wµ

∂xν
− wν ∂v

µ

∂xν

)
= ∂wµ

∂x1 ,

(A.1.6)
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which corresponds to the components of Lvwµ. Since they are defined in a coordinate independent
manner, the following equality holds

Lvwa = [v,w]a . (A.1.7)

The action of the Lie derivative on a dual vector reads

Lv (µawa) = waLvµa + µa[v, w]a . (A.1.8)

For an arbitrary derivative operator ∇a, one can express the Lie derivative as

Lvµa = vb∇bµa + µb∇avb . (A.1.9)

More generally, we have the relation that holds for any derivative operator

LvT a1···ak
b1·bk = vc∇cT a1···ak

b1·bl

+
k∑
i=1

T a1···ak
b1·bk∇cv

ai +
l∑

j=1
T a1···ak

b1·bl∇jv
c . (A.1.10)

A.2 Holonomy

Some important properties of the holonomy are listed in this section. Given a unique solution
of the differential equation

d

ds
he[A, s] + ẋµ(s)Aµhe[A, s] = 0 , (A.2.1)

where the one dimensional path e reads

e : [0,1] ⊂ R→ Σ , (A.2.2)

sending the variable s ∈ [0,1]→ xµ(s). The unique solution he[A, s] exists for the initial value
he[A, 0] = 1 and the holonomy along the path e is defined as

he[A] = he[A, 1] , (A.2.3)

satisfying the properties:

• he[A] = he[A, 1] is independent of the parametrization of e.

• It satisfies:

he[A] = he1 [A]he2 [A] , (A.2.4)

where the multiplication on the right is the SU(2) multiplication. the above property
holds for the holonomy of a path given by a single point is the identity and given two
oriented paths e1 and e2 such that the end of one of them coincide with the other i.e.
e = e1e2.

•

he−1 [A] = h−1
e [A] . (A.2.5)
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• Gauge transformations generated by the Gauss constraint act on the holonomy in the
following way

h′e[A] = g(x(0))he[A]g−1(x(1)) . (A.2.6)

Gauge transformations generated by the diffeomorphism constraint acts on the holonomy
in the following way

he [φ∗A] = hφ−1(e)[A] . (A.2.7)

where φ acts on the connection A. Transforming the connection with a diffeomorphism
can be pictured as moving the path with φ−1.

The holonomy is a device that dictates the rule of parallel transporting spinors along a path e.



Appendix B

On-shell vanishing evolution
equations

B.1 The equations of motion for the connection

A1 connection component

The evolution equation of the connection A1 coming from the Euclidean contribution reads

ȦE1 = N√
Er

[(
A2

1 +A2
2 − 1

)]
(B.1.1)

= N

E1
√
Er


HE

E1 − 4Er
(
ArA1 +A′2(r′)

)
︸ ︷︷ ︸

= 2HE
E1 −

HE
E1 −4Er(ArA1+A′2)


.

Note that one can write ArA1 as follows

ArA1 = 1
2E1A2

(
2A1A

′
1E

1 − γA1Hr
)
, (B.1.2)

= 1
2E1A2

(
E1∂r(A2

1)− γA1Hr
)
.

Plugging it back into the equation for ȦE1

ȦE1 = N

E1
√
Er

{
HE

E1 + 2 Er

A2E1

(
γA1Hr − E1∂r(A2

1)
)}

(B.1.3)

− 2NA′2Er

E1
√
Er

For the Lorentzian contribution, we will be working on (4.2.8) and using the constraint before
arriving at the final result in Eq(4.2.10). A preliminary computation is needed, namely

4(ErEr′E1)∂r
(

N(r)
4(E1)3

√
Er

)
= (ErEr′E1)

(E1)3
√
Er

4N ′(E1)3√Er

4(E1)3
√
Er

−N
12(E1)2√ErE1′ + 2(E1)3Er′√

Er

4(E1)3
√
Er


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= (ErEr′E1)
(E1)3

√
Er

[
N ′ − 12(E1)2Er(E1)′ + 2(E1)3(Er)′

4(E1)3

]

= N

4(E1)3
√
Er

[
N ′

N
12Er(Er)′(E1)′ + 2(Er′)2E1

]
. (B.1.4)

One can write ȦL1 as

ȦL1 = N(r)
2(E1)3

√
Er

[
− 3HL

E1 − 2E1
(
(Er′)2 + 4ErEr′′

)
+ 4Er′ErE1′ − 4(Er′)2E1 − 4E1ErEr′′

− 4Er′ErE1′ + 12Er′ErE1′ + 2(Er′)2E1 − 4N
′

N
Er
′
ErE1

]

= N(r)
2(E1)3

√
Er


4HL
E1 −

3HL
E1︸ ︷︷ ︸

HL
E1

+ 4ErEr′′E1 + 4ErEr′E1 − 4N
′

N
Er
′
ErE1︸ ︷︷ ︸

:=a


(B.1.5)

Notice that on-shell one can make use of the following relations:

A2 = N G3 = 0 (B.1.6)

Er′ = γG3 + 2A2E
1 ⇒ Er′′ = γG′3 + 2

(
E1′A2 +A′2E

1
)

(B.1.7)

The term denoted by a becomes

a = 8
(
Er(E1)2A′2 + ErE1E1′

)
− 4

(
A′2E

rE1E
1A2
A2

+A2E
1′E1Er

)
− 2γG3 + 4γ∂rG3

(B.1.8)
= 2ErEr′′E1 − 2γG3 + 4γ∂rG3 .

In terms of the constraints, the equation of motion for A1 coming from the Hamiltonian
constraint read

ȦH1 = − 1
γ2

{
H

E1
+ N

4(E1)3
√
Er

(
(1 + γ2)

2ErEr′′E1︸ ︷︷ ︸
c2

−2γG3 + 4γ∂rG3

) (B.1.9)

+ N

4(E1)
√
Er

{
2 Er

A2E1

(
γA1Hr − E1∂r(A2

1)
)}

+ 2NA′2Er

E1
√
Er

}
.

The c2 term is equivalent to the previous term c1, which can be written as

c1 = c2 = N(Er′)2 − 4N
(
Er′

2A2

)2
+ 4N

′

N
Er′Er

= N(Er′)2 −A2(Er′)2 + 8N
′

N
E1A2E

r

= 8N
′

N
E1A2E

r .

(B.1.10)
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If we equate all the constraints to zero, replacing the shift function with A2 and we use the
contributing term computed above we are left with

ȦH1 = − 1
γ2

(
−4
√
ErA′1A1
E1 − 2

√
ErA2A

′
2

E1 + (1 + γ2)2A′2A2
√
Er

E1

)

= −γ2A
′
2A2
√
Er

E1 + 2
γ2

√
ErA′1A1
E1 .

(B.1.11)

Some useful equation that will be used in the following computations read:

N r = −NA1
γR′

= −A2A1
γR′

= −2
√
ErA2A1
γ(Er)′ ,

Λ = E1
√
Er

,

A1 = −γN
rR′

N
= −γN rΛ ,

Ar = −γ ∂r(ΛN
r)

A2
= −γ

∂r(N
rE1
√
Er

)
A2

= A′

A2
.

(B.1.12)

where in the expression for Ar, we used the relation Λ = E1
√
Er

and we trade Er′ every time it
seems convenient to, in order to simplify terms including A2’s and E1’s. To prove closure of the
evolution equation at this stage, one should show that all the terms that are written in terms of
constraints cancel the term coming from the diffeomorphism commutator. The PB with the
diffeomorphism gives

Ȧr1 = 2N r

γ
∂rA1 = 2N r

γ
(A2Ar) = N rA2

∂r(N
rE1
√
Er

)
A2

(B.1.13)

= −2
√
ErA2A1
γ(Er)′

[
E1
√
Er

N r′ +N r

(
E1
√
Er

)′]
(B.1.14)

= γ2A
′
2A2
√
Er

E1 − 2 2
γ2

√
ErA′1A1
E1 . (B.1.15)

where we replaces the expression for the shift N r, Ar (that follows from the radial diffeomor-
phism constraint), Er′ with the expressions in (B.1.12). This exactly the contribution of the
Hamiltonian constraint in the evolution equation for A1. Hence we obtains the desired result

Ȧ1 = Ȧr1 + ȦH1 = 0 . (B.1.16)

Ar connection component

For Ar evolution equations, while considering the Euclidean contribution to the total equation
of motion one can notice that the expression in (4.2.14) can be written in the following way

ȦEr = N(r)
E1
√
Er

[
−H

E

2Er + 4
(
E1

2A2
∂r(A2

1)− γ

2A2
A1Hr

)
+ 4E1A′2

]
(B.1.17)

= N(r)
E1
√
Er

(
−H

E

2Er −
γA1Hr

2A2

)
+

2A2∂r(A2
1)√

Er
+ 4A

′
2A2√
Er︸ ︷︷ ︸
a

 .
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where in the last equation we substitute N(r) with A2. Note that there are two extra terms that
will cancel the diffeomorphism contribution and a part from the Lorentzian PB. The equation
in (4.2.15) for ȦLr can also be computed in an alternative way that would make writing it in
terms of the constraints easier to manipulate, namely by using the relation Er′ = γG+ 2A2E

1

and Er′′ = (γG+ 2A2E
1)′. We eventually obtain

ȦLr =
∫
dr

(1 + γ2)N(r)
2(E1)3

√
Er

(
δ

δEr

(
−(E1)2

(
(2A2E

1)2 + 4Er(γG+ 2A2E
1)′
))

+ δ

δEr

[
4(γG+ 2A2E

1)E1E1′Er
]
− H

L

2Er

)

= (1 + γ2) N(r)
2(E1)3

√
Er

(
− H

L

2Er − 4(E1)2
[
2A′2E1 + 2E1′A2

]
− (E1)2γG′

+ 8A2(E1)2E1′ + 2γG∂r(E1)2
)

= (1 + γ2) N(r)
2(E1)3

√
Er

(
− H

L

2Er − 4(E1)2γG′ + 2γG∂r(E1)2
)

+ (1 + γ2)−8N(E1)3A′2
2(E1)3

√
Er

= (1 + γ2) N(r)
2(E1)3

√
Er

(
− H

L

2Er − 4(E1)2γG′ + 2γG∂r(E1)2
)
− 4(1 + γ2) A2A

′
2√

Er︸ ︷︷ ︸
b

(B.1.18)

The b term in the above equation will cancel the second term in a. Hence the PB with the
Hamiltonian reads

ȦHr = −1
2γ2

{
N(r)
E1
√
Er

(
−H

E

2Er −
(1 + γ2)

2E1
HL

2Er

)
︸ ︷︷ ︸

=H

− γA1Hr

2E1
√
Er

(B.1.19)

+ (1 + γ2) N(r)
2(E1)3

√
Er

(
−4(E1)2γG′ + 2γG∂r(E1)2

)}

+ −1
2γ2

{(
2A2∂r(A2

1)√
Er

)
− 4γ2A2A

′
2√

Er

}
.

As for the contribution from the diffeomorphism constraint in (4.2.16), it can be manipulated
in the same fashion as the case of A1 in (B.1.13). This time one should consider

2
γ
∂r(N rAr) = 2

γ
∂r

(
−γN r ∂r(ΛN r)

N

)
= 2
γ2∂r

( √
Er

E1A2
∂r(A2

1)
)

(B.1.20)

which brings us to the similar calculation of (B.1.13). Computing it explicitly will produce
the canceling term coming from the Hamiltonian contribution. Notice that there is a relation
between the evolution equations attributed to Ar and A1, namely the ones coming from the
Hamiltonian contribution

ȦHr = E1

Er
ȦH1 = −2E1

Er
Ȧr1 (B.1.21)

= −2E1

γEr
N r∂rA1 . (B.1.22)
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If we consider the computation before evaluating the delta function present in the bracket (this
is useful to preform integration by parts), one can show that

ȦHr = E1

Er
ȦH1 = −2E1

Er
Ȧr1 (B.1.23)

=
∫
dρ

{
δ(r − ρ)

(
−4E1

γEr
N r∂rA1

)}

=
∫
dρ

{
δ(r − ρ)

(
−4E1

γEr
N rArA2

)}

=
∫
dρ

{
δ(r − ρ)

(
−2N rAr

Er′

γEr

)}
= 1
γ

∫
dρ {δ(r − ρ) (2N rAr)}

= 2
γ
∂r (N rAr)

= −Ȧrr .

Therefore the evolution equation for Ar vanishes

Ȧr = ȦHr + Ȧrr = 0 .

B.2 Fluxes evolution equations

Er flux component

In order to show explicitly that the evolution equations are satisfied on-shell, a crucial feature,
as we saw for the connection, is to express the shift in terms of the connection and fluxes
component. Hence, an accessible way to do so is to rely on the connection component A1,
which will turn out to be important since it will grant the right proportionality for the γ factors
contributing from the Hamiltonian and diffeomorphism constraint.1 Using the fact that N = A2
and that R′ = (Er)′

2
√
Er

, the shift N r can be expressed as

N r = −NA1
γR′

= −A2A1
γR′

= −2
√
ErA2A1
γ(Er)′ . (B.2.1)

Furthermore, expressing Er′ in (4.2.22) in terms of the Gauss constraint, the evolution equation
yields

Ėr = 1
γ2 4N

√
ErA1 + 2N r

γ

(
γG3 + 2A2E

1
)

= 1
γ2 4N

√
ErA1 + 2N rA2E

1

= 1
γ2 4N

√
ErA1 − 4 1

γ2 (
√
ErA2A1
(Er)′ A2E

1)

= 0 .
1We reintroduced the γ2 in all the calculations
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where one can set the constraint G3 to zero and use the relation 2A2E
1 = Er′ to arrive at the

last equality. Therefore the total evolution equation for the flux Er vanishes, i.e.

Ėr = 0 .

E1 flux component

For the E1 component

Ė1
H = −2N√

Er

(
ArE

r + E1A1
)
. (B.2.2)

Notice the combination

Er

2 H
1
r +A1G3 = sin θ

γ

[
ErA′1 +A1E

r′ − 2A2(E1A1 + ErAr)
]

(B.2.3)

= sin θ
γ

(
∂r(ErA1)− 2A2(E1A1 + ErAr)

)
= 0 .

Therefore the full equation of motion for the flux E1 reads

Ė1 = −2N√
Er

(
ArE

r + E1A1
)

+ 2
γ
∂r(N rE1) (B.2.4)

= −N(r)
A2
√
Er

{
γEr

2 H
1
r + γG3Ar − ∂r(ErA1)

}
+ 2
γ
∂r(N rE1) .

Now all what one should prove is that the third term in the curly bracket cancels the contribution
coming the PB with Hr. To this aim let us examine the term coming from the commutator
with the diffeomorphism constraint. One writes the useful relation

E1 = 1
2A2

(
Er′ − γG3

)
, (B.2.5)

and notice that Ė1
r can be written as:

∂r(N rE1) = 2
γ
∂r

(
N r

2A2
(E′r − γG3)

)
= 2
γ
∂r

(
N r

2A2
E′r
)

= −2
γ
∂r

(
NA1

√
Er

2A2γ

)

= − 1
γ2∂r

(
A1
√
Er
)
,

= −1
4∂r

(
ĖrE

)
As we did for the connection in the previous paragraph, we evaluate the equation of motion of
Ė1
E before integrating over the delta function. Putting everything together

Ė1 = 2N
γA2

∂r(
√
ErA1)− 2

γ
∂r(A1

√
Er) = 0 . (B.2.6)
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